Li, Xiaoyan; Rymer, William Zev; Zhou, Ping
2013-01-01
Motor unit number index (MUNIX) measurement has recently achieved increasing attention as a tool to evaluate the progression of motoneuron diseases. In our current study, the sensitivity of the MUNIX technique to changes in motoneuron and muscle properties was explored by a simulation approach utilizing variations on published motoneuron pool and surface electromyogram (EMG) models. Our simulation results indicate that, when keeping motoneuron pool and muscle parameters unchanged and varying the input motor unit numbers to the model, then MUNIX estimates can appropriately characterize changes in motor unit numbers. Such MUNIX estimates are not sensitive to different motor unit recruitment and rate coding strategies used in the model. Furthermore, alterations in motor unit control properties do not have a significant effect on the MUNIX estimates. Neither adjustment of the motor unit recruitment range nor reduction of the motor unit firing rates jeopardizes the MUNIX estimates. The MUNIX estimates closely correlate with the maximum M wave amplitude. However, if we reduce the amplitude of each motor unit action potential rather than simply reduce motor unit number, then MUNIX estimates substantially underestimate the motor unit numbers in the muscle. These findings suggest that the current MUNIX definition is most suitable for motoneuron diseases that demonstrate secondary evidence of muscle fiber reinnervation. In this regard, when MUNIX is applied, it is of much importance to examine a parallel measurement of motor unit size index (MUSIX), defined as the ratio of the maximum M wave amplitude to the MUNIX. However, there are potential limitations in the application of the MUNIX methods in atrophied muscle, where it is unclear whether the atrophy is accompanied by loss of motor units or loss of muscle fiber size. PMID:22514208
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... magnet technology, thereby allowing the motor to run more efficiently. 15. Motors sold for use in pool...-efficient motors because pool pumps typically run for many hours a day, sometimes even continuously. Pool... and fan blades are among the more difficult design aspects of furnace draft inducers. 51. Furnaces are...
NASA Astrophysics Data System (ADS)
Roshani, Amir; Erfanian, Abbas
2016-08-01
Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS through an array of microelectrodes.
Rice, Amber; Fuglevand, Andrew J; Laine, Christopher M; Fregosi, Ralph F
2011-05-01
The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.
The compensatory interaction between motor unit firing behavior and muscle force during fatigue
De Luca, Carlo J.; Kline, Joshua C.
2016-01-01
Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. PMID:27385798
The compensatory interaction between motor unit firing behavior and muscle force during fatigue.
Contessa, Paola; De Luca, Carlo J; Kline, Joshua C
2016-10-01
Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.
Size principle and information theory.
Senn, W; Wyler, K; Clamann, H P; Kleinle, J; Lüscher, H R; Müller, L
1997-01-01
The motor units of a skeletal muscle may be recruited according to different strategies. From all possible recruitment strategies nature selected the simplest one: in most actions of vertebrate skeletal muscles the recruitment of its motor units is by increasing size. This so-called size principle permits a high precision in muscle force generation since small muscle forces are produced exclusively by small motor units. Larger motor units are activated only if the total muscle force has already reached certain critical levels. We show that this recruitment by size is not only optimal in precision but also optimal in an information theoretical sense. We consider the motoneuron pool as an encoder generating a parallel binary code from a common input to that pool. The generated motoneuron code is sent down through the motoneuron axons to the muscle. We establish that an optimization of this motoneuron code with respect to its information content is equivalent to the recruitment of motor units by size. Moreover, maximal information content of the motoneuron code is equivalent to a minimal expected error in muscle force generation.
Motor unit recruitment strategies are altered during deep-tissue pain.
Tucker, Kylie; Butler, Jane; Graven-Nielsen, Thomas; Riek, Stephan; Hodges, Paul
2009-09-02
Muscle pain is associated with decreased motor unit discharge rate during constant force contractions. As discharge rate is a determinant of force, other adaptations in strategy must explain force maintenance during pain. Our aim was to determine whether motor unit recruitment strategies are altered during pain to maintain force despite reduced discharge rate. Motor unit discharge behavior was recorded in two muscles, one with (quadriceps) and one without [flexor pollicis longus (FPL)] synergists. Motor units were recruited during matched low-force contractions with and without experimentally induced pain, and at higher force without pain. A total of 52 and 34 units were recorded in quadriceps and FPL, respectively, during low-force contractions with and without pain. Of these, 20 quadriceps and 9 FPL units were identified during both trials. The discharge rate of these units reduced during pain in both muscles [quadriceps: 8.7 (1.5) to 7.5 (1.3) Hz, p < 0.001; FPL: 11.9 (1.5) to 10.0 (1.7) Hz, p < 0.001]. All remaining units discharged only with or without pain, but not in both conditions. Only one-third of the additional units recruited during pain (quadriceps n = 7/19, FPL n = 3/15) were those expected given orderly recruitment of the motor unit pool as determined during higher-force contractions. We conclude that reduced motor unit discharge rate with pain is accompanied by changes in the population of units used to maintain force. The recruitment of new units is partly inconsistent with generalized inhibition of the motoneuron pool predicted by the "pain adaptation" theory, and provides the basis for a new mechanism of motor adaptation with pain.
Stepien, Anna E; Tripodi, Marco; Arber, Silvia
2010-11-04
Movement is the behavioral output of neuronal activity in the spinal cord. Motor neurons are grouped into motor neuron pools, the functional units innervating individual muscles. Here we establish an anatomical rabies virus-based connectivity assay in early postnatal mice. We employ it to study the connectivity scheme of premotor neurons, the neuronal cohorts monosynaptically connected to motor neurons, unveiling three aspects of organization. First, motor neuron pools are connected to segmentally widely distributed yet stereotypic interneuron populations, differing for pools innervating functionally distinct muscles. Second, depending on subpopulation identity, interneurons take on local or segmentally distributed positions. Third, cholinergic partition cells involved in the regulation of motor neuron excitability segregate into ipsilaterally and bilaterally projecting populations, the latter exhibiting preferential connections to functionally equivalent motor neuron pools bilaterally. Our study visualizes the widespread yet precise nature of the connectivity matrix for premotor interneurons and reveals exquisite synaptic specificity for bilaterally projecting cholinergic partition cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.
Grande, G; Cafarelli, E
2003-06-01
Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.
Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou
2017-01-01
Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.
Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou
2017-01-01
Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637
The human motor neuron pools receive a dominant slow‐varying common synaptic input
Negro, Francesco; Yavuz, Utku Şükrü
2016-01-01
Key points Motor neurons in a pool receive both common and independent synaptic inputs, although the proportion and role of their common synaptic input is debated.Classic correlation techniques between motor unit spike trains do not measure the absolute proportion of common input and have limitations as a result of the non‐linearity of motor neurons.We propose a method that for the first time allows an accurate quantification of the absolute proportion of low frequency common synaptic input (<5 Hz) to motor neurons in humans.We applied the proposed method to three human muscles and determined experimentally that they receive a similar large amount (>60%) of common input, irrespective of their different functional and control properties.These results increase our knowledge about the role of common and independent input to motor neurons in force control. Abstract Motor neurons receive both common and independent synaptic inputs. This observation is classically based on the presence of a significant correlation between pairs of motor unit spike trains. The functional significance of different relative proportions of common input across muscles, individuals and conditions is still debated. One of the limitations in our understanding of correlated input to motor neurons is that it has not been possible so far to quantify the absolute proportion of common input with respect to the total synaptic input received by the motor neurons. Indeed, correlation measures of pairs of output spike trains only allow for relative comparisons. In the present study, we report for the first time an approach for measuring the proportion of common input in the low frequency bandwidth (<5 Hz) to a motor neuron pool in humans. This estimate is based on a phenomenological model and the theoretical fitting of the experimental values of coherence between the permutations of groups of motor unit spike trains. We demonstrate the validity of this theoretical estimate with several simulations. Moreover, we applied this method to three human muscles: the abductor digiti minimi, tibialis anterior and vastus medialis. Despite these muscles having different functional roles and control properties, as confirmed by the results of the present study, we estimate that their motor pools receive a similar and large (>60%) proportion of common low frequency oscillations with respect to their total synaptic input. These results suggest that the central nervous system provides a large amount of common input to motor neuron pools, in a similar way to that for muscles with different functional and control properties. PMID:27151459
Motor unit number estimation based on high-density surface electromyography decomposition.
Peng, Yun; He, Jinbao; Yao, Bo; Li, Sheng; Zhou, Ping; Zhang, Yingchun
2016-09-01
To advance the motor unit number estimation (MUNE) technique using high density surface electromyography (EMG) decomposition. The K-means clustering convolution kernel compensation algorithm was employed to detect the single motor unit potentials (SMUPs) from high-density surface EMG recordings of the biceps brachii muscles in eight healthy subjects. Contraction forces were controlled at 10%, 20% and 30% of the maximal voluntary contraction (MVC). Achieved MUNE results and the representativeness of the SMUP pools were evaluated using a high-density weighted-average method. Mean numbers of motor units were estimated as 288±132, 155±87, 107±99 and 132±61 by using the developed new MUNE at 10%, 20%, 30% and 10-30% MVCs, respectively. Over 20 SMUPs were obtained at each contraction level, and the mean residual variances were lower than 10%. The new MUNE method allows a convenient and non-invasive collection of a large size of SMUP pool with great representativeness. It provides a useful tool for estimating the motor unit number of proximal muscles. The present new MUNE method successfully avoids the use of intramuscular electrodes or multiple electrical stimuli which is required in currently available MUNE techniques; as such the new MUNE method can minimize patient discomfort for MUNE tests. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
No Further Action Decision Under Cercla Study Area 61Z Building 202 Historic Motor Pool
2000-01-01
appropriate response actions are implemented at Fort Devens under CERCLA. AOC 61Z is the former site of a motor pool at the corner of Carey and St. Mihiel...provided recommendations for response actions with the objective of identifying priorities for environmental restoration at Fort Devens . Areas...a final permit that included a list of Solid Waste Management Units requiring corrective action . In December 1989, Fort Devens was placed on the
Sources of signal-dependent noise during isometric force production.
Jones, Kelvin E; Hamilton, Antonia F; Wolpert, Daniel M
2002-09-01
It has been proposed that the invariant kinematics observed during goal-directed movements result from reducing the consequences of signal-dependent noise (SDN) on motor output. The purpose of this study was to investigate the presence of SDN during isometric force production and determine how central and peripheral components contribute to this feature of motor control. Peripheral and central components were distinguished experimentally by comparing voluntary contractions to those elicited by electrical stimulation of the extensor pollicis longus muscle. To determine other factors of motor-unit physiology that may contribute to SDN, a model was constructed and its output compared with the empirical data. SDN was evident in voluntary isometric contractions as a linear scaling of force variability (SD) with respect to the mean force level. However, during electrically stimulated contractions to the same force levels, the variability remained constant over the same range of mean forces. When the subjects were asked to combine voluntary with stimulation-induced contractions, the linear scaling relationship between the SD and mean force returned. The modeling results highlight that much of the basic physiological organization of the motor-unit pool, such as range of twitch amplitudes and range of recruitment thresholds, biases force output to exhibit linearly scaled SDN. This is in contrast to the square root scaling of variability with mean force present in any individual motor-unit of the pool. Orderly recruitment by twitch amplitude was a necessary condition for producing linearly scaled SDN. Surprisingly, the scaling of SDN was independent of the variability of motoneuron firing and therefore by inference, independent of presynaptic noise in the motor command. We conclude that the linear scaling of SDN during voluntary isometric contractions is a natural by-product of the organization of the motor-unit pool that does not depend on signal-dependent noise in the motor command. Synaptic noise in the motor command and common drive, which give rise to the variability and synchronization of motoneuron spiking, determine the magnitude of the force variability at a given level of mean force output.
Speed of the bacterial flagellar motor near zero load depends on the number of stator units.
Nord, Ashley L; Sowa, Yoshiyuki; Steel, Bradley C; Lo, Chien-Jung; Berry, Richard M
2017-10-31
The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque-speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na + - and H + -driven motors. We measure the full torque-speed relationship of one and two H + units in Escherichia coli by selecting the number of H + units and controlling the number of Na + units in hybrid motors. These experiments confirm that speed near zero torque in H + -driven motors increases with the stator number. We also measured 75 torque-speed curves for Na + -driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque-speed curves to be collapsed onto a single curve by simple rescaling. Published under the PNAS license.
Speed of the bacterial flagellar motor near zero load depends on the number of stator units
Nord, Ashley L.; Sowa, Yoshiyuki; Steel, Bradley C.; Lo, Chien-Jung; Berry, Richard M.
2017-01-01
The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque–speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na+- and H+-driven motors. We measure the full torque–speed relationship of one and two H+ units in Escherichia coli by selecting the number of H+ units and controlling the number of Na+ units in hybrid motors. These experiments confirm that speed near zero torque in H+-driven motors increases with the stator number. We also measured 75 torque–speed curves for Na+-driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque–speed curves to be collapsed onto a single curve by simple rescaling. PMID:29078322
Behavior of motor units in human biceps brachii during a submaximal fatiguing contraction.
Garland, S J; Enoka, R M; Serrano, L P; Robinson, G A
1994-06-01
The activity of 50 single motor units was recorded in the biceps brachii muscle of human subjects while they performed submaximal isometric elbow flexion contractions that were sustained to induce fatigue. The purposes of this study were to examine the influence of fatigue on motor unit threshold force and to determine the relationship between the threshold force of recruitment and the initial interimpulse interval on the discharge rates of single motor units during a fatiguing contraction. The discharge rate of most motor units that were active from the beginning of the contraction declined during the fatiguing contraction, whereas the discharge rates of most newly recruited units were either constant or increased slightly. The absolute threshold forces of recruitment and derecruitment decreased, and the variability of interimpulse intervals increased after the fatigue task. The change in motor unit discharge rate during the fatigue task was related to the initial rate, but the direction of the change in discharge rate could not be predicted from the threshold force of recruitment or the variability in the interimpulse intervals. The discharge rate of most motor units declined despite an increase in the excitatory drive to the motoneuron pool during the fatigue task.
Contribution from motor unit firing adaptations and muscle co-activation during fatigue.
Contessa, Paola; Letizi, John; De Luca, Gianluca; Kline, Joshua C
2018-03-14
The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles - including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the co-activation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue.
Hybrid-fuel bacterial flagellar motors in Escherichia coli
Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M.
2014-01-01
The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H+ or Na+ ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H+- and Na+-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na+ concentration ([Na+]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na+ and H+ stator components expressed at high and medium levels, respectively, Na+ stator units dominate at high [Na+] and are replaced by H+ units when Na+ is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H+ and Na+ stator components sharing a common rotor. PMID:24550452
ERIC Educational Resources Information Center
Brantlinger, Patrick
2007-01-01
Seeking to raise money for new academic buildings and programs, Indiana University's board of trustees is exploring outsourcing its "auxiliary-service" units. These units manage printing and food services, the university's bookstores, campus motor pools, and other functions. To prevent job loss and wage cuts among hundreds of long-term…
Neural control of muscle force: indications from a simulation model
Luca, Carlo J. De
2013-01-01
We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008
A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity.
Dasen, Jeremy S; Tice, Bonnie C; Brenner-Morton, Susan; Jessell, Thomas M
2005-11-04
Spinal motor neurons acquire specialized "pool" identities that determine their ability to form selective connections with target muscles in the limb, but the molecular basis of this striking example of neuronal specificity has remained unclear. We show here that a Hox transcriptional regulatory network specifies motor neuron pool identity and connectivity. Two interdependent sets of Hox regulatory interactions operate within motor neurons, one assigning rostrocaudal motor pool position and a second directing motor pool diversity at a single segmental level. This Hox regulatory network directs the downstream transcriptional identity of motor neuron pools and defines the pattern of target-muscle connectivity.
Discharge patterns of human genioglossus motor units during arousal from sleep.
Wilkinson, Vanessa; Malhotra, Atul; Nicholas, Christian L; Worsnop, Christopher; Jordan, Amy S; Butler, Jane E; Saboisky, Julian P; Gandevia, Simon C; White, David P; Trinder, John
2010-03-01
Single motor unit recordings of the human genioglossus muscle reveal motor units with a variety of discharge patterns. Integrated multiunit electromyographic recordings of genioglossus have demonstrated an abrupt increase in the muscle's activity at arousal from sleep. The aim of the present study was to determine the effect of arousal from sleep on the activity of individual motor units as a function of their particular discharge pattern. Genioglossus activity was measured using intramuscular fine-wire electrodes inserted via a percutaneous approach. Arousals from sleep were identified using the ASDA criterion and the genioglossus electromyogram recordings analyzed for single motor unit activity. Sleep research laboratory. Sleep and respiratory data were collected in 8 healthy subjects (6 men). 138 motor units were identified during prearousalarousal sleep: 25% inspiratory phasic, 33% inspiratory tonic, 4% expiratory phasic, 3% expiratory tonic, and 35% tonic. At arousal from sleep inspiratory phasic units significantly increased the proportion of a breath over which they were active, but did not appreciably increase their rate of firing. 80 new units were identified at arousals, 75% were inspiratory, many of which were active for only 1 or 2 breaths. 22% of units active before arousal, particularly expiratory and tonic units, stopped at the arousal. Increased genioglossus muscle activity at arousal from sleep is primarily due to recruitment of inspiratory phasic motor units. Further, activity within the genioglossus motoneuron pool is reorganized at arousal as, in addition to recruitment, approximately 20% of units active before arousals stopped firing.
Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus
Carpentier, Alain; Duchateau, Jacques; Hainaut, Karl
2001-01-01
In 67 single motor units, the mechanical properties, the recruitment and derecruitment thresholds, and the discharge rates were recorded concurrently in the first dorsal interosseus (FDI) of human subjects during intermittent fatiguing contractions. The task consisted of isometric ramp-and-hold contractions performed at 50% of the maximal voluntary contraction (MVC). The purpose of this study was to examine the influence of fatigue on the behaviour of motor units with a wide range of activation thresholds. For low-threshold (< 25% MVC) motor units, the mean twitch force increased with fatigue and the recruitment threshold either did not change or increased. In contrast, the twitch force and the activation threshold decreased for the high-threshold (> 25% MVC) units. The observation that in low-threshold motor units a quick stretch of the muscle at the end of the test reset the unit force and recruitment threshold to the prefatigue value suggests a significant role for fatigue-related changes in muscle stiffness but not twitch potentiation or motor unit synchronization. Although the central drive intensified during the fatigue test, as indicated by an increase in surface electromyogram (EMG), the discharge rate of the motor units during the hold phase of each contraction decreased progressively over the course of the task for motor units that were recruited at the beginning of the test, especially the low-threshold units. In contrast, the discharge rates of newly activated units first increased and then decreased. Such divergent behaviour of low- and high-threshold motor units could not be individually controlled by the central drive to the motoneurone pool. Rather, the different behaviours must be the consequence of variable contributions from motoneurone adaptation and afferent feedback from the muscle during the fatiguing contraction. PMID:11483719
Robust and accurate decoding of motoneuron behavior and prediction of the resulting force output.
Thompson, Christopher K; Negro, Francesco; Johnson, Michael D; Holmes, Matthew R; McPherson, Laura Miller; Powers, Randall K; Farina, Dario; Heckman, Charles J
2018-05-03
The spinal alpha motoneuron is the only cell in the human CNS whose discharge can be routinely recorded in humans. We have reengineered motor unit collection and decomposition approaches, originally developed in humans, to measure the neural drive to muscle and estimate muscle force generation in the decerebrate cat model. Experimental, computational, and predictive approaches are used to demonstrate the validity of this approach across a wide range of modes to activate the motor pool. The utility of this approach is shown through the ability to track individual motor units across trials, allowing for better predictions of muscle force than the electromyography signal, and providing insights in to the stereotypical discharge characteristics in response to synaptic activation of the motor pool. This approach now allows for a direct link between the intracellular data of single motoneurons, the discharge properties of motoneuron populations, and muscle force generation in the same preparation. The discharge of a spinal alpha motoneuron and the resulting contraction of its muscle fibers represents the functional quantum of the motor system. Recent advances in the recording and decomposition of the electromyographic signal allows for the identification of several tens of concurrently active motor units. These detailed population data provide the potential to achieve deep insights into the synaptic organization of motor commands. Yet most of our understanding of the synaptic input to motoneurons is derived from intracellular recordings in animal preparations. Thus, it is necessary to extend the new electrode and decomposition methods to recording of motor unit populations in these same preparations. To achieve this goal, we use high-density electrode arrays and decomposition techniques, analogous to those developed for humans, to record and decompose the activity of tens of concurrently active motor units in a hindlimb muscle in the decerebrate cat. Our results showed that the decomposition method in this animal preparation was highly accurate, with conventional two-source validation providing rates of agreement equal to or superior to those found in humans. Multidimensional reconstruction of the motor unit action potential provides the ability to accurately track the same motor unit across multiple contractions. Additionally, correlational analyses demonstrate that the composite spike train provides better estimates of whole muscle force than conventional estimates obtained from the electromyographic signal. Lastly, stark differences are observed between the modes of activation, in particular tendon vibration produced quantal interspike intervals at integer multiples of the vibration period. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Adam, Alexander; De Luca, Carlo J
2003-11-01
Motor-unit firing patterns were studied in the vastus lateralis muscle of five healthy young men [21.4 +/- 0.9 (SD) yr] during a series of isometric knee extensions performed to exhaustion. Each contraction was held at a constant torque level, set to 20% of the maximal voluntary contraction at the beginning of the experiment. Electromyographic signals, recorded via a quadrifilar fine wire electrode, were processed with the precision decomposition technique to identify the firing times of individual motor units. In repeat experiments, whole-muscle mechanical properties were measured during the fatigue protocol using electrical stimulation. The main findings were a monotonic decrease in the recruitment threshold of all motor units and the progressive recruitment of new units, all without a change of the recruitment order. Motor units from the same subject showed a similar time course of threshold decline, but this decline varied among subjects (mean threshold decrease ranged from 23 to 73%). The mean threshold decline was linearly correlated (R2 >or= 0.96) with a decline in the elicited peak tetanic torque. In summary, the maintenance of recruitment order during fatigue strongly supports the notion that the observed common recruitment adaptations were a direct consequence of an increased excitatory drive to the motor unit pool. It is suggested that the increased central drive was necessary to compensate for the loss in force output from motor units whose muscle fibers were actively contracting. We therefore conclude that the control scheme of motor-unit recruitment remains invariant during fatigue at least in relatively large muscles performing submaximal isometric contractions.
Common drive to the upper airway muscle genioglossus during inspiratory loading
Woods, Michael J.; Nicholas, Christian L.; Semmler, John G.; Chan, Julia K. M.; Jordan, Amy S.
2015-01-01
Common drive is thought to constitute a central mechanism by which the efficiency of a motor neuron pool is increased. This study tested the hypothesis that common drive to the upper airway muscle genioglossus (GG) would increase with increased respiratory drive in response to an inspiratory load. Respiration, GG electromyographic (EMG) activity, single-motor unit activity, and coherence in the 0–5 Hz range between pairs of GG motor units were assessed for the 30 s before an inspiratory load, the first and second 30 s of the load, and the 30 s after the load. Twelve of twenty young, healthy male subjects provided usable data, yielding 77 pairs of motor units: 2 Inspiratory Phasic, 39 Inspiratory Tonic, 15 Expiratory Tonic, and 21 Tonic. Respiratory and GG inspiratory activity significantly increased during the loads and returned to preload levels during the postload periods (all showed significant quadratic functions over load trials, P < 0.05). As hypothesized, common drive increased during the load in inspiratory modulated motor units to a greater extent than in expiratory/tonic motor units (significant load × discharge pattern interaction, P < 0.05). Furthermore, this effect persisted during the postload period. In conclusion, common drive to inspiratory modulated motor units was elevated in response to increased respiratory drive. The postload elevation in common drive was suggestive of a poststimulus activation effect. PMID:26378207
Muscle vibration sustains motor unit firing rate during submaximal isometric fatigue in humans
Griffin, L; Garland, S J; Ivanova, T; Gossen, E R
2001-01-01
In keeping with the ‘muscular wisdom hypothesis’, many studies have documented that the firing rate of the majority of motor units decreased during fatiguing isometric contractions. The present study investigated whether the application of periodic muscle vibration, which strongly activates muscle spindles, would alter the modulation of motor unit firing rate during submaximal fatiguing isometric contractions. Thirty-three motor units from the lateral head of the triceps brachii muscle were recorded from 10 subjects during a sustained isometric 20 % maximal voluntary contraction (MVC) of the elbow extensors. Vibration was interposed on the contraction for 2 s every 10 s. Twenty-two motor units were recorded from the beginning of the fatigue task. The discharge rate of the majority of motor units remained constant (12/22) or increased (4/22) with fatigue. Six motor units demonstrated a reduction in discharge rate that later returned toward initial values; these motor units had higher initial discharge rates than the other 16 motor units. In a second series of experiments, four subjects held a sustained isometric 20 % MVC for 2 min and then vibration was applied as above for the remainder of the contraction. In this case, motor units initially demonstrated a decrease in firing rate that increased after the vibration was applied. Thus muscle spindle disfacilitation of the motoneurone pool may be associated with the decline of motor unit discharge rate observed during the first 2 min of the contraction. In a third set of experiments, seven subjects performed the main experiment on one occasion and repeated the fatigue task without vibration on a second occasion. Neither the endurance time of the fatiguing contraction nor the MVC torque following fatigue was affected by the application of vibration. This finding calls into question the applicability of the muscular wisdom hypothesis to submaximal contractions. PMID:11559785
Muscle vibration sustains motor unit firing rate during submaximal isometric fatigue in humans.
Griffin, L; Garland, S J; Ivanova, T; Gossen, E R
2001-09-15
1. In keeping with the 'muscular wisdom hypothesis', many studies have documented that the firing rate of the majority of motor units decreased during fatiguing isometric contractions. The present study investigated whether the application of periodic muscle vibration, which strongly activates muscle spindles, would alter the modulation of motor unit firing rate during submaximal fatiguing isometric contractions. 2. Thirty-three motor units from the lateral head of the triceps brachii muscle were recorded from 10 subjects during a sustained isometric 20 % maximal voluntary contraction (MVC) of the elbow extensors. Vibration was interposed on the contraction for 2 s every 10 s. Twenty-two motor units were recorded from the beginning of the fatigue task. The discharge rate of the majority of motor units remained constant (12/22) or increased (4/22) with fatigue. Six motor units demonstrated a reduction in discharge rate that later returned toward initial values; these motor units had higher initial discharge rates than the other 16 motor units. 3. In a second series of experiments, four subjects held a sustained isometric 20 % MVC for 2 min and then vibration was applied as above for the remainder of the contraction. In this case, motor units initially demonstrated a decrease in firing rate that increased after the vibration was applied. Thus muscle spindle disfacilitation of the motoneurone pool may be associated with the decline of motor unit discharge rate observed during the first 2 min of the contraction. 4. In a third set of experiments, seven subjects performed the main experiment on one occasion and repeated the fatigue task without vibration on a second occasion. Neither the endurance time of the fatiguing contraction nor the MVC torque following fatigue was affected by the application of vibration. This finding calls into question the applicability of the muscular wisdom hypothesis to submaximal contractions.
Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M
2017-10-01
Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions. Copyright © 2017 the American Physiological Society.
Loram, Ian D.; Muceli, Silvia; Merletti, Roberto; Farina, Dario
2012-01-01
The recruitment and the rate of discharge of motor units are determinants of muscle force. Within a motoneuron pool, recruitment and rate coding of individual motor units might be controlled independently, depending on the circumstances. In this study, we tested whether, during human quiet standing, the force of the medial gastrocnemius (MG) muscle is predominantly controlled by recruitment or rate coding. If MG control during standing was mainly due to recruitment, then we further asked what the trigger mechanism is. Is it determined internally, or is it related to body kinematics? While seven healthy subjects stood quietly, intramuscular electromyograms were recorded from the MG muscle with three pairs of wire electrodes. The number of active motor units and their mean discharge rate were compared for different sway velocities and positions. Motor unit discharges occurred more frequently when the body swayed faster and forward (Pearson R = 0.63; P < 0.0001). This higher likelihood of observing motor unit potentials was explained chiefly by the recruitment of additional units. During forward body shifts, the median number of units detected increased from 3 to 11 (P < 0.0001), whereas the discharge rate changed from 8 ± 1.1 (mean ± SD) to 10 ± 0.9 pulses/s (P = 0.001). Strikingly, motor units did not discharge continuously throughout standing. They were recruited within individual, forward sways and intermittently, with a modal rate of two recruitments per second. This modal rate is consistent with previous circumstantial evidence relating the control of standing to an intrinsic, higher level planning process. PMID:21994258
Vieira, Taian M M; Loram, Ian D; Muceli, Silvia; Merletti, Roberto; Farina, Dario
2012-01-01
The recruitment and the rate of discharge of motor units are determinants of muscle force. Within a motoneuron pool, recruitment and rate coding of individual motor units might be controlled independently, depending on the circumstances. In this study, we tested whether, during human quiet standing, the force of the medial gastrocnemius (MG) muscle is predominantly controlled by recruitment or rate coding. If MG control during standing was mainly due to recruitment, then we further asked what the trigger mechanism is. Is it determined internally, or is it related to body kinematics? While seven healthy subjects stood quietly, intramuscular electromyograms were recorded from the MG muscle with three pairs of wire electrodes. The number of active motor units and their mean discharge rate were compared for different sway velocities and positions. Motor unit discharges occurred more frequently when the body swayed faster and forward (Pearson R = 0.63; P < 0.0001). This higher likelihood of observing motor unit potentials was explained chiefly by the recruitment of additional units. During forward body shifts, the median number of units detected increased from 3 to 11 (P < 0.0001), whereas the discharge rate changed from 8 ± 1.1 (mean ± SD) to 10 ± 0.9 pulses/s (P = 0.001). Strikingly, motor units did not discharge continuously throughout standing. They were recruited within individual, forward sways and intermittently, with a modal rate of two recruitments per second. This modal rate is consistent with previous circumstantial evidence relating the control of standing to an intrinsic, higher level planning process.
Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.
Yavuz, Utku Ş; Negro, Francesco; Diedrichs, Robin; Farina, Dario
2018-05-01
Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted between ankle flexor and extensor muscles is asymmetric. The functional implication of asymmetric transmission may be associated with the neural strategies of postural control.
Load type influences motor unit recruitment in biceps brachii during a sustained contraction.
Baudry, Stéphane; Rudroff, Thorsten; Pierpoint, Lauren A; Enoka, Roger M
2009-09-01
Twenty subjects participated in four experiments designed to compare time to task failure and motor-unit recruitment threshold during contractions sustained at 15% of maximum as the elbow flexor muscles either supported an inertial load (position task) or exerted an equivalent constant torque against a rigid restraint (force task). Subcutaneous branched bipolar electrodes were used to record single motor unit activity from the biceps brachii muscle during ramp contractions performed before and at 50 and 90% of the time to failure for the position task during both fatiguing contractions. The time to task failure was briefer for the position task than for the force task (P=0.0002). Thirty and 29 motor units were isolated during the force and position tasks, respectively. The recruitment threshold declined by 48 and 30% (P=0.0001) during the position task for motor units with an initial recruitment threshold below and above the target force, respectively, whereas no significant change in recruitment threshold was observed during the force task. Changes in recruitment threshold were associated with a decrease in the mean discharge rate (-16%), an increase in discharge rate variability (+40%), and a prolongation of the first two interspike intervals (+29 and +13%). These data indicate that there were faster changes in motor unit recruitment and rate coding during the position task than the force task despite a similar net muscle torque during both tasks. Moreover, the results suggest that the differential synaptic input observed during the position task influences most of the motor unit pool.
Boe, S G; Dalton, B H; Harwood, B; Doherty, T J; Rice, C L
2009-05-01
To establish the inter-rater reliability of decomposition-based quantitative electromyography (DQEMG) derived motor unit number estimates (MUNEs) and quantitative motor unit (MU) analysis. Using DQEMG, two examiners independently obtained a sample of needle and surface-detected motor unit potentials (MUPs) from the tibialis anterior muscle from 10 subjects. Coupled with a maximal M wave, surface-detected MUPs were used to derive a MUNE for each subject and each examiner. Additionally, size-related parameters of the individual MUs were obtained following quantitative MUP analysis. Test-retest MUNE values were similar with high reliability observed between examiners (ICC=0.87). Additionally, MUNE variability from test-retest as quantified by a 95% confidence interval was relatively low (+/-28 MUs). Lastly, quantitative data pertaining to MU size, complexity and firing rate were similar between examiners. MUNEs and quantitative MU data can be obtained with high reliability by two independent examiners using DQEMG. Establishing the inter-rater reliability of MUNEs and quantitative MU analysis using DQEMG is central to the clinical applicability of the technique. In addition to assessing response to treatments over time, multiple clinicians may be involved in the longitudinal assessment of the MU pool of individuals with disorders of the central or peripheral nervous system.
Van Cutsem, Michaël; Duchateau, Jacques
2005-01-01
To investigate the effect of initial conditions on the modulation of motor unit discharge during fast voluntary contractions, we compared ballistic isometric contractions of the ankle dorsiflexor muscles that were produced from either a resting state or superimposed on a sustained contraction. The torque of the dorsiflexors and the surface and intramuscular EMGs from the tibialis anterior were recorded. The results showed that the performance of a ballistic contraction from a sustained contraction (∼25% maximal voluntary contraction (MVC)) had a negative effect on the maximal rate of torque development. Although the electromechanical delay was shortened, the EMG activity during the ballistic contraction was less synchronized. These observations were associated with a significant decline in the average discharge rate of single motor units (89.8 ± 3.8 versus 115 ± 5.8 Hz) and in the percentage of units (6.2 versus 15.5% of the whole sample) that exhibited double discharges at brief intervals (= 5 ms). High-threshold units that were not recruited during the sustained contraction displayed the same activation pattern, which indicates that the mechanisms responsible for the decline in discharge rate were not restricted to previously activated units, but appear to influence the entire motor unit pool. When a premotor silent period (SP) was observed at the transition from the sustained muscular activity to the ballistic contraction (19% of the trials), these adjustments in motor unit activity were not present, and the ballistic contractions were similar to those performed from a resting state. Together, these results indicate that initial conditions can influence the capacity for motor unit discharge rate and hence the performance of a fast voluntary contraction. PMID:15539402
Synaptic control of the shape of the motoneuron pool input-output function
Heckman, Charles J.
2017-01-01
Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs. PMID:28053245
Kudina, Lydia P; Andreeva, Regina E
2017-03-01
Motoneuron excitability is a critical property for information processing during motor control. F-wave (a motoneuronal recurrent discharge evoked by a motor antidromic volley) is often used as a criterion of motoneuron pool excitability in normal and neuromuscular diseases. However, such using of F-wave calls in question. The present study was designed to explore excitability of single low-threshold motoneurons during their natural firing in healthy humans and to ascertain whether F-wave is a correct measure of motoneuronal excitability. Single motor units (MUs) were activated by gentle voluntary muscle contractions. MU peri-stimulus time histograms and motoneuron excitability changes within a target interspike interval were analysed during testing by motor antidromic and Ia-afferent volleys. It was found that F-waves could be occasionally recorded in some low-threshold MUs. However, during evoking F-wave, in contrast with the H-reflex, peri-stimulus time histograms revealed no statistically significant increase in MU discharge probability. Moreover, surprisingly, motoneurons appeared commonly incapable to fire a recurrent discharge within the most excitable part of a target interval. Thus, the F-wave, unlike the H-reflex, is the incorrect criterion of motoneuron excitability resulting in misleading conclusions. However, it does not exclude the validity of the F-wave as a clinical tool for other aims. It was concluded that the F-wave was first explored in low-threshold MUs during their natural firing. The findings may be useful at interpretations of changes in the motoneuron pool excitability in neuromuscular diseases.
Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario
2015-02-01
Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Zev Rymer, William
2004-12-01
The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.
Age at spinal cord injury determines muscle strength
Thomas, Christine K.; Grumbles, Robert M.
2014-01-01
As individuals with spinal cord injury (SCI) age they report noticeable deficits in muscle strength, endurance and functional capacity when performing everyday tasks. These changes begin at ~45 years. Here we present a cross-sectional analysis of paralyzed thenar muscle and motor unit contractile properties in two datasets obtained from different subjects who sustained a cervical SCI at different ages (≤46 years) in relation to data from uninjured age-matched individuals. First, completely paralyzed thenar muscles were weaker when C6 SCI occurred at an older age. Muscles were also significantly weaker if the injury was closer to the thenar motor pools (C6 vs. C4). More muscles were strong (>50% uninjured) in those injured at a younger (≤25 years) vs. young age (>25 years), irrespective of SCI level. There was a reduction in motor unit numbers in all muscles tested. In each C6 SCI, only ~30 units survived vs. 144 units in uninjured subjects. Since intact axons only sprout 4–6 fold, the limits for muscle reinnervation have largely been met in these young individuals. Thus, any further reduction in motor unit numbers with time after these injuries will likely result in chronic denervation, and may explain the late-onset muscle weakness routinely described by people with SCI. In a second dataset, paralyzed thenar motor units were more fatigable than uninjured units. This gap widened with age and will reduce functional reserve. Force declines were not due to electromyographic decrements in either group so the site of failure was beyond excitation of the muscle membrane. Together, these results suggest that age at SCI is an important determinant of long-term muscle strength, and fatigability, both of which influence functional capacity. PMID:24478643
1980-08-08
only extension granted has been for one generator. 4-28 Transportation motor pools and tactical units have been directed to comply with the Clean Air ...include cooperative programs with the DOE, the Navy, and the Air Force and the .... __ _ _ _ _ _ _.--- monitoring of commercial developments and...sulfur content poses considerable threat to air quality. Sulfur can be substantially eliminated from coal, but the process is costly. In addition, 1-9
Electrical stimulation of transplanted motoneurons improves motor unit formation
Liu, Yang; Grumbles, Robert M.
2014-01-01
Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463
Periodic modulation of motor-unit activity in extrinsic hand muscles during multidigit grasping.
Johnston, Jamie A; Winges, Sara A; Santello, Marco
2005-07-01
We recently examined the extent to which motor units of digit flexor muscles receive common input during multidigit grasping. This task elicited moderate to strong motor-unit synchrony (common input strength, CIS) across muscles (flexor digitorum profundus, FDP, and flexor pollicis longus, FPL) and across FDP muscle compartments, although the strength of this common input was not uniform across digit pairs. To further characterize the neural mechanisms underlying the control of multidigit grasping, we analyzed the relationship between firing of single motor units from these hand muscles in the frequency domain by computing coherence. We report three primary findings. First, in contrast to what has been reported in intrinsic hand muscles, motor units belonging to different muscles and muscle compartments of extrinsic digit flexors exhibited significant coherence in the 0- to 5- and 5- to 10-Hz frequency ranges and much weaker coherence in the higher 10-20 Hz range (maximum 0.0025 and 0.0008, respectively, pooled across all FDP compartment pairs). Second, the strength and incidence of coherence differed considerably across digit pairs. Third, contrary to what has been reported in the literature, across-muscle coherence can be stronger and more prevalent than within-muscle coherence, as FPL-FDP2 (thumb-index digit pair) exhibited the strongest and most prevalent coherence in our data (0.010 and 43% at 3 Hz, respectively). The heterogeneous organization of common input to these muscles and muscle compartments is discussed in relation to the functional role of individual digit pairs in the coordination of multiple digit forces in grasping.
Enhancing the Motor Skills of Children with Autism Spectrum Disorders: A Pool-Based Approach
ERIC Educational Resources Information Center
Lee, Jihyun; Porretta, David L.
2013-01-01
Children with autism spectrum disorders (ASDs) often experience difficulties with motor skill learning and performance. The pool is a unique learning environment that can help children with ASDs learn or improve aquatic skills, fitness, and social skills. A pool-based approach is also aligned with the elements of dynamic systems theory, which…
The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report.
Trevino, Michael A; Herda, Trent J; Cooper, Michael A
2014-09-06
Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike for the healthy participants. Finally, healthy participants exhibited changes in all electromyographic parameters during the repetitive muscle actions despite successfully completing all contractions with only a slight reduction in force. Thus, caution is warranted when quantifying muscular fatigue via motor unit firing rates and other electromyographic parameters since the parameters changed despite successful completing of all contractions with only a moderate reduction in strength in healthy subjects.
Patterns of Spinal Sensory-Motor Connectivity Prescribed by a Dorsoventral Positional Template
Sürmeli, Gülşen; Akay, Turgay; Ippolito, Gregory; Tucker, Philip W; Jessell, Thomas M
2011-01-01
Summary Sensory-motor circuits in the spinal cord are constructed with a fine specificity that coordinates motor behavior, but the mechanisms that direct sensory connections with their motor neuron partners remain unclear. The dorsoventral settling position of motor pools in the spinal cord is known to match the distal-to-proximal position of their muscle targets in the limb, but the significance of invariant motor neuron positioning is unknown. An analysis of sensory-motor connectivity patterns in FoxP1 mutant mice, where motor neuron position has been scrambled, shows that the final pattern of sensory-motor connections is initiated by the projection of sensory axons to discrete dorsoventral domains of the spinal cord without regard for motor neuron subtype, or indeed, the presence of motor neurons. By implication, the clustering and dorsoventral settling position of motor neuron pools serves as a determinant of the pattern of sensory input specificity, and thus motor coordination. PMID:22036571
Hayward, Kathryn S; Schmidt, Julia; Lohse, Keith R; Peters, Sue; Bernhardt, Julie; Lannin, Natasha A; Boyd, Lara A
2017-01-01
To build an understanding of the neurobiology underpinning arm recovery in people with severe arm impairment due to stroke, we conducted a pooled individual data systematic review to: 1) characterize brain biomarkers; 2) determine relationship(s) between biomarkers and motor outcome; and 3) establish relationship(s) between biomarkers and motor recovery. Three electronic databases were searched up to October 2, 2015. Eligible studies included adults with severe arm impairment after stroke. Descriptive statistics were calculated to characterize brain biomarkers, and pooling of individual patient data was performed using mixed-effects linear regression to examine relationships between brain biomarkers and motor outcome and recovery. Thirty-eight articles including individual data from 372 people with severe arm impairment were analysed. The majority of individuals were in the chronic (> 6 months) phase post stroke (51%) and had a subcortical stroke (49%). The presence of a motor evoked potential (indexed by transcranial magnetic stimulation) was the only biomarker related to better motor outcome ( p = 0.02). There was no relationship between motor outcome and stroke volume (cm 3 ), location (cortical, subcortical, mixed) or side (left vs. right), and corticospinal tract asymmetry index (extracted from diffusion weighted imaging). Only one study had longitudinal data, thus no data pooling was possible to address change over time (preventing our third objective). Based on the available evidence, motor evoked potentials at rest were the only biomarker that predicted motor outcome in individuals with severe arm impairment following stroke. Given that few biomarkers emerged, this review highlights the need to move beyond currently known biomarkers and identify new indices with sufficient variability and sensitivity to guide recovery models in individuals with severe motor impairments following stroke. CRD42015026107.
Gabler, Conrad M; Lepley, Adam S; Uhl, Tim L; Mattacola, Carl G
2016-08-01
Proper neuromuscular activation of the quadriceps muscle is essential for maintaining quadriceps (quad) strength and lower-extremity function. Quad activation (QA) failure is a common characteristic observed in patients with knee pathologies, defined as an inability to voluntarily activate the entire alpha-motor-neuron pool innervating the quad. One of the more popular techniques used to assess QA is the superimposed burst (SIB) technique, a force-based technique that uses a supramaximal, percutaneous electrical stimulation to activate all of the motor units in the quad during a maximal, voluntary isometric contraction. Central activation ratio (CAR) is the formula used to calculate QA level (CAR = voluntary force/SIB force) with the SIB technique. People who can voluntarily activate 95% or more (CAR = 0.95-1.0) of their motor units are defined as being fully activated. Therapeutic exercises aimed at improving quad strength in patients with knee pathologies are limited in their effectiveness due to a failure to fully activate the muscle. Within the past decade, several disinhibitory interventions have been introduced to treat QA failure in patients with knee pathologies. Transcutaneous electrical nerve stimulation (TENS) and cryotherapy are sensory-targeted modalities traditionally used to treat pain, but they have been shown to be 2 of the most successful treatments for increasing QA levels in patients with QA failure. Both modalities are hypothesized to positively affect voluntary QA by disinhibiting the motor-neuron pool of the quad. In essence, these modalities provide excitatory afferent stimuli to the spinal cord, which thereby overrides the inhibitory afferent signaling that arises from the involved joint. However, it remains unknown whether 1 is more effective than the other for restoring QA levels in patients with knee pathologies. By knowing the capabilities of each disinhibitory modality, clinicians can tailor treatments based on the rehabilitation goals of their patients. Focused Clinical Question: Is TENS or cryotherapy the more effective disinhibitory modality for treating QA failure (quantified via CAR) in patients with knee pathologies?
Bastedo, Timothy; Chan, Erin; Park, Eileen; Liu, Hattie; Horner, Richard L
2009-10-01
Histamine neurons comprise a major component of the aminergic arousal system and significantly influence sleep-wake states, with antihistamines widely used as sedative hypnotics. Unlike the serotonergic and noradrenergic components of this arousal system, however, the role of histamine in the central control of respiratory motor activity has not been determined. The aims of this study were to characterize the effects of histamine receptor agonists and antagonists at the hypoglossal motor pool on genioglossus muscle activity across sleep and awake states, and also determine if histamine contributes an endogenous excitatory drive to modulate hypoglossal motor outflow to genioglossus muscle. Thirty-three rats were implanted with electroencephalogram and neck electrodes to record sleep-wake states, and genioglossus and diaphragm electrodes for respiratory muscle recordings. Microdialysis probes were inserted into the hypoglossal motor nucleus. Histamine at the hypoglossal motor nucleus significantly increased tonic genioglossus muscle activity in wakefulness, non-REM sleep and REM sleep. The activating effects of histamine on genioglossus muscle activity also occurred with a histamine type-1 (H1) but not H2 receptor agonist. However, H1 receptor antagonism at the hypoglossal motor nucleus did not decrease genioglossus muscle activity in wakefulness or sleep. The results suggest that histamine at the hypoglossal motor pool increases genioglossus muscle activity in freely behaving rats in wakefulness, non-REM, and REM sleep via an H1 receptor mechanism.
Task-dependent output of human parasternal intercostal motor units across spinal levels.
Hudson, Anna L; Gandevia, Simon C; Butler, Jane E
2017-12-01
During breathing, there is differential activity in the human parasternal intercostal muscles and the activity is tightly coupled to the known mechanical advantages for inspiration of the same regions of muscles. It is not known whether differential activity is preserved for the non-respiratory task of ipsilateral trunk rotation. In the present study, we compared single motor units during resting breathing and axial rotation of the trunk during apnoea. We not only confirmed non-uniform recruitment of motor units across parasternal intercostal muscles in breathing, but also demonstrated that the same motor units show an altered pattern of recruitment in the non-respiratory task of trunk rotation. The output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task and these results help us understand the mechanisms that may govern task-dependent differences in motoneurone output. During inspiration, there is differential activity in the human parasternal intercostal muscles across interspaces. We investigated whether the earlier recruitment of motor units in the rostral interspaces compared to more caudal spaces during inspiration is preserved for the non-respiratory task of ipsilateral trunk rotation. Single motor unit activity (SMU) was recorded from the first, second and fourth parasternal interspaces on the right side in five participants in two tasks: resting breathing and 'isometric' axial rotation of the trunk during apnoea. Recruitment of the same SMUs was compared between tasks (n = 123). During resting breathing, differential activity was indicated by earlier recruitment of SMUs in the first and second interspaces compared to the fourth space in inspiration (P < 0.01). By contrast, during trunk rotation, the same motor units showed an altered pattern of recruitment because SMUs in the first interspace were recruited later and at a higher rotation torque than those in the second and fourth interspaces (P < 0.05). Tested for a subset of SMUs, the reliability of the breathing and rotation tasks, as well as the SMU recruitment measures, was good-excellent [intraclass correlation (2,1): 0.69-0.91]. Thus, the output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task. Given that the differential inspiratory output of parasternal intercostal muscles is linked to their relative mechanical effectiveness for inspiration and also that this output is altered in trunk rotation, we speculate that a mechanism matching neural drive to muscle mechanics underlies the task-dependent differences in output of axial motoneurone pools. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Chen, Jun-An; Wichterle, Hynek
2012-01-01
Diversification of mammalian spinal motor neurons into hundreds of subtypes is critical for the maintenance of body posture and coordination of complex movements. Motor neuron differentiation is controlled by extrinsic signals that regulate intrinsic genetic programs specifying and consolidating motor neuron subtype identity. While transcription factors have been recognized as principal regulators of the intrinsic program, the role of posttranscriptional regulations has not been systematically tested. MicroRNAs produced by Dicer mediated cleavage of RNA hairpins contribute to gene regulation by posttranscriptional silencing. Here we used Olig2-cre conditional deletion of Dicer gene in motor neuron progenitors to examine effects of miRNA biogenesis disruption on postmitotic spinal motor neurons. We report that despite the initial increase in the number of motor neuron progenitors, disruption of Dicer function results in a loss of many limb- and sympathetic ganglia-innervating spinal motor neurons. Furthermore, it leads to defects in motor pool identity specification. Thus, our results indicate that miRNAs are an integral part of the genetic program controlling motor neuron survival and acquisition of subtype specific properties. PMID:22629237
Lei, Yuming; Suresh, Nina L; Rymer, William Z; Hu, Xiaogang
2018-01-01
Muscle force generation involves recruitment and firing rate modulation of motor units (MUs). The control of MUs in producing multidirectional forces remains unclear. We studied MU recruitment and firing properties, recorded from the first dorsal interosseous muscle, for 3 different directions of contraction: abduction; abduction/flexion combination; and flexion. MUs were recruited systematically at higher threshold force during flexion. Larger MUs were recruited and firing rates of MUs were lower during abduction. There was an orderly recruitment of MUs according to MU size regardless of contraction direction, obeying the "size principle." Firing rates of earlier-recruited MUs were consistently higher than later-recruited MUs, affirming the "onion-skin" property. Our findings suggest that the size principle and onion-skin organization together provide a general description of MU recruitment patterns and firing properties. The directional alternations of MU control properties likely reflect changes in neural drive to the muscle. Muscle Nerve 57: E85-E93, 2018. © 2017 Wiley Periodicals, Inc.
Williams, Preston T. J. A.; Kim, Sangsoo
2014-01-01
The red nucleus (RN) and rubrospinal tract (RST) are important for forelimb motor control. Although the RST is present postnatally in cats, nothing is known about when rubrospinal projections could support motor functions or the relation between the development of the motor functions of the rubrospinal system and the corticospinal system, the other major system for limb control. Our hypothesis is that the RN motor map is present earlier in development than the motor cortex (M1) map, to support early forelimb control. We investigated RN motor map maturation with microstimulation and RST cervical enlargement projections using anterograde tracers between postnatal week 3 (PW3) and PW16. Microstimulation and tracer injection sites were verified histologically to be located within the RN. Microstimulation at PW4 evoked contralateral wrist, elbow, and shoulder movements. The number of sites producing limb movement increased and response thresholds decreased progressively through PW16. From the outset, all forelimb joints were represented. At PW3, RST projections were present within the cervical intermediate zone, with a mature density of putative synapses. In contrast, beginning at PW5 there was delayed and age-dependent development of forelimb motor pool projections and putative rubromotoneuronal synapses. The RN has a more complete forelimb map early in development than previous studies showed for M1, supporting our hypothesis of preferential rubrospinal rather than corticospinal control for early movements. Remarkably, development of the motor pool, not intermediate zone, RST projections paralleled RN motor map development. The RST may be critical for establishing the rudiments of motor skills that subsequently become refined with further CST development. PMID:24647962
Martinez-Valdes, Eduardo; Negro, Francesco; Falla, Deborah; De Nunzio, Alessandro Marco; Farina, Dario
2018-04-01
Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL ( P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM ( P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL ( P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.
Motor function and incident dementia: a systematic review and meta-analysis.
Kueper, Jacqueline Kathleen; Speechley, Mark; Lingum, Navena Rebecca; Montero-Odasso, Manuel
2017-09-01
cognitive and mobility decline are interrelated processes, whereby mobility decline coincides or precedes the onset of cognitive decline. to assess whether there is an association between performance on motor function tests and incident dementia. electronic database, grey literature and hand searching identified studies testing for associations between baseline motor function and incident dementia in older adults. of 2,540 potentially relevant documents, 37 met the final inclusion criteria and were reviewed qualitatively. Three meta-analyses were conducted using data from 10 studies. Three main motor domains-upper limb motor function, parkinsonism and lower limb motor function-emerged as associated with increased risk of incident dementia. Studies including older adults without neurological overt disease found a higher risk of incident dementia associated with poorer performance on composite motor function scores, balance and gait velocity (meta-analysis pooled HR = 1.94, 95% CI: 1.41, 2.65). Mixed results were found across different study samples for upper limb motor function, overall parkinsonism (meta-analysis pooled OR = 3.05, 95% CI: 1.31, 7.08), bradykinesia and rigidity. Studies restricted to older adults with Parkinson's Disease found weak or no association with incident dementia even for motor domains highly associated in less restrictive samples. Tremor was not associated with an increased risk of dementia in any population (meta-analysis pooled HR = 0.80, 95% CI 0.31, 2.03). lower limb motor function was associated with increased risk of developing dementia, while tremor and hand grip strength were not. Our results support future research investigating the inclusion of quantitative motor assessment, specifically gait velocity tests, for clinical dementia risk evaluation. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com
Another face of placebo: The lessebo effect in Parkinson disease
Mestre, Tiago A.; Shah, Prakesh; Marras, Connie; Tomlinson, George
2014-01-01
Objective: To study the impact of negative expectation related to receiving a placebo (the “lessebo effect”) on efficacy outcome measures of symptomatic treatments in Parkinson disease (PD). Methods: We conducted meta-analyses of double-blind randomized controlled trials (RCTs) of dopamine agonists in PD and compared the pooled mean score change of the motor section of the Unified Parkinson's Disease Rating Scale (mUPDRS) across active treatment arms according to the presence of a placebo arm or the probability of placebo assignment (0%, <50%, and 50%) of the original RCT. A mixed-effects model was used. Heterogeneity was assessed by subgroup analyses and meta-regression modeling. Results: A total of 28 study arms were extracted from active-controlled trials (3,277 patients) and 42 from placebo-controlled trials (4,554 patients). The overall difference between groups in the pooled mean score change in the mUPDRS was 1.6 units (95% confidence interval [CI] 0.2, 3.0; p = 0.023), in favor of the active-controlled group. In subgroup analyses, this difference was of higher magnitude in the early PD group without motor fluctuations (3.3 mUPDRS units, 95% CI 1.1, 5.4; p = 0.003) and for study duration ≤12 weeks (4.1 mUPDRS units, 95% CI 1.0, 7.2; p = 0.009). There was no between-group difference using probability of placebo assignment as criterion. Conclusions: This study shows that the use of a placebo can be associated with a clinically significant reduction in the magnitude of change of the mUPDRS after an active treatment in RCTs for PD. These new findings have potential implications in the development of new treatments and appraisal of current treatment options for PD and possibly for other neurologic disorders. PMID:24658930
Real-time radiography of Titan 4 Solid Rocket Motor Upgrade (SRMU) static firing test QM-2
NASA Astrophysics Data System (ADS)
Dolan, K. W.; Curnow, G. M.; Perkins, D. E.; Schneberk, D. J.; Costerus, B. W.; Lachapell, M. J.; Turner, D. E.; Wallace, P. W.
1994-03-01
Real-time radiography was successfully applied to the Titan-4 Solid Rocket Motor Upgrade (SRMU) static firing test QM-2 conducted February 22, 1993 at Phillips Laboratory, Edwards AFB, CA. The real-time video data obtained in this test gave the first incontrovertible evidence that the molten slag pool is low (less than 5 to 6 inches in depth referenced to the bottom of the aft dome cavity) before T + 55 seconds, builds fairly linearly from this point in time reaching a quasi-equilibrium depth of 16 to 17 inches at about T + 97 seconds, which is well below the top of the vectored nozzle, and maintains that level until T + 125 near the end motor burn. From T + 125 seconds to motor burn-out at T + 140 seconds the slag pool builds to a maximum depth of about 20 to 21 inches, still well below the top of the nozzle. The molten slag pool was observed to interact with motions of the vectored nozzle, and exhibit slosh and wave mode oscillations. A few slag ejection events were also observed.
Normann, R A; Dowden, B R; Frankel, M A; Wilder, A M; Hiatt, S D; Ledbetter, N M; Warren, D A; Clark, G A
2012-04-01
The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.
NASA Astrophysics Data System (ADS)
Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.
2012-04-01
The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.
Mathur, Aabhas; Chowdhury, Raquibul; Hillyer, Christopher D; Mitchell, W Beau; Shaz, Beth H
2016-12-01
Each unit of blood donated is processed and stored individually resulting in variability in the amount of red blood cells (RBCs) collected, RBC properties, and the 24-hour posttransfusion RBC survivability. As a result, each unit differs in its ability to deliver oxygen and potentially its effects on the recipient. The goal of this study was to investigate the storage of pooled RBCs from multiple donors in comparison to control standard RBC units. Two units of irradiated, leukoreduced RBCs of same ABO, D, E, C, and K antigen phenotype were collected from each of five donors using apheresis. One unit from each donor was pooled in a 2-L bag and remaining units were used as controls. After being pooled, RBCs were separated in five bags and stored at 4°C along with the controls. Quality indexes were measured on Days 2, 14, and 28 for all the units. Adenosine triphosphate assays for both pooled and controls showed a slight decrease from Day 2 to Day 28 (pooled/control from 5.22/5.24 to 4.35/4.33 µmol/g hemoglobin [Hb]). 2,3-Diphosphoglycerate was successfully rejuvenated for all RBC units on Day 28 (pooled 11.46 µmol/g Hb; control 11.86 µmol/g Hb). The results showed a nonsignificant difference between pooled and control units, with a general trend of lower standard deviation for pooled units when compared to controls. Pooled units have reduced unit-to-unit variability. Future exploration of their immunogenicity is required before using pooled units for transfusion. © 2016 AABB.
Dewitz, Carola; Pimpinella, Sofia; Hackel, Patrick; Akalin, Altuna; Jessell, Thomas M; Zampieri, Niccolò
2018-02-13
Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, and afadin signaling. Our findings reveal that nuclear organization of motor neurons is dependent on inside-out positioning, orchestrated by N-cadherin, catenin, and afadin activities, controlling cell body layering on the medio-lateral axis. In addition to this lamination-like program, motor neurons undergo a secondary, independent phase of organization. This process results in segregation of motor neurons along the dorso-ventral axis of the spinal cord, does not require N-cadherin or afadin activity, and can proceed even when medio-lateral positioning is perturbed. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Vargas-Irwin, Carlos E.; Truccolo, Wilson; Donoghue, John P.
2011-01-01
A prominent feature of motor cortex field potentials during movement is a distinctive low-frequency local field potential (lf-LFP) (<4 Hz), referred to as the movement event-related potential (mEP). The lf-LFP appears to be a global signal related to regional synaptic input, but its relationship to nearby output signaled by single unit spiking activity (SUA) or to movement remains to be established. Previous studies comparing information in primary motor cortex (MI) lf-LFPs and SUA in the context of planar reaching tasks concluded that lf-LFPs have more information than spikes about movement. However, the relative performance of these signals was based on a small number of simultaneously recorded channels and units, or for data averaged across sessions, which could miss information of larger-scale spiking populations. Here, we simultaneously recorded LFPs and SUA from two 96-microelectrode arrays implanted in two major motor cortical areas, MI and ventral premotor (PMv), while monkeys freely reached for and grasped objects swinging in front of them. We compared arm end point and grip aperture kinematics′ decoding accuracy for lf-LFP and SUA ensembles. The results show that lf-LFPs provide enough information to reconstruct kinematics in both areas with little difference in decoding performance between MI and PMv. Individual lf-LFP channels often provided more accurate decoding of single kinematic variables than any one single unit. However, the decoding performance of the best single unit among the large population usually exceeded that of the best single lf-LFP channel. Furthermore, ensembles of SUA outperformed the pool of lf-LFP channels, in disagreement with the previously reported superiority of lf-LFP decoding. Decoding results suggest that information in lf-LFPs recorded from intracortical arrays may allow the reconstruction of reach and grasp for real-time neuroprosthetic applications, thus potentially supplementing the ability to decode these same features from spiking populations. PMID:21273313
Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy.
Jarvinen, M K; Powley, T L
1999-01-18
The dorsal motor nucleus of the vagus (DMNX) contains neurons with different projections and discrete functions, but little success has been achieved in distinguishing the cells cytoarchitectonically. The present experiment employed multivariate analytical techniques to evaluate DMNX neuronal morphology. Male Sprague-Dawley rats (n = 77) were perfused, and the brainstems were stained en bloc with a Golgi-Cox protocol. DMNX neurons in each of three planes (coronal, sagittal, and horizontal; total sample = 607) were digitized. Three-dimensional features quantified included dendritic length, number of segments, spine density, number of primary dendrites, dendritic orientation, and soma form factor. Cluster analyses of six independent samples of 100+ neurons and of three composite replicate pools of 200+ neurons consistently identified similar sets of four distinct neuronal profiles. One profile (spinous, limited dendrites, small somata) appears to correspond to the interneuron population of the DMNX. In contrast, the other three distinctive profiles (e.g., one is multipolar, with large dendritic fields and large somata) are different types of preganglionic neurons. Each of the four types of neurons is found throughout the DMNX, suggesting that the individual columnar subnuclei and other postulated vagal motorneuron pools are composed of all types of neurons. Within individual motor pools, ensembles of the different neuronal types must cooperatively organize different functions and project to different effectors within a target organ. By extension, specializations of the preganglionic motor pools are more likely to result from their afferent inputs, peripheral target tissues, neurochemistry, or physiological features rather than from any unique morphological profiles.
Overview of CFD Analyses Supporting the Reusable Solid Rocket Motor (RSRM) Program at MSFC
NASA Technical Reports Server (NTRS)
Stewart, Eric; McConnaughey, P.; Lin, J.; Reske, E.; Doran, D.; Whitesides, R. H.; Chen, Y.-S.
1996-01-01
During the past year, various computational fluid dynamic (CFD) analyses were performed at Marshall Space Flight Center to support the Reusable Solid Rocket Motor program. The successful completion of these analyses involved application of the CFD codes FDNS and CELMINT. The topics addressed by the analyses were: (1) the design and prediction of slag pool accumulation within the five inch test motor, (2) prediction of slag pool behavior and its response to lateral accelerations, (3) the clogging of potential insulation debonds within the nozzle by slag accumulation, (4) the behavior of jets within small voids inside nozzle joint gaps, (5) The effect of increased inhibitor stiffness on motor acoustics, and (6) the effect of a nozzle defect on particle impingement enhanced erosion. The emphasis of this presentation will be to further discuss the work in topics 3, 4, and 5.
Effects of spaceflight on rhesus quadrupedal locomotion after return to 1G
NASA Technical Reports Server (NTRS)
Recktenwald, M. R.; Hodgson, J. A.; Roy, R. R.; Riazanski, S.; McCall, G. E.; Kozlovskaya, I.; Washburn, D. A.; Fanton, J. W.; Edgerton, V. R.; Rumbaugh, D. M. (Principal Investigator)
1999-01-01
Effects of spaceflight on Rhesus quadrupedal locomotion after return to 1G. Locomotor performance, activation patterns of the soleus (Sol), medial gastrocnemius (MG), vastus lateralis (VL), and tibialis anterior (TA) and MG tendon force during quadrupedal stepping were studied in adult Rhesus before and after 14 days of either spaceflight (n = 2) or flight simulation at 1G (n = 3). Flight simulation involved duplication of the spaceflight conditions and experimental protocol in a 1G environment. Postflight, but not postsimulation, electromyographic (EMG) recordings revealed clonus-like activity in all muscles. Compared with preflight, the cycle period and burst durations of the primary extensors (Sol, MG, and VL) tended to decrease postflight. These decreases were associated with shorter steps. The flexor (TA) EMG burst duration postflight was similar to preflight, whereas the burst amplitude was elevated. Consequently, the Sol:TA and MG:TA EMG amplitude ratios were lower following flight, reflecting a "flexor bias." Together, these alterations in mean EMG amplitudes reflect differential adaptations in motor-unit recruitment patterns of flexors and extensors as well as fast and slow motor pools. Shorter cycle period and burst durations persisted throughout the 20-day postflight testing period, whereas mean EMG returned to preflight levels by 17 days postflight. Compared with presimulation, the simulation group showed slight increases in the cycle period and burst durations of all muscles. Mean EMG amplitude decreased in the Sol, increased in the MG and VL, and was unchanged in the TA. Thus adaptations observed postsimulation were different from those observed postflight, indicating that there was a response unique to the microgravity environment, i.e., the modulations in the nervous system controlling locomotion cannot merely be attributed to restriction of movement but appear to be the result of changes in the interpretation of load-related proprioceptive feedback to the nervous system. Peak MG tendon force amplitudes were approximately two times greater post- compared with preflight or presimulation. Adaptations in tendon force and EMG amplitude ratios indicate that the nervous system undergoes a reorganization of the recruitment patterns biased toward an increased recruitment of fast versus slow motor units and flexor versus extensor muscles. Combined, these data indicate that some details of the control of motor pools during locomotion are dependent on the persistence of Earth's gravitational environment.
Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence.
Schomers, Malte R; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann
2015-10-01
Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., "pool" or "tool"). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed "tool" relative to "pool" responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. © The Author 2014. Published by Oxford University Press.
NACUBO's Guide to Unitizing Investment Pools. Second Edition
ERIC Educational Resources Information Center
Wheeler, Mary S.
2011-01-01
The National Association of College and University Business Officers' (NACUBO's) "Guide to Unitizing Investment Pools" addresses the principles and concepts for administering a consolidated investment pool. Unitization is the mechanism by which investment funds are pooled to maximize investment efficiencies and provide information for donors,…
26 CFR 1.381(c)(5)-1 - Inventories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the dollar-value method, use the double-extension method, pool under the natural business unit method... double-extension method, pool under the natural business unit method, and value annual inventory... natural business unit method while P corporation pools under the multiple pool method. In addition, O...
26 CFR 1.381(c)(5)-1 - Inventories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the dollar-value method, use the double-extension method, pool under the natural business unit method... double-extension method, pool under the natural business unit method, and value annual inventory... natural business unit method while P corporation pools under the multiple pool method. In addition, O...
48 CFR 22.1003-5 - Some examples of contracts covered.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CFR 4.130 for additional examples): (a) Motor pool operation, parking, taxicab, and ambulance services...) Certain specialized services requiring specific skills, such as drafting, illustrating, graphic arts..., engines, electrical motors, vehicles, and electronic, office and related business and construction...
Wingfield, Jenna L; Mengoni, Ilaria; Bomberger, Heather; Jiang, Yu-Yang; Walsh, Jonathon D; Brown, Jason M; Picariello, Tyler; Cochran, Deborah A; Zhu, Bing; Pan, Junmin; Eggenschwiler, Jonathan; Gaertig, Jacek; Witman, George B; Kner, Peter; Lechtreck, Karl
2017-01-01
Intraflagellar transport (IFT) trains, multimegadalton assemblies of IFT proteins and motors, traffic proteins in cilia. To study how trains assemble, we employed fluorescence protein-tagged IFT proteins in Chlamydomonas reinhardtii. IFT-A and motor proteins are recruited from the cell body to the basal body pool, assembled into trains, move through the cilium, and disperse back into the cell body. In contrast to this ‘open’ system, IFT-B proteins from retrograde trains reenter the pool and a portion is reused directly in anterograde trains indicating a ‘semi-open’ system. Similar IFT systems were also observed in Tetrahymena thermophila and IMCD3 cells. FRAP analysis indicated that IFT proteins and motors of a given train are sequentially recruited to the basal bodies. IFT dynein and tubulin cargoes are loaded briefly before the trains depart. We conclude that the pool contains IFT trains in multiple stages of assembly queuing for successive release into the cilium upon completion. DOI: http://dx.doi.org/10.7554/eLife.26609.001 PMID:28562242
Independence of motor unit recruitment and rate modulation during precision force control.
Kamen, G; Du, D C
1999-01-01
The vertebrate motor system chiefly employs motor unit recruitment and rate coding to modulate muscle force output. In this paper, we studied how the recruitment of new motor units altered the firing rate of already-active motor units during precision force production in the first dorsal interosseous muscle. Six healthy adults performed linearly increasing isometric voluntary contractions while motor unit activity and force output were recorded. After motor unit discharges were identified, motor unit firing rates were calculated before and after the instances of new motor unit recruitment. Three procedures were applied to compute motor unit firing rate, including the mean of a fixed number of inter-spike intervals and the constant width weighted Hanning window filter method, as well as a modified boxcar technique. In contrast to previous reports, the analysis of the firing rates of over 200 motor units revealed that reduction of the active firing rates was not a common mechanism used to accommodate the twitch force produced by the recruitment of a new motor unit. Similarly, during de-recruitment there was no tendency for motor unit firing rates to increase immediately following the cessation of activity in other motor units. Considerable consistency in recruitment behavior was observed during repeated contractions. However, firing rates during repeated contractions demonstrated considerably more fluctuation. It is concluded that the neuromuscular system does not use short-term preferential motor unit disfacilitation to effect precise regulation of muscular force output.
Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment
Mantilla, Carlos B.; Seven, Yasin B.; Sieck, Gary C.
2014-01-01
Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation, but are also active in other non-ventilatory behaviors, including coughing, sneezing, vomiting, defecation and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely-distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. PMID:24746055
McPherson, Jacob G.; McPherson, Laura M.; Thompson, Christopher K.; Ellis, Michael D.; Heckman, Charles J.; Dewald, Julius P. A.
2018-01-01
Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms. PMID:29686611
Simulation of motor unit recruitment and microvascular unit perfusion: spatial considerations.
Fuglevand, A J; Segal, S S
1997-10-01
Muscle fiber activity is the principal stimulus for increasing capillary perfusion during exercise. The control elements of perfusion, i.e., microvascular units (MVUs), supply clusters of muscle fibers, whereas the control elements of contraction, i.e., motor units, are composed of fibers widely scattered throughout muscle. The purpose of this study was to examine how the discordant spatial domains of MVUs and motor units could influence the proportion of open capillaries (designated as perfusion) throughout a muscle cross section. A computer model simulated the locations of perfused MVUs in response to the activation of up to 100 motor units in a muscle with 40,000 fibers and a cross-sectional area of 100 mm2. The simulation increased contraction intensity by progressive recruitment of motor units. For each step of motor unit recruitment, the percentage of active fibers and the number of perfused MVUs were determined for several conditions: 1) motor unit fibers widely dispersed and motor unit territories randomly located (which approximates healthy human muscle), 2) regionalized motor unit territories, 3) reversed recruitment order of motor units, 4) densely clustered motor unit fibers, and 5) increased size but decreased number of motor units. The simulations indicated that the widespread dispersion of motor unit fibers facilitates complete capillary (MVU) perfusion of muscle at low levels of activity. The efficacy by which muscle fiber activity induced perfusion was reduced 7- to 14-fold under conditions that decreased the dispersion of active fibers, increased the size of motor units, or reversed the sequence of motor unit recruitment. Such conditions are similar to those that arise in neuromuscular disorders, with aging, or during electrical stimulation of muscle, respectively.
Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.
Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C
2014-01-01
Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.
Phrenic Motor Unit Recruitment during Ventilatory and Non-Ventilatory Behaviors
Mantilla, Carlos B.; Sieck, Gary C.
2011-01-01
Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. PMID:21763470
Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.
Mantilla, Carlos B; Sieck, Gary C
2011-10-15
Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.
Motor unit recruitment in human biceps brachii during sustained voluntary contractions.
Riley, Zachary A; Maerz, Adam H; Litsey, Jane C; Enoka, Roger M
2008-04-15
The purpose of the study was to examine the influence of the difference between the recruitment threshold of a motor unit and the target force of the sustained contraction on the discharge of the motor unit at recruitment. The discharge characteristics of 53 motor units in biceps brachii were recorded after being recruited during a sustained contraction. Some motor units (n = 22) discharged action potentials tonically after being recruited, whereas others (n = 31) discharged intermittent trains of action potentials. The two groups of motor units were distinguished by the difference between the recruitment threshold of the motor unit and the target force for the sustained contraction: tonic, 5.9 +/- 2.5%; intermittent, 10.7 +/- 2.9%. Discharge rate for the tonic units decreased progressively (13.9 +/- 2.7 to 11.7 +/- 2.6 pulses s(-1); P = 0.04) during the 99 +/- 111 s contraction. Train rate, train duration and average discharge rate for the intermittent motor units did not change across 211 +/- 153 s of intermittent discharge. The initial discharge rate at recruitment during the sustained contraction was lower for the intermittent motor units (11.0 +/- 3.3 pulses s(-1)) than the tonic motor units (13.7 +/- 3.3 pulses s(-1); P = 0.005), and the coefficient of variation for interspike interval was higher for the intermittent motor units (34.6 +/- 12.3%) than the tonic motor units (21.2 +/- 9.4%) at recruitment (P = 0.001) and remained elevated for discharge duration (34.6 +/- 9.2% versus 19.1 +/- 11.7%, P < 0.001). In an additional experiment, 12 motor units were recorded at two different target forces below recruitment threshold (5.7 +/- 1.9% and 10.5 +/- 2.4%). Each motor unit exhibited the two discharge patterns (tonic and intermittent) as observed for the 53 motor units. The results suggest that newly recruited motor units with recruitment thresholds closer to the target force experienced less synaptic noise at the time of recruitment that resulted in them discharging action potentials at more regular and greater rates than motor units with recruitment thresholds further from the target force.
Hirst, Theodore C; Ribchester, Richard R
2013-01-01
Connectomic analysis of the nervous system aims to discover and establish principles that underpin normal and abnormal neural connectivity and function. Here we performed image analysis of motor unit connectivity in the fourth deep lumbrical muscle (4DL) of mice, using transgenic expression of fluorescent protein in motor neurones as a morphological reporter. We developed a method that accelerated segmentation of confocal image projections of 4DL motor units, by applying high resolution (63×, 1.4 NA objective) imaging or deconvolution only where either proved necessary, in order to resolve axon crossings that produced ambiguities in the correct assignment of axon terminals to identified motor units imaged at lower optical resolution (40×, 1.3 NA). The 4DL muscles contained between 4 and 9 motor units and motor unit sizes ranged in distribution from 3 to 111 motor nerve terminals per unit. Several structural properties of the motor units were consistent with those reported in other muscles, including suboptimal wiring length and distribution of motor unit size. Surprisingly, however, small motor units were confined to a region of the muscle near the nerve entry point, whereas their larger counterparts were progressively more widely dispersed, suggesting a previously unrecognised form of segregated motor innervation in this muscle. We also found small but significant differences in variance of motor endplate length in motor units, which correlated weakly with their motor unit size. Thus, our connectomic analysis has revealed a pattern of concentric innervation that may perhaps also exist in other, cylindrical muscles that have not previously been thought to show segregated motor unit organisation. This organisation may be the outcome of competition during postnatal development based on intrinsic neuronal differences in synaptic size or synaptic strength that generates a territorial hierarchy in motor unit size and disposition. PMID:23940381
Water: The Ideal Early Learning Environment
ERIC Educational Resources Information Center
Grosse, Susan J.
2008-01-01
Bathtubs and swimming pools provide the ideal learning environment for people with special needs. For young preschool children, the activities that take place through water can help them develop physical fitness, facilitate motor development, reinforce perceptual-motor ability, encourage social development, and enhance self-esteem and confidence.…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... ADMINISTRATION [OMB Control No. 9000-0032] Federal Acquisition Regulation; Submission for OMB Review; Contractor... previously approved information collection requirement concerning contractor use of interagency motor pool... contracting officer may authorize cost-reimbursement contractors to obtain, for official purposes only...
Changes in motor unit recruitment strategy during pain alters force direction.
Tucker, Kylie J; Hodges, Paul W
2010-10-01
Motor unit (MU) recruitment is altered (decreased discharge rate and cessation of discharge in some units, and recruitment of new units) in force-matched contractions during pain compared to contractions performed before pain. As MU's within a motoneurone pool have different force direction properties we hypothesised that altered MU recruitment during experimental knee pain would change the force vector (total force (F(T)): amplitude and angle) generated by the quadriceps. Force was produced at two levels during 1 × 60-s and 3 × 10-s isometric contractions of knee extensors, and recorded by two force transducers at right angles. This enabled calculation of both F(E) (extension force) and F(T). MU recruitment was recorded from the medial and lateral vastii with four fine-wire electrodes. Pain was induced by hypertonic saline injection in the infra-patella fat pad. Nine subjects matched F(E) and six subjects also matched both medial and lateral forces (F(T)) before and during pain. Changes in MU discharge pattern (decreased discharge rate (P<0.001), complete cessation of firing, and recruitment of new units) during pain were associated with a ∼5° change in absolute force angle. As force angle changed in both directions (left/right) for individual subjects with pain there was no change in average F(T) amplitude between conditions. When both medial and lateral forces were matched MU discharge rate decreased (P<0.001) with pain, but, fewer units ceased firing or were newly recruited during pain. Change in motoneurone recruitment during pain alters direction of muscle force. This may be a strategy to avoid pain or protect the painful part. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Training adaptations in the behavior of human motor units.
Duchateau, Jacques; Semmler, John G; Enoka, Roger M
2006-12-01
The purpose of this brief review is to examine the neural adaptations associated with training, by focusing on the behavior of single motor units. The review synthesizes current understanding on motor unit recruitment and rate coding during voluntary contractions, briefly describes the techniques used to record motor unit activity, and then evaluates the adaptations that have been observed in motor unit activity during maximal and submaximal contractions. Relatively few studies have directly compared motor unit behavior before and after training. Although some studies suggest that the voluntary activation of muscle can increase slightly with strength training, it is not known how the discharge of motor units changes to produce this increase in activation. The evidence indicates that the increase is not attributable to changes in motor unit synchronization. It has been demonstrated, however, that training can increase both the rate of torque development and the discharge rate of motor units. Furthermore, both strength training and practice of a force-matching task can evoke adaptations in the discharge characteristics of motor units. Because the variability in discharge rate has a significant influence on the fluctuations in force during submaximal contractions, the changes produced with training can influence motor performance during activities of daily living. Little is known, however, about the relative contributions of the descending drive, afferent feedback, spinal circuitry, and motor neuron properties to the observed adaptations in motor unit activity.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... Number of DMM Units an Issuer Must Interview From the Pool of DMM Units Eligible To Participate in the... units an issuer must interview from the pool of DMM units eligible to participate in the allocation. The... issuer must interview from the pool of DMM units eligible to participate in the allocation process. Rule...
Motor control theories and their applications.
Latash, Mark L; Levin, Mindy F; Scholz, John P; Schöner, Gregor
2010-01-01
We describe several influential hypotheses in the field of motor control including the equilibrium-point (referent configuration) hypothesis, the uncontrolled manifold hypothesis, and the idea of synergies based on the principle of motor abundance. The equilibrium-point hypothesis is based on the idea of control with thresholds for activation of neuronal pools; it provides a framework for analysis of both voluntary and involuntary movements. In particular, control of a single muscle can be adequately described with changes in the threshold of motor unit recruitment during slow muscle stretch (threshold of the tonic stretch reflex). Unlike the ideas of internal models, the equilibrium-point hypothesis does not assume neural computations of mechanical variables. The uncontrolled manifold hypothesis is based on the dynamic system approach to movements; it offers a toolbox to analyze synergic changes within redundant sets of elements related to stabilization of potentially important performance variables. The referent configuration hypothesis and the principle of abundance can be naturally combined into a single coherent scheme of control of multi-element systems. A body of experimental data on healthy persons and patients with movement disorders are reviewed in support of the mentioned hypotheses. In particular, movement disorders associated with spasticity are considered as consequences of an impaired ability to shift threshold of the tonic stretch reflex within the whole normal range. Technical details and applications of the mentioned hypo-theses to studies of motor learning are described. We view the mentioned hypotheses as the most promising ones in the field of motor control, based on a solid physical and neurophysiological foundation.
Motor unit recruitment for dynamic tasks: current understanding and future directions.
Hodson-Tole, Emma F; Wakeling, James M
2009-01-01
Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.
Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C
2014-12-01
Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.
Seven, Yasin B.; Mantilla, Carlos B.
2014-01-01
Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. PMID:25257864
Repetitive Transcranial Magnetic Stimulation (rTMS) Therapy in Parkinson Disease: A Meta-Analysis.
Wagle Shukla, Aparna; Shuster, Jonathan J; Chung, Jae Woo; Vaillancourt, David E; Patten, Carolynn; Ostrem, Jill; Okun, Michael S
2016-04-01
Several studies have reported repetitive transcranial magnetic stimulation (rTMS) therapy as an effective treatment for the control of motor symptoms in Parkinson disease. The objective of the study is to quantify the overall efficacy of this treatment. Systematic review and meta-analysis. We reviewed the literature on clinical rTMS trials in Parkinson disease since the technique was introduced in 1980. We used the following databases: MEDLINE, Web of Science, Cochrane, and CINAHL. Patients with Parkinson disease who were participating in prospective clinical trials that included an active arm and a control arm and change in motor scores on Unified Parkinson's Disease Rating Scale as the primary outcome. We pooled data from 21 studies that met these criteria. We then analyzed separately the effects of low- and high-frequency rTMS on clinical motor improvements. The overall pooled mean difference between treatment and control groups in the Unified Parkinson's Disease Rating Scale motor score was significant (4.0 points, 95% confidence interval, 1.5, 6.7; P = .005). rTMS therapy was effective when low-frequency stimulation (≤ 1 Hz) was used with a pooled mean difference of 3.3 points (95% confidence interval 1.6, 5.0; P = .005). There was a trend for significance when high-frequency stimulation (≥ 5 Hz) studies were evaluated with a pooled mean difference of 3.9 points (95% confidence interval, -0.7, 8.5; P = .08). rTMS therapy demonstrated benefits at short-term follow-up (immediately after a treatment protocol) with a pooled mean difference of 3.4 points (95% confidence interval, 0.3, 6.6; P = .03) as well as at long-term follow-up (average follow-up 6 weeks) with mean difference of 4.1 points (95% confidence interval, -0.15, 8.4; P = .05). There were insufficient data to statistically analyze the effects of rTMS when we specifically examined bradykinesia, gait, and levodopa-induced dyskinesia using quantitative methods. rTMS therapy in patients with Parkinson disease results in mild-to-moderate motor improvements and has the potential to be used as an adjunct therapy for the treatment of Parkinson disease. Future large, sample studies should be designed to isolate the specific clinical features of Parkinson disease that respond well to rTMS therapy. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Substantiation of Structure of Adaptive Control Systems for Motor Units
NASA Astrophysics Data System (ADS)
Ovsyannikov, S. I.
2018-05-01
The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.
Piasecki, M; Ireland, A; Piasecki, J; Stashuk, D W; Swiecicka, A; Rutter, M K; Jones, D A; McPhee, J S
2018-05-01
The age-related loss of muscle mass is related to the loss of innervating motor neurons and denervation of muscle fibres. Not all denervated muscle fibres are degraded; some may be reinnervated by an adjacent surviving neuron, which expands the innervating motor unit proportional to the numbers of fibres rescued. Enlarged motor units have larger motor unit potentials when measured using electrophysiological techniques. We recorded much larger motor unit potentials in relatively healthy older men compared to young men, but the older men with the smallest muscles (sarcopenia) had smaller motor unit potentials than healthy older men. These findings suggest that healthy older men reinnervate large numbers of muscle fibres to compensate for declining motor neuron numbers, but a failure to do so contributes to muscle loss in sarcopenic men. Sarcopenia results from the progressive loss of skeletal muscle mass and reduced function in older age. It is likely to be associated with the well-documented reduction of motor unit numbers innervating limb muscles and the increase in size of surviving motor units via reinnervation of denervated fibres. However, no evidence exists to confirm the extent of motor unit remodelling in sarcopenic individuals. The aim of the present study was to compare motor unit size and number between young (n = 48), non-sarcopenic old (n = 13), pre-sarcopenic (n = 53) and sarcopenic (n = 29) men. Motor unit potentials (MUPs) were isolated from intramuscular and surface EMG recordings. The motor unit numbers were reduced in all groups of old compared with young men (all P < 0.001). MUPs were higher in non-sarcopenic and pre-sarcopenic men compared with young men (P = 0.039 and 0.001 respectively), but not in the vastus lateralis of sarcopenic old (P = 0.485). The results suggest that extensive motor unit remodelling occurs relatively early during ageing, exceeds the loss of muscle mass and precedes sarcopenia. Reinnervation of denervated muscle fibres probably expands the motor unit size in the non-sarcopenic and pre-sarcopenic old, but not in the sarcopenic old. These findings suggest that a failure to expand the motor unit size distinguishes sarcopenic from pre-sarcopenic muscles. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Del Vecchio, A; Negro, F; Felici, F; Farina, D
2018-02-01
Motor units are recruited in an orderly manner according to the size of motor neurones. Moreover, because larger motor neurones innervate fibres with larger diameters than smaller motor neurones, motor units should be recruited orderly according to their conduction velocity (MUCV). Because of technical limitations, these relations have been previously tested either indirectly or in small motor unit samples that revealed weak associations between motor unit recruitment threshold (RT) and MUCV. Here, we analyse the relation between MUCV and RT for large samples of motor units. Ten healthy volunteers completed a series of isometric ankle dorsiflexions at forces up to 70% of the maximum. Multi-channel surface electromyographic signals recorded from the tibialis anterior muscle were decomposed into single motor unit action potentials, from which the corresponding motor unit RT, MUCV and action potential amplitude were estimated. Established relations between muscle fibre diameter and CV were used to estimate the fibre size. Within individual subjects, the distributions of MUCV and fibre diameters were unimodal and did not show distinct populations. MUCV was strongly correlated with RT (mean (SD) R 2 = 0.7 (0.09), P < 0.001; 406 motor units), which supported the hypothesis that fibre diameter is associated with RT. The results provide further evidence for the relations between motor neurone and muscle fibre properties for large samples of motor units. The proposed methodology for motor unit analysis has also the potential to open new perspectives in the study of chronic and acute neuromuscular adaptations to ageing, training and pathology. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Properties of single motor units in medial gastrocnemius muscles of adult and old rats.
Kadhiresan, V A; Hassett, C A; Faulkner, J A
1996-01-01
1. The purpose of this study was to determine the role of motor unit remodelling in the deficit that develops in the maximum isometric tetanic force (Fo) of whole medial gastrocnemius (MGN) muscles in old compared with adult rats. The Fo values and morphological data were determined for MGN muscles and eighty-two single motor units in muscles of adult (10-12 months) and sixty-two units in those of old (24-26 months) F344 rats. During an unfused tetanus, fast and slow (S) motor units were identified by the presence and absence of sag, respectively. Fast-fatigable (FF) and fast-fatigue-resistant (FR) units were classified by fatigue indices less than or greater than 0.50, respectively. 2. For old rats, whole MGN muscle Fo was 29% less than the value of 11.2 N measured for adult rats. The deficit in whole muscle Fo of old rats resulted from equivalent decreases in the number of motor units, 16% smaller than the adult value of ninety-seven, and in the mean motor unit Fo value, 14% less than the adult value of 117 mN. 3. With ageing, little motor unit remodelling occurred in FR units, whereas the S and FF motor units demonstrated dramatic, but opposing, changes. For S units, the number of units remained constant, but the number of fibres per motor unit increased 3-fold from 57 to 165. In contrast, the number of FF units decreased by 34% and the number of fibres per motor unit of the remaining units decreased to 86% of the adult value of 333. The age-related remodelling of motor units appeared to involve denervation of fast muscle fibres with reinnervation of denervated fibres by axonal sprouting from slow fibres. PMID:8782115
GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.
Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini
2011-09-22
The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. Copyright © 2011 Elsevier Inc. All rights reserved.
GDE2 regulates subtype specific motor neuron generation through inhibition of Notch signaling
Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini
2011-01-01
The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here, we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. PMID:21943603
Role of motor unit structure in defining function
NASA Technical Reports Server (NTRS)
Monti, R. J.; Roy, R. R.; Edgerton, V. R.
2001-01-01
Motor units, defined as a motoneuron and all of its associated muscle fibers, are the basic functional units of skeletal muscle. Their activity represents the final output of the central nervous system, and their role in motor control has been widely studied. However, there has been relatively little work focused on the mechanical significance of recruiting variable numbers of motor units during different motor tasks. This review focuses on factors ranging from molecular to macroanatomical components that influence the mechanical output of a motor unit in the context of the whole muscle. These factors range from the mechanical properties of different muscle fiber types to the unique morphology of the muscle fibers constituting a motor unit of a given type and to the arrangement of those motor unit fibers in three dimensions within the muscle. We suggest that as a result of the integration of multiple levels of structural and physiological levels of organization, unique mechanical properties of motor units are likely to emerge. Copyright 2001 John Wiley & Sons, Inc.
Adjustments differ among low-threshold motor units during intermittent, isometric contractions.
Farina, Dario; Holobar, Ales; Gazzoni, Marco; Zazula, Damjan; Merletti, Roberto; Enoka, Roger M
2009-01-01
We investigated the changes in muscle fiber conduction velocity, recruitment and derecruitment thresholds, and discharge rate of low-threshold motor units during a series of ramp contractions. The aim was to compare the adjustments in motor unit activity relative to the duration that each motor unit was active during the task. Multichannel surface electromyographic (EMG) signals were recorded from the abductor pollicis brevis muscle of eight healthy men during 12-s contractions (n = 25) in which the force increased and decreased linearly from 0 to 10% of the maximum. The maximal force exhibited a modest decline (8.5 +/- 9.3%; P < 0.05) at the end of the task. The discharge times of 73 motor units that were active for 16-98% of the time during the first five contractions were identified throughout the task by decomposition of the EMG signals. Action potential conduction velocity decreased during the task by a greater amount for motor units that were initially active for >70% of the time compared with that of less active motor units. Moreover, recruitment and derecruitment thresholds increased for these most active motor units, whereas the thresholds decreased for the less active motor units. Another 18 motor units were recruited at an average of 171 +/- 32 s after the beginning of the task. The recruitment and derecruitment thresholds of these units decreased during the task, but muscle fiber conduction velocity did not change. These results indicate that low-threshold motor units exhibit individual adjustments in muscle fiber conduction velocity and motor neuron activation that depended on the relative duration of activity during intermittent contractions.
Mesin, Luca; Dardanello, Davide; Rainoldi, Alberto; Boccia, Gennaro
2016-12-01
During fatiguing contractions, many adjustments in motor units behaviour occur: decrease in muscle fibre conduction velocity; increase in motor units synchronisation; modulation of motor units firing rate; increase in variability of motor units inter-spike interval. We simulated the influence of all these adjustments on synthetic EMG signals in isometric/isotonic conditions. The fractal dimension of the EMG signal was found mainly influenced by motor units firing behaviour, being affected by both firing rate and synchronisation level, and least affected by muscle fibre conduction velocity. None of the calculated EMG indices was able to discriminate between firing rate and motor units synchronisation. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Isometric contractions of motor units in a fast twitch muscle of the cat
Bagust, J.; Knott, Sarah; Lewis, D. M.; Luck, J. C.; Westerman, R. A.
1973-01-01
1. Isosmetric contractions of cat flexor digitorum longus whole muscles and of functionally isolated motor units have been measured under conditions similar to those used by Buller & Lewis (1965a). 2. Motor unit twitch time to peak was inversely related to axonal conduction velocity. The logarithm of tetanic tension was directly related to conduction velocity. These relationships suggest that each motoneurone has an influence on the muscle fibres which it innervates. 3. The ratio of twitch to tetanic tension was directly related to the time to peak of the motor unit. This fact might be explained by variation between motor units of the duration of `active state'. 4. The muscle length at which tension was maximal varied between motor units and the optima were found over the range of muscle lengths which could occur in the body. Slow motor units had longer optimal lengths. 5. The sample of motor units was considered to be unbiased because the distribution of axon conduction velocities was compatible with reported motor fibre diameter spectra of the muscle nerve. The mean motor unit tetanic tension gave a reasonable estimate of the number of α-motor axons in the muscle nerve. Twitch tensions gave a value that was 40% higher. 6. Motor unit and whole muscle data were in good agreement for length-tetanus tension curves, for times to peak and for twitch-tetanus ratios at long muscle lengths. PMID:4715372
Jesunathadas, Mark; Marmon, Adam R; Gibb, James M; Enoka, Roger M
2010-06-01
The significant decline in motor neuron number after approximately 60 yr of age is accompanied by a remodeling of the neuromuscular system so that average motor unit force increases and the ability of old adults to produce an intended force declines. One possible explanation for the loss of movement precision is that the remodeling increases the difference in recruitment forces between successively recruited motor units in old adults and this augments force variability at motor unit recruitment. The purpose of the study was to compare the forces and discharge characteristics of motor units in a hand muscle of young and old adults at motor unit recruitment and derecruitment. The difference in recruitment force between pairs of motor units did not differ between young (n=54) and old adults (n=56; P=0.702). However, old adults had a greater proportion of contractions in which motor units discharged action potentials transiently before discharging continuously during the ramp increase in force (young: 0.32; old: 0.41; P=0.045). Force variability at motor unit recruitment was greater for old adults compared with young adults (P
NASA Astrophysics Data System (ADS)
Shin, Henry; Suresh, Nina L.; Zev Rymer, William; Hu, Xiaogang
2018-02-01
Objective. Chronic muscle weakness impacts the majority of individuals after a stroke. The origins of this hemiparesis is multifaceted, and an altered spinal control of the motor unit (MU) pool can lead to muscle weakness. However, the relative contribution of different MU recruitment and discharge organization is not well understood. In this study, we sought to examine these different effects by utilizing a MU simulation with variations set to mimic the changes of MU control in stroke. Approach. Using a well-established model of the MU pool, this study quantified the changes in force output caused by changes in MU recruitment range and recruitment order, as well as MU firing rate organization at the population level. We additionally expanded the original model to include a fatigue component, which variably decreased the output force with increasing length of contraction. Differences in the force output at both the peak and fatigued time points across different excitation levels were quantified and compared across different sets of MU parameters. Main results. Across the different simulation parameters, we found that the main driving factor of the reduced force output was due to the compressed range of MU recruitment. Recruitment compression caused a decrease in total force across all excitation levels. Additionally, a compression of the range of MU firing rates also demonstrated a decrease in the force output mainly at the higher excitation levels. Lastly, changes to the recruitment order of MUs appeared to minimally impact the force output. Significance. We found that altered control of MUs alone, as simulated in this study, can lead to a substantial reduction in muscle force generation in stroke survivors. These findings may provide valuable insight for both clinicians and researchers in prescribing and developing different types of therapies for the rehabilitation and restoration of lost strength after stroke.
Stephenson, Jennifer L.; Maluf, Katrina S.
2011-01-01
The paired motor unit analysis provides in vivo estimates of the magnitude of persistent inward currents (PIC) in human motoneurons by quantifying changes in the firing rate (ΔF) of an earlier recruited (reference) motor unit at the time of recruitment and derecruitment of a later recruited (test) motor unit. This study assessed the variability of ΔF estimates, and quantified the dependence of ΔF on the discharge characteristics of the motor units selected for analysis. ΔF was calculated for 158 pairs of motor units recorded from nine healthy individuals during repeated submaximal contractions of the tibialis anterior muscle. The mean (SD) ΔF was 3.7 (2.5) pps (range −4.2 to 8.9 pps). The median absolute difference in ΔF for the same motor unit pair across trials was 1.8 pps, and the minimal detectable change in ΔF required to exceed measurement error was 4.8 pps. ΔF was positively related to the amount of discharge rate modulation in the reference motor unit (r2=0.335; P<0.001), and inversely related to the rate of increase in discharge rate (r2=0.125; P<0.001). A quadratic function provided the best fit for relations between ΔF and the time between recruitment of the reference and test motor units (r2=0.229, P<0.001), the duration of test motor unit activity (r2=0.110, P<0.001), and the recruitment threshold of the test motor unit (r2=0.237, P<0.001). Physiological and methodological contributions to the variability in ΔF estimates of PIC magnitude are discussed, and selection criteria to reduce these sources of variability are suggested for the paired motor unit analysis. PMID:21459110
Motor unit activity after eccentric exercise and muscle damage in humans.
Semmler, J G
2014-04-01
It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.
Holt, N. C.; Wakeling, J. M.; Biewener, A. A.
2014-01-01
The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force–velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force–velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested. PMID:24695429
Holt, N C; Wakeling, J M; Biewener, A A
2014-05-22
The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force-velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force-velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested.
Dideriksen, Jakob L.; Negro, Francesco
2015-01-01
Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments. PMID:26203102
McNulty, Penelope A.; Lin, Gaven; Doust, Catherine G.
2014-01-01
Muscle weakness is the most common outcome after stroke and a leading cause of adult-acquired motor disability. Single motor unit properties provide insight into the mechanisms of post-stroke motor impairment. Motor units on the more-affected side are reported to have lower peak firing rates, reduced discharge variability and a more compressed dynamic range than healthy subjects. The activity of 169 motor units was discriminated from surface electromyography in 28 stroke patients during sustained voluntary contractions 10% of maximal and compared to 110 units recorded in 16 healthy subjects. Motor units were recorded in three series: ankle dorsiflexion, wrist flexion and elbow flexion. Mean firing rates after stroke were significantly lower on the more-affected than the less-affected side (p < 0.001) with no differences between dominant and non-dominant sides for healthy subjects. When data were combined, firing rates on the less-affected side were significantly higher than those either on the more-affected side or healthy subjects (p < 0.001). Motor unit mean firing rate was higher in the upper-limb than the lower-limb (p < 0.05). The coefficient of variation of motor unit discharge rate was lower for motor units after stroke compared to controls for wrist flexion (p < 0.05) but not ankle dorsiflexion. However the dynamic range of motor units was compressed only for motor units on the more-affected side during wrist flexion. Our results show that the pathological change in motor unit firing rate occurs on the less-affected side after stroke and not the more-affected side as previously reported, and suggest that motor unit behavior recorded in a single muscle after stroke cannot be generalized to muscles acting on other joints even within the same limb. These data emphasize that the less-affected side does not provide a valid control for physiological studies on the more-affected side after stroke and that both sides should be compared to data from age- and sex-matched healthy subjects. PMID:25100969
A&M. TAN607. Foundation plan for hot shop floor and pool. ...
A&M. TAN-607. Foundation plan for hot shop floor and pool. Tunnels to turntable. Motor pit. Ralph M. Parsons 902-3-ANP-607-S128. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-62-693-160722 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Seven, Yasin B.; Mantilla, Carlos B.; Zhan, Wen-Zhi; Sieck, Gary C.
2012-01-01
We hypothesized that diaphragm muscle (DIAm) by a shift in the EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O2-5% CO2), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ~70 ms during airway occlusion to ~150 ms during eupnea. Within the initial non-stationary period of EMG activity 80–95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. PMID:22986086
Motor Unit Changes Seen With Skeletal Muscle Sarcopenia in Oldest Old Rats
Kung, Theodore A.; van der Meulen, Jack H.; Urbanchek, Melanie G.; Kuzon, William M.; Faulkner, John A.
2014-01-01
Sarcopenia leads to many changes in skeletal muscle that contribute to atrophy, force deficits, and subsequent frailty. The purpose of this study was to characterize motor unit remodeling related to sarcopenia seen in extreme old age. Whole extensor digitorum longus muscle and motor unit contractile properties were measured in 19 adult (11–13 months) and 12 oldest old (36–37 months) Brown-Norway rats. Compared with adults, oldest old rats had significantly fewer motor units per muscle, smaller muscle cross-sectional area, and lower muscle specific force. However, mean motor unit force generation was similar between the two groups due to an increase in innervation ratio by the oldest old rats. These findings suggest that even in extreme old age both fast- and slow-twitch motor units maintain the ability to undergo motor unit remodeling that offsets some effects of sarcopenia. PMID:24077596
Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting; Guo, Lan-Yuen
2016-01-01
Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks.
Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting
2016-01-01
Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks. PMID:27941995
Manuel, Marin; Heckman, C J
2011-10-19
Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.
Powley, Terry L.; Mittal, Ravinder K.; Baronowsky, Elizabeth A.; Hudson, Cherie N.; Martin, Felecia N.; McAdams, Jennifer L.; Mason, Jacqueline K.; Phillips, Robert J.
2013-01-01
Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n = 78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are “hardwired,” in the peripheral architecture of esophageal motor units. PMID:24044976
Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J
2013-12-01
Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.
Westad, C; Westgaard, R H; De Luca, C J
2003-01-01
The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude (‘EMG pulse’) superimposed on a constant contraction at 4–7% of the surface electromyographic (EMG) response at maximal voluntary contraction (4–7% EMGmax). EMG pulses at 15–20% EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5% EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current (‘plateau potentials’). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns. PMID:14561844
Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis
2018-01-01
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non–cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types. PMID:29768404
Pattyn, Alexandre; Vallstedt, Anna; Dias, José M; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M; Brunet, Jean-Francois; Ericson, Johan
2003-03-15
Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates.
Oya, Tomomichi; Riek, Stephan; Cresswell, Andrew G
2009-10-01
Unlike upper limb muscles, it remains undocumented as to how motor units in the soleus muscle are organised in terms of recruitment range and discharge rates with respect to their recruitment and de-recruitment thresholds. The possible influence of neuromodulation, such as persistent inward currents (PICs) on lower limb motor unit recruitment and discharge rates has also yet to be reported. To address these issues, electromyographic (EMG) activities from the soleus muscle were recorded using selective branched-wire intramuscular electrodes during ramp-and-hold contractions with intensities up to maximal voluntary contraction (MVC). The multiple single motor unit activities were then derived using a decomposition technique. The onset-offset hysteresis of motor unit discharge, i.e. a difference between recruitment and de-recruitment thresholds, as well as PIC magnitude calculated by a paired motor unit analysis were used to examine the neuromodulatory effects on discharge behaviours, such as minimum firing rate, peak firing rate and degree of increase in firing rate. Forty-two clearly identified motor units from five subjects revealed that soleus motor units are recruited progressively from rest to contraction strengths close to 95% of MVC, with low-threshold motor units discharging action potentials slower at their recruitment and with a lower peak rate than later recruited high-threshold units. This observation is in contrast to the 'onion skin phenomenon' often reported for the upper limb muscles. Based on positive correlations of the peak discharge rates, initial rates and recruitment order of the units with the magnitude of the onset-offset hysteresis and not PIC contribution, we conclude that discharge behaviours among motor units appear to be related to a variation in an intrinsic property other than PICs.
Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001
L. S. Heath; R. A. Birdsey; D. W. Williams
2002-01-01
The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation...
Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C
2013-01-15
We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ∼80 ms during airway occlusion to ∼150 ms during eupnea. Within the initial non-stationary period of EMG activity 80-95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.
Isometric contractions of motor units and immunohistochemistry of mouse soleus muscle.
Lewis, D M; Parry, D J; Rowlerson, A
1982-01-01
1. Isometric contractions of motor units, isolated functionally by ventral root splitting in vivo, were recorded from mouse soleus muscle. 2. Motor unit tensions varied over a narrow symmetrical range and averaged 4.7% of whole muscle tension, corresponding to twenty-one motor units per muscle. 3. There was considerable variation between muscles in isometric twitch times-to-peak and even greater variation for the motor units. The distribution of motor unit times-to-peak was apparently unimodal and could be fitted by a single normal population. A slightly better fit was, however, obtained with two normal populations, as suggested by the histochemistry. 4. Twitch time-to-peak decreased in proportion to axonal conduction velocity in individual animals. The whole population of motor units could be fitted by a linear relation between time-to-peak and the reciprocal of conduction time in the motor axon. Motor unit tension was also linearly related to the reciprocal of conduction time. 5. Histochemistry showed clear division between Type I and Type IIa fibres. Type I fibres reacted strongly with antibody against slow myosin of cat soleus muscle; Type IIa gave a reaction no stronger than the background. The division was as clear as in the cat or rat. Images Fig. 2 Plate 1 PMID:7050345
Hierarchical control of motor units in voluntary contractions.
De Luca, Carlo J; Contessa, Paola
2012-01-01
For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The "firing rate spectrum" presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units-both characteristics being well suited for generating and sustaining force during the fight-or-flight response.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation... United Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor... reviewed the certification for workers of the subject firm. The workers assemble the Toyota Corolla and the...
Linear growth and child development in low- and middle-income countries: a meta-analysis.
Sudfeld, Christopher R; McCoy, Dana Charles; Danaei, Goodarz; Fink, Günther; Ezzati, Majid; Andrews, Kathryn G; Fawzi, Wafaie W
2015-05-01
The initial years of life are critical for physical growth and broader cognitive, motor, and socioemotional development, but the magnitude of the link between these processes remains unclear. Our objective was to produce quantitative estimates of the cross-sectional and prospective association of height-for-age z score (HAZ) with child development. Observational studies conducted in low- and middle-income countries (LMICs) presenting data on the relationship of linear growth with any measure of child development among children <12 years of age were identified from a systematic search of PubMed, Embase, and PsycINFO. Two reviewers then extracted these data by using a standardized form. A total of 68 published studies conducted in 29 LMICs were included in the final database. The pooled adjusted standardized mean difference in cross-sectional cognitive ability per unit increase in HAZ for children ≤ 2 years old was +0.24 (95% confidence interval [CI], 0.14-0.33; I(2) = 53%) and +0.09 for children > 2 years old (95% CI, 0.05-0.12; I(2) = 78%). Prospectively, each unit increase in HAZ for children ≤ 2 years old was associated with a +0.22-SD increase in cognition at 5 to 11 years after multivariate adjustment (95% CI, 0.17-0.27; I(2) = 0%). HAZ was also significantly associated with earlier walking age and better motor scores (P < .05). Observational evidence suggests a robust positive association between linear growth during the first 2 years of life with cognitive and motor development. Effective interventions that reduce linear growth restriction may improve developmental outcomes; however, integration with environmental, educational, and stimulation interventions may produce larger positive effects. Copyright © 2015 by the American Academy of Pediatrics.
Gawel, Malgorzata; Kostera-Pruszczyk, Anna
2014-06-01
Motor unit number estimation (MUNE) is a tool for estimating the number of motor units. The aim was to evaluate the multipoint incremental MUNE method in a healthy population, to analyze whether aging, gender, and the dominant hand side influence the motor unit number, and to assess reproducibility of MUNE with the Shefner modification. We studied 60 volunteers (mean age, 47 ± 17.7 years) in four groups aged 18 to 30, 31 to 45, 46 to 60, and above 60 years. Motor unit number estimation was calculated in the abductor pollicis brevis (APB) and the abductor digiti minimi (ADM) by dividing the single motor unit action potential amplitude into the maximal compound motor action potential amplitude. Test-retest variability was 7%. The mean value of MUNE for APB was 133.2 ± 43 and for ADM was 157.1 ± 39.4. Significant differences in MUNE results were found between groups aged 18 to 30 and 60 years or older and between groups aged 31 to 45 and 60 years or older. Motor unit number estimation results correlated negatively with the age of subjects for both APB and ADM. Single motor unit action potential, reflecting the size of motor unit, increased with the age of subjects only in APB. Compound motor action potential amplitude correlated negatively with the age of subjects in APB and ADM. Significant correlations were seen between MUNE in APB or ADM and compound motor action potential amplitude in these muscles and the age of female subjects. A similar relationship was not found in males. Multipoint incremental MUNE method with the Shefner modification is a noninvasive, easy to perform method with high reproducibility. The loss of motor neurons because of aging could be confirmed by our MUNE study and seems to be more pronounced in females.
Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.
2013-01-01
SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks. PMID:22972893
Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M
2013-01-15
Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks.
Hierarchical control of motor units in voluntary contractions
Contessa, Paola
2012-01-01
For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The “firing rate spectrum” presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units—both characteristics being well suited for generating and sustaining force during the fight-or-flight response. PMID:21975447
Motor Controller System For Large Dynamic Range of Motor Operation
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)
2006-01-01
A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.
Riley, Zachary A; Terry, Mary E; Mendez-Villanueva, Alberto; Litsey, Jane C; Enoka, Roger M
2008-06-01
Bursts of activity in the surface electromyogram (EMG) during a sustained contraction have been interpreted as corresponding to the transient recruitment of motor units, but this association has never been confirmed. The current study compared the timing of trains of action potentials discharged by single motor units during a sustained contraction with the bursts of activity detected in the surface EMG signal. The 20 motor units from 6 subjects [recruitment threshold, 35.3 +/- 11.3% maximal voluntary contraction (MVC) force] that were detected with fine wire electrodes discharged 2-9 trains of action potentials (7.2 +/- 5.6 s in duration) when recruited during a contraction that was sustained at a force below its recruitment threshold (target force, 25.4 +/- 10.6% MVC force). High-pass filtering the bipolar surface EMG signal improved its correlation with the single motor unit signal. An algorithm applied to the surface EMG was able to detect 75% of the trains of motor unit action potentials. The results indicate that bursts of activity in the surface EMG during a constant-force contraction correspond to the transient recruitment of higher-threshold motor units in healthy individuals, and these results could assist in the diagnosis and design of treatment in individuals who demonstrate deficits in motor unit activation.
Stock, Matt S; Mota, Jacob A
2017-12-01
Muscle fatigue is associated with diminished twitch force amplitude. We examined changes in the motor unit recruitment versus derecruitment threshold relationship during fatigue. Nine men (mean age = 26 years) performed repeated isometric contractions at 50% maximal voluntary contraction (MVC) knee extensor force until exhaustion. Surface electromyographic signals were detected from the vastus lateralis, and were decomposed into their constituent motor unit action potential trains. Motor unit recruitment and derecruitment thresholds and firing rates at recruitment and derecruitment were evaluated at the beginning, middle, and end of the protocol. On average, 15 motor units were studied per contraction. For the initial contraction, three subjects showed greater recruitment thresholds than derecruitment thresholds for all motor units. Five subjects showed greater recruitment thresholds than derecruitment thresholds for only low-threshold motor units at the beginning, with a mean cross-over of 31.6% MVC. As the muscle fatigued, many motor units were derecruited at progressively higher forces. In turn, decreased slopes and increased y-intercepts were observed. These shifts were complemented by increased firing rates at derecruitment relative to recruitment. As the vastus lateralis fatigued, the central nervous system's compensatory adjustments resulted in a shift of the regression line of the recruitment versus derecruitment threshold relationship. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Development and use of the incremental twitch subtraction MUNE method in mice.
Hegedus, Janka; Jones, Kelvin E; Gordon, Tessa
2009-01-01
We have used a technique to estimate the number of functioning motor units (MUNE) innervating a muscle in mice based on twitch tension. The MUNE technique was verified by modeling twitch tensions from isolated ventral root stimulation. Analysis by twitch tensions allowed us to identify motor unit fiber types. The MUNE technique was used to compare normal mice with transgenic superoxide dismutase-1 mutation (G94A) mice to assess the time course of motor unit loss with respect to fiber type. Motor unit loss was found to occur well in advance of behavioral changes and the degree of reinnervation is dependent upon motor unit fiber types.
Fling, Brett W; Knight, Christopher A; Kamen, Gary
2009-08-01
As a part of the aging process, motor unit reorganization occurs in which small motoneurons reinnervate predominantly fast-twitch muscle fibers that have lost their innervation. We examined the relationship between motor unit size and the threshold force for recruitment in two muscles to determine whether older individuals might develop an alternative pattern of motor unit activation. Young and older adults performed isometric contractions ranging from 0 to 50% of maximal voluntary contraction in both the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles. Muscle fiber action potentials were recorded with an intramuscular needle electrode and motor unit size was computed using spike-triggered averaging of the global EMG signal (macro EMG), which was also obtained from the intramuscular needle electrode. As expected, older individuals exhibited larger motor units than young subjects in both the FDI and the TA. However, moderately strong correlations were obtained for the macro EMG amplitude versus recruitment threshold relationship in both the young and older adults within both muscles, suggesting that the size principle of motor unit recruitment seems to be preserved in older adults.
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand. PMID:26529604
Design of BLDCM emulator for transmission control units
NASA Astrophysics Data System (ADS)
Liu, Chang; He, Yongyi; Zhang, Bodong
2018-04-01
According to the testing requirements of the transmission control unit, a brushless DC motor emulating system is designed based on motor simulation and power hardware-in-the-loop. The discrete motor model is established and a real-time numerical method is designed to solve the motor states. The motor emulator directly interacts with power stage of the transmission control unit using a power-efficient circuit topology and is compatible with sensor-less control. Experiments on a laboratory prototype help to verify that the system can emulate the real motor currents and voltages whenever the motor is starting up or suddenly loaded.
Bioulac, Stéphanie; Franchi, Jean-Arthur Micoulaud; Arnaud, Mickael; Sagaspe, Patricia; Moore, Nicholas; Salvo, Francesco; Philip, Pierre
2017-10-01
Sleepiness at the wheel is widely believed to be a cause of motor vehicle accidents. Nevertheless, a systematic review of studies investigating this relationship has not yet been published. The objective of this study was to quantify the relationship between sleepiness at the wheel and motor vehicle accidents. A systematic review was performed using Medline, Scopus, and ISI Web of Science. The outcome measure of interest was motor vehicle accident defined as involving four- or two-wheeled vehicles in road traffic, professional and nonprofessional drivers, with or without objective consequences. The exposure was sleepiness at the wheel defined as self-reported sleepiness at the wheel. Studies were included if they provided adjusted risk estimates of motor vehicle accidents related to sleepiness at the wheel. Risk estimates and 95% confidence intervals (95% CIs) were extracted and pooled as odds ratios (ORs) using a random-effect model. Heterogeneity was quantified using Q statistics and the I2 index. The potential causes of heterogeneity were investigated using meta-regressions. Ten cross-sectional studies (51,520 participants), six case-control studies (4904 participants), and one cohort study (13,674 participants) were included. Sleepiness at the wheel was associated with an increased risk of motor vehicle accidents (pooled OR 2.51 [95% CI 1.87; 3.39]). A significant heterogeneity was found between the individual risk estimates (Q = 93.21; I2 = 83%). Sleepiness at the wheel increases the risk of motor vehicle accidents and should be considered when investigating fitness to drive. Further studies are required to explore the nature of this relationship. PROSPERO 2015 CRD42015024805. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
de Souza, Leonardo Mendes Leal; Cabral, Hélio Veiga; de Oliveira, Liliam Fernandes; Vieira, Taian Martins
2018-04-01
Architectural differences along vastus medialis (VM) and between VM and vastus lateralis (VL) are considered functionally important for the patellar tracking, knee joint stability and knee joint extension. Whether these functional differences are associated with a differential activity of motor units between VM and VL is however unknown. In the present study, we, therefore, investigate neuroanatomical differences in the activity of motor units detected proximo-distally from VM and from the VL muscle. Nine healthy volunteers performed low-level isometric knee extension contractions (20% of their maximum voluntary contraction) following a trapezoidal trajectory. Surface electromyograms (EMGs) were recorded from VM proximal and distal regions and from VL using three linear adhesive arrays of eight electrodes. The firing rate and recruitment threshold of motor units decomposed from EMGs were then compared among muscle regions. Results show that VL motor units reached lower mean firing rates in comparison with VM motor units, regardless of their position within VM (P < .040). No significant differences in firing rate were found between proximal and distal, VM motor units (P = .997). Furthermore, no significant differences in the recruitment threshold were observed for all motor units analysed (P = .108). Our findings possibly suggest the greater potential of VL to generate force, due to its fibres arrangement, may account for the lower discharge rate observed for VL then either proximally or distally detected motor units in VM. Additionally, the present study opens new perspectives on the importance of considering muscle architecture in investigations of the neural aspects of motor behaviour. Copyright © 2017 Elsevier B.V. All rights reserved.
29. SOUTH SWING SPAN, SHOWING REPRESENTATIVE REDUCTION GEAR/MOTOR DRIVE UNIT ...
29. SOUTH SWING SPAN, SHOWING REPRESENTATIVE REDUCTION GEAR/MOTOR DRIVE UNIT (CENTER) AND WEDGE MOTOR UNIT (RIGHT). - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA
Motor Unit Interpulse Intervals During High Force Contractions.
Stock, Matt S; Thompson, Brennan J
2016-01-01
We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.
The aging neuromuscular system and motor performance
Keenan, Kevin G.
2016-01-01
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults. PMID:27516536
Second-chance signal transduction explains cooperative flagellar switching.
Zot, Henry G; Hasbun, Javier E; Minh, Nguyen Van
2012-01-01
The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).
Hodson-Tole, Emma F; Wakeling, James M
2008-06-01
To effectively meet the force requirements of a given movement an appropriate number and combination of motor units must be recruited between and within muscles. Orderly recruitment of motor units has been shown to occur in a wide range of skeletal muscles, however, alternative strategies do occur. Faster motor units are better suited to developing force rapidly, and produce higher mechanical power with greater efficiency at faster shortening strain rates than slower motor units. As the frequency content of the myoelectric signal is related to the fibre type of the active motor units, we hypothesised that, in addition to an association between myoelectric frequency and intensity, there would be a significant association between muscle fascicle shortening strain rate and myoelectric frequency content. Myoelectric and sonomicrometric data were collected from the three ankle extensor muscles of the rat hind limb during walking and running. Myoelectric signals were analysed using wavelet transformation and principal component analysis to give a measure of the signal frequency content. Sonomicrometric signals were analysed to give measures of muscle fascicle strain and strain rate. The relationship between myoelectric frequency and both intensity and muscle fascicle strain rate was found to change across the time course of a stride, with differences also occurring in the strength of the associations between and within muscles. In addition to the orderly recruitment of motor units, a mechanical strategy of motor unit recruitment was therefore identified. Motor unit recruitment is therefore a multifactorial phenomenon, which is more complex than typically thought.
Recruitment of motor units in two fascicles of the semispinalis cervicis muscle.
Schomacher, Jochen; Dideriksen, Jakob Lund; Farina, Dario; Falla, Deborah
2012-06-01
This study investigated the behavior of motor units in the semispinalis cervicis muscle. Intramuscular EMG recordings were obtained unilaterally at levels C2 and C5 in 15 healthy volunteers (8 men, 7 women) who performed isometric neck extensions at 5%, 10%, and 20% of the maximal force [maximum voluntary contraction (MVC)] for 2 min each and linearly increasing force contractions from 0 to 30% MVC over 3 s. Individual motor unit action potentials were identified. The discharge rate and interspike interval variability of the motor units in the two locations did not differ. However, the recruitment threshold of motor units detected at C2 (n = 16, mean ± SD: 10.3 ± 6.0% MVC) was greater than that of motor units detected at C5 (n = 92, 6.9 ± 4.3% MVC) (P < 0.01). A significant level of short-term synchronization was identified in 246 of 307 motor unit pairs when computed within one spinal level but only in 28 of 110 pairs of motor units between the two levels. The common input strength, which quantifies motor unit synchronization, was greater for pairs within one level (0.47 ± 0.32) compared with pairs between levels (0.09 ± 0.07) (P < 0.05). In a second experiment on eight healthy subjects, interference EMG was recorded from the same locations during a linearly increasing force contraction from 0 to 40% MVC and showed significantly greater EMG amplitude at C5 than at C2. In conclusion, synaptic input is distributed partly independently and nonuniformly to different fascicles of the semispinalis cervicis muscle.
System and method for motor speed estimation of an electric motor
Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN
2012-06-19
A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.
Pattyn, Alexandre; Vallstedt, Anna; Dias, José M.; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M.; Brunet, Jean-Francois; Ericson, Johan
2003-01-01
Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates. PMID:12651891
Tupal, Srinivasan; Huang, Wei-Hsiang; Picardo, Maria Cristina D; Ling, Guang-Yi; Del Negro, Christopher A; Zoghbi, Huda Y; Gray, Paul A
2014-01-01
All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBötzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b- or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing. DOI: http://dx.doi.org/10.7554/eLife.02265.001 PMID:24842997
NASA Astrophysics Data System (ADS)
Zhou, Ping; Barkhaus, Paul E.; Zhang, Xu; Zev Rymer, William
2011-10-01
This paper presents a novel application of the approximate entropy (ApEn) measurement for characterizing spontaneous motor unit activity of amyotrophic lateral sclerosis (ALS) patients. High-density surface electromyography (EMG) was used to record spontaneous motor unit activity bilaterally from the thenar muscles of nine ALS subjects. Three distinct patterns of spontaneous motor unit activity (sporadic spikes, tonic spikes and high-frequency repetitive spikes) were observed. For each pattern, complexity was characterized by calculating the ApEn values of the representative signal segments. A sliding window over each segment was also introduced to quantify the dynamic changes in complexity for the different spontaneous motor unit patterns. We found that the ApEn values for the sporadic spikes were the highest, while those of the high-frequency repetitive spikes were the lowest. There is a significant difference in mean ApEn values between two arbitrary groups of the three spontaneous motor unit patterns (P < 0.001). The dynamic ApEn curve from the sliding window analysis is capable of tracking variations in EMG activity, thus providing a vivid, distinctive description for different patterns of spontaneous motor unit action potentials in terms of their complexity. These findings expand the existing knowledge of spontaneous motor unit activity in ALS beyond what was previously obtained using conventional linear methods such as firing rate or inter-spike interval statistics.
Motor unit firing rate patterns during voluntary muscle force generation: a simulation study
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.
2014-04-01
Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.
1985-05-24
United States, MITI has restrained growth rates of three big makers— Toyota Motor Corp, Nissan Motor Co and Honda Motor Co—in the fiscal year that started...617,000 units and 544,000 units, respectively, the sources said. Toyota shipped 551,790 units and Nissan 487,040 units in fiscal 1984. Honda is...35,010 units and Isuzu 29,500 units by their own outlets. 60 Toyota and Nissan are each being allotted an identical raise of" 11.9 percent, to some
Remodeling of motor units after nerve regeneration studied by quantitative electromyography.
Krarup, Christian; Boeckstyns, Michel; Ibsen, Allan; Moldovan, Mihai; Archibald, Simon
2016-02-01
Peripheral nerve has the capacity to regenerate after nerve lesions; during reinnervation of muscle motor units are gradually reestablished. The aim of this study was to follow the time course of reestablishing and remodeling of motor units in relation to recovery of force after different types of nerve repair. Reinnervation of muscle was compared clinically and electrophysiologically in complete median or ulnar nerve lesions with short gap lengths in the distal forearm repaired with a collagen nerve conduit (11 nerves) or nerve suture (10 nerves). Reestablishment of motor units was studied by quantitative EMG and recording of evoked compound muscle action potential (CMAP) during a 24-month observation period after nerve repair. Force recovered partially to about 80% of normal. Denervation activity gradually decreased during reinnervation though it was still increased at 24 months. Nascent motor unit potentials (MUPs) at early reinnervation were prolonged and polyphasic. During longitudinal studies, MUPs remained prolonged and their amplitudes gradually increased markedly. Firing of MUPs was unstable throughout the study. CMAPs gradually increased and the number of motor units recovered to approximately 20% of normal. There was weak evidence of CMAP amplitude recovery after suture ahead of conduit repair but without treatment related differences at 2 years. Surgical repair of nerve lesions with a nerve conduit or suture supported recovery of force and of motor unit reinnervation to the same extent. Changes occurred at a higher rate during early regeneration and slower after 12 months but should be followed for at least 2 years to assess outcome. EMG changes reflected extensive remodeling of motor units from early nascent units to a mature state with greatly enlarged units due to axonal regeneration and collateral sprouting and maturation of regenerated nerve and reinnervated muscle fibers after both types of repair. Remodeling of motor units after peripheral nerve lesions provides the basis for better recovery of force than the number of motor axons and units. There were no differences after repair with a collagen nerve conduit and nerve suture at short nerve gap lengths. The reduced number of motor units indicates that further improvement of repair procedures and nerve environment is needed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Piasecki, Mathew; Ireland, Alex; Coulson, Jessica; Stashuk, Dan W; Hamilton-Wright, Andrew; Swiecicka, Agnieszka; Rutter, Martin K; McPhee, Jamie S; Jones, David A
2016-10-01
Muscle motor unit numbers decrease markedly in old age, while remaining motor units are enlarged and can have reduced neuromuscular junction transmission stability. However, it is possible that regular intense physical activity throughout life can attenuate this remodeling. The aim of this study was to compare the number, size, and neuromuscular junction transmission stability of tibialis anterior (TA) motor units in healthy young and older men with those of exceptionally active master runners. The distribution of motor unit potential (MUP) size was determined from intramuscular electromyographic signals recorded in healthy male Young (mean ± SD, 26 ± 5 years), Old (71 ± 4 years) and Master Athletes (69 ± 3 years). Relative differences between groups in numbers of motor units was assessed using two methods, one comparing MUP size and muscle cross-sectional area (CSA) determined with MRI, the other comparing surface recorded MUPs with maximal compound muscle action potentials and commonly known as a "motor unit number estimate (MUNE)". Near fiber (NF) jiggle was measured to assess neuromuscular junction transmission stability. TA CSA did not differ between groups. MUNE values for the Old and Master Athletes were 45% and 40%, respectively, of the Young. Intramuscular MUPs of Old and Master Athletes were 43% and 56% larger than Young. NF jiggle was slightly higher in the Master Athletes, with no difference between Young and Old. These results show substantial and similar motor unit loss and remodeling in Master Athletes and Old individuals compared with Young, which suggests that lifelong training does not attenuate the age-related loss of motor units. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
The effects of local forearm muscle cooling on motor unit properties.
Mallette, Matthew M; Green, Lara A; Gabriel, David A; Cheung, Stephen S
2018-02-01
Muscle cooling impairs maximal force. Using needle electromyography (EMG) to assess motor unit properties during muscle cooling, is limited and equivocal. Therefore, we aimed to determine the impact of local muscle cooling on motor unit firing properties using surface EMG decomposition. Twenty participants (12 M, 8 F) completed maximal, evoked, and trapezoidal contractions during thermoneutral and cold muscle conditions. Forearm muscle temperature was manipulated using 10-min neutral (~ 32 °C) or 20-min cold (~ 3 °C) water baths. Twitches and maximal voluntary contractions were performed prior to, and after, forearm immersion in neutral or cold water. Motor unit properties were assessed during trapezoidal contractions to 50% baseline force using surface EMG decomposition. Impaired contractile properties from muscle cooling were evident in the twitch amplitude, duration, and rate of force development indicating that the muscle was successfully cooled from the cold water bath (all d ≥ 0.5, P < 0.05). Surface EMG decomposition showed muscle cooling increased the number of motor units (d = 0.7, P = 0.01) and motor unit action potential (MUAP) duration (d = 0.6, P < 0.001), but decreased MUAP amplitude (d = 0.2, P = 0.012). Individually, neither motor unit firing rates (d = 0.1, P = 0.843) nor recruitment threshold (d = 0.1, P = 0.746) changed; however, the relationship between the recruitment threshold and motor unit firing rate was steeper (d = 1.0, P < 0.001) and had an increased y-intercept (d = 0.9, P = 0.007) with muscle cooling. Since muscle contractility is impaired with muscle cooling, these findings suggest a compensatory increase in the number of active motor units, and small but coupled changes in motor unit firing rates and recruitment threshold to produce the same force.
Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion
Hägglund, Martin; Dougherty, Kimberly J.; Borgius, Lotta; Itohara, Shigeyoshi; Iwasato, Takuji; Kiehn, Ole
2013-01-01
Neural networks in the spinal cord known as central pattern generators produce the sequential activation of muscles needed for locomotion. The overall locomotor network architectures in limbed vertebrates have been much debated, and no consensus exists as to how they are structured. Here, we use optogenetics to dissect the excitatory and inhibitory neuronal populations and probe the organization of the mammalian central pattern generator. We find that locomotor-like rhythmic bursting can be induced unilaterally or independently in flexor or extensor networks. Furthermore, we show that individual flexor motor neuron pools can be recruited into bursting without any activity in other nearby flexor motor neuron pools. Our experiments differentiate among several proposed models for rhythm generation in the vertebrates and show that the basic structure underlying the locomotor network has a distributed organization with many intrinsically rhythmogenic modules. PMID:23798384
Motor unit recruitment in human genioglossus muscle in response to hypercapnia.
Nicholas, Christian L; Bei, Bei; Worsnop, Christopher; Malhotra, Atul; Jordan, Amy S; Saboisky, Julian P; Chan, Julia K M; Duckworth, Ella; White, David P; Trinder, John
2010-11-01
single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. sleep research laboratory. sixteen healthy men. each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P < 0.001). Neither units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.
Human motor unit recordings: origins and insight into the integrated motor system.
Duchateau, Jacques; Enoka, Roger M
2011-08-29
Soon after Edward Liddell [1895-1981] and Charles Sherrington [1857-1952] introduced the concept of a motor unit in 1925 and the necessary technology was developed, the recording of single motor unit activity became feasible in humans. It was quickly discovered by Edgar Adrian [1889-1977] and Detlev Bronk [1897-1975] that the force exerted by muscle during voluntary contractions was the result of the concurrent recruitment of motor units and modulation of the rate at which they discharged action potentials. Subsequent studies found that the relation between discharge frequency and motor unit force was characterized by a sigmoidal function. Based on observations on experimental animals, Elwood Henneman [1915-1996] proposed a "size principle" in 1957 and most studies in humans focussed on validating this concept during various types of muscle contractions. By the end of the 20th C, the experimental evidence indicated that the recruitment order of human motor units was determined primarily by motoneuron size and that the occasional changes in recruitment order were not an intended strategy of the central nervous system. Fundamental knowledge on the function of Sherrington's "common final pathway" was expanded with observations on motor unit rotation, minimal and maximal discharge rates, discharge variability, and self-sustained firing. Despite the great amount of work on characterizing motor unit activity during the first century of inquiry, however, many basic questions remain unanswered and these limit the extent to which findings on humans and experimental animals can be integrated and generalized to all movements. 2011 Elsevier B.V. All rights reserved.
Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping
2015-05-01
Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.
Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.
2012-01-01
Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (<10% of maximal force) for typical values of these parameters. Results indicate that motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000
Li, Xiaoyan; Holobar, Aleš; Gazzoni, Marco; Merletti, Roberto; Rymer, William Z.; Zhou, Ping
2014-01-01
Recent advances in high density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study we applied high density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations post-stroke. Surface EMG signals were collected using a 64-channel 2-dimensional electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 N to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high density surface EMG signals, and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (CoV, averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations post-stroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness. PMID:25389239
Recruitment of motor units in two fascicles of the semispinalis cervicis muscle
Schomacher, Jochen; Dideriksen, Jakob Lund; Farina, Dario
2012-01-01
This study investigated the behavior of motor units in the semispinalis cervicis muscle. Intramuscular EMG recordings were obtained unilaterally at levels C2 and C5 in 15 healthy volunteers (8 men, 7 women) who performed isometric neck extensions at 5%, 10%, and 20% of the maximal force [maximum voluntary contraction (MVC)] for 2 min each and linearly increasing force contractions from 0 to 30% MVC over 3 s. Individual motor unit action potentials were identified. The discharge rate and interspike interval variability of the motor units in the two locations did not differ. However, the recruitment threshold of motor units detected at C2 (n = 16, mean ± SD: 10.3 ± 6.0% MVC) was greater than that of motor units detected at C5 (n = 92, 6.9 ± 4.3% MVC) (P < 0.01). A significant level of short-term synchronization was identified in 246 of 307 motor unit pairs when computed within one spinal level but only in 28 of 110 pairs of motor units between the two levels. The common input strength, which quantifies motor unit synchronization, was greater for pairs within one level (0.47 ± 0.32) compared with pairs between levels (0.09 ± 0.07) (P < 0.05). In a second experiment on eight healthy subjects, interference EMG was recorded from the same locations during a linearly increasing force contraction from 0 to 40% MVC and showed significantly greater EMG amplitude at C5 than at C2. In conclusion, synaptic input is distributed partly independently and nonuniformly to different fascicles of the semispinalis cervicis muscle. PMID:22402657
Activity Regulates the Incidence of Heteronymous Sensory-Motor Connections
Mendelsohn, Alana I.; Simon, Christian M.; Abbott, L. F.; Mentis, George Z.; Jessell, Thomas M.
2015-01-01
Summary The construction of spinal sensory-motor circuits involves the selection of appropriate synaptic partners and the allocation of precise synaptic input densities. Many aspects of spinal sensory-motor selectivity appear to be preserved when peripheral sensory activation is blocked, which has led to a view that sensory-motor circuits are assembled in an activity-independent manner. Yet it remains unclear whether activity-dependent refinement has a role in the establishment of connections between sensory afferents and those motor pools that have synergistic biomechanical functions. We show here that genetically abolishing central sensory-motor neurotransmission leads to a selective enhancement in the number and density of such “heteronymous” connections, whereas other aspects of sensory-motor connectivity are preserved. Spike-timing dependent synaptic refinement represents one possible mechanism for the changes in connectivity observed after activity blockade. Our findings therefore reveal that sensory activity does have a limited and selective role in the establishment of patterned monosynaptic sensory-motor connections. PMID:26094608
Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.
Houtman, C J; Stegeman, D F; Van Dijk, J P; Zwarts, M J
2003-09-01
To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.
In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units.
Sanchez, Gabriel N; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L; Schnitzer, Mark J
2015-12-16
Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle's contractile units. Despite the motor unit's centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Discharge patterns of human tensor palatini motor units during sleep onset.
Nicholas, Christian L; Jordan, Amy S; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P; Eckert, Danny J; White, David P; Malhotra, Atul; Trinder, John
2012-05-01
Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Sleep laboratory. Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Sleep onset. Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP.
Vastus Lateralis Motor Unit Firing Rate Is Higher in Women With Patellofemoral Pain.
Gallina, Alessio; Hunt, Michael A; Hodges, Paul W; Garland, S Jayne
2018-05-01
To compare neural drive, determined from motor unit firing rate, in the vastus medialis and lateralis in women with and without patellofemoral pain. Cross-sectional study. University research laboratory. Women (N=56) 19 to 35 years of age, including 36 with patellofemoral pain and 20 controls. Not applicable. Participants sustained an isometric knee extension contraction at 10% of their maximal voluntary effort for 70 seconds. Motor units (N=414) were identified using high-density surface electromyography. Average firing rate was calculated between 5 and 35 seconds after recruitment for each motor unit. Initial firing rate was the inverse of the first 3 motor unit interspike intervals. In control participants, vastus medialis motor units discharged at higher rates than vastus lateralis motor units (P=.001). This was not observed in women with patellofemoral pain (P=.78) because of a higher discharge rate of vastus lateralis compared with control participants (P=.002). No between-group differences were observed for vastus medialis (P=.93). Similar results were obtained for the initial motor unit firing rate. These findings suggest that women with patellofemoral pain have a higher neural drive to vastus lateralis but not vastus medialis, which may be a contributor of the altered patellar kinematics observed in some studies. The different neural drive may be an adaptation to patellofemoral pain, possibly to compensate for decreased quadriceps force production, or a precursor of patellofemoral pain. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Romaiguère, P; Vedel, J P; Azulay, J P; Pagni, S
1991-01-01
1. Single motor unit activity was recorded in the extensor carpi radialis longus and extensor carpi radialis brevis muscles of five healthy human subjects, using metal microelectrodes. 2. Motor units were characterized on the basis of their twitch contraction times and their force recruitment thresholds during voluntary imposed-ramp contractions. 3. The discharge patterns of forty-three motor units were studied during tonic vibration reflex elicited by prolonged (150 s) trains of vibration (30 Hz) applied to the distal tendons of the muscles. The temporal relationships between the individual small tendon taps of the vibratory stimulus and the motor unit impulses were analysed on dot raster displays and post-stimulus time histograms. 4. After tendon taps, the impulses of motor units with long twitch contraction times (mean +/- S.D., 47.2 +/- 10.7 ms) and low recruitment thresholds (0.88 +/- 0.6 N) formed a single narrow peak (P1) with a latency (22.7 +/- 1.4 ms) which was comparable to that of the tendon jerk in the extensor carpi radialis muscles. These motor units were named 'P1 units'. On the other hand, the response of motor units with shorter twitch contraction times (31.1 +/- 3.3 ms) and higher recruitment thresholds (3.21 +/- 1.3 N) showed two peaks: a short latency (23.4 +/- 1.3 ms) P1 peak similar to the previous one and a P2 peak occurring 9.4 +/- 1.2 ms later. These motor units were named 'P1-P2 units'. 5. When the reflex contraction increased slowly, the P1 peaks of 'P1-P2 units' were clearly predominant at the beginning of the contraction, during the rising phase of the motor unit discharge frequency, while the P2 peaks became predominant when the units had reached their maximal discharge frequency. 6. Increasing the tendon vibration frequency (35, 55, 75, 95 Hz) did not modify the 'P1 unit' discharge pattern. Due to interference between vibration period and peak latencies, increasing the vibration frequency caused the P1 and P2 peaks of 'P1-P2 units' to overlap. 7. Superficial cutaneous stimulation of the dorsal side of the forearm during tendon vibration noticeably decreased the P1 peaks in both types of motor units. In the P2 peaks it could result in either a decrease or an increase but the average effect was a slight increase. 8. When applied 10 s before tendon vibration, cutaneous stimulation considerably suppressed the tonic vibration reflex.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1822565
Della Torre, G; Brunetti, O; Pettorossi, V E
2002-01-01
The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.
Force estimation from ensembles of Golgi tendon organs
NASA Astrophysics Data System (ADS)
Mileusnic, M. P.; Loeb, G. E.
2009-06-01
Golgi tendon organs (GTOs) located in the skeletal muscles provide the central nervous system with information about muscle tension. The ensemble firing of all GTO receptors in the muscle has been hypothesized to represent a reliable measure of the whole muscle force but the precision and accuracy of that information are largely unknown because it is impossible to record activity simultaneously from all GTOs in a muscle. In this study, we combined a new mathematical model of force sampling and transduction in individual GTOs with various models of motor unit (MU) organization and recruitment simulating various normal, pathological and neural prosthetic conditions. Our study suggests that in the intact muscle the ensemble GTO activity accurately encodes force information according to a nonlinear, monotonic relationship that has its steepest slope for low force levels and tends to saturate at the highest force levels. The relationship between the aggregate GTO activity and whole muscle tension under some pathological conditions is similar to one seen in the intact muscle during rapidly modulated, phasic excitation of the motor pool (typical for many natural movements) but quite different when the muscle is activated slowly or held at a given force level. Substantial deviations were also observed during simulated functional electrical stimulation.
Tucker, Kylie; Larsson, Anna-Karin; Oknelid, Stina; Hodges, Paul
2012-03-01
A motor unit consists of a motoneurone and the multiple muscle fibres that it innervates, and forms the final neural pathway that influences movement. Discharge of motor units is altered (decreased discharge rate and/or cessation of firing; and increased discharge rate and/or recruitment of new units) during matched-force contractions with pain. This is thought to be mediated by nociceptive (pain) input on motoneurones, as demonstrated in animal studies. It is also possible that motoneurone excitability is altered by pain related descending inputs, that these changes persist after noxious stimuli cease, and that direct nociceptive input is not necessary to induce pain related changes in movement. We aimed to determine whether anticipation of pain (descending pain related inputs without nociceptor discharge) alters motor unit discharge, and to observe motor unit discharge recovery after pain has ceased. Motor unit discharge was recorded with fine-wire electrodes in the quadriceps of 9 volunteers. Subjects matched isometric knee-extension force during anticipation of pain (anticipation: electrical shocks randomly applied over the infrapatellar fat-pad); pain (hypertonic saline injected into the fat-pad); and 3 intervening control conditions. Discharge rate of motor units decreased during pain (P<.001) and anticipation (P<.01) compared with control contractions. De-recruitment of 1 population of units and new recruitment of another population were observed during both anticipation and pain; some changes in motor unit recruitment persisted after pain ceased. This challenges the fundamental theory that pain-related changes in muscle activity result from direct nociceptor discharge, and provides a mechanism that may underlie long-term changes in movement/chronicity in some musculoskeletal conditions. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Discharge Patterns of Human Tensor Palatini Motor Units During Sleep Onset
Nicholas, Christian L.; Jordan, Amy S.; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Trinder, John
2012-01-01
Study Objectives: Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. Design: The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Setting: Sleep laboratory. Participants: Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Intervention: Sleep onset. Measurements and Results: Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. Conclusions: TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP. Citation: Nicholas CL; Jordan AS; Heckel L; Worsnop C; Bei B: Saboisky JP; Eckert DJ; White DP; Malhotra A; Trinder J. Discharge patterns of human tensor palatini motor units during sleep onset. SLEEP 2012;35(5):699-707. PMID:22547896
1992-09-01
UNITED STATES MOTOR CARRIER INDUSTRY AS A GUIDE THESIS David W. Butler Andrew P. Wilhelm Captain, USAF Captain, USAF AFIT/GLM/LSM/92S-7 Approved for...UNITED STATES MOTOR CARRIER INDUSTRY AS A GUIDE THESIS Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute of...THE EUROPEAN TRUCKING INDUSTRY AND LOGISTICS STRATEGIES USING THE UNITED STATES MOTOR CARRIER INDUSTRY AS A GUIDE I. Introduction General Issue The
Testing of motor unit synchronization model for localized muscle fatigue.
Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar
2009-01-01
Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.
Synchronization of low- and high-threshold motor units.
Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S
2014-04-01
We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.
Chalmers, Gordon R
2008-01-01
Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude-frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225 degrees/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle.
The relationship of motor unit size, firing rate and force.
Conwit, R A; Stashuk, D; Tracy, B; McHugh, M; Brown, W F; Metter, E J
1999-07-01
Using a clinical electromyographic (EMG) protocol, motor units were sampled from the quadriceps femoris during isometric contractions at fixed force levels to examine how average motor unit size and firing rate relate to force generation. Mean firing rates (mFRs) and sizes (mean surface-detected motor unit action potential (mS-MUAP) area) of samples of active motor units were assessed at various force levels in 79 subjects. MS-MUAP size increased linearly with increased force generation, while mFR remained relatively constant up to 30% of a maximal force and increased appreciably only at higher force levels. A relationship was found between muscle force and mS-MUAP area (r2 = 0.67), mFR (r2 = 0.38), and the product of mS-MUAP area and mFR (mS-MUAP x mFR) (r2 = 0.70). The results support the hypothesis that motor units are recruited in an orderly manner during forceful contractions, and that in large muscles only at higher levels of contraction ( > 30% MVC) do mFRs increase appreciably. MS-MUAP and mFR can be assessed using clinical EMG techniques and they may provide a physiological basis for analyzing the role of motor units during muscle force generation.
Łochyński, Dawid; Kaczmarek, Dominik; Krutki, Piotr; Celichowski, Jan
2010-09-01
The purpose of this study was to determine the effect of ageing on the rate of force generation of motor units, and the mechanical efficiency of contraction produced by a doublet discharge. The study was carried out on isolated motor units of rat medial gastrocnemius muscle of young (5-10 mo) and two groups of old (24-25 and 28-30 mo) Wistar rats. Motor units were classified into the fast fatigable (FF), fast resistant (FR) and slow (S) ones. The force output and rate of force development were determined for non-doublet unfused tetanic contractions evoked by a series of a constant-rate trains of pulses and corresponding doublet contractions starting with an initial brief interpulse interval of 5 ms, and for maximal tetanic contraction. In FF motor units the rate of force development and the force produced by the doublet discharge increased transiently at the age of 24-25 mo, while in S and FR motor units this increase was observed at the age of 28-30 mo. Age-related decrease in the rate of force development of skeletal muscle cannot be attributed to a decline in efficiency of force production by functioning motor units. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B
2017-08-01
What is the central question of this study? The influences of motor unit recruitment threshold and twitch force potentiation on the changes in firing rates during steady-force muscular contractions are not well understood. What is the main finding and its importance? The behaviour of motor units during steady force was influenced by recruitment threshold, such that firing rates decreased for lower-threshold motor units but increased for higher-threshold motor units. In addition, individuals with greater changes in firing rates possessed greater twitch force potentiation. There are contradictory reports regarding changes in motor unit firing rates during steady-force contractions. Inconsistencies are likely to be the result of previous studies disregarding motor unit recruitment thresholds and not examining firing rates on a subject-by-subject basis. It is hypothesized that firing rates are manipulated by twitch force potentiation during contractions. Therefore, in this study we examined time-related changes in firing rates at steady force in relationship to motor unit recruitment threshold in the first dorsal interosseous and the influence of twitch force potentiation on such changes in young versus aged individuals. Subjects performed a 12 s steady-force contraction at 50% maximal voluntary contraction, with evoked twitches before and after the contraction to quantify potentiation. Firing rates, in relationship to recruitment thresholds, were determined at the beginning, middle and end of the steady force. There were no firing rate changes for aged individuals. For the young, firing rates decreased slightly for lower-threshold motor units but increased for higher-threshold motor units. Twitch force potentiation was greater for young than aged subjects, and changes in firing rates were correlated with twitch force potentiation. Thus, individuals with greater increases in firing rates of higher-threshold motor units and decreases in lower-threshold motor units possessed greater twitch force potentiation. Overall, changes in firing rates during brief steady-force contractions are dependent on recruitment threshold and explained in part by twitch force potentiation. Given that firing rate changes were measured in relationship to recruitment threshold, this study illustrates a more complete view of firing rate changes during steady-force contractions. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Robert T. Brooks; Robert T. Brooks
2005-01-01
Seasonal forest pools (SFPs) are geographically- and hydrologically- isolated ponded wetlands, in that they are topographically isolated from other surface waters. SFPs occur commonly throughout the temperate forests of the eastern United States and adjacent Canada. SFPs are ephemeral in occurrence, typically drying annually. The regular drying of SFPs excludes fish...
Strey, K.A.; Nichols, N.L.; Baertsch, N.A.; Broytman, O.; Baker-Herman, T.L.
2012-01-01
The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF, and that iPMF consists of at least two mechanistically distinct phases: 1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCΙ/λ) activity to transition to a 2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/Ι and the scaffolding protein ZIP/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/Ι activity is necessary for iPMF, spinal aPKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that: 1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool, and 2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/Ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system where prolonged inactivity ends life. PMID:23152633
Persson, Karin; Rekling, Jens C
2011-01-01
Abstract The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem and in the facial nucleus. In Fluo-8 AM loaded brainstem–spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial synchrony with respiratory nerve bursts. In brainstem–spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity in lateral and medial subnuclei. Whole-cell recordings from facial motoneurons showed weak respiratory drives, and electrical field potential recordings confirmed respiratory drive to particularly the dorsal and lateral subnuclei. Putative facial premotoneurons showed respiratory-related calcium signals, and were predominantly located dorsomedial to the facial nucleus. A novel motor activity on facial, cervical and thoracic nerves was synchronized with calcium signals at the ventromedial brainstem extending from the level of the facial nucleus to the medulla–spinal cord border. Cervical dorsal root stimulation induced similar ventromedial activity. The medial facial subnucleus showed calcium signals synchronized with this novel motor activity on cervical nerves, and cervical dorsal root stimulation induced similar medial facial subnucleus activity. In conclusion, the dorsal and lateral facial subnuclei are strongly respiratory-modulated, and the brainstem contains a novel pattern forming circuit that drives the medial facial subnucleus and cervical motor pools. PMID:21486812
Task and fatigue effects on low-threshold motor units in human hand muscle.
Enoka, R M; Robinson, G A; Kossev, A R
1989-12-01
1. The activity of single motor units was recorded in the first dorsal interosseus muscle of human subjects while they performed an isometric ramp-and-hold maneuver. Motor-unit activity was characterized before and after fatigue by the use of a branched bipolar electrode that was positioned subcutaneously over the test muscle. Activity was characterized in terms of the forces of recruitment and derecruitment and the discharge pattern. The purpose was to determine, before and after fatigue, whether motor-unit activity was affected by the direction in which the force was exerted. 2. Regardless of the task during prefatigue trials, interimpulse intervals were 1) more variable during increases or decreases in force than when force was held constant at the target value (4-6% above the recruitment force), and 2) more clustered around an arbitrary central value than would be expected with a normal (Gaussian) distribution. Both effects were seen during the flexion and abduction tasks. The behavior of low-threshold motor units in first dorsal interosseus is thus largely unaffected by the direction of the force exerted by the index finger. The absence of a task (i.e., a direction of force) effect suggests that the resultant force vector about the metacarpophalangeal joint of the index finger is not coded in terms of discrete populations of motor units, but, rather, it is based on the net muscle activity about the joint. 3. Motor-unit behavior during and after fatigue showed that the relatively homogeneous behavior seen before fatigue could be severely disrupted. The fatiguing protocol involved the continuous repetition, to the endurance limit, of a 15-s ramp-and-hold maneuver in which the abduction target force was 50% of maximum and was held for 10-s epochs (ramps up and down were approximately 2 s each). Motor-unit threshold was assessed by the forces of recruitment and derecruitment associated with each cycle of the fatigue test. Changes in recruitment force during the protocol were either minimal or, when present, not systematic. In contrast, the derecruitment force of all units exhibited a marked and progressive increase over the course of the test. 4. After the fatigue test, when the initial threshold tasks were repeated, the behavior of most motor units changed. These changes included the derecruitment of previously active motor units, the recruitment of additional motor units, and an increased discharge variability of units that remained recruited. The variation in recruitment order seemed to be much greater than that reported previously for nonfatiguing conditions.(ABSTRACT TRUNCATED AT 400 WORDS)
Motor control differs for increasing and releasing force
Park, Seoung Hoon; Kwon, MinHyuk; Solis, Danielle; Lodha, Neha
2016-01-01
Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0–4, 4–10, 10–35, and 35–60 Hz. Participants exhibited greater force variability while releasing force, independent of age (P < 0.001). Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz (R2 = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units (r = 0.66) and modulation from 0 to 4 Hz (r = −0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units. PMID:26961104
Confirmatory Factor Analysis of the Delirium Rating Scale Revised-98 (DRS-R98).
Thurber, Steven; Kishi, Yasuhiro; Trzepacz, Paula T; Franco, Jose G; Meagher, David J; Lee, Yanghyun; Kim, Jeong-Lan; Furlanetto, Leticia M; Negreiros, Daniel; Huang, Ming-Chyi; Chen, Chun-Hsin; Kean, Jacob; Leonard, Maeve
2015-01-01
Principal components analysis applied to the Delirium Rating Scale-Revised-98 contributes to understanding the delirium construct. Using a multisite pooled international delirium database, the authors applied confirmatory factor analysis to Delirium Rating Scale-Revised-98 scores from 859 adult patients evaluated by delirium experts (delirium, N=516; nondelirium, N=343). Confirmatory factor analysis found all diagnostic features and core symptoms (cognitive, language, thought process, sleep-wake cycle, motor retardation), except motor agitation, loaded onto factor 1. Motor agitation loaded onto factor 2 with noncore symptoms (delusions, affective lability, and perceptual disturbances). Factor 1 loading supports delirium as a single construct, but when accompanied by psychosis, motor agitation's role may not be solely as a circadian activity indicator.
Movement maintains forebrain neurogenesis via peripheral neural feedback in larval zebrafish
Hall, Zachary Jonas
2018-01-01
The postembryonic brain exhibits experience-dependent development, in which sensory experience guides normal brain growth. This neuroplasticity is thought to occur primarily through structural and functional changes in pre-existing neurons. Whether neurogenesis also mediates the effects of experience on brain growth is unclear. Here, we characterized the importance of motor experience on postembryonic neurogenesis in larval zebrafish. We found that movement maintains an expanded pool of forebrain neural precursors by promoting progenitor self-renewal over the production of neurons. Physical cues associated with swimming (bodily movement) increase neurogenesis and these cues appear to be conveyed by dorsal root ganglia (DRG) in the zebrafish body: DRG-deficient larvae exhibit attenuated neurogenic responses to movement and targeted photoactivation of DRG in immobilized larvae expands the pallial pool of proliferative cells. Our results demonstrate the importance of movement in neurogenic brain growth and reveal a fundamental sensorimotor association that may couple early motor and brain development. PMID:29528285
Hodson-Tole, E F; Wakeling, J M
2007-07-01
Motor units are generally considered to follow a set, orderly pattern of recruitment within each muscle with activation occurring in the slowest through to the fastest units. A growing body of evidence, however, suggests that recruitment patterns may not always follow such an orderly sequence. Here we investigate whether motor unit recruitment patterns vary within and between the ankle extensor muscles of the rat running at 40 cm s(-1) on a level treadmill. In the past it has been difficult to quantify motor unit recruitment patterns during locomotion; however, recent application of wavelet analysis techniques has made such detailed analysis of motor unit recruitment possible. Here we present methods for quantifying the interplay of fast and slow motor unit recruitment based on their myoelectric signals. Myoelectric data were collected from soleus, plantaris and medial gastrocnemius muscles representing populations of slow, mixed and fast fibres, respectively, and providing a good opportunity to relate myoelectric frequency content to motor unit recruitment patterns. Following wavelet transformation, principal component analysis quantified signal intensity and relative frequency content. Significant differences in signal frequency content occurred between different time points within a stride (P<0.001). We optimised high- and low-frequency wavelets to the major signals from the fast and slow motor units. The goodness-of-fit of the optimised wavelets to the signal intensity was high for all three muscles (r2>0.98). The low-frequency band had a significantly better fit to signals from the soleus muscle (P<0.001), while the high-frequency band had a significantly better fit to the medial gastrocnemius (P<0.001).
Mutsaers, Chantal A.; Thomson, Derek; Hamilton, Gillian; Parson, Simon H.; Gillingwater, Thomas H.
2012-01-01
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA. PMID:23285108
Enterprise Workplan for FY2002-2003
DOT National Transportation Integrated Search
2002-11-01
The ENTERPRISE Program is a pooled-fund with member agencies in the United States, Canada, and the Netherlands. Its main purpose is to use the pooled resources of its members, private sector partners and the United States federal government to develo...
Tests on ticks from wild birds collected in the eastern United States for rickettsiae and viruses
Clifford, C.M.; Sonenshine, D.E.; Atwood, E.L.; Robbins, C.S.; Hughes, L.E.
1969-01-01
Results of tests for rickettsiae and viruses on 4,266 ticks taken from more than 10,000 birds, comprising 150 species, in the eastern United States indicated the presence of two agents: Rickettsia rickettsii and an agent of the typhus group. Infection with R. rickettsii was indicated in 24 pools of Haemaphysalis leporispalustris, five pools of Ixodes dentatus, one pool of Ixodes brunneus, and two pools that contained both I. dentatus and H. leporispalustris. The pools positive for R. rickettsii were from a variety of locations in the eastern U. S. The typhus-group agent was demonstrated only once, in a single pool of H. leporispalustris taken at Kent Point, Maryland. A strain of R. rickettsii was isolated from a pool of 21 larval H. leporispalustris collected at Ocean City, Maryland. This agent possessed several characteristics of other strains of low virulence isolated previously in this region by various authors.
Improving deep convolutional neural networks with mixed maxout units.
Zhao, Hui-Zhen; Liu, Fu-Xian; Li, Long-Yue
2017-01-01
Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.
In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units
Sanchez, Gabriel N.; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L.; Schnitzer, Mark J.
2017-01-01
SUMMARY Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle’s contractile units. Despite the motor unit’s centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. PMID:26687220
Dartnall, Tamara J; Rogasch, Nigel C; Nordstrom, Michael A; Semmler, John G
2009-07-01
The purpose of this study was to determine the effect of eccentric muscle damage on recruitment threshold force and repetitive discharge properties of low-threshold motor units. Ten subjects performed four tasks involving isometric contraction of elbow flexors while electromyographic (EMG) data were recorded from human biceps brachii and brachialis muscles. Tasks were 1) maximum voluntary contraction (MVC); 2) constant-force contraction at various submaximal targets; 3) motor unit recruitment threshold task; and 4) minimum motor unit discharge rate task. These tasks were performed on three separate days before, immediately after, and 24 h after eccentric exercise of elbow flexor muscles. MVC force declined (42%) immediately after exercise and remained depressed (29%) 24 h later, indicative of muscle damage. Mean motor unit recruitment threshold for biceps brachii was 8.4+/-4.2% MVC, (n=34) before eccentric exercise, and was reduced by 41% (5.0+/-3.0% MVC, n=34) immediately after and by 39% (5.2+/-2.5% MVC, n=34) 24 h after exercise. No significant changes in motor unit recruitment threshold were observed in the brachialis muscle. However, for the minimum tonic discharge rate task, motor units in both muscles discharged 11% faster (10.8+/-2.0 vs. 9.7+/-1.7 Hz) immediately after (n=29) exercise compared with that before (n=32). The minimum discharge rate variability was greater in brachialis muscle immediately after exercise (13.8+/-3.1%) compared with that before (11.9+/-3.1%) and 24 h after exercise (11.7+/-2.4%). No significant changes in minimum discharge rate variability were observed in the biceps brachii motor units after exercise. These results indicate that muscle damage from eccentric exercise alters motor unit recruitment thresholds for >or=24 h, but the effect is not the same in the different elbow flexor muscles.
47 CFR 90.421 - Operation of mobile station units not under the control of the licensee.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90... unauthorized operation of such units not under its control. (a) Public Safety Pool. (1) Mobile units licensed in the Public Safety Pool may be installed in any vehicle which in an emergency would require...
A Novel Framework Based on FastICA for High Density Surface EMG Decomposition
Chen, Maoqi; Zhou, Ping
2015-01-01
This study presents a progressive FastICA peel-off (PFP) framework for high density surface electromyogram (EMG) decomposition. The novel framework is based on a shift-invariant model for describing surface EMG. The decomposition process can be viewed as progressively expanding the set of motor unit spike trains, which is primarily based on FastICA. To overcome the local convergence of FastICA, a “peel off” strategy (i.e. removal of the estimated motor unit action potential (MUAP) trains from the previous step) is used to mitigate the effects of the already identified motor units, so more motor units can be extracted. Moreover, a constrained FastICA is applied to assess the extracted spike trains and correct possible erroneous or missed spikes. These procedures work together to improve the decomposition performance. The proposed framework was validated using simulated surface EMG signals with different motor unit numbers (30, 70, 91) and signal to noise ratios (SNRs) (20, 10, 0 dB). The results demonstrated relatively large numbers of extracted motor units and high accuracies (high F1-scores). The framework was also tested with 111 trials of 64-channel electrode array experimental surface EMG signals during the first dorsal interosseous (FDI) muscle contraction at different intensities. On average 14.1 ± 5.0 motor units were identified from each trial of experimental surface EMG signals. PMID:25775496
Variable-Displacement Hydraulic Drive Unit
NASA Technical Reports Server (NTRS)
Lang, D. J.; Linton, D. J.; Markunas, A.
1986-01-01
Hydraulic power controlled through multiple feedback loops. In hydraulic drive unit, power closely matched to demand, thereby saving energy. Hydraulic flow to and from motor adjusted by motor-control valve connected to wobbler. Wobbler angle determines motor-control-valve position, which in turn determines motor displacement. Concept applicable to machine tools, aircraft controls, and marine controls.
Motor unit number estimation and quantitative needle electromyography in stroke patients.
Kouzi, Ioanna; Trachani, Eftichia; Anagnostou, Evangelos; Rapidi, Christina-Anastasia; Ellul, John; Sakellaropoulos, George C; Chroni, Elisabeth
2014-12-01
To evaluate the effect of upper motor neuron damage upon motor units' function by means of two separate and supplementary electrophysiological methods. The abductor digiti minimi muscle of the non-paretic and the paretic side was studied in forty-six stroke patients with (a) motor unit number estimation (MUNE) - adapted multiple point stimulation method and (b) computerized quantitative needle electromyography (EMG) assessing the configuration of voluntary recruited motor unit potentials. Main outcome comparisons were focused on differences between non-paretic and paretic side. On the affected hands mean MUNE value was significantly lower and mean area of the surface recorded single motor unit potentials was significantly larger than the corresponding ones on the non-paretic hands. EMG findings did not reveal remarkable differences between the two sides. Neither severity nor chronicity of stroke was related to MUNE or EMG parameters. MUNE results, which suggested reduced motor unit numbers in stroke patients, in conjunction with the normal EMG features in these same muscles has given rise to different interpretations. In a clinical setting, reinnervation type changes in the EMG similar to that occurring in neuronopathies or axonal neuropathies should not be expected in muscles with central neurogenic lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Interplay of upper and lower motor neuron degeneration in amyotrophic lateral sclerosis.
de Carvalho, Mamede; Poliakov, Artiom; Tavares, Cristiano; Swash, Michael
2017-11-01
We studied motor unit recruitment to test a new method to identify motor unit firing rate (FR) variability. We studied 68 ALS patients, with and without upper neuron signs (UMN) in lower limbs, 24 patients with primary lateral sclerosis (PLS), 13 patients with spinal cord lesion and 39 normal subjects. All recordings were made from tibialis anterior muscles of normal strength. Subjects performed a very slight contraction in order to activate 2 motor units in each recording. 5-7 motor unit pairs were recorded in each subject. Mean consecutive differences (MCD) were calculated for each pair of potentials. The mean MCD for each muscle was estimated as the mean from the total number of pairs recorded. Ap value<0.01 was accepted as significant. MCD of FR frequency was less in the subjects with spinal cord lesion and PLS. In addition, the FR frequency of the 1st motor unit in a pair of units was markedly reduced in PLS, and in subjects with spinal cord lesions. These results support a lower threshold and reduced FR fluctuation in spinal motor neurons of spastic patients. This method can be developed for detection of UMN lesions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Large motor units are selectively affected following a stroke.
Lukács, M; Vécsei, L; Beniczky, S
2008-11-01
Previous studies have revealed a loss of functioning motor units in stroke patients. However, it remained unclear whether the motor units are affected randomly or in some specific pattern. We assessed whether there is a selective loss of the large (high recruitment threshold) or the small (low recruitment threshold) motor units following a stroke. Forty-five stroke patients and 40 healthy controls participated in the study. Macro-EMG was recorded from the abductor digiti minimi muscle at two levels of force output (low and high). The median macro motor unit potential (macro-MUP) amplitude on the paretic side was compared with those on the unaffected side and in the controls. In the control group and on the unaffected side, the macro-MUPs were significantly larger at the high force output than at the low one. However, on the paretic side the macro-MUPs at the high force output had the same amplitude as those recorded at the low force output. These changes correlated with the severity of the paresis. Following a stroke, there is a selective functional loss of the large, high-threshold motor units. These changes are related to the severity of the symptoms. Our findings furnish further insight into the pathophysiology of the motor deficit following a stroke.
Code of Federal Regulations, 2010 CFR
2010-10-01
... commercial motor vehicle from Canada or Mexico to and within the United States. 1572.201 Section 1572.201... ASSESSMENTS Transportation of Hazardous Materials From Canada or Mexico To and Within the United States by... Mexico to and within the United States. (a) Applicability. This section applies to commercial motor...
PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System
Kim, Hojeong; Kim, Minjung
2018-01-01
We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input–output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings. PMID:29695959
PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System.
Kim, Hojeong; Kim, Minjung
2018-01-01
We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input-output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings.
Influence of prolonged static stretching on motor unit firing properties.
Ye, Xin; Beck, Travis W; Wages, Nathan P
2016-05-01
The purpose of this study was to examine the influence of a stretching intervention on motor control strategy of the biceps brachii muscle. Ten men performed twelve 100-s passive static stretches of the biceps brachii. Before and after the intervention, isometric strength was tested during maximal voluntary contractions (MVCs) of the elbow flexors. Subjects also performed trapezoid isometric contractions at 30% and 70% of MVC. Surface electromyographic signals from the submaximal contractions were decomposed into individual motor unit action potential trains. Linear regression analysis was used to examine the relationship between motor unit mean firing rate and recruitment threshold. The stretching intervention caused significant decreases in y-intercepts of the linear regression lines. In addition, linear slopes at both intensities remained unchanged. Despite reduced motor unit firing rates following the stretches, the motor control scheme remained unchanged. © 2016 Wiley Periodicals, Inc.
Neuromotor control in chronic obstructive pulmonary disease.
Mantilla, Carlos B; Sieck, Gary C
2013-05-01
Neuromotor control of skeletal muscles, including respiratory muscles, is ultimately dependent on the structure and function of the motor units (motoneurons and the muscle fibers they innervate) comprising the muscle. In most muscles, considerable diversity of contractile and fatigue properties exists across motor units, allowing a range of motor behaviors. In diseases such as chronic obstructive pulmonary disease (COPD), there may be disproportional primary (disease related) or secondary effects (related to treatment or other concomitant factors) on the size and contractility of specific muscle fiber types that would influence the relative contribution of different motor units. For example, with COPD there is a disproportionate atrophy of type IIx and/or IIb fibers that comprise more fatigable motor units. Thus fatigue resistance may appear to improve, while overall motor performance (e.g., 6-min walk test) and endurance (e.g., reduced aerobic exercise capacity) are diminished. There are many coexisting factors that might also influence motor performance. For example, in COPD patients, there may be concomitant hypoxia and/or hypercapnia, physical inactivity and unloading of muscles, and corticosteroid treatment, all of which may disproportionately affect specific muscle fiber types, thereby influencing neuromotor control. Future studies should address how plasticity in motor units can be harnessed to mitigate the functional impact of COPD-induced changes.
Macgregor, Lewis J; Hunter, Angus M
2018-01-01
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.
Speech motor development: Integrating muscles, movements, and linguistic units.
Smith, Anne
2006-01-01
A fundamental problem for those interested in human communication is to determine how ideas and the various units of language structure are communicated through speaking. The physiological concepts involved in the control of muscle contraction and movement are theoretically distant from the processing levels and units postulated to exist in language production models. A review of the literature on adult speakers suggests that they engage complex, parallel processes involving many units, including sentence, phrase, syllable, and phoneme levels. Infants must develop multilayered interactions among language and motor systems. This discussion describes recent studies of speech motor performance relative to varying linguistic goals during the childhood, teenage, and young adult years. Studies of the developing interactions between speech motor and language systems reveal both qualitative and quantitative differences between the developing and the mature systems. These studies provide an experimental basis for a more comprehensive theoretical account of how mappings between units of language and units of action are formed and how they function. Readers will be able to: (1) understand the theoretical differences between models of speech motor control and models of language processing, as well as the nature of the concepts used in the two different kinds of models, (2) explain the concept of coarticulation and state why this phenomenon has confounded attempts to determine the role of linguistic units, such as syllables and phonemes, in speech production, (3) describe the development of speech motor performance skills and specify quantitative and qualitative differences between speech motor performance in children and adults, and (4) describe experimental methods that allow scientists to study speech and limb motor control, as well as compare units of action used to study non-speech and speech movements.
Macgregor, Lewis J.
2018-01-01
Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs. 163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622
Dealing with time-varying recruitment and length in Hill-type muscle models.
Hamouda, Ahmed; Kenney, Laurence; Howard, David
2016-10-03
Hill-type muscle models are often used in muscle simulation studies and also in the design and virtual prototyping of functional electrical stimulation systems. These models have to behave in a sufficiently realistic manner when recruitment level and contractile element (CE) length change continuously. For this reason, most previous models have used instantaneous CE length in the muscle׳s force vs. length (F-L) relationship, but thereby neglect the instability problem on the descending limb (i.e. region of negative slope) of the F-L relationship. Ideally CE length at initial recruitment should be used but this requires a multiple-motor-unit muscle model to properly account for different motor-units having different initial lengths when recruited. None of the multiple-motor-unit models reported in the literature have used initial CE length in the muscle׳s F-L relationship, thereby also neglecting the descending limb instability problem. To address the problem of muscle modelling for continuously varying recruitment and length, and hence different values of initial CE length for different motor-units, a new multiple-motor-unit muscle model is presented which considers the muscle to comprise 1000 individual Hill-type virtual motor-units, which determine the total isometric force. Other parts of the model (F-V relationship and passive elements) are not dependent on the initial CE length and, therefore, they are implemented for the muscle as a whole rather than for the individual motor-units. The results demonstrate the potential errors introduced by using a single-motor-unit model and also the instantaneous CE length in the F-L relationship, both of which are common in FES control studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J
2014-10-01
There is limited investigation of the interaction between motor unit recruitment and rate coding for modulating force during standing or responding to external perturbations. Fifty-seven motor units were recorded from the medial gastrocnemius muscle with intramuscular electrodes in response to external perturbations in standing. Anteriorly directed perturbations were generated by applying loads in 0.45-kg increments at the pelvis every 25-40 s until 2.25 kg was maintained. Motor unit firing rate was calculated for the initial recruitment load and all subsequent loads during two epochs: 1) dynamic response to perturbation directly following each load drop and 2) maintenance of steady state between perturbations. Joint kinematics and surface electromyography (EMG) from lower extremities and force platform measurements were assessed. Application of the external loads resulted in a significant forward progression of the anterior-posterior center of pressure (AP COP) that was accompanied by modest changes in joint angles (<3°). Surface EMG increased more in medial gastrocnemius than in the other recorded muscles. At initial recruitment, motor unit firing rate immediately after the load drop was significantly lower than during subsequent load drops or during the steady state at the same load. There was a modest increase in motor unit firing rate immediately after the load drop on subsequent load drops associated with regaining balance. There was no effect of maintaining balance with increased load and forward progression of the AP COP on steady-state motor unit firing rate. The medial gastrocnemius utilized primarily motor unit recruitment to achieve the increased levels of activation necessary to maintain standing in the presence of external loads. Copyright © 2014 the American Physiological Society.
Orderly recruitment of motor units under optical control in vivo.
Llewellyn, Michael E; Thompson, Kimberly R; Deisseroth, Karl; Delp, Scott L
2010-10-01
A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.
Dean, Jesse C.; Clair-Auger, Joanna M.; Lagerquist, Olle; Collins, David F.
2014-01-01
Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10–100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC) voluntary contractions. Higher frequencies recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with “time-locked” discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in “physiological” recruitment which adheres to Henneman’s size principle and results in relatively low discharge rates and asynchronous firing. PMID:25566025
Dean, Jesse C; Clair-Auger, Joanna M; Lagerquist, Olle; Collins, David F
2014-01-01
Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC) voluntary contractions. Higher frequencies recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with "time-locked" discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in "physiological" recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.
Low-Frequency Oscillations and Control of the Motor Output
Lodha, Neha; Christou, Evangelos A.
2017-01-01
A less precise force output impairs our ability to perform movements, learn new motor tasks, and use tools. Here we show that low-frequency oscillations in force are detrimental to force precision. We summarize the recent evidence that low-frequency oscillations in force output represent oscillations of the spinal motor neuron pool from the voluntary drive, and can be modulated by shifting power to higher frequencies. Further, force oscillations below 0.5 Hz impair force precision with increased voluntary drive, aging, and neurological disease. We argue that the low-frequency oscillations are (1) embedded in the descending drive as shown by the activation of multiple spinal motor neurons, (2) are altered with force intensity and brain pathology, and (3) can be modulated by visual feedback and motor training to enhance force precision. Thus, low-frequency oscillations in force provide insight into how the human brain regulates force precision. PMID:28261107
The effects of malnutrition on the motor, perceptual, and cognitive functions of Filipino children.
Reyes, M R; Valdecanas, C M; Reyes, O L; Reyes, T M
1990-01-01
The motor, perceptual, and cognitive abilities of 99 Filipino children, aged 4-6 years with a documented history of malnutrition from a nutritionally depressed area of Manila were determined using the Revised Manila Motor-Perceptual Screening Test. They were classified into four groups of: (1) normal; (2) acutely malnourished; (3) stunted but not malnourished; and (4) chronically malnourished using the Waterlow classification. Thirty-one normal children of comparable ages and background from a nationwide pool were similarly tested and served as the control group. Motor (p = 0.001) and perceptual skill (p less than 0.03 to less than 0.001) scores were significantly lower than in their normal counterparts, especially in the chronically malnourished children. Cognitive abilities were not evidently affected by malnutrition.
Marginal Pipeline Costs of Enlisted Personnel.
1979-12-03
printing, cleaning supplies , organizational equipment for train- ing support, barracks furnishings, motor pools and various other items. (USMC: MC... cleaning , supplies , and related items. 11-26 C. ARMY MISSION/SUPPORT COSTS The Army accepted 124,000 active NPS accessions in FY1978. These
Matching soil grid unit resolutions with polygon unit scales for DNDC modelling of regional SOC pool
NASA Astrophysics Data System (ADS)
Zhang, H. D.; Yu, D. S.; Ni, Y. L.; Zhang, L. M.; Shi, X. Z.
2015-03-01
Matching soil grid unit resolution with polygon unit map scale is important to minimize uncertainty of regional soil organic carbon (SOC) pool simulation as their strong influences on the uncertainty. A series of soil grid units at varying cell sizes were derived from soil polygon units at the six map scales of 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), respectively, in the Tai lake region of China. Both format soil units were used for regional SOC pool simulation with DeNitrification-DeComposition (DNDC) process-based model, which runs span the time period 1982 to 2000 at the six map scales, respectively. Four indices, soil type number (STN) and area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils simulated with the DNDC, were attributed from all these soil polygon and grid units, respectively. Subjecting to the four index values (IV) from the parent polygon units, the variation of an index value (VIV, %) from the grid units was used to assess its dataset accuracy and redundancy, which reflects uncertainty in the simulation of SOC. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pool, matching with soil polygon units map scales, respectively. With the optimal raster resolution the soil grid units dataset can hold the same accuracy as its parent polygon units dataset without any redundancy, when VIV < 1% of all the four indices was assumed as criteria to the assessment. An quadratic curve regression model y = -8.0 × 10-6x2 + 0.228x + 0.211 (R2 = 0.9994, p < 0.05) was revealed, which describes the relationship between optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:x). The knowledge may serve for grid partitioning of regions focused on the investigation and simulation of SOC pool dynamics at certain map scale.
Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia
2014-01-30
Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement. Copyright © 2014 Elsevier Inc. All rights reserved.
Credit USAF, ca. 1943. Original housed in the Muroc Flight ...
Credit USAF, ca. 1943. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Historic view looking north across southwest end of swimming pool as army personnel work on finishing the pool bottom. View looks towards Mess Hall (T-10) on Second Street - Edwards Air Force Base, North Base, Swimming Pool, Second Street, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, J. Jr.; Tenenbaum, B.; Woolf, F.
This paper focuses on the governance and regulation of power pools outside the United States. The current governance and regulatory arrangements for four power pools, as developed in pool documents and government regulations and laws, are compared and contrasted. The power pools analyzed are located in England and Wales, Australia, Canada, and Scandinavia. Topics discussed in relation to these pools are the effects of structure on governance, how each pool has dealt with a number of basic governance decisions, how the pools monitor the markets, ways in which regulators and other institutions control pools, and self-governance issues.
Estimates of Commercial Motor Vehicles Using the Southwest Border Crossings
DOT National Transportation Integrated Search
2000-09-20
The United States has experienced almost a five-fold increase in commercial motor vehicle traffic to and from Mexico during the past sixteen years. There were more than 4< million commercial motor vehicle (CMV) crossings from Mexico into the United S...
Cold weather effects on Dresden Unit 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anagnostopoulos, H.
1995-03-01
Dresden Unit 1 is in the final stages of a decommissioning effort directed at preparing the unit to enter a SAFSTOR status. Following an extended sub-zero cold wave, about 55,000 gallons of water were discovered in the lowest elevation of the spherical reactor enclosure. Cold weather had caused the freezing and breaking of several service water lines that had not been completely isolated. Two days later, at a regularly scheduled decommissioning meeting, the event was communicated to the decommissioning team, who quickly recognized the potential for freezing of a 42 inches diameter Fuel Transfer Tube that connects the sphere tomore » the Spent Fuel Pool. The team directed that the pool gates between the adjacent Spent Fuel Pool and the Fuel Transfer Pool be installed, and a portable source of heat was installed on the Fuel Transfer Tube. It was later determined that, with the fuel pool gates removed, and with a worst case freeze break at the 502 elevation on the Fuel Transfer Tube (in the Sphere), the fuel in the Spent Fuel Pool could be uncovered to a level 3 below the top of active fuel.« less
Kelly, Neil A; Hammond, Kelley G; Bickel, C Scott; Windham, Samuel T; Tuggle, S Craig; Bamman, Marcas M
2018-04-01
Aging muscle atrophy is in part a neurodegenerative process revealed by denervation/reinnervation events leading to motor unit remodeling (i.e., myofiber type grouping). However, this process and its physiological relevance are poorly understood, as is the wide-ranging heterogeneity among aging humans. Here, we attempted to address 1) the relation between myofiber type grouping and molecular regulators of neuromuscular junction (NMJ) stability; 2) the impact of motor unit remodeling on recruitment during submaximal contractions; 3) the prevalence and impact of motor unit remodeling in Parkinson's disease (PD), an age-related neurodegenerative disease; and 4) the influence of resistance exercise training (RT) on regulators of motor unit remodeling. We compared type I myofiber grouping, molecular regulators of NMJ stability, and the relative motor unit activation (MUA) requirement during a submaximal sit-to-stand task among untrained but otherwise healthy young (YA; 26 yr, n = 27) and older (OA; 66 yr, n = 91) adults and OA with PD (PD; 67 yr, n = 19). We tested the effects of RT on these outcomes in OA and PD. PD displayed more motor unit remodeling, alterations in NMJ stability regulation, and a higher relative MUA requirement than OA, suggesting PD-specific effects. The molecular and physiological outcomes tracked with the severity of type I myofiber grouping. Together these findings suggest that age-related motor unit remodeling, manifested by type I myofiber grouping, 1) reduces MUA efficiency to meet submaximal contraction demand, 2) is associated with disruptions in NMJ stability, 3) is further impacted by PD, and 4) may be improved by RT in severe cases. NEW & NOTEWORTHY Because the physiological consequences of varying amounts of myofiber type grouping are unknown, the current study aims to characterize the molecular and physiological correlates of motor unit remodeling. Furthermore, because exercise training has demonstrated neuromuscular benefits in aged humans and improved innervation status and neuromuscular junction integrity in animals, we provide an exploratory analysis of the effects of high-intensity resistance training on markers of neuromuscular degeneration in both Parkinson's disease (PD) and age-matched older adults.
Peng, Yi-Ling; Tenan, Matthew S; Griffin, Lisa
2018-06-01
Weakness of the vastus medialis oblique (VMO) has been proposed to explain the high prevalence of knee pain in female subjects. Clinicians commonly use exercises in an attempt to preferentially activate the VMO. Recently, our group found evidence to support clinical theory that the VMO is neurologically distinct from the vastus medialis (VM). However, the ability to voluntarily activate these muscle subsections is still disputed. The aim of this study was to determine if VM and VMO activation varies between sexes and if control of the two muscles is different between rehabilitation exercises. Thirteen men and 13 women performed isometric straight leg raises in two hip positions, neutral hip rotation and 30 degrees lateral hip rotation. Bipolar intramuscular fine-wire electrodes were inserted into the VM and VMO to obtain motor unit recruitment thresholds and initial firing rates at recruitment. Linear mixed models and Tukey post hoc tests were used to assess significant differences in 654 motor units. Women demonstrated faster motor unit firing rate at recruitment, 1.18 ± 0.56 Hz higher than men. Motor units fired 0.47 ± 0.19 Hz faster during neutral hip rotation compared with lateral hip rotation. The VMO motor units were recruited 2.92 ± 1.28% earlier than the VM. All motor units were recruited 3.74 ± 1.27% earlier during neutral hip rotation than lateral hip rotation. Thus the VM and the VMO can be activated differentially, and their motor unit recruitment properties are affected by sex and hip position. NEW & NOTEWORTHY This is the first study to reveal differential activation of the vastus medialis oblique from the vastus medialis in clinical exercise protocols. Our research group used fine-wire electrodes to examine EMG signals of the vastus medialis oblique and vastus medialis to avoid possible cross talk. We also consider the effect of sex on motor unit firing patterns because of higher prevalence of knee pain in women, and yet few studies evaluating the sex differences in neuromuscular control.
78 FR 71476 - Health Insurance Providers Fee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
...) entities. Another commenter suggested that the final regulations exclude high risk pools under section 1101... covered entity unless it provides health insurance for United States health risks in 2014. Because high... not be covered entities. In the event a high risk pool provides health insurance for United States...
Improving deep convolutional neural networks with mixed maxout units
Liu, Fu-xian; Li, Long-yue
2017-01-01
Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that “non-maximal features are unable to deliver” and “feature mapping subspace pooling is insufficient,” we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance. PMID:28727737
Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L
2016-08-01
Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.
2016-08-01
Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this section...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h) of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of this...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of this...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h) of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of this...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of this...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of this...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this section...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1124.7 Section 1124.7 Agriculture... Regulating Handling Definitions § 1124.7 Pool plant. Pool plant means a plant, unit of plants, or a system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h) of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h) of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of this...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h) of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h) of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this section...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1033.7 Section 1033.7 Agriculture... Handling Definitions § 1033.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (j) of this...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1006.7 Section 1006.7 Agriculture... Handling Definitions § 1006.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h) of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1005.7 Section 1005.7 Agriculture... Handling Definitions § 1005.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this section...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 9 2012-01-01 2012-01-01 false Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 9 2013-01-01 2013-01-01 false Pool plant. 1032.7 Section 1032.7 Agriculture... Handling Definitions § 1032.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, or a plant specified in paragraph (i) of this...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1007.7 Section 1007.7 Agriculture... Handling Definitions § 1007.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h) of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 9 2014-01-01 2013-01-01 true Pool plant. 1001.7 Section 1001.7 Agriculture... Handling Definitions § 1001.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant described in paragraph (h) of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1126.7 Section 1126.7 Agriculture... Handling Definitions § 1126.7 Pool plant. Pool plant means a plant specified in paragraphs (a) through (d) of this section, a unit of plants as specified in paragraph (e) of this section, or a plant specified...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 9 2010-01-01 2009-01-01 true Pool plant. 1030.7 Section 1030.7 Agriculture... Handling Definitions § 1030.7 Pool plant. Pool plant means a plant, unit of plants, or system of plants as specified in paragraphs (a) through (f) of this section, but excluding a plant specified in paragraph (h) of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 9 2011-01-01 2011-01-01 false Pool plant. 1131.7 Section 1131.7 Agriculture... Handling Definitions § 1131.7 Pool plant. Pool Plant means a plant or unit of plants specified in paragraphs (a) through (e) of this section, but excluding a plant specified in paragraph (g) of this section...
Detail, unit 4, 3,000 hp synchronous pump motor. Manufactured by ...
Detail, unit 4, 3,000 hp synchronous pump motor. Manufactured by The Electric Products Company, Cleveland, Ohio. Unit 5 is identical to this unit - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ
JEN-1 Reactor Control System; SISTEMA DE CONTROL DEL REACTOR JEN-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantillo, M.F.; Nuno, C.M.; Andreu, J.L.M.
1963-01-01
ABS>The JEN-1 3Mw power swimming pool reactor electrical control circuits are described. Start-up, power generation in the core, and shutdown are controlled by the reactor control system. This control system guarantees in each moment the safety conditions during reactor operation. Each circuit was represented by a scheme, complemented with a description of its function, components, and operation theory. Components described include: scram circuit; fission counter control circuit; servo control circuit; control circuit of safety sheets; control circuits of primary, secondary, and clean-up pump motors and tower fan motor; primary valve motor circuit; center cubicle alarm circuit; and process alarm circuit.more » (auth)« less
Sasada, Syusaku; Endoh, Takashi; Ishii, Tomoya; Komiyama, Tomoyoshi
2017-09-14
Sprint motor performance, such as in short-distance running or cycling, gradually decreases after reaching a maximum speed or cadence. This may be attributed to the central nervous system. Brain stimulation studies have recently revealed the plastic nature of the human brain and spinal cord, but it is unclear how direct current stimulation (DCS) affects sprint motor performance. To address this issue, we investigated DCS's effect on healthy volunteers' sprint cycling performance. DCS was applied to the lumbar spinal cord (3mA) or the leg area of the motor cortex (2mA) for 15min with 3 different polarities: anodal, cathodal, and sham. After DCS, the subjects performed maximal-effort sprint cycling for 30s under a constant load. Pooled mean power during the 30s was significantly greater after cathodal transcutaneous spinal DCS to the lumbar spinal cord (tsDCS) than anodal or sham tsDCS. The improvement with cathodal stimulation was notable both 0-5 and 20-25s after the performance onset. There were no significant inter-conditional differences in peak power. Pooled mean power was significantly greater after anodal transcranial DCS to the motor cortex (tDCS) than after cathodal tDCS, although mean powers of anodal and sham tDCS were not significantly different. The increase in mean power after cathodal tsDCS could result from a reduction in central fatigue. This stimulus method might improve sprint performance. Copyright © 2017 Elsevier B.V. All rights reserved.
A software package for interactive motor unit potential classification using fuzzy k-NN classifier.
Rasheed, Sarbast; Stashuk, Daniel; Kamel, Mohamed
2008-01-01
We present an interactive software package for implementing the supervised classification task during electromyographic (EMG) signal decomposition process using a fuzzy k-NN classifier and utilizing the MATLAB high-level programming language and its interactive environment. The method employs an assertion-based classification that takes into account a combination of motor unit potential (MUP) shapes and two modes of use of motor unit firing pattern information: the passive and the active modes. The developed package consists of several graphical user interfaces used to detect individual MUP waveforms from a raw EMG signal, extract relevant features, and classify the MUPs into motor unit potential trains (MUPTs) using assertion-based classifiers.
21 CFR 640.69 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.69 General requirements. (a) Pooling. Two units of Source Plasma from the same donor may be pooled if such units are collected during... introduce a risk of contamination of the red blood cells and, for plasma intended for injectable products...
21 CFR 640.69 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.69 General requirements. (a) Pooling. Two units of Source Plasma from the same donor may be pooled if such units are collected during... introduce a risk of contamination of the red blood cells and, for plasma intended for injectable products...
21 CFR 640.69 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.69 General requirements. (a) Pooling. Two units of Source Plasma from the same donor may be pooled if such units are collected during... introduce a risk of contamination of the red blood cells and, for plasma intended for injectable products...
21 CFR 640.69 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.69 General requirements. (a) Pooling. Two units of Source Plasma from the same donor may be pooled if such units are collected during... introduce a risk of contamination of the red blood cells and, for plasma intended for injectable products...
Crossed reciprocal inhibition evoked by electrical stimulation of the lamprey spinal cord.
Fagerstedt, P; Zelenin, P V; Deliagina, T G; Orlovsky, G N; Grillner, S
2000-09-01
Activation of a motoneuron pool is often accompanied by inhibition of the antagonistic pool through a system of reciprocal inhibition between the two parts of the neuronal network controlling the antagonistic pools. In the present study, we describe the activity of such a system in the isolated spinal cord of the lamprey, when a tonic motor output is evoked by extracellular stimulation (0.5-1 s train of pulses, 20 Hz) of either end of the spinal cord. With two electrodes symmetrically positioned in relation to the midline, stimulation with either of them separately elicited prolonged (1-5 s) ipsilateral ventral root activity. Activity could be abolished by stronger, simultaneously applied, stimulation of the contralateral side of the cord, suggesting that reciprocal inhibition between hemisegments operates when a tonic motor output is generated. Simultaneous stimulation of both sides of the spinal cord with a single electrode with a large tip (300-400 microm in diameter), positioned over the anatomical midline, elicited inconsistent right-side, leftside, or bilateral ventral root responses. A minor displacement (10-20 microm) to the left or right from the midline resulted in activation of ipsilateral motoneurons, whereas the contralateral motoneurons were silent. These findings indicate that a small asymmetry in the excitatory drive to the left and right spinal hemisegments can be further amplified by reciprocal inhibition between the hemisegments. Longitudinal splitting of the spinal cord along the midline resulted in reduced reciprocal inhibition between the hemisegments separated by the lesion. The reduction was proportional to the extent of the split. The inhibition was abolished when the split reached nine segments in length. From these experiments, the longitudinal distribution of the commissural axons responsible for inhibition of contralateral motor output could be estimated.
Pang, You-Wang; Ge, Shun-Nan; Nakamura, Kouichi C; Li, Jin-Lian; Xiong, Kang-Hui; Kaneko, Takeshi; Mizuno, Noboru
2009-02-10
Little is known about the significance of the two types of glutamatergic neurons (those expressing vesicular glutamate transporter VGLUT1 or VGLUT2) in the control of jaw movements. We thus examined the origin and distribution of axon terminals with VGLUT1 or VGLUT2 immunoreactivity within the trigeminal motor nucleus (Vm) in the rat. The Vm was divided into the dorsolateral division (Vm.dl; jaw-closing motoneuron pool) and the ventromedial division (Vm.vm; jaw-opening motoneuron pool). VGLUT1-immunopositive terminals were seen within the Vm.dl only, whereas VGLUT2-immunopositive ones were distributed to both the Vm.dl and the Vm.vm. Transection of the motor root eliminated almost all VGLUT1-immunopositive axons in the Vm.dl, with no changes of VGLUT2 immunoreactivity in the two divisions, indicating that the VGLUT1- and VGLUT2-immunopositive axons came from primary afferents in the mesencephalic trigeminal nucleus and premotor neurons for the Vm, respectively. In situ hybridization histochemistry revealed that VGLUT2 neurons were much more numerous than VGLUT1 neurons in the regions corresponding to the reported premotoneuron pool for the Vm. The results of immunofluorescence labeling combined with anterograde tract tracing further indicated that premotor neurons with VGLUT2 in the trigeminal sensory nuclei, the supratrigeminal region, and the reticular region ventral to the Vm sent axon terminals contacting trigeminal motoneurons and that some of the VGLUT1-expressing premotor neurons in the reticular region ventral to the Vm sent axon terminals to jaw-closing motoneurons. The present results suggested that the roles played by glutamatergic neurons in controlling jaw movements might be different between VGLUT1- and VGLUT2-expressing neurons.
Firing patterns of spontaneously active motor units in spinal cord-injured subjects.
Zijdewind, Inge; Thomas, Christine K
2012-04-01
Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.
A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.
van Bolhuis, A I; Holsheimer, J; Savelberg, H H
2001-05-30
Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.
49 CFR 565.24 - Motor vehicles imported into the United States.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS Alternative VIN Requirements In Effect for Limited Period § 565.24 Motor vehicles imported into... 49 Transportation 6 2013-10-01 2013-10-01 false Motor vehicles imported into the United States...
49 CFR 565.24 - Motor vehicles imported into the United States.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS Alternative VIN Requirements In Effect for Limited Period § 565.24 Motor vehicles imported into... 49 Transportation 6 2011-10-01 2011-10-01 false Motor vehicles imported into the United States...
49 CFR 565.24 - Motor vehicles imported into the United States.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS Alternative VIN Requirements In Effect for Limited Period § 565.24 Motor vehicles imported into... 49 Transportation 6 2014-10-01 2014-10-01 false Motor vehicles imported into the United States...
49 CFR 565.24 - Motor vehicles imported into the United States.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS Alternative VIN Requirements In Effect for Limited Period § 565.24 Motor vehicles imported into... 49 Transportation 6 2012-10-01 2012-10-01 false Motor vehicles imported into the United States...
49 CFR 565.24 - Motor vehicles imported into the United States.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE IDENTIFICATION NUMBER (VIN) REQUIREMENTS Alternative VIN Requirements In Effect for Limited Period § 565.24 Motor vehicles imported into... 49 Transportation 6 2010-10-01 2010-10-01 false Motor vehicles imported into the United States...
Stock, Matt S; Thompson, Brennan J
2014-01-01
Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.
Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.
Hodson-Tole, Emma F; Wakeling, James M
2008-06-01
Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.
Boyd, Penelope J.; Shorrock, Hannah K.; Carter, Roderick N.; Powis, Rachael A.; Thomson, Sophie R.; Thomson, Derek; Graham, Laura C.; Motyl, Anna A. L.; Highley, J. Robin; Becker, Thomas; Becker, Catherina G.; Heath, Paul R.
2017-01-01
Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo. PMID:28426667
Robert T. Brooks; Masaki Hayashi
2002-01-01
Ephemeral or "vernal" pools occur commonly throughout the forests of the northeastern United States and adjacent eastern Canada. These pools are critical breeding habitat for a number of amphibian species and support a diverse invertebrate community. The hydroperiod or duration of surface water of vernal pools affects faunal composition and reproduction. We...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-10
... require that any overage of the GB yellowtail flounder TAC specified for the common pool, individual... deduction will be divided between the annual catch limit (ACL) for common pool vessels (common pool sub-ACL... that ``any overages of the GB cod and GB haddock TACs specified for either the common pool or...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
... Catch Entitlements: Updated Annual Catch Limits for Sectors and the Common Pool for Fishing Year 2010... fishing year (FY) 2010 specification of annual catch limits (ACLs) for common pool vessels (common pool... fish in the common pool for FY 2010. DATES: Effective May 21, 2010 through April 30, 2011. FOR FURTHER...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... under common pool regulations for the 2010 fishing year (FY). This action also corrects a previously published cod trip limit for common pool vessels fishing under a limited access Handgear A permit. This... common pool (common pool sub-ACL) and underharvesting the sub-ACL for pollock during FY 2010 (May 1, 2010...
Detail, unit 3, 1,100 horsepower (hp) pump motor. Manufactured by ...
Detail, unit 3, 1,100 horsepower (hp) pump motor. Manufactured by the Electric Products Company, Cleveland, Ohio, USA. Units 1,2, and 4 are identical to this unit - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ
Repeater F-waves are signs of motor unit pathology in polio survivors.
Hachisuka, Akiko; Komori, Tetsuo; Abe, Tatsuya; Hachisuka, Kenji
2015-05-01
The purpose of this study was to determine whether F-waves reveal electrophysiological features of anterior horn cells in polio survivors. Forty-three polio survivors and 20 healthy controls underwent motor nerve conduction studies of the median and tibial nerves bilaterally, including sampling of F-waves elicited by 100 stimuli and the determination of motor unit number estimation (MUNE). A significant increase in abnormally stereotyped ("repeater") F-waves and a reduction of F-wave persistence were observed in both nerves in the polio group as compared with the control group. Repeater F-waves had a negative correlation with MUNE. These trends in F-wave persistence and repeater F-waves after motor unit loss are characteristic findings in polio survivors. Repeater F-waves are a sign of motor unit pathology. © 2014 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.
Negro, Francesco; Holobar, Aleš; Farina, Dario
2009-01-01
The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 × 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 ± 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 ± 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 ± 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 ± 7.8%). The correlation between FCC and the force signal increased up to 71.8 ± 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R2 range = 0.14–0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R2= 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 ± 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions. PMID:19840996
Negro, Francesco; Holobar, Ales; Farina, Dario
2009-12-15
The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 +/- 7.8%). The correlation between FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R(2) = 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions.
Innervation zones of fasciculating motor units: observations by a linear electrode array.
Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping
2015-01-01
This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.
17 CFR 4.13 - Exemption from registration as a commodity pool operator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... offered and sold without marketing to the public in the United States; (ii) At all times, the pool meets... offered and sold without marketing to the public in the United States; (ii) The person reasonably believes... with generally accepted accounting principles consistently applied. If the person is granted...
7. UNIT 4, VIEW TO SOUTHEAST, SHOWING GATE MOTOR ASSEMBLY ...
7. UNIT 4, VIEW TO SOUTHEAST, SHOWING GATE MOTOR ASSEMBLY (CENTER), TURBINE (LEFT FOREGROUND), AND GENERATOR (BACKGROUND) - Washington Water Power Company Monroe Street Plant, Units 4 & 5, South Bank Spokane River, below Monroe Street Bridge, Spokane, Spokane County, WA
6. UNIT 5, VIEW TO SOUTHWEST, SHOWING GATE MOTOR ASSEMBLY ...
6. UNIT 5, VIEW TO SOUTHWEST, SHOWING GATE MOTOR ASSEMBLY (CENTER), TURBINE (RIGHT FOREGROUND), AND GENERATOR (BACKGROUND) - Washington Water Power Company Monroe Street Plant, Units 4 & 5, South Bank Spokane River, below Monroe Street Bridge, Spokane, Spokane County, WA
Drinking, driving, and crashing: a traffic-flow model of alcohol-related motor vehicle accidents.
Gruenewald, Paul J; Johnson, Fred W
2010-03-01
This study examined the influence of on-premise alcohol-outlet densities and of drinking-driver densities on rates of alcohol-related motor vehicle crashes. A traffic-flow model is developed to represent geographic relationships between residential locations of drinking drivers, alcohol outlets, and alcohol-related motor vehicle crashes. Cross-sectional and time-series cross-sectional spatial analyses were performed using data collected from 144 geographic units over 4 years. Data were obtained from archival and survey sources in six communities. Archival data were obtained within community areas and measured activities of either the resident population or persons visiting these communities. These data included local and highway traffic flow, locations of alcohol outlets, population density, network density of the local roadway system, and single-vehicle nighttime (SVN) crashes. Telephone-survey data obtained from residents of the communities were used to estimate the size of the resident drinking and driving population. Cross-sectional analyses showed that effects relating on-premise densities to alcohol-related crashes were moderated by highway trafficflow. Depending on levels of highway traffic flow, 10% greater densities were related to 0% to 150% greater rates of SVN crashes. Time-series cross-sectional analyses showed that changes in the population pool of drinking drivers and on-premise densities interacted to increase SVN crash rates. A simple traffic-flow model can assess the effects of on-premise alcohol-outlet densities and of drinking-driver densities as they vary across communities to produce alcohol-related crashes. Analyses based on these models can usefully guide policy decisions on the sitting of on-premise alcohol outlets.
Firing patterns of spontaneously active motor units in spinal cord-injured subjects
Zijdewind, Inge; Thomas, Christine K
2012-01-01
Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n = 19 units) or irregular intervals (CV > 0.15, n = 14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5–15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (∼20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs. Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated afterhyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise. PMID:22310313
Safety Barrier Guidelines for Home Pools [and] How To Plan for the Unexpected.
ERIC Educational Resources Information Center
Consumer Product Safety Commission, Washington, DC.
Each year, hundreds of young children die and thousands come close to death due to submersion in residential swimming pools. The United States Consumer Products Safety Commission studied data on drownings and child behavior, as well as information on pool and pool barrier construction, and concluded that the best way to reduce child drownings in…
Detail, unit 4, 1,850 horsepower (hp) synchronous pump motor manufactured ...
Detail, unit 4, 1,850 horsepower (hp) synchronous pump motor manufactured by The Electric Products Company, Cleveland , Ohio. Pump units 1, 2, and 3 are identical to this unit. View to the west - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ
Exercise Design for the Joint Force 2020 Brigade Combat Team
2012-03-22
include within their calculus .41 With these factors in mind, in his February 2012 testimony before congress, General Dempsey stressed that the...moving the existing contracted ―civilian on the battlefield vehicle‖ (COBV) motor pool and maintenance facility, the post dental clinic, the dump
Credit USAF, ca. 1943. Original housed in the Muroc Flight ...
Credit USAF, ca. 1943. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Historic view looking northeast along southeast edge of swimming pool during construction. The wavy edge of the pool visible here remains as a ground surface feature in 1995. Building in the background is the second Bachelor Officers' Quarters (T-15) built in 1943 - Edwards Air Force Base, North Base, Swimming Pool, Second Street, Boron, Kern County, CA
Dideriksen, Jakob L; Holobar, Ales; Falla, Deborah
2016-08-01
Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. Copyright © 2016 the American Physiological Society.
Anatomic and physiological characteristics of the ferret lateral rectus muscle and abducens nucleus.
Bishop, Keith N; McClung, J Ross; Goldberg, Stephen J; Shall, Mary S
2007-11-01
The ferret has become a popular model for physiological and neurodevelopmental research in the visual system. We believed it important, therefore, to study extraocular whole muscle as well as single motor unit physiology in the ferret. Using extracellular stimulation, 62 individual motor units in the ferret abducens nucleus were evaluated for their contractile characteristics. Of these motor units, 56 innervated the lateral rectus (LR) muscle alone, while 6 were split between the LR and retractor bulbi (RB) muscle slips. In addition to individual motor units, the whole LR muscle was evaluated for twitch, tetanic peak force, and fatigue. The abducens nucleus motor units showed a twitch contraction time of 15.4 ms, a mean twitch tension of 30.2 mg, and an average fusion frequency of 154 Hz. Single-unit fatigue index averaged 0.634. Whole muscle twitch contraction time was 16.7 ms with a mean twitch tension of 3.32 g. The average fatigue index of whole muscle was 0.408. The abducens nucleus was examined with horseradish peroxidase conjugated with the subunit B of cholera toxin histochemistry and found to contain an average of 183 motoneurons. Samples of LR were found to contain an average of 4,687 fibers, indicating an LR innervation ratio of 25.6:1. Compared with cat and squirrel monkeys, the ferret LR motor units contract more slowly yet more powerfully. The functional visual requirements of the ferret may explain these fundamental differences.
Dideriksen, Jakob L.; Holobar, Ales
2016-01-01
Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. PMID:27226455
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor...
Paramanathan, Sansuthan; Tankisi, Hatice; Andersen, Henning; Fuglsang-Frederiksen, Anders
2016-01-01
This study quantifies functioning axons and reinnervation by applying two methods multiple point stimulation (MPS) MUNE, and motor unit number index (MUNIX), in patients with acute- and chronic inflammatory demyelinating polyneuropathy (AIDP, CIDP). Nineteen patients with inflammatory demyelinating polyneuropathy (eleven AIDP and eight CIDP) were prospectively included. MPS MUNE and MUNIX examinations on the thenar muscle group by stimulating the median nerve were applied on all patients. Motor unit size was calculated as single motor unit potential (sMUP) and motor unit size index (MUSIX). The results were compared with twenty healthy subjects. In AIDP patients mean MPS MUNE (106) and MUNIX (80) were lower than control MPS MUNE (329) and MUNIX (215) (p<0.001). In CIDP patients both MPS MUNE (88) and MUNIX (67) were lower than controls (p<0.001). In CIDP patients sMUP (63) and MUSIX (90) were higher than control sMUP (35) and MUSIX (58) (p<0.05 and p<0.01). When AIDP and CIDP groups were combined the sensitivity for MPS MUNE and MUNIX were 89.5% and 68.4%, respectively. Decreased MPS MUNE and MUNIX suggest presence of axonal loss or loss of functioning axons in AIDP and CIDP. Increased motor unit size in CIDP patients indicates compensatory reinnervation. Moreover, both MPS MUNE and MUNIX can discriminate between disease versus non-disease. Estimation of the number and the average size of motor units may have clinical value for the assessment of axonal loss or loss of functioning axons in patients with AIDP and CIDP. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Discharge properties of abductor hallucis before, during, and after an isometric fatigue task.
Kelly, Luke A; Racinais, Sebastien; Cresswell, Andrew G
2013-08-01
Abductor hallucis is the largest muscle in the arch of the human foot and comprises few motor units relative to its physiological cross-sectional area. It has been described as a postural muscle, aiding in the stabilization of the longitudinal arch during stance and gait. The purpose of this study was to describe the discharge properties of abductor hallucis motor units during ramp and hold isometric contractions, as well as its discharge characteristics during fatigue. Intramuscular electromyographic recordings from abductor hallucis were made in 5 subjects; from those recordings, 42 single motor units were decomposed. Data were recorded during isometric ramp contractions at 60% maximum voluntary contraction (MVC), performed before and after a submaximal isometric contraction to failure (mean force 41.3 ± 15.3% MVC, mean duration 233 ± 116 s). Motor unit recruitment thresholds ranged from 10.3 to 54.2% MVC. No significant difference was observed between recruitment and derecruitment thresholds or their respective discharge rates for both the initial and postfatigue ramp contractions (all P > 0.25). Recruitment threshold was positively correlated with recruitment discharge rate (r = 0.47, P < 0.03). All motor units attained similar peak discharge rates (14.0 ± 0.25 pulses/s) and were not correlated with recruitment threshold. Thirteen motor units could be followed during the isometric fatigue task, with a decline in discharge rate and increase in discharge rate variability occurring in the final 25% of the task (both P < 0.05). We have shown that abductor hallucis motor units discharge relatively slowly and are considerably resistant to fatigue. These characteristics may be effective for generating and sustaining the substantial level of force that is required to stabilize the longitudinal arch during weight bearing.
Falla, Deborah; Lindstrøm, Rene; Rechter, Lotte; Farina, Dario
2010-05-01
To compare the behavior of sternocleidomastoid motor units of patients with chronic neck pain and healthy controls. Nine women (age, 40.4+/-3.5 yr) with chronic neck pain and nine age- and gender-matched healthy controls participated. Surface and intramuscular EMG were recorded from the sternocleidomastoid muscle bilaterally as subjects performed isometric contractions of 10-s duration in the horizontal plane at a force of 15 N in eight directions (0-360 degrees ; 45 degrees intervals) and isometric contractions at 15 and 30 N force with continuous change in force direction in the range 0-360 degrees . Motor unit behavior was monitored during the 10-s contractions and the subsequent resting periods. The mean motor unit discharge rate depended on the direction of force in the control subjects (P<0.05) but not in the patients. Moreover, in three of the nine patients, but in none of the controls, single motor unit activity continued for 8.1+/-6.1s upon completion of the contraction. The surface EMG amplitude during the circular contraction at 15N was greater for the patients (43.5+/-54.2 microV) compared to controls (16.9+/-14.9 microV; P<0.05). The modulation in discharge rate of individual motor units with force direction is reduced in the sternocleidomastoid muscle in patients with neck pain, with some patients showing prolonged motor unit activity when they were instructed to rest. These observations suggest that chronic neck pain affects the change in neural drive to muscles with force direction. Copyright 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Pascoe, Michael A; Holmes, Matthew R; Enoka, Roger M
2011-02-01
The purpose of this study was to compare the discharge characteristics of motor units recruited during an isometric contraction that was sustained with the elbow flexor muscles by older adults at target forces that were less than the recruitment threshold force of each isolated motor unit. The discharge times of 27 single motor units were recorded from the biceps brachii in 11 old adults (78.8 ± 5.9 yr). The target force was set at either a relatively small (6.6 ± 3.7% maximum) or large (11.4 ± 4.5% maximum) difference below the recruitment threshold force and the contraction was sustained until the motor unit was recruited and discharged action potentials for about 60 s. The time to recruitment was longer for the large target-force difference (P = 0.001). At recruitment, the motor units discharged repetitively for both target-force differences, which contrasts with data from young adults when motor units discharged intermittently at recruitment for the large difference between recruitment threshold force and target force. The coefficient of variation (CV) for the first five interspike intervals (ISIs) increased from the small (18.7 ± 7.9) to large difference (35.0 ± 10.2%, P = 0.008) for the young adults, but did not differ for the two target force differences for the old adults (26.3 ± 14.7 to 24.0 ± 13.1%, P = 0.610). When analyzed across the discharge duration, the average CV for the ISI decreased similarly for the two target-force differences (P = 0.618) in old adults. These findings contrast with those of young adults and indicate that the integration of synaptic input during sustained contractions differs between young and old adults.
Stock, Matt S.; Thompson, Brennan J.
2014-01-01
Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units. PMID:25531294
Reduced motor neuron excitability is an important contributor to weakness in a rat model of sepsis.
Nardelli, Paul; Vincent, Jacob A; Powers, Randall; Cope, Tim C; Rich, Mark M
2016-08-01
The mechanisms by which sepsis triggers intensive care unit acquired weakness (ICUAW) remain unclear. We previously identified difficulty with motor unit recruitment in patients as a novel contributor to ICUAW. To study the mechanism underlying poor recruitment of motor units we used the rat cecal ligation and puncture model of sepsis. We identified striking dysfunction of alpha motor neurons during repetitive firing. Firing was more erratic, and often intermittent. Our data raised the possibility that reduced excitability of motor neurons was a significant contributor to weakness induced by sepsis. In this study we quantified the contribution of reduced motor neuron excitability and compared its magnitude to the contributions of myopathy, neuropathy and failure of neuromuscular transmission. We injected constant depolarizing current pulses (5s) into the soma of alpha motor neurons in the lumbosacral spinal cord of anesthetized rats to trigger repetitive firing. In response to constant depolarization, motor neurons in untreated control rats fired at steady and continuous firing rates and generated smooth and sustained tetanic motor unit force as expected. In contrast, following induction of sepsis, motor neurons were often unable to sustain firing throughout the 5s current injection such that force production was reduced. Even when firing, motor neurons from septic rats fired erratically and discontinuously, leading to irregular production of motor unit force. Both fast and slow type motor neurons had similar disruption of excitability. We followed rats after recovery from sepsis to determine the time course of resolution of the defect in motor neuron excitability. By one week, rats appeared to have recovered from sepsis as they had no piloerection and appeared to be in no distress. The defects in motor neuron repetitive firing were still striking at 2weeks and, although improved, were present at one month. We infer that rats suffered from weakness due to reduced motor neuron excitability for weeks after resolution of sepsis. To assess whether additional contributions from myopathy, neuropathy and defects in neuromuscular transmission contributed to the reduction in force generation, we measured whole-muscle force production in response to electrical stimulation of the muscle nerve. We found no abnormality in force generation that would suggest the presence of myopathy, neuropathy or defective neuromuscular transmission. These data suggest disruption of repetitive firing of motor neurons is an important contributor to weakness induced by sepsis in rats and raise the possibility that reduced motor neuron excitability contributes to disability that persists after resolution of sepsis. Copyright © 2016 Elsevier Inc. All rights reserved.
McNulty, P A; Cresswell, A G
2004-06-01
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.
Fuglevand, A J; Macefield, V G; Bigland-Ritchie, B
1999-04-01
Modulation of motor unit activation rate is a fundamental process by which the mammalian nervous system encodes muscle force. To identify how rate coding of force may change as a consequence of fatigue, intraneural microstimulation of motor axons was used to elicit twitch and force-frequency responses before and after 2 min of intermittent stimulation (40-Hz train for 330 ms, 1 train/s) in single motor units of human long finger flexor muscles and intrinsic hand muscles. Before fatigue, two groups of units could be distinguished based on the stimulus frequency needed to elicit half-maximal force; group 1 (n = 8) required 9.1 +/- 0.5 Hz (means +/- SD), and group 2 (n = 5) required 15.5 +/- 1.1 Hz. Twitch contraction times were significantly different between these two groups (group 1 = 66. 5 ms; group 2 = 45.9 ms). Overall 18% of the units were fatigue resistant [fatigue index (FI) > 0.75], 64% had intermediate fatigue sensitivity (0.25 = FI = 0.75), and 18% were fatigable (FI < 0. 25). However, fatigability and tetanic force were not significantly different among groups. Therefore unlike findings in some other mammals, fast-contracting motor units were neither stronger nor more susceptible to fatigue than slowly contracting units. Fatigue, however, was found to be greatest in those units that initially exerted the largest forces. Despite significant slowing of contractile responses, fatigue caused the force-frequency relation to become displaced toward higher frequencies (44 +/- 41% increase in frequency for half-maximal force). Moreover, the greatest shift in the force-frequency relation occurred among those units exhibiting the largest force loss. A selective deficit in force at low frequencies of stimulation persisted for several minutes after the fatigue task. Overall, these findings suggest that with fatigue higher activation rates must be delivered to motor units to maintain the same relative level of force. Questions regarding classification of motor units and possible mechanisms by which fatigue-related slowing might coexist with a shift in the force-frequency curve toward higher frequencies are discussed.
Motor unit firing and its relation to tremor in the tonic vibration reflex of the decerebrate cat.
Clark, F J; Matthews, P B; Muir, R B
1981-01-01
1. The discharge of single motor units has been recorded from the soleus muscle of the decerebrate cat during the tonic vibration reflex elicited isometrically, to further understanding of the tremor that is seen in the reflex contraction. The reflex was elicited by pulses of vibration of 50 micrometers amplitude at 150 Hz, and up to four units were studied concurrently. 2. Individual units fired rather regularly and at a low frequency (range 4-14 Hz). The rate of firing of any unit normally fell within the frequency band of the tremor recorded at the same time. On comparing different preparations a higher frequency of tremor was associated with a higher frequency of motor firing. 3. The responses of pairs of motor units recorded concurrently during repeated production of the reflex were compared by cross-correlation analysis; over 1000 spikes from each train were normally used for this. The major of the cross-correlograms were flat with no overt sign of any synchronization between the units other than that due to the vibration. 4. Clear indications of correlated motor unit firing could be produced deliberately by modulating the amplitude of vibration at a frequency comparable to that of the normal tremor and thereby introducing a rhythmic component into the tonic vibration reflex. 5. About 20% of the cross-correlograms obtained during normal tremor showed varying amounts of an irregular 'waviness' suggesting a possible correlation between the times of firing of a pair of units. But such waves never developed steadily throughout the period of analysis, in contrast to the comparable waves produced on modulating the vibration. Similar waves were seen on cross-correlating a motor unit with an electronic oscillator, confirming that their occurrence does not necessarily demonstrate the existence of active neural interactions. 6. It is concluded that there is no strong and widespread neural synchronizing mechanism active during the tonic vibration reflex, although the possibility of some weak neural interactions has not been excluded. The findings favour the idea that the tremor in this preparation is simply the inevitable result of motor units discharging asynchronously, but at closely similar subtetanic frequencies.
Silva, Mariana Felipe; Dias, Josilainne Marcelino; Pereira, Ligia Maxwell; Mazuquin, Bruno Fles; Lindley, Steven; Richards, Jim; Cardoso, Jefferson Rosa
2017-01-01
The aims of this study were to determine the motor unit behavior of the erector spinae muscles and to assess whether differences exist between the dominant/nondominant sides of the back muscles. Nine healthy women, aged 21.7 years (SD = 0.7), performed a back extension test. Surface electromyographic decomposition data were collected from both sides of the erector spinae and decomposed into individual motor unit action potential trains. The mean firing rate for each motor unit was calculated, and a regression analysis was performed against the corresponding recruitment thresholds. The mean firing rate ranged from 15.9 to 23.9 pps and 15.8 to 20.6 pps on the dominant and nondominant sides, respectively. However, the early motor unit potentials of the nondominant lumbar erector spinae muscles were recruited at a lower firing rate. This technique may further our understanding of individuals with back pain and other underlying neuromuscular diseases. Muscle Nerve 55: 28-34, 2017. © 2016 Wiley Periodicals, Inc.
Powers, Randall K.; Türker, Kemal S.
2010-01-01
The amplitude and time course of synaptic potentials in human motoneurons can be estimated in tonically discharging motor units by measuring stimulus-evoked changes in the rate and probability of motor unit action potentials. However, in spite of the fact that some of these techniques have been used for over thirty years, there is still no consensus on the best way to estimate the characteristics of synaptic potentials or on the accuracy of these estimates. In this review, we compare different techniques for estimating synaptic potentials from human motor unit discharge and also discuss relevant animal models in which estimated synaptic potentials can be compared to those directly measured from intracellular recordings. We also review the experimental evidence on how synaptic noise and intrinsic motoneuron properties influence their responses to synaptic inputs. Finally, we consider to what extent recordings of single motor unit discharge in humans can be used to distinguish the contribution of changes in synaptic inputs versus changes in intrinsic motoneuron properties to altered motoneuron responses following CNS injury. PMID:20427230
Effect of age on changes in motor units functional connectivity.
Arjunan, Sridhar P; Kumar, Dinesh
2015-08-01
With age, there is a change in functional connectivity of motor units in muscle. This leads to reduced muscle strength. This study has investigated the effect of age on the changes in the motor unit recruitment by measuring the mutual information between multiple channels of surface electromyogram (sEMG) of biceps brachii muscle. It is hypothesised that with ageing, there is a reduction in number of motor units, which can lead to an increase in the dependency of remaining motor units. This increase can be observed in the mutual information between the multiple channels of the muscle activity. Two channels of sEMG were recorded during the maximum level of isometric contraction. 28 healthy subjects (Young: age range 20-35years and Old: age range - 60-70years) participated in the experiments. The normalized mutual information (NMI), a measure of dependency factor, was computed for the sEMG recordings. Statistical analysis was performed to test the effect of age on NMI. The results show that the NMI among the older cohort was significantly higher when compared with the young adults.
POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. King
2000-06-19
The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less
Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold.
Winges, Sara A; Kornatz, Kurt W; Santello, Marco
2008-03-01
Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsic-extrinsic muscle pairs. To address this void in the literature, we quantified the incidence and strength of near-simultaneous discharges of motor units residing in either the same or different intrinsic hand muscles (m. first dorsal, FDI, and m. first palmar interosseus, FPI) during two-digit object hold. To extend the characterization of common input to pairs of extrinsic muscles (previous work) and pairs of intrinsic muscles (present work), we also recorded electromyographic (EMG) activity from an extrinsic thumb muscle (m. flexor pollicis longus, FPL). Motor-unit synchrony across FDI and FPI was weak (common input strength, CIS, mean +/- SE: 0.17 +/- 0.02). Similarly, motor units from extrinsic-intrinsic muscle pairs were characterized by weak synchrony (FPL-FDI: 0.25 +/- 0.02; FPL-FPI: 0.29 +/- 0.03) although stronger than FDI-FPI. Last, CIS from within FDI and FPI was more than three times stronger (0.70 +/- 0.06 and 0.66 +/- 0.06, respectively) than across these muscles. We discuss present and previous findings within the framework of muscle-pair specific distribution of common input to hand muscles based on their functional role in grasping.
Innervation zones of fasciculating motor units: observations by a linear electrode array
Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E.; Rymer, William Z.; Zhou, Ping
2015-01-01
This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs. PMID:26029076
Load-dependent assembly of the bacterial flagellar motor.
Tipping, Murray J; Delalez, Nicolas J; Lim, Ren; Berry, Richard M; Armitage, Judith P
2013-08-20
It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.
Expert Perceptions of Approaches to Protecting Isolated Wetlands in the Northeastern United States
Kristin Floress; Mary Beth Kolozsvary; Jean Mangun
2017-01-01
In this article, we describe how protecting vernal pools was discussed by experts in the northeastern United States (U.S) within the context of a theoretical policy framework. We offer insight about characteristics of feasible vernal pool policy solutions, and identify gaps in our understanding, particularly regarding conditions in states currently lacking specific...
Breeding Birds Associated with Seasonal Pools in the Northeastern United States
Seasonal pools in the northeast US are important habitats for amphibians and invertebrates, but little is known of their importance for birds. We examined avian community composition at seasonal pools across an urbanization gradient in Rhode Island to test the hypotheses that se...
Vibration influence on control of single motor unit activity.
Malouin, F; Simard, T
1978-03-01
Effects of vibratory stimulation and maximal isometric contraction on a fine motor control task were evaluated in 17 human subjects. Electromyographic audiovisual feedback cues derived from two fine-wire bipolar electrodes, inserted to a depth of 12 and 6 mm respectively, were used to train the subjects to isolate a motor unit in the extensor carpi radialis brevis muscle. A specially designed compressed air driven vibrator providing vibratory stimulation with an amplitude of 2 mm and a frequency range of 120-160 cycles per second was applied to the muscle tendon. A significant decrease was found in the subjects; ability to isolate the pretest motor unit during and after continuous and interrupted periods of vibration and following a maximal isometric contraction of the extensor carpi radials brevis muscle. Individual variations in the subjects' responses to the forms of application of the vibratory stimulus, electrode preference and feedback specificity were observed. Results suggest that marked spatial recruitment of motor units, brought into action by the vibration stimulus or by the maximal isometric contraction, interfered with inhibitory mechanisms necessary to achieve isolation and control of a single motor unit. A therapeutic application of vibration, based on the marked spatial recruitment observed during and after vibration, is proposed for muscle reeducation.
Identification of a pharmacological target for genioglossus reactivation throughout sleep.
Grace, Kevin P; Hughes, Stuart W; Horner, Richard L
2014-01-01
Obstructive sleep apnea (OSA) is a significant public health problem caused by repeated episodes of upper airway closure that occur only during sleep. Attempts to treat OSA pharmacologically have been unsuccessful because there has not been identification of a target operating at cranial motor nuclei, blockade of which can reactivate pharyngeal muscle activity throughout sleep. Increasing potassium conductance is a common mechanism by which state-dependent neuromodulators reduce motoneuron excitability. Therefore, we aimed to determine if potassium channel blockade is an effective strategy to reactivate the pharyngeal musculature throughout sleep. In rats chronically instrumented for recording sleep-wake states and respiratory motor activities, we locally microperfused pharmacological agents into the hypoglossal motor pool to modulate potassium channels of three major classes: inwardly rectifying, two-pore domain, and voltage-gated. Microperfusion of the inwardly rectifying potassium channel blocker, barium, as well as the voltage-gated potassium channel blockers, tetraethylammonium and 4-aminopyridine, increased tonic and respiratory-related genioglossus activities throughout nonrapid eye movement (non-REM) and rapid eye movement (REM) sleep to 133-300% of levels present during baseline wakefulness. In contrast, microperfusion of methanandamide (TWIK-related acid-sensitive potassium [TASK] channel blocker/cannabinoid receptor agonist) activated genioglossus in wakefulness but not in sleep. These findings establish proof-of-principle that targeted blockade of certain potassium channels at the hypoglossal motor pool is an effective strategy for reversing upper airway hypotonia and causing sustained reactivation of genioglossus throughout nonrapid eye movement and rapid eye movement sleep. These findings identify an important new direction for translational approaches to the pharmacological treatment of obstructive sleep apnea.
Research of subdivision driving technology for brushless DC motors in optical fiber positioning
NASA Astrophysics Data System (ADS)
Kan, Yi; Gu, Yonggang; Zhu, Ye; Zhai, Chao
2016-07-01
In fiber spectroscopic telescopes, optical fiber positioning units are used to position thousands of fibers on the focal plane quickly and precisely. Stepper motors are used in existing units, however, it has some inherent deficiencies, such as serious heating and low efficiency. In this work, the universally adopted subdivision driving technology for stepper motors is transplanted to brushless DC motors. It keeps the advantages of stepper motors such as high positioning accuracy and resolution, while overcomes the disadvantages mentioned above. Thus, this research mainly focuses on develop a novel subdivision driving technology for brushless DC motor. By the proving of experiments of online debug and subdivision speed and position, the proposed brushless DC motor subdivision technology can achieve the expected functions.
Benis, Damien; David, Olivier; Piallat, Brigitte; Kibleur, Astrid; Goetz, Laurent; Bhattacharjee, Manik; Fraix, Valérie; Seigneuret, Eric; Krack, Paul; Chabardès, Stéphan; Bastin, Julien
2016-11-01
The subthalamic nucleus (STN) plays a critical role during action inhibition, perhaps by acting like a fast brake on the motor system when inappropriate responses have to be rapidly suppressed. However, the mechanisms involving the STN during motor inhibition are still unclear, particularly because of a relative lack of single-cell responses reported in this structure in humans. In this study, we used extracellular microelectrode recordings during deep brain stimulation surgery in patients with Parkinson's disease (PD) to study STN neurophysiological correlates of inhibitory control during a stop signal task. We found two neuronal subpopulations responding either during motor execution (GO units) or during motor inhibition (STOP units). GO units fired selectively before patients' motor responses whereas STOP units fired selectively when patients successfully withheld their move at a latency preceding the duration of the inhibition process. These results provide electrophysiological evidence for the hypothesized role of the STN in current models of response inhibition. Copyright © 2016. Published by Elsevier Ltd.
Desapriya, Ediriweera; Giulia, Scime; Subzwari, Sayed; Peiris, Dinithi C; Turcotte, Kate; Pike, Ian; Sasges, Deborah; Hewapathirane, D Sesath
2014-09-01
The objective of this review was to assess the risk of obesity in injuries and fatalities resulting from motor vehicle crash (MVC), as compared with individuals with a normal-range body mass index. A systematic review of the literature was conducted yielding 824 potential studies. Nine of these studies met our inclusion criteria. Meta-analyses examining obesity as a risk factor for various injury types and risk of fatality were conducted using data from these studies. Obesity was associated with higher fatality risk (odds ratio [OR] = 1.89, 95% confidence interval [CI] = 1.51-2.37, P = .0001; pooled estimate from 6 studies), and increased risk of lower extremity fractures (OR = 1.39, 95% CI = 1.18-1.65, P = .0001; pooled estimate from 2 studies). No significant differences were observed when considering abdominal injuries or pelvic fractures. Interestingly, for head injuries obesity was a protective factor (OR = 0.67, 95% CI = 0.46-0.97, P = .0001; pooled data from 3 studies). Evidence strongly supports the association of obesity with higher fatality and fractures of the lower extremities in MVCs. Contrary to our hypothesis, 3 studies showed that obesity was a protective factor in reducing head injuries. Furthermore, the review shows that obesity was not a risk factor of MVC-related pelvic fractures and abdominal injuries. © 2011 APJPH.
Long-term training modifies the modular structure and organization of walking balance control
Allen, Jessica L.
2015-01-01
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. PMID:26467521
Long-term training modifies the modular structure and organization of walking balance control.
Sawers, Andrew; Allen, Jessica L; Ting, Lena H
2015-12-01
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. Copyright © 2015 the American Physiological Society.
Associations between motor unit action potential parameters and surface EMG features.
Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario
2017-10-01
The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles. Copyright © 2017 the American Physiological Society.
Incorporating nurse absenteeism into staffing with demand uncertainty.
Maass, Kayse Lee; Liu, Boying; Daskin, Mark S; Duck, Mary; Wang, Zhehui; Mwenesi, Rama; Schapiro, Hannah
2017-03-01
Increased nurse-to-patient ratios are associated negatively with increased costs and positively with improved patient care and reduced nurse burnout rates. Thus, it is critical from a cost, patient safety, and nurse satisfaction perspective that nurses be utilized efficiently and effectively. To address this, we propose a stochastic programming formulation for nurse staffing that accounts for variability in the patient census and nurse absenteeism, day-to-day correlations among the patient census levels, and costs associated with three different classes of nursing personnel: unit, pool, and temporary nurses. The decisions to be made include: how many unit nurses to employ, how large a pool of cross-trained nurses to maintain, how to allocate the pool nurses on a daily basis, and how many temporary nurses to utilize daily. A genetic algorithm is developed to solve the resulting model. Preliminary results using data from a large university hospital suggest that the proposed model can save a four-unit pool hundreds of thousands of dollars annually as opposed to the crude heuristics the hospital currently employs.
de Ruiter, C J; Elzinga, M J H; Verdijk, P W L; van Mechelen, W; de Haan, A
2005-08-01
We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (P<0.05), indicative of LFF. At 50% MFC, pre-exercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P<0.05) and 13.2 +/- 5.6 pps (P>0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (P<0.05) from 27.7 +/- 6.6% MFC before exercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.
26 CFR 1.1502-17 - Methods of accounting.
Code of Federal Regulations, 2011 CFR
2011-04-01
... historically manufactured all its inventory and has used one natural business unit pool. P begins purchasing... establish a separate resale pool under § 1.472-8(c). P anticipates that it will begin to purchase, rather... reserve because of decrements in its manufacturing pool. With the principal purpose to avoid the...
13 CFR 120.1708 - Pool Certificates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... United States. (c) SBA purchase of a Loan Interest. SBA will determine whether to purchase a Loan... reserves the right to purchase a Loan Interest from a Pool at any time. (d) Self-liquidating. A Pool... market conditions and program experience, and will publish any such change in the Federal Register. (h...
Mountain Plains Learning Experience Guide: Electric Motor Repair.
ERIC Educational Resources Information Center
Ziller, T.
This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, and Toyota Engineering and Manufacturing... joint venture of General Motors Corporation and Toyota Motor Corporation, including on-site leased...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... Manufacturing, Inc. Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor Corporation...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... of General Motors Corporation and Toyota Motor Corporation, including on-site leased workers from...
Characterization of motor units in behaving adult mice shows a wide primary range
Ritter, Laura K.; Tresch, Matthew C.; Heckman, C. J.; Manuel, Marin
2014-01-01
The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10–60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. PMID:24805075
Characterization of motor units in behaving adult mice shows a wide primary range.
Ritter, Laura K; Tresch, Matthew C; Heckman, C J; Manuel, Marin; Tysseling, Vicki M
2014-08-01
The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. Copyright © 2014 the American Physiological Society.
Herda, T J; Miller, J D; Trevino, M A; Mosier, E M; Gallagher, P M; Fry, A C; Vardiman, J P
2016-04-01
To investigate the change in motor unit (MU) firing rates (FR) at de-recruitment relative to recruitment and the relation to % type I myosin heavy chain isoform content (type I %MHC) of the vastus lateralis (VL) in vivo. Ten subjects performed a 22-s submaximal isometric trapezoid muscle action that included a linearly increasing, steady force at 50% maximal voluntary contraction, and linearly decreasing segments. Surface electromyographic signals were collected from the VL and were decomposed into constituent MU action potentials trains. A tissue sample from the VL was taken to calculate type I %MHC. The y-intercepts and slopes were calculated for the changes (Δ) in FR at de-recruitment (FRDEREC ) relative to FR at recruitment (FRREC ) vs. FRREC relationship for each subject. Correlations were performed between the y-intercepts and slopes with type I %MHC. The majority of MUs had greater FRDEREC than FRREC . The y-intercepts (r = -0.600, P = 0.067) were not significantly correlated, but the slopes (r = -0.793, P = 0.006) were significantly correlated with type I %MHC. The majority of the motoneuron pool had greater FRDEREC than FRREC , however, individuals with higher type I %MHC had a greater propensity to have MUs with FRREC > FRDEREC as indicated by the slope values. Overall, the contractile properties of the muscle (MHC) could partially explain the differences in MU firing rates at de-recruitment relative to recruitment. Thus, suggesting the fatigability of the muscle influences the alterations in MU firing rates from recruitment to de-recruitment. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Messaoudi, Noureddine; Bekka, Raïs El'hadi; Ravier, Philippe; Harba, Rachid
2017-02-01
The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered. A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test. The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sterczala, Adam J; Miller, Jonathan D; Trevino, Michael A; Dimmick, Hannah L; Herda, Trent J
2018-02-26
Previous investigations report no changes in motor unit (MU) firing rates during submaximal contractions following resistance training. These investigations did not account for MU recruitment or examine firing rates as a function of recruitment threshold (REC).Therefore, MU recruitment and firing rates in chronically resistance trained (RT) and physically active controls (CON) were examined. Surface electromyography signals were collected from the first dorsal interosseous (FDI) during isometric muscle actions at 40% and 70% maximal voluntary contraction (MVC). For each MU, force at REC, mean firing rate (MFR) during the steady force, and MU action potential amplitude (MUAPAMP) were analyzed. For each individual and contraction, the MFRs were linearly regressed against REC, whereas, exponential models were applied to the MFR vs. MUAPAMP and MUAPAMP vs. REC relationships with the y-intercepts and slopes (linear) and A and B terms (exponential) calculated. For the 40% MVC, the RT group had less negative slopes (p=0.001) and lower y-intercepts (p=0.006) of the MFR vs. REC relationships and lower B terms (p=0.011) of the MUAPAMP vs. REC relationships. There were no differences in either relationship between groups for the 70% MVC. During the 40% MVC, the RT had a smaller range of MFRs and MUAPAMPS in comparison to the CON, likely due to reduced MU recruitment. The RT had lower MFRs and recruitment during the 40% MVC that may indicate a leftward shift in the force-frequency relationship, and thus require less excitation to the motoneuron pool to match the same relative force.
Yoshitake, Yasuhide; Shinohara, Minoru
2013-11-01
Common drive to a motor unit (MU) pool manifests as low-frequency oscillations in MU discharge rate, producing fluctuations in muscle force. The aim of the study was to examine the temporal correlation between instantaneous MU discharge rate and rectified EMG in low frequencies. Additionally, we attempted to examine whether there is a temporal correlation between the low-frequency oscillations in MU discharge rate and the first derivative of force (dF/dt). Healthy young subjects produced steady submaximal force with their right finger as a single task or while maintaining a pinch-grip force with the left hand as a dual task. Surface EMG and fine-wire MU potentials were recorded from the first dorsal interosseous muscle in the right hand. Surface EMG was band-pass filtered (5-1,000 Hz) and full-wave rectified. Rectified surface EMG and the instantaneous discharge rate of MUs were smoothed by a Hann-window of 400 ms duration (equivalent to 2 Hz low-pass filtering). In each of the identified MUs, the smoothed MU discharge rate was positively correlated with the rectified-and-smoothed EMG as confirmed by the distinct peak in cross-correlation function with greater values in the dual task compared with the single task. Additionally, the smoothed MU discharge rate was temporally correlated with dF/dt more than with force and with rectified-and-smoothed EMG. The results indicated that the low-frequency component of rectified surface EMG and the first derivative of force provide temporal information on the low-frequency oscillations in the MU discharge rate.
Sugajima, Y; Mitarai, G; Koeda, M; Moritani, T
1996-06-01
The effect of whole body water immersion on the recruitment order of hip flexor motor units was investigated in 11 male subjects. Intramuscular spike potentials were recorded, with fine bipolar wire electrodes, from the iliopsoas, the sartorius, the rectus femoris and the tensor fasciae latae during voluntary isometric contraction while the subjects were standing erect with the hip on the test side flexed to 60 degrees and the knee flexed to 120 degrees . Data were analysed by measuring the recruitment threshold in slow ramp contraction and by a computer-aided amplitude-frequency histogram of the spike potentials during short sustained contraction. The motor units were classified as low-amplitude units if they delivered spike potentials of less than 0.5 mV and high-amplitude units if the spike potentials exceeded 0.5 mV. In the ramp experiments, exposure to water immersion gave rise to a sudden increase in the recruitment thresholds of the low-amplitude units in all muscles, while in the recruitment thresholds of the high-amplitude units, the alterations differed among the muscles. The thresholds in the rectus femoris and tensor fasciae latae increased in the same direction as those of the low-amplitude units, while those in the iliopsoas and sartorius decreased in the opposite direction. The amplitude-frequency histograms clearly indicated that these different alterations occurred in all subjects, without exception. We concluded that unloading induced by water immersion changed the recruitment order of motor units during isometric contraction in the iliopsoas and sartorius, facilitating the recruitment of their larger motor units.
Brailsford, S R; Tossell, J; Morrison, R; McDonald, C P; Pitt, T L
2018-05-24
Between February 2011 and December 2016, over 1·6 million platelet units, 36% pooled platelets, underwent bacterial screening prior to issue. Contamination rates for apheresis and pooled platelets were 0·02% and 0·07%, respectively. Staphylococcus aureus accounted for 21 contaminations, including four pooled platelets, one confirmed transfusion-transmitted infection (TTI) and three 'near-miss' incidents detected on visual inspection which were negative on screening. We describe follow-up investigations of 16 donors for skin carriage of S. aureus and molecular characterisation of donor and pack isolates. Units were screened by the BacT/ALERT 3D detection system. Contributing donors were interviewed and consent requested for skin and nasal swabbing. S. aureus isolates were referred for spa gene type and DNA macrorestriction profile to determine identity between carriage strains and packs. Donors of 10 apheresis and two pooled packs screen positive for S. aureus were confirmed as the source of contamination; seven had a history of skin conditions, predominantly eczema; 11 were nasal carriers. The 'near-miss' incidents were associated with apheresis donors, two donors harboured strains indistinguishable from the pack strain. The TTI was due to a screen-negative pooled unit, and a nasal isolate of one donor was indistinguishable from that in the unit. Staphylococcus aureus contamination is rare but potentially harmful in platelet units. Donor isolates showed almost universal correspondence in molecular type with pack isolates, thus confirming the source of contamination. The importance of visual inspection of packs prior to transfusion is underlined by the 'near-miss' incidents. © 2018 International Society of Blood Transfusion.
Kishore, Asha; James, Praveen; Krishnan, Syam; Yahia-Cherif, Lydia; Meunier, Sabine; Popa, Traian
2017-02-01
Motor cortex plasticity is reported to be decreased in Parkinson's disease in studies which pooled patients in various stages of the disease. Whether the early decrease in plasticity is related to the motor signs or is linked to the future development of motor complications of treatment is unclear. The aim of the study was to test if motor cortex plasticity and its cerebellar modulation are impaired in treatment-naïve Parkinson's disease, are related to the motor signs of the disease and predict occurrence of motor complications of treatment. Twenty-nine denovo patients with Parkinson's disease were longitudinally assessed for motor complications for four years. Using transcranial magnetic stimulation, the plasticity of the motor cortex and its cerebellar modulation were measured (response to paired-associative stimulation alone or preceded by 2 active cerebellar stimulation protocols), both in the untreated state and after a single dose of L-DOPA. Twenty-six matched, healthy volunteers were tested, only without L-DOPA. Patients and healthy controls had similar proportions of responders and non-responders to plasticity induction. In the untreated state, the more efficient was the cerebellar modulation of motor cortex plasticity, the lower were the bradykinesia and rigidity scores. The extent of the individual plastic response to paired associative stimulation could indicate a vulnerability to develop early motor fluctuation but not dyskinesia. Measuring motor cortex plasticity in denovo Parkinson's disease could be a neurophysiological parameter that may help identify patients with greater propensity for early motor fluctuations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Software for the Design of Swimming Pool Dehumidifiers Units
NASA Astrophysics Data System (ADS)
Rubina, Aleš; Blasinski, Petr; Tesař, Zdeněk
2013-06-01
The article deals with the description and solution of physical phenomena taking place during evaporation of water. The topicality of the theme is given a number of built indoor swimming pool and wellness centers at present. In addressing HVAC systems serving these areas, it is necessary to know the various design parameters in the interior including the water temperature as the pool temperature and humidity. Following is a description of the calculation module, air handling units, including optimizing the settings of the physical changes in order to ensure the lowest energy consumption for air treatment and required maintaining internal microclimate parameters.
AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIX, LEARNING ABOUT CRANKING MOTORS.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF CRANKING MOTORS USED ON DIESEL POWERED EQUIPMENT, TOPICS ARE (1) CRANKING MOTORS. (2) MOTOR PINCIPLES, (3) CRANKING MOTOR CIRCUITS, (4) TYPES OF CRANKING MOTOR DRIVES, AND (5) CRANKING MOTOR SOLENOID CIRCUITS. THE MODULE CONSISTS OF A…
Adjustments in motor unit properties during fatiguing contractions after training.
Vila-Chã, Carolina; Falla, Deborah; Correia, Miguel Velhote; Farina, Dario
2012-04-01
The objective of the study was to investigate the effect of strength and endurance training on muscle fiber membrane properties and discharge rates of low-threshold motor units of the vasti muscles during fatiguing contractions. Twenty-five sedentary healthy men (age (mean ± SD) = 26.3 ± 3.9 yr) were randomly assigned to one of three groups: strength training, endurance training, or a control group. Conventional endurance and strength training was performed 3 d·wk⁻¹, during a period of 6 wk. Motor unit conduction velocity and EMG amplitude of the vastus medialis obliquus and lateralis muscles and biceps femoris were measured during sustained isometric knee extensions at 10% and 30% of the maximum voluntary contraction before and immediately after training. After 6 wk of training, the reduction in motor unit conduction velocity during the sustained contractions at 30% of the maximum voluntary force occurred at slower rates compared with baseline (P < 0.05). However, the rate of decrease was lower after endurance training compared with strength training (P < 0.01). For all groups, motor unit discharge rates declined during the sustained contraction (P < 0.001), and their trend was not altered by training. In addition, the biceps femoris-vasti coactivation ratio declined after the endurance training. Short-term strength and endurance training induces alterations of the electrophysiological membrane properties of the muscle fiber. In particular, endurance training lowers the rate of decline of motor unit conduction velocity during sustained contractions more than strength training.
Reduced firing rates of high threshold motor units in response to eccentric overload.
Balshaw, Tom G; Pahar, Madhu; Chesham, Ross; Macgregor, Lewis J; Hunter, Angus M
2017-01-01
Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P < 0.05), whereas MUFR for all motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Respiration-related discharge of hyoglossus muscle motor units in the rat.
Powell, Gregory L; Rice, Amber; Bennett-Cross, Seres J; Fregosi, Ralph F
2014-01-01
Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.
ERIC Educational Resources Information Center
Howell, Sandi
In 1992, United Grain Growers (UGG) and Manitoba Pool (MP) formed a partnership to examine the literacy and numeracy needs of their rural grain elevator operators and the potential of delivering a communications enhancement program in the rural areas. During part 1, the committee held a series of initial planning meetings. Both companies held…
Code of Federal Regulations, 2011 CFR
2011-04-01
...) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.614-8 Elections with respect to... interests, participates in a unit or pool, such part shall, for the period of its participation in the unit or pool, be treated for purposes of this section as being separate from the nonparticipating portion...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.614-8 Elections with respect to... interests, participates in a unit or pool, such part shall, for the period of its participation in the unit or pool, be treated for purposes of this section as being separate from the nonparticipating portion...
26 CFR 1.168(i)-8T - Dispositions of MACRS property (temporary).
Code of Federal Regulations, 2013 CFR
2013-04-01
... of the aircraft. Assume each aircraft is a unit of property as determined under § 1.263(a)-3T(e)(3... each aircraft as the asset for tax disposition purposes. Assume each aircraft is a unit of property as... taxpayer, has accounted for items of MACRS property that are mass assets in pools. Each pool includes only...
26 CFR 1.168(i)-8T - Dispositions of MACRS property (temporary).
Code of Federal Regulations, 2012 CFR
2012-04-01
... of the aircraft. Assume each aircraft is a unit of property as determined under § 1.263(a)-3T(e)(3... each aircraft as the asset for tax disposition purposes. Assume each aircraft is a unit of property as... taxpayer, has accounted for items of MACRS property that are mass assets in pools. Each pool includes only...
26 CFR 1.168(i)-8T - Dispositions of MACRS property (temporary).
Code of Federal Regulations, 2014 CFR
2014-04-01
... of the aircraft. Assume each aircraft is a unit of property as determined under § 1.263(a)-3T(e)(3... each aircraft as the asset for tax disposition purposes. Assume each aircraft is a unit of property as... taxpayer, has accounted for items of MACRS property that are mass assets in pools. Each pool includes only...
Code of Federal Regulations, 2010 CFR
2010-10-01
... light sources used in motor vehicle headlighting systems. This part also serves as a repository for... standardized sealed beam units used in motor vehicle headlighting systems. § 564.2 Purposes. The purposes of... manufacturing specifications of standardized sealed beam headlamp units used on motor vehicles so that all...
Gestalt Principles in the Control of Motor Action
ERIC Educational Resources Information Center
Klapp, Stuart T.; Jagacinski, Richard J.
2011-01-01
We argue that 4 fundamental gestalt phenomena in perception apply to the control of motor action. First, a motor gestalt, like a perceptual gestalt, is holistic in the sense that it is processed as a single unit. This notion is consistent with reaction time results indicating that all gestures for a brief unit of action must be programmed prior to…
NASA Technical Reports Server (NTRS)
Ellis, R. C.; Fink, R. A.; Moore, E. A.
1987-01-01
The Common Drive Unit (CDU) is a high reliability rotary actuator with many versatile applications in mechanism designs. The CDU incorporates a set of redundant motor-brake assemblies driving a single output shaft through differential. Tachometers provide speed information in the AC version. Operation of both motors, as compared to the operation of one motor, will yield the same output torque with twice the output speed.
Proteostasis and Diseases of the Motor Unit.
Rinaldi, Carlo; Mäger, Imre; Wood, Matthew J
2016-01-01
The accumulation in neurons of aberrant protein species, the pathological hallmark of many neurodegenerative diseases, results from a global impairment of key cellular processes governing protein synthesis/degradation and repair mechanisms, also known as the proteostasis network (PN). The growing number of connections between dysfunction of this intricate network of pathways and diseases of the motor unit, where both motor neurons and muscle are primarily affected, has provided momentum to investigate the muscle- and motor neuron-specific response to physiological and pathological stressors and to explore the therapeutic opportunities that manipulation of this process may offer. Furthermore, these diseases offer an unparalleled opportunity to deepen our understanding of the molecular mechanisms behind the intertissue communication and transfer of signals of proteostasis. The most compelling aspect of these investigations is their immediate potential for therapeutic impact: targeting muscle to stem degeneration of the motor unit would represent a dramatic paradigm therapeutic shift for treating these devastating diseases. Here we will review the current state of the art of the research on the alterations of the PN in diseases of the motor unit and its potential to result in effective treatments for these devastating neuromuscular disorders.
Double-observer approach to estimating egg mass abundance of vernal pool breeding amphibians
Grant, E.H.C.; Jung, R.E.; Nichols, J.D.; Hines, J.E.
2005-01-01
Interest in seasonally flooded pools, and the status of associated amphibian populations, has initiated programs in the northeastern United States to document and monitor these habitats. Counting egg masses is an effective way to determine the population size of pool-breeding amphibians, such as wood frogs (Rana sylvatica) and spotted salamanders (Ambystoma maculatum). However, bias is associated with counts if egg masses are missed. Counts unadjusted for the proportion missed (i.e., without adjustment for detection probability) could lead to false assessments of population trends. We used a dependent double-observer method in 2002-2003 to estimate numbers of wood frog and spotted salamander egg masses at seasonal forest pools in 13 National Wildlife Refuges, 1 National Park, 1 National Seashore, and 1 State Park in the northeastern United States. We calculated detection probabilities for egg masses and examined whether detection probabilities varied by species, observers, pools, and in relation to pool characteristics (pool area, pool maximum depth, within-pool vegetation). For the 2 years, model selection indicated that no consistent set of variables explained the variation in data sets from individual Refuges and Parks. Because our results indicated that egg mass detection probabilities vary spatially and temporally, we conclude that it is essential to use estimation procedures, such as double-observer methods with egg mass surveys, to determine population sizes and trends of these species.
Escoffery, Cam; Elliott, Tom; Nehl, Eric J.
2015-01-01
Objectives. We compared 2 strategies for disseminating an evidence-based skin cancer prevention program. Methods. We evaluated the effects of 2 strategies (basic vs enhanced) for dissemination of the Pool Cool skin cancer prevention program in outdoor swimming pools on (1) program implementation, maintenance, and sustainability and (2) improvements in organizational and environmental supports for sun protection. The trial used a cluster-randomized design with pools as the unit of intervention and outcome. The enhanced group received extra incentives, reinforcement, feedback, and skill-building guidance. Surveys were collected in successive years (2003–2006) from managers of 435 pools in 33 metropolitan areas across the United States participating in the Pool Cool Diffusion Trial. Results. Both treatment groups improved their implementation of the program, but pools in the enhanced condition had significantly greater overall maintenance of the program over 3 summers of participation. Furthermore, pools in the enhanced condition established and maintained significantly greater sun-safety policies and supportive environments over time. Conclusions. This study found that more intensive, theory-driven dissemination strategies can significantly enhance program implementation and maintenance of health-promoting environmental and policy changes. Future research is warranted through longitudinal follow-up to examine sustainability. PMID:25521872
Bacci, Elizabeth D; Staniewska, Dorota; Coyne, Karin S; Boyer, Stacey; White, Leigh Ann; Zach, Neta; Cedarbaum, Jesse M
2016-01-01
Our objective was to examine dimensionality and item-level performance of the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) across time using classical and modern test theory approaches. Confirmatory factor analysis (CFA) and Item Response Theory (IRT) analyses were conducted using data from patients with amyotrophic lateral sclerosis (ALS) Pooled Resources Open-Access ALS Clinical Trials (PRO-ACT) database with complete ALSFRS-R data (n = 888) at three time-points (Time 0, Time 1 (6-months), Time 2 (1-year)). Results demonstrated that in this population of 888 patients, mean age was 54.6 years, 64.4% were male, and 93.7% were Caucasian. The CFA supported a 4* individual-domain structure (bulbar, gross motor, fine motor, and respiratory domains). IRT analysis within each domain revealed misfitting items and overlapping item response category thresholds at all time-points, particularly in the gross motor and respiratory domain items. Results indicate that many of the items of the ALSFRS-R may sub-optimally distinguish among varying levels of disability assessed by each domain, particularly in patients with less severe disability. Measure performance improved across time as patient disability severity increased. In conclusion, modifications to select ALSFRS-R items may improve the instrument's specificity to disability level and sensitivity to treatment effects.
Hemostatic profile and safety of pooled cryoprecipitate up to 120 hours after thawing.
Lokhandwala, Parvez M; O'Neal, Adrian; Patel, Eshan U; Brunker, Patricia A R; Gehrie, Eric A; Zheng, Gang; Kickler, Thomas S; Ness, Paul M; Tobian, Aaron A R
2018-05-01
AABB standards state that cryoprecipitate should be transfused within 4 to 6 hours after thawing. We evaluated coagulation factor levels and sterility of thawed pooled cryoprecipitate to assess whether shelf life can be safely extended. Donor cryoprecipitate pools (n = 20, 10 group A, 10 group O) were held at ambient temperature and sampled at 0, 4, 8, 24, 48, 72, 96, and 120 hours post-thawing for fibrinogen, Factor (F)VIII, and von Willebrand factor (vWF) levels. Samples were tested at 0 and 120 hours for sterility (BacT/Alert system). Sixty additional cryoprecipitate pools were evaluated after 72 hours. Longitudinal differences in component levels were determined by linear fixed-effects regression. Group O cryoprecipitate had significantly lower FVIII (p = 0.002) and vWF activity (p = 0.006) compared to group A at 0 hours, but were not statistically different in fibrinogen levels (p = 0.33). Fibrinogen levels were stable over 5 days: 501 ± 81 mg/unit (mean ± standard deviation) at 0 hours to 506 ± 102 mg/unit at 120 hours (p = 0.73). Similarly, there was no decline in vWF activity: 200 ± 53 IU/unit at 0 hours to 209 ± 57 IU/unit at 120 hours (p = 0.084). The FVIII activity significantly declined on average by 9.6 IU (95% confidence interval, 5.5-13.8) between 0 hours (111 ± 33 IU/unit) and 120 hours post-thaw (101 ± 33) (p < 0.001). No organisms were detected when cryoprecipitate pools were cultured at 0 hours, but at 120 hours Staphylococcus epidermidis was identified from one pool, potentially a contaminant introduced during repeated sampling. No cultures were positive among the 60 additional cryoprecipitate pools assessed at 72 hours. Extended cryoprecipitate storage at ambient temperature did not affect fibrinogen levels over 120 hours. Sterility of products held at ambient temperature for an extended period of time could be assessed by secondary culture. © 2018 AABB.
The chlorinated salts of cyanuric acid have found an important role in recreational swimming pool waters across the United States. Upon application to pool water, they can (1) release disinfectant chlorine or (2) stabilize the free available chlorine by acting as chlorine reserv...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... economic impacts to the common pool fishery. There is additional good cause to waive the delayed effective... Fishery; Trip Limit Adjustments for the Common Pool Fishery AGENCY: National Marine Fisheries Service... hake, and pollock for Northeast multispecies common pool vessels for the remainder of the 2013 fishing...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... Fishery; Trip Limit Adjustment for the Common Pool Fishery AGENCY: National Marine Fisheries Service (NMFS... (SNE/MA) winter flounder for Northeast multispecies common pool vessels for the remainder of the 2013... Area (TAC) for the remainder of Trimester 1, through August 31, 2013, because the common pool fishery...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... common pool vessels for FY 2011 due to overages of FY 2010 catch levels. This measure will help prevent.... SUPPLEMENTARY INFORMATION: FY 2011 Differential DAS Counting for Common Pool Vessels Based on preliminary FY 2010 common pool catch information available in February 2011, NMFS previously estimated that common...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
... Fishery; Trip Limit Adjustments for the Common Pool Fishery AGENCY: National Marine Fisheries Service...-Atlantic winter flounder and Gulf of Maine haddock for Northeast multispecies common pool vessels for the remainder of the 2013 fishing year. NMFS is taking this action because the common pool has caught 73 percent...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-14
... Fishery; Trip Limit Adjustments for the Common Pool Fishery AGENCY: National Marine Fisheries Service... Northeast multispecies common pool vessels for the remainder of the 2012 fishing year. This rule also... total catch of these stocks to approach their pertinent common pool sub-annual catch limits sub-annual...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... Fishery; Trimester Closure for the Common Pool Fishery AGENCY: National Marine Fisheries Service (NMFS... Trimester 3, from January 1, 2014, through April 30, 2014, to common pool vessels, because the Trimester 3... intended to prevent the overharvest of the common pool's allocation of GOM haddock. DATES: The closure of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... Fishery; Trip Limit Adjustments for the Common Pool Fishery AGENCY: National Marine Fisheries Service...) multispecies common pool vessels for the remainder of the 2011 fishing year (FY), through April 30, 2012. This... catch of these stocks to approach their pertinent common pool sub-annual catch limits (sub-ACLs). DATES...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
... Fishery; Trip Limit Adjustments for the Common Pool Fishery AGENCY: National Marine Fisheries Service... (NE) multispecies common pool vessels for the 2010 fishing year (FY), through April 30, 2011. This... common pool sub-annual catch limits (sub-ACLs). This action is also intended to reduce catch rates of GOM...
ERIC Educational Resources Information Center
National Sanitation Foundation, Ann Arbor, MI.
THE NATIONAL SANITATION FOUNDATION STANDARD ON SWIMMING POOL EQUIPMENT CONCERNS ITSELF WITH THE SUCCESSFUL APPLICATION OF SURFACE SKIMMERS TO SWIMMING POOLS. THE MINIMUM DESIGN AND CONSTRUCTION REQUIREMENTS ESTABLISHED BY THIS STANDARD ARE SET FORTH TO PROVIDE A MEANS OF EVALUATING THE OVERALL CONSTRUCTION AND EFFECTIVENESS OF THE UNIT. ADDITIONAL…
Wang, Shui-Hua; Phillips, Preetha; Sui, Yuxiu; Liu, Bin; Yang, Ming; Cheng, Hong
2018-03-26
Alzheimer's disease (AD) is a progressive brain disease. The goal of this study is to provide a new computer-vision based technique to detect it in an efficient way. The brain-imaging data of 98 AD patients and 98 healthy controls was collected using data augmentation method. Then, convolutional neural network (CNN) was used, CNN is the most successful tool in deep learning. An 8-layer CNN was created with optimal structure obtained by experiences. Three activation functions (AFs): sigmoid, rectified linear unit (ReLU), and leaky ReLU. The three pooling-functions were also tested: average pooling, max pooling, and stochastic pooling. The numerical experiments demonstrated that leaky ReLU and max pooling gave the greatest result in terms of performance. It achieved a sensitivity of 97.96%, a specificity of 97.35%, and an accuracy of 97.65%, respectively. In addition, the proposed approach was compared with eight state-of-the-art approaches. The method increased the classification accuracy by approximately 5% compared to state-of-the-art methods.
Fisher, M A
1978-01-01
F responses recorded from flexor and extensor muscles were analysed in 18 normal subjects and in 16 patients with motor system abnormalities. The prominence of the F responses was evaluated quantitatively by determining the persistence--that is, the fraction of measurable F responses which actually occur after a series of supramaximal stimuli--and average amplitude of the F responses. In the normal resting state, the data are consistent with the hypothesis that the "central excitatory states" of motoneurones is greater in the antigravity muscles than in those muscles not stretched by gravity. This pattern was disrupted in eight of the 16 patients with motor system abnormalities caused by central nervous system lesions. These changes reflect a clinically testable aspect of the pathophysiology of certain motor system disorders. PMID:690640
Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P
2015-04-01
The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.
2010-05-21
Swimming is the third most popular U.S. sport or exercise activity, with approximately 314 million visits to recreational water venues, including treated venues (e.g., pools), each year. The most frequently reported type of recreational water illness (RWI) outbreak is gastroenteritis, the incidence of which is increasing. During 1997--2006, chlorine- and bromine-susceptible pathogens (e.g., Shigella and norovirus) caused 24 (23%) of 104 treated venue--associated RWI outbreaks of gastroenteritis, indicating lapses in proper operation of pools. Pool inspectors help minimize the risk for RWIs and injuries by enforcing regulations that govern public treated recreational water venues. To assess pool code compliance, CDC analyzed 2008 data from 121,020 routine pool inspections conducted by a convenience sample of 15 state and local agencies. Because pool codes and, therefore, inspection items differed across jurisdictions, reported denominators varied. Of 111,487 inspections, 13,532 (12.1%) resulted in immediate closure because of serious violations (e.g., lack of disinfectant in the water). Of 120,975 inspections, 12,917 (10.7%) identified disinfectant level violations. Although these results likely are not representative of all pools in the United States, they suggest the need for increased public health scrutiny and improved pool operation. The results also demonstrate that pool inspection data can be used as a potential source for surveillance to guide resource allocation and regulatory decision-making. Collecting pool inspection data in a standardized, electronic format can facilitate routine analysis to support efforts to reduce health and safety risks for swimmers.
1946-01-01
armored division* and one motorized division. General McNair spoke of armored and motorized units, but did not specify how many units or how long a...anything. They had to learn how to fight. He told officials of the Water Distgict that they would be given a week’s notice before water would be needed.. On...cover of darkness; desert navigation for all personnel; laying and removal of mine fields by all units; maintenance and evacuation of motor vehicles
Electromyographic cross-talk within a compartmentalized muscle of the cat.
English, A W; Weeks, O I
1989-01-01
1. Experiments were conducted to test the extent to which the electromyographic (EMG) activity generated by the activation of single motor units is conducted from one neuromuscular compartment of the cat lateral gastrocnemius (LG) muscle into adjacent compartments. 2. Potentials produced by stimulation of forty-five single motor units were monitored from bipolar fine-wire EMG electrodes which had been implanted either into the centres of each of the four neuromuscular compartments of LG or into regions of the muscle known to lie on the border of contiguous compartments. 3. In all cases single unit potentials could be recorded from the electrodes in the centre of the compartments which clearly identified the compartment of residence of the muscle unit. Regardless of unit type, the amplitude of the potential recorded from electrodes in one compartment was always greater than that recorded from any other compartment. 4. Smaller potentials could be recorded from electrodes in the centre of compartments adjacent to the compartment of residence of the muscle unit. For those motor units where the amplitude of the EMG potentials recorded from the compartment of residence was large, the amplitude of such 'cross-talk' could be greater than the amplitude of potentials recorded from the compartment of residence of smaller motor units. 5. In the case of electrodes placed at compartment boundaries, no clear compartment selectivity of recording of motor unit potentials was evident. 6. These results indicate that great care must be taken in choosing sites of EMG electrode placement when performing kinesiological studies, especially when the amplitude of the EMG activity recorded is of consideration. PMID:2558175
Motor control for a brushless DC motor
NASA Technical Reports Server (NTRS)
Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)
1985-01-01
This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.
Altenburg, T M; de Haan, A; Verdijk, P W L; van Mechelen, W; de Ruiter, C J
2009-07-01
Single motor unit electromyographic (EMG) activity of the knee extensors was investigated at different knee angles with subjects (n = 10) exerting the same absolute submaximal isometric torque at each angle. Measurements were made over a 20 degrees range around the optimum angle for torque production (AngleTmax) and, where feasible, over a wider range (50 degrees ). Forty-six vastus lateralis (VL) motor units were recorded at 20.7 +/- 17.9 %maximum voluntary contraction (%MVC) together with the rectified surface EMG (rsEMG) of the superficial VL muscle. Due to the lower maximal torque capacity at positions more flexed and extended than AngleTmax, single motor unit recruitment thresholds were expected to decrease and discharge rates were expected to increase at angles above and below AngleTmax. Unexpectedly, the recruitment threshold was higher (P < 0.05) at knee angles 10 degrees more extended (43.7 +/- 22.2 N.m) and not different (P > 0.05) at knee angles 10 degrees more flexed (35.2 +/- 17.9 N.m) compared with recruitment threshold at AngleTmax (41.8 +/- 21.4 N.m). Also, unexpectedly the discharge rates were similar (P > 0.05) at the three angles: 11.6 +/- 2.2, 11.6 +/- 2.1, and 12.3 +/- 2.1 Hz. Similar angle independent discharge rates were also found for 12 units (n = 5; 7.4 +/- 5.4 %MVC) studied over the wider (50 degrees ) range, while recruitment threshold only decreased at more flexed angles. In conclusion, the similar recruitment threshold and discharge behavior of VL motor units during submaximal isometric torque production suggests that net motor unit activation did not change very much along the ascending limb of the knee-angle torque relationship. Several factors such as length-dependent twitch potentiation, which may contribute to this unexpected aspect of motor control, are discussed.
Sreenivasa, Manish; Ayusawa, Ko; Nakamura, Yoshihiko
2016-05-01
This study develops a multi-level neuromuscular model consisting of topological pools of spiking motor, sensory and interneurons controlling a bi-muscular model of the human arm. The spiking output of motor neuron pools were used to drive muscle actions and skeletal movement via neuromuscular junctions. Feedback information from muscle spindles were relayed via monosynaptic excitatory and disynaptic inhibitory connections, to simulate spinal afferent pathways. Subject-specific model parameters were identified from human experiments by using inverse dynamics computations and optimization methods. The identified neuromuscular model was used to simulate the biceps stretch reflex and the results were compared to an independent dataset. The proposed model was able to track the recorded data and produce dynamically consistent neural spiking patterns, muscle forces and movement kinematics under varying conditions of external forces and co-contraction levels. This additional layer of detail in neuromuscular models has important relevance to the research communities of rehabilitation and clinical movement analysis by providing a mathematical approach to studying neuromuscular pathology.
New concepts of the reinnervated motor unit revealed by vaccine-associated poliomyelitis.
Wiechers, D O
1988-04-01
A late onset of slowly progressive muscle weakness 30-40 years after acute polio is well known. Previous studies by the author and others have demonstrated transmission abnormalities within the reinnervated motor unit. These transmission abnormalities shown by motor unit action potential (MUAP) instability in size and shape with repetitive discharges occurs in postpolio patients who are and who are not complaining of progressive muscle weakness. Although some reinnervated MUAPs do seem to stabilize their neuromuscular transmission with time in mildly affected muscles, the question arises as to whether or not some MUAPs ever stabilize after polio. Two cases of acute polio personally followed by the author, one over a 9 1/2 year period, are presented. In both cases, in muscles where there are more deinnervated muscle fibers than could possibly be reinnervated, the MUAPs have remained unstable. New concepts of function in the reinnervated motor unit following polio are presented.
Effects of fatigue on motor unit firing rate versus recruitment threshold relationships.
Stock, Matt S; Beck, Travis W; Defreitas, Jason M
2012-01-01
The purpose of this study was to examine the influence of fatigue on the average firing rate versus recruitment threshold relationships for the vastus lateralis (VL) and vastus medialis. Nineteen subjects performed ten maximum voluntary contractions of the dominant leg extensors. Before and after this fatiguing protocol, the subjects performed a trapezoid isometric muscle action of the leg extensors, and bipolar surface electromyographic signals were detected from both muscles. These signals were then decomposed into individual motor unit action potential trains. For each subject and muscle, the relationship between average firing rate and recruitment threshold was examined using linear regression analyses. For the VL, the linear slope coefficients and y-intercepts for these relationships increased and decreased, respectively, after fatigue. For both muscles, many of the motor units decreased their firing rates. With fatigue, recruitment of higher threshold motor units resulted in an increase in slope for the VL. Copyright © 2011 Wiley Periodicals, Inc.
Hadzipasic, Muhamed; Ni, Weiming; Nagy, Maria; Steenrod, Natalie; McGinley, Matthew J.; Kaushal, Adi; Thomas, Eleanor; McCormick, David A.
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease prominently featuring motor neuron (MN) loss and paralysis. A recent study using whole-cell patch clamp recording of MNs in acute spinal cord slices from symptomatic adult ALS mice showed that the fastest firing MNs are preferentially lost. To measure the in vivo effects of such loss, awake symptomatic-stage ALS mice performing self-initiated walking on a wheel were studied. Both single-unit extracellular recordings within spinal cord MN pools for lower leg flexor and extensor muscles and the electromyograms (EMGs) of the corresponding muscles were recorded. In the ALS mice, we observed absent or truncated high-frequency firing of MNs at the appropriate time in the step cycle and step-to-step variability of the EMG, as well as flexor-extensor coactivation. In turn, kinematic analysis of walking showed step-to-step variability of gait. At the MN level, the higher frequencies absent from recordings from mutant mice corresponded with the upper range of frequencies observed for fast-firing MNs in earlier slice measurements. These results suggest that, in SOD1-linked ALS mice, symptoms are a product of abnormal MN firing due at least in part to loss of neurons that fire at high frequency, associated with altered EMG patterns and hindlimb kinematics during gait. PMID:27821773
Altenburg, Teatske M; de Ruiter, Cornelis J; Verdijk, Peter W L; van Mechelen, Willem; de Haan, Arnold
2008-12-01
A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20 degrees at 10 degrees /s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%-47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 +/- 0.19) and discharge rate (1.11 +/- 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 +/- 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 +/- 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.
Heckman, C. J.; Powers, R. K.; Rymer, W. Z.; Suresh, N. L.
2014-01-01
Stroke survivors often exhibit abnormally low motor unit firing rates during voluntary muscle activation. Our purpose was to assess the prevalence of saturation in motor unit firing rates in the spastic-paretic biceps brachii muscle of stroke survivors. To achieve this objective, we recorded the incidence and duration of impaired lower- and higher-threshold motor unit firing rate modulation in spastic-paretic, contralateral, and healthy control muscle during increases in isometric force generated by the elbow flexor muscles. Impaired firing was considered to have occurred when firing rate became constant (i.e., saturated), despite increasing force. The duration of impaired firing rate modulation in the lower-threshold unit was longer for spastic-paretic (3.9 ± 2.2 s) than for contralateral (1.4 ± 0.9 s; P < 0.001) and control (1.1 ± 1.0 s; P = 0.005) muscles. The duration of impaired firing rate modulation in the higher-threshold unit was also longer for the spastic-paretic (1.7 ± 1.6 s) than contralateral (0.3 ± 0.3 s; P = 0.007) and control (0.1 ± 0.2 s; P = 0.009) muscles. This impaired firing rate of the lower-threshold unit arose, despite an increase in the overall descending command, as shown by the recruitment of the higher-threshold unit during the time that the lower-threshold unit was saturating, and by the continuous increase in averages of the rectified EMG of the biceps brachii muscle throughout the rising phase of the contraction. These results suggest that impairments in firing rate modulation are prevalent in motor units of spastic-paretic muscle, even when the overall descending command to the muscle is increasing. PMID:24572092
Kline, Joshua C.
2014-01-01
Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles—a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. PMID:25210152
Rodriguez-Falces, Javier; Negro, Francesco; Gonzalez-Izal, Miriam; Farina, Dario
2013-08-01
This study analyses the spatial distribution of individual motor unit potentials (MUPs) over the skin surface and the influence of motor unit depth and recording configuration on this distribution. Multichannel surface (13×5 electrode grid) and intramuscular (wire electrodes inserted with needles of lengths 15 and 25mm) electromyographic (EMG) signals were concurrently recorded with monopolar derivations from the biceps brachii muscle of 10 healthy subjects during 60-s isometric contractions at 20% of the maximum torque. Multichannel monopolar MUPs of the target motor unit were obtained by spike-triggered averaging of the surface EMG. Amplitude and frequency characteristics of monopolar and bipolar MUPs were calculated for locations along the fibers' direction (longitudinal), and along the direction perpendicular (transverse) to the fibers. In the longitudinal direction, monopolar and bipolar MUPs exhibited marked amplitude changes that extended for 16-32mm and 16-24mm over the innervation and tendon zones, respectively. The variation of monopolar and bipolar MUP characteristics was not symmetrical about the innervation zone. Motor unit depth had a considerable influence on the relative longitudinal variation of amplitude for monopolar MUPs, but not for bipolar MUPs. The transverse extension of bipolar MUPs ranged between 24 and 32mm, whereas that of monopolar MUPs ranged between 72 and 96mm. The mean power spectral frequency of surface MUPs was highly dependent on the transverse electrode location but not on depth. This study provides a basis for the interpretation of the contribution of individual motor units to the interference surface EMG signal. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gould, Jeffrey R.; Enoka, Roger M.
2013-01-01
The purpose of the study was to compare the discharge characteristics of biceps brachii motor units of young and old adults when they performed steady, submaximal contractions while the arm supported different inertial loads. Young (28 ± 4 yr; n = 16) and old (75 ± 4 yr; n = 14) adults performed steady contractions with the elbow flexors at target forces set at either small (11.7 ± 4.4% maximum) or large (17.8 ± 6.5% maximum) differences below the recruitment threshold force of the motor unit (n = 40). The task was to maintain an elbow angle at 1.57 rad until the motor unit was recruited and discharged action potentials for ∼120 s. Time to recruitment was longer for the larger target force difference (187 ± 227 s vs. 23 ± 46 s, P < 0.001). Once recruited, motor units discharged action potentials either repetitively or intermittently, with a greater proportion of motor units exhibiting the repetitive pattern for old adults. Discharge rate at recruitment and during the steady contraction was similar for the two target force differences for old adults but was greater for the small target force difference for young adults. Discharge variability was similar at recruitment for the two age groups but less for the old adults during the steady contraction. The greatest difference between the present results and those reported previously when the arm pulled against a rigid restraint was that old adults modulated discharge rate less than young adults across the two contraction intensities for both load types. PMID:23221403
Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi
2015-10-01
The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.
Genetic identification of a hindbrain nucleus essential for innate vocalization.
Hernandez-Miranda, Luis Rodrigo; Ruffault, Pierre-Louis; Bouvier, Julien C; Murray, Andrew J; Morin-Surun, Marie-Pierre; Zampieri, Niccolò; Cholewa-Waclaw, Justyna B; Ey, Elodie; Brunet, Jean-Francois; Champagnat, Jean; Fortin, Gilles; Birchmeier, Carmen
2017-07-25
Vocalization in young mice is an innate response to isolation or mechanical stimulation. Neuronal circuits that control vocalization and breathing overlap and rely on motor neurons that innervate laryngeal and expiratory muscles, but the brain center that coordinates these motor neurons has not been identified. Here, we show that the hindbrain nucleus tractus solitarius (NTS) is essential for vocalization in mice. By generating genetically modified newborn mice that specifically lack excitatory NTS neurons, we show that they are both mute and unable to produce the expiratory drive required for vocalization. Furthermore, the muteness of these newborns results in maternal neglect. We also show that neurons of the NTS directly connect to and entrain the activity of spinal (L1) and nucleus ambiguus motor pools located at positions where expiratory and laryngeal motor neurons reside. These motor neurons control expiratory pressure and laryngeal tension, respectively, thereby establishing the essential biomechanical parameters used for vocalization. In summary, our work demonstrates that the NTS is an obligatory component of the neuronal circuitry that transforms breaths into calls.
Corticalization of motor control in humans is a consequence of brain scaling in primate evolution.
Herculano-Houzel, Suzana; Kaas, Jon H; de Oliveira-Souza, Ricardo
2016-02-15
Control over spinal and brainstem somatomotor neurons is exerted by two sets of descending fibers, corticospinal/pyramidal and extrapyramidal. Although in nonhuman primates the effect of bilateral pyramidal lesions is mostly limited to an impairment of the independent use of digits in skilled manual actions, similar injuries in humans result in the locked-in syndrome, a state of mutism and quadriplegia in which communication can be established only by residual vertical eye movements. This behavioral contrast makes humans appear to be outliers compared with other primates because of our almost total dependence on the corticospinal/pyramidal system for the effectuation of movement. Here we propose, instead, that an increasing preponderance of the corticospinal/pyramidal system over motor control is an expected consequence of increasing brain size in primates because of the faster scaling of the number of neurons in the primary motor cortex over the brainstem and spinal cord motor neuron pools, explaining the apparent uniqueness of the corticalization of motor control in humans. © 2015 Wiley Periodicals, Inc.
76 FR 34192 - Commercial and Industrial Pumps
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... 1999. The ADL analysis, ``Energy Consumption Characteristics of Commercial Building HVAC Systems... report for the United Nations (``Motor System Efficiency Supply Curves UNIDO,'' Dec. 2010),\\3\\ also used..., A. and A. Hasanbeigi, ``Motor Systems Efficiency Supply Curves,'' United Nations Industrial...
26 CFR 1.1388-1 - Definitions and special rules.
Code of Federal Regulations, 2013 CFR
2013-04-01
... having a face value calculated at the rate of 5 cents per unit. During the operation of the pool, and before substantially all the products in the pool are disposed of, cooperative A advances to W an... sold and the anticipated price of the unsold products. At the close of the pool on November 10, 1964...
26 CFR 1.1388-1 - Definitions and special rules.
Code of Federal Regulations, 2011 CFR
2011-04-01
... having a face value calculated at the rate of 5 cents per unit. During the operation of the pool, and before substantially all the products in the pool are disposed of, cooperative A advances to W an... sold and the anticipated price of the unsold products. At the close of the pool on November 10, 1964...
26 CFR 1.1388-1 - Definitions and special rules.
Code of Federal Regulations, 2012 CFR
2012-04-01
... having a face value calculated at the rate of 5 cents per unit. During the operation of the pool, and before substantially all the products in the pool are disposed of, cooperative A advances to W an... sold and the anticipated price of the unsold products. At the close of the pool on November 10, 1964...
26 CFR 1.1388-1 - Definitions and special rules.
Code of Federal Regulations, 2014 CFR
2014-04-01
... having a face value calculated at the rate of 5 cents per unit. During the operation of the pool, and before substantially all the products in the pool are disposed of, cooperative A advances to W an... sold and the anticipated price of the unsold products. At the close of the pool on November 10, 1964...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... Fishery; White Hake Trimester Total Allowable Catch Area Closure for the Common Pool Fishery AGENCY... Allowable Catch (TAC) Area to all common pool groundfish vessels fishing with trawl gear, sink gillnet gear... necessary to prevent the common pool fishery from exceeding its Trimester 2 TAC or its annual catch limit...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... Northeast (NE) multispecies vessels fishing under common pool regulations for the 2010 fishing year (FY... of harvest exceeding the subcomponent of the annual catch limit (ACL) allocated to the common pool (common pool sub-ACL) for each of these stocks during FY 2010 (May 1, 2010, through April 30, 2011). This...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-15
... Fishery; White Hake Trimester Total Allowable Catch Area Closure for the Common Pool Fishery AGENCY... (TAC) Area to all common pool vessels fishing with trawl gear, sink gillnet gear, or longline/hook gear... common pool fishery from exceeding its Trimester 1 TAC or its annual catch limit for white hake. This...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... Fishery; Fishing Year 2012 Days-at-Sea Adjustment for Common Pool Fishery; Announcement of Fishing Year... adjusts the differential days-at-sea (DAS) rate for common pool vessels for fishing year (FY) 2012 due to... INFORMATION: FY 2012 Differential DAS Counting for Common Pool Vessels Amendment 16 to the Northeast (NE...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... Fishery; Trip Limit Increase for the Common Pool Fishery AGENCY: National Marine Fisheries Service (NMFS...) multispecies common pool vessels for the 2011 fishing year (FY), through April 30, 2012. This action is... the total catch of this stock to further approach the common pool sub-annual catch limit (sub-ACL...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... Fishery; Trip Limit Decrease for the Common Pool Fishery AGENCY: National Marine Fisheries Service (NMFS... (GB) cod for Northeast (NE) multispecies common pool vessels for the 2011 fishing year (FY), through... reduce the harvest of GOM and GB cod to prevent the common pool sub-annual catch limit (sub-ACL) from...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... for Northeast (NE) multispecies vessels fishing under common pool regulations for the 2010 fishing... likelihood of harvest exceeding the subcomponent of the annual catch limit (ACL) allocated to the common pool (common pool sub-ACL) for each of these five stocks during FY 2010 (May 1, 2010, through April 30, 2011...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... Fishery; Correction to Cod Landing Limit for Handgear B Vessels in the Common Pool Fishery AGENCY... multispecies open access Handgear B permitted vessels fishing in the common pool fishery for the remainder of... landing limits for Handgear B (HB) vessels fishing under common pool regulations at Sec. 648.88(a)(1...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
...; Modification of the Common Pool Day-at-Sea Accounting and Possession Prohibition for Witch Flounder AGENCY... fishing under common pool regulations for the 2010 fishing year (FY) when fishing in the Inshore Gulf of... exceed the subcomponent of the annual catch limit (ACL) allocated to the common pool during FY 2010 (May...
Negro, Francesco; Farina, Dario
2017-01-01
We investigated whether correlation measures derived from pairs of motor unit (MU) spike trains are reliable indicators of the degree of common synaptic input to motor neurons. Several 50-s isometric contractions of the biceps brachii muscle were performed at different target forces ranging from 10 to 30% of the maximal voluntary contraction relying on force feedback. Forty-eight pairs of MUs were examined at various force levels. Motor unit synchrony was assessed by cross-correlation analysis using three indexes: the output correlation as the peak of the cross-histogram (ρ) and the number of synchronous spikes per second (CIS) and per trigger (E). Individual analysis of MU pairs revealed that ρ, CIS, and E were most often positively associated with discharge rate (87, 85, and 76% of the MU pairs, respectively) and negatively with interspike interval variability (69, 65, and 62% of the MU pairs, respectively). Moreover, the behavior of synchronization indexes with discharge rate (and interspike interval variability) varied greatly among the MU pairs. These results were consistent with theoretical predictions, which showed that the output correlation between pairs of spike trains depends on the statistics of the input current and motor neuron intrinsic properties that differ for different motor neuron pairs. In conclusion, the synchronization between MU firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of motor neurons on the basis of correlation measures of their output spike trains. NEW & NOTEWORTHY The strength of correlation between output spike trains is only poorly associated with the degree of common input to the population of motor neurons. The synchronization between motor unit firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of motor neurons on the basis of correlation measures of their output spike trains. PMID:28100652
Allen, Jessica L; McKay, J Lucas; Sawers, Andrew; Hackney, Madeleine E; Ting, Lena H
2017-07-01
Here we examined changes in muscle coordination associated with improved motor performance after partnered, dance-based rehabilitation in individuals with mild to moderate idiopathic Parkinson's disease. Using motor module (a.k.a. muscle synergy) analysis, we identified changes in the modular control of overground walking and standing reactive balance that accompanied clinically meaningful improvements in behavioral measures of balance, gait, and disease symptoms after 3 wk of daily Adapted Tango classes. In contrast to previous studies that revealed a positive association between motor module number and motor performance, none of the six participants in this pilot study increased motor module number despite improvements in behavioral measures of balance and gait performance. Instead, motor modules were more consistently recruited and distinctly organized immediately after rehabilitation, suggesting more reliable motor output. Furthermore, the pool of motor modules shared between walking and reactive balance increased after rehabilitation, suggesting greater generalizability of motor module function across tasks. Our work is the first to show that motor module distinctness, consistency, and generalizability are more sensitive to improvements in gait and balance function after short-term rehabilitation than motor module number. Moreover, as similar differences in motor module distinctness, consistency, and generalizability have been demonstrated previously in healthy young adults with and without long-term motor training, our work suggests commonalities in the structure of muscle coordination associated with differences in motor performance across the spectrum from motor impairment to expertise. NEW & NOTEWORTHY We demonstrate changes in neuromuscular control of gait and balance in individuals with Parkinson's disease after short-term, dance-based rehabilitation. Our work is the first to show that motor module distinctness, consistency, and generalizability across gait and balance are more sensitive than motor module number to improvements in motor performance following short-term rehabilitation. Our results indicate commonalities in muscle coordination improvements associated with motor skill reacquisition due to rehabilitation and motor skill acquisition in healthy individuals. Copyright © 2017 the American Physiological Society.
The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design
NASA Technical Reports Server (NTRS)
White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald
1988-01-01
The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.
Li, Bao-Dong; Cui, Jing-Jun; Song, Jia; Qi, Ce; Ma, Pei-Feng; Wang, Ya-Rong; Bai, Jing
2018-01-01
A network meta-analysis is used to compare the efficacy of ropinirole, rasagiline, rotigotine, entacapone, apomorphine, pramipexole, sumanirole, bromocriptine, piribedil and levodopa, with placebo as a control, for non-motor symptoms in Parkinson's disease (PD). PubMed, Embase and the Cochrane Library were searched from their establishment dates up to January 2017 for randomized controlled trials (RCTs) investigating the efficacy of the above ten drugs on the non-motor symptoms of PD. A network meta-analysis combined the evidence from direct comparisons and indirect comparisons and evaluated the pooled weighted mean difference (WMD) values and surfaces under the cumulative ranking curves (SUCRA). The network meta-analysis included 21 RCTs. The analysis results indicated that, using the United Parkinson's Disease Rating Scale (UPDRS) III, the efficacies of placebo, ropinirole, rasagiline, rotigotine, entacapone, pramipexole, sumanirole and levodopa in treating PD were lower than that of apomorphine (WMD = -10.90, 95% CI = -16.12∼-5.48; WMD = -11.85, 95% CI = -17.31∼-6.16; WMD = -11.15, 95% CI = -16.64∼-5.04; WMD = -11.70, 95% CI = -16.98∼-5.60; WMD = -11.04, 95% CI = -16.97∼-5.34; WMD = -13.27, 95% CI = -19.22∼-7.40; WMD = -10.25, 95% CI = -15.66∼-4.32; and WMD = -11.60, 95% CI = -17.89∼-5.57, respectively). Treatment with ropinirole, rasagiline, rotigotine, entacapone, pramipexole, sumanirole, bromocriptine, piribedil or levodopa, with placebo as a control, on PD exhibited no significant differences on PD symptoms when the UPDRS II was used for evaluation. Moreover, using the UPDRS III, the SUCRA values indicated that a pomorphine had the best efficacy on the non-motor symptoms of PD (99.0%). Using the UPDRS II, the SUCRA values for ropinirole, rasagiline, rotigotine, entacapone, pramipexole, sumanirole, bromocriptine, piribedil and levodopa treatments, with placebo as a control, indicated that bromocriptine showed the best efficacy on the non-motor symptoms of PD (75.6%). Among ropinirole, rasagiline, rotigotine, entacapone, apomorphine, pramipexole, sumanirole, bromocriptine, piribedil and levodopa, with placebo as a control, apomorphine may be the most efficacious drug for therapy in treating the non-motor symptoms of PD. © 2018 The Author(s). Published by S. Karger AG, Basel.
Motor unit recruitment by size does not provide functional advantages for motor performance
Dideriksen, Jakob L; Farina, Dario
2013-01-01
It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers. PMID:24144879
Motor unit recruitment by size does not provide functional advantages for motor performance.
Dideriksen, Jakob L; Farina, Dario
2013-12-15
It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.
Antigravity posture for analysis of motor unit recruitment: the "45 degree test".
Petajan, J H
1990-04-01
The maximum number of different motor unit action potentials (MUAPs), their firing rates, and total MUAP spikes/second recorded by monopolar needle electrode were determined for the biceps brachii muscle during 45-degree elbow flexion. There were 4.2 +/- 1.6 different MUAPs exceeding 100 microV. Mean firing rate was 10.0 +/- 1.7 Hz, and total MUAP spikes/second were 40.3 +/- 18. Recordings from 16 patients with neurogenic atrophy (NA) and just detectable weakness revealed corresponding values of 3.1 +/- 1.7 different MUAPs, a mean rate of 10.2 +/- 1.5 Hz and 30.6 +/- 19 total MUAP spikes/second, not different from normal. In these patients, increased force of muscle contraction was required to activate high threshold motor units firing at high rates. In each of 4 patients just able to hold the arm against gravity, 1 or 2 "overdriven" motor units firing at a mean rate greater than 20 Hz were recorded. In 8 patients with myopathy and just detectable weakness, greater than 100 total MUAP spikes/second were recorded. Antigravity posture as a reference level of innervation has the advantage that motor unit firing rate is set about that of physiologic tremor (10-13 Hz). Its application was helpful in quantifying recruitment.
A motor unit-based model of muscle fatigue
2017-01-01
Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU), it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches. PMID:28574981
A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers
Wakeling, James M.; Lee, Sabrina S. M.; Arnold, Allison S.; de Boef Miara, Maria; Biewener, Andrew A.
2012-01-01
Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle. PMID:22350666
Strength training, but not endurance training, reduces motor unit discharge rate variability.
Vila-Chã, Carolina; Falla, Deborah
2016-02-01
This study evaluates and compares the effects of strength and endurance training on motor unit discharge rate variability and force steadiness of knee extensor muscles. Thirty sedentary healthy men (age, 26.0±3.8yrs) were randomly assigned to strength training, endurance training or a control group. Conventional endurance and strength training was performed 3days per week, over a period of 6weeks. Maximum voluntary contraction (MVC), time to task failure (at 30% MVC), coefficient of variation (CoV) of force and of the discharges rates of motor units from the vastus medialis obliquus and vastus lateralis were determined as subjects performed 20% and 30% MVC knee extension contractions before and after training. CoV of motor unit discharges rates was significantly reduced for both muscles following strength training (P<0.001), but did not change in the endurance (P=0.875) or control group (P=0.995). CoV of force was reduced after the strength training intervention only (P<0.01). Strength training, but not endurance training, reduces motor unit discharge rate variability and enhances force steadiness of the knee extensors. These results provide new insights into the neuromuscular adaptations that occur with different training methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Age-related motor unit remodeling in the Tibialis Anterior.
Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar
2015-01-01
Limited studies exist on the use of surface electromyogram (EMG) signal features to detect age-related motor unit remodeling in the Tibialis Anterior. Motor unit remodeling leads to declined muscle strength and force steadiness during submaximal contractions which are factors for risk of falls in the elderly. This study investigated the remodeling phenomena in the Tibialis Anterior using sample entropy and higher order statistics. Eighteen young (26.1 ± 2.9 years) and twelve elderly (68.7 ± 9.0 years) participants performed isometric dorsiflexion of the ankle at 20% maximal voluntary contraction (MVC) and their Tibialis Anterior (TA) EMG was recorded. Sample entropy, Gaussianity and Linearity Test statistics were calculated from the recorded EMG for each MVC. Shapiro-Wilk test was used to determine normality, and either a two-tail student t-test or Wilcoxon rank sum test was performed to determine significant difference in the EMG features between the young and old cohorts. Results show age-related motor unit remodeling to be depicted by decreased sample entropy (p <; 0.1), increased non-Gaussianity (p <; 0.05) and lesser degree of linearity in the elderly. This is due to the increased sparsity of the MUAPs as a result of the denervation-reinnervation process, and the decrease in total number of motor units.
Seki, K; Narusawa, M
1996-05-06
To examine the factors affecting the control of human motor units, rate coding strategies of the motor units were investigated in upper limb and intrinsic hand muscles during voluntary isometric contraction of steady force levels up to 80% of maximal voluntary contraction. Numerous spike trains from single motor units were recorded from the m. first dorsal interosseous (FDI) and the m. biceps brachii (BB) of eight human subjects by means of tungsten micro-electrodes, and the mean firing rate (MFR) was calculated for each subject and inter-individual comparisons made. The MFRs of the FDI were larger than that of the BB at the higher force level, and substantial differences were not found between these muscles at the lower force level. The slope of the linear regression line of MFRs vs. exerted forces for the FDI was more than twice that for the BB. Therefore, isometric force control of the FDI depends more on the rate coding strategy. The difference in rate coding between the FDI and BB motor units may be determined by factors other than muscle fiber composition, because both muscles are known to possess a similar composition of fiber types. Possible mechanisms underlying these characteristics of rate coding strategy are considered in this report.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Corporation and Toyota Motor Corporation, including on-site leased workers from Corestaff, ABM Janitorial, and...
Chou, Roger; Totten, Annette M; Carney, Nancy; Dandy, Spencer; Fu, Rongwei; Grusing, Sara; Pappas, Miranda; Wasson, Ngoc; Newgard, Craig D
2017-08-01
The motor component of the Glasgow Coma Scale (mGCS) has been proposed as an easier-to-use alternative to the total GCS (tGCS) for field assessment of trauma patients by emergency medical services. We perform a systematic review and meta-analysis to compare the predictive utility of the tGCS versus the mGCS or Simplified Motor Scale in field triage of trauma for identifying patients with adverse outcomes (inhospital mortality or severe brain injury) or who underwent procedures (neurosurgical intervention or emergency intubation) indicating need for high-level trauma care. Ovid MEDLINE, Cumulative Index to Nursing and Allied Health Literature, PsycINFO, Health and Psychosocial Instruments, and the Cochrane databases were searched through June 2016 for English-language cohort studies. We included studies that compared the area under the receiver operating characteristic curve (AUROC) of the tGCS versus the mGCS or Simplified Motor Scale assessed in the field or shortly after arrival in the emergency department for predicting the outcomes described above. Meta-analyses were performed with a random-effects model, and subgroup and sensitivity analyses were conducted. We included 18 head-to-head studies of predictive utility (n=1,703,388). For inhospital mortality, the tGCS was associated with slightly greater discrimination than the mGCS (pooled mean difference in [AUROC] 0.015; 95% confidence interval [CI] 0.009 to 0.022; I 2 =85%; 12 studies) or the Simplified Motor Scale (pooled mean difference in AUROC 0.030; 95% CI 0.024 to 0.036; I 2 =0%; 5 studies). The tGCS was also associated with greater discrimination than the mGCS or Simplified Motor Scale for nonmortality outcomes (differences in AUROC from 0.03 to 0.05). Findings were robust in subgroup and sensitivity analyses. The tGCS is associated with slightly greater discrimination than the mGCS or Simplified Motor Scale for identifying severe trauma. The small differences in discrimination are likely to be clinically unimportant and could be offset by factors such as convenience and ease of use. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
..., plates, filters, bearings, air pumps/compressors, valves, switches, electric motors, tubes/pipes/profiles... electric motors, pinions, magnets, ignition parts, diodes, transistors, resistors, semiconductors, liquid..., starter motors, motor/generator units, alternators, distributors, other static converters, inverter...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
..., springs, brackets, plates, filters, bearings, air pumps/compressors, valves, switches, electric motors..., clutches, parts of electric motors, pinions, magnets, ignition parts, diodes, transistors, resistors... and chambers, starter motors, motor/generator units, alternators, distributors, other static...
Ko, Kyung Dae; El-Ghazawi, Tarek; Kim, Dongkyu; Morizono, Hiroki
2014-05-01
Motor neuron diseases (MNDs) are a class of progressive neurological diseases that damage the motor neurons. An accurate diagnosis is important for the treatment of patients with MNDs because there is no standard cure for the MNDs. However, the rates of false positive and false negative diagnoses are still very high in this class of diseases. In the case of Amyotrophic Lateral Sclerosis (ALS), current estimates indicate 10% of diagnoses are false-positives, while 44% appear to be false negatives. In this study, we developed a new methodology to profile specific medical information from patient medical records for predicting the progression of motor neuron diseases. We implemented a system using Hbase and the Random forest classifier of Apache Mahout to profile medical records provided by the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) site, and we achieved 66% accuracy in the prediction of ALS progress.
Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.
Grandjean, Bernard; Maier, Marc A
2017-02-01
Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.
Contributions to muscle force and EMG by combined neural excitation and electrical stimulation
NASA Astrophysics Data System (ADS)
Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.
2014-10-01
Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation.
Contributions to muscle force and EMG by combined neural excitation and electrical stimulation
Crago, Patrick E; Makowski, Nathaniel S; Cole, Natalie M
2014-01-01
Objective Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity, without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main Results Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously - voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation. PMID:25242203
Broca’s area network in language function: a pooling-data connectivity study
Bernal, Byron; Ardila, Alfredo; Rosselli, Monica
2015-01-01
Background and Objective: Modern neuroimaging developments have demonstrated that cognitive functions correlate with brain networks rather than specific areas. The purpose of this paper was to analyze the connectivity of Broca’s area based on language tasks. Methods: A connectivity modeling study was performed by pooling data of Broca’s activation in language tasks. Fifty-seven papers that included 883 subjects in 84 experiments were analyzed. Analysis of Likelihood Estimates of pooled data was utilized to generate the map; thresholds at p < 0.01 were corrected for multiple comparisons and false discovery rate. Resulting images were co-registered into MNI standard space. Results: A network consisting of 16 clusters of activation was obtained. Main clusters were located in the frontal operculum, left posterior temporal region, supplementary motor area, and the parietal lobe. Less common clusters were seen in the sub-cortical structures including the left thalamus, left putamen, secondary visual areas, and the right cerebellum. Conclusion: Broca’s area-44-related networks involved in language processing were demonstrated utilizing a pooling-data connectivity study. Significance, interpretation, and limitations of the results are discussed. PMID:26074842
NASA Technical Reports Server (NTRS)
Chegancas, Jean; Stephan, Hubertus; Jimenez, Jesus; Campana, Sharon; Hutchison, Susan
2013-01-01
The pool of three Minus Eighty Laboratory freezer for ISS (MELFI) units continues providing the scientific community with robust and permanent freezer and refrigeration capabilities for life science experiments on the International Space Station (ISS). Launched in 2006, the first unit will complete, by summer 2013, seven years of continuous operations without intervention on the internal Nitrogen gas cycle, while all necessary hardware and operations were initially planned for preventive maintenance every two years. This unit has demonstrated outstanding performance on orbit and proved the technical decisions made during the development program. Current utilization of MELFI units in the ISS is taking full benefit of the initial specifications, which allows for wide adaptations to cope with the mission scenario imposed by the life extension in orbit. The two other MELFI units, launched respectively in 2008 and 2009, are supporting the first unit providing additional conditioned volume necessary for the science on board, and also for preparing thermal mass used to protect the samples on their way down to earth. The MELFI pool is outfitted with all supporting hardware to allow for extended operation on orbit including preventive and corrective maintenance. The internal components were designed to allow for easy on board maintenance. Spare equipment was installed in the MELFI rack on ISS and specific maintenance means were developed which required crew training before the cold gas cycle could be accessed. The paper will present first how the design choices made for the initial missions are identifying features necessary for extended duration missions, and will then give highlights on the utilization of the MELFI refrigeration pool during the recent years in ISS.
Imitation by Second-Borns in Adult-Sibling Dyads.
ERIC Educational Resources Information Center
Hodapp, Albert F.; LaVoie, Joseph C.
Five- to seven-year-old second-born children from white, middle-class, intact families were the subjects for this study. Older siblings served as role model for each child, and the parent surrogate models were selected from a pool and trained to act as the child's real parent. The imitation task emphasized verbal, postural, and motor responses of…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
...; Correction to Cod Landing Limit for Handgear A Vessels in the Common Pool Fishery AGENCY: National Marine... multispecies limited access Handgear A (HA) permitted vessels fishing in the common pool fishery for the... vessels fishing under common pool regulations at Sec. 648.82(b)(6) state that ``The [300 lb (136.1 kg...
Army Storm Water Permit Implementation Handbook,
1994-05-01
Storm Water Quality p. 6U7i Tr-rrnr""»" " f"*""’ ™™"™<>« * *""" wawr<"""*■ , Most motions -^CÄÄÄ’i. 15 year period. taallanons are large m size... water quality ’.include all tactical venicxe älntenanoe TO but nofail motor pools), (i.e, conduot son* sort of risk analysis). Include Post taxi...storm water. 2 1SL teeis’that the regulations require the Army to treat «torw"TJ regulated only wnen those motor ff°£V£™Jffi£ rHr-onr-c: r-n
De Luca, Carlo J; Kline, Joshua C
2014-12-01
Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles--a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. Copyright © 2014 the American Physiological Society.
Cost Performance Estimating Relationships for Hybrid Electric Vehicle Components
2003-07-31
Permanent magnet motors are more likely to be used as generators, while AC induction motors are more efficiently used as motors. Inverters/controllers can...than permanent magnet motors . Switched Reluctance motors are also used on hybrid electric vehicles, but are not used as widely as either AC...induction or permanent magnet motors , and are not analyzed here. Methodology The motor estimates are based on power, with kilowatts being the unit of
Kim, Hojeong
2017-07-01
Persistent inward current (PIC)-generating Ca v 1.3 channels in spinal motoneuron dendrites are thought to be actively recruited during normal behaviors. However, whether and how the activation of PIC channels influences force output of motor unit remains elusive. Here, building a physiologically realistic model of slow motor unit I demonstrated that force production induced by the PIC activation is much smaller for short than lengthened muscles during the regular firing of the motoneuron that transitions from the quiescent state by either a brief current pulse at the soma or a brief synaptic excitation at the dendrites. By contrast, the PIC-induced force potentiation was maximal for short muscles when the motoneuron switched from a stable low-frequency firing state to a stable high-frequency firing state by the current pulse at the soma. Under the synaptic excitation at the dendrites, however, the force could not be potentiated by the transitioning of the motoneuron from a low- to a high-frequency firing state due to the simultaneous onset of PIC at the dendrites and firing at the soma. The strong dependency of the input-output relationship of the motor unit on the neuromodulation and Ia afferent inputs for the PIC channels was further shown under static variations in muscle length. Taken together, these findings suggest that the PIC activation in the motoneuron dendrites may differentially affect the force production of the motor unit, depending not only on the firing state history of the motoneuron and the variation in muscle length but also on the mode of motor activity. NEW & NOTEWORTHY Ca v 1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Ca v 1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Ca v 1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem. Copyright © 2017 the American Physiological Society.
Vernal Pool Conservation in Connecticut: An Assessment and Recommendations
NASA Astrophysics Data System (ADS)
Preisser, Evan L.; Kefer, Jennifer Yelin; Lawrence, Jessica D.; Clark, Tim W.
2000-11-01
Vernal pools, a variety of ephemeral wetlands, are threatened in many areas of the United States. As habitat fragmentation and degradation increase, some vernal pool amphibian species are declining in numbers. Uneven implementation of state regulations further hampers effective conservation. To prevent further species decline and vernal pool loss, we evaluated alternatives for improving vernal pool conservation. We used transcripts from a recent vernal pool conference, interviews with members of relevant interest groups, and a literature review to determine opportunities for and constraints on improving vernal pool conservation policy. Participants from different interest groups had very diverse views about appropriate protection strategies. We have examined these different perspectives and alternatives and offer policy recommendations on both the state and local level. These recommendations can foster awareness of vernal pools as unique habitats, increase protection of these areas, and expand citizen participation in the vernal pool regulatory process.
Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling
NASA Astrophysics Data System (ADS)
Harrison, L. R.; Keller, E. A.
2003-12-01
In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is produced by a boulder-bedrock constriction that rapidly decreases the channel width above the pool by roughly 25 percent. The width constriction creates highly turbulent flow capable of scouring bed material through the pool. The high velocity core that is produced through the pool center appears to be enhanced by the formation of a large eddy directly below the boulder. Values of unit stream power and shear stress indicate that the pool exit is an area of deposition of bed material due to a decrease in tractive force. The presence of a strong transverse velocity gradient suggests that only a portion of the flow is responsible for scouring bed material. After we eliminate the dead water zone, the lowest five percent of the velocity range, patterns of effective width between pools and riffles begin to emerge. The ratio of flow width between adjacent pools and riffles is one measure of flow convergence. At a discharge of 0.5 cms, the ratio of effective width between pools and riffles is roughly 1:1, implying that there is uniform flow with little flow convergence. At a discharge of 5.15 cms the width ratio between the pool and riffle is about 1:3, demonstrating the strong convergent flow patterns at the pool head. The observed effective width relationship suggests that when considering restoration designs, boulders should be placed in areas that replicate natural convergence and divergence patterns in order to maximize pool area and depth.
Gad, Parag; Choe, Jaehoon; Nandra, Mandheerej Singh; Zhong, Hui; Roy, Roland R; Tai, Yu-Chong; Edgerton, V Reggie
2013-01-21
Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles.
Gamma loop contributing to maximal voluntary contractions in man.
Hagbarth, K E; Kunesch, E J; Nordin, M; Schmidt, R; Wallin, E U
1986-01-01
A local anaesthetic drug was injected around the peroneal nerve in healthy subjects in order to investigate whether the resulting loss in foot dorsiflexion power in part depended on a gamma-fibre block preventing 'internal' activation of spindle end-organs and thereby depriving the alpha-motoneurones of an excitatory spindle inflow during contraction. The motor outcome of maximal dorsiflexion efforts was assessed by measuring firing rates of individual motor units in the anterior tibial (t.a.) muscle, mean voltage e.m.g. from the pretibial muscles, dorsiflexion force and range of voluntary foot dorsiflexion movements. The tests were performed with and without peripheral conditioning stimuli, such as agonist or antagonist muscle vibration or imposed stretch of the contracting muscles. As compared to control values of t.a. motor unit firing rates in maximal isometric voluntary contractions, the firing rates were lower and more irregular during maximal dorsiflexion efforts performed during subtotal peroneal nerve blocks. During the development of paresis a gradual reduction of motor unit firing rates was observed before the units ceased responding to the voluntary commands. This change in motor unit behaviour was accompanied by a reduction of the mean voltage e.m.g. activity in the pretibial muscles. At a given stage of anaesthesia the e.m.g. responses to maximal voluntary efforts were more affected than the responses evoked by electric nerve stimuli delivered proximal to the block, indicating that impaired impulse transmission in alpha motor fibres was not the sole cause of the paresis. The inability to generate high and regular motor unit firing rates during peroneal nerve blocks was accentuated by vibration applied over the antagonistic calf muscles. By contrast, in eight out of ten experiments agonist stretch or vibration caused an enhancement of motor unit firing during the maximal force tasks. The reverse effects of agonist and antagonist vibration on the ability to activate the paretic muscles were evidenced also by alterations induced in mean voltage e.m.g. activity, dorsiflexion force and range of dorsiflexion movements. The autogenetic excitatory and the reciprocal inhibitory effects of muscle vibration rose in strength as the vibration frequency was raised from 90 to 165 Hz. Reflex effects on maximal voluntary contraction strength similar to those observed during partial nerve blocks were not seen under normal conditions when the nerve supply was intact.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3612576
Klass, Malgorzata; Duchateau, Jacques; Enoka, Roger M.
2012-01-01
The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8–19.8 pulses per second (pps)] and peak (range: 8.6–37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R2 ≥ 0.266; P < 0.001). The coefficient of variation for interspike interval at recruitment was positively associated with recruitment threshold torque (R2 = 0.443; P < 0.001) and either decreased exponentially or remained constant as target torque increased above recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ∼85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R2 = 0.096; P < 0.001). These results indicate that the steadiness of isometric contractions performed with the dorsiflexor muscle depended more on the distributions of mechanical properties than discharge properties across the population of motor units in the tibialis anterior. PMID:22442023
Jesunathadas, Mark; Klass, Malgorzata; Duchateau, Jacques; Enoka, Roger M
2012-06-01
The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8-19.8 pulses per second (pps)] and peak (range: 8.6-37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R(2) ≥ 0.266; P < 0.001). The coefficient of variation for interspike interval at recruitment was positively associated with recruitment threshold torque (R(2) = 0.443; P < 0.001) and either decreased exponentially or remained constant as target torque increased above recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ∼85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R(2) = 0.096; P < 0.001). These results indicate that the steadiness of isometric contractions performed with the dorsiflexor muscle depended more on the distributions of mechanical properties than discharge properties across the population of motor units in the tibialis anterior.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Procedure at part 86. (7) Independent commercial importer (ICI). An importer who is not an original... by an OEM or ICI in the course of motor vehicle or motor vehicle engine production. (14) United... time of resale (for a motor vehicle or motor vehicle engine owned by the ICI at the time of importation...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Procedure at part 86. (7) Independent commercial importer (ICI). An importer who is not an original... by an OEM or ICI in the course of motor vehicle or motor vehicle engine production. (14) United... time of resale (for a motor vehicle or motor vehicle engine owned by the ICI at the time of importation...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Procedure at part 86. (7) Independent commercial importer (ICI). An importer who is not an original... by an OEM or ICI in the course of motor vehicle or motor vehicle engine production. (14) United... time of resale (for a motor vehicle or motor vehicle engine owned by the ICI at the time of importation...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Procedure at part 86. (7) Independent commercial importer (ICI). An importer who is not an original... by an OEM or ICI in the course of motor vehicle or motor vehicle engine production. (14) United... time of resale (for a motor vehicle or motor vehicle engine owned by the ICI at the time of importation...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... joint motion to terminate the investigation as to respondent Electric Motor Service, Inc. (EMS) of Logan... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-755] Certain Starter Motors and... for importation, and the sale within the United States after importation of certain starter motors and...
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle...
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...
49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., intermediate bulk containers, multi-unit tank car tanks, portable tanks, or tank cars. Cargo tank motor vehicle... specification cargo tank motor vehicles. 178.320 Section 178.320 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation...
78 FR 74225 - Decision That Certain Nonconforming Motor Vehicles Are Eligible for Importation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
...-0136] Decision That Certain Nonconforming Motor Vehicles Are Eligible for Importation AGENCY: National... decisions by NHTSA that certain motor vehicles not originally manufactured to comply with all applicable Federal Motor Vehicle Safety Standards (FMVSS) are eligible for importation into the United States because...
Reflex control of discharge in motor fibres to the larynx
Głogowska, Maria; Stransky, A.; Widdicombe, J. G.
1974-01-01
1. Action potentials have been recorded from single laryngeal motor fibres, with expiratory or inspiratory phases, in cats anaesthetized with pentobarbitone and breathing through a tracheal cannula. 2. Pneumothorax increased the discharge of both inspiratory and expiratory units, the inspiratory response being greatly reduced by bilateral vagotomy below the origin of the recurrent laryngeal nerves. 3. Addition of a `viscous' resistance to breathing, or asphyxial rebreathing through an added dead space, increased the activity of inspiratory units and decreased that of expiratory units. 4. Induction of pulmonary oedema decreased the discharge of inspiratory units and increased that of expiratory units. After vagotomy the response of inspiratory units was reversed. 5. Intravenous injections of potassium cyanide increased the activity of both types of unit. 6. Chemical irritation of the laryngeal mucosa decreased the discharge of inspiratory units and increased that of expiratory units, whether the vagi were intact or cut. 7. It is concluded that expiratory unit discharge can be correlated with expiratory laryngeal resistance, but that inspiratory unit discharge does not correlate so well with inspiratory laryngeal resistance. 8. The relationship between laryngeal motor-fibre activity and the contractions of the inspiratory and expiratory muscles of breathing is discussed. PMID:4415512
Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G
1998-10-01
Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. Strand
The Corrective Action Investigation Plan for Corrective Action Unit 219, Septic Systems and Injection Wells, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 219 is located in Areas 3, 16, and 23 of the Nevada Test Site, which is 65 miles northwest ofmore » Las Vegas, Nevada. Corrective Action Unit 219 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.« less
Operation Cobra: Organizational Pooling and Operational Art in the European Theater
2017-05-25
an organizational structure based on the idea of “task organizing” and “force pooling.” Task organizing involves the development of situation...essential equipment and personnel based on the day-to-day needs of that unit. A unit that carried enough bridging equipment or truck transport to...in two forms: MSC’s Afloat Pre-positioning Force (APF) and land- based pre-positioned equipment . In the APF, all ships are self-sustaining and have
Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio
2016-08-01
The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.
Self contained, independent, in-vacuum spinner motor
Ayers, Marion J.
2002-01-01
An independent, self contained apparatus for operation within a vacuum chamber. A sealed enclosure is located in the chamber. The enclosure contains its own atmosphere independent of the vacuum in the chamber. A motor, power unit, and controls are located entirely within the enclosure. They do not have a direct structural connection outside of the enclosure in any way that would effect the atmosphere within the enclosure. The motor, power unit, and controls drive a spinner plate located outside the enclosure but within the vacuum chamber.
46 CFR 401.300 - Authorization for establishment of pools.
Code of Federal Regulations, 2011 CFR
2011-10-01
... longitude 84°33′ W. at the northern approach. (b) The Director shall determine the number of pools that will... United States waters of the St. Lawrence River between the international boundary at St. Regis and a line...
46 CFR 401.300 - Authorization for establishment of pools.
Code of Federal Regulations, 2010 CFR
2010-10-01
... longitude 84°33′ W. at the northern approach. (b) The Director shall determine the number of pools that will... United States waters of the St. Lawrence River between the international boundary at St. Regis and a line...
Serotonin Affects Movement Gain Control in the Spinal Cord
Glaser, Joshua I.; Deng, Linna; Thompson, Christopher K.; Stevenson, Ian H.; Wang, Qining; Hornby, Thomas George; Heckman, Charles J.; Kording, Konrad P.
2014-01-01
A fundamental challenge for the nervous system is to encode signals spanning many orders of magnitude with neurons of limited bandwidth. To meet this challenge, perceptual systems use gain control. However, whether the motor system uses an analogous mechanism is essentially unknown. Neuromodulators, such as serotonin, are prime candidates for gain control signals during force production. Serotonergic neurons project diffusely to motor pools, and, therefore, force production by one muscle should change the gain of others. Here we present behavioral and pharmaceutical evidence that serotonin modulates the input–output gain of motoneurons in humans. By selectively changing the efficacy of serotonin with drugs, we systematically modulated the amplitude of spinal reflexes. More importantly, force production in different limbs interacts systematically, as predicted by a spinal gain control mechanism. Psychophysics and pharmacology suggest that the motor system adopts gain control mechanisms, and serotonin is a primary driver for their implementation in force production. PMID:25232107
Pitman, John P.; Basavaraju, Sridhar V.; Shiraishi, Ray W.; Wilkinson, Robert; von Finckenstein, Bjorn; Lowrance, David W.; Marfin, Anthony A.; Postma, Maarten; Mataranyika, Mary; Sibinga, Cees Th. Smit
2015-01-01
BACKGROUND Few African countries separate blood donations into components; however, demand for platelets (PLTs) is increasing as regional capacity to treat causes of thrombocytopenia, including chemotherapy, increases. Namibia introduced single-donor apheresis PLT collections in 2007 to increase PLT availability while reducing exposure to multiple donors via pooling. This study describes the impact this transition had on PLT availability and safety in Namibia. STUDY DESIGN AND METHODS Annual national blood collections and PLT units issued data were extracted from a database maintained by the Blood Transfusion Service of Namibia (NAMBTS). Production costs and unit prices were analyzed. RESULTS In 2006, NAMBTS issued 771 single and pooled PLT doses from 3054 whole blood (WB) donations (drawn from 18,422 WB donations). In 2007, NAMBTS issued 486 single and pooled PLT doses from 1477 WB donations (drawn from 18,309 WB donations) and 131 single-donor PLT doses. By 2011, NAMBTS issued 837 single-donor PLT doses per year, 99.1% of all PLT units. Of 5761 WB donations from which PLTs were made in 2006 to 2011, a total of 20 (0.35%) were from donors with confirmed test results for human immunodeficiency virus or other transfusion-transmissible infections (TTIs). Of 2315 single-donor apheresis donations between 2007 and 2011, none of the 663 donors had a confirmed positive result for any pathogen. As apheresis replaced WB-derived PLTs, apheresis production costs dropped by a mean of 8.2% per year, while pooled PLT costs increased by an annual mean of 21.5%. Unit prices paid for apheresis- and WB-derived PLTs increased by 9 and 7.4% per year on average, respectively. CONCLUSION Namibia’s PLT transition shows that collections from repeat apheresis donors can reduce TTI risk and production costs. PMID:25727921
Assessment of Psychophysiological Response and Specific Fine Motor Skills in Combat Units.
Sánchez-Molina, Joaquín; Robles-Pérez, José J; Clemente-Suárez, Vicente J
2018-03-02
Soldiers´ training and experience can influence the outcome of the missions, as well as their own physical integrity. The objective of this research was to analyze the psycho-physiological response and specific motor skills in an urban combat simulation with two units of infantry with different training and experience. psychophysiological parameters -Heart Rate, blood oxygen saturation, glucose and blood lactate, cortical activation, anxiety and heart rate variability-, as well as fine motor skills were analyzed in 31 male soldiers of the Spanish Army, 19 belonging to the Light Infantry Brigade, and 12 to the Heavy Forces Infantry Brigade, before and after an urban combat simulation. A combat simulation provokes an alteration of the psycho-physiological basal state in soldiers and a great unbalance in the sympathetic-vagal interaction. The specific training of Light Infantry unit involves lower metabolic, cardiovascular, and anxiogenic response not only previous, but mainly after a combat maneuver, than Heavy Infantry unit's. No differences were found in relation with fine motor skills, improving in both cases after the maneuver. This fact should be taken into account for betterment units´ deployment preparation in current theaters of operations.
10 CFR 431.404 - Imported electric motors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Imported electric motors. 431.404 Section 431.404 Energy... EQUIPMENT General Provisions § 431.404 Imported electric motors. (a) Under sections 331 and 345 of the Act, any person importing an electric motor into the United States must comply with the provisions of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankowski, Todd Andrew; Gamboa, Jose A
Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft, mechanical transport, structures, and installations. 35.5 Section 35.5 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUG...
Hermatically sealed motor blower unit with stator inside hollow armature
Donelian, Khatchik O.
1976-01-20
13. A hermetically sealed motor blower unit comprising, in combination, a sealed housing having a thrust plate mounted therein and having a re-entrant wall forming a central cavity in said housing, a rotor within said housing, said rotor comprising an impeller, a hollow shaft embracing said cavity and a thrust collar adapted to cooperate with said thrust plate to support the axial thrust of said shaft, one or more journal bearings within said housing for supporting the radial load of said shaft and electric motor means for rotating said rotor, said motor means comprising a motor-stator located within said cavity and adapted to cooperate through a portion of said re-entrant wall with a motor-rotor mounted within said hollow shaft, the portion of said re-entrant wall located between said motor-stator and said motor-rotor being made relatively thin to reduce electrical losses, the bearing surfaces of said thrust plate, thrust collar and journal bearings being in communication with the discharge of said impeller, whereby fluid pumped by said impeller can flow directly to said bearing surfaces to lubricate them.
Estimating the number of motor units using random sums with independently thinned terms.
Müller, Samuel; Conforto, Adriana Bastos; Z'graggen, Werner J; Kaelin-Lang, Alain
2006-07-01
The problem of estimating the numbers of motor units N in a muscle is embedded in a general stochastic model using the notion of thinning from point process theory. In the paper a new moment type estimator for the numbers of motor units in a muscle is denned, which is derived using random sums with independently thinned terms. Asymptotic normality of the estimator is shown and its practical value is demonstrated with bootstrap and approximative confidence intervals for a data set from a 31-year-old healthy right-handed, female volunteer. Moreover simulation results are presented and Monte-Carlo based quantiles, means, and variances are calculated for N in{300,600,1000}.
Rezkov, G I
1991-01-01
Needle electromyography was used to study motor units of the muscles leading away the thumb and little finger, replanted after traumatic amputation of the large segment of the upper limb in 34 patients. A direct relationship was discovered between the time of the appearance of action potentials of motor units (PMU), recovery of the movements, and trauma level. The appearance of clear PMU associated with movement recovery was recorded not earlier than 6-7 months after trauma. Analysis of PMU is a reliable criterion for the recovery of the own movements of the muscles and function of the neuromotor apparatus in patients with the replanted upper limb segment.
Paralysis recovery in humans and model systems
NASA Technical Reports Server (NTRS)
Edgerton, V. Reggie; Roy, Roland R.
2002-01-01
Considerable evidence now demonstrates that extensive functional and anatomical reorganization following spinal cord injury occurs in centers of the brain that have some input into spinal motor pools. This is very encouraging, given the accumulating evidence that new connections formed across spinal lesions may not be initially functionally useful. The second area of advancement in the field of paralysis recovery is in the development of effective interventions to counter axonal growth inhibition. A third area of significant progress is the development of robotic devices to quantify the performance level of motor tasks following spinal cord injury and to 'teach' the spinal cord to step and stand. Advances are being made with robotic devices for mice, rats and humans.
NASA Astrophysics Data System (ADS)
Parikh, Hirak; Marzullo, Timothy C.; Kipke, Daryl R.
2009-04-01
Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers of the cortex with fewer penetrating shanks. The objective of this study was to compare unit activity in the upper and lower layers of the cortex with respect to movement and direction in order to inform the design of penetrating microelectrodes. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the neck/shoulder region of the motor cortex. We simultaneously recorded unit activity across all layers of the motor cortex while the animal was engaged in a movement direction task. Localization of the electrode array within the different layers of the cortex was determined by histology. We denoted units from layers 2 and 3 and units as upper layer units, and units from layers 5 and 6 as lower layer units. Analysis of unit spiking activity demonstrated that both the upper and lower layers encode movement and direction information. Unit responses in either cortical layer of the cortex were not preferentially associated with contralateral or ipsilateral movement. Aggregate analysis (633 neurons) and best session analysis (75 neurons) indicated that units in the lower layers (layers 5, 6) are more likely to encode direction information when compared to units in the upper layers (layers 2, 3) (p< 0.05). These results suggest that electrode sites clustered in the lower layers provide access to more salient control information for cortical neuroprostheses.
NASA Astrophysics Data System (ADS)
Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.
2017-08-01
Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p < 0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9% ± 24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.
78 FR 78294 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... Control Unit--Constant Speed Motor/Generator (GCU-CSM/G) failed the operational test. Investigations... airplanes. This proposed AD was prompted by the failure of the generator control unit-constant speed motor... costing up to $17,314, for a cost of up to $17,399 per product. We have no way of determining the number...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
..., possessing German CDLs, to operate commercial motor vehicles (CMVs) in the United States without a CDL issued... renewal of its current exemption permitting 22 named drivers, employed by Rotel and possessing German CDLs..., Tittling) and possessing German CDLs, to operate commercial motor vehicles (CMVs) in the United States...
Motor Transportation Technology: Automechanics. Tune-Up. Block VIII. A-VIII.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Instructional materials on tune-ups are provided for an auto mechanics course in the motor transportation technology program. Instructor's plans are provided for three units. Each unit consists of instructional and manipulative lessons. The format of an instructional lesson is as follows: the subject, aim, a listing of teaching aids and materials,…
A sEMG model with experimentally based simulation parameters.
Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P
2010-01-01
A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.
Human spinal cord injury: motor unit properties and behaviour.
Thomas, C K; Bakels, R; Klein, C S; Zijdewind, I
2014-01-01
Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when SCI leaves few units under voluntary control, the force contribution from recruitment increases due to elevation of twitch/tetanic force ratios. Force gradation and precision are also coarser with reduced unit numbers. Maximal unit firing rates are low in hand muscles, limiting voluntary strength, but are low, normal or high in limb muscles. Unit firing rates during spasms can exceed voluntary rates, emphasizing that deficits in descending drive limit force production. SCI also changes muscle properties. Motor unit weakness and fatigability seem universal across muscles and species, increasing the muscle weakness that arises from paralysis of units, motoneuron death and sensory impairment. Motor axon conduction velocity decreases after human SCI. Muscle contractile speed is also reduced, which lowers the stimulation frequencies needed to grade force when paralysed muscles are activated with patterned electrical stimulation. This slowing does not necessarily occur in hind limb muscles after cord transection in cats and rats. The nature, duration and level of SCI underlie some of these species differences, as do variations in muscle function, daily usage, tract control and fibre-type composition. Exploring this diversity is important to promote recovery of the hand, bowel, bladder and locomotor function most wanted by people with SCI. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Motor unit number estimates correlate with strength in polio survivors.
Sorenson, Eric J; Daube, Jasper R; Windebank, Anthony J
2006-11-01
Motor unit number estimation (MUNE) has been proposed as an outcome measure in clinical trials for the motor neuron diseases. One major criticism of MUNE is that it may not represent a clinically meaningful endpoint. We prospectively studied a cohort of polio survivors over a period of 15 years with respect to MUNE and strength. We identified a significant association between thenar MUNE and arm strength, extensor digitorum brevis MUNE and leg strength, and the summated MUNE and global strength of the polio survivors. These findings confirm the clinical relevance of MUNE as an outcome measure in the motor neuron diseases and provide further validation for its use in clinical trial research.
System and method for motor parameter estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhrs, Bin; Yan, Ting
2014-03-18
A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less