Sample records for motor unit synchronization

  1. Synchronization of low- and high-threshold motor units.

    PubMed

    Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S

    2014-04-01

    We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.

  2. Statistically rigorous calculations do not support common input and long-term synchronization of motor-unit firings

    PubMed Central

    Kline, Joshua C.

    2014-01-01

    Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles—a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. PMID:25210152

  3. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    PubMed

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.

  4. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats

    PubMed Central

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand. PMID:26529604

  5. Statistically rigorous calculations do not support common input and long-term synchronization of motor-unit firings.

    PubMed

    De Luca, Carlo J; Kline, Joshua C

    2014-12-01

    Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles--a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. Copyright © 2014 the American Physiological Society.

  6. Testing of motor unit synchronization model for localized muscle fatigue.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  7. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs

    PubMed Central

    Kline, Joshua C.

    2015-01-01

    Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. PMID:26490288

  8. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs.

    PubMed

    Kline, Joshua C; De Luca, Carlo J

    2016-01-01

    Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. Copyright © 2016 the American Physiological Society.

  9. Detail, unit 4, 3,000 hp synchronous pump motor. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, unit 4, 3,000 hp synchronous pump motor. Manufactured by The Electric Products Company, Cleveland, Ohio. Unit 5 is identical to this unit - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  10. Detail, unit 4, 1,850 horsepower (hp) synchronous pump motor manufactured ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, unit 4, 1,850 horsepower (hp) synchronous pump motor manufactured by The Electric Products Company, Cleveland , Ohio. Pump units 1, 2, and 3 are identical to this unit. View to the west - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ

  11. Characteristics of the Motor Units during Sternocleidomastoid Isometric Flexion among Patients with Mechanical Neck Disorder and Asymptomatic Individuals.

    PubMed

    Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting; Guo, Lan-Yuen

    2016-01-01

    Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks.

  12. Characteristics of the Motor Units during Sternocleidomastoid Isometric Flexion among Patients with Mechanical Neck Disorder and Asymptomatic Individuals

    PubMed Central

    Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting

    2016-01-01

    Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks. PMID:27941995

  13. Control system for several rotating mirror camera synchronization operation

    NASA Astrophysics Data System (ADS)

    Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji

    1997-05-01

    This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.

  14. Correlation between discharge timings of pairs of motor units reveals the presence but not the proportion of common synaptic input to motor neurons

    PubMed Central

    Negro, Francesco; Farina, Dario

    2017-01-01

    We investigated whether correlation measures derived from pairs of motor unit (MU) spike trains are reliable indicators of the degree of common synaptic input to motor neurons. Several 50-s isometric contractions of the biceps brachii muscle were performed at different target forces ranging from 10 to 30% of the maximal voluntary contraction relying on force feedback. Forty-eight pairs of MUs were examined at various force levels. Motor unit synchrony was assessed by cross-correlation analysis using three indexes: the output correlation as the peak of the cross-histogram (ρ) and the number of synchronous spikes per second (CIS) and per trigger (E). Individual analysis of MU pairs revealed that ρ, CIS, and E were most often positively associated with discharge rate (87, 85, and 76% of the MU pairs, respectively) and negatively with interspike interval variability (69, 65, and 62% of the MU pairs, respectively). Moreover, the behavior of synchronization indexes with discharge rate (and interspike interval variability) varied greatly among the MU pairs. These results were consistent with theoretical predictions, which showed that the output correlation between pairs of spike trains depends on the statistics of the input current and motor neuron intrinsic properties that differ for different motor neuron pairs. In conclusion, the synchronization between MU firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of motor neurons on the basis of correlation measures of their output spike trains. NEW & NOTEWORTHY The strength of correlation between output spike trains is only poorly associated with the degree of common input to the population of motor neurons. The synchronization between motor unit firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of motor neurons on the basis of correlation measures of their output spike trains. PMID:28100652

  15. Recruitment of motor units in two fascicles of the semispinalis cervicis muscle.

    PubMed

    Schomacher, Jochen; Dideriksen, Jakob Lund; Farina, Dario; Falla, Deborah

    2012-06-01

    This study investigated the behavior of motor units in the semispinalis cervicis muscle. Intramuscular EMG recordings were obtained unilaterally at levels C2 and C5 in 15 healthy volunteers (8 men, 7 women) who performed isometric neck extensions at 5%, 10%, and 20% of the maximal force [maximum voluntary contraction (MVC)] for 2 min each and linearly increasing force contractions from 0 to 30% MVC over 3 s. Individual motor unit action potentials were identified. The discharge rate and interspike interval variability of the motor units in the two locations did not differ. However, the recruitment threshold of motor units detected at C2 (n = 16, mean ± SD: 10.3 ± 6.0% MVC) was greater than that of motor units detected at C5 (n = 92, 6.9 ± 4.3% MVC) (P < 0.01). A significant level of short-term synchronization was identified in 246 of 307 motor unit pairs when computed within one spinal level but only in 28 of 110 pairs of motor units between the two levels. The common input strength, which quantifies motor unit synchronization, was greater for pairs within one level (0.47 ± 0.32) compared with pairs between levels (0.09 ± 0.07) (P < 0.05). In a second experiment on eight healthy subjects, interference EMG was recorded from the same locations during a linearly increasing force contraction from 0 to 40% MVC and showed significantly greater EMG amplitude at C5 than at C2. In conclusion, synaptic input is distributed partly independently and nonuniformly to different fascicles of the semispinalis cervicis muscle.

  16. Recruitment of motor units in two fascicles of the semispinalis cervicis muscle

    PubMed Central

    Schomacher, Jochen; Dideriksen, Jakob Lund; Farina, Dario

    2012-01-01

    This study investigated the behavior of motor units in the semispinalis cervicis muscle. Intramuscular EMG recordings were obtained unilaterally at levels C2 and C5 in 15 healthy volunteers (8 men, 7 women) who performed isometric neck extensions at 5%, 10%, and 20% of the maximal force [maximum voluntary contraction (MVC)] for 2 min each and linearly increasing force contractions from 0 to 30% MVC over 3 s. Individual motor unit action potentials were identified. The discharge rate and interspike interval variability of the motor units in the two locations did not differ. However, the recruitment threshold of motor units detected at C2 (n = 16, mean ± SD: 10.3 ± 6.0% MVC) was greater than that of motor units detected at C5 (n = 92, 6.9 ± 4.3% MVC) (P < 0.01). A significant level of short-term synchronization was identified in 246 of 307 motor unit pairs when computed within one spinal level but only in 28 of 110 pairs of motor units between the two levels. The common input strength, which quantifies motor unit synchronization, was greater for pairs within one level (0.47 ± 0.32) compared with pairs between levels (0.09 ± 0.07) (P < 0.05). In a second experiment on eight healthy subjects, interference EMG was recorded from the same locations during a linearly increasing force contraction from 0 to 40% MVC and showed significantly greater EMG amplitude at C5 than at C2. In conclusion, synaptic input is distributed partly independently and nonuniformly to different fascicles of the semispinalis cervicis muscle. PMID:22402657

  17. Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles.

    PubMed

    Rice, Amber; Fuglevand, Andrew J; Laine, Christopher M; Fregosi, Ralph F

    2011-05-01

    The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.

  18. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operationmore » and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.« less

  19. On the Power Spectrum of Motor Unit Action Potential Trains Synchronized With Mechanical Vibration.

    PubMed

    Romano, Maria; Fratini, Antonio; Gargiulo, Gaetano D; Cesarelli, Mario; Iuppariello, Luigi; Bifulco, Paolo

    2018-03-01

    This study provides a definitive analysis of the spectrum of a motor unit action potential train (MUAPT) elicited by mechanical vibratory stimulation via a detailed and concise mathematical formulation. Experimental studies demonstrated that MUAPs are not exactly synchronized with the vibratory stimulus but show a variable latency jitter, whose effects have not been investigated yet. Synchronized action potential train was represented as a quasi-periodic sequence of a given MU waveform. The latency jitter of action potentials was modeled as a Gaussian stochastic process, in accordance to the previous experimental studies. A mathematical expression for power spectrum of a synchronized MUAPT has been derived. The spectrum comprises a significant continuous component and discrete components at the vibratory frequency and its harmonics. Their relevance is correlated to the level of synchronization: the weaker the synchronization the more relevant is the continuous spectrum. Electromyography (EMG) rectification enhances the discrete components. The derived equations have general validity and well describe the power spectrum of actual EMG recordings during vibratory stimulation. Results are obtained by appropriately setting the level of synchronization and vibration frequency. This paper definitively clarifies the nature of changes in spectrum of raw EMG recordings from muscles undergoing vibratory stimulation. Results confirm the need of motion artifact filtering for raw EMG recordings during stimulation and strongly suggest to avoid EMG rectification that significantly alters the spectrum characteristics.

  20. Electric-Drive Propulsion for U.S. Navy Ships: Background and Issues for Congress

    DTIC Science & Technology

    2000-07-31

    over electric drive concerns electric motors. The five basic types in question – synchronous motors, induction motors, permanent magnet motors , superconducting...drive technology for ships – synchronous motors, induction motors, permanent magnet motors , superconducting synchronous motors, and superconducting...synchronous motors and is also developing systems featuring induction and permanent magnet motors . ! an industry team led by General Dynamics Corporation

  1. Training adaptations in the behavior of human motor units.

    PubMed

    Duchateau, Jacques; Semmler, John G; Enoka, Roger M

    2006-12-01

    The purpose of this brief review is to examine the neural adaptations associated with training, by focusing on the behavior of single motor units. The review synthesizes current understanding on motor unit recruitment and rate coding during voluntary contractions, briefly describes the techniques used to record motor unit activity, and then evaluates the adaptations that have been observed in motor unit activity during maximal and submaximal contractions. Relatively few studies have directly compared motor unit behavior before and after training. Although some studies suggest that the voluntary activation of muscle can increase slightly with strength training, it is not known how the discharge of motor units changes to produce this increase in activation. The evidence indicates that the increase is not attributable to changes in motor unit synchronization. It has been demonstrated, however, that training can increase both the rate of torque development and the discharge rate of motor units. Furthermore, both strength training and practice of a force-matching task can evoke adaptations in the discharge characteristics of motor units. Because the variability in discharge rate has a significant influence on the fluctuations in force during submaximal contractions, the changes produced with training can influence motor performance during activities of daily living. Little is known, however, about the relative contributions of the descending drive, afferent feedback, spinal circuitry, and motor neuron properties to the observed adaptations in motor unit activity.

  2. System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque

    DOEpatents

    Melfi, Michael J.

    2015-10-20

    A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.

  3. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    PubMed

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  4. Characteristic Evaluation of Synchronous Motors Using an Universal Drive System with a Real-Time Interface

    NASA Astrophysics Data System (ADS)

    Amano, Yoko; Ogasawara, Satoshi

    In this paper, a new universal drive system of synchronous motors used Real-Time Interface (RTI) performs characteristic evaluation of Synchronous Reluctance (SynR) motors and Surface Permanent Magnet (SPM) synchronous motors. The RTI connects directly a simulation model with experimental equipment, and makes it possible to use the simulation model for an experiment. The RTI is very effective in the early detection of an actual problem and examination of solution technique. Moreover, it concentrates on examination of control algorithm, and efficient research and development are enabled. A measuring system of synchronous motors is built by the universal drive system. The examination of various synchronous motors is possible for the measurement system using the same control algorithm. Characteristic evaluation of a SynR motor and a SPM synchronous motor that are the same gap length and stator was performed using the measuring system. The measurement result shows experimentally that motor loss of the SynR motor is smaller rather than the SPM synchronous motor, at the time of high speed and low load operation. For example, the SynR motor is suitable to hybrid cars with the comparatively long time of low load and high-speed operation.

  5. Motor unit firing and its relation to tremor in the tonic vibration reflex of the decerebrate cat.

    PubMed

    Clark, F J; Matthews, P B; Muir, R B

    1981-01-01

    1. The discharge of single motor units has been recorded from the soleus muscle of the decerebrate cat during the tonic vibration reflex elicited isometrically, to further understanding of the tremor that is seen in the reflex contraction. The reflex was elicited by pulses of vibration of 50 micrometers amplitude at 150 Hz, and up to four units were studied concurrently. 2. Individual units fired rather regularly and at a low frequency (range 4-14 Hz). The rate of firing of any unit normally fell within the frequency band of the tremor recorded at the same time. On comparing different preparations a higher frequency of tremor was associated with a higher frequency of motor firing. 3. The responses of pairs of motor units recorded concurrently during repeated production of the reflex were compared by cross-correlation analysis; over 1000 spikes from each train were normally used for this. The major of the cross-correlograms were flat with no overt sign of any synchronization between the units other than that due to the vibration. 4. Clear indications of correlated motor unit firing could be produced deliberately by modulating the amplitude of vibration at a frequency comparable to that of the normal tremor and thereby introducing a rhythmic component into the tonic vibration reflex. 5. About 20% of the cross-correlograms obtained during normal tremor showed varying amounts of an irregular 'waviness' suggesting a possible correlation between the times of firing of a pair of units. But such waves never developed steadily throughout the period of analysis, in contrast to the comparable waves produced on modulating the vibration. Similar waves were seen on cross-correlating a motor unit with an electronic oscillator, confirming that their occurrence does not necessarily demonstrate the existence of active neural interactions. 6. It is concluded that there is no strong and widespread neural synchronizing mechanism active during the tonic vibration reflex, although the possibility of some weak neural interactions has not been excluded. The findings favour the idea that the tremor in this preparation is simply the inevitable result of motor units discharging asynchronously, but at closely similar subtetanic frequencies.

  6. Development of Permanent Magnet Synchronous Motor Control System for the Traction Purpose of the Gauge Changing Train

    NASA Astrophysics Data System (ADS)

    Kondo, Keiichiro; Hata, Hiroshi; Yuki, Kazuaki; Naganuma, Katsunori; Matsuoka, Koichi; Hasebe, Toshio

    This paper is aimed at providing the designing method of a permanent magnet synchronous motor (PMSM) control system for the high-speed and the single-phase AC powered Gauge Changing Train (GCT). The state-of-the-art electrical motive unit is equipped with downsized direct drive type PMSMs for the simplified gauge changeable truck. Due to the feeding the AC single phase power, we propose a beat-less control for PMSMs. We verify the development results of designing procedures by the experimental results of operation on a high-speed test line in Colorado, USA.

  7. Motor unit activity after eccentric exercise and muscle damage in humans.

    PubMed

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  8. Evaluating the importance of social motor synchronization and motor skill for understanding autism.

    PubMed

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-10-01

    Impairments in social interaction and communicating with others are core features of autism spectrum disorder (ASD), but the specific processes underlying such social competence impairments are not well understood. An important key for increasing our understanding of ASD-specific social deficits may lie with the social motor synchronization that takes place when we implicitly coordinate our bodies with others. Here, we tested whether dynamical measures of synchronization differentiate children with ASD from controls and further explored the relationships between synchronization ability and motor control problems. We found (a) that children with ASD exhibited different and less stable patterns of social synchronization ability than controls; (b) children with ASD performed motor movements that were slower and more variable in both spacing and timing; and (c) some social synchronization that involved motor timing was related to motor ability but less rhythmic synchronization was not. These findings raise the possibility that objective dynamical measures of synchronization ability and motor skill could provide new insights into understanding the social deficits in ASD that could ultimately aid clinical diagnosis and prognosis. Autism Res 2017, 10: 1687-1699. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  9. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    PubMed

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Research and simulation of the decoupling transformation in AC motor vector control

    NASA Astrophysics Data System (ADS)

    He, Jiaojiao; Zhao, Zhongjie; Liu, Ken; Zhang, Yongping; Yao, Tuozhong

    2018-04-01

    Permanent magnet synchronous motor (PMSM) is a nonlinear, strong coupling, multivariable complex object, and transformation decoupling can solve the coupling problem of permanent magnet synchronous motor. This paper gives a permanent magnet synchronous motor (PMSM) mathematical model, introduces the permanent magnet synchronous motor vector control coordinate transformation in the process of modal matrix inductance matrix transform through the matrix related knowledge of different coordinates of diagonalization, which makes the coupling between the independent, realize the control of motor current and excitation the torque current coupling separation, and derived the coordinate transformation matrix, the thought to solve the coupling problem of AC motor. Finally, in the Matlab/Simulink environment, through the establishment and combination between the PMSM ontology, coordinate conversion module, built the simulation model of permanent magnet synchronous motor vector control, introduces the model of each part, and analyzed the simulation results.

  11. Motor run-up system. [power lines

    NASA Technical Reports Server (NTRS)

    Daeges, J. J. (Inventor)

    1975-01-01

    A starting system is described for bringing a large synchronous motor up to speed to prevent large power line disturbances at the moment the motor is connected to the power line. The system includes (1) a digital counter which generates a count determined by the difference in frequency between the power line and a small current generated by the synchronous motor; (2) a latch which stores the count; and (3) a comparator which compares the stored count with a newly generated count to determine whether the synchronous motor is accelerating or decelerating. Signals generated by the counter and comparator control the current to a clutch that couples a starting motor to the large synchronous motor.

  12. Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.; Dobriyan, R.

    2017-04-01

    The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force) or angle ɛ (angle between rotor direct axis and armature magnetomotive force axis) is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.

  13. Motor unit behaviour and contractile changes during fatigue in the human first dorsal interosseus

    PubMed Central

    Carpentier, Alain; Duchateau, Jacques; Hainaut, Karl

    2001-01-01

    In 67 single motor units, the mechanical properties, the recruitment and derecruitment thresholds, and the discharge rates were recorded concurrently in the first dorsal interosseus (FDI) of human subjects during intermittent fatiguing contractions. The task consisted of isometric ramp-and-hold contractions performed at 50% of the maximal voluntary contraction (MVC). The purpose of this study was to examine the influence of fatigue on the behaviour of motor units with a wide range of activation thresholds. For low-threshold (< 25% MVC) motor units, the mean twitch force increased with fatigue and the recruitment threshold either did not change or increased. In contrast, the twitch force and the activation threshold decreased for the high-threshold (> 25% MVC) units. The observation that in low-threshold motor units a quick stretch of the muscle at the end of the test reset the unit force and recruitment threshold to the prefatigue value suggests a significant role for fatigue-related changes in muscle stiffness but not twitch potentiation or motor unit synchronization. Although the central drive intensified during the fatigue test, as indicated by an increase in surface electromyogram (EMG), the discharge rate of the motor units during the hold phase of each contraction decreased progressively over the course of the task for motor units that were recruited at the beginning of the test, especially the low-threshold units. In contrast, the discharge rates of newly activated units first increased and then decreased. Such divergent behaviour of low- and high-threshold motor units could not be individually controlled by the central drive to the motoneurone pool. Rather, the different behaviours must be the consequence of variable contributions from motoneurone adaptation and afferent feedback from the muscle during the fatiguing contraction. PMID:11483719

  14. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    PubMed

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    PubMed

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Neural synchrony within the motor system: what have we learned so far?

    PubMed Central

    van Wijk, Bernadette C. M.; Beek, Peter J.; Daffertshofer, Andreas

    2012-01-01

    Synchronization of neural activity is considered essential for information processing in the nervous system. Both local and inter-regional synchronization are omnipresent in different frequency regimes and relate to a variety of behavioral and cognitive functions. Over the years, many studies have sought to elucidate the question how alpha/mu, beta, and gamma synchronization contribute to motor control. Here, we review these studies with the purpose to delineate what they have added to our understanding of the neural control of movement. We highlight important findings regarding oscillations in primary motor cortex, synchronization between cortex and spinal cord, synchronization between cortical regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions. The interpretation of synchronization patterns benefits from combining results of invasive and non-invasive recordings, different data analysis tools, and modeling work. Importantly, although synchronization is deemed to play a vital role, it is not the only mechanism for neural communication. Spike timing and rate coding act together during motor control and should therefore both be accounted for when interpreting movement-related activity. PMID:22969718

  17. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism

    ERIC Educational Resources Information Center

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L.; Duncan, Amie; Barnard, Holly; Richardson, Michael J.; Schmidt, R. C.

    2017-01-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and…

  18. Research on Hybrid Vehicle Drivetrain

    NASA Astrophysics Data System (ADS)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  19. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.

    2012-01-01

    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (<10% of maximal force) for typical values of these parameters. Results indicate that motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  20. Design and simulation of permanent magnet synchronous motor control system

    NASA Astrophysics Data System (ADS)

    Li, Li; Liu, Yongqiu

    2018-06-01

    In recent years, with the development of power electronics, microelectronics, new motor control theory and rare earth permanent magnet materials, permanent magnet synchronous motors have been rapidly applied. Permanent magnet synchronous motors have the advantages of small size, low loss and high efficiency. Today, energy conservation and environmental protection are increasingly valued. It is very necessary to study them. Permanent magnet synchronous motor control system has a wide range of application prospects in the fields of electric vehicles, ships and other transportation. Using the simulation function of MATLAB/SIMULINK, a modular design structure was used to simulate the whole system model of speed loop adjustment, current PI modulation, SVPWM (Space Vector Pulse Width Module) wave generation and double closed loop. The results show that this control method has good robustness, and this method can improve the design efficiency and shorten the system design time. In this article, the analysis of the control principle of modern permanent magnet synchronous motor and the various processes of MATLAB simulation application will be analyzed in detail. The basic theory, basic method and application technology of the permanent magnet synchronous motor control system are systematically introduced.

  1. Synthesis of a correcting filter with phase stabilization of the angular velocity of a synchronous motor by the feedback system method

    NASA Technical Reports Server (NTRS)

    Kazlauskas, K. A.; Kurlavichus, A. I.

    1973-01-01

    The operating characteristics of a synchronous electric motor are discussed. A system of phase stabilization of the instantaneous angular velocity of rotation of a synchronous-reaction motor is diagrammed. A mathematical model is developed to show the parameters which affect the operation of the motor. The selection of a correcting filter to use with the motor in order to reduce the reaction of the system to interference is explained.

  2. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    PubMed

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P < .01), resulting in a reduced cortical activity at global (P < .02) and local levels (P < .01). Participants who showed better timed motor performance also showed stronger oscillatory synchronization (r = -0.356; P < .05) and higher cortical activity (r = -0.393; P < .05). Our data may model the ability of the motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  3. Lifecycle Analysis of Different Motors from the Standpoint of Environmental Impact

    NASA Astrophysics Data System (ADS)

    Orlova, S.; Rassõlkin, A.; Kallaste, A.; Vaimann, T.; Belahcen, A.

    2016-12-01

    Comparative analysis is performed for different motors from the standpoint of damage inflicted by them during their lifecycle. Three types of motors have been considered: the synchronous reluctance motor, the permanent magnet assisted synchronous reluctance motor and the induction motor. The assessment of lifecycle has been made in terms of its four stages: manufacturing, distribution, use and end of life. The results show that the production costs of synchronous reluctance motor are lower compared to that of permanent magnet assisted motors, but due to their low efficiency they exert the greatest environmental impact. The main conclusion is that the assessment made at the early designing stage for the related environmental impact enables its reduction.

  4. Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun

    2018-03-01

    This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.

  5. ELECTROMAGNETIC AND ELECTROSTATIC GENERATORS: ANNOTATED BIBLIOGRAPHY.

    DTIC Science & Technology

    generator with split poles, ultrasonic-frequency generator, unipolar generator, single-phase micromotors , synchronous motor, asynchronous motor...asymmetrical rotor, magnetic circuit, dc micromotors , circuit for the automatic control of synchronized induction motors, induction torque micromotors , electric

  6. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    NASA Astrophysics Data System (ADS)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  7. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  8. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  9. Subthalamic nucleus long-range synchronization—an independent hallmark of human Parkinson's disease

    PubMed Central

    Moshel, Shay; Shamir, Reuben R.; Raz, Aeyal; de Noriega, Fernando R.; Eitan, Renana; Bergman, Hagai; Israel, Zvi

    2013-01-01

    Beta-band synchronous oscillations in the dorsolateral region of the subthalamic nucleus (STN) of human patients with Parkinson's disease (PD) have been frequently reported. However, the correlation between STN oscillations and synchronization has not been thoroughly explored. The simultaneous recordings of 2390 multi-unit pairs recorded by two parallel microelectrodes (separated by fixed distance of 2 mm, n = 72 trajectories with two electrode tracks >4 mm STN span) in 57 PD patients undergoing STN deep brain stimulation surgery were analyzed. Automatic procedures were utilized to divide the STN into dorsolateral oscillatory and ventromedial non-oscillatory regions, and to quantify the intensity of STN oscillations and synchronicity. Finally, the synchronicity of simultaneously vs. non-simultaneously recorded pairs were compared using a shuffling procedure. Synchronization was observed predominately in the beta range and only between multi-unit pairs in the dorsolateral oscillatory region (n = 615). In paired recordings between sites in the dorsolateral and ventromedial (n = 548) and ventromedial-ventromedial region pairs (n = 1227), no synchronization was observed. Oscillation and synchronicity intensity decline along the STN dorsolateral-ventromedial axis suggesting a fuzzy border between the STN regions. Synchronization strength was significantly correlated to the oscillation power, but synchronization was no longer observed following shuffling. We conclude that STN long-range beta oscillatory synchronization is due to increased neuronal coupling in the Parkinsonian brain and does not merely reflect the outcome of oscillations at similar frequency. The neural synchronization in the dorsolateral (probably the motor domain) STN probably augments the pathological changes in firing rate and patterns of subthalamic neurons in PD patients. PMID:24312018

  10. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  11. Ultracapacitors for fuel saving in small size hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Solero, L.; Lidozzi, A.; Serrao, V.; Martellucci, L.; Rossi, E.

    The main purpose of the paper is to describe a small size hybrid vehicle having ultracapacitors as on-board storage unit. The vehicle on-board main power supply is achieved by a genset being formed of a 250 cm 3 internal combustion engine and a permanent magnet synchronous electric generator, whereas 4 16V-500F ultracapacitors modules are connected in series in order to supply as well as to store the power peaks during respectively acceleration and braking vehicle modes of operation. The traction power is provided by a permanent magnet synchronous electric motor, whereas a distributed power electronic interface is in charge of all the required electronic conversions as well of controlling the operating conditions for each power unit. The paper discusses the implemented control strategy and shows experimental results on the modes of operation of both generation unit and storage unit.

  12. A new instantaneous torque control of PM synchronous motor for high-performance direct-drive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, S.K.; Kim, H.S.; Kim, C.G.

    1998-05-01

    a new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal fluxmore » distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results well demonstrate the effectiveness of the proposed control.« less

  13. Coupling with concentric contact around motor shaft for line start synchronous motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melfi, Michael J.; Burdeshaw, Galen E.

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, andmore » driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.« less

  14. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  15. Workplace Literacy for World Class Manufacturing. Final Report.

    ERIC Educational Resources Information Center

    Dowling, William D.; And Others

    The Ohio State University, Inland Fisher Guide Division of General Motors, and United Auto Workers Local 969 formed a collaborative partnership in 1990 to train employees whose inadequate literacy skills made them unable to respond to the requirements of "synchronous manufacturing" (or "just in time" production). One of the goals is to reduce the…

  16. Analysis of the dynamics and frequency spectrum synthesis of an optical-mechanical scanning device

    NASA Technical Reports Server (NTRS)

    Andryushkevichyus, A. I.; Kumpikas, A. L.; Kumpikas, K. L.

    1973-01-01

    A two-coordinate optical-mechanical scanning device (OMSD), the operating unit of which is a scanning disk, with directional and focusing optics and a board, on which the data carrier is placed, is examined. The disk and board are kinematically connected by a transmission mechanism, consisting of a worm and complex gear drive and a tightening screw-nut with correcting device, and it is run by a synchronous type motor. The dynamic errors in the system depend, first, on irregularities in rotation of the disk, fluctuations in its axis and vibrations of the table in the plane parallel to the plane of the disk. The basic sources of the fluctuations referred to above are residual disbalance of the rotor and other rotating masses, the periodic component of the driving torque of the synchronous motor, variability in the resistance, kinematic errors in the drive and other things. The fluctuations can be transmitted to the operating units through the kinematic link as a flexural-torsional system, as well as through vibrations of the housing of the device.

  17. Two-motor direct drive control for elevation axis of telescope

    NASA Astrophysics Data System (ADS)

    Tang, T.; Tan, Y.; Ren, G.

    2014-07-01

    Two-motor application has become a very attractive filed in important field which high performance is permitted to achieve of position, speed, and acceleration. In the elevation axis of telescope control system, two-motor direct drive is proposed to enhance the high performance of tracking control system. Although there are several dominant strengths such as low size of motors and high torsional structural dynamics, the synchronization control of two motors is a very difficult and important. In this paper, a multi-loop control technique base master-slave current control is used to synchronize two motors, including current control loop, speed control loop and position control loop. First, the direct drive function of two motors is modeled. Compared of single motor direct control system, the resonance frequency of two motor control systems is same; while the anti-resonance frequency of two motors control system is 1.414 times than those of sing motor system. Because of rigid coupling for direct drive, the speed of two motor of the system is same, and the synchronization of torque for motors is critical. The current master-slave control technique is effective to synchronize the torque, which the current loop of the master motors is tracked the other slave motor. The speed feedback into the input of current loop of the master motors. The experiments test the performance of the two motors drive system. The random tracking error is 0.0119" for the line trajectory of 0.01°/s.

  18. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  19. High temperature superconducting synchronous motor design and test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, R.; Zhang, B.; Shoykhet, B.

    1996-10-01

    High horsepower synchronous motors with high temperature superconducting (HTS) field windings offer the potential to cut motor operating losses in half compared to conventional energy efficient induction motors available today. The design, construction and test of a prototype, air core, synchronous motor with helium gas cooled HTS field coils will be described in this paper. The work described is part of a US Department of Energy, Superconductivity Partnership Initiative award. The motor uses a modified conventional motor armature combined with a vacuum insulated rotor that contains the four racetrack-shaped HTS field coils. The rotor is cooled by helium gas somore » that the HTS coils operate at a temperature of 30 K. This paper provides a status report on HTS motor research and development at Reliance Lab., Rockwell Automation that will lead to commercial HTS motors for utility and industrial applications.« less

  20. Experimental Investigation of Superconducting Synchronous Machines

    DTIC Science & Technology

    The report details the design and testing of a synchronous motor with superconducting field and armature windings. Data are furnished on the...as a generator with its armature in LN2 and in the superconducting state are given. Data are given on the machine operated as a synchronous motor. The

  1. Preceding muscle activity influences motor unit discharge and rate of torque development during ballistic contractions in humans

    PubMed Central

    Van Cutsem, Michaël; Duchateau, Jacques

    2005-01-01

    To investigate the effect of initial conditions on the modulation of motor unit discharge during fast voluntary contractions, we compared ballistic isometric contractions of the ankle dorsiflexor muscles that were produced from either a resting state or superimposed on a sustained contraction. The torque of the dorsiflexors and the surface and intramuscular EMGs from the tibialis anterior were recorded. The results showed that the performance of a ballistic contraction from a sustained contraction (∼25% maximal voluntary contraction (MVC)) had a negative effect on the maximal rate of torque development. Although the electromechanical delay was shortened, the EMG activity during the ballistic contraction was less synchronized. These observations were associated with a significant decline in the average discharge rate of single motor units (89.8 ± 3.8 versus 115 ± 5.8 Hz) and in the percentage of units (6.2 versus 15.5% of the whole sample) that exhibited double discharges at brief intervals (= 5 ms). High-threshold units that were not recruited during the sustained contraction displayed the same activation pattern, which indicates that the mechanisms responsible for the decline in discharge rate were not restricted to previously activated units, but appear to influence the entire motor unit pool. When a premotor silent period (SP) was observed at the transition from the sustained muscular activity to the ballistic contraction (19% of the trials), these adjustments in motor unit activity were not present, and the ballistic contractions were similar to those performed from a resting state. Together, these results indicate that initial conditions can influence the capacity for motor unit discharge rate and hence the performance of a fast voluntary contraction. PMID:15539402

  2. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  3. Design of permanent magnet synchronous motor speed control system based on SVPWM

    NASA Astrophysics Data System (ADS)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  4. The 3-Second Rule in Hereditary Pure Cerebellar Ataxia: A Synchronized Tapping Study

    PubMed Central

    Matsuda, Shunichi; Matsumoto, Hideyuki; Furubayashi, Toshiaki; Hanajima, Ritsuko; Tsuji, Shoji; Ugawa, Yoshikazu; Terao, Yasuo

    2015-01-01

    The ‘3-second rule’ has been proposed based on miscellaneous observations that a time period of around 3 seconds constitutes the fundamental unit of time related to the neuro-cognitive machinery in normal humans. The aim of paper was to investigate the temporal processing in patients with spinocerebellar ataxia type 6 (SCA6) and SCA31, pure cerebellar types of spinocerebellar degeneration, using a synchronized tapping task. Seventeen SCA patients (11 SCA6, 6 SCA31) and 17 normal age-matched volunteers participated. The task required subjects to tap a keyboard in synchrony with sequences of auditory stimuli presented at fixed interstimulus intervals (ISIs) between 200 and 4800 ms. In this task, the subjects required non-motor components to estimate the time of forthcoming tone in addition to motor components to tap. Normal subjects synchronized their taps to the presented tones at shorter ISIs, whereas as the ISI became longer, the normal subjects displayed greater latency between the tone and the tapping (transition zone). After the transition zone, normal subjects pressed the button delayed relative to the tone. On the other hand, SCA patients could not synchronize their tapping with the tone even at shorter ISIs, although they pressed the button delayed relative to the tone earlier than normal subjects did. The earliest time of delayed tapping appearance after the transition zone was 4800 ms in normal subjects but 1800 ms in SCA patients. The span of temporal integration in SCA patients is shortened compared to that in normal subjects. This could represent non-motor cerebellar dysfunction in SCA patients. PMID:25706752

  5. 93. DETAIL OF GENERAL ELECTRIC 250HP SYNCHRONOUS MOTOR FROM DRIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. DETAIL OF GENERAL ELECTRIC 250-HP SYNCHRONOUS MOTOR FROM DRIVE END. MOTOR BADGE PLATE READS 263 AMP, 400 VOLT, FRAME 6274-D #4940649, 250 HORSEPOWER, TYPE TSR, 3 PHASE, 60 CYCLE, SPEED 300 RPM. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  6. A Drive Method of Permanent Magnet Synchronous Motor Using Torque Angle Estimation without Position Sensor

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuro; Takahashi, Hisashi

    In some motor applications, it is very difficult to attach a position sensor to the motor in housing. One of the examples of such applications is the dental handpiece-motor. In those designs, it is necessary to drive highly efficiency at low speed and variable load condition without a position sensor. We developed a method to control a motor high-efficient and smoothly at low speed without a position sensor. In this paper, the method in which permanent magnet synchronous motor is controlled smoothly and high-efficient by using torque angle control in synchronized operation is shown. The usefulness is confirmed by experimental results. In conclusion, the proposed sensor-less control method has been achieved to be very efficiently and smoothly.

  7. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    PubMed

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  8. Acceleration feedback of a current-following synchronized control algorithm for telescope elevation axis

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Zhang, Tong; Du, Jun-Feng; Ren, Ge; Tian, Jing

    2016-11-01

    This paper proposes a dual-motor configuration to enhance closed-loop performance of a telescope control system. Two identical motors are mounted on each side of a U-type frame to drive the telescope elevation axis instead of a single motor drive, which is usually used in a classical design. This new configuration and mechanism can reduce the motor to half the size used in the former design, and it also provides some other advantages. A master-slave current control mode is employed to synchronize the two motors. Acceleration feedback control is utilized to further enhance the servo performance. Extensive experiments are used to validate the effectiveness of the proposed control algorithm in synchronization, disturbance attenuation and low-velocity tracking.

  9. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    PubMed

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  11. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOEpatents

    Coffey, Howard T.

    1993-01-01

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  12. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  13. Structural Analysis of the Support System for a Large Compressor Driven by a Synchronous Electric Motor

    NASA Technical Reports Server (NTRS)

    Winter, J. R.

    1984-01-01

    For economic reasons, the steam drive for a large compressor was replaced by a large synchronous electric motor. Due to the resulting large increase in mass and because the unit was mounted on a steel frame approximately 18 feet above ground level, it was deemed necessary to determine if a steady state or transient vibration problem existed. There was a definite possibility that a resonant or near resonant condition could be encountered. The ensuing analysis, which led to some structural changes as the analysis proceeded, did not reveal any major steady state vibration problems. However, the analysis did indicate that the system would go through several natural frequencies of the support structure during start-up and shutdown. This led to the development of special start-up and shutdown procedures to minimize the possibility of exciting any of the major structural modes. A coast-down could result in significant support structure and/or equipment damage, especially under certain circumstances. In any event, dynamic field tests verified the major analytical results. The unit has now been operating for over three years without any major vibration problems.

  14. The Power of Auditory-Motor Synchronization in Sports: Enhancing Running Performance by Coupling Cadence with the Right Beats

    PubMed Central

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory-motor synchronization helps to optimize running economy. PMID:23951000

  15. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    PubMed

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants' cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory-motor synchronization helps to optimize running economy.

  16. Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm

    NASA Astrophysics Data System (ADS)

    Knypiński, Łukasz

    2017-12-01

    In this paper an algorithm for the optimization of excitation system of line-start permanent magnet synchronous motors will be presented. For the basis of this algorithm, software was developed in the Borland Delphi environment. The software consists of two independent modules: an optimization solver, and a module including the mathematical model of a synchronous motor with a self-start ability. The optimization module contains the bat algorithm procedure. The mathematical model of the motor has been developed in an Ansys Maxwell environment. In order to determine the functional parameters of the motor, additional scripts in Visual Basic language were developed. Selected results of the optimization calculation are presented and compared with results for the particle swarm optimization algorithm.

  17. Dual motor drive vehicle speed synchronization and coordination control strategy

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing

    2018-04-01

    Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.

  18. Error reduction in EMG signal decomposition

    PubMed Central

    Kline, Joshua C.

    2014-01-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159

  19. Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.

    PubMed

    Varlet, Manuel; Schmidt, R C; Richardson, Michael J

    2016-01-01

    Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.

  20. Instrumentation for motor-current signature analysis using synchronous sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castleberry, K.N.

    1996-07-01

    Personnel in the Instrumentation and Controls Division at Oak Ridge National Laboratory, in association with the United States Enrichment Corporation, the U.S. Navy, and various Department of Energy sponsors, have been involved in the development and application of motor-current signature analysis for several years. In that time, innovation in the field has resulted in major improvements in signal processing, analysis, and system performance and capabilities. Recent work has concentrated on industrial implementation of one of the most promising new techniques. This report describes the developed method and the instrumentation package that is being used to investigate and develop potential applications.

  1. 92. DETAIL OF GENERAL ELECTRIC 250HP SYNCHRONOUS MOTOR FROM SLIP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. DETAIL OF GENERAL ELECTRIC 250-HP SYNCHRONOUS MOTOR FROM SLIP RING END. NOTE BOLTS AND SPRINGS OF BRAKE BAND, HEAVY-WIRE ARMATURE WINDINGS, AND TIGHTLY WOUND STATOR (FIELD) COILS. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  2. Control method for peak power delivery with limited DC-bus voltage

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-09-05

    A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.

  3. The acquisition of socio-motor improvisation in the mirror game.

    PubMed

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-04-01

    Socio-motor improvisation is defined as the creative action of two or more people without a script or anticipated preparation. It is evaluated through two main parameters: movement synchronization and movement richness. Experts in art (e.g., dance, theater or music) are known to exhibit higher synchronization and to perform richer movements during interpersonal improvisation, but how these competences evolve over time is largely unknown. In the present study, we investigated whether performing more synchronized and richer movements over time can promote the acquisition of improvisation. Pairs of novice participants were instructed to play an improvisation mirror game in three different sessions. Between sessions, they performed an unintended interpersonal coordination task in which synchronization and richness were manipulated, resulting in four different groups of dyads. Our results demonstrate that synchronization during improvisation improved for all groups whereas movement richness only enhanced for dyads that performed synchronized movements during unintended coordination tasks. Our findings suggest that movement synchrony contributes more than movement richness to the acquisition of socio-motor improvisation in the mirror game. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Controller for computer control of brushless dc motors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  5. The Numerical Calculation and Experimental Measurement of the Inductance Parameters for Permanent Magnet Synchronous Motor in Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Qiao, Mingzhong; Zhu, Peng

    2017-12-01

    A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.

  6. Synchronous Motor with Hybrid Permanent Magnets on the Rotor

    PubMed Central

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-01-01

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume. PMID:25014102

  7. Synchronous motor with hybrid permanent magnets on the rotor.

    PubMed

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-07-10

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  8. White matter microstructural properties correlate with sensorimotor synchronization abilities.

    PubMed

    Blecher, Tal; Tal, Idan; Ben-Shachar, Michal

    2016-09-01

    Sensorimotor synchronization (SMS) to an external auditory rhythm is a developed ability in humans, particularly evident in dancing and singing. This ability is typically measured in the lab via a simple task of finger tapping to an auditory beat. While simplistic, there is some evidence that poor performance on this task could be related to impaired phonological and reading abilities in children. Auditory-motor synchronization is hypothesized to rely on a tight coupling between auditory and motor neural systems, but the specific pathways that mediate this coupling have not been identified yet. In this study, we test this hypothesis and examine the contribution of fronto-temporal and callosal connections to specific measures of rhythmic synchronization. Twenty participants went through SMS and diffusion magnetic resonance imaging (dMRI) measurements. We quantified the mean asynchrony between an auditory beat and participants' finger taps, as well as the time to resynchronize (TTR) with an altered meter, and examined the correlations between these behavioral measures and diffusivity in a small set of predefined pathways. We found significant correlations between asynchrony and fractional anisotropy (FA) in the left (but not right) arcuate fasciculus and in the temporal segment of the corpus callosum. On the other hand, TTR correlated with FA in the precentral segment of the callosum. To our knowledge, this is the first demonstration that relates these particular white matter tracts with performance on an auditory-motor rhythmic synchronization task. We propose that left fronto-temporal and temporal-callosal fibers are involved in prediction and constant comparison between auditory inputs and motor commands, while inter-hemispheric connections between the motor/premotor cortices contribute to successful resynchronization of motor responses with a new external rhythm, perhaps via inhibition of tapping to the previous rhythm. Our results indicate that auditory-motor synchronization skills are associated with anatomical pathways that have been previously related to phonological awareness, thus offering a possible anatomical basis for the behavioral covariance between these abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Sensorless sliding mode observer for a five-phase permanent magnet synchronous motor drive.

    PubMed

    Hosseyni, Anissa; Trabelsi, Ramzi; Mimouni, Med Faouzi; Iqbal, Atif; Alammari, Rashid

    2015-09-01

    This paper deals with the sensorless vector controlled five-phase permanent magnet synchronous motor (PMSM) drive based on a sliding mode observer (SMO). The observer is designed considering the back electromotive force (EMF) of five-phase permanent magnet synchronous motor. The SMO structure and design are illustrated. Stability of the proposed observer is demonstrated using Lyapunov stability criteria. The proposed strategy is asymptotically stable in the context of Lyapunov theory. Simulated results on a five-phase PMSM drive are displayed to validate the feasibility and the effectiveness of the proposed control strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Role of the dorsal premotor cortex in rhythmic auditory-motor entrainment: a perturbational approach by rTMS.

    PubMed

    Giovannelli, Fabio; Innocenti, Iglis; Rossi, Simone; Borgheresi, Alessandra; Ragazzoni, Aldo; Zaccara, Gaetano; Viggiano, Maria Pia; Cincotta, Massimo

    2014-04-01

    Synchronization of body movements to an external beat is a universal human ability, which has also been recently documented in nonhuman species. The neural substrates of this rhythmic motor entrainment are still under investigation. Correlational neuroimaging data suggest an involvement of the dorsal premotor cortex (dPMC) and the supplementary motor area (SMA). In 14 healthy volunteers, we more specifically investigated the neural network underlying this phenomenon using a causal approach by an established 1-Hz repetitive transcranial magnetic stimulation (rTMS) protocol, which produces a focal suppression of cortical excitability outlasting the stimulation period. Synchronization accuracy between rhythmic cues and right index finger tapping, as measured by the mean time lag (asynchrony) between motor and auditory events, was significantly affected when the right dPMC function was transiently perturbed by "off-line" focal rTMS, whereas the reproduction of the rhythmic sequence per se (inter-tap-interval) was spared. This approach affected metrical rhythms of different complexity, but not non-metrical or isochronous sequences. Conversely, no change in auditory-motor synchronization was observed with rTMS of the SMA, of the left dPMC or over a control site (midline occipital area). Our data strongly support the view that the right dPMC is crucial for rhythmic auditory-motor synchronization in humans.

  11. Rhythm perturbations in acoustically paced treadmill walking after stroke.

    PubMed

    Roerdink, Melvyn; Lamoth, Claudine J C; van Kordelaar, Joost; Elich, Peter; Konijnenbelt, Manin; Kwakkel, Gert; Beek, Peter J

    2009-09-01

    In rehabilitation, acoustic rhythms are often used to improve gait after stroke. Acoustic cueing may enhance gait coordination by creating a stable coupling between heel strikes and metronome beats and provide a means to train the adaptability of gait coordination to environmental changes, as required in everyday life ambulation. To examine the stability and adaptability of auditory-motor synchronization in acoustically paced treadmill walking in stroke patients. Eleven stroke patients and 10 healthy controls walked on a treadmill at preferred speed and cadence under no metronome, single-metronome (pacing only paretic or nonparetic steps), and double-metronome (pacing both footfalls) conditions. The stability of auditory-motor synchronization was quantified by the variability of the phase relation between footfalls and beats. In a separate session, the acoustic rhythms were perturbed and adaptations to restore auditory-motor synchronization were quantified. For both groups, auditory-motor synchronization was more stable for double-metronome than single-metronome conditions, with stroke patients exhibiting an overall weaker coupling of footfalls to metronome beats than controls. The recovery characteristics following rhythm perturbations corroborated the stability findings and further revealed that stroke patients had difficulty in accelerating their steps and instead preferred a slower-step response to restore synchronization. In gait rehabilitation practice, the use of acoustic rhythms may be more effective when both footfalls are paced. In addition, rhythm perturbations during acoustically paced treadmill walking may not only be employed to evaluate the stability of auditory-motor synchronization but also have promising implications for evaluation and training of gait adaptations in neurorehabilitation practice.

  12. The effect of recording site on extracted features of motor unit action potential.

    PubMed

    Artuğ, N Tuğrul; Goker, Imran; Bolat, Bülent; Osman, Onur; Kocasoy Orhan, Elif; Baslo, M Baris

    2016-06-01

    Motor unit action potential (MUAP), which consists of individual muscle fiber action potentials (MFAPs), represents the electrical activity of the motor unit. The values of the MUAP features are changed by denervation and reinnervation in neurogenic involvement as well as muscle fiber loss with increased diameter variability in myopathic diseases. The present study is designed to investigate how increased muscle fiber diameter variability affects MUAP parameters in simulated motor units. In order to detect this variation, simulated MUAPs were calculated both at the innervation zone where the MFAPs are more synchronized, and near the tendon, where they show increased temporal dispersion. Reinnervation in neurogenic state increases MUAP amplitude for the recordings at both the innervation zone and near the tendon. However, MUAP duration and the number of peaks significantly increased in a case of myopathy for recordings near the tendon. Furthermore, of the new features, "number of peaks×spike duration" was found as the strongest indicator of MFAP dispersion in myopathy. MUAPs were also recorded from healthy participants in order to investigate the biological counterpart of the simulation data. MUAPs which were recorded near to tendon revealed significantly prolonged duration and decreased amplitude. Although the number of peaks was increased by moving the needle near to tendon, this was not significant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The control system of synchronous movement of the gantry crane supports

    NASA Astrophysics Data System (ADS)

    Odnokopylov, I. G.; Gneushev, V. V.; Galtseva, O. V.; Natalinova, N. M.; Li, J.; Serebryakov, D. I.

    2017-01-01

    The paper presents study findings on synchronization of the gantry crane support movement. Asynchrony moving speed bearings may lead to an emergency mode at the natural rate of deformed metal structure alignment. The use of separate control of asynchronous motors with the vector control method allows synchronizing the movement speed of crane supports and achieving a balance between the motors. Simulation results of various control systems are described. Recommendations regarding the system further application are given.

  14. Variation in motor output and motor performance in a centrally generated motor pattern

    PubMed Central

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  15. Temporal prediction abilities are mediated by motor effector and rhythmic expertise.

    PubMed

    Manning, Fiona C; Harris, Jennifer; Schutz, Michael

    2017-03-01

    Motor synchronization is a critical part of musical performance and listening. Recently, motor control research has described how movements that contain more available degrees of freedom are more accurately timed. Previously, we demonstrated that stick tapping improves perception in a timing detection task, where percussionists greatly outperformed non-percussionists only when tapping along. Since most synchronization studies implement finger tapping to examine simple motor synchronization, here we completed a similar task where percussionists and non-percussionists synchronized using finger tapping; movement with fewer degrees of freedom than stick tapping. Percussionists and non-percussionists listened to an isochronous beat sequence and identified the timing of a probe tone. On half of the trials, they tapped along with their index finger, and on the other half of the trials, they listened without moving prior to making timing judgments. We found that both groups benefited from tapping overall. Interestingly, percussionists performed only marginally better than did non-percussionists when finger tapping and no different when listening alone, differing from past studies reporting highly superior timing abilities in percussionists. Additionally, we found that percussionist finger tapping was less variable and less asynchronous than was non-percussionist tapping. Moreover, in both groups finger tapping was more variable and more asynchronous than stick tapping in our previous study. This study demonstrates that the motor effector implemented in tapping studies affects not only synchronization abilities, but also subsequent prediction abilities. We discuss these findings in light of effector-specific training and degrees of freedom in motor timing, both of which impact timing abilities to different extents.

  16. Your move or mine? Music training and kinematic compatibility modulate synchronization with self- versus other-generated dance movement.

    PubMed

    Su, Yi-Huang; Keller, Peter E

    2018-01-29

    Motor simulation has been implicated in how musicians anticipate the rhythm of another musician's action to achieve interpersonal synchronization. Here, we investigated whether similar mechanisms govern a related form of rhythmic action: dance. We examined (1) whether synchronization with visual dance stimuli was influenced by movement agency, (2) whether music training modulated simulation efficiency, and (3) what cues were relevant for simulating the dance rhythm. Participants were first recorded dancing the basic Charleston steps paced by a metronome, and later in a synchronization task they tapped to the rhythm of their own point-light dance stimuli, stimuli of another physically matched participant or one matched in movement kinematics, and a quantitative average across individuals. Results indicated that, while there was no overall "self advantage" and synchronization was generally most stable with the least variable (averaged) stimuli, motor simulation was driven-indicated by high tap-beat variability correlations-by familiar movement kinematics rather than morphological features. Furthermore, music training facilitated simulation, such that musicians outperformed non-musicians when synchronizing with others' movements but not with their own movements. These findings support action simulation as underlying synchronization in dance, linking action observation and rhythm processing in a common motor framework.

  17. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.

    PubMed

    Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza

    2015-03-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to 'stimulation off'. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with 'stimulation on' compared to 'stimulation off' could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    PubMed Central

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to ‘stimulation off’. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with ‘stimulation on’ compared to ‘stimulation off’ could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. PMID:25558877

  19. Electromyographic analysis of repeated bouts of eccentric exercise.

    PubMed

    McHugh, M P; Connolly, D A; Eston, R G; Gartman, E J; Gleim, G W

    2001-03-01

    The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.

  20. Generating Spatiotemporal Joint Torque Patterns from Dynamical Synchronization of Distributed Pattern Generators

    PubMed Central

    Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo

    2009-01-01

    Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216

  1. Moving to the Beat and Singing are Linked in Humans

    PubMed Central

    Dalla Bella, Simone; Berkowska, Magdalena; Sowiński, Jakub

    2015-01-01

    The abilities to sing and to move to the beat of a rhythmic auditory stimulus emerge early during development, and both engage perceptual, motor, and sensorimotor processes. These similarities between singing and synchronization to a beat may be rooted in biology. Patel (2008) has suggested that motor synchronization to auditory rhythms may have emerged during evolution as a byproduct of selection for vocal learning (“vocal learning and synchronization hypothesis”). This view predicts a strong link between vocal performance and synchronization skills in humans. Here, we tested this prediction by asking occasional singers to tap along with auditory pulse trains and to imitate familiar melodies. Both vocal imitation and synchronization skills were measured in terms of accuracy and precision or consistency. Accurate and precise singers tapped more in the vicinity of the pacing stimuli (i.e., they were more accurate) than less accurate and less precise singers. Moreover, accurate singers were more consistent when tapping to the beat. These differences cannot be ascribed to basic motor skills or to motivational factors. Individual differences in terms of singing proficiency and synchronization skills may reflect the variability of a shared sensorimotor translation mechanism. PMID:26733370

  2. Development of the pump protection system against cavitation on the basis of the stator current signature analysis of drive electric motor

    NASA Astrophysics Data System (ADS)

    Kipervasser, M. V.; Gerasimuk, A. V.; Simakov, V. P.

    2018-05-01

    In the present paper a new registration method of such inadmissible phenomenon as cavitation in the operating mode of centrifugal pump is offered. Influence of cavitation and extent of its development on the value of mechanical power consumed by the pump from the electric motor is studied. On the basis of design formulas the joint mathematical model of centrifugal pumping unit with the synchronous motor is created. In the model the phenomena accompanying the work of a pumping installation in the cavitation mode are considered. Mathematical modeling of the pump operation in the considered emergency operation is carried out. The chart of stator current of the electric motor, depending on the degree of cavitation development of is received. On the basis of the analysis of the obtained data the conclusion on the possibility of registration of cavitation by the current of drive electric motor is made and the functional diagram of the developed protection system is offered, its operation principle is described.

  3. Characteristic Examination of New Synchronous Motor that Composes Craw Teeth of Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Asaka, Kazuo

    We examined the claw type teeth motor as one application of the soft magnetic composite to a motor core. In order to understand quantitatively the characteristics of the claw type teeth motor, we used the 3-dimensional electromagnetic field analysis to predict its characteristics in advance and manufactured a trial motor to estimate it. And we examined the advantages of the claw type teeth motor comparing with a conventional slot type motor. The results are: 1. By using the 3-dimensional electromagnetic field analysis, it is able to estimate with high accuracy the characteristics of the 3-phase permanent magnet synchronous claw type teeth motor having a core composed of the soft magnetic composite. 2. The claw type teeth motor is able to achieve about 20% higher output than a conventional slot type motor having an electromagnetic steel core, while both volumes are equal. 3. The motor efficiency of the claw type teeth motor is about 3.5% higher than the conventional motor.

  4. Illusory body ownership of an invisible body interpolated between virtual hands and feet via visual-motor synchronicity.

    PubMed

    Kondo, Ryota; Sugimoto, Maki; Minamizawa, Kouta; Hoshi, Takayuki; Inami, Masahiko; Kitazaki, Michiteru

    2018-05-15

    Body ownership can be modulated through illusory visual-tactile integration or visual-motor synchronicity/contingency. Recently, it has been reported that illusory ownership of an invisible body can be induced by illusory visual-tactile integration from a first-person view. We aimed to test whether a similar illusory ownership of the invisible body could be induced by the active method of visual-motor synchronicity and if the illusory invisible body could be experienced in front of and facing away from the observer. Participants observed left and right white gloves and socks in front of them, at a distance of 2 m, in a virtual room through a head-mounted display. The white gloves and socks were synchronized with the observers' actions. In the experiments, we tested the effect of synchronization, and compared this to a whole-body avatar, measuring self-localization drift. We observed that visual hands and feet were sufficient to induce illusory body ownership, and this effect was as strong as using a whole-body avatar.

  5. Gender and autistic traits modulate implicit motor synchrony

    PubMed Central

    Cheng, Miao; Kato, Masaharu

    2017-01-01

    Interpersonal motor synchrony during walking or dancing is universally observed across cultures, and this joint movement was modulated by physical and social parameters. However, human interactions are greatly shaped by our unique traits, and self-related factors are surprisingly little studied in the context of interpersonal motor synchrony. In this study, we investigated two such factors known to be highly associated with motor coordination: gender and autistic traits. We employed a real-world task extending our understanding beyond laboratory tasks. Participants of the same gender were paired up to walk and chat in a natural environment. A cover story was introduced so that participants would not know their walking steps were being recorded and instead believed that their location was being tracked by a global positioning system (GPS), so they would ignore the motor recording. We found that the female pairs’ steps were more synchronized than those of the males, and higher autistic tendencies (measured by the autism-spectrum quotient) attenuated synchronous steps. Those who synchronized better had higher impression rating increase for their walking partners (measured by interpersonal judgement scale) than those who synchronized less well. Our results indicated that the participants’ joint movements were shaped by predisposed traits and might share similar mechanism with social functions such as empathy. PMID:28873419

  6. Variable-frequency synchronous motor drives for electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalmers, B.J.; Musaba, L.; Gosden, D.F.

    1996-07-01

    The performance capability envelope of a variable-frequency, permanent-magnet synchronous motor drive with field weakening is dependent upon the product of maximum current and direct-axis inductance. To obtain a performance characteristic suitable for a typical electric vehicle drive, in which short-term increase of current is applied, it is necessary to design an optimum value of direct-axis inductance. The paper presents an analysis of a hybrid motor design which uses a two-part rotor construction comprising a surface-magnet part and an axially laminated reluctance part. This arrangement combines the properties of all other types of synchronous motor and offers a greater choice ofmore » design variables. It is shown that the desired form of performance may be achieved when the high-inductance axis of the reluctance part is arranged to lead the magnet axis by 90{degree} (elec.).« less

  7. Variable-frequency synchronous motor drives for electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalmers, B.J.; Musaba, L.; Gosden, D.F.

    1995-12-31

    The performance capability envelope of a variable-frequency, permanent-magnet synchronous motor drive with field weakening is dependent upon the product of maximum current and direct-axis inductance. To obtain a performance characteristic suitable for a typical electric vehicle drive, in which short-term increase of current is applied, it is necessary to design an optimum value of direct-axis inductance. The paper presents an analysis of a hybrid motor design which uses a two-part rotor construction comprising a surface-magnet part and an axially-laminated reluctance part. This arrangement combines the properties of all other types of synchronous motor and offers a greater choice of designmore » variables. It is shown that the desired form of performance may be achieved when the high-inductance axis of the reluctance part is arranged to lead the magnet axis by 90{degree} (elec.).« less

  8. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  9. Position sensor for linear synchronous motors employing halbach arrays

    DOEpatents

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  10. Sensorless position estimation and control of permanent-magnet synchronous motors using a saturation model

    NASA Astrophysics Data System (ADS)

    Kassem Jebai, Al; Malrait, François; Martin, Philippe; Rouchon, Pierre

    2016-03-01

    Sensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach.

  11. Study on the precision of the guide control system of independent wheel

    NASA Astrophysics Data System (ADS)

    ji, Y.; Ren, L.; Li, R.; Sun, W.

    2016-09-01

    The torque ripple of permanent magnet synchronous motor vector with active control is studied in this paper. The ripple appears because of the impact of position detection and current detection, the error generated in inverter and the influence of motor ontology (magnetic chain harmonic and the cogging effect and so on). Then, the simulation dynamic model of bogie with permanent magnet synchronous motor vector control system is established with MATLAB/Simulink. The stability of bogie with steering control is studied. The relationship between the error of the motor and the precision of the control system is studied. The result shows that the existing motor does not meet the requirements of the control system.

  12. Developmental profile of slow hand movement oscillation coupling in humans.

    PubMed

    Deutsch, Katherine M; Stephens, John A; Farmer, Simon F

    2011-05-01

    In adults, slow hand and finger movements are characterized by 6- to 12-Hz discontinuities visible in the raw records and spectra of motion signals such as acceleration. This pulsitile behavior is correlated with motor unit synchronization at 6-12 Hz as shown by significant coherence at these frequencies between pairs of motor units and between the motor units and the acceleration recorded from the limb part controlled by the muscle, suggesting that it has a central origin. In this study, we examined the correlation between this 6- to 12-Hz pulsatile behavior and muscle activity as a function of childhood development. Sixty-eight participants (ages 4-25 yr) performed static wrist extensions against gravity or slow wrist extension and flexion movements while extensor carpi radialis muscle electromyographic (EMG) and wrist acceleration signals were simultaneously recorded. Coherence between EMG and acceleration within the 6- to 12-Hz frequency band was used as an index of the strength of the relation between central drive and the motor output. The main findings of the study are 1) EMG-acceleration coherence increased with increases in age, with the age differences being greater under movement conditions and the difference between conditions increasing with age; 2) the EMG signal showed increases in normalized power with increases in age under both conditions; and 3) coherence under movement conditions was moderately positively correlated with manual dexterity. These findings indicate that the strength of the 6- to 12-Hz central oscillatory drive to the motor output increases through childhood development and may contribute to age-related improvements in motor skills.

  13. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.

    PubMed

    Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R

    2012-06-06

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.

  14. Exploring Three-Phase Systems and Synchronous Motors: A Low-Voltage and Low-Cost Experiment at the Sophomore Level

    ERIC Educational Resources Information Center

    Schubert, T. F., Jr.; Jacobitz, F. G.; Kim, E. M.

    2011-01-01

    In order to meet changing curricular and societal needs, a three-phase system and synchronous motor laboratory experience for sophomore-level students in a wide variety of engineering majors was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum, and in that it focuses primarily on basic…

  15. Investigation of Combined Motor/Magnetic Bearings for Flywheel Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Hofmann, Heath

    2003-01-01

    Dr. Hofmann's work in the summer of 2003 consisted of two separate projects. In the first part of the summer, Dr. Hofmann prepared and collected information regarding rotor losses in synchronous machines; in particular, machines with low rotor losses operating in vacuum and supported by magnetic bearings, such as the motor/generator for flywheel energy storage systems. This work culminated in a presentation at NASA Glenn Research Center on this topic. In the second part, Dr. Hofmann investigated an approach to flywheel energy storage where the phases of the flywheel motor/generator are connected in parallel with the phases of an induction machine driving a mechanical actuator. With this approach, additional power electronics for driving the flywheel unit are not required. Simulations of the connection of a flywheel energy storage system to a model of an electromechanical actuator testbed at NASA Glenn were performed that validated the proposed approach. A proof-of-concept experiment using the D1 flywheel unit at NASA Glenn and a Sundstrand induction machine connected to a dynamometer was successfully conducted.

  16. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    PubMed

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Impairments of Social Motor Synchrony Evident in Autism Spectrum Disorder

    PubMed Central

    Fitzpatrick, Paula; Frazier, Jean A.; Cochran, David M.; Mitchell, Teresa; Coleman, Caitlin; Schmidt, R. C.

    2016-01-01

    Social interactions typically involve movements of the body that become synchronized over time and both intentional and spontaneous interactional synchrony have been found to be an essential part of successful human interaction. However, our understanding of the importance of temporal dimensions of social motor synchrony in social dysfunction is limited. Here, we used a pendulum coordination paradigm to assess dynamic, process-oriented measures of social motor synchrony in adolescents with and without autism spectrum disorder (ASD). Our data indicate that adolescents with ASD demonstrate less synchronization in both spontaneous and intentional interpersonal coordination. Coupled oscillator modeling suggests that ASD participants assembled a synchronization dynamic with a weaker coupling strength, which corresponds to a lower sensitivity and decreased attention to the movements of the other person, but do not demonstrate evidence of a delay in information transmission. The implication of these findings for isolating an ASD-specific social synchronization deficit that could serve as an objective, bio-behavioral marker is discussed. PMID:27630599

  18. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills

    PubMed Central

    Tierney, Adam T.; Kraus, Nina

    2013-01-01

    Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship between motor output and auditory input, we predicted that subjects better able to tap to the beat would perform better on attention tests. Second, since auditory-motor synchronization requires fine temporal precision within the auditory system for the extraction of a sound’s onset time, we predicted that subjects better able to tap to the beat would be less affected by backward masking, a measure of temporal precision within the auditory system. As predicted, tapping performance related to reading, attention, and backward masking. These results motivate future research investigating whether beat synchronization training can improve not only reading ability, but potentially executive function and basic auditory processing as well. PMID:23400117

  19. Motor correlates of models of secondary bilateral synchrony and multiple epileptic foci.

    PubMed

    Jiruska, Premysl; Proks, Jan; Otáhal, Jakub; Mares, Pavel

    2007-10-01

    Bilateral synchronous epileptiform discharges registered in patients with partial epilepsies may be generated by different pathophysiological mechanisms. Differentiation between underlying mechanisms is often crucial for correct diagnosis and adequate treatment in clinical epileptology. The aim of this study was to model in rats two possible mechanisms--secondary bilateral sychrony and interaction between multiple epilepic foci. Furthermore, to describe in detail semiology, laterality and differences in motor phenomena. Secondary bilateral synchrony was modeled by unilateral topical application of bicuculline methiodide (BMI) over the sensorimotor cortex. Bilateral symmetric application of BMI was used as a model of multiple epileptic foci. Electrographic and behavioural phenomena were recorded for 1h following the application of BMI. Electroencephalogram in both groups was characterized by presence of bilateral synchronous discharges. Myoclonic and clonic seizures involving forelimb and head muscles represented the most common motor seizure pattern in both groups. Significant differences were found in the laterality of motor phenomena. Motor seizures in unilateral foci always started in the contralateral limbs whereas symmetrical foci exhibited bilateral independent onset of convulsions. Similar lateralization was observed in interictal motor phenomena (myoclonic jerks). An important influence of posture on epileptic motor phenomena was demonstrated. Active or passive changes in animal posture (verticalization to bipedal posture) caused conversion from unilateral myoclonic jerks or clonic seizures to bilaterally synchronous (generalized) motor phenomena in both groups.

  20. State-Dependent Spike and Local Field Synchronization between Motor Cortex and Substantia Nigra in Hemiparkinsonian Rats

    PubMed Central

    Brazhnik, Elena; Cruz, Ana V.; Avila, Irene; Wahba, Marian I.; Novikov, Nikolay; Ilieva, Neda M.; McCoy, Alex J.; Gerber, Colin; Walters, Judith. R.

    2012-01-01

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of Parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, seven days after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8–25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25–40 Hz band with a peak frequency at 30–35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25–40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity. PMID:22674263

  1. Music-supported motor training after stroke reveals no superiority of synchronization in group therapy.

    PubMed

    Van Vugt, Floris T; Ritter, Juliane; Rollnik, Jens D; Altenmüller, Eckart

    2014-01-01

    Music-supported therapy has been shown to be an effective tool for rehabilitation of motor deficits after stroke. A unique feature of music performance is that it is inherently social: music can be played together in synchrony. The present study explored the potential of synchronized music playing during therapy, asking whether synchronized playing could improve fine motor rehabilitation and mood. Twenty-eight patients in neurological early rehabilitation after stroke with no substantial previous musical training were included. Patients learned to play simple finger exercises and familiar children's songs on the piano for 10 sessions of half an hour. Patients first received three individual therapy sessions and then continued in pairs. The patient pairs were divided into two groups. Patients in one group played synchronously (together group) whereas the patients in the other group played one after the other (in-turn group). To assess fine motor skill recovery the patients performed standard clinical tests such as the nine-hole-pegboard test (9HPT) and index finger-tapping speed and regularity, and metronome-paced finger tapping. Patients' mood was established using the Profile of Mood States (POMS). Both groups showed improvements in fine motor control. In metronome-paced finger tapping, patients in both groups improved significantly. Mood tests revealed reductions in depression and fatigue in both groups. During therapy, patients in the in-turn group rated their partner as more sympathetic than the together-group in a visual-analog scale. Our results suggest that music-supported stroke rehabilitation can improve fine motor control and mood not only individually but also in patient pairs. Patients who were playing in turn rather than simultaneously tended to reveal greater improvement in fine motor skill. We speculate that patients in the former group may benefit from the opportunity to learn from observation.

  2. Sources of signal-dependent noise during isometric force production.

    PubMed

    Jones, Kelvin E; Hamilton, Antonia F; Wolpert, Daniel M

    2002-09-01

    It has been proposed that the invariant kinematics observed during goal-directed movements result from reducing the consequences of signal-dependent noise (SDN) on motor output. The purpose of this study was to investigate the presence of SDN during isometric force production and determine how central and peripheral components contribute to this feature of motor control. Peripheral and central components were distinguished experimentally by comparing voluntary contractions to those elicited by electrical stimulation of the extensor pollicis longus muscle. To determine other factors of motor-unit physiology that may contribute to SDN, a model was constructed and its output compared with the empirical data. SDN was evident in voluntary isometric contractions as a linear scaling of force variability (SD) with respect to the mean force level. However, during electrically stimulated contractions to the same force levels, the variability remained constant over the same range of mean forces. When the subjects were asked to combine voluntary with stimulation-induced contractions, the linear scaling relationship between the SD and mean force returned. The modeling results highlight that much of the basic physiological organization of the motor-unit pool, such as range of twitch amplitudes and range of recruitment thresholds, biases force output to exhibit linearly scaled SDN. This is in contrast to the square root scaling of variability with mean force present in any individual motor-unit of the pool. Orderly recruitment by twitch amplitude was a necessary condition for producing linearly scaled SDN. Surprisingly, the scaling of SDN was independent of the variability of motoneuron firing and therefore by inference, independent of presynaptic noise in the motor command. We conclude that the linear scaling of SDN during voluntary isometric contractions is a natural by-product of the organization of the motor-unit pool that does not depend on signal-dependent noise in the motor command. Synaptic noise in the motor command and common drive, which give rise to the variability and synchronization of motoneuron spiking, determine the magnitude of the force variability at a given level of mean force output.

  3. Regenerative flywheel energy storage system. Volume 3: Life cycle and cost-benefit analysis of a battery-flywheel electric car

    NASA Astrophysics Data System (ADS)

    1980-06-01

    Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control is described. Test results of the system operating over the SAE j227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor-type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load-commutated inverter. The motor/alernator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy. Laboratory simulation of the electric vehicle propulsion system included a 108 volt, lead-acid battery bank and a separately excited dc propulsion motor coupled to a flywheel and generator which simulate the vehicle's inertia and losses.

  4. Design and control of one precise tracking simulation bed for Chinese 20/30 meter optic/infrared telescope

    NASA Astrophysics Data System (ADS)

    Ren, Changzhi; Li, Xiaoyan; Song, Xiaoli; Niu, Yong; Li, Aihua; Zhang, Zhenchao

    2012-09-01

    Direct drive technology is the key to solute future 30-m and larger telescope motion system to guarantee a very high tracking accuracy, in spite of unbalanced and sudden loads such as wind gusts and in spite of a structure that, because of its size, can not be infinitely stiff. However, this requires the design and realization of unusually large torque motor that the torque slew rate must be extremely steep too. A conventional torque motor design appears inadequate. This paper explores one redundant unit permanent magnet synchronous motor and its simulation bed for 30-m class telescope. Because its drive system is one high integrated electromechanical system, one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. This paper discusses the design and control of the precise tracking simulation bed in detail.

  5. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    NASA Astrophysics Data System (ADS)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  6. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    PubMed

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also demonstrate, for the first time in humans, a mechanism through which the premotor and sensory cortices are functionally connected to the STN. Copyright © 2017 the American Physiological Society.

  7. Finding the beat: a neural perspective across humans and non-human primates.

    PubMed

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W Tecumseh

    2015-03-19

    Humans possess an ability to perceive and synchronize movements to the beat in music ('beat perception and synchronization'), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia-thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization-continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Design of digital load torque observer in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  9. Impaired movement timing in neurological disorders: rehabilitation and treatment strategies.

    PubMed

    Hove, Michael J; Keller, Peter E

    2015-03-01

    Timing abnormalities have been reported in many neurological disorders, including Parkinson's disease (PD). In PD, motor-timing impairments are especially debilitating in gait. Despite impaired audiomotor synchronization, PD patients' gait improves when they walk with an auditory metronome or with music. Building on that research, we make recommendations for optimizing sensory cues to improve the efficacy of rhythmic cuing in gait rehabilitation. Adaptive rhythmic metronomes (that synchronize with the patient's walking) might be especially effective. In a recent study we showed that adaptive metronomes synchronized consistently with PD patients' footsteps without requiring attention; this improved stability and reinstated healthy gait dynamics. Other strategies could help optimize sensory cues for gait rehabilitation. Groove music strongly engages the motor system and induces movement; bass-frequency tones are associated with movement and provide strong timing cues. Thus, groove and bass-frequency pulses could deliver potent rhythmic cues. These strategies capitalize on the close neural connections between auditory and motor networks; and auditory cues are typically preferred. However, moving visual cues greatly improve visuomotor synchronization and could warrant examination in gait rehabilitation. Together, a treatment approach that employs groove, auditory, bass-frequency, and adaptive (GABA) cues could help optimize rhythmic sensory cues for treating motor and timing deficits. © 2014 New York Academy of Sciences.

  10. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  11. Dysrhythmia of timed movements in Parkinson's disease and freezing of gait.

    PubMed

    Tolleson, Christopher M; Dobolyi, David G; Roman, Olivia C; Kanoff, Kristen; Barton, Scott; Wylie, Scott A; Kubovy, Michael; Claassen, Daniel O

    2015-10-22

    A well-established motor timing paradigm, the Synchronization-Continuation Task (SCT), quantifies how accurately participants can time finger tapping to a rhythmic auditory beat (synchronization phase) then maintain this rhythm after the external auditory cue is extinguished, where performance depends on an internal representation of the beat (continuation phase). In this study, we investigated the hypothesis that Parkinson's disease (PD) patients with clinical symptoms of freezing of gait (FOG) exhibit exaggerated motor timing deficits. We predicted that dysrhythmia is exacerbated when finger tapping is stopped temporarily and then reinitiated under the guidance of an internal representation of the beat. Healthy controls and PD patients with and without FOG performed the SCT with and without the insertion of a 7-s cessation of motor tapping between synchronization and continuation phases. With no interruption between synchronization and continuation phases, PD patients, especially those with FOG, showed pronounced motor timing hastening at the slowest inter-stimulus intervals during the continuation phase. The introduction of a gap prior to the continuation phase had a beneficial effect for healthy controls and PD patients without FOG, although patients with FOG continued to show pronounced and persistent motor timing hastening. Ratings of freezing of gait severity across the entire sample of PD tracked closely with the magnitude of hastening during the continuation phase. These results suggest that PD is accompanied by a unique dysrhythmia of measured movements, with FOG reflecting a particularly pronounced disruption to internal rhythmic timing. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Distinguishing synchronous and time-varying synergies using point process interval statistics: motor primitives in frog and rat

    PubMed Central

    Hart, Corey B.; Giszter, Simon F.

    2013-01-01

    We present and apply a method that uses point process statistics to discriminate the forms of synergies in motor pattern data, prior to explicit synergy extraction. The method uses electromyogram (EMG) pulse peak timing or onset timing. Peak timing is preferable in complex patterns where pulse onsets may be overlapping. An interval statistic derived from the point processes of EMG peak timings distinguishes time-varying synergies from synchronous synergies (SS). Model data shows that the statistic is robust for most conditions. Its application to both frog hindlimb EMG and rat locomotion hindlimb EMG show data from these preparations is clearly most consistent with synchronous synergy models (p < 0.001). Additional direct tests of pulse and interval relations in frog data further bolster the support for synchronous synergy mechanisms in these data. Our method and analyses support separated control of rhythm and pattern of motor primitives, with the low level execution primitives comprising pulsed SS in both frog and rat, and both episodic and rhythmic behaviors. PMID:23675341

  13. Flight and Walking in Locusts–Cholinergic Co-Activation, Temporal Coupling and Its Modulation by Biogenic Amines

    PubMed Central

    Rillich, Jan; Stevenson, Paul A.; Pflueger, Hans-Joachim

    2013-01-01

    Walking and flying in locusts are exemplary rhythmical behaviors generated by central pattern generators (CPG) that are tuned in intact animals by phasic sensory inputs. Although these two behaviors are mutually exclusive and controlled by independent CPGs, leg movements during flight can be coupled to the flight rhythm. To investigate potential central coupling between the underlying CPGs, we used the muscarinic agonist pilocarpine and the amines octopamine and tyramine to initiate fictive flight and walking in deafferented locust preparations. Our data illustrate that fictive walking is readily evoked by comparatively lower concentrations of pilocarpine, whereas higher concentrations are required to elicit fictive flight. Interestingly, fictive flight did not suppress fictive walking so that the two patterns were produced simultaneously. Frequently, leg motor units were temporally coupled to the flight rhythm, so that each spike in a step cycle volley occurred synchronously with wing motor units firing at flight rhythm frequency. Similarly, tyramine also induced fictive walking and flight, but mostly without any coupling between the two rhythms. Octopamine in contrast readily evoked fictive flight but generally failed to elicit fictive walking. Despite this, numerous leg motor units were recruited, whereby each was temporarily coupled to the flight rhythm. Our results support the notion that the CPGs for walking and flight are largely independent, but that coupling can be entrained by aminergic modulation. We speculate that octopamine biases the whole motor machinery of a locust to flight whereas tyramine primarily promotes walking. PMID:23671643

  14. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  15. Utility of Space Transportation System to Space Communication Community

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1975-01-01

    A potentially cost effective technique was investigated of launching operational satellites into synchronous orbit using the space transportation system (STS). This technique uses an unguided spinning solid rocket motor as the means for boosting a satellite from a low altitude shuttle parking orbit into a synchronous transfer orbit. The spacecraft is then injected into a geosynchronous orbit by an apogee kick motor fired at transfer orbit apogee. The approach is essentially that used on all Delta and Atlas-Centaur launches of synchronous satellites with the shuttle orbiter performing the function of the first two stages of the Delta three stage launch vehicle and the perigee kick motor performing the function of the Delta third state. It is concluded that the STS can be useful to the space communication community as well as to other geostationary satellite system users if the recommended actions are implemented.

  16. Modeling and simulation of permanent magnet synchronous motor based on neural network control strategy

    NASA Astrophysics Data System (ADS)

    Luo, Bingyang; Chi, Shangjie; Fang, Man; Li, Mengchao

    2017-03-01

    Permanent magnet synchronous motor is used widely in industry, the performance requirements wouldn't be met by adopting traditional PID control in some of the occasions with high requirements. In this paper, a hybrid control strategy - nonlinear neural network PID and traditional PID parallel control are adopted. The high stability and reliability of traditional PID was combined with the strong adaptive ability and robustness of neural network. The permanent magnet synchronous motor will get better control performance when switch different working modes according to different controlled object conditions. As the results showed, the speed response adopting the composite control strategy in this paper was faster than the single control strategy. And in the case of sudden disturbance, the recovery time adopting the composite control strategy designed in this paper was shorter, the recovery ability and the robustness were stronger.

  17. Low-frequency oscillations of the neural drive to the muscle are increased with experimental muscle pain

    PubMed Central

    Negro, Francesco; Gizzi, Leonardo; Falla, Deborah

    2012-01-01

    We investigated the influence of nociceptive stimulation on the accuracy of task execution and motor unit spike trains during low-force isometric contractions. Muscle pain was induced by infusion of hypertonic saline into the abductor digiti minimi muscle of 11 healthy men. Intramuscular EMG signals were recorded from the same muscle during four isometric contractions of 60-s duration at 10% of the maximal force [maximal voluntary contraction (MVC)] performed before injection (baseline), after injection of isotonic (control) or hypertonic saline (pain), and 15 min after pain was no longer reported. Each contraction was preceded by three 3-s ramp contractions from 0% to 10% MVC. The low-frequency oscillations of motor unit spike trains were analyzed by the first principal component of the low-pass filtered spike trains [first common component (FCC)], which represents the effective neural drive to the muscle. Pain decreased the accuracy of task performance [coefficient of variation (CoV) for force: baseline, 2.8 ± 1.8%, pain, 3.9 ± 1.8%; P < 0.05] and reduced motor unit discharge rates [11.6 ± 2.3 pulses per second (pps) vs. 10.7 ± 1.7 pps; P < 0.05]. Motor unit recruitment thresholds (2.2 ± 1.2% MVC vs. 2.4 ± 1.6% MVC), interspike interval variability (18.4 ± 4.9% vs. 19.1 ± 5.4%), strength of motor unit short-term synchronization [common input strength (CIS) 1.02 ± 0.44 vs. 0.83 ± 0.22], and strength of common drive (0.47 ± 0.08 vs. 0.47 ± 0.06) did not change across conditions. The FCC signal was correlated with force (R = 0.45 ± 0.06), and the CoV for FCC increased in the painful condition (5.69 ± 1.29% vs. 7.83 ± 2.61%; P < 0.05). These results indicate that nociceptive stimulation increased the low-frequency variability in synaptic input to motoneurons. PMID:22049336

  18. Patterns of Joint Improvisation in Adults with Autism Spectrum Disorder.

    PubMed

    Brezis, Rachel-Shlomit; Noy, Lior; Alony, Tali; Gotlieb, Rachel; Cohen, Rachel; Golland, Yulia; Levit-Binnun, Nava

    2017-01-01

    Recent research on autism spectrum disorders (ASDs) suggests that individuals with autism may have a basic deficit in synchronizing with others, and that this difficulty may lead to more complex social and communicative deficits. Here, we examined synchronization during an open-ended joint improvisation (JI) paradigm, called the mirror game (MG). In the MG, two players take turns leading, following, and jointly improvising motion using two handles set on parallel tracks, while their motion tracks are recorded with high temporal and spatial resolution. A series of previous studies have shown that players in the MG attain moments of highly synchronized co-confident (CC) motion, in which there is no typical kinematic pattern of leader and reactive follower. It has been suggested that during these moments players act as a coupled unit and feel high levels of connectedness. Here, we aimed to assess whether participants with ASD are capable of attaining CC, and whether their MG performance relates to broader motor and social skills. We found that participants with ASD ( n = 34) can indeed attain CC moments when playing with an expert improviser, though their performance was attenuated in several ways, compared to typically developing (TD) participants ( n = 35). Specifically, ASD participants had lower rates of CC, compared with TD participants, which was most pronounced during the following rounds. In addition, the duration of their CC segments was shorter, across all rounds. When controlling for participants' motor skills (both on the MG console, and more broadly) some of the variability in MG performance was explained, but group differences remained. ASD participants' alexithymia further correlated with their difficulty following another's lead; though other social skills did not relate to MG performance. Participants' subjective reports of the game suggest that other cognitive and emotional factors, such as attention, motivation, and reward-processing, which were not directly measured in the experiment, may impact their performance. Together, these results show that ASD participants can attain moments of high motor synchronization with an expert improviser, even during an open-ended task. Future studies should examine the ways in which these skills may be further harnessed in clinical settings.

  19. Patterns of Joint Improvisation in Adults with Autism Spectrum Disorder

    PubMed Central

    Brezis, Rachel-Shlomit; Noy, Lior; Alony, Tali; Gotlieb, Rachel; Cohen, Rachel; Golland, Yulia; Levit-Binnun, Nava

    2017-01-01

    Recent research on autism spectrum disorders (ASDs) suggests that individuals with autism may have a basic deficit in synchronizing with others, and that this difficulty may lead to more complex social and communicative deficits. Here, we examined synchronization during an open-ended joint improvisation (JI) paradigm, called the mirror game (MG). In the MG, two players take turns leading, following, and jointly improvising motion using two handles set on parallel tracks, while their motion tracks are recorded with high temporal and spatial resolution. A series of previous studies have shown that players in the MG attain moments of highly synchronized co-confident (CC) motion, in which there is no typical kinematic pattern of leader and reactive follower. It has been suggested that during these moments players act as a coupled unit and feel high levels of connectedness. Here, we aimed to assess whether participants with ASD are capable of attaining CC, and whether their MG performance relates to broader motor and social skills. We found that participants with ASD (n = 34) can indeed attain CC moments when playing with an expert improviser, though their performance was attenuated in several ways, compared to typically developing (TD) participants (n = 35). Specifically, ASD participants had lower rates of CC, compared with TD participants, which was most pronounced during the following rounds. In addition, the duration of their CC segments was shorter, across all rounds. When controlling for participants’ motor skills (both on the MG console, and more broadly) some of the variability in MG performance was explained, but group differences remained. ASD participants’ alexithymia further correlated with their difficulty following another’s lead; though other social skills did not relate to MG performance. Participants’ subjective reports of the game suggest that other cognitive and emotional factors, such as attention, motivation, and reward-processing, which were not directly measured in the experiment, may impact their performance. Together, these results show that ASD participants can attain moments of high motor synchronization with an expert improviser, even during an open-ended task. Future studies should examine the ways in which these skills may be further harnessed in clinical settings. PMID:29114236

  20. Centrifugal reciprocating compressor

    NASA Technical Reports Server (NTRS)

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  1. Deficient "sensory" beta synchronization in Parkinson's disease.

    PubMed

    Degardin, A; Houdayer, E; Bourriez, J-L; Destée, A; Defebvre, L; Derambure, P; Devos, D

    2009-03-01

    Beta rhythm movement-related synchronization (beta synchronization) reflects motor cortex deactivation and sensory afference processing. In Parkinson's disease (PD), decreased beta synchronization after active movement reflects abnormal motor cortex idling and may be involved in the pathophysiology of akinesia. The objectives of the present study were to (i) compare event-related synchronization after active and passive movement and electrical nerve stimulation in PD patients and healthy, age-matched volunteers and (ii) evaluate the effect of levodopa. Using a 128-electrode EEG system, we studied beta synchronization after active and passive index finger movement and electrical median nerve stimulation in 13 patients and 12 control subjects. Patients were recorded before and after 150% of their usual morning dose of levodopa. The peak beta synchronization magnitude in the contralateral primary sensorimotor (PSM) cortex was significantly lower in PD patients after active movement, passive movement and electrical median nerve stimulation, compared with controls. Levodopa partially reversed the drop in beta synchronization after active movement but not after passive movement or electrical median nerve stimulation. If one considers that beta synchronization reflects sensory processing, our results suggest that integration of somaesthetic afferences in the PSM cortex is abnormal in PD during active and passive movement execution and after simple electrical median nerve stimulation. Better understanding of the mechanisms involved in the deficient beta synchronization observed here could prompt the development of new therapeutic approaches aimed at strengthening defective processes. The lack of full beta synchronization restoration by levodopa might be related to the involvement of non-dopaminergic pathways.

  2. Music-supported motor training after stroke reveals no superiority of synchronization in group therapy

    PubMed Central

    Van Vugt, Floris T.; Ritter, Juliane; Rollnik, Jens D.; Altenmüller, Eckart

    2014-01-01

    Background: Music-supported therapy has been shown to be an effective tool for rehabilitation of motor deficits after stroke. A unique feature of music performance is that it is inherently social: music can be played together in synchrony. Aim: The present study explored the potential of synchronized music playing during therapy, asking whether synchronized playing could improve fine motor rehabilitation and mood. Method: Twenty-eight patients in neurological early rehabilitation after stroke with no substantial previous musical training were included. Patients learned to play simple finger exercises and familiar children's songs on the piano for 10 sessions of half an hour. Patients first received three individual therapy sessions and then continued in pairs. The patient pairs were divided into two groups. Patients in one group played synchronously (together group) whereas the patients in the other group played one after the other (in-turn group). To assess fine motor skill recovery the patients performed standard clinical tests such as the nine-hole-pegboard test (9HPT) and index finger-tapping speed and regularity, and metronome-paced finger tapping. Patients' mood was established using the Profile of Mood States (POMS). Results: Both groups showed improvements in fine motor control. In metronome-paced finger tapping, patients in both groups improved significantly. Mood tests revealed reductions in depression and fatigue in both groups. During therapy, patients in the in-turn group rated their partner as more sympathetic than the together-group in a visual-analog scale. Conclusions: Our results suggest that music-supported stroke rehabilitation can improve fine motor control and mood not only individually but also in patient pairs. Patients who were playing in turn rather than simultaneously tended to reveal greater improvement in fine motor skill. We speculate that patients in the former group may benefit from the opportunity to learn from observation. PMID:24904358

  3. Regenerative flywheel storage system, volume 2

    NASA Astrophysics Data System (ADS)

    1980-06-01

    A vehicle propulsion system was simulated on a digital computer in order to determine the optimum system operating strategies and to establish a calculated range improvement over a nonregenerative, all electric vehicle. Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control are described. Test results of the system operating over the SAE J227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load commutated inverter. The motor/alternator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy.

  4. Demodulation circuit for AC motor current spectral analysis

    DOEpatents

    Hendrix, Donald E.; Smith, Stephen F.

    1990-12-18

    A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.

  5. Improved Motor-Timing: Effects of Synchronized Metro-Nome Training on Golf Shot Accuracy

    PubMed Central

    Sommer, Marius; Rönnqvist, Louise

    2009-01-01

    This study investigates the effect of synchronized metronome training (SMT) on motor timing and how this training might affect golf shot accuracy. Twenty-six experienced male golfers participated (mean age 27 years; mean golf handicap 12.6) in this study. Pre- and post-test investigations of golf shots made by three different clubs were conducted by use of a golf simulator. The golfers were randomized into two groups: a SMT group and a Control group. After the pre-test, the golfers in the SMT group completed a 4-week SMT program designed to improve their motor timing, the golfers in the Control group were merely training their golf-swings during the same time period. No differences between the two groups were found from the pre-test outcomes, either for motor timing scores or for golf shot accuracy. However, the post-test results after the 4-weeks SMT showed evident motor timing improvements. Additionally, significant improvements for golf shot accuracy were found for the SMT group and with less variability in their performance. No such improvements were found for the golfers in the Control group. As with previous studies that used a SMT program, this study’s results provide further evidence that motor timing can be improved by SMT and that such timing improvement also improves golf accuracy. Key points This study investigates the effect of synchronized metronome training (SMT) on motor timing and how this training might affect golf shot accuracy. A randomized control group design was used. The 4 week SMT intervention showed significant improvements in motor timing, golf shot accuracy, and lead to less variability. We conclude that this study’s results provide further evidence that motor timing can be improved by SMT training and that such timing improvement also improves golf accuracy. PMID:24149608

  6. Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm.

    PubMed

    Zheng, Weijia; Pi, Youguo

    2016-07-01

    A tuning method of the fractional order proportional integral speed controller for a permanent magnet synchronous motor is proposed in this paper. Taking the combination of the integral of time and absolute error and the phase margin as the optimization index, the robustness specification as the constraint condition, the differential evolution algorithm is applied to search the optimal controller parameters. The dynamic response performance and robustness of the obtained optimal controller are verified by motor speed-tracking experiments on the motor speed control platform. Experimental results show that the proposed tuning method can enable the obtained control system to achieve both the optimal dynamic response performance and the robustness to gain variations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  8. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  9. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  10. Combining EEG, MIDI, and motion capture techniques for investigating musical performance.

    PubMed

    Maidhof, Clemens; Kästner, Torsten; Makkonen, Tommi

    2014-03-01

    This article describes a setup for the simultaneous recording of electrophysiological data (EEG), musical data (MIDI), and three-dimensional movement data. Previously, each of these three different kinds of measurements, conducted sequentially, has been proven to provide important information about different aspects of music performance as an example of a demanding multisensory motor skill. With the method described here, it is possible to record brain-related activity and movement data simultaneously, with accurate timing resolution and at relatively low costs. EEG and MIDI data were synchronized with a modified version of the FTAP software, sending synchronization signals to the EEG recording device simultaneously with keypress events. Similarly, a motion capture system sent synchronization signals simultaneously with each recorded frame. The setup can be used for studies investigating cognitive and motor processes during music performance and music-like tasks--for example, in the domains of motor control, learning, music therapy, or musical emotions. Thus, this setup offers a promising possibility of a more behaviorally driven analysis of brain activity.

  11. Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging

    NASA Astrophysics Data System (ADS)

    Bravo-Imaz, Inaki; Davari Ardakani, Hossein; Liu, Zongchang; García-Arribas, Alfredo; Arnaiz, Aitor; Lee, Jay

    2017-09-01

    This paper focuses on analyzing motor current signature for fault diagnosis of gearboxes operating under transient speed regimes. Two different strategies are evaluated, extensively tested and compared to analyze the motor current signature in order to implement a condition monitoring system for gearboxes in industrial machinery. A specially designed test bench is used, thoroughly monitored to fully characterize the experiments, in which gears in different health status are tested. The measured signals are analyzed using discrete wavelet decomposition, in different decomposition levels using a range of mother wavelets. Moreover, a dual-level time synchronous averaging analysis is performed on the same signal to compare the performance of the two methods. From both analyses, the relevant features of the signals are extracted and cataloged using a self-organizing map, which allows for an easy detection and classification of the diverse health states of the gears. The results demonstrate the effectiveness of both methods for diagnosing gearbox faults. A slightly better performance was observed for dual-level time synchronous averaging method. Based on the obtained results, the proposed methods can used as effective and reliable condition monitoring procedures for gearbox condition monitoring using only motor current signature.

  12. Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition.

    PubMed

    Cerasa, Antonio; Hagberg, Gisela E; Bianciardi, Marta; Sabatini, Umberto

    2005-01-03

    A well-known issue in functional neuroimaging studies, regarding motor synchronization, is to design suitable control tasks able to discriminate between the brain structures involved in primary time-keeper functions and those related to other processes such as attentional effort. The aim of this work was to investigate how the predictability of stimulus onsets in the baseline condition modulates the activity in brain structures related to processes involved in time-keeper functions during the performance of a visually cued motor synchronization task (VM). The rational behind this choice derives from the notion that using different stimulus predictability can vary the subject's attention and the consequently neural activity. For this purpose, baseline levels of BOLD activity were obtained from 12 subjects during a conventional-baseline condition: maintained fixation of the visual rhythmic stimuli presented in the VM task, and a random-baseline condition: maintained fixation of visual stimuli occurring randomly. fMRI analysis demonstrated that while brain areas with a documented role in basic time processing are detected independent of the baseline condition (right cerebellum, bilateral putamen, left thalamus, left superior temporal gyrus, left sensorimotor cortex, left dorsal premotor cortex and supplementary motor area), the ventral premotor cortex, caudate nucleus, insula and inferior frontal gyrus exhibited a baseline-dependent activation. We conclude that maintained fixation of unpredictable visual stimuli can be employed in order to reduce or eliminate neural activity related to attentional components present in the synchronization task.

  13. Power-Factor Calculation under Consideration of Cross Saturation of the Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong T; Burress, Timothy A; Hsu, John S

    2009-01-01

    This paper introduces a new method for calculating the power factor with consideration of the cross saturation between the direct-axis (d-axis) and the quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross-saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux at highmore » speed, which was developed for the traction motor of a hybrid electric vehicle.« less

  14. Synchronization of distributed power grids with the external loading system

    NASA Astrophysics Data System (ADS)

    Wei, Duqu; Mei, Chuncao

    2018-06-01

    In this paper, the synchronization between spatially distributed power plants and their supported consumers is studied, where the case of Kuramoto-like model power grids connected to an external permanent magnet synchronous motor (PMSM) is taken as an example. We focus on the dependence of the synchronization on the coupling coefficient. To quantitatively study the synchronization degree, we introduce the order parameter and the frequency deviation to measure the synchronization of the coupled system. It is found that as the external coupling coefficient is increased, the distributed power grids and the loading system become more and more synchronized in space, and the complete synchronization appears at a particular value of external coupling coefficient. Our results may provide a useful tip for analyzing the synchronous ability of distributed power grids.

  15. Note: A phase synchronization photography method for AC discharge.

    PubMed

    Wu, Zhicheng; Zhang, Qiaogen; Ma, Jingtan; Pang, Lei

    2018-05-01

    To research discharge physics under AC voltage, a phase synchronization photography method is presented. By using a permanent-magnet synchronous motor to drive a photography mask synchronized with a discharge power supply, discharge images in a specific phase window can be recorded. Some examples of discharges photographed by this method, including the corona discharge in SF 6 and the corona discharge along the air/epoxy surface, demonstrate the feasibility of this method. Therefore, this method provides an effective tool for discharge physics researchers.

  16. Note: A phase synchronization photography method for AC discharge

    NASA Astrophysics Data System (ADS)

    Wu, Zhicheng; Zhang, Qiaogen; Ma, Jingtan; Pang, Lei

    2018-05-01

    To research discharge physics under AC voltage, a phase synchronization photography method is presented. By using a permanent-magnet synchronous motor to drive a photography mask synchronized with a discharge power supply, discharge images in a specific phase window can be recorded. Some examples of discharges photographed by this method, including the corona discharge in SF6 and the corona discharge along the air/epoxy surface, demonstrate the feasibility of this method. Therefore, this method provides an effective tool for discharge physics researchers.

  17. Motility states in bidirectional cargo transport

    NASA Astrophysics Data System (ADS)

    Klein, Sarah; Appert-Rolland, Cécile; Santen, Ludger

    2015-09-01

    Intracellular cargos which are transported by molecular motors move stochastically along cytoskeleton filaments. In particular for bidirectionally transported cargos it is an open question whether the characteristics of their motion can result from pure stochastic fluctuations or whether some coordination of the motors is needed. The results of a mean-field (MF) model of cargo-motors dynamics proposed by Müller et al. (Müller M. J. et al., Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 4609) suggest the existence of states which are characterized by a symmetric bimodal distribution of cargo velocities. These states would result from a stochastic tug of war. Here we analyze the influence of the MF assumption on the cargo motion by considering a model that takes explicitly the position of each motor into account. We find that those states with symmetric bimodal distributions then disappear. As the MF model implicitly assumes some stepping synchronization between motors, we introduce a partial synchronization via an artificial mutual motor-motor activation, and show that the results of the MF model are then recovered but, even in this favorable case, only in the limit of a strong motor-motor activation and of a high number of motors. We conclude that the MF assumption is not relevant for intracellular transport.

  18. Monitoring tooth profile faults in epicyclic gearboxes using synchronously averaged motor currents: Mathematical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Ottewill, J. R.; Ruszczyk, A.; Broda, D.

    2017-02-01

    Time-varying transmission paths and inaccessibility can increase the difficulty in both acquiring and processing vibration signals for the purpose of monitoring epicyclic gearboxes. Recent work has shown that the synchronous signal averaging approach may be applied to measured motor currents in order to diagnose tooth faults in parallel shaft gearboxes. In this paper we further develop the approach, so that it may also be applied to monitor tooth faults in epicyclic gearboxes. A low-degree-of-freedom model of an epicyclic gearbox which incorporates the possibility of simulating tooth faults, as well as any subsequent tooth contact loss due to these faults, is introduced. By combining this model with a simple space-phasor model of an induction motor it is possible to show that, in theory, tooth faults in epicyclic gearboxes may be identified from motor currents. Applying the synchronous averaging approach to experimentally recorded motor currents and angular displacements recorded from a shaft mounted encoder, validate this finding. Comparison between experiments and theory highlight the influence of operating conditions, backlash and shaft couplings on the transient response excited in the currents by the tooth fault. The results obtained suggest that the method may be a viable alternative or complement to more traditional methods for monitoring gearboxes. However, general observations also indicate that further investigations into the sensitivity and robustness of the method would be beneficial.

  19. Comparison of linear synchronous and induction motors

    DOT National Transportation Integrated Search

    2004-06-01

    A propulsion prade study was conducted as part of the Colorado Maglev Project of FTA's Urban Maglev Technology Development Program to identify and evaluate prospective linear motor designs that could potentially meet the system performance requiremen...

  20. Speed synchronization control for integrated automotive motor-transmission powertrain system with random delays

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyuan; Zhang, Hui; Fang, Zongde

    2015-12-01

    This paper presents a robust speed synchronization controller design for an integrated motor-transmission powertrain system in which the driving motor and multi-gearbox are directly coupled. As the controller area network (CAN) is commonly used in the vehicle powertrain system, the possible network-induced random delays in both feedback and forward channel are considered and modeled by using two Markov chains in the controller design process. For the application perspective, the control law adopted here is a generalized proportional-integral (PI) control. By employing the system-augmentation technique, a delay-free stochastic closed-loop system is obtained and the generalized PI controller design problem is converted to a static output feedback (SOF) controller design problem. Since there are external disturbances involved in the closed-loop system, the energy-to-peak performance is considered to guarantee the robustness of the controller. And the controlled output is chosen as the speed synchronization error. To further improve the transient response of the closed-loop system, the pole placement is also employed in the energy-to-peak performance based speed synchronization control. The mode-dependent control gains are obtained by using an iterative linear matrix inequality (LMI) algorithm. Simulation results show the effectiveness of the proposed control approach.

  1. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  2. A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action

    NASA Astrophysics Data System (ADS)

    Zhou, Zhong-xing; Wan, Bai-kun; Ming, Dong; Qi, Hong-zhi

    2010-08-01

    In this study, we proposed and evaluated the use of the empirical mode decomposition (EMD) technique combined with phase synchronization analysis to investigate the human brain synchrony of the supplementary motor area (SMA) and primary motor area (M1) during complex motor imagination of combined body and limb action. We separated the EEG data of the SMA and M1 into intrinsic mode functions (IMFs) using the EMD method and determined the characteristic IMFs by power spectral density (PSD) analysis. Thereafter, the instantaneous phases of the characteristic IMFs were obtained by the Hilbert transformation, and the single-trial phase-locking value (PLV) features for brain synchrony measurement between the SMA and M1 were investigated separately. The classification performance suggests that the proposed approach is effective for phase synchronization analysis and is promising for the application of a brain-computer interface in motor nerve reconstruction of the lower limbs.

  3. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats.

    PubMed

    Belluscio, Mariano A; Riquelme, Luis A; Murer, M Gustavo

    2007-05-01

    During movement, inhibitory neurons in the basal ganglia output nuclei show complex modulations of firing, which are presumptively driven by corticostriatal and corticosubthalamic input. Reductions in discharge should facilitate movement by disinhibiting thalamic and brain stem nuclei while increases would do the opposite. A proposal that nigrostriatal dopamine pathway degeneration disrupts trans-striatal pathways' balance resulting in sustained overactivity of basal ganglia output nuclei neurons and Parkinson's disease clinical signs is not fully supported by experimental evidence, which instead shows abnormal synchronous oscillatory activity in animal models and patients. Yet, the possibility that variation in motor cortex activity drives transient overactivity in output nuclei neurons in parkinsonism has not been explored. In Sprague-Dawley rats with 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions, approximately 50% substantia nigra pars reticulata (SNpr) units show abnormal cortically driven slow oscillations of discharge. Moreover, these units selectively show abnormal responses to motor cortex stimulation consisting in augmented excitations of an odd latency, which overlapped that of inhibitory responses presumptively mediated by the trans-striatal direct pathway in control rats. Delivering D1 or D2 dopamine agonists into the striatum of parkinsonian rats by reverse microdialysis reduced these abnormal excitations but had no effect on pathological oscillations. The present study establishes that dopamine-deficiency related changes of striatal function contribute to producing abnormally augmented excitatory responses to motor cortex stimulation in the SNpr. If a similar transient overactivity of basal ganglia output were driven by motor cortex input during movement, it could contribute to impeding movement initiation or execution in Parkinson's disease.

  4. Pathological synchronization in Parkinson's disease: networks, models and treatments.

    PubMed

    Hammond, Constance; Bergman, Hagai; Brown, Peter

    2007-07-01

    Parkinson's disease is a common and disabling disorder of movement owing to dopaminergic denervation of the striatum. However, it is still unclear how this denervation perverts normal functioning to cause slowing of voluntary movements. Recent work using tissue slice preparations, animal models and in humans with Parkinson's disease has demonstrated abnormally synchronized oscillatory activity at multiple levels of the basal ganglia-cortical loop. This excessive synchronization correlates with motor deficit, and its suppression by dopaminergic therapies, ablative surgery or deep-brain stimulation might provide the basic mechanism whereby diverse therapeutic strategies ameliorate motor impairment in patients with Parkinson's disease. This review is part of the INMED/TINS special issue, Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).

  5. Design of permanent magnet synchronous motor speed loop controller based on sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Qiang, Jiang; Meng-wei, Liao; Ming-jie, Luo

    2018-03-01

    Abstract.The control performance of Permanent Magnet Synchronous Motor will be affected by the fluctuation or changes of mechanical parameters when PMSM is applied as driving motor in actual electric vehicle,and external disturbance would influence control robustness.To improve control dynamic quality and robustness of PMSM speed control system, a new second order integral sliding mode control algorithm is introduced into PMSM vector control.The simulation results show that, compared with the traditional PID control,the modified control scheme optimized has better control precision and dynamic response ability and perform better with a stronger robustness facing external disturbance,it can effectively solve the traditional sliding mode variable structure control chattering problems as well.

  6. Adaptive PI control strategy for flat permanent magnet linear synchronous motor vibration suppression

    NASA Astrophysics Data System (ADS)

    Meng, Fanwei; Liu, Chengying; Li, Zhijun; Wang, Liping

    2013-01-01

    Due to low damping ratio, flat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of K p and T i on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.

  7. Synchronization of two homodromy rotors installed on a double vibro-body in a coupling vibration system.

    PubMed

    Fang, Pan; Hou, Yongjun; Nan, Yanghai

    2015-01-01

    A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange's equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation.

  8. Synchronization of Two Homodromy Rotors Installed on a Double Vibro-Body in a Coupling Vibration System

    PubMed Central

    Fang, Pan; Hou, Yongjun; Nan, Yanghai

    2015-01-01

    A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange’s equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation. PMID:25993472

  9. Voltage directive drive with claw pole motor and control without rotor position indicator

    NASA Astrophysics Data System (ADS)

    Stroenisch, Volker Ewald

    Design and testing of a voltage directive drive for synchronous variable speed claw pole motor and control without rotor position indicator is described. Economic analysis of the designed regulation is performed. Computations of stationary and dynamic behavior are given and experimental operational behavior is determined. The motors can be used for electric transportation vehicles, diesel motors, and electric railway engines.

  10. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter

    2017-11-01

    Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and interhemispheric synchronization. This may compromise information coding capacity and thereby motor processing. Dopaminergic activity limits this uncontrolled beta synchronization by terminating long duration beta bursts, with positive consequences on network state and motor symptoms. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  11. Clinical correlates of between-limb synchronization of standing balance control and falls during inpatient stroke rehabilitation.

    PubMed

    Mansfield, Avril; Mochizuki, George; Inness, Elizabeth L; McIlroy, William E

    2012-01-01

    Stroke-related sensorimotor impairment potentially contributes to impaired balance. Balance measures that reveal underlying limb-specific control problems, such as a measure of the synchronization of both lower limbs to maintain standing balance, may be uniquely informative about poststroke balance control. This study aimed to determine the relationships between clinical measures of sensorimotor control, functional balance, and fall risk and between-limb synchronization of balance control. The authors conducted a retrospective chart review of 100 individuals with stroke admitted to inpatient rehabilitation. Force plate-based measures were obtained while standing on 2 force plates, including postural sway (root mean square of anteroposterior and mediolateral center of pressure [COP]), stance load asymmetry (percentage of body weight borne on the less-loaded limb), and between-limb synchronization (cross-correlation of the COP recordings under each foot). Clinical measures obtained were motor impairment (Chedoke-McMaster Stroke Assessment), plantar cutaneous sensation, functional balance (Berg Balance Scale), and falls experienced in rehabilitation. Synchronization was significantly related to motor impairment and prospective falls, even when controlling for other force plate-based measures of standing balance control (ie, postural sway and stance load symmetry). Between-limb COP synchronization for standing balance appears to be a uniquely important index of balance control, independent of postural sway and load symmetry during stance.

  12. A new adaptive self-tuning Fourier coefficients algorithm for periodic torque ripple minimization in permanent magnet synchronous motors (PMSM).

    PubMed

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-03-19

    A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

  13. Applications of superconductor technologies to transportation

    NASA Astrophysics Data System (ADS)

    Rote, D. M.; Herring, J. S.; Sheahen, T. P.

    1989-06-01

    This report assesses transportation applications of superconducting devices, such as rotary motors and generators, linear synchronous motors, energy storage devices, and magnets. Among conventional vehicles, ships appear to have the greatest potential for maximizing the technical benefits of superconductivity, such as smaller, lighter, and more-efficient motors and, possibly, more-efficient generators. Smaller-scale applications include motors for pipeline pumps, all-electric and diesel-electric locomotives, self-propelled rail cars, and electric highway vehicles. For diesel-electric locomotives, superconducting units would eliminate space limitations on tractive power. Superconducting magnetic energy storage devices appear most suitable for regenerative braking or power assistance in grade climbing, rather than for long-term energy storage. With toroidal devices (especially for onboard temporary energy storage), external fields would be eliminated. With regard to new vehicle technologies, the use of superconducting devices would only marginally enhance the benefits of inductive-power-coupled vehicles over conventional electric vehicles, but could enable magnetically levitated (maglev) vehicles to obtain speeds of 520 km/h or more. This feature, together with the quiet, smooth ride, might make maglev vehicles an attractive alternative to intercity highway-vehicle or airlane trips in the range of 100 to 600 miles. Electromagnetic airport applications are not yet feasible.

  14. Non-verbal sensorimotor timing deficits in children and adolescents who stutter

    PubMed Central

    Falk, Simone; Müller, Thilo; Dalla Bella, Simone

    2015-01-01

    There is growing evidence that motor and speech disorders co-occur during development. In the present study, we investigated whether stuttering, a developmental speech disorder, is associated with a predictive timing deficit in childhood and adolescence. By testing sensorimotor synchronization abilities, we aimed to assess whether predictive timing is dysfunctional in young participants who stutter (8–16 years). Twenty German children and adolescents who stutter and 43 non-stuttering participants matched for age and musical training were tested on their ability to synchronize their finger taps with periodic tone sequences and with a musical beat. Forty percent of children and 90% of adolescents who stutter displayed poor synchronization with both metronome and musical stimuli, falling below 2.5% of the estimated population based on the performance of the group without the disorder. Synchronization deficits were characterized by either lower synchronization accuracy or lower consistency or both. Lower accuracy resulted in an over-anticipation of the pacing event in participants who stutter. Moreover, individual profiles revealed that lower consistency was typical of participants that were severely stuttering. These findings support the idea that malfunctioning predictive timing during auditory–motor coupling plays a role in stuttering in children and adolescents. PMID:26217245

  15. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task

    PubMed Central

    Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa

    2016-01-01

    The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007

  16. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.

    PubMed

    Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja

    2016-08-10

    The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.

  17. Systems Engineering Technology Readiness Assessment of Hybrid-Electric Technologies for Tactical Wheeled Vehicles

    DTIC Science & Technology

    2014-09-01

    reasonable yield within this decade. Similarly, the permanent magnet motors , which are desirable for traction due to their high efficiency, must also be...degrees C and 180 degrees C (RDECOM Public Affairs 2014). Current electric drive vehicles, using permanent magnet motors , have thermal limitations well...performance and their good efficiency, benefits particularly applicable to permanent magnet motors . Synchronous motors with permanent magnets, in

  18. Transient synchronization of hippocampo-striato-thalamo-cortical networks during sleep spindle oscillations induces motor memory consolidation.

    PubMed

    Boutin, Arnaud; Pinsard, Basile; Boré, Arnaud; Carrier, Julie; Fogel, Stuart M; Doyon, Julien

    2018-04-01

    Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. An image‐based method to synchronize cone‐beam CT and optical surface tracking

    PubMed Central

    Schaerer, Joël; Riboldi, Marco; Sarrut, David; Baroni, Guido

    2015-01-01

    The integration of in‐room X‐ray imaging and optical surface tracking has gained increasing importance in the field of image guided radiotherapy (IGRT). An essential step for this integration consists of temporally synchronizing the acquisition of X‐ray projections and surface data. We present an image‐based method for the synchronization of cone‐beam computed tomography (CBCT) and optical surface systems, which does not require the use of additional hardware. The method is based on optically tracking the motion of a component of the CBCT/gantry unit, which rotates during the acquisition of the CBCT scan. A calibration procedure was implemented to relate the position of the rotating component identified by the optical system with the time elapsed since the beginning of the CBCT scan, thus obtaining the temporal correspondence between the acquisition of X‐ray projections and surface data. The accuracy of the proposed synchronization method was evaluated on a motorized moving phantom, performing eight simultaneous acquisitions with an Elekta Synergy CBCT machine and the AlignRT optical device. The median time difference between the sinusoidal peaks of phantom motion signals extracted from the synchronized CBCT and AlignRT systems ranged between ‐3.1 and 12.9 msec, with a maximum interquartile range of 14.4 msec. The method was also applied to clinical data acquired from seven lung cancer patients, demonstrating the potential of the proposed approach in estimating the individual and daily variations in respiratory parameters and motion correlation of internal and external structures. The presented synchronization method can be particularly useful for tumor tracking applications in extracranial radiation treatments, especially in the field of patient‐specific breathing models, based on the correlation between internal tumor motion and external surface surrogates. PACS number: 87

  20. General Theory of the Double Fed Synchronous Machine. Ph.D. Thesis - Swiss Technological Univ., 1950

    NASA Technical Reports Server (NTRS)

    El-Magrabi, M. G.

    1982-01-01

    Motor and generator operation of a double-fed synchronous machine were studied and physically and mathematically treated. Experiments with different connections, voltages, etc. were carried out. It was concluded that a certain degree of asymmetry is necessary for the best utilization of the machine.

  1. Synchronizing noisy nonidentical oscillators by transient uncoupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in; Schröder, Malte, E-mail: malte@nld.ds.mpg.de

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the unitsmore » stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.« less

  2. Computer-aided design studies of the homopolar linear synchronous motor

    NASA Astrophysics Data System (ADS)

    Dawson, G. E.; Eastham, A. R.; Ong, R.

    1984-09-01

    The linear induction motor (LIM), as an urban transit drive, can provide good grade-climbing capabilities and propulsion/braking performance that is independent of steel wheel-rail adhesion. In view of its 10-12 mm airgap, the LIM is characterized by a low power factor-efficiency product of order 0.4. A synchronous machine offers high efficiency and controllable power factor. An assessment of the linear homopolar configuration of this machine is presented as an alternative to the LIM. Computer-aided design studies using the finite element technique have been conducted to identify a suitable machine design for urban transit propulsion.

  3. Minimization of torque ripple in ferrite-assisted synchronous reluctance motors by using asymmetric stator

    NASA Astrophysics Data System (ADS)

    Xu, Meimei; Liu, Guohai; Zhao, Wenxiang; Aamir, Nazir

    2018-05-01

    Torque ripple is one of the important issues for ferrite assisted synchronous reluctance motors (FASRMs). In this paper, an asymmetrical stator is proposed for the FASRM to reduce its torque ripple. In the proposed FASRM, an asymmetrical stator is designed by appropriately choosing the angle of the slot-opening shift. Meanwhile, its analytical torque expressions are derived. The results show that the proposed FASRM has an effective reduction in the cogging torque, reluctance torque ripple and total torque ripple. Moreover, it is easy to implement while the average torque is not sacrificed.

  4. An Impulse Electric Motor for Driving Recording Instruments

    NASA Technical Reports Server (NTRS)

    Joachim, W F

    1923-01-01

    The chief purpose in undertaking the development of this synchronous motor was the creation of a very small, compact power source, capable of driving the film drums of the recording aircraft instruments designed by the staff of the National Advisory Committee for Aeronautics.

  5. Finding the beat: a neural perspective across humans and non-human primates

    PubMed Central

    Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W. Tecumseh

    2015-01-01

    Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. PMID:25646516

  6. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    PubMed Central

    Persson, Karin; Rekling, Jens C

    2011-01-01

    Abstract The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem and in the facial nucleus. In Fluo-8 AM loaded brainstem–spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial synchrony with respiratory nerve bursts. In brainstem–spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity in lateral and medial subnuclei. Whole-cell recordings from facial motoneurons showed weak respiratory drives, and electrical field potential recordings confirmed respiratory drive to particularly the dorsal and lateral subnuclei. Putative facial premotoneurons showed respiratory-related calcium signals, and were predominantly located dorsomedial to the facial nucleus. A novel motor activity on facial, cervical and thoracic nerves was synchronized with calcium signals at the ventromedial brainstem extending from the level of the facial nucleus to the medulla–spinal cord border. Cervical dorsal root stimulation induced similar ventromedial activity. The medial facial subnucleus showed calcium signals synchronized with this novel motor activity on cervical nerves, and cervical dorsal root stimulation induced similar medial facial subnucleus activity. In conclusion, the dorsal and lateral facial subnuclei are strongly respiratory-modulated, and the brainstem contains a novel pattern forming circuit that drives the medial facial subnucleus and cervical motor pools. PMID:21486812

  7. The Ability to Tap to a Beat Relates to Cognitive, Linguistic, and Perceptual Skills

    ERIC Educational Resources Information Center

    Tierney, Adam T.; Kraus, Nina

    2013-01-01

    Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship…

  8. Evolution of the dynamic properties of the cortex-basal ganglia network after dopaminergic depletion in rats.

    PubMed

    Dejean, Cyril; Nadjar, Agnes; Le Moine, Catherine; Bioulac, Bernard; Gross, Christian E; Boraud, Thomas

    2012-05-01

    It is well established that parkinsonian syndrome is associated with alterations of neuronal activity temporal pattern basal ganglia (BG). An increase in synchronized oscillations has been observed in different BG nuclei in Parkinson's disease patients as well as animal models such as 6-hydroxydopamine treated rats. We recently demonstrated that this increase in oscillatory synchronization is present during high-voltage spindles (HVS) probably underpinned by the disorganization of cortex-BG interactions. Here we investigated the time course of both oscillatory and motor alterations. For that purpose we performed daily simultaneous recordings of neuronal activity in motor cortex, striatum and substantia nigra pars reticulata (SNr), before and after 6-hydroxydopamine lesion in awake rats. After a brief non-dopamine-specific desynchronization, oscillatory activity first increased during HVS followed by progressive motor impairment and the shortening of SNr activation delay. While the oscillatory firing increase reflects dopaminergic depletion, response alteration in SNr neurons is closely related to motor symptom. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The posterior parietal cortex (PPC) mediates anticipatory motor control.

    PubMed

    Krause, Vanessa; Weber, Juliane; Pollok, Bettina

    2014-01-01

    Flexible and precisely timed motor control is based on functional interaction within a cortico-subcortical network. The left posterior parietal cortex (PPC) is supposed to be crucial for anticipatory motor control by sensorimotor feedback matching. Intention of the present study was to disentangle the specific relevance of the left PPC for anticipatory motor control using transcranial direct current stimulation (tDCS) since a causal link remains to be established. Anodal vs. cathodal tDCS was applied for 10 min over the left PPC in 16 right-handed subjects in separate sessions. Left primary motor cortex (M1) tDCS served as control condition and was applied in additional 15 subjects. Prior to and immediately after tDCS, subjects performed three tasks demanding temporal motor precision with respect to an auditory stimulus: sensorimotor synchronization as measure of anticipatory motor control, interval reproduction and simple reaction. Left PPC tDCS affected right hand synchronization but not simple reaction times. Motor anticipation was deteriorated by anodal tDCS, while cathodal tDCS yielded the reverse effect. The variability of interval reproduction was increased by anodal left M1 tDCS, whereas it was reduced by cathodal tDCS. No significant effects on simple reaction times were found. The present data support the hypothesis that left PPC is causally involved in right hand anticipatory motor control exceeding pure motor implementation as processed by M1 and possibly indicating subjective timing. Since M1 tDCS particularly affects motor implementation, the observed PPC effects are not likely to be explained by alterations of motor-cortical excitability. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Synchrony in Joint Action Is Directed by Each Participant’s Motor Control System

    PubMed Central

    Noy, Lior; Weiser, Netta; Friedman, Jason

    2017-01-01

    In this work, we ask how the probability of achieving synchrony in joint action is affected by the choice of motion parameters of each individual. We use the mirror game paradigm to study how changes in leader’s motion parameters, specifically frequency and peak velocity, affect the probability of entering the state of co-confidence (CC) motion: a dyadic state of synchronized, smooth and co-predictive motions. In order to systematically study this question, we used a one-person version of the mirror game, where the participant mirrored piece-wise rhythmic movements produced by a computer on a graphics tablet. We systematically varied the frequency and peak velocity of the movements to determine how these parameters affect the likelihood of synchronized joint action. To assess synchrony in the mirror game we used the previously developed marker of co-confident (CC) motions: smooth, jitter-less and synchronized motions indicative of co-predicative control. We found that when mirroring movements with low frequencies (i.e., long duration movements), the participants never showed CC, and as the frequency of the stimuli increased, the probability of observing CC also increased. This finding is discussed in the framework of motor control studies showing an upper limit on the duration of smooth motion. We confirmed the relationship between motion parameters and the probability to perform CC with three sets of data of open-ended two-player mirror games. These findings demonstrate that when performing movements together, there are optimal movement frequencies to use in order to maximize the possibility of entering a state of synchronized joint action. It also shows that the ability to perform synchronized joint action is constrained by the properties of our motor control systems. PMID:28443047

  11. Synchronization algorithm for three-phase voltages of an inverter and a grid

    NASA Astrophysics Data System (ADS)

    Nos, O. V.

    2017-07-01

    This paper presents the results of designing a joint phase-locked loop for adjusting the phase shifts (speed) and Euclidean norm of three-phase voltages of an inverter to the same grid parameters. The design can be used, in particular, to match the potentials of two parallel-connected power sources for the fundamental harmonic at the moments of switching the stator windings of an induction AC motor from a converter to a centralized power-supply system and back. Technical implementation of the developed synchronization algorithm will significantly reduce the inductance of the current-balancing reactor and exclude emergency operation modes in the electric motor power circuit.

  12. Regenerative braking system of PM synchronous motor

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli

    2018-04-01

    Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.

  13. Timestamp Offset Determination Between AN Actuated Laser Scanner and its Corresponding Motor

    NASA Astrophysics Data System (ADS)

    Voges, R.; Wieghardt, C. S.; Wagner, B.

    2017-05-01

    Motor actuated 2D laser scanners are key sensors for many robotics applications that need wide ranging but low cost 3D data. There exist many approaches on how to build a 3D laser scanner using this technique, but they often lack proper synchronization for the timestamps of the actuator and the laser scanner. However, to transform the measurement points into three-dimensional space an appropriate synchronization is mandatory. Thus, we propose two different approaches to accomplish the goal of calculating timestamp offsets between laser scanner and motor prior to and after data acquisition. Both approaches use parts of a SLAM algorithm but apply different criteria to find an appropriate solution. While the approach for offset calculation prior to data acquisition exploits the fact that the SLAM algorithm should not register motion for a stationary system, the approach for offset calculation after data acquisition evaluates the perceived clarity of a point cloud created by the SLAM algorithm. Our experiments show that both approaches yield the same results although operating independently on different data, which demonstrates that the results reflect reality with a high probability. Furthermore, our experiments exhibit the significance of a proper synchronization between laser scanner and actuator.

  14. Methods, systems and apparatus for synchronous current regulation of a five-phase machine

    DOEpatents

    Gallegos-Lopez, Gabriel; Perisic, Milun

    2012-10-09

    Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.

  15. Analysis of linear electrode array EMG for assessment of hemiparetic biceps brachii muscles.

    PubMed

    Yao, Bo; Zhang, Xu; Li, Sheng; Li, Xiaoyan; Chen, Xiang; Klein, Cliff S; Zhou, Ping

    2015-01-01

    This study presents a frequency analysis of surface electromyogram (EMG) signals acquired by a linear electrode array from the biceps brachii muscles bilaterally in 14 hemiparetic stroke subjects. For different levels of isometric contraction ranging from 10 to 80% of the maximum voluntary contraction (MVC), the power spectra of 19 bipolar surface EMG channels arranged proximally to distally along the muscle fibers were examined in both paretic and contralateral muscles. It was found that across all stroke subjects, the median frequency (MF) and the mean power frequency (MPF), averaged from different surface EMG channels, were significantly smaller in the paretic muscle compared to the contralateral muscle at each of the matched percent MVC contractions. The muscle fiber conduction velocity (MFCV) was significantly slower in the paretic muscle than in the contralateral muscle. No significant correlation between the averaged MF, MPF, or MFCV vs. torque was found in both paretic and contralateral muscles. However, there was a significant positive correlation between the global MFCV and MF. Examination of individual EMG channels showed that electrodes closest to the estimated muscle innervation zones produced surface EMG signals with significantly higher MF and MPF than more proximal or distal locations in both paretic and contralateral sides. These findings suggest complex central and peripheral neuromuscular alterations (such as selective loss of large motor units, disordered control of motor units, increased motor unit synchronization, and atrophy of muscle fibers, etc.) which can collectively influence the surface EMG signals. The frequency difference with regard to the innervation zone also confirms the relevance of electrode position in surface EMG analysis.

  16. A Megawatt Power Module for Ship Service - Supplement. Volume 1: Program Technical Report

    DTIC Science & Technology

    2007-06-01

    Alternator” otherwise known as an “AC Homopolar ” or “Synchronous Homopolar ” machine for this application. The various motor /generator machine...After reviewing alternative motor /generator technologies as discussed above, a Homopolar Inductor Alternator (HIA) was selected for the technology...integrated flywheel energy storage system with homopolar inductor motor /generator and high-frequency drive”, Industry Applications, IEEE Transactions on

  17. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation.

    PubMed

    Kraus, Dominic; Naros, Georgios; Guggenberger, Robert; Leão, Maria Teresa; Ziemann, Ulf; Gharabaghi, Alireza

    2018-02-07

    Standard brain stimulation protocols modify human motor cortex excitability by modulating the gain of the activated corticospinal pathways. However, the restoration of motor function following lesions of the corticospinal tract requires also the recruitment of additional neurons to increase the net corticospinal output. For this purpose, we investigated a novel protocol based on brain state-dependent paired associative stimulation.Motor imagery (MI)-related electroencephalography was recorded in healthy males and females for brain state-dependent control of both cortical and peripheral stimulation in a brain-machine interface environment. State-dependency was investigated with concurrent, delayed, and independent stimulation relative to the MI task. Specifically, sensorimotor event-related desynchronization (ERD) in the β-band (16-22 Hz) triggered peripheral stimulation through passive hand opening by a robotic orthosis and transcranial magnetic stimulation to the respective cortical motor representation, either synchronously or subsequently. These MI-related paradigms were compared with paired cortical and peripheral input applied independent of the brain state. Cortical stimulation resulted in a significant increase in corticospinal excitability only when applied brain state-dependently and synchronously to peripheral input. These gains were resistant to a depotentiation task, revealed a nonlinear evolution of plasticity, and were mediated via the recruitment of additional corticospinal neurons rather than via synchronization of neuronal firing. Recruitment of additional corticospinal pathways may be achieved when cortical and peripheral inputs are applied concurrently, and during β-ERD. These findings resemble a gating mechanism and are potentially important for developing closed-loop brain stimulation for the treatment of hand paralysis following lesions of the corticospinal tract. SIGNIFICANCE STATEMENT The activity state of the motor system influences the excitability of corticospinal pathways to external input. State-dependent interventions harness this property to increase the connectivity between motor cortex and muscles. These stimulation protocols modulate the gain of the activated pathways, but not the overall corticospinal recruitment. In this study, a brain-machine interface paired peripheral stimulation through passive hand opening with transcranial magnetic stimulation to the respective cortical motor representation during volitional β-band desynchronization. Cortical stimulation resulted in the recruitment of additional corticospinal pathways, but only when applied brain state-dependently and synchronously to peripheral input. These effects resemble a gating mechanism and may be important for the restoration of motor function following lesions of the corticospinal tract. Copyright © 2018 the authors 0270-6474/18/381397-12$15.00/0.

  18. Inter-subject synchronization of brain responses during natural music listening

    PubMed Central

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  19. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter

    PubMed Central

    Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O.; De Nil, Luc

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset) and speech execution (following speech onset). Compared to controls, AWS showed stronger beta (15–25 Hz) suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population. PMID:27642279

  20. Precise time and time interval applications to electric power systems

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1992-01-01

    There are many applications of precise time and time interval (frequency) in operating modern electric power systems. Many generators and customer loads are operated in parallel. The reliable transfer of electrical power to the consumer partly depends on measuring power system frequency consistently in many locations. The internal oscillators in the widely dispersed frequency measuring units must be syntonized. Elaborate protection and control systems guard the high voltage equipment from short and open circuits. For the highest reliability of electric service, engineers need to study all control system operations. Precise timekeeping networks aid in the analysis of power system operations by synchronizing the clocks on recording instruments. Utility engineers want to reproduce events that caused loss of service to customers. Precise timekeeping networks can synchronize protective relay test-sets. For dependable electrical service, all generators and large motors must remain close to speed synchronism. The stable response of a power system to perturbations is critical to continuity of electrical service. Research shows that measurement of the power system state vector can aid in the monitoring and control of system stability. If power system operators know that a lightning storm is approaching a critical transmission line or transformer, they can modify operating strategies. Knowledge of the location of a short circuit fault can speed the re-energizing of a transmission line. One fault location technique requires clocks synchronized to one microsecond. Current research seeks to find out if one microsecond timekeeping can aid and improve power system control and operation.

  1. Conception et mise au point d'un emulateur de machine Synchrone trapezoidale a aimants permanents

    NASA Astrophysics Data System (ADS)

    Lessard, Francois

    The development of technology leads inevitably to higher systems' complexity faced by engineers. Over time, tools are often developed in parallel with the main systems to ensure their sustainability. The work presented in this document provides a new tool for testing motor drives. In general, this project refers to active loads, which are complex dynamic loads emulated electronically with a static converter. Specifically, this document proposes and implements a system whose purpose is to recreate the behaviour of a trapezoidal permanent magnets synchronous machine. The ultimate goal is to connect a motor drive to the three terminal of the motor emulator, as it would with a real motor. The emulator's response then obtained, when subjected to disturbances of the motor drive, is ideally identical to the one of a real motor. The motor emulator led to a significant versatility of a test bench because the electrical and mechanical parameters of the application can be easily modified. The work is divided into two main parts: the static converter and real-rime. Overall, these two entities form a PHIL (Power Hardware-in-the-loop) real-time simulation. The static converter enables the exchange of real power between the drive motor and the real-time simulation. The latter gives the application the intelligence needed to interact with the motor drive in a way which the desired behaviour is recreated. The main partner of this project, Opal-RT, ensures this development. Keywords: virtual machine, PHIL, real-time simulation, electronic load

  2. Estimating the progression of muscle fatigue based on dependence between motor units using high density surface electromyogram.

    PubMed

    Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    In this study we have tested the hypothesis regarding the increase in synchronization with the onset of muscle fatigue. For this aim, we have investigated the difference in the synchronicity between high density surface electromyogram (sEMG) channels of the rested muscles and when at the limit of endurance. Synchronization was measured by computing and normalizing the mutual information between the sEMG signals recorded from the high-density array electrode locations. Ten volunteers (Age range: 21 and 35 years; Mean age = 26 years; Male = 6, Female = 4) participated in our experiment. The participants performed isometric dorsiflexion of their dominate foot at two levels of contraction; 40% and 80% of their maximum voluntary contraction (MVC) until task failure. During the experiment an array of 64 electrodes (16 by 4) placed over the TA parallel to the muscle fiber was used to record the HD-sEMG. Normalized Mutual Information (NMI) between electrodes was calculated using the HD-sEMG data and then analyzed. The results show that that the average NMI of the TA significantly increased during fatigue at both levels of contraction. There was a statistically significant difference between NMI of the rested muscle compared with it being at the point of task failure.

  3. Intertrial auditory neural stability supports beat synchronization in preschoolers

    PubMed Central

    Carr, Kali Woodruff; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2016-01-01

    The ability to synchronize motor movements along with an auditory beat places stringent demands on the temporal processing and sensorimotor integration capabilities of the nervous system. Links between millisecond-level precision of auditory processing and the consistency of sensorimotor beat synchronization implicate fine auditory neural timing as a mechanism for forming stable internal representations of, and behavioral reactions to, sound. Here, for the first time, we demonstrate a systematic relationship between consistency of beat synchronization and trial-by-trial stability of subcortical speech processing in preschoolers (ages 3 and 4 years old). We conclude that beat synchronization might provide a useful window into millisecond-level neural precision for encoding sound in early childhood, when speech processing is especially important for language acquisition and development. PMID:26760457

  4. Development of Ulta-Efficient Electric Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoykhet, B.; Schiferl, R.; Duckworth, R.

    2008-05-01

    Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrialmore » motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air. Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to continue research efforts in order to improve future HTS motor first cost, reliability, and performance. The lessons learned from the development and testing of the 1000 hp motor were the basis for the tasks proposed for the project that is being described in this final report. These eight tasks and the technology and commercial issues they address are listed in Table 1-1.« less

  5. Control Circuit For Two Stepping Motors

    NASA Technical Reports Server (NTRS)

    Ratliff, Roger; Rehmann, Kenneth; Backus, Charles

    1990-01-01

    Control circuit operates two independent stepping motors, one at a time. Provides following operating features: After selected motor stepped to chosen position, power turned off to reduce dissipation; Includes two up/down counters that remember at which one of eight steps each motor set. For selected motor, step indicated by illumination of one of eight light-emitting diodes (LED's) in ring; Selected motor advanced one step at time or repeatedly at rate controlled; Motor current - 30 mA at 90 degree positions, 60 mA at 45 degree positions - indicated by high or low intensity of LED that serves as motor-current monitor; Power-on reset feature provides trouble-free starts; To maintain synchronism between control circuit and motors, stepping of counters inhibited when motor power turned off.

  6. Study on the dynamics responses of a transmission system made from carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hang; Cai, Kun, E-mail: kuicansj@163.com; Wei, Ning

    2015-06-21

    A rotational transmission system from coaxial carbon nanotubes (CNTs) is investigated using a computational molecular dynamics approach. The system consists of a motor from a single-walled carbon nanotube and a bearing from a double-walled carbon nanotube. The motor has a high fixed rotational frequency and the two ends of the outer tube in the bearing are fixed. The inner tube in the bearing works as a rotor. Because of the interlayer friction in the bearing, configurations of the joint between the adjacent ends of motor and rotor have significant effects on rotational transmission properties. Four factors are considered in simulation,more » i.e., the bonding types of atoms (sp{sup 1} and sp{sup 2}) on the ends of motor and rotor, the difference between motor and rotor radii, the rotational speed of motor, and the environmental temperature. It is found that the synchronous transmission happens if the sp{sup 1} atoms on the jointed ends of motor and rotor are bonded each other and become new sp{sup 2} atoms. Therefore, the lower difference between radii of motor and rotor, higher temperature of environment leads to synchronous rotational transmission easily. If the environmental temperature is too low (e.g., <150 K), the end of motor adjacent to rotor is easily under buckling and new sp{sup 2} atoms appear, too. With capped CNTs or higher radii difference between rotor and motor at an appropriate temperature, a stable asynchronous rotation of rotor can be generated, and the rotor's frequency varying linearly with motor's frequency between 230 and 270 GHz. A multi-signal transmission device combined with oscillating and rotational motion is proposed for motor and stator shares a same size in radius.« less

  7. Impairment of Auditory-Motor Timing and Compensatory Reorganization after Ventral Premotor Cortex Stimulation

    PubMed Central

    Kornysheva, Katja; Schubotz, Ricarda I.

    2011-01-01

    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation. PMID:21738657

  8. Sleep-related modifications of EEG connectivity in the sensory-motor networks in Huntington Disease: An eLORETA study and review of the literature.

    PubMed

    Piano, Carla; Imperatori, Claudio; Losurdo, Anna; Bentivoglio, Anna Rita; Cortelli, Pietro; Della Marca, Giacomo

    2017-07-01

    To evaluate EEG functional connectivity in the sensory-motor network, during wake and sleep, in patients with Huntington Disease (HD). 23 patients with HD and 23 age- and sex-matched healthy controls were enrolled. EEG connectivity analysis was performed by means of exact Low Resolution Electric Tomography (eLORETA). In wake, HD patients showed an increase of delta lagged phase synchronization (T=3.60; p<0.05) among Broadman's Areas (BA) 6-8 bilaterally; right BA 6-8 and right BA 1-2-3; left BA 1-2-3 and left BA 4. In NREM, HD patients showed an increase of delta lagged phase synchronization (T=3.56; p<0.05) among left BA 1-2-3 and right BA 6-8. In REM, HD patients showed an increase of lagged phase synchronization (T=3.60; p<0.05) among the BA 6-8 bilaterally (delta band); left BA 1-2-3 and right BA 1-2-3 (theta); left BA 1-2-3 and right BA 4 (theta); left BA 1-2-3 and right BA 1-2-3 (alpha). Our results may reflect an abnormal function of the motor areas or an effort to counterbalance the pathological motor output. Our results may help to understand the pathophysiology of sleep-related movement disorders in Huntington's Disease, and to define therapeutically strategies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Intelligent design of permanent magnet synchronous motor based on CBR

    NASA Astrophysics Data System (ADS)

    Li, Cong; Fan, Beibei

    2018-05-01

    Aiming at many problems in the design process of Permanent magnet synchronous motor (PMSM), such as the complexity of design process, the over reliance on designers' experience and the lack of accumulation and inheritance of design knowledge, a design method of PMSM Based on CBR is proposed in order to solve those problems. In this paper, case-based reasoning (CBR) methods of cases similarity calculation is proposed for reasoning suitable initial scheme. This method could help designers, by referencing previous design cases, to make a conceptual PMSM solution quickly. The case retain process gives the system self-enrich function which will improve the design ability of the system with the continuous use of the system.

  10. Adaptive vibration control using synchronous demodulation with machine tool controller motor commutation

    DOEpatents

    Hopkins, David James [Livermore, CA

    2008-05-13

    A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.

  11. Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease.

    PubMed

    Benoit, Charles-Etienne; Dalla Bella, Simone; Farrugia, Nicolas; Obrig, Hellmuth; Mainka, Stefan; Kotz, Sonja A

    2014-01-01

    It is well established that auditory cueing improves gait in patients with idiopathic Parkinson's disease (IPD). Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor, and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here, we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a 4-week music training program with rhythmic auditory cueing. Long-term effects were assessed 1 month after the end of the training. Perceptual and motor timing was evaluated with a battery for the assessment of auditory sensorimotor and timing abilities and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients' performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts). The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.

  12. Design of spoke type motor and magnetizer for improving efficiency based rare-earth-free permanent-magnet motor

    NASA Astrophysics Data System (ADS)

    Kim, Young Hyun; Cheon, Byung Chul; Lee, Jung Ho

    2018-05-01

    This study proposes criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing high-cogging torque and torque ripple, to prevent noise and vibration. The optimal design of the stator and rotor can be enhanced using both a response surface method and finite element method. In addition, a magnetizer system is optimally designed for the magnetization of permanent magnets for use in the motor. Finally, this study verifies that the proposed motor can efficiently replace interior permanent magnet synchronous motor in many industries.

  13. Inter-subject synchronization of brain responses during natural music listening.

    PubMed

    Abrams, Daniel A; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J; Menon, Vinod

    2013-05-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Changes in interhemispheric motor connectivity after muscle fatigue

    NASA Astrophysics Data System (ADS)

    Peltier, Scott; LaConte, Stephen M.; Niyazov, Dmitriy; Liu, Jing; Sahgal, Vinod; Yue, Guang; Hu, Xiaoping

    2005-04-01

    Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (< 0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a potential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states. Thus, detection of these functional connectivity patterns may help to serve as a gauge of normal brain activity. The cognitive effects of muscle fatigue are not well characterized. Sustained fatigue has the potential to dynamically alter activity in brain networks. In this work, we examined the interhemispheric correlations in the left and right primary motor cortices and how they change with muscle fatigue. Resting-state functional MRI imaging was done before and after a repetitive unilateral fatigue task. We find that the number of significant correlations in the bilateral motor network decreases with fatigue. These results suggest that resting-state interhemispheric motor cortex functional connectivity is affected by muscle fatigue.

  15. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  16. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  17. Current harmonics elimination control method for six-phase PM synchronous motor drives.

    PubMed

    Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei

    2015-11-01

    To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Synchronous monitoring of muscle dynamics and electromyogram

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2011-04-01

    A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.

  19. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S [Oak Ridge, TN

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  20. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  1. Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills.

    PubMed

    Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2017-01-01

    Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A network of networks model to study phase synchronization using structural connection matrix of human brain

    NASA Astrophysics Data System (ADS)

    Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.

    2018-04-01

    The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.

  3. Atlas-Centaur AC-18 performance evaluation for Applications Technology Satellite ATS-5 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Atlas-Centaur with the ATS-5 spacecraft was successfully launched from Eastern Test Range on August 12, 1969, and the ATS-5 was placed in the required highly elliptical transfer orbit with apogee near synchronous altitude. From this orbit the ATS-5, using its apogee motor, achieved the desired near-synchronous circular equatorial orbit. All launch vehicle systems performed satisfactorily.

  4. Analysis of surface EMG spike shape across different levels of isometric force.

    PubMed

    Gabriel, David A; Lester, Steven M; Lenhardt, Sean A; Cambridge, Edward D J

    2007-01-15

    This research evaluated changes in surface electromyographic (SEMG) spike shape across different levels of isometric force. Ninety-six subjects generated three 5-s isometric step contractions of the elbow flexors at 40, 60, 80, and 100% of maximal voluntary contraction (MVC). Force and bipolar SEMG activity were monitored concurrently. The mean spike amplitude (MSA) exhibited a linear increase across the four levels of force. The mean spike frequency (MSF) remained stable from 40 to 80% of MVC; it then decreased from 80 to 100% of MVC. There was a concomitant increase in mean spike slope (MSS) that indicates that the biceps brachii (BB) relied on the recruitment of higher threshold motor units (MUs) from 40 to 80% of MVC. However, there progressive decrease in the mean number of peaks per spike (MNPPS) that suggests that MU synchronization was additionally required to increase force from 80 to 100% of MVC. The spike shape measures, taken together, indicate that the decrease in frequency content of the signal was due to synchronization, not an increased probability of temporal overlap due an increase in rate-coding.

  5. Simulation of a Flywheel Electrical System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan V.

    2000-01-01

    A Flywheel Energy Storage Demonstration Project was initiated at the NASA Glenn Research Center as a possible replacement for the battery energy storage system on the International Space Station (ISS). While the hardware fabrication work was being performed at a university and contractor's facility, the related simulation activity was begun at Glenn. At the top level, Glenn researchers simulated the operation of the ISS primary electrical system (as described in another paper) with the Flywheel Energy Storage Unit (FESU) replacing one Battery Charge and Discharge Unit (BCDU). The FESU consists of a Permanent Magnet Synchronous Motor/Generator (PMSM), which is connected to the flywheel; the power electronics that connects the PMSM to the ISS direct-current bus; and the associated controller. The PMSM model is still under development, but this paper describes the rest of the FESU model-the simulation of the converter and the associated control system that regulates energy transfer to and from the flywheel.

  6. Cerebral motor function in very premature-at-birth adolescents: a brain stimulation exploration of kangaroo mother care effects.

    PubMed

    Schneider, Cyril; Charpak, Nathalie; Ruiz-Peláez, Juan G; Tessier, Réjean

    2012-10-01

      Given that prematurity has deleterious effects on brain networking development beyond childhood, the study explored whether an early intervention such as Kangaroo Mother Care (KMC) in very preterm preemies could have influenced brain motor function up to adolescence.   Transcranial magnetic stimulation (TMS) was applied over the primary motor cortex (M1) of 39 adolescents born very prematurely (<33 weeks' gestational age, 21 having received KMC after birth, 18 Controls with no KMC) and nine adolescents born at term (>37 weeks' gestational age, >2500 g) to assess the functional integrity of motor circuits in each hemisphere (motor planning) and between hemispheres (callosal function).   All TMS outcomes were similar between KMC and term adolescents, with typical values as in healthy adults, and better than in Controls. KMC adolescents presented faster conduction times revealing more efficient M1 cell synchronization (p < 0.05) and interhemispheric transfer time (p < 0.0001), more frequent inhibitory processes with a better control between hemispheres (p < 0.0001).   The enhanced synchronization, conduction times and connectivity of cerebral motor pathways in the KMC group suggests that the Kangaroo Mother Care positively influenced the premature brain networks and synaptic efficacy up to adolescence. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica.

  7. Permanent magnet synchronous motor servo system control based on μC/OS

    NASA Astrophysics Data System (ADS)

    Shi, Chongyang; Chen, Kele; Chen, Xinglong

    2015-10-01

    When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.

  8. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaosmore » of PMSM and show the effectiveness and robustness of the proposed method.« less

  9. Core losses of a permanent magnet synchronous motor with an amorphous stator core under inverter and sinusoidal excitations

    NASA Astrophysics Data System (ADS)

    Yao, Atsushi; Sugimoto, Takaya; Odawara, Shunya; Fujisaki, Keisuke

    2018-05-01

    We report core loss properties of permanent magnet synchronous motors (PMSM) with amorphous magnetic materials (AMM) core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO) core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space) harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.

  10. Core losses of an inverter-fed permanent magnet synchronous motor with an amorphous stator core under no-load

    NASA Astrophysics Data System (ADS)

    Denis, Nicolas; Kato, Yoshiyuki; Ieki, Masaharu; Fujisaki, Keisuke

    2016-05-01

    In this paper, an interior permanent magnet synchronous motor (IPMSM) with a stator core made of amorphous magnetic material (AMM) is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM) control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.

  11. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

    PubMed

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  12. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  13. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes.

    PubMed

    Schwartze, Michael; Keller, Peter E; Patel, Aniruddh D; Kotz, Sonja A

    2011-01-20

    The basal ganglia (BG) are part of extensive subcortico-cortical circuits that are involved in a variety of motor and non-motor cognitive functions. Accumulating evidence suggests that one specific function that engages the BG and associated cortico-striato-thalamo-cortical circuitry is temporal processing, i.e., the mechanisms that underlie the encoding, decoding and evaluation of temporal relations or temporal structure. In the current study we investigated the interplay of two processes that require precise representations of temporal structure, namely the perception of an auditory pacing signal and manual motor production by means of finger tapping in a sensorimotor synchronization task. Patients with focal lesions of the BG and healthy control participants were asked to align finger taps to tone sequences that either did or did not contain a tempo acceleration or tempo deceleration at a predefined position, and to continue tapping at the final tempo after the pacing sequence had ceased. Performance in this adaptive synchronization-continuation paradigm differed between the two groups. Selective damage to the BG affected the abilities to detect tempo changes and to perform attention-dependent error correction, particularly in response to tempo decelerations. An additional assessment of preferred spontaneous, i.e., unpaced but regular, production rates yielded more heterogeneous results in the patient group. Together these findings provide evidence for less efficient processing in the perception and the production of temporal structure in patients with focal BG lesions. The results also support the functional role of the BG system in attention-dependent temporal processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    NASA Technical Reports Server (NTRS)

    Christie, Robert; Dubois, Authur; Derlaga, Joseph

    2016-01-01

    Benefits of Electric Power: Reduced energy consumption, Lower emissions, Less noise. Traction motors: Permanent magnet, Synchronous, High torque at low rotational speeds, High power density, (High concentration of heat). Annular inlet: Very compatible with PM motors, (Provides cooling where needed, No need for complicated ducting, Leads to a larger motor diameter which is beneficial for motor torque) Effect of prop wash on heat transfer coefficients: Assumed propeller induced turbulence would increase heat transfer coefficients, Holmes, Obara Yip reported 'propeller slipstream showed little if any apparent effect of the slip stream', Derlaga @ LaRC also found little change in heat transfer in the wake of the propeller.

  15. Modeling and analysis of a magnetically levitated synchronous permanent magnet planar motor

    NASA Astrophysics Data System (ADS)

    Kou, Baoquan; Zhang, Lu; Li, Liyi; Zhang, Hailin

    2012-04-01

    In this paper, a new magnetically levitated synchronous permanent magnet planar motor (MLSPMPM) driven by composite-current is proposed, of which the mover is made of a copper coil array and the stator are magnets and magnetic conductor. The coil pitch τt and permanent magnet pole pitch τp satisfy the following relationship 3nτt = (3n ± 1)τp. Firstly, an analytical model of the planar motor is established, flux density distribution of the two-dimensional magnet array is obtained by solving the equations of the scalar magnetic potential. Secondly, the expressions of the electromagnetic forces induced by magnetic field and composite current are derived. To verify the analytical model and the electromagnetic forces, finite element method (FEM) is used for calculating the flux density and electromagnetic forces of the MLSPMPM. And the results from FEM are in good agreement with the results from the analytical equations. This indicates that the analytical model is reasonable.

  16. Evaluation of Iron Loss in Interior Permanent Magnet Synchronous Motor with Consideration of Rotational Field

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki

    Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.

  17. Examination of Applying Amorphous Rolled Core to Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Amano, Hisato; Enomoto, Yuji; Ito, Motoya; Itabashi, Hiromitsu; Tanigawa, Sigeho; Masaki, Ryoso

    Amorphous alloy exhibits high permeability and extremely low iron loss compared to magnetic steel sheet. Therefore, it is expected to contribute to the efficiency improvement of electromagnetic application products such as motors, generators, and transformers. In this paper, we examined an axial-type motor that uses the rolled amorphous core as a stator core for the purpose of applying amorphous alloy to a motor for air-conditioning equipments. We propose the motor structure to use amorphous alloy as a rolled core without complicated processing, and the evaluation results of the trial motor clarified that this structure is able to meet the target motor efficiency of 85% under the conditions that the size of the motor is below φ100mm × 60mm and that ferrite magnets are used.

  18. Chopped molecular beam multiplexing system

    NASA Technical Reports Server (NTRS)

    Adams, Billy R. (Inventor)

    1986-01-01

    The integration of a chopped molecular beam mass spectrometer with a time multiplexing system is described. The chopping of the molecular beam is synchronized with the time intervals by a phase detector and a synchronous motor. Arithmetic means are generated for phase shifting the chopper with respect to the multiplexer. A four channel amplifier provides the capacity to independently vary the baseline and amplitude in each channel of the multiplexing system.

  19. Synchronous meteorological satellite system description document, volume 3

    NASA Technical Reports Server (NTRS)

    Pipkin, F. B.

    1971-01-01

    The structural design, analysis, and mechanical integration of the synchronous meteorological satellite system are presented. The subjects discussed are: (1) spacecraft configuration, (2) structural design, (3) static load tests, (4) fixed base sinusoidal vibration survey, (5) flight configuration sinusoidal vibration tests, (6) spacecraft acoustic test, and (7) separation and shock test. Descriptions of the auxiliary propulsion subsystem, the apogee boost motor, communications system, and thermal control subsystem are included.

  20. Clapping in time parallels literacy and calls upon overlapping neural mechanisms in early readers.

    PubMed

    Bonacina, Silvia; Krizman, Jennifer; White-Schwoch, Travis; Kraus, Nina

    2018-05-12

    The auditory system is extremely precise in processing the temporal information of perceptual events and using these cues to coordinate action. Synchronizing movement to a steady beat relies on this bidirectional connection between sensory and motor systems, and activates many of the auditory and cognitive processes used when reading. Here, we use Interactive Metronome, a clinical intervention technology requiring an individual to clap her hands in time with a steady beat, to investigate whether the links between literacy and synchronization skills, previously established in older children, are also evident in children who are learning to read. We tested 64 typically developing children (ages 5-7 years) on their synchronization abilities, neurophysiological responses to speech in noise, and literacy skills. We found that children who have lower variability in synchronizing have higher phase consistency, higher stability, and more accurate envelope encoding-all neurophysiological response components linked to language skills. Moreover, performing the same task with visual feedback reveals links with literacy skills, notably processing speed, phonological processing, word reading, spelling, morphology, and syntax. These results suggest that rhythm skills and literacy call on overlapping neural mechanisms, supporting the idea that rhythm training may boost literacy in part by engaging sensory-motor systems. © 2018 New York Academy of Sciences.

  1. Single-axle, double-axis solar tracker

    NASA Technical Reports Server (NTRS)

    Brantley, L. W.; Lawson, B. D.

    1979-01-01

    Solar concentrator tracking mechanism consisting of angular axle and two synchronized drive motors, follows seasonal as well as diurnal changes in earth's orientation with respect to incoming sunlight.

  2. Digital phase-locked loop speed control for a brushless dc motor

    NASA Astrophysics Data System (ADS)

    Wise, M. G.

    1985-06-01

    Speed control of d.c. motors by phase-locked loops (PLL) is becoming increasingly popular. Primary interest has been in employing PLL for constant speed control. This thesis investigates the theory and techniques of digital PLL to speed control of a brushless d.c. motor with a variable speed of operation. Addition of logic controlled count enable/disable to a synchronous up/down counter, used as a phase-frequency detector, is shown to improve the performance of previously proposed PLL control schemes.

  3. Auditory priming improves neural synchronization in auditory-motor entrainment.

    PubMed

    Crasta, Jewel E; Thaut, Michael H; Anderson, Charles W; Davies, Patricia L; Gavin, William J

    2018-05-22

    Neurophysiological research has shown that auditory and motor systems interact during movement to rhythmic auditory stimuli through a process called entrainment. This study explores the neural oscillations underlying auditory-motor entrainment using electroencephalography. Forty young adults were randomly assigned to one of two control conditions, an auditory-only condition or a motor-only condition, prior to a rhythmic auditory-motor synchronization condition (referred to as combined condition). Participants assigned to the auditory-only condition auditory-first group) listened to 400 trials of auditory stimuli presented every 800 ms, while those in the motor-only condition (motor-first group) were asked to tap rhythmically every 800 ms without any external stimuli. Following their control condition, all participants completed an auditory-motor combined condition that required tapping along with auditory stimuli every 800 ms. As expected, the neural processes for the combined condition for each group were different compared to their respective control condition. Time-frequency analysis of total power at an electrode site on the left central scalp (C3) indicated that the neural oscillations elicited by auditory stimuli, especially in the beta and gamma range, drove the auditory-motor entrainment. For the combined condition, the auditory-first group had significantly lower evoked power for a region of interest representing sensorimotor processing (4-20 Hz) and less total power in a region associated with anticipation and predictive timing (13-16 Hz) than the motor-first group. Thus, the auditory-only condition served as a priming facilitator of the neural processes in the combined condition, more so than the motor-only condition. Results suggest that even brief periods of rhythmic training of the auditory system leads to neural efficiency facilitating the motor system during the process of entrainment. These findings have implications for interventions using rhythmic auditory stimulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The usefulness of videomanometry for studying pediatric esophageal motor disease.

    PubMed

    Kawahara, Hisayoshi; Kubota, Akio; Okuyama, Hiroomi; Oue, Takaharu; Tazuke, Yuko; Okada, Akira

    2004-12-01

    Abnormalities in esophageal motor function underlie various symptoms in the pediatric population. Manometry remains an important tool for studying esophageal motor function, whereas its analyses have been conducted with considerable subjective interpretation. The usefulness of videomanometry with topographic analysis was examined in the current study. Videomanometry was conducted in 5 patients with primary gastroesophageal reflux disease (GERD), 4 with postoperative esophageal atresia (EA), 1 with congenital esophageal stenosis (CES), and 1 with diffuse esophageal spasms (DES). Digitized videofluoroscopic images were recorded synchronously with manometric digital data in a personal computer. Manometric analysis was conducted with a view of concurrent esophageal contour and bolus transit. Primary GERD patients showed esophageal flow proceeding into the stomach during peristaltic contractions recorded manometrically, whereas patients with EA/CES frequently showed impaired esophageal transit during defective esophageal peristaltic contractions. A characteristic corkscrew appearance and esophageal flow in a to-and-fro fashion were seen with high-amplitude synchronous esophageal contractions in a DES patient. The topographic analysis showed distinctive images characteristic of each pathological condition. Videomanometry is helpful in interpreting manometric data by analyzing concurrent fluoroscopic images. Topographic analyses provide characteristic images reflecting motor abnormalities in pediatric esophageal disease.

  5. Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease.

    PubMed

    Hurtado, José M; Rubchinsky, Leonid L; Sigvardt, Karen A; Wheelock, Vicki L; Pappas, Conrad T E

    2005-03-01

    Both standard spectral analysis and time-dependent phase correlation techniques were applied to 27 pairs of tremor-related single units in the globus pallidus internus (GPi) and EMG of patients with Parkinson's disease (PD) undergoing stereotactic neurosurgery. Over long time-scales (approximately 60 s), GPi tremor-related units were statistically coherent with restricted regions of the peripheral musculature displaying tremor. The distribution of pooled coherence across all pairs supports a classification of GPi cell/EMG oscillatory pairs into coherent or noncoherent. Analysis using approximately 2-s sliding windows shows that oscillatory activity in both GPi tremor units and muscles occurs intermittently over time. For brain/muscle pairs that are coherent, there is partial overlap in the times of oscillatory activity but, in most cases, no significant correlation between the times of oscillatory subepisodes in the two signals. Phase locking between coherent pairs occurs transiently; however, the phase delay is similar for different phase-locking subepisodes. Noncoherent pairs also show episodes of transient phase locking, but they occurred less frequently, and no preferred phase delay was seen across subepisodes. Tremor oscillations in pallidum and EMGs are punctuated by phase slips, which were classified as synchronizing or desynchronizing depending on their effect on phase locking. In coherent pairs, the incidence of synchronizing slips is higher than desynchronizing slips, whereas no significant difference was seen for noncoherent pairs. The results of this quantitative characterization of parkinsonian tremor provide a foundation for hypotheses about the structure and dynamical functioning of basal ganglia motor control networks involved in tremor generation.

  6. A novel type of rim thrust motor with Halbach array permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Cao, Haichuan; Chen, Weihu

    2018-05-01

    The Rim-driven Thruster (RDT) is a new type of marine electric thruster proposed in recent years. In this paper, the author proposed a new type of permanent magnet synchronous rim thrust motor (RTM). The motor uses a Halbach array permanent magnet rotor, which can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the electromagnetic properties of the motor were measured and compared with that of the ordinary magnetic pole motor through numerical analysis. The results show that at the same power, the new motor can significantly reduce the thickness of the rotor's permanent magnet and yoke core, and has obvious advantages in power density, moment of inertia, dynamic performance, and cost.

  7. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.

    2014-01-01

    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance using hardware-in-the-loop (HIL).

  8. Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish

    PubMed Central

    Muto, Akira; Ohkura, Masamichi; Kotani, Tomoya; Higashijima, Shin-ichi; Nakai, Junichi; Kawakami, Koichi

    2011-01-01

    Animal behaviors are generated by well-coordinated activation of neural circuits. In zebrafish, embryos start to show spontaneous muscle contractions at 17 to 19 h postfertilization. To visualize how motor circuits in the spinal cord are activated during this behavior, we developed GCaMP-HS (GCaMP-hyper sensitive), an improved version of the genetically encoded calcium indicator GCaMP, and created transgenic zebrafish carrying the GCaMP-HS gene downstream of the Gal4-recognition sequence, UAS (upstream activation sequence). Then we performed a gene-trap screen and identified the SAIGFF213A transgenic fish that expressed Gal4FF, a modified version of Gal4, in a subset of spinal neurons including the caudal primary (CaP) motor neurons. We conducted calcium imaging using the SAIGFF213A; UAS:GCaMP-HS double transgenic embryos during the spontaneous contractions. We demonstrated periodic and synchronized activation of a set of ipsilateral motor neurons located on the right and left trunk in accordance with actual muscle movements. The synchronized activation of contralateral motor neurons occurred alternately with a regular interval. Furthermore, a detailed analysis revealed rostral-to-caudal propagation of activation of the ipsilateral motor neuron, which is similar to but much slower than the rostrocaudal delay observed during swimming in later stages. Our study thus demonstrated coordinated activities of the motor neurons during the first behavior in a vertebrate. We propose the GCaMP technology combined with the Gal4FF-UAS system is a powerful tool to study functional neural circuits in zebrafish. PMID:21383146

  9. Development of a drive system for a sequential space camera

    NASA Technical Reports Server (NTRS)

    Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.

    1976-01-01

    Breadboard models of single and dual motor drives for the shutter, claw and magazine of a space camera system were designed and tested. The single motor technique utilizes a single electronically commutated motor to drive the claw and shutter without resorting to a solenoid actuated clutch for pulse operation. Shutter speed is established by a combination of the cinemode speed and the opening of the conventional DAC two piece shutter. Pulse mode operation is obtained by applying power at a fixed clock rate and removing power at an appropriate point in the mechanical cycle such that the motor comes to rest by system friction. The dual motor approach utilizes a stepper motor to drive the shutter and an electronically commutated dc motor to drive the claw and magazine functions. The motors are synchronized electronically.

  10. The Speed of Visual Attention and Motor-Response Decisions in Adult Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Cross-Villasana, Fernando; Finke, Kathrin; Hennig-Fast, Kristina; Kilian, Beate; Wiegand, Iris; Müller, Hermann Joseph; Möller, Hans-Jürgen; Töllner, Thomas

    2015-07-15

    Adults with attention-deficit/hyperactivity disorder (ADHD) exhibit slowed reaction times (RTs) in various attention tasks. The exact origins of this slowing, however, have not been established. Potential candidates are early sensory processes mediating the deployment of focal attention, stimulus response translation processes deciding upon the appropriate motor response, and motor processes generating the response. We combined mental chronometry (RT) measures of adult ADHD (n = 15) and healthy control (n = 15) participants with their lateralized event-related potentials during the performance of a visual search task to differentiate potential sources of slowing at separable levels of processing: the posterior contralateral negativity (PCN) was used to index focal-attentional selection times, while the lateralized readiness potentials synchronized to stimulus and response events were used to index the times taken for response selection and production, respectively. To assess the clinical relevance of event-related potentials, a correlation analysis between neural measures and subjective current and retrospective ADHD symptom ratings was performed. ADHD patients exhibited slower RTs than control participants, which were accompanied by prolonged PCN and lateralized readiness potentials synchronized to stimulus, but not lateralized readiness potentials synchronized to response events, latencies. Moreover, the PCN timing was positively correlated with ADHD symptom ratings. The behavioral RT slowing of adult ADHD patients was based on a summation of internal processing delays arising at perceptual and response selection stages; motor response production, by contrast, was not impaired. The correlation between PCN times and ADHD symptom ratings suggests that this brain signal may serve as a potential candidate for a neurocognitive endophenotype of ADHD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Emergence of structural patterns out of synchronization in networks with competitive interactions

    NASA Astrophysics Data System (ADS)

    Assenza, Salvatore; Gutiérrez, Ricardo; Gómez-Gardeñes, Jesús; Latora, Vito; Boccaletti, Stefano

    2011-09-01

    Synchronization is a collective phenomenon occurring in systems of interacting units, and is ubiquitous in nature, society and technology. Recent studies have enlightened the important role played by the interaction topology on the emergence of synchronized states. However, most of these studies neglect that real world systems change their interaction patterns in time. Here, we analyze synchronization features in networks in which structural and dynamical features co-evolve. The feedback of the node dynamics on the interaction pattern is ruled by the competition of two mechanisms: homophily (reinforcing those interactions with other correlated units in the graph) and homeostasis (preserving the value of the input strength received by each unit). The competition between these two adaptive principles leads to the emergence of key structural properties observed in real world networks, such as modular and scale-free structures, together with a striking enhancement of local synchronization in systems with no global order.

  12. System Synchronizes Recordings from Separated Video Cameras

    NASA Technical Reports Server (NTRS)

    Nail, William; Nail, William L.; Nail, Jasper M.; Le, Doung T.

    2009-01-01

    A system of electronic hardware and software for synchronizing recordings from multiple, physically separated video cameras is being developed, primarily for use in multiple-look-angle video production. The system, the time code used in the system, and the underlying method of synchronization upon which the design of the system is based are denoted generally by the term "Geo-TimeCode(TradeMark)." The system is embodied mostly in compact, lightweight, portable units (see figure) denoted video time-code units (VTUs) - one VTU for each video camera. The system is scalable in that any number of camera recordings can be synchronized. The estimated retail price per unit would be about $350 (in 2006 dollars). The need for this or another synchronization system external to video cameras arises because most video cameras do not include internal means for maintaining synchronization with other video cameras. Unlike prior video-camera-synchronization systems, this system does not depend on continuous cable or radio links between cameras (however, it does depend on occasional cable links lasting a few seconds). Also, whereas the time codes used in prior video-camera-synchronization systems typically repeat after 24 hours, the time code used in this system does not repeat for slightly more than 136 years; hence, this system is much better suited for long-term deployment of multiple cameras.

  13. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    DOEpatents

    Ohmacht, Martin

    2017-08-15

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  14. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    DOEpatents

    Ohmacht, Martin

    2014-09-09

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  15. Comparison of performances between IPM and SPM motors with rotor eccentricity

    NASA Astrophysics Data System (ADS)

    Hwang, C. C.; Chang, C. M.; Cheng, S. P.; Chan, C. K.; Pan, C. T.; Chang, T. Y.

    2004-11-01

    Rotor eccentricity in two three-phase, 6-pole, 36-slot interior permanent magnet- and surface-mounted synchronous motors are investigated and compared by means of a transient finite element model. Magnet flux density, EMF, cogging torque and average torque generated by the model are presented for the cases of static rotor eccentricity. These results are compared with those obtained from a symmetric rotor case.

  16. Patterns of Cortical Synchronization in Isolated Dystonia Compared With Parkinson Disease

    PubMed Central

    Miocinovic, Svjetlana; de Hemptinne, Coralie; Qasim, Salman; Ostrem, Jill L.; Starr, Philip A.

    2016-01-01

    IMPORTANCE Isolated dystonia and Parkinson disease (PD) are disorders of the basal gangliothalamocortical network. They have largely distinct clinical profiles, but both disorders respond to deep brain stimulation (DBS) in the same subcortical targets using similar stimulation paradigms, suggesting pathophysiologic overlap. We hypothesized that, similar to PD, isolated dystonia is associated with elevated cortical neuronal synchronization. OBJECTIVE To investigate the electrophysiologic characteristics of the sensorimotor cortex arm-related area using a temporary subdural electrode strip in patients with isolated dystonia and PD undergoing DBS implantation in the awake state. DESIGN, SETTING, AND PARTICIPANTS An observational study recruited patients scheduled for DBS at the University of California, San Francisco and the San Francisco Veterans Affairs Medical Center. Data were collected from May 1, 2008, through April 1, 2015. Findings are reported for 22 patients with isolated cervical or segmental dystonia (8 with [DYST-ARM] and 14 without [DYST] arm symptoms] and 14 patients with akinetic rigid PD. Data were analyzed from November 1, 2014, through May 1, 2015. MAIN OUTCOMES AND MEASURES Cortical local field potentials, power spectral density, and phase-amplitude coupling (PAC). RESULTS Among our 3 groups that together included 36 patients, cortical PAC was present in primary motor and premotor arm-related areas for all groups, but the DYST group was less likely to exhibit increased PAC (P = .008). Similar to what has been shown for patients with PD, subthalamic DBS reversibly decreased PAC in a subset of patients with dystonia who were studied before and during intraoperative test stimulation (n = 4). At rest, broadband gamma (50–200 Hz) power in the primary motor cortex was greater in the DYST-ARM and PD groups compared with the DYST group, whereas alpha (8–13 Hz) and beta (13–30 Hz) power was comparable in all 3 groups. During movement, the DYST-ARM group had impaired beta and low gamma desynchronization in the primary motor cortex. CONCLUSIONS AND RELEVANCE Isolated dystonia and PD have physiologic overlap with respect to high levels of motor cortex synchronization and reduction of cortical synchronization by subthalamic DBS, providing an explanation for their similar therapeutic response to basal ganglia stimulation. PMID:26409266

  17. Age-Related Changes in Bimanual Instrument Playing with Rhythmic Cueing

    PubMed Central

    Kim, Soo Ji; Cho, Sung-Rae; Yoo, Ga Eul

    2017-01-01

    Deficits in bimanual coordination of older adults have been demonstrated to significantly limit their functioning in daily life. As a bimanual sensorimotor task, instrument playing has great potential for motor and cognitive training in advanced age. While the process of matching a person’s repetitive movements to auditory rhythmic cueing during instrument playing was documented to involve motor and attentional control, investigation into whether the level of cognitive functioning influences the ability to rhythmically coordinate movement to an external beat in older populations is relatively limited. Therefore, the current study aimed to examine how timing accuracy during bimanual instrument playing with rhythmic cueing differed depending on the degree of participants’ cognitive aging. Twenty one young adults, 20 healthy older adults, and 17 older adults with mild dementia participated in this study. Each participant tapped an electronic drum in time to the rhythmic cueing provided using both hands simultaneously and in alternation. During bimanual instrument playing with rhythmic cueing, mean and variability of synchronization errors were measured and compared across the groups and the tempo of cueing during each type of tapping task. Correlations of such timing parameters with cognitive measures were also analyzed. The results showed that the group factor resulted in significant differences in the synchronization errors-related parameters. During bimanual tapping tasks, cognitive decline resulted in differences in synchronization errors between younger adults and older adults with mild dimentia. Also, in terms of variability of synchronization errors, younger adults showed significant differences in maintaining timing performance from older adults with and without mild dementia, which may be attributed to decreased processing time for bimanual coordination due to aging. Significant correlations were observed between variability of synchronization errors and performance of cognitive tasks involving executive control and cognitive flexibility when asked for bimanual coordination in response to external timing cues at adjusted tempi. Also, significant correlations with cognitive measures were more prevalent in variability of synchronization errors during alternative tapping compared to simultaneous tapping. The current study supports that bimanual tapping may be predictive of cognitive processing of older adults. Also, tempo and type of movement required for instrument playing both involve cognitive and motor loads at different levels, and such variables could be important factors for determining the complexity of the task and the involved task requirements for interventions using instrument playing. PMID:29085309

  18. Scaling of movement is related to pallidal γ oscillations in patients with dystonia.

    PubMed

    Brücke, Christof; Huebl, Julius; Schönecker, Thomas; Neumann, Wolf-Julian; Yarrow, Kielan; Kupsch, Andreas; Blahak, Christian; Lütjens, Goetz; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

    2012-01-18

    Neuronal synchronization in the gamma (γ) band is considered important for information processing through functional integration of neuronal assemblies across different brain areas. Movement-related γ synchronization occurs in the human basal ganglia where it is centered at ~70 Hz and more pronounced contralateral to the moved hand. However, its functional significance in motor performance is not yet well understood. Here, we assessed whether event-related γ synchronization (ERS) recorded from the globus pallidus internus in patients undergoing deep brain stimulation for medically intractable primary focal and segmental dystonia might code specific motor parameters. Pallidal local field potentials were recorded in 22 patients during performance of a choice-reaction-time task. Movement amplitude of the forearm pronation-supination movements was parametrically modulated with an angular degree of 30°, 60°, and 90°. Only patients with limbs not affected by dystonia were tested. A broad contralateral γ band (35-105 Hz) ERS occurred at movement onset with a maximum reached at peak velocity of the movement. The pallidal oscillatory γ activity correlated with movement parameters: the larger and faster the movement, the stronger was the synchronization in the γ band. In contrast, the event-related decrease in beta band activity was similar for all movements. Gamma band activity did not change with movement direction and did not occur during passive movements. The stepwise increase of γ activity with movement size and velocity suggests a role of neuronal synchronization in this frequency range in basal ganglia control of the scaling of ongoing movements.

  19. Mechanism For Adjustment Of Commutation Of Brushless Motor

    NASA Technical Reports Server (NTRS)

    Schaefer, Richard E.

    1995-01-01

    Mechanism enables adjustment of angular position of set of Hall-effect devices that sense instantaneous shaft angle of brushless dc motor. Outputs of sensors fed to commutation circuitry. Measurement of shaft angle essential for commutation; that is, application of voltage to stator windings must be synchronized with shaft angle. To obtain correct angle measurement for commutation, Hall-effect angle sensors positioned at proper reference angle. The present mechanism accelerates adjustment procedure and makes it possible to obtain more accurate indication of minimum-current position because it provides for adjustment while motor running.

  20. Superconducting Electric Machine with Permanent Magnets and Bulk HTS Elements

    NASA Astrophysics Data System (ADS)

    Levin, A. V.; Vasich, P. S.; Dezhin, D. S.; Kovalev, L. K.; Kovalev, K. L.; Poltavets, V. N.; Penkin, V. T.

    Theoretical methods of calculating of two-dimensional magnetic fields, inductive parameters and output characteristics of the new type of high-temperature superconducting (HTS) synchronous motors with a composite rotor are presented. The composite rotor has the structure containing HTS flat elements, permanent magnets and ferromagnetic materials. The developed calculation model takes into account the concentrations and physical properties of these rotor elements. The simulation results of experimental HTS motor with a composite rotor are presented. The application of new type of HTS motor in different constructions of industrial high dynamic drivers is discussed.

  1. Independence of motor unit recruitment and rate modulation during precision force control.

    PubMed

    Kamen, G; Du, D C

    1999-01-01

    The vertebrate motor system chiefly employs motor unit recruitment and rate coding to modulate muscle force output. In this paper, we studied how the recruitment of new motor units altered the firing rate of already-active motor units during precision force production in the first dorsal interosseous muscle. Six healthy adults performed linearly increasing isometric voluntary contractions while motor unit activity and force output were recorded. After motor unit discharges were identified, motor unit firing rates were calculated before and after the instances of new motor unit recruitment. Three procedures were applied to compute motor unit firing rate, including the mean of a fixed number of inter-spike intervals and the constant width weighted Hanning window filter method, as well as a modified boxcar technique. In contrast to previous reports, the analysis of the firing rates of over 200 motor units revealed that reduction of the active firing rates was not a common mechanism used to accommodate the twitch force produced by the recruitment of a new motor unit. Similarly, during de-recruitment there was no tendency for motor unit firing rates to increase immediately following the cessation of activity in other motor units. Considerable consistency in recruitment behavior was observed during repeated contractions. However, firing rates during repeated contractions demonstrated considerably more fluctuation. It is concluded that the neuromuscular system does not use short-term preferential motor unit disfacilitation to effect precise regulation of muscular force output.

  2. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Sieck, Gary C.

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation, but are also active in other non-ventilatory behaviors, including coughing, sneezing, vomiting, defecation and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely-distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. PMID:24746055

  3. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    PubMed

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  4. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease

    PubMed Central

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir

    2016-01-01

    Abstract Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. PMID:27017189

  5. Catch-slip bonds can be dispensable for motor force regulation during skeletal muscle contraction

    NASA Astrophysics Data System (ADS)

    Dong, Chenling; Chen, Bin

    2015-07-01

    It is intriguing how multiple molecular motors can perform coordinated and synchronous functions, which is essential in various cellular processes. Recent studies on skeletal muscle might have shed light on this issue, where rather precise motor force regulation was partly attributed to the specific stochastic features of a single attached myosin motor. Though attached motors can randomly detach from actin filaments either through an adenosine triphosphate (ATP) hydrolysis cycle or through "catch-slip bond" breaking, their respective contribution in motor force regulation has not been clarified. Here, through simulating a mechanical model of sarcomere with a coupled Monte Carlo method and finite element method, we find that the stochastic features of an ATP hydrolysis cycle can be sufficient while those of catch-slip bonds can be dispensable for motor force regulation.

  6. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  7. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  8. Simulation of motor unit recruitment and microvascular unit perfusion: spatial considerations.

    PubMed

    Fuglevand, A J; Segal, S S

    1997-10-01

    Muscle fiber activity is the principal stimulus for increasing capillary perfusion during exercise. The control elements of perfusion, i.e., microvascular units (MVUs), supply clusters of muscle fibers, whereas the control elements of contraction, i.e., motor units, are composed of fibers widely scattered throughout muscle. The purpose of this study was to examine how the discordant spatial domains of MVUs and motor units could influence the proportion of open capillaries (designated as perfusion) throughout a muscle cross section. A computer model simulated the locations of perfused MVUs in response to the activation of up to 100 motor units in a muscle with 40,000 fibers and a cross-sectional area of 100 mm2. The simulation increased contraction intensity by progressive recruitment of motor units. For each step of motor unit recruitment, the percentage of active fibers and the number of perfused MVUs were determined for several conditions: 1) motor unit fibers widely dispersed and motor unit territories randomly located (which approximates healthy human muscle), 2) regionalized motor unit territories, 3) reversed recruitment order of motor units, 4) densely clustered motor unit fibers, and 5) increased size but decreased number of motor units. The simulations indicated that the widespread dispersion of motor unit fibers facilitates complete capillary (MVU) perfusion of muscle at low levels of activity. The efficacy by which muscle fiber activity induced perfusion was reduced 7- to 14-fold under conditions that decreased the dispersion of active fibers, increased the size of motor units, or reversed the sequence of motor unit recruitment. Such conditions are similar to those that arise in neuromuscular disorders, with aging, or during electrical stimulation of muscle, respectively.

  9. Sensorless H∞ speed-tracking synthesis for surface-mount permanent magnet synchronous motor.

    PubMed

    Ramírez-Villalobos, Ramón; Aguilar, Luis T; Coria, Luis N

    2017-03-01

    In this paper, a sensorless speed tracking control is proposed for a surface-mount permanent magnet synchronous motor by using a nonlinear H ∞ -controller via stator currents measurements for feedback. An output feedback nonlinear H ∞ -controller was designed such that the undisturbed system is uniformly asymptotically stable around the desired speed reference, while also the effects of external vanishing and non-vanishing disturbances, noise, and input backlash were attenuated locally. The rotor position was calculated from the causal dynamic output feedback compensator and from the desired speed reference. The existence of the proper solutions of the perturbed differential Riccati equations ensures stabilizability and detectability of the control system. The efficiency of the proposed sensorless controller was supported by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong

    2015-07-01

    This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.

  11. Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat.

    PubMed

    Nozaradan, Sylvie; Zerouali, Younes; Peretz, Isabelle; Mouraux, André

    2015-03-01

    Synchronizing movements with rhythmic inputs requires tight coupling of sensory and motor neural processes. Here, using a novel approach based on the recording of steady-state-evoked potentials (SS-EPs), we examine how distant brain areas supporting these processes coordinate their dynamics. The electroencephalogram was recorded while subjects listened to a 2.4-Hz auditory beat and tapped their hand on every second beat. When subjects tapped to the beat, the EEG was characterized by a 2.4-Hz SS-EP compatible with beat-related entrainment and a 1.2-Hz SS-EP compatible with movement-related entrainment, based on the results of source analysis. Most importantly, when compared with passive listening of the beat, we found evidence suggesting an interaction between sensory- and motor-related activities when subjects tapped to the beat, in the form of (1) additional SS-EP appearing at 3.6 Hz, compatible with a nonlinear product of sensorimotor integration; (2) phase coupling of beat- and movement-related activities; and (3) selective enhancement of beat-related activities over the hemisphere contralateral to the tapping, suggesting a top-down effect of movement-related activities on auditory beat processing. Taken together, our results are compatible with the view that rhythmic sensorimotor synchronization is supported by a dynamic coupling of sensory and motor related activities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Force Analysis and Energy Operation of Chaotic System of Permanent-Magnet Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Qi, Guoyuan; Hu, Jianbing

    2017-12-01

    The disadvantage of a nondimensionalized model of a permanent-magnet synchronous Motor (PMSM) is identified. The original PMSM model is transformed into a Kolmogorov system to aid dynamic force analysis. The vector field of the PMSM is analogous to the force field including four types of torque — inertial, internal, dissipative, and generalized external. Using the feedback thought, the error torque between external torque and dissipative torque is identified. The pitchfork bifurcation of the PMSM is performed. Four forms of energy are identified for the system — kinetic, potential, dissipative, and supplied. The physical interpretations of the decomposition of force and energy exchange are given. Casimir energy is stored energy, and its rate of change is the error power between the dissipative energy and the energy supplied to the motor. Error torque and error power influence the different types of dynamic modes. The Hamiltonian energy and Casimir energy are compared to find the function of each in producing the dynamic modes. A supremum bound for the chaotic attractor is proposed using the error power and Lagrange multiplier.

  13. Roles of coercivity and remanent flux density of permanent magnet in interior permanent magnet synchronous motor (IPMSM) performance for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Won, Hoyun; Hong, Yang-Ki; Lee, Woncheol; Choi, Minyeong

    2018-05-01

    We used four rotor topologies of an interior permanent magnet synchronous motor (IPMSM) to investigate the effects of remanent flux density (Br) and coercivity (Hc) of permanent magnet on motor performance. Commercial strontium hexaferrite (SrFe12O19: energy product, (BH)max, of 4.62 MGOe) and Nd-Fe-B ((BH)max of 38.2 MGOe) magnets were used for the rotor designs. The same machine specifications and magnet volume keep constant, while the Hc and Br vary to calculate torque and energy efficiency with the finite-element analysis. A combination of high Hc and low Br more effectively increased maximum torque of IPMSM when the hexaferrite magnet was used. For Nd-Fe-B magnet, the same combination did not affect maximum torque, but increased energy efficiency at high speed. Therefore, the Hc value of a permanent magnet is more effective than the Br in producing high maximum torque for SrM-magnet based IPMSM and high energy efficiency at high speed for Nd-Fe-B magnet based IPMSM.

  14. Enhancing Soundtracks From Old Movies

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1992-01-01

    Proposed system enhances soundtracks of old movies. Signal on optical soundtrack of film digitized and processed to reduce noise and improve quality; timing signals added, and signal recorded on compact disk. Digital comparator and voltage-controlled oscillator synchronizes speed of film-drive motor and compact disk motor. Frame-coded detector reads binary frame-identifying marks on film. Digital comparator generates error signal if marks on film do not match those on compact disk.

  15. Rhythm perception, production, and synchronization during the perinatal period

    PubMed Central

    Provasi, Joëlle; Anderson, David I.; Barbu-Roth, Marianne

    2014-01-01

    Sensori-motor synchronization (SMS) is the coordination of rhythmic movement with an external rhythm. It plays a central role in motor, cognitive, and social behavior. SMS is commonly studied in adults and in children from four years of age onward. Prior to this age, the ability has rarely been investigated due to a lack of available methods. The present paper reviews what is known about SMS in young children, infants, newborns, and fetuses. The review highlights fetal and infant perception of rhythm and cross modal perception of rhythm, fetal, and infant production of rhythm and cross modal production of rhythm, and the contexts in which production of rhythm can be observed in infants. A primary question is whether infants, even newborns, can modify their spontaneous rhythmical motor behavior in response to external rhythmical stimulation. Spontaneous sucking, crying, and leg movements have been studied in the presence or absence of rhythmical auditory stimulation. Findings suggest that the interaction between movement and sound is present at birth and that SMS can be observed in special conditions and within a narrow range of tempi, particularly near the infant’s own spontaneous motor tempo. The discussion centers on the fundamental role of SMS in interaction and communication at the beginning of life. PMID:25278929

  16. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.

    PubMed

    Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.

  17. Drive control and position measurement of RailCab vehicles driven by linear motors

    NASA Astrophysics Data System (ADS)

    Pottharst, Andreas; Henke, Christian; Schneider, Tobias; Böcker, Joachim; Grotstollen, Horst

    2006-11-01

    The novel railway system RailCab makes use of autonomous vehicles which are driven by an AC linear motor. Depending on the track-side motor part, long-stator or short-stator operations are possible. The paper deals with the operation of the doubly-fed induction motor which is used for motion control and for transferring the energy required onboard the vehicle. This type of linear motor synchronization of the traveling fields generated by the stationary primary and moving secondary windings is an important and demanding task because the instantaneous positions of the vehicle or the primary traveling wave must be determined with high accuracy. The paper shows how this task is solved at the moment and what improvements are under development.

  18. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing.

    PubMed

    Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A

    2017-01-01

    Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.

  19. Synchronizing movements with the metronome: nonlinear error correction and unstable periodic orbits.

    PubMed

    Engbert, Ralf; Krampe, Ralf Th; Kurths, Jürgen; Kliegl, Reinhold

    2002-02-01

    The control of human hand movements is investigated in a simple synchronization task. We propose and analyze a stochastic model based on nonlinear error correction; a mechanism which implies the existence of unstable periodic orbits. This prediction is tested in an experiment with human subjects. We find that our experimental data are in good agreement with numerical simulations of our theoretical model. These results suggest that feedback control of the human motor systems shows nonlinear behavior. Copyright 2001 Elsevier Science (USA).

  20. Phrenic Motor Unit Recruitment during Ventilatory and Non-Ventilatory Behaviors

    PubMed Central

    Mantilla, Carlos B.; Sieck, Gary C.

    2011-01-01

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. PMID:21763470

  1. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    PubMed

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Motor unit recruitment in human biceps brachii during sustained voluntary contractions.

    PubMed

    Riley, Zachary A; Maerz, Adam H; Litsey, Jane C; Enoka, Roger M

    2008-04-15

    The purpose of the study was to examine the influence of the difference between the recruitment threshold of a motor unit and the target force of the sustained contraction on the discharge of the motor unit at recruitment. The discharge characteristics of 53 motor units in biceps brachii were recorded after being recruited during a sustained contraction. Some motor units (n = 22) discharged action potentials tonically after being recruited, whereas others (n = 31) discharged intermittent trains of action potentials. The two groups of motor units were distinguished by the difference between the recruitment threshold of the motor unit and the target force for the sustained contraction: tonic, 5.9 +/- 2.5%; intermittent, 10.7 +/- 2.9%. Discharge rate for the tonic units decreased progressively (13.9 +/- 2.7 to 11.7 +/- 2.6 pulses s(-1); P = 0.04) during the 99 +/- 111 s contraction. Train rate, train duration and average discharge rate for the intermittent motor units did not change across 211 +/- 153 s of intermittent discharge. The initial discharge rate at recruitment during the sustained contraction was lower for the intermittent motor units (11.0 +/- 3.3 pulses s(-1)) than the tonic motor units (13.7 +/- 3.3 pulses s(-1); P = 0.005), and the coefficient of variation for interspike interval was higher for the intermittent motor units (34.6 +/- 12.3%) than the tonic motor units (21.2 +/- 9.4%) at recruitment (P = 0.001) and remained elevated for discharge duration (34.6 +/- 9.2% versus 19.1 +/- 11.7%, P < 0.001). In an additional experiment, 12 motor units were recorded at two different target forces below recruitment threshold (5.7 +/- 1.9% and 10.5 +/- 2.4%). Each motor unit exhibited the two discharge patterns (tonic and intermittent) as observed for the 53 motor units. The results suggest that newly recruited motor units with recruitment thresholds closer to the target force experienced less synaptic noise at the time of recruitment that resulted in them discharging action potentials at more regular and greater rates than motor units with recruitment thresholds further from the target force.

  3. Interaction Control to Synchronize Non-synchronizable Networks.

    PubMed

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-11-17

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.

  4. Interaction Control to Synchronize Non-synchronizable Networks

    PubMed Central

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-01-01

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks’ exact interaction topology and consequently have implications for biological and self-organizing technical systems. PMID:27853266

  5. Segmentation of the mouse fourth deep lumbrical muscle connectome reveals concentric organisation of motor units

    PubMed Central

    Hirst, Theodore C; Ribchester, Richard R

    2013-01-01

    Connectomic analysis of the nervous system aims to discover and establish principles that underpin normal and abnormal neural connectivity and function. Here we performed image analysis of motor unit connectivity in the fourth deep lumbrical muscle (4DL) of mice, using transgenic expression of fluorescent protein in motor neurones as a morphological reporter. We developed a method that accelerated segmentation of confocal image projections of 4DL motor units, by applying high resolution (63×, 1.4 NA objective) imaging or deconvolution only where either proved necessary, in order to resolve axon crossings that produced ambiguities in the correct assignment of axon terminals to identified motor units imaged at lower optical resolution (40×, 1.3 NA). The 4DL muscles contained between 4 and 9 motor units and motor unit sizes ranged in distribution from 3 to 111 motor nerve terminals per unit. Several structural properties of the motor units were consistent with those reported in other muscles, including suboptimal wiring length and distribution of motor unit size. Surprisingly, however, small motor units were confined to a region of the muscle near the nerve entry point, whereas their larger counterparts were progressively more widely dispersed, suggesting a previously unrecognised form of segregated motor innervation in this muscle. We also found small but significant differences in variance of motor endplate length in motor units, which correlated weakly with their motor unit size. Thus, our connectomic analysis has revealed a pattern of concentric innervation that may perhaps also exist in other, cylindrical muscles that have not previously been thought to show segregated motor unit organisation. This organisation may be the outcome of competition during postnatal development based on intrinsic neuronal differences in synaptic size or synaptic strength that generates a territorial hierarchy in motor unit size and disposition. PMID:23940381

  6. Higher Efficiency HVAC Motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Charles Joseph

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design,more » development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all failure prone capacitors from the power stage. Q-Sync’s simpler electronics also result in higher efficiency because it eliminates the power required by the PCB to perform the obviated power conversions and PWM processes after line synchronous operating speed is reached in the first 5 seconds of operation, after which the PWM circuits drop out and a much less energy intensive “pass through” circuit takes over, allowing the grid-supplied AC power to sustain the motor’s ongoing operation.« less

  7. The increase in the starting torque of PMSM motor by applying of FOC method

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2017-05-01

    The article presents field oriented control method of synchronous permanent magnet motor equipped in optical sensors. This method allows for a wide range regulation of torque and rotational speed of the electric motor. The paper presents mathematical model of electric motor and vector control method. Optical sensors have shorter time response as compared to the inductive sensors, which allow for faster response of the electronic control system to changes of motor loads. The motor driver is based on the digital signal processor which performs advanced mathematical operations in real time. The appliance of Clark and Park transformation in the software defines the angle of rotor position. The presented solution provides smooth adjustment of the rotational speed in the first operating zone and reduces the dead zone of the torque in the second and third operating zones.

  8. Analysis of extrinsic and intrinsic factors affecting event related desynchronization production.

    PubMed

    Takata, Yohei; Kondo, Toshiyuki; Saeki, Midori; Izawa, Jun; Takeda, Kotaro; Otaka, Yohei; It, Koji

    2012-01-01

    Recently there has been an increase in the number of stroke patients with motor paralysis. Appropriate re-afferent sensory feedback synchronized with a voluntary motor intention would be effective for promoting neural plasticity in the stroke rehabilitation. Therefore, BCI technology is considered to be a promising approach in the neuro-rehabilitation. To estimate human motor intention, an event-related desynchronization (ERD), a feature of electroencephalogram (EEG) evoked by motor execution or motor imagery is usually used. However, there exists various factors that affect ERD production, and its neural mechanism is still an open question. As a preliminary stage, we evaluate mutual effects of intrinsic (voluntary motor imagery) and extrinsic (visual and somatosensory stimuli) factors on the ERD production. Experimental results indicate that these three factors are not always additively interacting with each other and affecting the ERD production.

  9. High performance stepper motors for space mechanisms

    NASA Technical Reports Server (NTRS)

    Sega, Patrick; Estevenon, Christine

    1995-01-01

    Hybrid stepper motors are very well adapted to high performance space mechanisms. They are very simple to operate and are often used for accurate positioning and for smooth rotations. In order to fulfill these requirements, the motor torque, its harmonic content, and the magnetic parasitic torque have to be properly designed. Only finite element computations can provide enough accuracy to determine the toothed structures' magnetic permeance, whose derivative function leads to the torque. It is then possible to design motors with a maximum torque capability or with the most reduced torque harmonic content (less than 3 percent of fundamental). These later motors are dedicated to applications where a microstep or a synchronous mode is selected for minimal dynamic disturbances. In every case, the capability to convert electrical power into torque is much higher than on DC brushless motors.

  10. High performance stepper motors for space mechanisms

    NASA Astrophysics Data System (ADS)

    Sega, Patrick; Estevenon, Christine

    1995-05-01

    Hybrid stepper motors are very well adapted to high performance space mechanisms. They are very simple to operate and are often used for accurate positioning and for smooth rotations. In order to fulfill these requirements, the motor torque, its harmonic content, and the magnetic parasitic torque have to be properly designed. Only finite element computations can provide enough accuracy to determine the toothed structures' magnetic permeance, whose derivative function leads to the torque. It is then possible to design motors with a maximum torque capability or with the most reduced torque harmonic content (less than 3 percent of fundamental). These later motors are dedicated to applications where a microstep or a synchronous mode is selected for minimal dynamic disturbances. In every case, the capability to convert electrical power into torque is much higher than on DC brushless motors.

  11. Experimental setup for the measurement of induction motor cage currents

    NASA Astrophysics Data System (ADS)

    Bottauscio, Oriano; Chiampi, Mario; Donadio, Lorenzo; Zucca, Mauro

    2005-04-01

    An experimental setup for measurement of the currents flowing in the rotor bars of induction motors during synchronous no-load tests is described in the paper. The experimental verification of the high-frequency phenomena in the rotor cage is fundamental for a deep insight of the additional loss estimation by numerical methods. The attention is mainly focused on the analysis and design of the transducers developed for the cage current measurement.

  12. The Importance of Muscular Strength: Training Considerations.

    PubMed

    Suchomel, Timothy J; Nimphius, Sophia; Bellon, Christopher R; Stone, Michael H

    2018-04-01

    This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete's ability to improve their performance following various training methods.

  13. A Distributed Synchronization and Timing System on the EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Luo, Jiarong; Wu, Yichun; Shu, Yantai

    2008-08-01

    A key requirement for the EAST distributed control system (EASTDCS) is time synchronization to an accuracy of <1 mus. In 2006 a Distributed Synchronization and Timing System (DSTS) was set up, which is based on the ATmega128 AVR microcontroller and the Nut/OS embedded Real Time Operating System (RTOS). The DSTS provides the control and the data acquisition systems with reference clocks (0.01 Hz 10 MHz) and delayed trigger times ( 1 mus 4294 s). These are produced by a Core Module Unit (CMU) connected by optical fibres to many Local Synchronized Node Units (LSNU). The fibres provide immunity from electrical noise and are of equal length to match clock and trigger delays between systems. This paper describes the architecture of the DSTS on the EAST tokamak and provides an overview of the characteristics of the main and local units.

  14. Motor unit recruitment for dynamic tasks: current understanding and future directions.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2009-01-01

    Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.

  15. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Outlines a variety of laboratory procedures, discussions, and demonstrations including Brownian motion, a synchronous motor, jet engine, atmospheric pressure vortex ring machines, solid chemical dispensing, testing household detergents, wallchart storage, pollution by industrial chemicals, an optical illusion, and buoyancy. (GS)

  16. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part II

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.

  17. Sensorless control of ship propulsion interior permanent magnet synchronous motor based on a new sliding mode observer.

    PubMed

    Ren, Jun-Jie; Liu, Yan-Cheng; Wang, Ning; Liu, Si-Yuan

    2015-01-01

    This paper proposes a sensorless speed control strategy for ship propulsion interior permanent magnet synchronous motor (IPMSM) based on a new sliding-mode observer (SMO). In the SMO the low-pass filter and the method of arc-tangent calculation of extended electromotive force (EMF) or phase-locked loop (PLL) technique are not used. The calculation of the rotor speed is deduced from the Lyapunov function stability analysis. In order to reduce system chattering, sigmoid functions with switching gains being adaptively updated by fuzzy logic systems are innovatively incorporated into the SMO. Finally, simulation results for a 4.088 MW ship propulsion IPMSM and experimental results from a 7.5 kW IPMSM drive are provided to verify the effectiveness of the proposed SMO method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization.

    PubMed

    Repp, B H

    2001-06-01

    Recent studies of synchronized finger tapping have shown that perceptually subliminal phase shifts in an auditory sequence are rapidly compensated for in the motor activity (B. H. Repp, 2000a). Experiment 1 used a continuation-tapping task to confirm that this compensation is indeed a phase correction, not an adjustment of the central timekeeper period. Experiments 2-5 revealed that this phase correction occurs even when there is no ordinary sensorimotor asynchrony--when the finger taps are in antiphase or arbitrary phase relative to the auditory sequence (Experiments 2 and 3) or when the tap coinciding with the sequence phase shift is withheld (Experiments 4 and 5). The phase correction observed in the latter conditions was instantaneous, which suggests that phase resetting occurs when the motor activity is discontinuous. A prolonged phase shift suggestive of overcompensation was observed in some conditions, which poses a challenge to pure phase correction models.

  19. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor.

    PubMed

    Zhang, BiTao; Pi, YouGuo; Luo, Ying

    2012-09-01

    A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    PubMed

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  1. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation

    PubMed Central

    Seven, Yasin B.; Mantilla, Carlos B.

    2014-01-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. PMID:25257864

  2. The compensatory interaction between motor unit firing behavior and muscle force during fatigue

    PubMed Central

    De Luca, Carlo J.; Kline, Joshua C.

    2016-01-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. PMID:27385798

  3. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    PubMed

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  4. Synchronization and coordination of sequences in two neural ensembles

    NASA Astrophysics Data System (ADS)

    Venaille, Antoine; Varona, Pablo; Rabinovich, Mikhail I.

    2005-06-01

    There are many types of neural networks involved in the sequential motor behavior of animals. For high species, the control and coordination of the network dynamics is a function of the higher levels of the central nervous system, in particular the cerebellum. However, in many cases, especially for invertebrates, such coordination is the result of direct synaptic connections between small circuits. We show here that even the chaotic sequential activity of small model networks can be coordinated by electrotonic synapses connecting one or several pairs of neurons that belong to two different networks. As an example, we analyzed the coordination and synchronization of the sequential activity of two statocyst model networks of the marine mollusk Clione. The statocysts are gravity sensory organs that play a key role in postural control of the animal and the generation of a complex hunting motor program. Each statocyst network was modeled by a small ensemble of neurons with Lotka-Volterra type dynamics and nonsymmetric inhibitory interactions. We studied how two such networks were synchronized by electrical coupling in the presence of an external signal which lead to winnerless competition among the neurons. We found that as a function of the number and the strength of connections between the two networks, it is possible to coordinate and synchronize the sequences that each network generates with its own chaotic dynamics. In spite of the chaoticity, the coordination of the signals is established through an activation sequence lock for those neurons that are active at a particular instant of time.

  5. Simulating Synchronous Processors

    DTIC Science & Technology

    1988-06-01

    34f Fvtvru m LABORATORY FOR INMASSACHUSETTSFCOMPUTER SCIENCE TECHNOLOGY MIT/LCS/TM-359 SIMULATING SYNCHRONOUS PROCESSORS Jennifer Lundelius Welch...PROJECT TASK WORK UNIT Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO. 11. TITLE Include Security Classification) Simulating Synchronous Processors...necessary and identify by block number) In this paper we show how a distributed system with synchronous processors and asynchro- nous message delays can

  6. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.

    PubMed

    Li, Zhan; Guiraud, David; Andreu, David; Benoussaad, Mourad; Fattal, Charles; Hayashibe, Mitsuhiro

    2016-06-22

    Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the synchronous recruitment of motor units with its compound electromyography (EMG) signal is called M-wave. The recorded evoked EMG (eEMG) can be employed to predict the resultant joint torque, and modeling of FES-induced joint torque based on eEMG is an essential step to provide necessary prediction of the expected muscle response before achieving accurate joint torque control by FES. Previous works on FES-induced torque tracking issues were mainly based on offline analysis. However, toward personalized clinical rehabilitation applications, real-time FES systems are essentially required considering the subject-specific muscle responses against electrical stimulation. This paper proposes a wireless portable stimulator used for estimating/predicting joint torque based on real time processing of eEMG. Kalman filter and recurrent neural network (RNN) are embedded into the real-time FES system for identification and estimation. Prediction results on 3 able-bodied subjects and 3 SCI patients demonstrate promising performances. As estimators, both Kalman filter and RNN approaches show clinically feasible results on estimation/prediction of joint torque with eEMG signals only, moreover RNN requires less computational requirement. The proposed real-time FES system establishes a platform for estimating and assessing the mechanical output, the electromyographic recordings and associated models. It will contribute to open a new modality for personalized portable neuroprosthetic control toward consolidated personal healthcare for motor-impaired patients.

  7. Substantiation of Structure of Adaptive Control Systems for Motor Units

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, S. I.

    2018-05-01

    The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.

  8. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men.

    PubMed

    Piasecki, M; Ireland, A; Piasecki, J; Stashuk, D W; Swiecicka, A; Rutter, M K; Jones, D A; McPhee, J S

    2018-05-01

    The age-related loss of muscle mass is related to the loss of innervating motor neurons and denervation of muscle fibres. Not all denervated muscle fibres are degraded; some may be reinnervated by an adjacent surviving neuron, which expands the innervating motor unit proportional to the numbers of fibres rescued. Enlarged motor units have larger motor unit potentials when measured using electrophysiological techniques. We recorded much larger motor unit potentials in relatively healthy older men compared to young men, but the older men with the smallest muscles (sarcopenia) had smaller motor unit potentials than healthy older men. These findings suggest that healthy older men reinnervate large numbers of muscle fibres to compensate for declining motor neuron numbers, but a failure to do so contributes to muscle loss in sarcopenic men. Sarcopenia results from the progressive loss of skeletal muscle mass and reduced function in older age. It is likely to be associated with the well-documented reduction of motor unit numbers innervating limb muscles and the increase in size of surviving motor units via reinnervation of denervated fibres. However, no evidence exists to confirm the extent of motor unit remodelling in sarcopenic individuals. The aim of the present study was to compare motor unit size and number between young (n = 48), non-sarcopenic old (n = 13), pre-sarcopenic (n = 53) and sarcopenic (n = 29) men. Motor unit potentials (MUPs) were isolated from intramuscular and surface EMG recordings. The motor unit numbers were reduced in all groups of old compared with young men (all P < 0.001). MUPs were higher in non-sarcopenic and pre-sarcopenic men compared with young men (P = 0.039 and 0.001 respectively), but not in the vastus lateralis of sarcopenic old (P = 0.485). The results suggest that extensive motor unit remodelling occurs relatively early during ageing, exceeds the loss of muscle mass and precedes sarcopenia. Reinnervation of denervated muscle fibres probably expands the motor unit size in the non-sarcopenic and pre-sarcopenic old, but not in the sarcopenic old. These findings suggest that a failure to expand the motor unit size distinguishes sarcopenic from pre-sarcopenic muscles. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  9. Power-Factor and Torque Calculation under Consideration of Cross Saturation of the Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong T; Burress, Timothy A; Tolbert, Leon M

    2009-01-01

    This paper introduces a new method for calculating the power factor and output torque by considering the cross saturation between direct-axis (d-axis) and quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux atmore » high speed, which was developed for the traction motor of a hybrid electric vehicle. The conventional two-axis IPMSM model was modified to include the cross-saturation effect by adding the cross-coupled inductance terms Ldq and Lqd. By the advantage of the excited structure of the experimental IPMSM, the analyzing works were performed under two conditions, the highest and lowest excited conditions. Therefore, it is possible to investigate the cross-saturation effect when a machine has higher magnetic flux from its rotor. The following is a summary of conclusions that may be drawn from this work: (1) Considering cross saturation of an IPMSM offers more accurate expected values of motor parameters in output torque calculation, especially when negative d-axis current is high; (2) A less saturated synchronous machine could be more affected by the cross-coupled saturation effect; (3) Both cross-coupled inductances, L{sub qd} and L{sub dq}, are mainly governed by d-axis current rather than q-axis current; (4) The modified torque equation, can be used for the dynamic model of an IPMSM for developing a better control model or control strategy; and (5) It is possible that the brushless field excitation structure has a common magnetic flux path on both d- and q-axis, and as a result, the reluctance torque of the machine could be reduced.« less

  10. Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle.

    PubMed

    Del Vecchio, A; Negro, F; Felici, F; Farina, D

    2018-02-01

    Motor units are recruited in an orderly manner according to the size of motor neurones. Moreover, because larger motor neurones innervate fibres with larger diameters than smaller motor neurones, motor units should be recruited orderly according to their conduction velocity (MUCV). Because of technical limitations, these relations have been previously tested either indirectly or in small motor unit samples that revealed weak associations between motor unit recruitment threshold (RT) and MUCV. Here, we analyse the relation between MUCV and RT for large samples of motor units. Ten healthy volunteers completed a series of isometric ankle dorsiflexions at forces up to 70% of the maximum. Multi-channel surface electromyographic signals recorded from the tibialis anterior muscle were decomposed into single motor unit action potentials, from which the corresponding motor unit RT, MUCV and action potential amplitude were estimated. Established relations between muscle fibre diameter and CV were used to estimate the fibre size. Within individual subjects, the distributions of MUCV and fibre diameters were unimodal and did not show distinct populations. MUCV was strongly correlated with RT (mean (SD) R 2  = 0.7 (0.09), P < 0.001; 406 motor units), which supported the hypothesis that fibre diameter is associated with RT. The results provide further evidence for the relations between motor neurone and muscle fibre properties for large samples of motor units. The proposed methodology for motor unit analysis has also the potential to open new perspectives in the study of chronic and acute neuromuscular adaptations to ageing, training and pathology. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Reduced Synchronization Persistence in Neural Networks Derived from Atm-Deficient Mice

    PubMed Central

    Levine-Small, Noah; Yekutieli, Ziv; Aljadeff, Jonathan; Boccaletti, Stefano; Ben-Jacob, Eshel; Barzilai, Ari

    2011-01-01

    Many neurodegenerative diseases are characterized by malfunction of the DNA damage response. Therefore, it is important to understand the connection between system level neural network behavior and DNA. Neural networks drawn from genetically engineered animals, interfaced with micro-electrode arrays allowed us to unveil connections between networks’ system level activity properties and such genome instability. We discovered that Atm protein deficiency, which in humans leads to progressive motor impairment, leads to a reduced synchronization persistence compared to wild type synchronization, after chemically imposed DNA damage. Not only do these results suggest a role for DNA stability in neural network activity, they also establish an experimental paradigm for empirically determining the role a gene plays on the behavior of a neural network. PMID:21519382

  12. Properties of single motor units in medial gastrocnemius muscles of adult and old rats.

    PubMed Central

    Kadhiresan, V A; Hassett, C A; Faulkner, J A

    1996-01-01

    1. The purpose of this study was to determine the role of motor unit remodelling in the deficit that develops in the maximum isometric tetanic force (Fo) of whole medial gastrocnemius (MGN) muscles in old compared with adult rats. The Fo values and morphological data were determined for MGN muscles and eighty-two single motor units in muscles of adult (10-12 months) and sixty-two units in those of old (24-26 months) F344 rats. During an unfused tetanus, fast and slow (S) motor units were identified by the presence and absence of sag, respectively. Fast-fatigable (FF) and fast-fatigue-resistant (FR) units were classified by fatigue indices less than or greater than 0.50, respectively. 2. For old rats, whole MGN muscle Fo was 29% less than the value of 11.2 N measured for adult rats. The deficit in whole muscle Fo of old rats resulted from equivalent decreases in the number of motor units, 16% smaller than the adult value of ninety-seven, and in the mean motor unit Fo value, 14% less than the adult value of 117 mN. 3. With ageing, little motor unit remodelling occurred in FR units, whereas the S and FF motor units demonstrated dramatic, but opposing, changes. For S units, the number of units remained constant, but the number of fibres per motor unit increased 3-fold from 57 to 165. In contrast, the number of FF units decreased by 34% and the number of fibres per motor unit of the remaining units decreased to 86% of the adult value of 333. The age-related remodelling of motor units appeared to involve denervation of fast muscle fibres with reinnervation of denervated fibres by axonal sprouting from slow fibres. PMID:8782115

  13. A Simulation Based Analysis of Motor Unit Number Index (MUNIX) Technique Using Motoneuron Pool and Surface Electromyogram Models

    PubMed Central

    Li, Xiaoyan; Rymer, William Zev; Zhou, Ping

    2013-01-01

    Motor unit number index (MUNIX) measurement has recently achieved increasing attention as a tool to evaluate the progression of motoneuron diseases. In our current study, the sensitivity of the MUNIX technique to changes in motoneuron and muscle properties was explored by a simulation approach utilizing variations on published motoneuron pool and surface electromyogram (EMG) models. Our simulation results indicate that, when keeping motoneuron pool and muscle parameters unchanged and varying the input motor unit numbers to the model, then MUNIX estimates can appropriately characterize changes in motor unit numbers. Such MUNIX estimates are not sensitive to different motor unit recruitment and rate coding strategies used in the model. Furthermore, alterations in motor unit control properties do not have a significant effect on the MUNIX estimates. Neither adjustment of the motor unit recruitment range nor reduction of the motor unit firing rates jeopardizes the MUNIX estimates. The MUNIX estimates closely correlate with the maximum M wave amplitude. However, if we reduce the amplitude of each motor unit action potential rather than simply reduce motor unit number, then MUNIX estimates substantially underestimate the motor unit numbers in the muscle. These findings suggest that the current MUNIX definition is most suitable for motoneuron diseases that demonstrate secondary evidence of muscle fiber reinnervation. In this regard, when MUNIX is applied, it is of much importance to examine a parallel measurement of motor unit size index (MUSIX), defined as the ratio of the maximum M wave amplitude to the MUNIX. However, there are potential limitations in the application of the MUNIX methods in atrophied muscle, where it is unclear whether the atrophy is accompanied by loss of motor units or loss of muscle fiber size. PMID:22514208

  14. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study.

    PubMed

    Crowell, Andrea L; Ryapolova-Webb, Elena S; Ostrem, Jill L; Galifianakis, Nicholas B; Shimamoto, Shoichi; Lim, Daniel A; Starr, Philip A

    2012-02-01

    Movement disorders of basal ganglia origin may arise from abnormalities in synchronized oscillatory activity in a network that includes the basal ganglia, thalamus and motor cortices. In humans, much has been learned from the study of basal ganglia local field potentials recorded from temporarily externalized deep brain stimulator electrodes. These studies have led to the theory that Parkinson's disease has characteristic alterations in the beta frequency band (13-30 Hz) in the basal ganglia-thalamocortical network. However, different disorders have rarely been compared using recordings in the same structure under the same behavioural conditions, limiting straightforward assessment of current hypotheses. To address this, we utilized subdural electrocorticography to study cortical oscillations in the three most common movement disorders: Parkinson's disease, primary dystonia and essential tremor. We recorded local field potentials from the arm area of primary motor and sensory cortices in 31 subjects using strip electrodes placed temporarily during routine surgery for deep brain stimulator placement. We show that: (i) primary motor cortex broadband gamma power is increased in Parkinson's disease compared with the other conditions, both at rest and during a movement task; (ii) primary motor cortex high beta (20-30 Hz) power is increased in Parkinson's disease during the 'stop' phase of a movement task; (iii) the alpha-beta peaks in the motor and sensory cortical power spectra occur at higher frequencies in Parkinson's disease than in the other two disorders; and (iv) patients with dystonia have impaired movement-related beta band desynchronization in primary motor and sensory cortices. The findings support the emerging hypothesis that disease states reflect abnormalities in synchronized oscillatory activity. This is the first study of sensorimotor cortex local field potentials in the three most common movement disorders.

  15. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing

    PubMed Central

    Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.

    2017-01-01

    Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950

  16. Investigation on Prototype Superconducting Linear Synchronous Motor (LSM) for 600-km/h Wheel-Type Railway

    NASA Astrophysics Data System (ADS)

    Eom, Beomyong; Lee, Changhyeong; Kim, Seokho; Lee, Changyoung; Yun, Sangwon

    The existing wheel-type high-speed railway with a rotatable motor has a limit of 600 km/h speed. The normal conducting electromagnet has several disadvantages to realize 600 km/h speed. Several disadvantages are the increased space and weight, and the decreased electric efficiency to generate the required high magnetic field. In order to reduce the volume and weight, superconducting electromagnets can be considered for LSM (Linear Synchronous Motor). Prior to the fabrication of the real system, a prototype demo-coil is designed and fabricated using 2G high temperature superconducting wire. The prototype HTS coil is cooled by the conduction using a GM cryocooler. To reduce the heat penetration, thermal design was performed for the current leads, supporting structure and radiation shield considering the thermal stress. The operating temperature and current are 30∼40 K and 100 A. The coil consists of two double pancake coils (N, S pole, respectively) and it is driven on a test rail, which is installed for the test car. This paper describes the design and test results of the prototype HTS LSM system. Thermal characteristics are investigated with additional dummy thermal mass on the coil after turning off the cryocooler.

  17. Role of motor unit structure in defining function

    NASA Technical Reports Server (NTRS)

    Monti, R. J.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Motor units, defined as a motoneuron and all of its associated muscle fibers, are the basic functional units of skeletal muscle. Their activity represents the final output of the central nervous system, and their role in motor control has been widely studied. However, there has been relatively little work focused on the mechanical significance of recruiting variable numbers of motor units during different motor tasks. This review focuses on factors ranging from molecular to macroanatomical components that influence the mechanical output of a motor unit in the context of the whole muscle. These factors range from the mechanical properties of different muscle fiber types to the unique morphology of the muscle fibers constituting a motor unit of a given type and to the arrangement of those motor unit fibers in three dimensions within the muscle. We suggest that as a result of the integration of multiple levels of structural and physiological levels of organization, unique mechanical properties of motor units are likely to emerge. Copyright 2001 John Wiley & Sons, Inc.

  18. Motor contributions to the temporal precision of auditory attention

    PubMed Central

    Morillon, Benjamin; Schroeder, Charles E.; Wyart, Valentin

    2014-01-01

    In temporal—or dynamic—attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory ‘active sensing’. PMID:25314898

  19. Motor contributions to the temporal precision of auditory attention.

    PubMed

    Morillon, Benjamin; Schroeder, Charles E; Wyart, Valentin

    2014-10-15

    In temporal-or dynamic-attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory 'active sensing'.

  20. The UBR-1 ubiquitin ligase regulates glutamate metabolism to generate coordinated motor pattern in Caenorhabditis elegans

    PubMed Central

    Chitturi, Jyothsna; Hung, Wesley; Rahman, Anas M. Abdel; Wu, Min; Lim, Maria A.; Calarco, John; Dennis, James W.

    2018-01-01

    UBR1 is an E3 ubiquitin ligase best known for its ability to target protein degradation by the N-end rule. The physiological functions of UBR family proteins, however, remain not fully understood. We found that the functional loss of C. elegans UBR-1 leads to a specific motor deficit: when adult animals generate reversal movements, A-class motor neurons exhibit synchronized activation, preventing body bending. This motor deficit is rescued by removing GOT-1, a transaminase that converts aspartate to glutamate. Both UBR-1 and GOT-1 are expressed and critically required in premotor interneurons of the reversal motor circuit to regulate the motor pattern. ubr-1 and got-1 mutants exhibit elevated and decreased glutamate level, respectively. These results raise an intriguing possibility that UBR proteins regulate glutamate metabolism, which is critical for neuronal development and signaling. PMID:29649217

  1. Synchronization to auditory and visual rhythms in hearing and deaf individuals

    PubMed Central

    Iversen, John R.; Patel, Aniruddh D.; Nicodemus, Brenda; Emmorey, Karen

    2014-01-01

    A striking asymmetry in human sensorimotor processing is that humans synchronize movements to rhythmic sound with far greater precision than to temporally equivalent visual stimuli (e.g., to an auditory vs. a flashing visual metronome). Traditionally, this finding is thought to reflect a fundamental difference in auditory vs. visual processing, i.e., superior temporal processing by the auditory system and/or privileged coupling between the auditory and motor systems. It is unclear whether this asymmetry is an inevitable consequence of brain organization or whether it can be modified (or even eliminated) by stimulus characteristics or by experience. With respect to stimulus characteristics, we found that a moving, colliding visual stimulus (a silent image of a bouncing ball with a distinct collision point on the floor) was able to drive synchronization nearly as accurately as sound in hearing participants. To study the role of experience, we compared synchronization to flashing metronomes in hearing and profoundly deaf individuals. Deaf individuals performed better than hearing individuals when synchronizing with visual flashes, suggesting that cross-modal plasticity enhances the ability to synchronize with temporally discrete visual stimuli. Furthermore, when deaf (but not hearing) individuals synchronized with the bouncing ball, their tapping patterns suggest that visual timing may access higher-order beat perception mechanisms for deaf individuals. These results indicate that the auditory advantage in rhythmic synchronization is more experience- and stimulus-dependent than has been previously reported. PMID:25460395

  2. Adjustments differ among low-threshold motor units during intermittent, isometric contractions.

    PubMed

    Farina, Dario; Holobar, Ales; Gazzoni, Marco; Zazula, Damjan; Merletti, Roberto; Enoka, Roger M

    2009-01-01

    We investigated the changes in muscle fiber conduction velocity, recruitment and derecruitment thresholds, and discharge rate of low-threshold motor units during a series of ramp contractions. The aim was to compare the adjustments in motor unit activity relative to the duration that each motor unit was active during the task. Multichannel surface electromyographic (EMG) signals were recorded from the abductor pollicis brevis muscle of eight healthy men during 12-s contractions (n = 25) in which the force increased and decreased linearly from 0 to 10% of the maximum. The maximal force exhibited a modest decline (8.5 +/- 9.3%; P < 0.05) at the end of the task. The discharge times of 73 motor units that were active for 16-98% of the time during the first five contractions were identified throughout the task by decomposition of the EMG signals. Action potential conduction velocity decreased during the task by a greater amount for motor units that were initially active for >70% of the time compared with that of less active motor units. Moreover, recruitment and derecruitment thresholds increased for these most active motor units, whereas the thresholds decreased for the less active motor units. Another 18 motor units were recruited at an average of 171 +/- 32 s after the beginning of the task. The recruitment and derecruitment thresholds of these units decreased during the task, but muscle fiber conduction velocity did not change. These results indicate that low-threshold motor units exhibit individual adjustments in muscle fiber conduction velocity and motor neuron activation that depended on the relative duration of activity during intermittent contractions.

  3. Motor unit firing rates and synchronisation affect the fractal dimension of simulated surface electromyogram during isometric/isotonic contraction of vastus lateralis muscle.

    PubMed

    Mesin, Luca; Dardanello, Davide; Rainoldi, Alberto; Boccia, Gennaro

    2016-12-01

    During fatiguing contractions, many adjustments in motor units behaviour occur: decrease in muscle fibre conduction velocity; increase in motor units synchronisation; modulation of motor units firing rate; increase in variability of motor units inter-spike interval. We simulated the influence of all these adjustments on synthetic EMG signals in isometric/isotonic conditions. The fractal dimension of the EMG signal was found mainly influenced by motor units firing behaviour, being affected by both firing rate and synchronisation level, and least affected by muscle fibre conduction velocity. None of the calculated EMG indices was able to discriminate between firing rate and motor units synchronisation. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Development of a low-cost double rotor axial flux motor with soft magnetic composite and ferrite permanent magnet materials

    NASA Astrophysics Data System (ADS)

    Liu, Chengcheng; Zhu, Jianguo; Wang, Youhua; Guo, Youguang; Lei, Gang; Liu, Xiaojing

    2015-05-01

    This paper proposes a low-cost double rotor axial flux motor (DRAFM) with low cost soft magnetic composite (SMC) core and ferrite permanent magnets (PMs). The topology and operating principle of DRAFM and design considerations for best use of magnetic materials are presented. A 905 W 4800 rpm DRAFM is designed for replacing the high cost NdFeB permanent magnet synchronous motor (PMSM) in a refrigerator compressor. By using the finite element method, the electromagnetic parameters and performance of the DRAFM operated under the field oriented control scheme are calculated. Through the analysis, it is shown that that the SMC and ferrite PM materials can be good candidates for low-cost electric motor applications.

  5. Frequency and phase synchronization in large groups: Low dimensional description of synchronized clapping, firefly flashing, and cricket chirping

    NASA Astrophysics Data System (ADS)

    Ott, Edward; Antonsen, Thomas M.

    2017-05-01

    A common observation is that large groups of oscillatory biological units often have the ability to synchronize. A paradigmatic model of such behavior is provided by the Kuramoto model, which achieves synchronization through coupling of the phase dynamics of individual oscillators, while each oscillator maintains a different constant inherent natural frequency. Here we consider the biologically likely possibility that the oscillatory units may be capable of enhancing their synchronization ability by adaptive frequency dynamics. We propose a simple augmentation of the Kuramoto model which does this. We also show that, by the use of a previously developed technique [Ott and Antonsen, Chaos 18, 037113 (2008)], it is possible to reduce the resulting dynamics to a lower dimensional system for the macroscopic evolution of the oscillator ensemble. By employing this reduction, we investigate the dynamics of our system, finding a characteristic hysteretic behavior and enhancement of the quality of the achieved synchronization.

  6. ARC-1995-AC95-0203-51

    NASA Image and Video Library

    1995-07-19

    New renovated NASA Ames Research Center 12 foot Pressure Wind Tunnel, seen here is the single stage, 20 blade axial-flow fan powered by a 15,000 horsepower variable speed, synchronous electric motor that provides airflow in the closed-return, variable-density tunnel.

  7. ARC-1995-AC95-0203-50

    NASA Image and Video Library

    1995-07-19

    New renovated NASA Ames Research Center 12 foot Pressure Wind Tunnel, seen here is the single stage, 20 blade axial-flow fan powered by a 15,000 horsepower variable speed, synchronous electric motor that provides airflow in the closed-return, variable-density tunnel.

  8. Isometric contractions of motor units in a fast twitch muscle of the cat

    PubMed Central

    Bagust, J.; Knott, Sarah; Lewis, D. M.; Luck, J. C.; Westerman, R. A.

    1973-01-01

    1. Isosmetric contractions of cat flexor digitorum longus whole muscles and of functionally isolated motor units have been measured under conditions similar to those used by Buller & Lewis (1965a). 2. Motor unit twitch time to peak was inversely related to axonal conduction velocity. The logarithm of tetanic tension was directly related to conduction velocity. These relationships suggest that each motoneurone has an influence on the muscle fibres which it innervates. 3. The ratio of twitch to tetanic tension was directly related to the time to peak of the motor unit. This fact might be explained by variation between motor units of the duration of `active state'. 4. The muscle length at which tension was maximal varied between motor units and the optima were found over the range of muscle lengths which could occur in the body. Slow motor units had longer optimal lengths. 5. The sample of motor units was considered to be unbiased because the distribution of axon conduction velocities was compatible with reported motor fibre diameter spectra of the muscle nerve. The mean motor unit tetanic tension gave a reasonable estimate of the number of α-motor axons in the muscle nerve. Twitch tensions gave a value that was 40% higher. 6. Motor unit and whole muscle data were in good agreement for length-tetanus tension curves, for times to peak and for twitch-tetanus ratios at long muscle lengths. PMID:4715372

  9. Development of a drive system for a sequential space camera

    NASA Technical Reports Server (NTRS)

    Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.

    1976-01-01

    An electronically commutated dc motor is reported for driving the camera claw and magazine, and a stepper motor is described for driving the shutter with the two motors synchronized electrically. Subsequent tests on the breadboard positively proved the concept, but further development beyond this study should be done. The breadboard testing also established that the electronically commutated motor can control speed over a wide dynamic range, and has a high torque capability for accelerating loads. This performance suggested the possibility of eliminating the clutch from the system while retaining all of the other mechanical features of the DAC, if the requirement for independent shutter speeds and frame rates can be removed. Therefore, as a final step in the study, the breadboard shutter and shutter drive were returned to the original DAC configuration, while retaining the brushless dc motor drive.

  10. Recruitment and derecruitment characteristics of motor units in a hand muscle of young and old adults.

    PubMed

    Jesunathadas, Mark; Marmon, Adam R; Gibb, James M; Enoka, Roger M

    2010-06-01

    The significant decline in motor neuron number after approximately 60 yr of age is accompanied by a remodeling of the neuromuscular system so that average motor unit force increases and the ability of old adults to produce an intended force declines. One possible explanation for the loss of movement precision is that the remodeling increases the difference in recruitment forces between successively recruited motor units in old adults and this augments force variability at motor unit recruitment. The purpose of the study was to compare the forces and discharge characteristics of motor units in a hand muscle of young and old adults at motor unit recruitment and derecruitment. The difference in recruitment force between pairs of motor units did not differ between young (n=54) and old adults (n=56; P=0.702). However, old adults had a greater proportion of contractions in which motor units discharged action potentials transiently before discharging continuously during the ramp increase in force (young: 0.32; old: 0.41; P=0.045). Force variability at motor unit recruitment was greater for old adults compared with young adults (Por=0.729). These results suggest that the difference in force between the recruitment of successive motor units does not differ between age groups, but that motor unit recruitment may be more transient and could contribute to the greater variability in force observed in old adults during graded ramp contractions.

  11. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: evidence from fMRI and TMS.

    PubMed

    Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Hunter, Michael D; Tsoi, Daniel T; Lankappa, Sudheer; Wilkinson, Iain D; Barker, Anthony T; Woodruff, Peter W R

    2011-05-01

    Our ability to interact physically with objects in the external world critically depends on temporal coupling between perception and movement (sensorimotor timing) and swift behavioral adjustment to changes in the environment (error correction). In this study, we investigated the neural correlates of the correction of subliminal and supraliminal phase shifts during a sensorimotor synchronization task. In particular, we focused on the role of the cerebellum because this structure has been shown to play a role in both motor timing and error correction. Experiment 1 used fMRI to show that the right cerebellar dentate nucleus and primary motor and sensory cortices were activated during regular timing and during the correction of subliminal errors. The correction of supraliminal phase shifts led to additional activations in the left cerebellum and right inferior parietal and frontal areas. Furthermore, a psychophysiological interaction analysis revealed that supraliminal error correction was associated with enhanced connectivity of the left cerebellum with frontal, auditory, and sensory cortices and with the right cerebellum. Experiment 2 showed that suppression of the left but not the right cerebellum with theta burst TMS significantly affected supraliminal error correction. These findings provide evidence that the left lateral cerebellum is essential for supraliminal error correction during sensorimotor synchronization.

  12. Experimental Performance Evaluation of a High Speed Permanent Magnet Synchronous Motor and Drive for a Flywheel Application at Different Frequencies

    NASA Technical Reports Server (NTRS)

    Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David

    2007-01-01

    This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.

  13. Preliminary assessment of the tradeoffs between the electric motor and the transmission in electric vehicles

    NASA Technical Reports Server (NTRS)

    Levi, E.

    1983-01-01

    The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.

  14. Preliminary assessment of the tradeoffs between the electric motor and the transmission in electric vehicles

    NASA Astrophysics Data System (ADS)

    Levi, E.

    1983-05-01

    The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.

  15. Energy Supply Alternatives for Picatinny Arsenal, NJ

    DTIC Science & Technology

    1992-09-01

    condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at...60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at 150 MVA with a 0.85 Power Factor...condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated

  16. Advanced YBCO-Coated Conductors for Use on Air Platforms (Postprint)

    DTIC Science & Technology

    2007-06-01

    for example, the Navy has programs on both homopolar and synchronous superconducting motors to drive the future all-electric ship.6 Westinghouse has...syn- chronous, homopolar , inductor-type alternator with a stationary HTS coil, solid rotor forging, and conven- tional stator; refer to Fig. 1. This is...Denial,’’ III-Vs Rev., 17 [5] 10 (2004). 6. D. U. Gubser, ‘‘Superconducting Motors and Generators for Naval Appli- cations,’’ Physica C, 392–396 1192

  17. The circular form of the linear superconducting machine for marine propulsion

    NASA Astrophysics Data System (ADS)

    Rakels, J. H.; Mahtani, J. L.; Rhodes, R. G.

    1981-01-01

    The superconducting linear synchronous machine (LSM) is an efficient method of propulsion of advanced ground transport systems and can also be used in marine engineering for the propulsion of large commercial vessels, tankers, and military ships. It provides high torque at low shaft speeds and ease of reversibility; a circular LSM design is proposed as a drive motor. The equipment is compared with the superconducting homopolar motors, showing flexibility in design, built in redundancy features, and reliability.

  18. Halbach arrays in precision motion control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumper, D.L.; Williams, M.E.

    1995-02-01

    The Halbach array was developed for use as an optical element in particle accelerators. Following up on a suggestion from Klaus Halbach, the authors have investigated the utility of such arrays as the permanent magnet structure for synchronous machines in cartesian, polar, and cylindrical geometries. Their work has focused on the design of a novel Halbach array linear motor for use in a magnetic suspension stage for photolithography. This paper presents the details of the motor design and its force and power characteristics.

  19. Dependence of the paired motor unit analysis on motor unit discharge characteristics in the human tibialis anterior muscle

    PubMed Central

    Stephenson, Jennifer L.; Maluf, Katrina S.

    2011-01-01

    The paired motor unit analysis provides in vivo estimates of the magnitude of persistent inward currents (PIC) in human motoneurons by quantifying changes in the firing rate (ΔF) of an earlier recruited (reference) motor unit at the time of recruitment and derecruitment of a later recruited (test) motor unit. This study assessed the variability of ΔF estimates, and quantified the dependence of ΔF on the discharge characteristics of the motor units selected for analysis. ΔF was calculated for 158 pairs of motor units recorded from nine healthy individuals during repeated submaximal contractions of the tibialis anterior muscle. The mean (SD) ΔF was 3.7 (2.5) pps (range −4.2 to 8.9 pps). The median absolute difference in ΔF for the same motor unit pair across trials was 1.8 pps, and the minimal detectable change in ΔF required to exceed measurement error was 4.8 pps. ΔF was positively related to the amount of discharge rate modulation in the reference motor unit (r2=0.335; P<0.001), and inversely related to the rate of increase in discharge rate (r2=0.125; P<0.001). A quadratic function provided the best fit for relations between ΔF and the time between recruitment of the reference and test motor units (r2=0.229, P<0.001), the duration of test motor unit activity (r2=0.110, P<0.001), and the recruitment threshold of the test motor unit (r2=0.237, P<0.001). Physiological and methodological contributions to the variability in ΔF estimates of PIC magnitude are discussed, and selection criteria to reduce these sources of variability are suggested for the paired motor unit analysis. PMID:21459110

  20. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    NASA Astrophysics Data System (ADS)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  1. Dynamics of the line-start reluctance motor with rotor made of SMC material

    NASA Astrophysics Data System (ADS)

    Smółka, Krzysztof; Gmyrek, Zbigniew

    2017-12-01

    Design and control of electric motors in such a way as to ensure the expected motor dynamics, are the problems studied for many years. Many researchers tried to solve this problem, for example by the design optimization or by the use of special control algorithms in electronic systems. In the case of low-power and fractional power motors, the manufacture cost of the final product is many times less than cost of electronic system powering them. The authors of this paper attempt to improve the dynamic of 120 W line-start synchronous reluctance motor, energized by 50 Hz mains (without any electronic systems). The authors seek a road enabling improvement of dynamics of the analyzed motor, by changing the shape and material of the rotor, in such a way to minimize the modification cost of the tools necessary for the motor production. After the initial selection, the analysis of four rotors having different tooth shapes, was conducted.

  2. Spacecraft Reed-Solomon downlink module

    NASA Technical Reports Server (NTRS)

    Luong, Huy H. (Inventor); Donaldson, James A. (Inventor); Wood, Steven H. (Inventor)

    1998-01-01

    Apparatus and method for providing downlink frames to be transmitted from a spacecraft to a ground station. Each downlink frame includes a synchronization pattern and a transfer frame. The apparatus may comprise a monolithic Reed-Solomon downlink (RSDL) encoding chip coupled to data buffers for storing transfer frames. The RSKL chip includes a timing device, a bus interface, a timing and control unit, a synchronization pattern unit, and a Reed-Solomon encoding unit, and a bus arbiter.

  3. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox

    PubMed Central

    Holt, N. C.; Wakeling, J. M.; Biewener, A. A.

    2014-01-01

    The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force–velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force–velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested. PMID:24695429

  4. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox.

    PubMed

    Holt, N C; Wakeling, J M; Biewener, A A

    2014-05-22

    The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force-velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force-velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested.

  5. Altered neuronal activity in the primary motor cortex and globus pallidus after dopamine depletion in rats.

    PubMed

    Wang, Min; Li, Min; Geng, Xiwen; Song, Zhimin; Albers, H Elliott; Yang, Maoquan; Zhang, Xiao; Xie, Jinlu; Qu, Qingyang; He, Tingting

    2015-01-15

    The involvement of dopamine (DA) neuron loss in the etiology of Parkinson's disease has been well documented. The neural mechanisms underlying the effects of DA loss and the resultant motor dysfunction remain unknown. To gain insights into how loss of DA disrupts the electrical processes in the cortico-subcortical network, the present study explores the effects of DA neuron depletion on electrical activity in the primary motor cortex (M1), on the external and the internal segment of the globus pallidus (GPe and GPi respectively), and on their temporal relationships. Comparison of local field potentials (LFPs) in these brain regions from unilateral hemispheric DA neuron depleted rats and neurologically intact rats revealed that the spectrum power of LFPs in 12-70Hz (for M1, and GPe) and in 25-40Hz (for GPi) was significantly greater in the DA depleted rats than that in the control group. These changes were associated with a shortening of latency in LFP activities between M1 and GPe, from several hundred milliseconds in the intact animals to close to zero in the DA depleted animals. LFP oscillations in M1 were significantly more synchronized with those in GPe in the DA depleted rats compared with those in the control rats. By contrast, the synchronization of oscillation in LFP activities between M1 and GPi did not differ between the DA depleted and intact rats. Not surprisingly, rats that had DA neuron depletion spent more time along the ladder compared with the control rats. These data suggest that enhanced oscillatory activity and increased synchronization of LFPs may contribute to movement impairment in the rat model of Parkinson's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Single motor unit firing rate after stroke is higher on the less-affected side during stable low-level voluntary contractions

    PubMed Central

    McNulty, Penelope A.; Lin, Gaven; Doust, Catherine G.

    2014-01-01

    Muscle weakness is the most common outcome after stroke and a leading cause of adult-acquired motor disability. Single motor unit properties provide insight into the mechanisms of post-stroke motor impairment. Motor units on the more-affected side are reported to have lower peak firing rates, reduced discharge variability and a more compressed dynamic range than healthy subjects. The activity of 169 motor units was discriminated from surface electromyography in 28 stroke patients during sustained voluntary contractions 10% of maximal and compared to 110 units recorded in 16 healthy subjects. Motor units were recorded in three series: ankle dorsiflexion, wrist flexion and elbow flexion. Mean firing rates after stroke were significantly lower on the more-affected than the less-affected side (p < 0.001) with no differences between dominant and non-dominant sides for healthy subjects. When data were combined, firing rates on the less-affected side were significantly higher than those either on the more-affected side or healthy subjects (p < 0.001). Motor unit mean firing rate was higher in the upper-limb than the lower-limb (p < 0.05). The coefficient of variation of motor unit discharge rate was lower for motor units after stroke compared to controls for wrist flexion (p < 0.05) but not ankle dorsiflexion. However the dynamic range of motor units was compressed only for motor units on the more-affected side during wrist flexion. Our results show that the pathological change in motor unit firing rate occurs on the less-affected side after stroke and not the more-affected side as previously reported, and suggest that motor unit behavior recorded in a single muscle after stroke cannot be generalized to muscles acting on other joints even within the same limb. These data emphasize that the less-affected side does not provide a valid control for physiological studies on the more-affected side after stroke and that both sides should be compared to data from age- and sex-matched healthy subjects. PMID:25100969

  7. Generalized synchronization in relay systems with instantaneous coupling

    NASA Astrophysics Data System (ADS)

    Gutiérrez, R.; Sevilla-Escoboza, R.; Piedrahita, P.; Finke, C.; Feudel, U.; Buldú, J. M.; Huerta-Cuellar, G.; Jaimes-Reátegui, R.; Moreno, Y.; Boccaletti, S.

    2013-11-01

    We demonstrate the existence of generalized synchronization in systems that act as mediators between two dynamical units that, in turn, show complete synchronization with each other. These are the so-called relay systems. Specifically, we analyze the Lyapunov spectrum of the full system to elucidate when complete and generalized synchronization appear. We show that once a critical coupling strength is achieved, complete synchronization emerges between the systems to be synchronized, and at the same point, generalized synchronization with the relay system also arises. Next, we use two nonlinear measures based on the distance between phase-space neighbors to quantify the generalized synchronization in discretized time series. Finally, we experimentally show the robustness of the phenomenon and of the theoretical tools here proposed to characterize it.

  8. Tremor in the tension developed isometrically by soleus during the tonic vibration reflex in the decerebrate cat.

    PubMed Central

    Cussons, P D; Matthews, P B; Muir, R B

    1979-01-01

    1. Irregularities in the development of tension during the tonic vibration reflex of the soleus muscle of the decerebrate cat have been analysed into their frequency components. The reflex was recorded isometrically and elicited by longitudinal vibration, normally at 150 Hz. The amplitude of vibration was set so as to elicit a maximal reflex response, suggesting 1:1 driving of the majority of the Ia afferents at the frequency of vibration. 2. The resulting power spectrum regularly showed a well marked tremor peak separated by a trough from any slow irregularities. The predominant frequency of this tremor varied from 4 to 11 Hz in different preparations, with a mean of 7.4 Hz; on average, frequencies within 1.7 Hz on either side contained over half the power of the predominant frequency. Altering the frequency of vibration did not alter the distribution of tremor frequencies. 3. The root mean square value of the tension irregularities, over the range 4-14 Hz, varied from 12 to 110 mN in different preparations (median value, 23 mN); this was superimposed on mean active reflex tensions varying from 2 to 10 N. 4. The 'tremor' due to a single motor unit was estimated from spectral analysis of tetanic contractions of the whole muscle and decreased with increasing frequency of activation. Comparison of the single unit values with the tremor seen during vibration in the same preparations showed that equivalent amounts of tremor to the latter could typically have been produced by the continued synchronous contraction of about five 'average' motor units firing at the predominant tremor frequency. 5. When a tonic stretch reflex was present its tremor frequencies did not differ consistently from those of the tonic vibration reflex. On average, the tremor was smaller for the stretch reflex than for the tonic vibration reflex; the difference was usually slight and might have been related to the stretch refex tension being smaller. 6. Evidence was obtained that the tremor was not due to any insecurity of 1:1 driving of the Ia afferents by the vibration. First, the tremor did not increase when the amplitude of vibration was decreased sufficiently to ensure that the degree of 1:1 driving must have been reduced. Secondly, the introduction of a comparable 'artificial tremor' by sinusoidally oscillating the muscle at low frequency did not produce the e.m.g. response that would have been expected if the applied 'tremor' had been modulating the firing of the Ia or any other group of afferents. 7. It is concluded that the observed tremor cannot be attributed to 'oscillation in the stretch reflex arc', though without prejudice to the role of this mechanism under other conditions and especially when the recording is not isometric. However, the genesis of the tremor has not been established and much of it might result simply from the chance synchronization of motor units that are firing below their tetanic fusion frequency. PMID:158643

  9. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration.

    PubMed

    Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You

    2017-12-01

    The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

  10. Method and apparatus to debug an integrated circuit chip via synchronous clock stop and scan

    DOEpatents

    Bellofatto, Ralph E [Ridgefield, CT; Ellavsky, Matthew R [Rochester, MN; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Gooding, Thomas M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Hehenberger, Lance G [Leander, TX; Ohmacht, Martin [Yorktown Heights, NY

    2012-03-20

    An apparatus and method for evaluating a state of an electronic or integrated circuit (IC), each IC including one or more processor elements for controlling operations of IC sub-units, and each the IC supporting multiple frequency clock domains. The method comprises: generating a synchronized set of enable signals in correspondence with one or more IC sub-units for starting operation of one or more IC sub-units according to a determined timing configuration; counting, in response to one signal of the synchronized set of enable signals, a number of main processor IC clock cycles; and, upon attaining a desired clock cycle number, generating a stop signal for each unique frequency clock domain to synchronously stop a functional clock for each respective frequency clock domain; and, upon synchronously stopping all on-chip functional clocks on all frequency clock domains in a deterministic fashion, scanning out data values at a desired IC chip state. The apparatus and methodology enables construction of a cycle-by-cycle view of any part of the state of a running IC chip, using a combination of on-chip circuitry and software.

  11. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors.

    PubMed

    Fang, Yan; Yashin, Victor V; Dickerson, Samuel J; Balazs, Anna C

    2018-05-01

    We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.

  12. Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.

    2018-05-01

    We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.

  13. Digital communication system

    NASA Technical Reports Server (NTRS)

    Monford, L. G., Jr. (Inventor)

    1974-01-01

    A digital communication system is reported for parallel operation of 16 or more transceiver units with the use of only four interconnecting wires. A remote synchronization circuit produces unit address control words sequentially in data frames of 16 words. Means are provided in each transceiver unit to decode calling signals and to transmit calling and data signals. The transceivers communicate with each other over one data line. The synchronization unit communicates the address control information to the transceiver units over an address line and further provides the timing information over a clock line. A reference voltage level or ground line completes the interconnecting four wire hookup.

  14. Non-Stationarity and Power Spectral Shifts in EMG Activity Reflect Motor Unit Recruitment in Rat Diaphragm Muscle

    PubMed Central

    Seven, Yasin B.; Mantilla, Carlos B.; Zhan, Wen-Zhi; Sieck, Gary C.

    2012-01-01

    We hypothesized that diaphragm muscle (DIAm) by a shift in the EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O2-5% CO2), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ~70 ms during airway occlusion to ~150 ms during eupnea. Within the initial non-stationary period of EMG activity 80–95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. PMID:22986086

  15. Design of control system for optical fiber drawing machine driven by double motor

    NASA Astrophysics Data System (ADS)

    Yu, Yue Chen; Bo, Yu Ming; Wang, Jun

    2018-01-01

    Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.

  16. Experimental measurement on movement of spiral-type capsule endoscope

    PubMed Central

    Yang, Wanan; Dai, Houde; He, Yong; Qin, Fengqing

    2016-01-01

    Wireless capsule endoscope achieved great success, however, the maneuvering of wireless capsule endoscope is challenging at present. A magnetic driving instrument, including two bar magnets, a stepper motor, a motor driver, a motor controller, and a power supplier, was developed to generate rotational magnetic fields. Permanent magnet ring, magnetized as S and N poles radially and mounted spiral structure on the surface, acted as a capsule. The maximum torque passing to the capsule, rotational synchronization of capsule and motor, and the translational speed of capsule, were measured in ex vivo porcine large intestine. The experimental results illustrate that the rotational movement of the spiral-type capsule in the intestine is feasible and the cost of the magnetic driving equipment is low. As a result, the solution is promising in the future controllability. PMID:26848279

  17. Experimental measurement on movement of spiral-type capsule endoscope.

    PubMed

    Yang, Wanan; Dai, Houde; He, Yong; Qin, Fengqing

    2016-01-01

    Wireless capsule endoscope achieved great success, however, the maneuvering of wireless capsule endoscope is challenging at present. A magnetic driving instrument, including two bar magnets, a stepper motor, a motor driver, a motor controller, and a power supplier, was developed to generate rotational magnetic fields. Permanent magnet ring, magnetized as S and N poles radially and mounted spiral structure on the surface, acted as a capsule. The maximum torque passing to the capsule, rotational synchronization of capsule and motor, and the translational speed of capsule, were measured in ex vivo porcine large intestine. The experimental results illustrate that the rotational movement of the spiral-type capsule in the intestine is feasible and the cost of the magnetic driving equipment is low. As a result, the solution is promising in the future controllability.

  18. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part I

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Sano, Kousuke

    This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.

  19. A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM)

    PubMed Central

    Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M.; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A.; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto

    2013-01-01

    Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345

  20. Study of Various Slanted Air-Gap Structures of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, Leon M; Lee, Seong T

    2010-01-01

    This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as amore » result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).« less

  1. Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC

    PubMed Central

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2013-01-01

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results. PMID:23262481

  2. Adaptive PIF control for permanent magnet synchronous motors based on GPC.

    PubMed

    Lu, Shaowu; Tang, Xiaoqi; Song, Bao

    2012-12-24

    To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.

  3. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    NASA Astrophysics Data System (ADS)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  4. Hybrid-fuel bacterial flagellar motors in Escherichia coli

    PubMed Central

    Sowa, Yoshiyuki; Homma, Michio; Ishijima, Akihiko; Berry, Richard M.

    2014-01-01

    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H+ or Na+ ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H+- and Na+-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na+ concentration ([Na+]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na+ and H+ stator components expressed at high and medium levels, respectively, Na+ stator units dominate at high [Na+] and are replaced by H+ units when Na+ is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H+ and Na+ stator components sharing a common rotor. PMID:24550452

  5. Motor Unit Changes Seen With Skeletal Muscle Sarcopenia in Oldest Old Rats

    PubMed Central

    Kung, Theodore A.; van der Meulen, Jack H.; Urbanchek, Melanie G.; Kuzon, William M.; Faulkner, John A.

    2014-01-01

    Sarcopenia leads to many changes in skeletal muscle that contribute to atrophy, force deficits, and subsequent frailty. The purpose of this study was to characterize motor unit remodeling related to sarcopenia seen in extreme old age. Whole extensor digitorum longus muscle and motor unit contractile properties were measured in 19 adult (11–13 months) and 12 oldest old (36–37 months) Brown-Norway rats. Compared with adults, oldest old rats had significantly fewer motor units per muscle, smaller muscle cross-sectional area, and lower muscle specific force. However, mean motor unit force generation was similar between the two groups due to an increase in innervation ratio by the oldest old rats. These findings suggest that even in extreme old age both fast- and slow-twitch motor units maintain the ability to undergo motor unit remodeling that offsets some effects of sarcopenia. PMID:24077596

  6. Global cluster synchronization in nonlinearly coupled community networks with heterogeneous coupling delays.

    PubMed

    Tseng, Jui-Pin

    2017-02-01

    This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Course 3: Modelling Motor Protein Systems

    NASA Astrophysics Data System (ADS)

    Duke, T.

    Contents 1 Making a move: Principles of energy transduction 1.1 Motor proteins and Carnot engines 1.2 Simple Brownian ratchet 1.3 Polymerization ratchet 1.4 Isothermal ratchets 1.5 Motor proteins as isothermal ratchets 1.6 Design principles for effective motors 2 Pulling together: Mechano-chemical model of actomyosin 2.1 Swinging lever-arm model 2.2 Mechano-chemical coupling 2.3 Equivalent isothermal ratchet 2.4 Many motors working together 2.5 Designed to work 2.6 Force-velocity relation 2.7 Dynamical instability and biochemical synchronization 2.8 Transient response ofmuscle 3 Motors at work: Collective properties of motor proteins 3.1 Dynamical instabilities 3.2 Bidirectional movement 3.3 Critical behaviour 3.4 Oscillations 3.5 Dynamic buckling instability 3.6 Undulation of flagella 4 Sense and sensitivity: Mechano-sensation in hearing 4.1 System performance 4.2 Mechano-sensors: Hair bundles 4.3 Active amplification 4.4 Self-tuned criticality 4.5 Motor-driven oscillations 4.6 Channel compliance and relaxation oscillations 4.7 Channel-driven oscillations 4.8 Hearing at the noise limit

  8. Contribution from motor unit firing adaptations and muscle co-activation during fatigue.

    PubMed

    Contessa, Paola; Letizi, John; De Luca, Gianluca; Kline, Joshua C

    2018-03-14

    The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles - including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the co-activation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue.

  9. Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?

    PubMed

    Manuel, Marin; Heckman, C J

    2011-10-19

    Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.

  10. Architecture of Vagal Motor Units Controlling Striated Muscle of Esophagus: Peripheral Elements Patterning Peristalsis?

    PubMed Central

    Powley, Terry L.; Mittal, Ravinder K.; Baronowsky, Elizabeth A.; Hudson, Cherie N.; Martin, Felecia N.; McAdams, Jennifer L.; Mason, Jacqueline K.; Phillips, Robert J.

    2013-01-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n = 78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are “hardwired,” in the peripheral architecture of esophageal motor units. PMID:24044976

  11. Architecture of vagal motor units controlling striated muscle of esophagus: peripheral elements patterning peristalsis?

    PubMed

    Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J

    2013-12-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.

  12. International Ultraviolet Explorer (IUE) satellite mission analysis

    NASA Technical Reports Server (NTRS)

    Cook, R. A.; Griffin, J. H.

    1975-01-01

    The results are presented of the mission analysis performed by Computer Sciences Corporation (CSC) in support of the International Ultraviolet Explorer (IUE) satellite. The launch window is open for three separate periods (for a total time of 7 months) during the year extending from July 20, 1977, to July 20, 1978. The synchronous orbit shadow constraint limits the launch window to approximately 88 minutes per day. Apogee boost motor fuel was computed to be 455 pounds (206 kilograms) and on-station weight was 931 pounds (422 kilograms). The target orbit is elliptical synchronous, with eccentricity 0.272 and 24 hour period.

  13. Bi-directional planar slide mechanism

    DOEpatents

    Bieg, Lothar F.

    2003-11-04

    A bi-directional slide mechanism. A pair of master and slave disks engages opposite sides of the platform. Rotational drivers are connected to master disks so the disks rotate eccentrically about their respective axes of rotation. Opposing slave disks are connected to master disks on opposite sides of the platform by a circuitous mechanical linkage, or are electronically synchronized together using stepper motors, to effect coordinated motion. The synchronized eccentric motion of the pairs of master/slave disks compels smooth linear motion of the platform forwards and backwards without backlash. The apparatus can be incorporated in a MEMS device.

  14. Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle

    PubMed Central

    Westad, C; Westgaard, R H; De Luca, C J

    2003-01-01

    The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude (‘EMG pulse’) superimposed on a constant contraction at 4–7% of the surface electromyographic (EMG) response at maximal voluntary contraction (4–7% EMGmax). EMG pulses at 15–20% EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5% EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current (‘plateau potentials’). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns. PMID:14561844

  15. Method of synchronizing independent functional unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Changhoan

    A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream ofmore » program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.« less

  16. Method of synchronizing independent functional unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Changhoan

    2017-05-16

    A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream ofmore » program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.« less

  17. Method of synchronizing independent functional unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Changhoan

    2017-02-14

    A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream ofmore » program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.« less

  18. Pattern recognition with "materials that compute".

    PubMed

    Fang, Yan; Yashin, Victor V; Levitan, Steven P; Balazs, Anna C

    2016-09-01

    Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The "stored" patterns are set of polarities of the individual BZ-PZ units, and the "input" patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating "materials that compute."

  19. Pattern recognition with “materials that compute”

    PubMed Central

    Fang, Yan; Yashin, Victor V.; Levitan, Steven P.; Balazs, Anna C.

    2016-01-01

    Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The “stored” patterns are set of polarities of the individual BZ-PZ units, and the “input” patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating “materials that compute.” PMID:27617290

  20. Different Stimulation Frequencies Alter Synchronous Fluctuations in Motor Evoked Potential Amplitude of Intrinsic Hand Muscles—a TMS Study

    PubMed Central

    Sale, Martin V.; Rogasch, Nigel C.; Nordstrom, Michael A.

    2016-01-01

    The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs. PMID:27014031

  1. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives.

    PubMed

    Tordjman, Sylvie; Davlantis, Katherine S; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model.

  2. Autism as a Disorder of Biological and Behavioral Rhythms: Toward New Therapeutic Perspectives

    PubMed Central

    Tordjman, Sylvie; Davlantis, Katherine S.; Georgieff, Nicolas; Geoffray, Marie-Maude; Speranza, Mario; Anderson, George M.; Xavier, Jean; Botbol, Michel; Oriol, Cécile; Bellissant, Eric; Vernay-Leconte, Julie; Fougerou, Claire; Hespel, Anne; Tavenard, Aude; Cohen, David; Kermarrec, Solenn; Coulon, Nathalie; Bonnot, Olivier; Dawson, Geraldine

    2015-01-01

    There is a growing interest in the role of biological and behavioral rhythms in typical and atypical development. Recent studies in cognitive and developmental psychology have highlighted the importance of rhythmicity and synchrony of motor, emotional, and interpersonal rhythms in early development of social communication. The synchronization of rhythms allows tuning and adaptation to the external environment. The role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of the circadian clocks network suggests that this hormone might be also involved in the synchrony of motor, emotional, and interpersonal rhythms. Autism provides a challenging model of physiological and behavioral rhythm disturbances and their possible effects on the development of social communication impairments and repetitive behaviors and interests. This article situates autism as a disorder of biological and behavioral rhythms and reviews the recent literature on the role of rhythmicity and synchrony of rhythms in child development. Finally, the hypothesis is developed that an integrated approach focusing on biological, motor, emotional, and interpersonal rhythms may open interesting therapeutic perspectives for children with autism. More specifically, promising avenues are discussed for potential therapeutic benefits in autism spectrum disorder of melatonin combined with developmental behavioral interventions that emphasize synchrony, such as the Early Start Denver Model. PMID:25756039

  3. Analysis of remote synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  4. Study on the application of permanent magnet synchronous motors in underground belt conveyors

    NASA Astrophysics Data System (ADS)

    Ma, S. H.

    2017-12-01

    This paper analyzes and compares the advantages and disadvantages of several kinds of drive devices of belt conveyors from the angle of energy saving, and summarizes the application advantages and using problems of permanent magnet motor variable frequency drive system in belt conveyors. An example is given to demonstrate the energy saving effect of this system compared with other driving methods. This paper points out the application prospect of permanent magnet motor variable frequency drive system on belt conveyors and other large mining machines in coal mine. This paper is aimed to provide the design direction for the designer and the choice basis for the user on belt conveyor.

  5. Is it possible to predict the infant's neurodevelopmental outcome at 14 months of age by means of a single preterm assessment of General Movements?

    PubMed Central

    Manacero, Sonia Aparecida; Marschik, Peter B.; Nunes, Magda Lahorgue; Einspieler, Christa

    2012-01-01

    Background It continues to be a challenge for clinicians to identify preterm infants likely to experience subsequent neurodevelopmental deficits. The Test of Infant Motor Performance (TIMP) and the assessment of spontaneous general movements (GMs) are the only reliable diagnostic and predictive tools for the functionality of the developing nervous system, if applied before term. Aim To determine to what extent singular preterm assessments of motor performance can predict the neurodevelopmental outcome in 14-month olds. Methods Thirty-seven preterm infants born < 34 weeks gestational age were recruited for the study at the NICU of the São Lucas University Hospital, Porto Alegre, RS, Brazil. At 34 weeks, their GMs were assessed; and the Test of Infant Motor Performance (TIMP) was applied. A prospective design was used to examine (A) the association between the GM assessment and the TIMP; and (B) the relation between GMs or the TIMP and the developmental status at 14 months, assessed by means of Alberta Infant Motor Scales (AIMS) and the Pediatric Evaluation of Disability Inventory (PEDI). Results Nineteen infants (41%) had abnormal GMs; only one scored within the TIMP average range. Hence, GMs and TIMP were not related. Children with cramped-synchronized GMs at 34 weeks preterm had a lower AIMS centile rank than those with poor repertoire or normal GMs. There was a marginal association between cramped-synchronized GMs and a lower PEDI mobility score. Conclusions A single preterm GM assessment is only fairly to moderately associated with the 14-month motor development. The TIMP is not suitable as a complementary assessment tool at such a young age. PMID:21775078

  6. Recruitment and rate coding organisation for soleus motor units across entire range of voluntary isometric plantar flexions.

    PubMed

    Oya, Tomomichi; Riek, Stephan; Cresswell, Andrew G

    2009-10-01

    Unlike upper limb muscles, it remains undocumented as to how motor units in the soleus muscle are organised in terms of recruitment range and discharge rates with respect to their recruitment and de-recruitment thresholds. The possible influence of neuromodulation, such as persistent inward currents (PICs) on lower limb motor unit recruitment and discharge rates has also yet to be reported. To address these issues, electromyographic (EMG) activities from the soleus muscle were recorded using selective branched-wire intramuscular electrodes during ramp-and-hold contractions with intensities up to maximal voluntary contraction (MVC). The multiple single motor unit activities were then derived using a decomposition technique. The onset-offset hysteresis of motor unit discharge, i.e. a difference between recruitment and de-recruitment thresholds, as well as PIC magnitude calculated by a paired motor unit analysis were used to examine the neuromodulatory effects on discharge behaviours, such as minimum firing rate, peak firing rate and degree of increase in firing rate. Forty-two clearly identified motor units from five subjects revealed that soleus motor units are recruited progressively from rest to contraction strengths close to 95% of MVC, with low-threshold motor units discharging action potentials slower at their recruitment and with a lower peak rate than later recruited high-threshold units. This observation is in contrast to the 'onion skin phenomenon' often reported for the upper limb muscles. Based on positive correlations of the peak discharge rates, initial rates and recruitment order of the units with the magnitude of the onset-offset hysteresis and not PIC contribution, we conclude that discharge behaviours among motor units appear to be related to a variation in an intrinsic property other than PICs.

  7. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.

    PubMed

    Wei, Ruihan; Parsons, Sean P; Huizinga, Jan D

    2017-03-01

    What is the central question of this study? What are the effects of interstitial cells of Cajal (ICC) network perturbations on intestinal pacemaker activity and motor patterns? What is the main finding and its importance? Two-dimensional modelling of the ICC pacemaker activity according to a phase model of weakly coupled oscillators showed that network properties (coupling strength between oscillators, frequency gradient and frequency noise) strongly influence pacemaker network activity and subsequent motor patterns. The model explains motor patterns observed in physiological conditions and provides predictions and testable hypotheses for effects of ICC loss and frequency modulation on the motor patterns. Interstitial cells of Cajal (ICC) are the pacemaker cells of gut motility and are associated with motility disorders. Interstitial cells of Cajal form a network, but the contributions of its network properties to gut physiology and dysfunction are poorly understood. We modelled an ICC network as a two-dimensional network of weakly coupled oscillators with a frequency gradient and showed changes over time in video and graphical formats. Model parameters were obtained from slow-wave-driven contraction patterns in the mouse intestine and pacemaker slow-wave activities from the cat intestine. Marked changes in propagating oscillation patterns (including changes from propagation to non-propagating) were observed by changing network parameters (coupling strength between oscillators, the frequency gradient and frequency noise), which affected synchronization, propagation velocity and occurrence of dislocations (termination of an oscillation). Complete uncoupling of a circumferential ring of oscillators caused the proximal and distal section to desynchronize, but complete synchronization was maintained with only a single oscillator connecting the sections with high enough coupling. The network of oscillators could withstand loss; even with 40% of oscillators lost randomly within the network, significant synchronization and anterograde propagation remained. A local increase in pacemaker frequency diminished anterograde propagation; the effects were strongly dependent on location, frequency gradient and coupling strength. In summary, the model puts forth the hypothesis that fundamental changes in oscillation patterns (ICC slow-wave activity or circular muscle contractions) can occur through physiological modulation of network properties. Strong evidence is provided to accept the ICC network as a system of coupled oscillators. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  8. When Non-Dominant Is Better than Dominant: Kinesiotape Modulates Asymmetries in Timed Performance during a Synchronization-Continuation Task

    PubMed Central

    Bravi, Riccardo; Cohen, Erez J.; Martinelli, Alessio; Gottard, Anna; Minciacchi, Diego

    2017-01-01

    There is a growing consensus regarding the specialization of the non-dominant limb (NDL)/hemisphere system to employ proprioceptive feedback when executing motor actions. In a wide variety of rhythmic tasks the dominant limb (DL) has advantages in speed and timing consistency over the NDL. Recently, we demonstrated that the application of Kinesio® Tex (KT) tape, an elastic therapeutic device used for treating athletic injuries, improves significantly the timing consistency of isochronous wrist’s flexion-extensions (IWFEs) of the DL. We argued that the augmented precision of IWFEs is determined by a more efficient motor control during movements due to the extra-proprioceptive effect provided by KT. In this study, we tested the effect of KT on timing precision of IWFEs performed with the DL and the NDL, and we evaluated the efficacy of KT to counteract possible timing precision difference between limbs. Young healthy subjects performed with and without KT (NKT) a synchronization-continuation task in which they first entrained IWFEs to paced auditory stimuli (synchronization phase), and subsequently continued to produce motor responses with the same temporal interval in the absence of the auditory stimulus (continuation phase). Two inter-onset intervals (IOIs) of 550-ms and 800-ms, one within and the other beyond the boundaries of the spontaneous motor tempo, were tested. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that limb advantages in performing proficiently rhythmic movements are not side-locked but depend also on speed of movement. The application of KT significantly reduces the timing variability of IWFEs performed at 550-ms IOI. KT not only cancels the disadvantages of the NDL but also makes it even more precise than the DL without KT. The superior sensitivity of the NDL to use the extra-sensory information provided by KT is attributed to a greater competence of the NDL/hemisphere system to rely on sensory input. The findings in this study add a new piece of information to the context of motor timing literature. The performance asymmetries here demonstrated as preferred temporal environments could reflect limb differences in the choice of sensorimotor control strategies for the production of human movement. PMID:28943842

  9. Counteracting Rotor Imbalance in a Bearingless Motor System with Feedforward Control

    NASA Technical Reports Server (NTRS)

    Kascak, Peter Eugene; Jansen, Ralph H.; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2012-01-01

    In standard motor applications, traditional mechanical bearings represent the most economical approach to rotor suspension. However, in certain high performance applications, rotor suspension without bearing contact is either required or highly beneficial. Such applications include very high speed, extreme environment, or limited maintenance access applications. This paper extends upon a novel bearingless motor concept, in which full five-axis levitation and rotation of the rotor is achieved using two motors with opposing conical air-gaps. By leaving the motors' pole-pairs unconnected, different d-axis flux in each pole-pair is created, generating a flux imbalance which creates lateral force. Note this is approach is different than that used in previous bearingless motors, which use separate windings for levitation and rotation. This paper will examine the use of feedforward control to counteract synchronous whirl caused by rotor imbalance. Experimental results will be presented showing the performance of a prototype bearingless system, which was sized for a high speed flywheel energy storage application, with and without feedforward control.

  10. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2010-03-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  11. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2009-12-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  12. Development status of a 125 horsepower superconducting motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, R.F.; Zhang, B.X.; Driscoll, D.I.

    1997-06-01

    The current development status of an air core synchronous motor with high-temperature superconducting field coils is presented. The work described is part of a U.S. DoE Superconductivity Partnership Initiative award. The motor design features a topology with a combination of a modified conventional armature and a rotating four-pole superconducting field winding operating at a nominal temperature of 27 K. For testing purposes, an open-loop cryogenic system is adopted to supply helium gas to the rotor cryostat for maintaining the operating temperature of the superconducting field winding. The exhaust helium gas intercepts heat leak into the rotor cryostat before being vented.more » The motor is expected to deliver 125 horsepower (hp) at 1,800 rpm. Successful demonstration of the 125 hp motor will represent a major milestone in the process of developing commercial superconducting motors with integrated closed-loop cryogenic systems. Design objectives and results as well as current project status are discussed.« less

  13. Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle.

    PubMed

    Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C

    2013-01-15

    We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ∼80 ms during airway occlusion to ∼150 ms during eupnea. Within the initial non-stationary period of EMG activity 80-95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Speed of the bacterial flagellar motor near zero load depends on the number of stator units.

    PubMed

    Nord, Ashley L; Sowa, Yoshiyuki; Steel, Bradley C; Lo, Chien-Jung; Berry, Richard M

    2017-10-31

    The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque-speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na + - and H + -driven motors. We measure the full torque-speed relationship of one and two H + units in Escherichia coli by selecting the number of H + units and controlling the number of Na + units in hybrid motors. These experiments confirm that speed near zero torque in H + -driven motors increases with the stator number. We also measured 75 torque-speed curves for Na + -driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque-speed curves to be collapsed onto a single curve by simple rescaling. Published under the PNAS license.

  15. Isometric contractions of motor units and immunohistochemistry of mouse soleus muscle.

    PubMed Central

    Lewis, D M; Parry, D J; Rowlerson, A

    1982-01-01

    1. Isometric contractions of motor units, isolated functionally by ventral root splitting in vivo, were recorded from mouse soleus muscle. 2. Motor unit tensions varied over a narrow symmetrical range and averaged 4.7% of whole muscle tension, corresponding to twenty-one motor units per muscle. 3. There was considerable variation between muscles in isometric twitch times-to-peak and even greater variation for the motor units. The distribution of motor unit times-to-peak was apparently unimodal and could be fitted by a single normal population. A slightly better fit was, however, obtained with two normal populations, as suggested by the histochemistry. 4. Twitch time-to-peak decreased in proportion to axonal conduction velocity in individual animals. The whole population of motor units could be fitted by a linear relation between time-to-peak and the reciprocal of conduction time in the motor axon. Motor unit tension was also linearly related to the reciprocal of conduction time. 5. Histochemistry showed clear division between Type I and Type IIa fibres. Type I fibres reacted strongly with antibody against slow myosin of cat soleus muscle; Type IIa gave a reaction no stronger than the background. The division was as clear as in the cat or rat. Images Fig. 2 Plate 1 PMID:7050345

  16. Speed of the bacterial flagellar motor near zero load depends on the number of stator units

    PubMed Central

    Nord, Ashley L.; Sowa, Yoshiyuki; Steel, Bradley C.; Lo, Chien-Jung; Berry, Richard M.

    2017-01-01

    The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque–speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na+- and H+-driven motors. We measure the full torque–speed relationship of one and two H+ units in Escherichia coli by selecting the number of H+ units and controlling the number of Na+ units in hybrid motors. These experiments confirm that speed near zero torque in H+-driven motors increases with the stator number. We also measured 75 torque–speed curves for Na+-driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque–speed curves to be collapsed onto a single curve by simple rescaling. PMID:29078322

  17. Keeping an eye on the conductor: neural correlates of visuo-motor synchronization and musical experience.

    PubMed

    Ono, Kentaro; Nakamura, Akinori; Maess, Burkhard

    2015-01-01

    For orchestra musicians, synchronized playing under a conductor's direction is necessary to achieve optimal performance. Previous studies using simple auditory/visual stimuli have reported cortico-subcortical networks underlying synchronization and that training improves the accuracy of synchronization. However, it is unclear whether people who played regularly under a conductor and non-musicians activate the same networks when synchronizing with a conductor's gestures. We conducted a functional magnetic resonance imaging (fMRI) experiment testing nonmusicians and musicians who regularly play music under a conductor. Participants were required to tap the rhythm they perceived from silent movies displaying either conductor's gestures or a swinging metronome. Musicians performed tapping under a conductor with more precision than nonmusicians. Results from fMRI measurement showed greater activity in the anterior part of the left superior frontal gyrus (SFG) in musicians with more frequent practice under a conductor. Conversely, tapping with the metronome did not show any difference between musicians and nonmusicians, indicating that the expertize effect in tapping under the conductor does not result in a general increase in tapping performance for musicians. These results suggest that orchestra musicians have developed an advanced ability to predict conductor's next action from the gestures.

  18. Hierarchical control of motor units in voluntary contractions.

    PubMed

    De Luca, Carlo J; Contessa, Paola

    2012-01-01

    For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The "firing rate spectrum" presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units-both characteristics being well suited for generating and sustaining force during the fight-or-flight response.

  19. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    PubMed

    Ge, Shunnan; Yang, Chen; Li, Min; Li, Jiang; Chang, Xiaozan; Fu, Jian; Chen, Lei; Chang, Chongwang; Wang, Xuelian; Zhu, Junling; Gao, Guodong

    2012-07-17

    Studies on patients with Parkinson's disease and in animal models have observed enhanced synchronization of oscillations in several frequency bands within and between the cortical-basal ganglia (BG) structures. Recent research has also shown that synchronization of high-voltage spindles (HVSs) in the cortex, striatum and substantia nigra pars reticulate is increased by dopamine depletion. However, more evidence is needed to determine whether HVS activity in the whole cortex-BG network represents homologous alteration following dopamine depletion. As the globus pallidus (GP) is in a central position to propagate and synchronize oscillations in the cortical-BG circuits, we employed local-field potentials and electrocorticogram to simultaneously record oscillations in the GP and primary (M1) and secondary (M2) motor cortices on freely moving 6-hydroxydopamine (6-OHDA) lesioned and control rats. Results showed that HVS episodes recorded from GP, and M2 and M1 cortex areas were more numerous and longer in 6-OHDA lesioned rats compared to controls. Relative power associated with HVS activity in the GP, and M2 and M1 cortices of 6-OHDA lesioned rats was significantly greater than that for control rats. Coherence values for HVS activity between the GP, and M2 and M1 cortex areas were significantly increased by dopamine depletion. Time lag between the M1 cortex HVS and GP HVS was significantly shorter for dopamine depleted than normal rats. Findings indicate a crucial rule for dopamine in the regulation of HVS activity in the whole cortical-BG circuit, and suggest a close relationship between abnormally synchronized HVS oscillations in the cortex-BG network and Parkinson's disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Movement-related changes in local and long-range synchronization in Parkinson's disease revealed by simultaneous magnetoencephalography and intracranial recordings.

    PubMed

    Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth; Foltynie, Tom; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan I; Friston, Karl; Brown, Peter

    2012-08-01

    Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson's disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those >30 Hz is particularly unclear. Do they improve movement, and, if so, in what way? We acquired simultaneously magnetoencephalography and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power at 60-90 Hz and at 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity at 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronization at 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronization at 60-90 Hz in the basal ganglia cortical network is prokinetic but likely through a modulatory effect rather than any involvement in explicit motor processing.

  1. The relationship between the age of onset of musical training and rhythm synchronization performance: validation of sensitive period effects.

    PubMed

    Bailey, Jennifer A; Penhune, Virginia B

    2013-01-01

    A sensitive period associated with musical training has been proposed, suggesting the influence of musical training on the brain and behavior is strongest during the early years of childhood. Experiments from our laboratory have directly tested the sensitive period hypothesis for musical training by comparing musicians who began their training prior to age seven with those who began their training after age seven, while matching the two groups in terms of musical experience (Watanabe et al., 2007; Bailey and Penhune, 2010, 2012). Using this matching paradigm, the early-trained groups have demonstrated enhanced sensorimotor synchronization skills and associated differences in brain structure (Bailey et al., 2013; Steele et al., 2013). The current study takes a different approach to investigating the sensitive period hypothesis for musical training by examining a single large group of unmatched musicians (N = 77) and exploring the relationship between age of onset of musical training as a continuous variable and performance on the Rhythm Synchronization Task (RST), a previously used auditory-motor RST. Interestingly, age of onset was correlated with task performance for those who began training earlier, however, no such relationship was observed among those who began training in their later childhood years. In addition, years of formal training showed a similar pattern. However, individual working memory scores were predictive of task performance, regardless of age of onset of musical training. Overall, these results support the sensitive period hypothesis for musical training and suggest a non-linear relationship between age of onset of musical training and auditory-motor rhythm synchronization abilities, such that a relationship exists early in childhood but then plateaus later on in development, similar to maturational growth trajectories of brain regions implicated in playing music.

  2. 75 FR 26794 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation... United Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor... reviewed the certification for workers of the subject firm. The workers assemble the Toyota Corolla and the...

  3. Cooperativity of self-organized Brownian motors pulling on soft cargoes.

    PubMed

    Orlandi, Javier G; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume

    2010-12-01

    We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.

  4. Cooperativity of self-organized Brownian motors pulling on soft cargoes

    NASA Astrophysics Data System (ADS)

    Orlandi, Javier G.; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume

    2010-12-01

    We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.

  5. Advanced concepts. [specific impulse, mass drivers, electromagnetic launchers, and the rail gun

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1980-01-01

    The relative strengths of those interactions which enable propulsive forces are listed as well as the specific impulse of various propellants. Graphics show the linear synchronous motor of the mass driver, the principle of the direct current electromagnetic launcher, and the characteristics of the rail gun.

  6. Roadside Judgments in Children with Developmental Co-ordination Disorder

    ERIC Educational Resources Information Center

    Purcell, Catherine; Wann, John P.; Wilmut, Kate; Poulter, Damian

    2011-01-01

    As pedestrians, the perceptual ability to accurately judge the relative rate of approaching vehicles and select a suitable crossing gap requires sensitivity to looming. It also requires that crossing judgments are synchronized with motoric capabilities. Previous research has suggested that children with Developmental Co-ordination Disorder (DCD)…

  7. Effect of age and gender on the number of motor units in healthy subjects estimated by the multipoint incremental MUNE method.

    PubMed

    Gawel, Malgorzata; Kostera-Pruszczyk, Anna

    2014-06-01

    Motor unit number estimation (MUNE) is a tool for estimating the number of motor units. The aim was to evaluate the multipoint incremental MUNE method in a healthy population, to analyze whether aging, gender, and the dominant hand side influence the motor unit number, and to assess reproducibility of MUNE with the Shefner modification. We studied 60 volunteers (mean age, 47 ± 17.7 years) in four groups aged 18 to 30, 31 to 45, 46 to 60, and above 60 years. Motor unit number estimation was calculated in the abductor pollicis brevis (APB) and the abductor digiti minimi (ADM) by dividing the single motor unit action potential amplitude into the maximal compound motor action potential amplitude. Test-retest variability was 7%. The mean value of MUNE for APB was 133.2 ± 43 and for ADM was 157.1 ± 39.4. Significant differences in MUNE results were found between groups aged 18 to 30 and 60 years or older and between groups aged 31 to 45 and 60 years or older. Motor unit number estimation results correlated negatively with the age of subjects for both APB and ADM. Single motor unit action potential, reflecting the size of motor unit, increased with the age of subjects only in APB. Compound motor action potential amplitude correlated negatively with the age of subjects in APB and ADM. Significant correlations were seen between MUNE in APB or ADM and compound motor action potential amplitude in these muscles and the age of female subjects. A similar relationship was not found in males. Multipoint incremental MUNE method with the Shefner modification is a noninvasive, easy to perform method with high reproducibility. The loss of motor neurons because of aging could be confirmed by our MUNE study and seems to be more pronounced in females.

  8. Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action

    PubMed Central

    Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta

    2016-01-01

    It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ~500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254

  9. Diagnosis of the three-phase induction motor using thermal imaging

    NASA Astrophysics Data System (ADS)

    Glowacz, Adam; Glowacz, Zygfryd

    2017-03-01

    Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.

  10. Muscle vibration sustains motor unit firing rate during submaximal isometric fatigue in humans

    PubMed Central

    Griffin, L; Garland, S J; Ivanova, T; Gossen, E R

    2001-01-01

    In keeping with the ‘muscular wisdom hypothesis’, many studies have documented that the firing rate of the majority of motor units decreased during fatiguing isometric contractions. The present study investigated whether the application of periodic muscle vibration, which strongly activates muscle spindles, would alter the modulation of motor unit firing rate during submaximal fatiguing isometric contractions. Thirty-three motor units from the lateral head of the triceps brachii muscle were recorded from 10 subjects during a sustained isometric 20 % maximal voluntary contraction (MVC) of the elbow extensors. Vibration was interposed on the contraction for 2 s every 10 s. Twenty-two motor units were recorded from the beginning of the fatigue task. The discharge rate of the majority of motor units remained constant (12/22) or increased (4/22) with fatigue. Six motor units demonstrated a reduction in discharge rate that later returned toward initial values; these motor units had higher initial discharge rates than the other 16 motor units. In a second series of experiments, four subjects held a sustained isometric 20 % MVC for 2 min and then vibration was applied as above for the remainder of the contraction. In this case, motor units initially demonstrated a decrease in firing rate that increased after the vibration was applied. Thus muscle spindle disfacilitation of the motoneurone pool may be associated with the decline of motor unit discharge rate observed during the first 2 min of the contraction. In a third set of experiments, seven subjects performed the main experiment on one occasion and repeated the fatigue task without vibration on a second occasion. Neither the endurance time of the fatiguing contraction nor the MVC torque following fatigue was affected by the application of vibration. This finding calls into question the applicability of the muscular wisdom hypothesis to submaximal contractions. PMID:11559785

  11. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion

    PubMed Central

    Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks. PMID:22972893

  12. Muscle vibration sustains motor unit firing rate during submaximal isometric fatigue in humans.

    PubMed

    Griffin, L; Garland, S J; Ivanova, T; Gossen, E R

    2001-09-15

    1. In keeping with the 'muscular wisdom hypothesis', many studies have documented that the firing rate of the majority of motor units decreased during fatiguing isometric contractions. The present study investigated whether the application of periodic muscle vibration, which strongly activates muscle spindles, would alter the modulation of motor unit firing rate during submaximal fatiguing isometric contractions. 2. Thirty-three motor units from the lateral head of the triceps brachii muscle were recorded from 10 subjects during a sustained isometric 20 % maximal voluntary contraction (MVC) of the elbow extensors. Vibration was interposed on the contraction for 2 s every 10 s. Twenty-two motor units were recorded from the beginning of the fatigue task. The discharge rate of the majority of motor units remained constant (12/22) or increased (4/22) with fatigue. Six motor units demonstrated a reduction in discharge rate that later returned toward initial values; these motor units had higher initial discharge rates than the other 16 motor units. 3. In a second series of experiments, four subjects held a sustained isometric 20 % MVC for 2 min and then vibration was applied as above for the remainder of the contraction. In this case, motor units initially demonstrated a decrease in firing rate that increased after the vibration was applied. Thus muscle spindle disfacilitation of the motoneurone pool may be associated with the decline of motor unit discharge rate observed during the first 2 min of the contraction. 4. In a third set of experiments, seven subjects performed the main experiment on one occasion and repeated the fatigue task without vibration on a second occasion. Neither the endurance time of the fatiguing contraction nor the MVC torque following fatigue was affected by the application of vibration. This finding calls into question the applicability of the muscular wisdom hypothesis to submaximal contractions.

  13. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.

    PubMed

    Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2013-01-15

    Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks.

  14. Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action

    PubMed Central

    Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra

    2014-01-01

    Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212

  15. Hierarchical control of motor units in voluntary contractions

    PubMed Central

    Contessa, Paola

    2012-01-01

    For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The “firing rate spectrum” presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units—both characteristics being well suited for generating and sustaining force during the fight-or-flight response. PMID:21975447

  16. Neural control of muscle force: indications from a simulation model

    PubMed Central

    Luca, Carlo J. De

    2013-01-01

    We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008

  17. Content-based intermedia synchronization

    NASA Astrophysics Data System (ADS)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  18. Motor Controller System For Large Dynamic Range of Motor Operation

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)

    2006-01-01

    A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.

  19. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.

    PubMed

    Riley, Zachary A; Terry, Mary E; Mendez-Villanueva, Alberto; Litsey, Jane C; Enoka, Roger M

    2008-06-01

    Bursts of activity in the surface electromyogram (EMG) during a sustained contraction have been interpreted as corresponding to the transient recruitment of motor units, but this association has never been confirmed. The current study compared the timing of trains of action potentials discharged by single motor units during a sustained contraction with the bursts of activity detected in the surface EMG signal. The 20 motor units from 6 subjects [recruitment threshold, 35.3 +/- 11.3% maximal voluntary contraction (MVC) force] that were detected with fine wire electrodes discharged 2-9 trains of action potentials (7.2 +/- 5.6 s in duration) when recruited during a contraction that was sustained at a force below its recruitment threshold (target force, 25.4 +/- 10.6% MVC force). High-pass filtering the bipolar surface EMG signal improved its correlation with the single motor unit signal. An algorithm applied to the surface EMG was able to detect 75% of the trains of motor unit action potentials. The results indicate that bursts of activity in the surface EMG during a constant-force contraction correspond to the transient recruitment of higher-threshold motor units in healthy individuals, and these results could assist in the diagnosis and design of treatment in individuals who demonstrate deficits in motor unit activation.

  20. Shifts in the relationship between motor unit recruitment thresholds versus derecruitment thresholds during fatigue.

    PubMed

    Stock, Matt S; Mota, Jacob A

    2017-12-01

    Muscle fatigue is associated with diminished twitch force amplitude. We examined changes in the motor unit recruitment versus derecruitment threshold relationship during fatigue. Nine men (mean age = 26 years) performed repeated isometric contractions at 50% maximal voluntary contraction (MVC) knee extensor force until exhaustion. Surface electromyographic signals were detected from the vastus lateralis, and were decomposed into their constituent motor unit action potential trains. Motor unit recruitment and derecruitment thresholds and firing rates at recruitment and derecruitment were evaluated at the beginning, middle, and end of the protocol. On average, 15 motor units were studied per contraction. For the initial contraction, three subjects showed greater recruitment thresholds than derecruitment thresholds for all motor units. Five subjects showed greater recruitment thresholds than derecruitment thresholds for only low-threshold motor units at the beginning, with a mean cross-over of 31.6% MVC. As the muscle fatigued, many motor units were derecruited at progressively higher forces. In turn, decreased slopes and increased y-intercepts were observed. These shifts were complemented by increased firing rates at derecruitment relative to recruitment. As the vastus lateralis fatigued, the central nervous system's compensatory adjustments resulted in a shift of the regression line of the recruitment versus derecruitment threshold relationship. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Development and use of the incremental twitch subtraction MUNE method in mice.

    PubMed

    Hegedus, Janka; Jones, Kelvin E; Gordon, Tessa

    2009-01-01

    We have used a technique to estimate the number of functioning motor units (MUNE) innervating a muscle in mice based on twitch tension. The MUNE technique was verified by modeling twitch tensions from isolated ventral root stimulation. Analysis by twitch tensions allowed us to identify motor unit fiber types. The MUNE technique was used to compare normal mice with transgenic superoxide dismutase-1 mutation (G94A) mice to assess the time course of motor unit loss with respect to fiber type. Motor unit loss was found to occur well in advance of behavioral changes and the degree of reinnervation is dependent upon motor unit fiber types.

  2. Central common drive to antagonistic ankle muscles in relation to short-term cocontraction training in nondancers and professional ballet dancers.

    PubMed

    Geertsen, S S; Kjær, M; Pedersen, K K; Petersen, T H; Perez, M A; Nielsen, J B

    2013-10-01

    Optimization of cocontraction of antagonistic muscles around the ankle joint has been shown to involve plastic changes in spinal and cortical neural circuitries. Such changes may explain the ability of elite ballet dancers to maintain a steady balance during various ballet postures. Here we investigated whether short-term cocontraction training in ballet dancers and nondancers leads to changes in the coupling between antagonistic ankle motor units. Eleven ballet dancers and 10 nondancers were recruited for the study. Prior to training, ballet dancers and nondancers showed an equal amount of coherence in the 15- to 35-Hz frequency band and short-term synchronization between antagonistic tibialis anterior and soleus motor units. The ballet dancers tended to be better at maintaining a stable cocontraction of the antagonistic muscles, but this difference was not significant (P = 0.09). Following 27 min of cocontraction training, the nondancers improved their performance significantly, whereas no significant improvement was observed for the ballet dancers. The nondancers showed a significant increase in 15- to 35-Hz coherence following the training, whereas the ballet dancers did not show a significant change. A group of control subjects (n = 4), who performed cocontraction of the antagonistic muscles for an equal amount of time, but without any requirement to improve their performance, showed no change in coherence. We suggest that improved ability to maintain a stable cocontraction around the ankle joint is accompanied by short-term plastic changes in the neural drive to the involved muscles, but that such changes are not necessary for maintained high-level performance.

  3. Motor unit recruitment strategies are altered during deep-tissue pain.

    PubMed

    Tucker, Kylie; Butler, Jane; Graven-Nielsen, Thomas; Riek, Stephan; Hodges, Paul

    2009-09-02

    Muscle pain is associated with decreased motor unit discharge rate during constant force contractions. As discharge rate is a determinant of force, other adaptations in strategy must explain force maintenance during pain. Our aim was to determine whether motor unit recruitment strategies are altered during pain to maintain force despite reduced discharge rate. Motor unit discharge behavior was recorded in two muscles, one with (quadriceps) and one without [flexor pollicis longus (FPL)] synergists. Motor units were recruited during matched low-force contractions with and without experimentally induced pain, and at higher force without pain. A total of 52 and 34 units were recorded in quadriceps and FPL, respectively, during low-force contractions with and without pain. Of these, 20 quadriceps and 9 FPL units were identified during both trials. The discharge rate of these units reduced during pain in both muscles [quadriceps: 8.7 (1.5) to 7.5 (1.3) Hz, p < 0.001; FPL: 11.9 (1.5) to 10.0 (1.7) Hz, p < 0.001]. All remaining units discharged only with or without pain, but not in both conditions. Only one-third of the additional units recruited during pain (quadriceps n = 7/19, FPL n = 3/15) were those expected given orderly recruitment of the motor unit pool as determined during higher-force contractions. We conclude that reduced motor unit discharge rate with pain is accompanied by changes in the population of units used to maintain force. The recruitment of new units is partly inconsistent with generalized inhibition of the motoneuron pool predicted by the "pain adaptation" theory, and provides the basis for a new mechanism of motor adaptation with pain.

  4. A comparative analysis of permanent magnet-type bearingless synchronous motors for fully magnetically levitated rotors

    NASA Astrophysics Data System (ADS)

    Charpentier, J. F.; Lemarquand, G.

    1998-06-01

    Radial instability of synchronous motors is important data to design magnetic bearings. Moreover, original motor structures must be proposed to decrease the instability. In this article, four structures with a permanent magnet rotor, six poles, and the same main mechanical dimensions are analyzed and compared. The first concerns a rotor with six tiles of permanent magnets radially magnetized and adhered to an iron core. The second is a rotor with six axial permanent magnets tangentially magnetized and separated by iron pole pieces, where the shaft is amagnetic. The third design proposes a rotor with six contiguous tiles of permanent magnets tangentially magnetized and an amagnetic shaft. In the fourth structure each north pole is made up of two contiguous tiles of permanent magnets tangentially magnetized in opposite direction and each south pole is made up of an iron pole piece. The shaft of this structure is amagnetic. The stator structure and the currents in stator windings produce a six poles flux distribution. A finite element method program is employed to study the forces and the torques. The four structures are designed to provide the same motor performance (torque). The radial instability is modeled by outcentering the rotor. The relationships between the radial force and the type of structure are analyzed. The result is that the third structure is the best solution for fully magnetically levitated rotors. It has a small instability and does not generate any disturbing force whose frequency is the double of the rotation frequency. This structure also has good properties to be used as a radial magnetic bearing.

  5. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    PubMed

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.

  6. Relationships between motor unit size and recruitment threshold in older adults: implications for size principle.

    PubMed

    Fling, Brett W; Knight, Christopher A; Kamen, Gary

    2009-08-01

    As a part of the aging process, motor unit reorganization occurs in which small motoneurons reinnervate predominantly fast-twitch muscle fibers that have lost their innervation. We examined the relationship between motor unit size and the threshold force for recruitment in two muscles to determine whether older individuals might develop an alternative pattern of motor unit activation. Young and older adults performed isometric contractions ranging from 0 to 50% of maximal voluntary contraction in both the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles. Muscle fiber action potentials were recorded with an intramuscular needle electrode and motor unit size was computed using spike-triggered averaging of the global EMG signal (macro EMG), which was also obtained from the intramuscular needle electrode. As expected, older individuals exhibited larger motor units than young subjects in both the FDI and the TA. However, moderately strong correlations were obtained for the macro EMG amplitude versus recruitment threshold relationship in both the young and older adults within both muscles, suggesting that the size principle of motor unit recruitment seems to be preserved in older adults.

  7. High- and Low-Load Resistance Training: Interpretation and Practical Application of Current Research Findings.

    PubMed

    Fisher, James; Steele, James; Smith, Dave

    2017-03-01

    Our current state of knowledge regarding the load (lighter or heavier) lifted in resistance training programmes that will result in 'optimal' strength and hypertrophic adaptations is unclear. Despite this, position stands and recommendations are made based on, we propose, limited evidence to lift heavier weights. Here we discuss the state of evidence on the impact of load and how it, as a single variable, stimulates adaptations to take place and whether evidence for recommending heavier loads is available, well-defined, currently correctly interpreted or has been overlooked. Areas of discussion include electromyography amplitude, in vivo and in vitro methods of measuring hypertrophy, and motor schema and skill acquisition. The present piece clarifies to trainers and trainees the impact of these variables by discussing interpretation of synchronous and sequential motor unit recruitment and revisiting the size principle, poor agreement between whole-muscle cross-sectional area (CSA) and biopsy-determined changes in myofibril CSA, and neural adaptations around task specificity. Our opinion is that the practical implications of being able to self-select external load include reducing the need for specific facility memberships, motivating older persons or those who might be less confident using heavy loads, and allowing people to undertake home- or field-based resistance training intervention strategies that might ultimately improve exercise adherence.

  8. Evaluation of Supercapacitors Effects on Hybrid Energy Systems for Automotive

    NASA Astrophysics Data System (ADS)

    Lungoci, Carmen; Helerea, Elena

    This work aims at evaluating the effects of the supercapacitors presence in hybrid energy systems used in automotive. The design and the electrical schema of a hybrid energy system that contains batteries and supercapacitors and propel a synchronous motor are purposed. The motor operating regime is described, detailing the drive evolution of the cycle speed imposed. In these conditions, to model the systems behavior, simulations developed in Matlab/Simulink environment are carried out. Two energies management strategies for the ensemble energy system-motor are implemented. Simulations are done and the energy management is discussed, making the comparative analyses. Applying a current control strategy on the supercapacitors, under two working conditions, functional diagrams are showed and compared. The results obtained highlight the advantages of the supercapacitors.

  9. Comparisons between designs for single-sided linear electric motors: Homopolar synchronous and induction

    NASA Astrophysics Data System (ADS)

    Nondahl, T. A.; Richter, E.

    1980-09-01

    A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.

  10. Design of BLDCM emulator for transmission control units

    NASA Astrophysics Data System (ADS)

    Liu, Chang; He, Yongyi; Zhang, Bodong

    2018-04-01

    According to the testing requirements of the transmission control unit, a brushless DC motor emulating system is designed based on motor simulation and power hardware-in-the-loop. The discrete motor model is established and a real-time numerical method is designed to solve the motor states. The motor emulator directly interacts with power stage of the transmission control unit using a power-efficient circuit topology and is compatible with sensor-less control. Experiments on a laboratory prototype help to verify that the system can emulate the real motor currents and voltages whenever the motor is starting up or suddenly loaded.

  11. Motor Force Homeostasis in Skeletal Muscle Contraction

    PubMed Central

    Chen, Bin; Gao, Huajian

    2011-01-01

    In active biological contractile processes such as skeletal muscle contraction, cellular mitosis, and neuronal growth, an interesting common observation is that multiple motors can perform coordinated and synchronous actions, whereas individual myosin motors appear to randomly attach to and detach from actin filaments. Recent experiment has demonstrated that, during skeletal muscle shortening at a wide range of velocities, individual myosin motors maintain a force of ∼6 pN during a working stroke. To understand how such force-homeostasis can be so precisely regulated in an apparently chaotic system, here we develop a molecular model within a coupled stochastic-elastic theoretical framework. The model reveals that the unique force-stretch relation of myosin motor and the stochastic behavior of actin-myosin binding cause the average number of working motors to increase in linear proportion to the filament load, so that the force on each working motor is regulated at ∼6 pN, in excellent agreement with experiment. This study suggests that it might be a general principle to use catch bonds together with a force-stretch relation similar to that of myosin motors to regulate force homeostasis in many biological processes. PMID:21767492

  12. Behavior of motor units in human biceps brachii during a submaximal fatiguing contraction.

    PubMed

    Garland, S J; Enoka, R M; Serrano, L P; Robinson, G A

    1994-06-01

    The activity of 50 single motor units was recorded in the biceps brachii muscle of human subjects while they performed submaximal isometric elbow flexion contractions that were sustained to induce fatigue. The purposes of this study were to examine the influence of fatigue on motor unit threshold force and to determine the relationship between the threshold force of recruitment and the initial interimpulse interval on the discharge rates of single motor units during a fatiguing contraction. The discharge rate of most motor units that were active from the beginning of the contraction declined during the fatiguing contraction, whereas the discharge rates of most newly recruited units were either constant or increased slightly. The absolute threshold forces of recruitment and derecruitment decreased, and the variability of interimpulse intervals increased after the fatigue task. The change in motor unit discharge rate during the fatigue task was related to the initial rate, but the direction of the change in discharge rate could not be predicted from the threshold force of recruitment or the variability in the interimpulse intervals. The discharge rate of most motor units declined despite an increase in the excitatory drive to the motoneuron pool during the fatigue task.

  13. Motor units in vastus lateralis and in different vastus medialis regions show different firing properties during low-level, isometric knee extension contraction.

    PubMed

    de Souza, Leonardo Mendes Leal; Cabral, Hélio Veiga; de Oliveira, Liliam Fernandes; Vieira, Taian Martins

    2018-04-01

    Architectural differences along vastus medialis (VM) and between VM and vastus lateralis (VL) are considered functionally important for the patellar tracking, knee joint stability and knee joint extension. Whether these functional differences are associated with a differential activity of motor units between VM and VL is however unknown. In the present study, we, therefore, investigate neuroanatomical differences in the activity of motor units detected proximo-distally from VM and from the VL muscle. Nine healthy volunteers performed low-level isometric knee extension contractions (20% of their maximum voluntary contraction) following a trapezoidal trajectory. Surface electromyograms (EMGs) were recorded from VM proximal and distal regions and from VL using three linear adhesive arrays of eight electrodes. The firing rate and recruitment threshold of motor units decomposed from EMGs were then compared among muscle regions. Results show that VL motor units reached lower mean firing rates in comparison with VM motor units, regardless of their position within VM (P < .040). No significant differences in firing rate were found between proximal and distal, VM motor units (P = .997). Furthermore, no significant differences in the recruitment threshold were observed for all motor units analysed (P = .108). Our findings possibly suggest the greater potential of VL to generate force, due to its fibres arrangement, may account for the lower discharge rate observed for VL then either proximally or distally detected motor units in VM. Additionally, the present study opens new perspectives on the importance of considering muscle architecture in investigations of the neural aspects of motor behaviour. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 29. SOUTH SWING SPAN, SHOWING REPRESENTATIVE REDUCTION GEAR/MOTOR DRIVE UNIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SOUTH SWING SPAN, SHOWING REPRESENTATIVE REDUCTION GEAR/MOTOR DRIVE UNIT (CENTER) AND WEDGE MOTOR UNIT (RIGHT). - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  15. Motor Unit Interpulse Intervals During High Force Contractions.

    PubMed

    Stock, Matt S; Thompson, Brennan J

    2016-01-01

    We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.

  16. Assessment of specific characteristics of abnormal general movements: does it enhance the prediction of cerebral palsy?

    PubMed

    Hamer, Elisa G; Bos, Arend F; Hadders-Algra, Mijna

    2011-08-01

    Abnormal general movements at around 3 months corrected age indicate a high risk of cerebral palsy (CP). We aimed to determine whether specific movement characteristics can improve the predictive power of definitely abnormal general movements. Video recordings of 46 infants with definitely abnormal general movements at 9 to 13 weeks corrected age (20 males; 26 females; median gestational age 30wks; median birthweight 1200g) were analysed for the following characteristics: presence of fidgety, cramped synchronized, stiff, or jerky movements and asymmetrical tonic neck reflex pattern. Neurological condition (presence or absence of CP), gross motor development (Alberta Infant Motor Scales), quality of motor behaviour (Infant Motor Profile), functional mobility (Pediatric Evaluation of Disability Inventory), and Mental Developmental Index (Bayley Scales) were assessed at 18 months corrected age. Infants were excluded from participating in the study if they had severe congenital anomalies or if their caregivers had an insufficient knowledge of the Dutch language. Of the 46 assessed infants, 10 developed spastic CP (Gross Motor Function Classification System levels I to V; eight bilateral spastic CP, two unilateral spastic CP). The absence of fidgety movements and the presence of predominantly stiff movements were associated with CP (Fisher's exact test, p=0.018 and p=0.007 respectively) and lower Infant Motor Profile scores (Mann-Whitney U test, p=0.015 and p=0.022 respectively); stiff and predominantly stiff movements were associated with lower Alberta Infant Motor Scales scores (Mann-Whitney U test, p=0.01 and p=0.004 respectively). Cramped synchronized movements and the asymmetrical tonic neck reflex pattern were not related to outcome. None of the movement characteristics were associated with Pediatric Evaluation of Disability Inventory scores or the Mental Developmental Index. The assessment of fidgety movements and movement stiffness may improve the predictive power of definitely abnormal general movements for developmental outcome. However, the presence of fidgety movements does not preclude the development of CP. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  17. The aging neuromuscular system and motor performance

    PubMed Central

    Keenan, Kevin G.

    2016-01-01

    Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults. PMID:27516536

  18. Second-chance signal transduction explains cooperative flagellar switching.

    PubMed

    Zot, Henry G; Hasbun, Javier E; Minh, Nguyen Van

    2012-01-01

    The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).

  19. Motor unit recruitment patterns 2: the influence of myoelectric intensity and muscle fascicle strain rate.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    To effectively meet the force requirements of a given movement an appropriate number and combination of motor units must be recruited between and within muscles. Orderly recruitment of motor units has been shown to occur in a wide range of skeletal muscles, however, alternative strategies do occur. Faster motor units are better suited to developing force rapidly, and produce higher mechanical power with greater efficiency at faster shortening strain rates than slower motor units. As the frequency content of the myoelectric signal is related to the fibre type of the active motor units, we hypothesised that, in addition to an association between myoelectric frequency and intensity, there would be a significant association between muscle fascicle shortening strain rate and myoelectric frequency content. Myoelectric and sonomicrometric data were collected from the three ankle extensor muscles of the rat hind limb during walking and running. Myoelectric signals were analysed using wavelet transformation and principal component analysis to give a measure of the signal frequency content. Sonomicrometric signals were analysed to give measures of muscle fascicle strain and strain rate. The relationship between myoelectric frequency and both intensity and muscle fascicle strain rate was found to change across the time course of a stride, with differences also occurring in the strength of the associations between and within muscles. In addition to the orderly recruitment of motor units, a mechanical strategy of motor unit recruitment was therefore identified. Motor unit recruitment is therefore a multifactorial phenomenon, which is more complex than typically thought.

  20. System and method for motor speed estimation of an electric motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN

    2012-06-19

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  1. Motor responses to a steady beat.

    PubMed

    Schaefer, Rebecca S; Overy, Katie

    2015-03-01

    It is increasingly well established that music containing an isochronous pulse elicits motor responses at the levels of both brain and behavior. Such motor responses are often used in pedagogical and clinical practice to induce movement, particularly where motor functions are impaired. However, the complex nature of such apparently universal human responses has, arguably, not received adequate research attention to date. In particular, it should be noted that many adults, including those with disabilities, find it somewhat difficult to synchronize their movements with a beat with perfect accuracy; indeed, perfecting the skill of being musically "in time" can take years of training during childhood. Further research is needed on the nature of both the specificity and range of motor responses that can arise from the perception of a steady auditory pulse, with different populations, musical stimuli, conditions, and required levels of accuracy in order to better understand and capture the potential value of the musical beat as a pedagogical and therapeutic tool. © 2015 New York Academy of Sciences.

  2. A bipedal DNA Brownian motor with coordinated legs.

    PubMed

    Omabegho, Tosan; Sha, Ruojie; Seeman, Nadrian C

    2009-04-03

    A substantial challenge in engineering molecular motors is designing mechanisms to coordinate the motion between multiple domains of the motor so as to bias random thermal motion. For bipedal motors, this challenge takes the form of coordinating the movement of the biped's legs so that they can move in a synchronized fashion. To address this problem, we have constructed an autonomous DNA bipedal walker that coordinates the action of its two legs by cyclically catalyzing the hybridization of metastable DNA fuel strands. This process leads to a chemically ratcheted walk along a directionally polar DNA track. By covalently cross-linking aliquots of the walker to its track in successive walking states, we demonstrate that this Brownian motor can complete a full walking cycle on a track whose length could be extended for longer walks. We believe that this study helps to uncover principles behind the design of unidirectional devices that can function without intervention. This device should be able to fulfill roles that entail the performance of useful mechanical work on the nanometer scale.

  3. Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.

    PubMed

    Grande, G; Cafarelli, E

    2003-06-01

    Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.

  4. Investigating Synchronous Oscillation and Deep Brain Stimulation Treatment in A Model of Cortico-Basal Ganglia Network.

    PubMed

    Lu, Meili; Wei, Xile; Loparo, Kenneth A

    2017-11-01

    Altered firing properties and increased pathological oscillations in the basal ganglia have been proven to be hallmarks of Parkinson's disease (PD). Increasing evidence suggests that abnormal synchronous oscillations and suppression in the cortex may also play a critical role in the pathogenic process and treatment of PD. In this paper, a new closed-loop network including the cortex and basal ganglia using the Izhikevich models is proposed to investigate the synchrony and pathological oscillations in motor circuits and their modulation by deep brain stimulation (DBS). Results show that more coherent dynamics in the cortex may cause stronger effects on the synchrony and pathological oscillations of the subthalamic nucleus (STN). The pathological beta oscillations of the STN can both be efficiently suppressed with DBS applied directly to the STN or to cortical neurons, respectively, but the underlying mechanisms by which DBS suppresses the beta oscillations are different. This research helps to understand the dynamics of pathological oscillations in PD-related motor regions and supports the therapeutic potential of stimulation of cortical neurons.

  5. Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique.

    PubMed

    Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng

    2013-07-01

    In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Adaptive two-degree-of-freedom PI for speed control of permanent magnet synchronous motor based on fractional order GPC.

    PubMed

    Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao

    2016-09-01

    In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation

    NASA Astrophysics Data System (ADS)

    Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham

    2017-07-01

    After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.

  8. Beta phase synchronization in the frontal-temporal-cerebellar network during auditory-to-motor rhythm learning.

    PubMed

    Edagawa, Kouki; Kawasaki, Masahiro

    2017-02-22

    Rhythm is an essential element of dancing and music. To investigate the neural mechanisms underlying how rhythm is learned, we recorded electroencephalographic (EEG) data during a rhythm-reproducing task that asked participants to memorize an auditory stimulus and reproduce it via tapping. Based on the behavioral results, we divided the participants into Learning and No-learning groups. EEG analysis showed that error-related negativity (ERN) in the Learning group was larger than in the No-learning group. Time-frequency analysis of the EEG data showed that the beta power in right and left temporal area at the late learning stage was smaller than at the early learning stage in the Learning group. Additionally, the beta power in the temporal and cerebellar areas in the Learning group when learning to reproduce the rhythm were larger than in the No Learning group. Moreover, phase synchronization between frontal and temporal regions and between temporal and cerebellar regions at late stages of learning were larger than at early stages. These results indicate that the frontal-temporal-cerebellar beta neural circuits might be related to auditory-motor rhythm learning.

  9. A robust nonlinear position observer for synchronous motors with relaxed excitation conditions

    NASA Astrophysics Data System (ADS)

    Bobtsov, Alexey; Bazylev, Dmitry; Pyrkin, Anton; Aranovskiy, Stanislav; Ortega, Romeo

    2017-04-01

    A robust, nonlinear and globally convergent rotor position observer for surface-mounted permanent magnet synchronous motors was recently proposed by the authors. The key feature of this observer is that it requires only the knowledge of the motor's resistance and inductance. Using some particular properties of the mathematical model it is shown that the problem of state observation can be translated into one of estimation of two constant parameters, which is carried out with a standard gradient algorithm. In this work, we propose to replace this estimator with a new one called dynamic regressor extension and mixing, which has the following advantages with respect to gradient estimators: (1) the stringent persistence of excitation (PE) condition of the regressor is not necessary to ensure parameter convergence; (2) the latter is guaranteed requiring instead a non-square-integrability condition that has a clear physical meaning in terms of signal energy; (3) if the regressor is PE, the new observer (like the old one) ensures convergence is exponential, entailing some robustness properties to the observer; (4) the new estimator includes an additional filter that constitutes an additional degree of freedom to satisfy the non-square integrability condition. Realistic simulation results show significant performance improvement of the position observer using the new parameter estimator, with a less oscillatory behaviour and a faster convergence speed.

  10. Active listening for spatial orientation in a complex auditory scene.

    PubMed

    Moss, Cynthia F; Bohn, Kari; Gilkenson, Hannah; Surlykke, Annemarie

    2006-04-01

    To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal-motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10-20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate "terminal buzz" decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar "strobe groups," clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration) cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal-motor control that directly impacts the signals used for perception.

  11. Active Listening for Spatial Orientation in a Complex Auditory Scene

    PubMed Central

    Bohn, Kari; Gilkenson, Hannah; Surlykke, Annemarie

    2006-01-01

    To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal–motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10–20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate “terminal buzz” decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar “strobe groups,” clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration) cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal–motor control that directly impacts the signals used for perception. PMID:16509770

  12. Shear-induced Long Range Order in Diblock Copolymer Thin Films

    NASA Astrophysics Data System (ADS)

    Ding, Xuan; Russell, Thomas

    2007-03-01

    Shear is a well-established means of aligning block copolymer micro-domains in bulk; cylinder-forming block copolymers respond by orienting cylinder axes parallel to the flow direction, and macroscopic specimens with near-single-crystal texture can be obtained. A stepper motor is a brushless, synchronous electric motor that can divide a full rotation into a large number of steps. With the combination of a stepper motor and several gear boxes in our experiment, we can control the rotating resolution to be as small as 1 x10-4 degree/step. Also, with the help of a customized computer program we can control the motor speed in a very systematical way. By changing parameters such as the weight (or the uniform pressure) and the lateral force we can carry on experiment to examine the effect of lateral shear on different polymer systems such as PS-b-PEO (large χ) and PS-b-P2VP (small χ).

  13. Unbalance Response Analysis and Experimental Validation of an Ultra High Speed Motor-Generator for Microturbine Generators Considering Balancing

    PubMed Central

    Hong, Do-Kwan; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun; Ahn, Chan-Woo

    2014-01-01

    The objective of the present study was to deal with the rotordynamics of the rotor of an ultra-high speed PM type synchronous motor-generator for a 500 W rated micro gas turbine generator. This paper introduces dynamic analysis, and experiments on the motor-generator. The focus is placed on an analytical approach considering the mechanical dynamic problems. It is essential to deal with dynamic stability at ultra-high speeds. Unbalance response analysis is performed by calculating the unbalance with and without balancing using a balancing machine. Critical speed analysis is performed to determine the operating speed with sufficient separation margin. The unbalance response analysis is compared with the experimental results considering the balancing grade (ISO 1940-1) and predicted vibration displacement with and without balancing. Based on these results, a high-speed motor-generator was successfully developed. PMID:25177804

  14. Actively suspended counter-rotating machine

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A counter-rotating machine, such as a positive displacement pump having a pair of meshed, non-contacting helical screws (10,12), subjects its rotating members to axial and radial thrust forces when used for such purposes as compression of liquid or gaseous phase fluids while transporting them through a pump cavity (11,13). Each helical screw (10,12) has a shaft (17,17') which is actively suspended at opposite ends (11a,11b) of the pump cavity by a servo-controlled magnetic bearing assembly (19) and a servo-controlled rotary drive motor (20). Both bearing assemblies and drive motors are mounted on the outside of the pump cavity (11,13). Opto-electric angular position sensors (250) provide synchronization between radial orientation of the drive motors. The bearing assemblies and drive motors conjugately provide axial stabilization and radial centering of the helical screws during volumetric compression of aspirated liquid or gaseous phase fluids.

  15. Discharge patterns of human genioglossus motor units during arousal from sleep.

    PubMed

    Wilkinson, Vanessa; Malhotra, Atul; Nicholas, Christian L; Worsnop, Christopher; Jordan, Amy S; Butler, Jane E; Saboisky, Julian P; Gandevia, Simon C; White, David P; Trinder, John

    2010-03-01

    Single motor unit recordings of the human genioglossus muscle reveal motor units with a variety of discharge patterns. Integrated multiunit electromyographic recordings of genioglossus have demonstrated an abrupt increase in the muscle's activity at arousal from sleep. The aim of the present study was to determine the effect of arousal from sleep on the activity of individual motor units as a function of their particular discharge pattern. Genioglossus activity was measured using intramuscular fine-wire electrodes inserted via a percutaneous approach. Arousals from sleep were identified using the ASDA criterion and the genioglossus electromyogram recordings analyzed for single motor unit activity. Sleep research laboratory. Sleep and respiratory data were collected in 8 healthy subjects (6 men). 138 motor units were identified during prearousalarousal sleep: 25% inspiratory phasic, 33% inspiratory tonic, 4% expiratory phasic, 3% expiratory tonic, and 35% tonic. At arousal from sleep inspiratory phasic units significantly increased the proportion of a breath over which they were active, but did not appreciably increase their rate of firing. 80 new units were identified at arousals, 75% were inspiratory, many of which were active for only 1 or 2 breaths. 22% of units active before arousal, particularly expiratory and tonic units, stopped at the arousal. Increased genioglossus muscle activity at arousal from sleep is primarily due to recruitment of inspiratory phasic motor units. Further, activity within the genioglossus motoneuron pool is reorganized at arousal as, in addition to recruitment, approximately 20% of units active before arousals stopped firing.

  16. Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Barkhaus, Paul E.; Zhang, Xu; Zev Rymer, William

    2011-10-01

    This paper presents a novel application of the approximate entropy (ApEn) measurement for characterizing spontaneous motor unit activity of amyotrophic lateral sclerosis (ALS) patients. High-density surface electromyography (EMG) was used to record spontaneous motor unit activity bilaterally from the thenar muscles of nine ALS subjects. Three distinct patterns of spontaneous motor unit activity (sporadic spikes, tonic spikes and high-frequency repetitive spikes) were observed. For each pattern, complexity was characterized by calculating the ApEn values of the representative signal segments. A sliding window over each segment was also introduced to quantify the dynamic changes in complexity for the different spontaneous motor unit patterns. We found that the ApEn values for the sporadic spikes were the highest, while those of the high-frequency repetitive spikes were the lowest. There is a significant difference in mean ApEn values between two arbitrary groups of the three spontaneous motor unit patterns (P < 0.001). The dynamic ApEn curve from the sliding window analysis is capable of tracking variations in EMG activity, thus providing a vivid, distinctive description for different patterns of spontaneous motor unit action potentials in terms of their complexity. These findings expand the existing knowledge of spontaneous motor unit activity in ALS beyond what was previously obtained using conventional linear methods such as firing rate or inter-spike interval statistics.

  17. Classical synchronization indicates persistent entanglement in isolated quantum systems

    PubMed Central

    Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc

    2017-01-01

    Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms. PMID:28401881

  18. Classical synchronization indicates persistent entanglement in isolated quantum systems.

    PubMed

    Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc

    2017-04-12

    Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.

  19. Capture and playback synchronization in video conferencing

    NASA Astrophysics Data System (ADS)

    Shae, Zon-Yin; Chang, Pao-Chi; Chen, Mon-Song

    1995-03-01

    Packet-switching based video conferencing has emerged as one of the most important multimedia applications. Lip synchronization can be disrupted in the packet network as the result of the network properties: packet delay jitters at the capture end, network delay jitters, packet loss, packet arrived out of sequence, local clock mismatch, and video playback overlay with the graphic system. The synchronization problem become more demanding as the real time and multiparty requirement of the video conferencing application. Some of the above mentioned problem can be solved in the more advanced network architecture as ATM having promised. This paper will present some of the solutions to the problems that can be useful at the end station terminals in the massively deployed packet switching network today. The playback scheme in the end station will consist of two units: compression domain buffer management unit and the pixel domain buffer management unit. The pixel domain buffer management unit is responsible for removing the annoying frame shearing effect in the display. The compression domain buffer management unit is responsible for parsing the incoming packets for identifying the complete data blocks in the compressed data stream which can be decoded independently. The compression domain buffer management unit is also responsible for concealing the effects of clock mismatch, lip synchronization, and packet loss, out of sequence, and network jitters. This scheme can also be applied to the multiparty teleconferencing environment. Some of the schemes presented in this paper have been implemented in the Multiparty Multimedia Teleconferencing (MMT) system prototype at the IBM watson research center.

  20. International Space Station Future Correlation Analysis Improvements

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael

    2018-01-01

    Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.

  1. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.

    PubMed

    Yavuz, Utku Ş; Negro, Francesco; Diedrichs, Robin; Farina, Dario

    2018-05-01

    Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted between ankle flexor and extensor muscles is asymmetric. The functional implication of asymmetric transmission may be associated with the neural strategies of postural control.

  2. Fundamental Study on Saving Energy for Electrified Railway System Applying High Temperature Superconductor Motor and Energy Storage System

    NASA Astrophysics Data System (ADS)

    Konishi, Takeshi; Nakamura, Taketsune; Amemiya, Naoyuki

    Induction motor instead of dc one has been applied widely for dc electric rolling stock because of the advantage of its utility and efficiency. However, further improvement of motor characteristics will be required to realize environment-friendly dc railway system in the future. It is important to study more efficient machine applying dc electric rolling stock for next generation high performance system. On the other hand, the methods to reuse regenerative energy produced by motors effectively are also important. Therefore, we carried out fundamental study on saving energy for electrified railway system. For the first step, we introduced the energy storage system applying electric double-layer capacitors (EDLC), and its control system. And then, we tried to obtain the specification of high temperature superconductor induction/synchronous motor (HTS-ISM), which performance is similar with that of the conventional induction motors. Furthermore, we tried to evaluate an electrified railway system applying energy storage system and HTS-ISM based on simulation. We succeeded in showing the effectiveness of the introductions of energy storage system and HTS-ISM in DC electrified railway system.

  3. Keeping an eye on the conductor: neural correlates of visuo-motor synchronization and musical experience

    PubMed Central

    Ono, Kentaro; Nakamura, Akinori; Maess, Burkhard

    2015-01-01

    For orchestra musicians, synchronized playing under a conductor’s direction is necessary to achieve optimal performance. Previous studies using simple auditory/visual stimuli have reported cortico-subcortical networks underlying synchronization and that training improves the accuracy of synchronization. However, it is unclear whether people who played regularly under a conductor and non-musicians activate the same networks when synchronizing with a conductor’s gestures. We conducted a functional magnetic resonance imaging (fMRI) experiment testing nonmusicians and musicians who regularly play music under a conductor. Participants were required to tap the rhythm they perceived from silent movies displaying either conductor’s gestures or a swinging metronome. Musicians performed tapping under a conductor with more precision than nonmusicians. Results from fMRI measurement showed greater activity in the anterior part of the left superior frontal gyrus (SFG) in musicians with more frequent practice under a conductor. Conversely, tapping with the metronome did not show any difference between musicians and nonmusicians, indicating that the expertize effect in tapping under the conductor does not result in a general increase in tapping performance for musicians. These results suggest that orchestra musicians have developed an advanced ability to predict conductor’s next action from the gestures. PMID:25883561

  4. Inter-subject phase synchronization for exploratory analysis of task-fMRI.

    PubMed

    Bolt, Taylor; Nomi, Jason S; Vij, Shruti G; Chang, Catie; Uddin, Lucina Q

    2018-08-01

    Analysis of task-based fMRI data is conventionally carried out using a hypothesis-driven approach, where blood-oxygen-level dependent (BOLD) time courses are correlated with a hypothesized temporal structure. In some experimental designs, this temporal structure can be difficult to define. In other cases, experimenters may wish to take a more exploratory, data-driven approach to detecting task-driven BOLD activity. In this study, we demonstrate the efficiency and power of an inter-subject synchronization approach for exploratory analysis of task-based fMRI data. Combining the tools of instantaneous phase synchronization and independent component analysis, we characterize whole-brain task-driven responses in terms of group-wise similarity in temporal signal dynamics of brain networks. We applied this framework to fMRI data collected during performance of a simple motor task and a social cognitive task. Analyses using an inter-subject phase synchronization approach revealed a large number of brain networks that dynamically synchronized to various features of the task, often not predicted by the hypothesized temporal structure of the task. We suggest that this methodological framework, along with readily available tools in the fMRI community, provides a powerful exploratory, data-driven approach for analysis of task-driven BOLD activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  6. Japan Report.

    DTIC Science & Technology

    1985-05-24

    United States, MITI has restrained growth rates of three big makers— Toyota Motor Corp, Nissan Motor Co and Honda Motor Co—in the fiscal year that started...617,000 units and 544,000 units, respectively, the sources said. Toyota shipped 551,790 units and Nissan 487,040 units in fiscal 1984. Honda is...35,010 units and Isuzu 29,500 units by their own outlets. 60 Toyota and Nissan are each being allotted an identical raise of" 11.9 percent, to some

  7. Miniature high speed compressor having embedded permanent magnet motor

    NASA Technical Reports Server (NTRS)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  8. INSAT-1A launch on Delta

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The INSAT-1A, the first in a series of 12 transponder communications satellites developed for India, is described as well as the launch plans. The launch vehicle will be the Delta 3910 configuration which incorporates an extended long tank Thor booster, nine Castor IV strap-on motors, a TR-201 second stage, and an 8 foot fairing. The satellite will be placed in a suborbital trajectory. A DAM-D stage will then thrust it into a synchronous transfer orbit. An apogee kick motor will be fired to circularize its orbit at a geosynchronous altitude of 19,300 nautical miles.

  9. Remodeling of motor units after nerve regeneration studied by quantitative electromyography.

    PubMed

    Krarup, Christian; Boeckstyns, Michel; Ibsen, Allan; Moldovan, Mihai; Archibald, Simon

    2016-02-01

    Peripheral nerve has the capacity to regenerate after nerve lesions; during reinnervation of muscle motor units are gradually reestablished. The aim of this study was to follow the time course of reestablishing and remodeling of motor units in relation to recovery of force after different types of nerve repair. Reinnervation of muscle was compared clinically and electrophysiologically in complete median or ulnar nerve lesions with short gap lengths in the distal forearm repaired with a collagen nerve conduit (11 nerves) or nerve suture (10 nerves). Reestablishment of motor units was studied by quantitative EMG and recording of evoked compound muscle action potential (CMAP) during a 24-month observation period after nerve repair. Force recovered partially to about 80% of normal. Denervation activity gradually decreased during reinnervation though it was still increased at 24 months. Nascent motor unit potentials (MUPs) at early reinnervation were prolonged and polyphasic. During longitudinal studies, MUPs remained prolonged and their amplitudes gradually increased markedly. Firing of MUPs was unstable throughout the study. CMAPs gradually increased and the number of motor units recovered to approximately 20% of normal. There was weak evidence of CMAP amplitude recovery after suture ahead of conduit repair but without treatment related differences at 2 years. Surgical repair of nerve lesions with a nerve conduit or suture supported recovery of force and of motor unit reinnervation to the same extent. Changes occurred at a higher rate during early regeneration and slower after 12 months but should be followed for at least 2 years to assess outcome. EMG changes reflected extensive remodeling of motor units from early nascent units to a mature state with greatly enlarged units due to axonal regeneration and collateral sprouting and maturation of regenerated nerve and reinnervated muscle fibers after both types of repair. Remodeling of motor units after peripheral nerve lesions provides the basis for better recovery of force than the number of motor axons and units. There were no differences after repair with a collagen nerve conduit and nerve suture at short nerve gap lengths. The reduced number of motor units indicates that further improvement of repair procedures and nerve environment is needed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling.

    PubMed

    Piasecki, Mathew; Ireland, Alex; Coulson, Jessica; Stashuk, Dan W; Hamilton-Wright, Andrew; Swiecicka, Agnieszka; Rutter, Martin K; McPhee, Jamie S; Jones, David A

    2016-10-01

    Muscle motor unit numbers decrease markedly in old age, while remaining motor units are enlarged and can have reduced neuromuscular junction transmission stability. However, it is possible that regular intense physical activity throughout life can attenuate this remodeling. The aim of this study was to compare the number, size, and neuromuscular junction transmission stability of tibialis anterior (TA) motor units in healthy young and older men with those of exceptionally active master runners. The distribution of motor unit potential (MUP) size was determined from intramuscular electromyographic signals recorded in healthy male Young (mean ± SD, 26 ± 5 years), Old (71 ± 4 years) and Master Athletes (69 ± 3 years). Relative differences between groups in numbers of motor units was assessed using two methods, one comparing MUP size and muscle cross-sectional area (CSA) determined with MRI, the other comparing surface recorded MUPs with maximal compound muscle action potentials and commonly known as a "motor unit number estimate (MUNE)". Near fiber (NF) jiggle was measured to assess neuromuscular junction transmission stability. TA CSA did not differ between groups. MUNE values for the Old and Master Athletes were 45% and 40%, respectively, of the Young. Intramuscular MUPs of Old and Master Athletes were 43% and 56% larger than Young. NF jiggle was slightly higher in the Master Athletes, with no difference between Young and Old. These results show substantial and similar motor unit loss and remodeling in Master Athletes and Old individuals compared with Young, which suggests that lifelong training does not attenuate the age-related loss of motor units. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. The effects of local forearm muscle cooling on motor unit properties.

    PubMed

    Mallette, Matthew M; Green, Lara A; Gabriel, David A; Cheung, Stephen S

    2018-02-01

    Muscle cooling impairs maximal force. Using needle electromyography (EMG) to assess motor unit properties during muscle cooling, is limited and equivocal. Therefore, we aimed to determine the impact of local muscle cooling on motor unit firing properties using surface EMG decomposition. Twenty participants (12 M, 8 F) completed maximal, evoked, and trapezoidal contractions during thermoneutral and cold muscle conditions. Forearm muscle temperature was manipulated using 10-min neutral (~ 32 °C) or 20-min cold (~ 3 °C) water baths. Twitches and maximal voluntary contractions were performed prior to, and after, forearm immersion in neutral or cold water. Motor unit properties were assessed during trapezoidal contractions to 50% baseline force using surface EMG decomposition. Impaired contractile properties from muscle cooling were evident in the twitch amplitude, duration, and rate of force development indicating that the muscle was successfully cooled from the cold water bath (all d ≥ 0.5, P < 0.05). Surface EMG decomposition showed muscle cooling increased the number of motor units (d = 0.7, P = 0.01) and motor unit action potential (MUAP) duration (d = 0.6, P < 0.001), but decreased MUAP amplitude (d = 0.2, P = 0.012). Individually, neither motor unit firing rates (d = 0.1, P = 0.843) nor recruitment threshold (d = 0.1, P = 0.746) changed; however, the relationship between the recruitment threshold and motor unit firing rate was steeper (d = 1.0, P < 0.001) and had an increased y-intercept (d = 0.9, P = 0.007) with muscle cooling. Since muscle contractility is impaired with muscle cooling, these findings suggest a compensatory increase in the number of active motor units, and small but coupled changes in motor unit firing rates and recruitment threshold to produce the same force.

  12. Wedge MUSIC: a novel approach to examine experimental differences of brain source connectivity patterns from EEG/MEG data.

    PubMed

    Ewald, Arne; Avarvand, Forooz Shahbazi; Nolte, Guido

    2014-11-01

    We introduce a novel method to estimate bivariate synchronization, i.e. interacting brain sources at a specific frequency or band, from MEG or EEG data robust to artifacts of volume conduction. The data driven calculation is solely based on the imaginary part of the cross-spectrum as opposed to the imaginary part of coherency. In principle, the method quantifies how strong a synchronization between a distinct pair of brain sources is present in the data. As an input of the method all pairs of pre-defined locations inside the brain can be used which is computationally exhaustive. In contrast to that, reference sources can be used that have been identified by any source reconstruction technique in a prior analysis step. We introduce different variants of the method and evaluate the performance in simulations. As a particular advantage of the proposed methodology, we demonstrate that the novel approach is capable of investigating differences in brain source interactions between experimental conditions or with respect to a certain baseline. For measured data, we first show the application on resting state MEG data where we find locally synchronized sources in the motor-cortex based on the sensorimotor idle rhythms. Finally, we show an example on EEG motor imagery data where we contrast hand and foot movements. Here, we also find local interactions in the expected brain areas. Copyright © 2014. Published by Elsevier Inc.

  13. Cortical Gray and Adjacent White Matter Demonstrate Synchronous Maturation in Very Preterm Infants.

    PubMed

    Smyser, Tara A; Smyser, Christopher D; Rogers, Cynthia E; Gillespie, Sarah K; Inder, Terrie E; Neil, Jeffrey J

    2016-08-01

    Spatial and functional gradients of development have been described for the maturation of cerebral gray and white matter using histological and radiological approaches. We evaluated these patterns in very preterm (VPT) infants using diffusion tensor imaging. Data were obtained from 3 groups: 1) 22 VPT infants without white matter injury (WMI), of whom all had serial MRI studies during the neonatal period, 2) 19 VPT infants with WMI, of whom 3 had serial MRI studies and 3) 12 healthy, term-born infants. Regions of interest were placed in the cortical gray and adjacent white matter in primary motor, primary visual, visual association, and prefrontal regions. From the MRI data at term-equivalent postmenstrual age, differences in mean diffusivity were found in all areas between VPT infants with WMI and the other 2 groups. In contrast, minimal differences in fractional anisotropy were found between the 3 groups. These findings suggest that cortical maturation is delayed in VPT infants with WMI when compared with term control infants and VPT infants without WMI. From the serial MRI data from VPT infants, synchronous development between gray and white matter was evident in all areas and all groups, with maturation in primary motor and sensory regions preceding that of association areas. This finding highlights the regionally varying but locally synchronous nature of the development of cortical gray matter and its adjacent white matter. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Motor unit recruitment in human genioglossus muscle in response to hypercapnia.

    PubMed

    Nicholas, Christian L; Bei, Bei; Worsnop, Christopher; Malhotra, Atul; Jordan, Amy S; Saboisky, Julian P; Chan, Julia K M; Duckworth, Ella; White, David P; Trinder, John

    2010-11-01

    single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. sleep research laboratory. sixteen healthy men. each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P < 0.001). Neither units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.

  15. Human motor unit recordings: origins and insight into the integrated motor system.

    PubMed

    Duchateau, Jacques; Enoka, Roger M

    2011-08-29

    Soon after Edward Liddell [1895-1981] and Charles Sherrington [1857-1952] introduced the concept of a motor unit in 1925 and the necessary technology was developed, the recording of single motor unit activity became feasible in humans. It was quickly discovered by Edgar Adrian [1889-1977] and Detlev Bronk [1897-1975] that the force exerted by muscle during voluntary contractions was the result of the concurrent recruitment of motor units and modulation of the rate at which they discharged action potentials. Subsequent studies found that the relation between discharge frequency and motor unit force was characterized by a sigmoidal function. Based on observations on experimental animals, Elwood Henneman [1915-1996] proposed a "size principle" in 1957 and most studies in humans focussed on validating this concept during various types of muscle contractions. By the end of the 20th C, the experimental evidence indicated that the recruitment order of human motor units was determined primarily by motoneuron size and that the occasional changes in recruitment order were not an intended strategy of the central nervous system. Fundamental knowledge on the function of Sherrington's "common final pathway" was expanded with observations on motor unit rotation, minimal and maximal discharge rates, discharge variability, and self-sustained firing. Despite the great amount of work on characterizing motor unit activity during the first century of inquiry, however, many basic questions remain unanswered and these limit the extent to which findings on humans and experimental animals can be integrated and generalized to all movements. 2011 Elsevier B.V. All rights reserved.

  16. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    PubMed

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  17. Examination of Post-stroke Alteration in Motor Unit Firing Behavior Using High Density Surface EMG Decomposition

    PubMed Central

    Li, Xiaoyan; Holobar, Aleš; Gazzoni, Marco; Merletti, Roberto; Rymer, William Z.; Zhou, Ping

    2014-01-01

    Recent advances in high density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study we applied high density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations post-stroke. Surface EMG signals were collected using a 64-channel 2-dimensional electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 N to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high density surface EMG signals, and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (CoV, averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations post-stroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness. PMID:25389239

  18. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat.

    PubMed

    Solomon, Irene C; Chon, Ki H; Rodriguez, Melissa N

    2003-01-01

    Recent investigations have examined the influence of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in vitro using transverse medullary slice and en bloc brain stem-spinal cord preparations obtained from neonatal (1-5 days postnatal) mice. Gap junction proteins, however, have been identified in both neurons and glia in brain stem regions implicated in respiratory control in both neonatal and adult rodents. Here, we used an in vitro arterially perfused rat preparation to examine the role of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents. We recorded rhythmic inspiratory motor activity from one or both phrenic nerves before and during pharmacological blockade (i.e., uncoupling) of brain stem gap junctions using carbenoxolone (100 microM), 18alpha-glycyrrhetinic acid (25-100 microM), 18beta-glycyrrhetinic acid (25-100 microM), octanol (200-300 microM), or heptanol (200 microM). During perfusion with a gap junction uncoupling agent, we observed an increase in the frequency of phrenic bursts (~95% above baseline frequency; P < 0.001) and a decrease in peak amplitude of integrated phrenic nerve discharge (P < 0.001). The increase in frequency of phrenic bursts resulted from a decrease in both T(I) (P < 0.01) and T(E) (P < 0.01). In addition, the pattern of phrenic nerve discharge shifted from an augmenting discharge pattern to a "bell-shaped" or square-wave discharge pattern in most experiments. Spectral analyses using a fast Fourier transform (FFT) algorithm revealed a reduction in the peak power of both the 40- to 50-Hz peak (corresponding to the MFO) and 90- to 110-Hz peak (corresponding to the HFO) although spurious higher frequency activity (> or =130 Hz) was observed, suggesting an overall loss or reduction in inspiratory-phase synchronization. Although additional experiments are required to identify the specific brain stem regions and cell types (i.e., neurons, glia) mediating the observed modulations in phrenic motor output, these findings suggest that gap junction communication modulates generation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents in vitro.

  19. Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.

    PubMed

    Houtman, C J; Stegeman, D F; Van Dijk, J P; Zwarts, M J

    2003-09-01

    To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.

  20. In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units.

    PubMed

    Sanchez, Gabriel N; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L; Schnitzer, Mark J

    2015-12-16

    Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle's contractile units. Despite the motor unit's centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Discharge patterns of human tensor palatini motor units during sleep onset.

    PubMed

    Nicholas, Christian L; Jordan, Amy S; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P; Eckert, Danny J; White, David P; Malhotra, Atul; Trinder, John

    2012-05-01

    Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Sleep laboratory. Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Sleep onset. Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP.

  2. Vastus Lateralis Motor Unit Firing Rate Is Higher in Women With Patellofemoral Pain.

    PubMed

    Gallina, Alessio; Hunt, Michael A; Hodges, Paul W; Garland, S Jayne

    2018-05-01

    To compare neural drive, determined from motor unit firing rate, in the vastus medialis and lateralis in women with and without patellofemoral pain. Cross-sectional study. University research laboratory. Women (N=56) 19 to 35 years of age, including 36 with patellofemoral pain and 20 controls. Not applicable. Participants sustained an isometric knee extension contraction at 10% of their maximal voluntary effort for 70 seconds. Motor units (N=414) were identified using high-density surface electromyography. Average firing rate was calculated between 5 and 35 seconds after recruitment for each motor unit. Initial firing rate was the inverse of the first 3 motor unit interspike intervals. In control participants, vastus medialis motor units discharged at higher rates than vastus lateralis motor units (P=.001). This was not observed in women with patellofemoral pain (P=.78) because of a higher discharge rate of vastus lateralis compared with control participants (P=.002). No between-group differences were observed for vastus medialis (P=.93). Similar results were obtained for the initial motor unit firing rate. These findings suggest that women with patellofemoral pain have a higher neural drive to vastus lateralis but not vastus medialis, which may be a contributor of the altered patellar kinematics observed in some studies. The different neural drive may be an adaptation to patellofemoral pain, possibly to compensate for decreased quadriceps force production, or a precursor of patellofemoral pain. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions.

    PubMed

    Adam, Alexander; De Luca, Carlo J

    2003-11-01

    Motor-unit firing patterns were studied in the vastus lateralis muscle of five healthy young men [21.4 +/- 0.9 (SD) yr] during a series of isometric knee extensions performed to exhaustion. Each contraction was held at a constant torque level, set to 20% of the maximal voluntary contraction at the beginning of the experiment. Electromyographic signals, recorded via a quadrifilar fine wire electrode, were processed with the precision decomposition technique to identify the firing times of individual motor units. In repeat experiments, whole-muscle mechanical properties were measured during the fatigue protocol using electrical stimulation. The main findings were a monotonic decrease in the recruitment threshold of all motor units and the progressive recruitment of new units, all without a change of the recruitment order. Motor units from the same subject showed a similar time course of threshold decline, but this decline varied among subjects (mean threshold decrease ranged from 23 to 73%). The mean threshold decline was linearly correlated (R2 >or= 0.96) with a decline in the elicited peak tetanic torque. In summary, the maintenance of recruitment order during fatigue strongly supports the notion that the observed common recruitment adaptations were a direct consequence of an increased excitatory drive to the motor unit pool. It is suggested that the increased central drive was necessary to compensate for the loss in force output from motor units whose muscle fibers were actively contracting. We therefore conclude that the control scheme of motor-unit recruitment remains invariant during fatigue at least in relatively large muscles performing submaximal isometric contractions.

  4. Differential activation of motor units in the wrist extensor muscles during the tonic vibration reflex in man.

    PubMed Central

    Romaiguère, P; Vedel, J P; Azulay, J P; Pagni, S

    1991-01-01

    1. Single motor unit activity was recorded in the extensor carpi radialis longus and extensor carpi radialis brevis muscles of five healthy human subjects, using metal microelectrodes. 2. Motor units were characterized on the basis of their twitch contraction times and their force recruitment thresholds during voluntary imposed-ramp contractions. 3. The discharge patterns of forty-three motor units were studied during tonic vibration reflex elicited by prolonged (150 s) trains of vibration (30 Hz) applied to the distal tendons of the muscles. The temporal relationships between the individual small tendon taps of the vibratory stimulus and the motor unit impulses were analysed on dot raster displays and post-stimulus time histograms. 4. After tendon taps, the impulses of motor units with long twitch contraction times (mean +/- S.D., 47.2 +/- 10.7 ms) and low recruitment thresholds (0.88 +/- 0.6 N) formed a single narrow peak (P1) with a latency (22.7 +/- 1.4 ms) which was comparable to that of the tendon jerk in the extensor carpi radialis muscles. These motor units were named 'P1 units'. On the other hand, the response of motor units with shorter twitch contraction times (31.1 +/- 3.3 ms) and higher recruitment thresholds (3.21 +/- 1.3 N) showed two peaks: a short latency (23.4 +/- 1.3 ms) P1 peak similar to the previous one and a P2 peak occurring 9.4 +/- 1.2 ms later. These motor units were named 'P1-P2 units'. 5. When the reflex contraction increased slowly, the P1 peaks of 'P1-P2 units' were clearly predominant at the beginning of the contraction, during the rising phase of the motor unit discharge frequency, while the P2 peaks became predominant when the units had reached their maximal discharge frequency. 6. Increasing the tendon vibration frequency (35, 55, 75, 95 Hz) did not modify the 'P1 unit' discharge pattern. Due to interference between vibration period and peak latencies, increasing the vibration frequency caused the P1 and P2 peaks of 'P1-P2 units' to overlap. 7. Superficial cutaneous stimulation of the dorsal side of the forearm during tendon vibration noticeably decreased the P1 peaks in both types of motor units. In the P2 peaks it could result in either a decrease or an increase but the average effect was a slight increase. 8. When applied 10 s before tendon vibration, cutaneous stimulation considerably suppressed the tonic vibration reflex.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1822565

  5. Hybrid-secondary uncluttered induction machine

    DOEpatents

    Hsu, John S.

    2001-01-01

    An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

  6. Similar alteration of motor unit recruitment strategies during the anticipation and experience of pain.

    PubMed

    Tucker, Kylie; Larsson, Anna-Karin; Oknelid, Stina; Hodges, Paul

    2012-03-01

    A motor unit consists of a motoneurone and the multiple muscle fibres that it innervates, and forms the final neural pathway that influences movement. Discharge of motor units is altered (decreased discharge rate and/or cessation of firing; and increased discharge rate and/or recruitment of new units) during matched-force contractions with pain. This is thought to be mediated by nociceptive (pain) input on motoneurones, as demonstrated in animal studies. It is also possible that motoneurone excitability is altered by pain related descending inputs, that these changes persist after noxious stimuli cease, and that direct nociceptive input is not necessary to induce pain related changes in movement. We aimed to determine whether anticipation of pain (descending pain related inputs without nociceptor discharge) alters motor unit discharge, and to observe motor unit discharge recovery after pain has ceased. Motor unit discharge was recorded with fine-wire electrodes in the quadriceps of 9 volunteers. Subjects matched isometric knee-extension force during anticipation of pain (anticipation: electrical shocks randomly applied over the infrapatellar fat-pad); pain (hypertonic saline injected into the fat-pad); and 3 intervening control conditions. Discharge rate of motor units decreased during pain (P<.001) and anticipation (P<.01) compared with control contractions. De-recruitment of 1 population of units and new recruitment of another population were observed during both anticipation and pain; some changes in motor unit recruitment persisted after pain ceased. This challenges the fundamental theory that pain-related changes in muscle activity result from direct nociceptor discharge, and provides a mechanism that may underlie long-term changes in movement/chronicity in some musculoskeletal conditions. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. Discharge Patterns of Human Tensor Palatini Motor Units During Sleep Onset

    PubMed Central

    Nicholas, Christian L.; Jordan, Amy S.; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Trinder, John

    2012-01-01

    Study Objectives: Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. Design: The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Setting: Sleep laboratory. Participants: Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Intervention: Sleep onset. Measurements and Results: Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. Conclusions: TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP. Citation: Nicholas CL; Jordan AS; Heckel L; Worsnop C; Bei B: Saboisky JP; Eckert DJ; White DP; Malhotra A; Trinder J. Discharge patterns of human tensor palatini motor units during sleep onset. SLEEP 2012;35(5):699-707. PMID:22547896

  8. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  9. Development of Chalcopyrite Crystals for Nonlinear Optical Applications

    DTIC Science & Technology

    1974-12-01

    write the expansion ol the homopolar and the heteropolar part of the mean energy gap in the following way. £.(«) - £. + (a«», + (a.)’*, + (Ha) C...a nearly linear relation over a wide 7 —12-um spectral range. We therefore used a 1 stepping motor and synchronously rotated the AgGaSe, crystal

  10. A superconducting levitation vehicle prototype

    NASA Astrophysics Data System (ADS)

    Stephan, R. M.; Nicolsky, R.; Neves, M. A.; Ferreira, A. C.; de Andrade, R.; Cruz Moreira, M. A.; Rosário, M. A.; Machado, O. J.

    2004-08-01

    This paper presents a small scale MAGLEV vehicle prototype which is under development at UFRJ. The levitation is done by Y-Ba-Cu-O superconducting blocks refrigerated by liquid nitrogen in the presence of Nd-Fe-B magnets. A long primary linear synchronous motor gives the traction. Design considerations and experimental results show the characteristics and performance of this system.

  11. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control

    PubMed Central

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2015-01-01

    The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM), relative pitch (RP), and absolute pitch (AP) musicians maintained vocalizations of a vowel sound and received randomized ± 100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked) fronto-central activation within the theta band (5–8 Hz) that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced) frontal activation within the delta band (1–4 Hz) that emerged at approximately 1 s after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE), indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control. PMID:25873858

  12. A Qualitative Study of the European Trucking Industry and Logistics Strategies Using the United States Motor Carrier Industry as a Guide

    DTIC Science & Technology

    1992-09-01

    UNITED STATES MOTOR CARRIER INDUSTRY AS A GUIDE THESIS David W. Butler Andrew P. Wilhelm Captain, USAF Captain, USAF AFIT/GLM/LSM/92S-7 Approved for...UNITED STATES MOTOR CARRIER INDUSTRY AS A GUIDE THESIS Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute of...THE EUROPEAN TRUCKING INDUSTRY AND LOGISTICS STRATEGIES USING THE UNITED STATES MOTOR CARRIER INDUSTRY AS A GUIDE I. Introduction General Issue The

  13. Can fast-twitch muscle fibres be selectively recruited during lengthening contractions? Review and applications to sport movements.

    PubMed

    Chalmers, Gordon R

    2008-01-01

    Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude-frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225 degrees/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle.

  14. The relationship of motor unit size, firing rate and force.

    PubMed

    Conwit, R A; Stashuk, D; Tracy, B; McHugh, M; Brown, W F; Metter, E J

    1999-07-01

    Using a clinical electromyographic (EMG) protocol, motor units were sampled from the quadriceps femoris during isometric contractions at fixed force levels to examine how average motor unit size and firing rate relate to force generation. Mean firing rates (mFRs) and sizes (mean surface-detected motor unit action potential (mS-MUAP) area) of samples of active motor units were assessed at various force levels in 79 subjects. MS-MUAP size increased linearly with increased force generation, while mFR remained relatively constant up to 30% of a maximal force and increased appreciably only at higher force levels. A relationship was found between muscle force and mS-MUAP area (r2 = 0.67), mFR (r2 = 0.38), and the product of mS-MUAP area and mFR (mS-MUAP x mFR) (r2 = 0.70). The results support the hypothesis that motor units are recruited in an orderly manner during forceful contractions, and that in large muscles only at higher levels of contraction ( > 30% MVC) do mFRs increase appreciably. MS-MUAP and mFR can be assessed using clinical EMG techniques and they may provide a physiological basis for analyzing the role of motor units during muscle force generation.

  15. Effect of ageing on the force development in tetanic contractions of motor units in rat medial gastrocnemius muscle.

    PubMed

    Łochyński, Dawid; Kaczmarek, Dominik; Krutki, Piotr; Celichowski, Jan

    2010-09-01

    The purpose of this study was to determine the effect of ageing on the rate of force generation of motor units, and the mechanical efficiency of contraction produced by a doublet discharge. The study was carried out on isolated motor units of rat medial gastrocnemius muscle of young (5-10 mo) and two groups of old (24-25 and 28-30 mo) Wistar rats. Motor units were classified into the fast fatigable (FF), fast resistant (FR) and slow (S) ones. The force output and rate of force development were determined for non-doublet unfused tetanic contractions evoked by a series of a constant-rate trains of pulses and corresponding doublet contractions starting with an initial brief interpulse interval of 5 ms, and for maximal tetanic contraction. In FF motor units the rate of force development and the force produced by the doublet discharge increased transiently at the age of 24-25 mo, while in S and FR motor units this increase was observed at the age of 28-30 mo. Age-related decrease in the rate of force development of skeletal muscle cannot be attributed to a decline in efficiency of force production by functioning motor units. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Time-related changes in firing rates are influenced by recruitment threshold and twitch force potentiation in the first dorsal interosseous.

    PubMed

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B

    2017-08-01

    What is the central question of this study? The influences of motor unit recruitment threshold and twitch force potentiation on the changes in firing rates during steady-force muscular contractions are not well understood. What is the main finding and its importance? The behaviour of motor units during steady force was influenced by recruitment threshold, such that firing rates decreased for lower-threshold motor units but increased for higher-threshold motor units. In addition, individuals with greater changes in firing rates possessed greater twitch force potentiation. There are contradictory reports regarding changes in motor unit firing rates during steady-force contractions. Inconsistencies are likely to be the result of previous studies disregarding motor unit recruitment thresholds and not examining firing rates on a subject-by-subject basis. It is hypothesized that firing rates are manipulated by twitch force potentiation during contractions. Therefore, in this study we examined time-related changes in firing rates at steady force in relationship to motor unit recruitment threshold in the first dorsal interosseous and the influence of twitch force potentiation on such changes in young versus aged individuals. Subjects performed a 12 s steady-force contraction at 50% maximal voluntary contraction, with evoked twitches before and after the contraction to quantify potentiation. Firing rates, in relationship to recruitment thresholds, were determined at the beginning, middle and end of the steady force. There were no firing rate changes for aged individuals. For the young, firing rates decreased slightly for lower-threshold motor units but increased for higher-threshold motor units. Twitch force potentiation was greater for young than aged subjects, and changes in firing rates were correlated with twitch force potentiation. Thus, individuals with greater increases in firing rates of higher-threshold motor units and decreases in lower-threshold motor units possessed greater twitch force potentiation. Overall, changes in firing rates during brief steady-force contractions are dependent on recruitment threshold and explained in part by twitch force potentiation. Given that firing rate changes were measured in relationship to recruitment threshold, this study illustrates a more complete view of firing rate changes during steady-force contractions. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  17. Task and fatigue effects on low-threshold motor units in human hand muscle.

    PubMed

    Enoka, R M; Robinson, G A; Kossev, A R

    1989-12-01

    1. The activity of single motor units was recorded in the first dorsal interosseus muscle of human subjects while they performed an isometric ramp-and-hold maneuver. Motor-unit activity was characterized before and after fatigue by the use of a branched bipolar electrode that was positioned subcutaneously over the test muscle. Activity was characterized in terms of the forces of recruitment and derecruitment and the discharge pattern. The purpose was to determine, before and after fatigue, whether motor-unit activity was affected by the direction in which the force was exerted. 2. Regardless of the task during prefatigue trials, interimpulse intervals were 1) more variable during increases or decreases in force than when force was held constant at the target value (4-6% above the recruitment force), and 2) more clustered around an arbitrary central value than would be expected with a normal (Gaussian) distribution. Both effects were seen during the flexion and abduction tasks. The behavior of low-threshold motor units in first dorsal interosseus is thus largely unaffected by the direction of the force exerted by the index finger. The absence of a task (i.e., a direction of force) effect suggests that the resultant force vector about the metacarpophalangeal joint of the index finger is not coded in terms of discrete populations of motor units, but, rather, it is based on the net muscle activity about the joint. 3. Motor-unit behavior during and after fatigue showed that the relatively homogeneous behavior seen before fatigue could be severely disrupted. The fatiguing protocol involved the continuous repetition, to the endurance limit, of a 15-s ramp-and-hold maneuver in which the abduction target force was 50% of maximum and was held for 10-s epochs (ramps up and down were approximately 2 s each). Motor-unit threshold was assessed by the forces of recruitment and derecruitment associated with each cycle of the fatigue test. Changes in recruitment force during the protocol were either minimal or, when present, not systematic. In contrast, the derecruitment force of all units exhibited a marked and progressive increase over the course of the test. 4. After the fatigue test, when the initial threshold tasks were repeated, the behavior of most motor units changed. These changes included the derecruitment of previously active motor units, the recruitment of additional motor units, and an increased discharge variability of units that remained recruited. The variation in recruitment order seemed to be much greater than that reported previously for nonfatiguing conditions.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. Motor control differs for increasing and releasing force

    PubMed Central

    Park, Seoung Hoon; Kwon, MinHyuk; Solis, Danielle; Lodha, Neha

    2016-01-01

    Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0–4, 4–10, 10–35, and 35–60 Hz. Participants exhibited greater force variability while releasing force, independent of age (P < 0.001). Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz (R2 = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units (r = 0.66) and modulation from 0 to 4 Hz (r = −0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units. PMID:26961104

  19. Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving primates.

    PubMed

    Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-08-15

    The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks.

  20. Rhythm and interpersonal synchrony in early social development.

    PubMed

    Trainor, Laurel J; Cirelli, Laura

    2015-03-01

    Adults who engage in synchronous movement to music later report liking each other better, remembering more about each other, trusting each other more, and are more likely to cooperate with each other compared to adults who engage in asynchronous movements. Although poor motor coordination limits infants' ability to entrain to a musical beat, they perceive metrical structure in auditory rhythm patterns, their movements are affected by the tempo of music they hear, and if they are bounced by an adult to a rhythm pattern, the manner of this bouncing can affect their auditory interpretation of the meter of that pattern. In this paper, we review studies showing that by 14 months of age, infants who are bounced in synchrony with an adult subsequently show more altruistic behavior toward that adult in the form of handing back objects "accidentally" dropped by the adult compared to infants who are bounced asynchronously with the adult. Furthermore, increased helpfulness is directed at the synchronized bounce partner, but not at a neutral stranger. Interestingly, however, helpfulness does generalize to a "friend" of the synchronized bounce partner. In sum, synchronous movement between infants and adults has a powerful effect on infants' expression of directed prosocial behavior. © 2014 New York Academy of Sciences.

Top