Science.gov

Sample records for mount agung eruption

  1. Mt Agung (Bali) Eruption Plumes

    Atmospheric Science Data Center

    2018-05-23

    article title:  Mt Agung (Bali) Eruption Plumes     View larger image ... 2017 (left) and calculated plume heights (right)   Volcanic eruptions can generate a significant amount of atmospheric aerosols ...

  2. Local Community Entrepreneurship in Mount Agung Trekking

    NASA Astrophysics Data System (ADS)

    Mudana, I. G.; Sutama, I. K.; Widhari, C. I. S.

    2018-01-01

    Since its last major eruption in 1963, Mount Agung in Selat District, Karangasem Regency, the highest mountain in Bali Province began to be visited by tourists climbers. Because of the informal obligation that every climbing/trekking should be guided by local guides, since the 1990s, there have been initiatives from a number of local community members to serve climbing tourists who were keen to climb the volcano/mountain. This study was conducted to understand and describe the entrepreneurial practices which appeared in the local surrounding community. Specifically, Selat Village, in guiding the climbing/trekking. This study used qualitative data analysis and its theories were adapted to data needed in the field. The results of study showed that Mount Agung was considered attractive by climbing tourists not only because of the exotic beauty and challenges of difficulty (as well as the level of danger) to conquer it, but also because it kept certain myths from its status as a holy/sacred mountain to Balinese Hindus. In fact, a number of tourists who did the climbing/trekking without being guided very often got lost, harmed in an accident, or fell to their death. As a direct result, all climbing activities require guidance. Especially guides from local community organizations who really understand the intricacies of climbing and the curvature of the mountain. The entrepreneurial practices of Selat Village community had arisen not only to serve usual climbing activities, but also to preserve the environment of the mountain and the safety of the climbing tourists with the many taboos related to the climb. These facts could be seen clearly from descriptions of local experts and local climbing guides who have been doing their work for years. As a form of entrepreneurship, they basically did their work for the main purpose of seeking livelihoods (or making money) but their responsibility as local people made them commit to guarding the sanctity of the mountain. This was

  3. Indonesia's Active Mount Agung Volcano Imaged by NASA Spacecraft

    NASA Image and Video Library

    2017-12-10

    After a new small eruption sent an ash cloud 1.24 miles (2 kilometers) into the sky on Dec. 7, 2017, Indonesia's Mount Agung volcano quieted down. This image was acquired Dec. 8 after the latest activity by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite. The image shows vegetation in red colors. The summit crater has a hot spot (yellow) as detected by ASTER's thermal infrared channels. More than 65,00 residents continue to be evacuated from the volcano's danger zone in case of a major eruption. The image covers an area of 11 by 12.3 miles (17.8 by 19.8 kilometers), and is located at 8.3 degrees south, 115.5 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22121

  4. New microphysical volcanic forcing datasets for the Agung, El Chichon and Pinatubo eruptions

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Marshall, Lauren; Carslaw, Kenneth; Chipperfield, Martyn; Bellouin, Nicolas; Morgenstern, Olaf; Johnson, Colin; O'Connor, Fiona

    2017-04-01

    Major tropical volcanic eruptions inject huge amounts of SO2 directly into the stratosphere, and create a long-lasting perturbation to the stratospheric aerosol. The abruptly elevated aerosol has strong climate impacts, principally surface cooling via scattering incoming solar radiation. The enhanced tropical stratospheric aerosol can also absorb outgoing long wave radiation causing a warming of the stratosphere and subsequent complex composition-dynamics responses (e.g. Dhomse et al., 2015). In this presentation we apply the composition-climate model UM-UKCA with interactive stratospheric chemistry and aerosol microphysics (Dhomse et al., 2014) to assess the enhancement to the stratospheric aerosol and associated radiative forcings from the three largest tropical eruptions in the last 60 years: Mt Agung (February 1963), El Chichon (April 1982) and Mt. Pinatubo (June 1991). Accurately characterising the forcing signature from these major eruptions is important for attribution of recent climate change and volcanic effects have been identified as a key requirement for robust attribution of multi-decadal surface temperature trends (e.g. Marotzke and Forster, 2015). Aligning with the design of the ISA-MIP co-ordinated multi-model "Historical Eruption SO2 Emissions Assessment" (HErSEA), we have carried out 3-member ensemble of simulations with each of upper, low and mid-point best estimates for SO2 and injection height for each eruption. We evaluate simulated aerosol properties (e.g. extinction, AOD, effective radius, particle size distribution) against a range of satellite and in-situ observational datasets and assess stratospheric heating against temperature anomalies are compared against reanalysis and other datasets. References: Dhomse SS, Chipperfield MP, Feng W, Hossaini R, Mann GW, Santee ML (2015) Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophysical Research Letters, 42, pp.3038

  5. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  6. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  7. The 1991 eruptions of Mount Pinatubo, Philippines

    USGS Publications Warehouse

    Wolfe, Edward W.

    1992-01-01

    Recognition of the volcanic unrest at Mount Pinatubo in the Philippines began when steam explosions occurred on April 2, 1991. The unrest culminated ten weeks later in the world's largest eruption in more than half a century. 

  8. Eruptive history of Mount Katmai, Alaska

    USGS Publications Warehouse

    Hildreth, Edward; Fierstein, Judith

    2012-01-01

    Compositionally, products of Mount Katmai represent an ordinary medium-K arc array, both tholeiitic and calcalkaline, that extends from 51.6% to 72.3% SiO2. Values of 87Sr/86Sr range from 0.70335 to 0.70372, correlating loosely with fractionation indices. The 5–6 km3 of continuously zoned andesite-dacite magma (58%–68% SiO2) that erupted at Novarupta in 1912 was withdrawn from beneath Mount Katmai and bears close compositional affinity with products of that edifice, not with pre-1912 products of the adjacent Trident cluster. Evidence is presented that the 7–8 km3 of high-silica rhyolite (77% SiO2) released in 1912 is unlikely to have been stored under Novarupta or Trident. Pre-eruptive contiguity with the andesite-dacite reservoir is suggested by (1) eruption of ∼3 km3 of rhyolite magma first, followed by mutual mingling in fluctuating proportions; (2) thermal and redox continuity of the whole zoned sequence despite the wide compositional gap; (3) Nd, Sr, O isotopic, and rare earth element (REE) affinities of the whole array; (4) compositional continuity of the nearly aphyric rhyolite with the glass (melt) phase of the phenocryst-rich dacite; and (5) phase-equilibrium experiments that indicate similar shallow pre-eruptive storage depths (3–6 km) for rhyolite, dacite, and andesite.

  9. The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines

    USGS Publications Warehouse

    Newhall, Christopher G.; Hendley, James W.; Stauffer, Peter H.

    1997-01-01

    The second-largest volcanic eruption of this century, and by far the largest eruption to affect a densely populated area, occurred at Mount Pinatubo in the Philippines on June 15, 1991. The eruption produced high-speed avalanches of hot ash and gas, giant mudflows, and a cloud of volcanic ash hundreds of miles across. The impacts of the eruption continue to this day.

  10. Potential climate impact of Mount Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Ruedy, Reto; Sato, Makiko

    1992-01-01

    The GISS global-climate model is used to make a preliminary estimate of Mount Pinatubo's climate impact. Assuming the aerosol optical depth is nearly twice as great as for the 1982 El Chichon eruption, the model forecasts a dramatic but temporary break in recent global warming trends. The simulations indicate that Pinatubo occurred too late in the year to prevent 1991 from becoming one of the warmest years in instrumental records, but intense aerosol cooling is predicted to begin late in 1991 and to maximize late in 1992. The predicted cooling is sufficiently large that by mid 1992 it should even overwhelm global warming associated with an El Nino that appears to be developing, but the El Nino could shift the time of minimum global temperature into 1993. The model predicts a return to record warm levels in the later 1990s. The effect is estimated of the predicted global cooling on such practical matters as the severity of the coming Soviet winter and the dates of cherry blossoming next spring.

  11. Mount St. Helens: Still erupting lessons 31 years later

    Treesearch

    Rhonda Mazza; Charlie Crisafulli; Fred Swanson

    2011-01-01

    The massive volcanic eruption of Mount St. Helens 31 years ago provided the perfect backdrop for studying the earliest stages of forest development. Immediately after the eruption, some areas of the blast area were devoid of life. On other parts of the volcanic landscape, many species survived, although their numbers were greatly reduced. Reassembly began at many...

  12. Mount St. Helens eruptive behavior during the past 1500 yr.

    USGS Publications Warehouse

    Hoblitt, R.P.; Crandell, D.R.; Mullineaux, D.R.

    1980-01-01

    During the past 1500 yr Mount St. Helens, Washington, has repeatedly erupted dacite domes, tephra, and pyroclastic flows as well as andesite lava flows and tephra. Two periods of activity prior to 1980, each many decades long, were both initiated by eruptions of volatile-rich dacite which were followed by andesite, then by dacite. A third eruptive period was characterized by the eruption of volatile-poor dacite that formed a dome and minor pyroclastic flows. The prolonged duration of some previous eruptive periods suggests that the current activity could continue for many years. The volatile-rich dacite that has been erupted to date probably will be followed by gas-poor magma, but it cannot yet be predicted whether a more mafic magma will be extruded during the current eruptive period.-Authors

  13. Late Holocene Andesitic Eruptions at Mount Rainier

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Vallance, J. W.

    2005-12-01

    Holocene Mt. Rainier erupted much more frequently than is recorded by its 11 pumiceous tephras. In the 2.6-2.2 ka Summerland eruptive period, 6 groups of thin (1-5 mm) Sparsely Vesicular Glassy (SVG) ashes were deposited (S1-S6), followed by the 0.3 km3 C-tephra. Two groups of andesitic lava flows and one andesitic block-and-ash flow (2.45 ka) also erupted in the Summerland period (ice conceals any other products). Based on glass composition the pyroclastic flow correlates with S4 ashes that also contain pumiceous grains and rare pumice lapilli. The first of the lava groups, exposed in windows through the Emmons and Winthrop glaciers, is Sr-rich for Mt. Rainier eruptives and correlates with S5 & S6 ashes based on similar high-Sr plagioclase. The ensuing C-tephra formed by plinian eruption of mixed and mingled magma comprising 4 juvenile components: mixed porphyritic andesite pumice, crystal-poor andesite scoria, vesicular high-Sr dacite blebs in pumice and scoria, and poorly inflated crystal-rich high-Sr dacite. High-Sr components were probably entrained conduit linings and segregations from the preceding high-Sr eruptions. The youngest lava group, exposed at the summit, is normal-Sr andesite lacking mixing textures of the C-tephra, and represents eruption of another small batch of andesitic magma perhaps just after the C event. SVG ash grains have blocky-to-fluidal shapes, are rich in plagioclase microlites, and their glasses are high-SiO2 (66-78%) and low-Al2O3 (15-11%). Melting experiments yield apparent equilibration pressures <50MPa for SVG liquids. SVG ashes likely result from shallow hydromagmatic explosions as largely degassed magmas transited the upper-edifice hydrothermal system during effusive eruptions. Rare pumice lapilli codeposited with S1, S2, and S4 ashes have microlite-free dacitic glasses, one with nonreacted hbl phenocrysts. These pumice formed from magmas that ascended rapidly from reservoir depths, synchronous with or closely between effusive

  14. Tsunamis generated by eruptions from mount st. Augustine volcano, alaska.

    PubMed

    Kienle, J; Kowalik, Z; Murty, T S

    1987-06-12

    During an eruption of the Alaskan volcano Mount St. Augustine in the spring of 1986, there was concern about the possibility that a tsunami might be generated by the collapse of a portion of the volcano into the shallow water of Cook Inlet. A similar edifice collapse of the volcano and ensuing sea wave occurred during an eruption in 1883. Other sea waves resulting in great loss of life and property have been generated by the eruption of coastal volcanos around the world. Although Mount St. Augustine remained intact during this eruptive cycle, a possible recurrence of the 1883 events spurred a numerical simulation of the 1883 sea wave. This simulation, which yielded a forecast of potential wave heights and travel times, was based on a method that could be applied generally to other coastal volcanos.

  15. Air pressure waves from Mount St. Helens eruptions

    NASA Astrophysics Data System (ADS)

    Reed, Jack W.

    1987-10-01

    Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.

  16. Eruptions of Mount St. Helens : Past, present, and future

    USGS Publications Warehouse

    Tilling, Robert I.; Topinka, Lyn J.; Swanson, Donald A.

    1990-01-01

    Mount St. Helens, located in southwestern Washington about 50 miles northeast of Portland, Oregon, is one of several lofty volcanic peaks that dominate the Cascade Range of the Pacific Northwest; the range extends from Mount Garibaldi in British Columbia, Canada, to Lassen Peak in northern California. Geologists call Mount St. Helens a composite volcano (or stratovolcano), a term for steepsided, often symmetrical cones constructed of alternating layers of lava flows, ash, and other volcanic debris. Composite volcanoes tend to erupt explosively and pose considerable danger to nearby life and property. In contrast, the gently sloping shield volcanoes, such as those in Hawaii, typically erupt nonexplosively, producing fluid lavas that can flow great distances from the active vents. Although Hawaiian-type eruptions may destroy property, they rarely cause death or injury. Before 1980, snow-capped, gracefully symmetrical Mount St. Helens was known as the "Fujiyama of America." Mount St. Helens, other active Cascade volcanoes, and those of Alaska form the North American segment of the circum-Pacific "Ring of Fire," a notorious zone that produces frequent, often destructive, earthquake and volcanic activity.

  17. Determination of source parameters of the 2017 Mount Agung volcanic earthquake from moment-tensor inversion method using local broadband seismic waveforms

    NASA Astrophysics Data System (ADS)

    Madlazim; Prastowo, T.; Supardiyono; Hardy, T.

    2018-03-01

    Monitoring of volcanoes has been an important issue for many purposes, particularly hazard mitigation. With regard to this, the aims of the present work are to estimate and analyse source parameters of a volcanic earthquake driven by recent magmatic events of Mount Agung in Bali island that occurred on September 28, 2017. The broadband seismogram data consisting of 3 local component waveforms were recorded by the IA network of 5 seismic stations: SRBI, DNP, BYJI, JAGI, and TWSI (managed by BMKG). These land-based observatories covered a full 4-quadrant region surrounding the epicenter. The methods used in the present study were seismic moment-tensor inversions, where the data were all analyzed to extract the parameters, namely moment magnitude, type of a volcanic earthquake indicated by percentages of seismic components: compensated linear vector dipole (CLVD), isotropic (ISO), double-couple (DC), and source depth. The results are given in the forms of variance reduction of 65%, a magnitude of M W 3.6, a CLVD of 40%, an ISO of 33%, a DC of 27% and a centroid-depth of 9.7 km. These suggest that the unusual earthquake was dominated by a vertical CLVD component, implying the dominance of uplift motion of magmatic fluid flow inside the volcano.

  18. Recent eruptive history of Mount Hood, Oregon, and potential hazards from future eruptions

    USGS Publications Warehouse

    Crandell, Dwight Raymond

    1980-01-01

    Each of three major eruptive periods at Mount Hood (12,000-15,000(?), 1,500-1,800, and 200-300 years ago) produced dacite domes, pyroclastic flows, and mudflows, but virtually no pumice. Most of the fine lithic ash that mantles the slopes of the volcano and the adjacent mountains fell from ash clouds that accompanied the pyroclastic flows. Widely scattered pumice lapilli that are present at the ground surface on the south, east, and north sides of Mount Hood may have been erupted during the mid-1800's, when the last known activity of the volcano occurred. The geologically recent history of Mount Hood suggests that the most likely eruptive event in the future will be the formation of another dome, probably within the present south-facing crater. The principal hazards that could accompany dome formation include pyroclastic flows and mudflows moving from the upper slopes of the volcano down the floors of valleys. Ash clouds which accompany pyroclastic flows may deposit as much as a meter of fine ash close to their source, and as much as 20 centimeters at a distance of 11 kilometers downwind from the pyroclastic flows. Other hazards that could result from such eruptions include laterally directed explosive blasts that could propel rock fragments outward from the sides of a dome at high speed, and toxic volcanic gases. The scarcity of pumiceous ash erupted during the last 15,000 years suggests that explosive pumice eruptions are not a major hazard at Mount Hood; thus, there seems to be little danger that such an eruption will significantly affect the Portland (Oregon) metropolitan area in the near future.

  19. Will Mount Etna erupt before EGU General Assembly 2017?

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Cannavo', Flavio; Palano, Mimmo

    2017-04-01

    Mount Etna has historically recorded a long and very various series of eruptions. The eruptions have mostly shown an episodic character, despite a near continuous supply of magma. In the last years, activity at Mount Etna seems to follow a recurrent pattern characterized by very similar "inflation/paroxysmal events/deflation" dynamic. The paroxysms occurred in December 2015 and May 2016, which involved the "Voragine" crater, can be considered among the most violent observed during the last two decades. These events showed high lava fountains, in the order of hundreds of meters in height, and eruption columns, several kilometres high. A new cycle, characterized by a clear similar inflation of the whole volcano edifice is currently underway. Here, we analyse these recent volcanic cycles and discuss about a) a possible upper bound for the inflation dynamic, above which a paroxysmal event occurs, b) the comparison of the models generating the considered lava fountains and c) a possible time-predictable model of the expected paroxysmal event.

  20. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  1. 2014 Mount Ontake eruption: characteristics of the phreatic eruption as inferred from aerial observations

    NASA Astrophysics Data System (ADS)

    Kaneko, Takayuki; Maeno, Fukashi; Nakada, Setsuya

    2016-05-01

    The sudden eruption of Mount Ontake on September 27, 2014, led to a tragedy that caused more than 60 fatalities including missing persons. In order to mitigate the potential risks posed by similar volcano-related disasters, it is vital to have a clear understanding of the activity status and progression of eruptions. Because the erupted material was largely disturbed while access was strictly prohibited for a month, we analyzed the aerial photographs taken on September 28. The results showed that there were three large vents in the bottom of the Jigokudani valley on September 28. The vent in the center was considered to have been the main vent involved in the eruption, and the vents on either side were considered to have been formed by non-explosive processes. The pyroclastic flows extended approximately 2.5 km along the valley at an average speed of 32 km/h. The absence of burned or fallen trees in this area indicated that the temperatures and destructive forces associated with the pyroclastic flow were both low. The distribution of ballistics was categorized into four zones based on the number of impact craters per unit area, and the furthest impact crater was located 950 m from the vents. Based on ballistic models, the maximum initial velocity of the ejecta was estimated to be 111 m/s. Just after the beginning of the eruption, very few ballistic ejecta had arrived at the summit, even though the eruption plume had risen above the summit, which suggested that a large amount of ballistic ejecta was expelled from the volcano several tens-of-seconds after the beginning of the eruption. This initial period was characterized by the escape of a vapor phase from the vents, which then caused the explosive eruption phase that generated large amounts of ballistic ejecta via sudden decompression of a hydrothermal reservoir.

  2. The 2013 Eruptions of Pavlof and Mount Veniaminof Volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Waythomas, C. F.; Wallace, K.; Haney, M. M.; Fee, D.; Pavolonis, M. J.; Read, C.

    2013-12-01

    Pavlof Volcano and Mount Veniaminof on the Alaska Peninsula erupted during the summer of 2013 and were monitored by the Alaska Volcano Observatory (AVO) using seismic data, satellite and web camera images, a regional infrasound array and observer reports. An overview of the work of the entire AVO staff is presented here. The 2013 eruption of Pavlof Volcano began on May 13 after a brief and subtle period of precursory seismicity. Two volcano-tectonic (VT) earthquakes at depths of 6-8 km on April 24 preceded the onset of the eruption by 3 weeks. Given the low background seismicity at Pavlof, the VTs were likely linked to the ascent of magma. The onset of the eruption was marked by subtle pulsating tremor that coincided with elevated surface temperatures in satellite images. Activity during May and June was characterized by lava fountaining and effusion from a vent near the summit. Seismicity consisted of fluctuating tremor and numerous explosions that were detected on an infrasound array (450 km NE) and as ground-coupled airwaves at local and distant seismic stations (up to 650 km). Emissions of ash and sulfur dioxide were observed in satellite data extending as far as 300 km downwind at altitudes of 5-7 km above sea level. Ash collected in Sand Point (90 km E) were well sorted, 60-150 micron diameter juvenile glass shards, many of which had fluidal forms. Automated objective ash cloud detection and cloud height retrievals from the NOAA volcanic cloud alerting system were used to evaluate the hazard to aviation. A brief reconnaissance of Pavlof in July found that lava flows on the NW flank consist of rubbly, clast rich, 'a'a flows composed of angular blocks of agglutinate and rheomorphic lava. There are at least three overlapping flows, the longest of which extends about 5 km from the vent. Eruptive activity continued through early July, and has since paused or stopped. Historical eruptions of Mount Veniaminof volcano have been from an intracaldera cone within a 10

  3. Mount Cameroon Eruptions, Related Hazards and Effects on the Ecosystem

    NASA Astrophysics Data System (ADS)

    Aloatem Tazifor, A. N.

    2016-02-01

    Mount Cameroon (MC) is the highest peak in West and Central Africa. It is the only active volcano along the 1600km, Cameroon volcanic line with NE-SW orientation. It has a height of about 4100m above sea level, is a typical example of a hazardous volcano in a densely populated area, often causing damage by lava flows. It shows layered mafic volcanic sequence thought to be related to near-continuous eruptions within the last century during which period it has erupted 8 times in 1909, 1922, 1925, 1954, 1959, 1982, 1999 and 2000. These volcanic activities are suggested to be contributing factor to the many small-scale shallow landslides within the last 20 years which have resulted in the loss of about 30 lives and significant damage to farmland and property. The relatively high carbon dioxide (CO2) content in MC Glass inclusions support the interpretation that the CO2 gas responsible for the 1984 Lakes Monoun and 1986 Nyos disasters is magmatic in origin, which killed 37 and over 1800 people respectively. Months before the latest 2000 eruption, MC was characterized by a seismic swarm recorded in 03/2000 by analogue seismic stations. The co-eruptive period from May 28th to June 19th, 2000 was characterized by sequences of earth quakes, swarms and volcanic tremor. The main shock had a magnitude 3.2 event and a modified Mercalli intensity of 3 to 4. The largest seismic event recorded had a magnitude of 4. An explosion on 5th June, 2000, injured many members of a surveillance team, and a helicopter crash on 10th June, 2000 killed both pilots. It also led to lava flow across the Limbe-Idenau highway, damage of forest and palm plantations in Bakingili, and the evacuation of the 600 inhabitants of Bakingili. Never the less MC has positive impacts on the environment such as increased soil fertility where agro-industrial plantations have taken advantage, and more touristic sites have developed. After the last eruption of 2000, a number of seismographs have been placed along

  4. Quantifying probabilities of eruptions at Mount Etna (Sicily, Italy).

    NASA Astrophysics Data System (ADS)

    Brancato, Alfonso

    2010-05-01

    based on seismological and volcanological data, integrated with strain, geochemical, gravimetric and magnetic parameters. In the code, is necessary to fix an appropriate forecasting time window. On open-conduit volcanoes as Mt. Etna, a forecast time window of a month (as fixed in other applications worldwide) seems unduly long, because variations of the state of the volcano (significant variation of a specific monitoring parameter could occur in time scale shorter than the forecasting time window) are expected with shorter time scale (hour, day or week). This leads to set a week as forecasting time window, coherently with the number of weeks in which an unrest has been experienced. The short-term vent opening hazard assessment will be estimated during an unrest phase; the testing case (2001 July eruption) will include all the monitoring parameters collected at Mt. Etna during the six months preceding the eruption. The monitoring role has been assessed eliciting more than 50 parameters, including seismic activity, ground deformation, geochemistry, gravity, magnetism, and distributed inside the first three nodes of the procedure. Parameter values describe the Mt. Etna volcano activity, being more detailed through the code, particularly in time units. The methodology allows all assumptions and thresholds to be clearly identified and provides a rational means for their revision if new data or information are incoming. References Newhall C.G. and Hoblitt R.P.; 2002: Constructing event trees for volcanic crises, Bull. Volcanol., 64, 3-20, doi: 10.1007/s0044500100173. Marzocchi W., Sandri L., Gasparini P., Newhall C. and Boschi E.; 2004: Quantifying probabilities of volcanic events: The example of volcanic hazard at Mount Vesuvius, J. Geophys. Res., 109, B11201, doi:10.1029/2004JB00315U. Marzocchi W., Sandri, L. and Selva, J.; 2008: BET_EF: a probabilistic tool for long- and short-term eruption forecasting, Bull. Volcanol., 70, 623 - 632, doi: 10.1007/s00445-007-0157-y.

  5. Frequent eruptions of Mount Rainier over the last ˜2,600 years

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Vallance, J. W.

    2009-08-01

    Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten-12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11-12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ˜2,600 to ˜2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1-83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ˜500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier.

  6. Frequent eruptions of Mount Rainier over the last ∼2,600 years

    USGS Publications Warehouse

    Sisson, T.W.; Vallance, J.W.

    2009-01-01

    Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier.

  7. Catastrophic eruptions of the directed-blast type at Mount St. Helens, bezymianny and Shiveluch volcanoes

    USGS Publications Warehouse

    Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.

    1985-01-01

    This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for

  8. Atmospheric Effects and Potential Climatic Impact of the 1980 Eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Deepak, A. (Editor)

    1982-01-01

    Measurements and studies of the 1980 Mount St. Helens volcanic eruptions and their atmospheric effects and climatic impact are addressed. Specific areas discussed include: (1) nature and impact of volcanic eruptions; (2) in situ measurements of effluents; (3) remote sensing measurements; (4) transport and dispersion of volcanic effluents; (5) chemistry of volcanic effluents; and (6) weather and potential climate impact.

  9. Ecological responses to the 1980 eruptions of Mount St. Helens: forward and preface.

    Treesearch

    Virginia H. Dale; Frederick J. Swanson; Charles M. Crisafulli

    2005-01-01

    When Mount St. Helens erupted on May 18, 1980, it did more than just reconfigure a large piece of Cascadian landscape. It also led to dramatic revisions in our perspectives on disturbances, secondary succession, and forestry practices. The Mount St. Helens landscape turned out to be a far more complex place than the "moonscape" that it initially appeared to...

  10. The Atmospheric Impact of the 1991 Mount Pinatubo Eruption

    NASA Technical Reports Server (NTRS)

    Self, Stephen; Zhao, Jing-Xia; Holasek, Rick E.; Torres, Ronnie C.; King, Alan J.

    1993-01-01

    The 1991 eruption of Pinatubo produced about 5 cubic kilometers of dacitic magma and may be the second largest volcanic eruption of the century. Eruption columns reached 40 kilometers in altitude and emplaced a giant umbrella cloud in the middle to lower stratosphere that injected about 17 megatons of SO2, slightly more than twice the largest yielded by the 1982 eruption of El Chichon, Mexico. The SO2 formed sulfate aerosols that produced the largest perturbation to the stratospheric aerosol layer since the eruption of Krakatau in 1883. The aerosol cloud spread rapidly around the Earth in about 3 weeks and attained global coverage by about 1 year after the eruption. Peak local midvisible optical depths of up to 0.4 were measured in late 1992, and globally averaged values were about 0.1 to 0.15 for 2 years. The large aerosol cloud caused dramatic decreases in the amount of net radiation reaching the Earth's surface, producing a climate forcing that was two times stronger than the aerosols of El Chichon. Effects on climate were an observed surface cooling in the northern hemisphere of up to 0.5 to 0.6 C, equivalent to a hemispheric-wide reduction in net radiation of 4 watts per square meter and a cooling of perhaps as large as -0.4 C over large parts of the earth in 1992-93. Climate models seem to have predicted the cooling with a reasonable degree of accuracy. The Pinatubo climate forcing was stronger than the opposite warming of either the El Nino event or anthropogenic greenhouse gases in the period 1991-93. As a result of the presence of the aerosol particles, midlatitude ozone concentrations reached their lowest levels on record during 1992-93, the southern hemisphere 'ozone hole' increased in 1992 to an unprecedented size and ozone depletion rates were observed to be faster than ever before recorded. The atmospheric impact of the Pinatubo eruption has been profound, and it has sparked a lively interest in the role that volcanic aerosols play in climate change

  11. Diversion of lava during the 1983 eruption of Mount Etna

    USGS Publications Warehouse

    Lockwood, J.P.; Romano, R.

    1985-01-01

    During the 1983 eruption of Etna, Italian scientists managed, for the first time, to convince government authorities that direct intervention in natural volcanic processes was warranted. Both explosives and earthen barriers were used to divert major flows. These efforts were fairly successful, although at the time the historic importance of the operations was not fully recognized. 

  12. Eruption-triggered avalanche, flood, and lahar at Mount St. Helens - Effects of winter snowpack

    USGS Publications Warehouse

    Waitt, R.B.; Pierson, T.C.; MacLeod, N.S.; Janda, R.J.; Voight, B.; Holcomb, R.T.

    1983-01-01

    An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.

  13. Monitoring a restless volcano: The 2004 eruption of Mount St. Helens

    USGS Publications Warehouse

    Gardner, C.

    2005-01-01

    Although the precise course of volcanic activity is difficult to predict, volcanologists are pretty adept at interpreting volcanic signals from well-monitored volcanoes in order to make short-term forecasts. Various monitoring tools record effects to give us warning before eruptions, changes in eruptive behavior during eruptions, or signals that an eruption is ending. Foremost among these tools is seismic monitoring. The character, size, depth and rate of earthquakes are all important to the interpretation of what is happening belowground. The first inkling of renewed activity at Mount St. Helens began in the early hours of Sept. 23, when a seismic swarm - tens to hundreds of earthquakes over days to a week - began beneath the volcano. This article details the obervations made during the eruptive sequence.

  14. Model for determining logistic distribution center: case study of Mount Merapi eruption disaster

    NASA Astrophysics Data System (ADS)

    Ai, T. J.; Wigati, S. S.

    2017-01-01

    As one of the most active volcano in the earth, Mount Merapi is periodically erupted and it is considered as a natural disaster for the surrounding area. Kabupaten Sleman as one of the nearest location to this mount has to be always prepared to this disaster. The local government already set three different groups of region, in which potentially affected by Mount Merapi eruption, called KRB I, KRB II, and KRB III. Region KRB III is the closest area to the mount crater and most often affected by the eruption disaster. Whenever KRB III is affected, people live in that area usually being transfer to the next region set that is KRB II. The case presented in this paper is located at the KRB II region, which is the second closest region to the mount crater. A humanitarian distribution system has to be set in this region, since usually this region is became the location of shelters for KRB III population whenever a ‘big’ eruption is happened. A mathematical model is proposed in this paper, for determining the location of distribution center, vehicle route, and the amount of goods delivered to each customer. Some numerical illustration are presented in order to know the behavior of the proposed model.

  15. The 19 March 1982 Eruption and Lahar at Mount Saint Helens: Implications for Martian Outlfow Channels?

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1984-01-01

    A small explosive eruption of Mount St. Helens set into motion an unusually complex series of geomorphic and hydrologic processes that had not previously been described in the literature. This event was unusual in that a laterally-directed eruption dislodged and mobilized a thick snowpack from the surrounding crater floor and walls, resulting in the formation of a temporary lake. Catastrophic release of this self-impounded lake spawned a series of destructive debris avalanches and debris flows that moved rapidly down the volcano's north flank and into the North Toutle River valley. Catastrophic release of volatiles mobilized by volcanic activity has been discussed as a possible mechanism to explain a class of outflow channels on Mars. The eruption of Mount St. Helens provides a unique opportunity to study the deposits and landforms created by such an event; a more detailed field study and examination of Viking photographs of martian outflow channels is underway.

  16. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    USGS Publications Warehouse

    Wallace, P.J.; Gerlach, T.M.

    1994-01-01

    Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.

  17. The 18 May 1980 eruption of Mount St. Helens: The nature of the eruption, with an atmospheric perspective

    NASA Technical Reports Server (NTRS)

    Rose, W. I., Jr.; Hoffman, M. F.

    1982-01-01

    Mount St. Helens erupted somewhat less than 0.5 cu km of magma (dense rock equivalent) on May 18, 1980. The May 18 event was usually violent. As much 35% of the volume of the airfall material fell outside of the 2.5 mm isopach, which encloses about 88,000 sq km. This extraordinary dispersive power was transmitted by an eruption column which reached heights of more than 20 km. There was a lateral blast (or surge) of unusually large dimensions associated with the onset of the eruption. The magma is dacitic in composition and had a low ( 500 ppm) sulfur content. Distal ashes contain much nonmagmatic (lithic) material, but smaller ( 50 microns m) particles are mostly finely divided magmatic dacite. The grain size distributions of the ash are multimodal, frequently with peaks at 90, 25, and 10 microns. The finer populations fell out faster than their terminal velocities as simple particles would suggest. It is inferred that large proportions of the fine ash fell out as composite particles. This condition greatly reduces the atmospheric burden of silicate particles. Some of the unusual aspects (violence, intense surges, multimodal grain size distributions, lithic content of the ashes) of the eruption may be due to its phreatomagmatic character. The hydrothermal system above the magma may have infiltrated the magma body at the onset of the eruption. An "overprint" of the geochemistry of this hydrothermal system on the geochemistry of the magmatic gas system is likely. One important feature is that reduced gas species may be much more abundant than in many eruptions. Another is that fine ash may form aggregates more readily.

  18. Deposition and dose from the 18 May 1980 eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Peterson, K. R.

    1982-01-01

    The downwind deposition and radiation doses was calculated for the tropospheric part of the ash cloud from the May 18, 1980 eruption of Mount St. Helens, by using a large cloud diffusion model. The naturally occurring radionnuclides of radium and thorium, whose radon daughters normally seep very slowly from the rocks and soil, were violently released to the atmosphere. The largest dose to an individual from these nuclides is small, but the population dose to those affected by the radioactivity in the ash is about 100 person rem. This population dose from Mount St. Helens is much greater than the annual person rem routinely released by a typical large nuclear power plant. It is estimated that subsequent eruptions of Mount St. Helens have doubled or tripled the person rem calculated from the initial large eruption. The long range global ash deposition of the May 18 eruption is estimated through 1984, by use of a global deposition model. The maximum deposition is nearly 1000 kg square km and occurs in the spring of 1981 over middle latitudes of the Northern Hemisphere.

  19. Potential hazards from future eruptions of Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1978-01-01

    Mount St. Helens has been more active and more explosive during the last 4,500 years than any other volcano in the conterminous United States. Eruptions of that period repeatedly formed domes, large volumes of pumice, hot pyroclastic flows, and, during the last 2,500 years, lava flows. Some of this activity resulted in mudflows that extended tens of kilometers down the floors of valleys that head at the volcano. This report describes the nature of the phenomena and their threat to people and property; the accompanying maps show areas likely to be affected by future eruptions of Mount St. Helens. Explosive eruptions that produce large volumes of pumice affect large areas because winds can carry the lightweight material hundreds of kilometers from the volcano. Because of prevailing winds, the 180-degree sector east of the volcano will be affected most often and most severely by future eruptions of this kind. However, the pumice from any one eruption will fall in only a small part of that sector. Pyroclastic flows and mudflows also can affect areas far from the volcano, but the areas they affect are smaller because they follow valleys. Mudflows and possibly pyroclastic flows moving rapidly down Swift and Pine Creeks could displace water in Swift Reservoir, which could cause disastrous floods farther downvalley.

  20. Eruption prediction aided by electronic tiltmeter data at Mount St. Helens

    USGS Publications Warehouse

    Dzurisin, D.; Westphal, J.A.; Johnson, Daniel J.

    1983-01-01

    Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion.

  1. Eruption prediction aided by electronic tiltmeter data at mount st. Helens.

    PubMed

    Dzurisin, D; Westphal, J A; Johnson, D J

    1983-09-30

    Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion.

  2. Characterization of organic contaminants in environmental samples associated with mount St. Helens 1980 volcanic eruption

    USGS Publications Warehouse

    Pereira, W.E.

    1982-01-01

    Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.

  3. The chemical and radiative effects of the Mount Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Kinneson, Douglas E.; Grant, Keith E.; Connell, Peter S.; Rotman, Douglas A.; Wuebbles, Donald J.

    1994-01-01

    To clarify the mechanisms leading to effects on stratospheric ozone, time-dependent stratospheric aerosol and gas experiment II (SAGE II) and cryogenic limb array elaton spectrometer (CLAES) aerosol optical extinction data and SAGE II surface area density are used as parameters in a two-dimensional (2-D) zonally averaged chemical radiative transport model. The model was integrated with time from before the eruption through December 1993. The modeled impact on global ozone results from increased rates of heterogeneous reactions on sulfate aerosols and from the increased radiative heating and scattering caused by these aerosols. When the aerosol heating is allowed to modify the temperature distribution, the maximum change calculated in equatorial column ozone is -1.6%. The calculated equatorial temperature change and peak local ozone change in October 1991 are +6K and -4%, respectively. When aerosol heating perturbs the circulation in the model, the maximum change in equatorial column ozone is -6%. Increased heterogeneous processing on sulfate aerosols is calculated to have changed equatorial column ozone in late 1991 by -1.5%. Global column ozone in the model in 1992 and 1993 changed by -2.8% and -2.4%, respectively. The relationship of ozone-controlling processes in the lower stratosphere is altered as well; HO(x) becomes the most important catalytic cycle, followed by ClO(x) and NO(x). This is driven by significant changes in trace gas concentrations. In October 1991, lower stratospheric, equatorial NO(x) decreased by 40%, ClO(x) increased by 60%, and HO(x) increased by 25%. When the effect of heterogeneous chemical processing on sulfate aerosols is combined with aerosol heating, modifying either circulation or temperature, dramatically different ozone fingerprints with time and latitude are predicted. Model-derived changes in the equatorial region in column ozone best represented the observed data when perturbed circulation was combined with heterogeneous

  4. Vapor transfer prior to the October 2004 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Kent, A.J.R.; Blundy, J.; Cashman, K.V.; Copper, K.M.; Donnelly, C.; Pallister, J.S.; Reagan, M.; Rowe, M.C.; Thornber, C.R.

    2007-01-01

    Dome lavas from the 2004 eruption of Mount St. Helens show elevated Li contents in plagioclase phenocrysts at the onset of dome growth in October 2004. These cannot be explained by variations in plagioclase-melt partitioning, but require elevated Li contents in coexisting melt, a fact confirmed by measurements of Li contents as high as 207 ??g/g in coexisting melt inclusions. Similar Li enrichment has been observed in material erupted prior to and during the climactic May 1980 eruption, and is likewise best explained via pre-eruptive transfer of an exsolved alkali-rich vapor phase derived from deeper within the magma transport system. Unlike 1980, however, high Li samples from 2004 show no evidence of excess (210Pb)/(226 Ra), implying that measurable Li enrichments may occur despite significant differences in the timing and/or extent of magmatic degassing. Diffusion modeling shows that Li enrichment occurred within -1 yr before eruption, and that magma remained Li enriched until immediately before eruption and cooling. This short flux time and the very high Li contents in ash produced by phreatomagmatic activity prior to the onset of dome extrusion suggest that vapor transfer and accumulation were associated with initiation of the current eruption. Overall, observation of a high Li signature in both 1980 and 2004 dacites indicates that Li enrichment may be a relatively common phenomenon, and may prove useful for petrologic monitoring of Mount St. Helens and other silicic volcanoes. Lithium diffusion is also sufficiently rapid to constrain vapor transfer on similar time scales to short-lived radionuclides. ?? 2007 Geological Society of America.

  5. Conduit degassing and thermal controls on eruption styles at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Schneider, Andrew; Rempel, Alan W.; Cashman, Katharine V.

    2012-12-01

    The explosivity of silicic eruptions depends on the interplay between magma rheology, exsolution kinetics, and degassing. Magma degassing is governed by the competing effects of vertical transport within the conduit and the lateral flux of gas out of the conduit (Diller et al., 2006; Jaupart and Allegre, 1991). We combine a simplified treatment of these degassing processes with thermodynamic modeling to examine the conditions present at Mount St. Helens during the spine extruding eruption from 2004 to 2008. We find that two parameters are primarily responsible for controlling the eruptive style: the magma chamber temperature, and a dimensionless parameter that gauges the efficiency of lateral degassing. Together, these parameters determine whether and where magma can solidify at depth to form a dense solid plug that is gradually extruded as a volcanic spine. We show that the small (50 oC) decrease in magma chamber temperature between eruptive activity in the 1980s and that of 2004-2008, combined with a modest increase in degassing efficiency associated with lower volumetric flux, can explain the observed change in erupted material from viscous lava flows to solidified spines. More generally, we suggest that similar threshold behavior may explain observed abrupt transitions in effusive eruptive styles at other intermediate composition volcanoes. Finally, we extrapolate our results to suggest that the increase in degassing efficiency accompanying decreasing magma supply rates may have caused the transition from explosive to effusive activity in late 1980.

  6. Pyroclastic deposits of the Mount Edgecumbe volcanic field, southeast Alaska: eruptions of a stratified magma chamber

    USGS Publications Warehouse

    Riehle, J.R.; Champion, D.E.; Brew, D.A.; Lanphere, M.A.

    1992-01-01

    The Mount Edgecumbe volcanic field in southeastern Alaska consists of 5-6 km3 (DRE) of postglacial pyroclasts that overlie Pleistocene lavas. All eleven pyroclast vents align with the long axis of the field, implying that the pyroclast magma conduits followed a crustal fissure. Most of these vents had previously erupted lavas that are compositionally similar to the pyroclasts, so a persistent magma system (chamber) had likely evolved by the onset of the pyroclastic eruptions. The pyroclastic sequence was deposited in about a millennium and is remarkable for a wide range of upward-increasing silica contents (51-72% SiO2), which is consistent with rise of coexisting magmas at different rates governed by their viscosity. Basaltic and andesitic lava flows have erupted throughout the lifetime of the field. Rhyolite erupted late; we infer that it formed early but was hindered from rising by its high viscosity. Most of the magmas-and all siliceous ones-erupted from vents on the central fissure. Basalt has not erupted from the center of the field during at least the latter part of its lifetime. Thus the field may illustrate basalt underplating: heat and mass flux are concentrated at the center of a stratified magma chamber in which a cap of siliceous melt blocks the rise of basalt. Major-element, strontium isotope, and mineral compositions of unaltered pyroclasts are broadly similar to those of older lavas of similar SiO2 content. Slightly fewer phenocrysts, inherited grains, and trace amphibole in pyroclastic magmas may be due simply to faster rise and less undercooling and degassing before eruption relative to the lavas. Dacite occurs only in the youngest deposits; the magma formed by mixing of andesitic and rhyolitic magmas erupted shortly before by the dacitic vents. ?? 1992.

  7. Petrology of the 2004-2006 Mount St. Helens lava dome -- implications for magmatic plumbing and eruption triggering: Chapter 30 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Pallister, John S.; Thornber, Carl R.; Cashman, Katharine V.; Clynne, Michael A.; Lowers, Heather; Mandeville, Charles W.; Brownfield, Isabelle K.; Meeker, Gregory P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The question of new versus residual magma has implications for the long-term eruptive behavior of Mount St. Helens, because arrival of a new batch of dacitic magma from the deep crust could herald the beginning of a new long-term cycle of eruptive activity. It is also important to our understanding of what triggered the eruption and its future course. Two hypotheses for triggering are considered: (1) top-down fracturing related to the shallow groundwater system and (2) an increase in reservoir pressure brought about by recent magmatic replenishment. With respect to the future course of the eruption, similarities between textures and character of eruption of the 2004-6 dome and the long-duration (greater than 100 years) pre-1980 summit dome, along with the low eruptive rate of the current eruption, suggest that the eruption could continue sluggishly or intermittently for years to come.

  8. Monitoring Eruptive Activity at Mount St. Helens with TIR Image Data

    NASA Technical Reports Server (NTRS)

    Vaughan, R. G.; Hook, S. J.; Ramsey, M. S.; Realmuto, V. J.; Schneider, D. J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of similar to approximately 330 C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures similar to approximately 675 C, in narrow (approximately 1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of approximately 714 J/m(exp 2)/s over the new dome, corresponding to a radiant power of approximately 24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring.

  9. Monitoring eruptive activity at Mount St. Helens with TIR image data

    USGS Publications Warehouse

    Vaughan, R.G.; Hook, S.J.; Ramsey, M.S.; Realmuto, V.J.; Schneider, D.J.

    2005-01-01

    Thermal infrared (TIR) data from the MASTER airborne imaging spectrometer were acquired over Mount St. Helens in Sept and Oct, 2004, before and after the onset of recent eruptive activity. Pre-eruption data showed no measurable increase in surface temperatures before the first phreatic eruption on Oct 1. MASTER data acquired during the initial eruptive episode on Oct 14 showed maximum temperatures of ???330??C and TIR data acquired concurrently from a Forward Looking Infrared (FLIR) camera showed maximum temperatures ???675??C, in narrow (???1-m) fractures of molten rock on a new resurgent dome. MASTER and FLIR thermal flux calculations indicated a radiative cooling rate of ???714 J/m2/S over the new dome, corresponding to a radiant power of ???24 MW. MASTER data indicated the new dome was dacitic in composition, and digital elevation data derived from LIDAR acquired concurrently with MASTER showed that the dome growth correlated with the areas of elevated temperatures. Low SO2 concentrations in the plume combined with sub-optimal viewing conditions prohibited quantitative measurement of plume SO2. The results demonstrate that airborne TIR data can provide information on the temperature of both the surface and plume and the composition of new lava during eruptive episodes. Given sufficient resources, the airborne instrumentation could be deployed rapidly to a newly-awakening volcano and provide a means for remote volcano monitoring. Copyright 2005 by the American Geophysical Union.

  10. The 2004–2008 dome-building eruption at Mount St. Helens, Washington: Epilogue

    USGS Publications Warehouse

    Dzurisin, Daniel; Moran, Seth C.; Lisowski, Michael; Schilling, Steve P.; Anderson, Kyle R.; Werner, Cynthia A.

    2015-01-01

    The 2004–2008 dome-building eruption at Mount St. Helens ended during winter 2007–2008 at a time when field observations were hampered by persistent bad weather. As a result, recognizing the end of the eruption was challenging—but important for scientists trying to understand how and why long-lived eruptions end and for public officials and land managers responsible for hazards mitigation and access restrictions. In hindsight, the end of the eruption was presaged by a slight increase in seismicity in December 2007 that culminated on January 12–13, 2008, with a burst of more than 500 events, most of which occurred in association with several tremor-like signals and a spasmodic burst of long-period earthquakes. At about the same time, a series of regular, localized, small-amplitude tilt events—thousands of which had been recorded during earlier phases of the eruption—came to an end. Thereafter, seismicity declined to 10–20 events per day until January 27–28, when a spasmodic burst of about 50 volcano-tectonic earthquakes occurred over a span of 3 h. This was followed by a brief return of repetitive “drumbeat” earthquakes that characterized much of the eruption. By January 31, however, seismicity had declined to 1–2 earthquakes per day, a rate similar to pre-eruption levels. We attribute the tilt and seismic observations to convulsive stagnation of a semisolid magma plug in the upper part of the conduit. The upward movement of the plug ceased when the excess driving pressure, which had gradually decreased throughout the eruption as a result of reservoir deflation and increasing overburden from the growing dome, was overcome by increasing friction as a result of cooling and crystallization of the plug.

  11. Photogeologic maps of the 2004-2005 Mount St. Helens eruption: Chapter 10 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Herriott, Trystan M.; Sherrod, David R.; Pallister, John S.; Vallance, James W.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The 2004-5 eruption of Mount St. Helens, still ongoing as of this writing (September 2006), has comprised chiefly lava dome extrusion that produced a series of solid, faultgouge-mantled dacite spines. Vertical aerial photographs taken every 2 to 4 weeks, visual observations, and oblique photographs taken from aircraft and nearby observation points provide the basis for two types of photogeologic maps of the dome--photo-based maps and rectified maps. Eight map pairs, covering the period from October 1, 2004, through December 15, 2005, document the development of seven spines: an initial small, fin-shaped vertical spine; a north-south elongate wall of dacite; two large and elongate recumbent spines (“whalebacks”); a tall and elongate inclined spine; a smaller bulbous spine; and an initially endogenous spine extruded between remnants of preceding spines. All spines rose from the same general vent area near the southern margin of the 1980s lava dome. Maps also depict translation and rotation of active and abandoned spines, progressive deformation affecting Crater Glacier, and distribution of ash on the crater floor from phreatic and phreatomagmatic explosions. The maps help track key geologic and geographic features in the rapidly changing crater and help date dome, gouge, and ash samples that are no longer readily correlated to their original context because of deformation in a dynamic environment where spines extrude, deform, slough, and are overrun by newly erupted material.

  12. Impact of Mount St. Helens eruption on hydrology and water quality

    NASA Technical Reports Server (NTRS)

    Bonelli, J. E.; Taylor, H. E.; Klein, J. M.

    1982-01-01

    The 1980 eruptions of Mount St. Helens in southeast Washington resulted in a pronounced effect on the surface and ground water resources of the state. In response to the volcanic activity, the U.S. Geological Survey intensified statewide surface and ground water sampling programs to determine the nature and magnitude of the volcanic-induced variations. Streams to the east of Mount St. Helens received the major ash fallout. Chemical effects were best noted in smaller streams sampled 60 to 70 miles northeast of Mount St. Helens. The chemical variations observed were pronounced but short lived. Sulfate and chloride increases in anionic composition were prevalent immediately following the eruption; however, the original bicarbonate predominance was again attained within several days. Suspended iron and aluminum concentrations were similarly elevated during the period of greatest ash deposition (highest turbidity); however, the dissolved concentrations remained relatively constant. Depressions of pH were minor and short lived. Streams draining to the south, tributaries to the Columbia river, showed little observable changes in water chemistry. Streams draining to the west (Toutle river and its tributaries) were compositionally affected by the various volcanic activities. Chloride and sulfate anion percentage exceeded the bicarbonate percentage up to one month following the eruption period. Streams and lakes sampled in the immediate vicinity of Mount St. Helens, in addition to trace metals, contained organic compounds derived from decomposing wood buried in the debris deposits. This organic material may constitute a significant source of organic compounds to surface and ground water for some time to come.

  13. Eruptive history and geochronology of the Mount Baker volcanic field, Washington

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.; Lanphere, M.

    2003-01-01

    Mount Baker, a steaming, ice-mantled, andesitic stratovolcano, is the most conspicuous component of a multivent Quaternary volcanic field active almost continuously since 1.3 Ma. More than 70 packages of lava flows and ~110 dikes have been mapped, ???500 samples chemically analyzed, and ~80 K-Ar and 40Ar/39Ar ages determined. Principal components are (1) the ignimbrite-filled Kulshan caldera (1.15 Ma) and its precaldera and postcaldera rhyodacite lavas and dikes (1.29-0.99 Ma); (2)~60 intracaldera, hydrothermally altered, andesite-dacite dikes and pods-remnants of a substantial early-postcaldera volcanic center (1.1-0.6 Ma); (3) unaltered intracaldera andesite lavas and dikes, including those capping Ptarmigan and Lasiocarpa Ridges and Table Mountain (0.5-0.2 Ma); (4) the long-lived Chowder Ridge focus (1.29-0.1 Ma)-an andesite to rhyodacite eruptive complex now glacially reduced to ~50 dikes and remnants of ~10 lava flows; (5) Black Buttes stratocone, basaltic to dacitic, and several contemporaneous peripheral volcanoes (0.5-0.2 Ma); and (6) Mount Baker stratocone and contemporaneous peripheral volcanoes (0.1 Ma to Holocene). Glacial ice has influenced eruptions and amplified erosion throughout the lifetime of the volcanic field. Although more than half the material erupted has been eroded, liberal and conservative volume estimates for 77 increments of known age yield cumulative curves of volume erupted vs. time that indicate eruption rates in the range 0.17-0.43 km3/k.y. for major episodes and longterm background rates of 0.02-0.07 km3/k.y. Andesite and rhyodacite each make up nearly half of the 161 ?? 56 km3 of products erupted, whereas basalt and dacite represent only a few cubic kilometers, each representing 1%-3% the total. During the past 4 m.y., the principal magmatic focus has migrated stepwise 25 km southwestward, from the edge of the Chilliwack batholith to present-day Mount Baker.

  14. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    NASA Technical Reports Server (NTRS)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  15. Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Lanphere, Marvin A.

    2006-01-01

    Geologic mapping, K-Ar, and 40Ar/39Ar age determinations, supplemented by paleomagnetic measurements and geochemical data, are used to quantify the Quaternary volcanic history of the Crater Lake region in order to define processes and conditions that led to voluminous explosive eruptions. The Cascade arc volcano known as Mount Mazama collapsed during its climactic eruption of ∼50 km3 of mainly rhyodacitic magma ∼7700 yr ago to form Crater Lake caldera. The Mazama edifice was constructed on a Pleistocene silicic lava field, amidst monogenetic and shield volcanoes ranging from basalt to andesite similar to parental magmas for Mount Mazama. Between 420 ka and 35 ka, Mazama produced medium-K andesite and dacite in 2:1 proportion. The edifice was built in many episodes; some of the more voluminous occurred approximately coeval with volcanic pulses in the surrounding region, and some were possibly related to deglaciation following marine oxygen isotope stages (MIS) 12, 10, 8, 6, 5.2, and 2. Magmas as evolved as dacite erupted many times, commonly associated with or following voluminous andesite effusion. Establishment of the climactic magma chamber was under way when the first preclimactic rhyodacites vented ca. 27 ka. The silicic melt volume then grew incrementally at an average rate of 2.5 km3 k.y.−1 for nearly 20 k.y. The climactic eruption exhausted the rhyodacitic magma and brought up crystal-rich andesitic magma, mafic cumulate mush, and wall-rock granodiorite. Postcaldera volcanism produced 4 km3 of andesite during the first 200–500 yr after collapse, followed at ca. 4800 yr B.P. by 0.07 km3 of rhyodacite. The average eruption rate for all Mazama products was ∼0.4 km3 k.y.−1, but major edifice construction episodes had rates of ∼0.8 km3 k.y.−1. The long-term eruption rate for regional monogenetic and shield volcanoes was d∼0.07 km3 k.y.−1, but only ∼0.02 km3 k.y.−1 when the two major shields are excluded. Plutonic xenoliths and evidence for

  16. Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Stenchikov, Georgiy

    2017-11-01

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  17. Forecasts and predictions of eruptive activity at Mount St. Helens, USA: 1975-1984

    USGS Publications Warehouse

    Swanson, D.A.; Casadevall, T.J.; Dzurisin, D.; Holcomb, R.T.; Newhall, C.G.; Malone, S.D.; Weaver, C.S.

    1985-01-01

    Public statements about volcanic activity at Mount St. Helens include factual statements, forecasts, and predictions. A factual statement describes current conditions but does not anticipate future events. A forecast is a comparatively imprecise statement of the time, place, and nature of expected activity. A prediction is a comparatively precise statement of the time, place, and ideally, the nature and size of impending activity. A prediction usually covers a shorter time period than a forecast and is generally based dominantly on interpretations and measurements of ongoing processes and secondarily on a projection of past history. The three types of statements grade from one to another, and distinctions are sometimes arbitrary. Forecasts and predictions at Mount St. Helens became increasingly precise from 1975 to 1982. Stratigraphic studies led to a long-range forecast in 1975 of renewed eruptive activity at Mount St. Helens, possibly before the end of the century. On the basis of seismic, geodetic and geologic data, general forecasts for a landslide and eruption were issued in April 1980, before the catastrophic blast and landslide on 18 May 1980. All extrusions except two from June 1980 to the end of 1984 were predicted on the basis of integrated geophysical, geochemical, and geologic monitoring. The two extrusions that were not predicted were preceded by explosions that removed a substantial part of the dome, reducing confining pressure and essentially short-circuiting the normal precursors. ?? 1985.

  18. Field-trip guide to Mount Hood, Oregon, highlighting eruptive history and hazards

    USGS Publications Warehouse

    Scott, William E.; Gardner, Cynthia A.

    2017-06-22

    This guidebook describes stops of interest for a geological field trip around Mount Hood volcano. It was developed for the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon. The intent of this guidebook and accompanying contributions is to provide an overview of Mount Hood, including its chief geologic processes, magmatic system, eruptive history, local tectonics, and hazards, by visiting a variety of readily accessible localities. We also describe coeval, largely monogenetic, volcanoes in the region. Accompanying the field-trip guidebook are separately authored contributions that discuss in detail the Mount Hood magmatic system and its products and behavior (Kent and Koleszar, this volume); Mount Hood earthquakes and their relation to regional tectonics and the volcanic system (Thelen and Moran, this volume); and young surface faults cutting the broader Mount Hood area whose extent has come to light after acquisition of regional light detection and ranging coverage (Madin and others, this volume).The trip makes an approximately 175-mile (280-kilometer) clockwise loop around Mount Hood, starting and ending in Portland. The route heads east on Interstate 84 through the Columbia River Gorge National Scenic Area. The guidebook points out only a few conspicuous features of note in the gorge, but many other guides to the gorge are available. The route continues south on the Mount Hood National Scenic Byway on Oregon Route 35 following Hood River, and returns to Portland on U.S. Highway 26 following Sandy River. The route traverses rocks as old as the early Miocene Eagle Creek Formation and overlying Columbia River Basalt Group of middle Miocene age, but chiefly lava flows and clastic products of arc volcanism of late Miocene to Holocene age.

  19. Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion.

    PubMed

    Ferlito, Carmelo; Siewert, Jens

    2006-01-20

    We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment.

  20. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    USGS Publications Warehouse

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  1. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    NASA Astrophysics Data System (ADS)

    Banks, Norman G.; Koyanagi, Robert Y.; Sinton, John M.; Honma, Kenneth T.

    1984-10-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10°E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 × 10 6 m 3 in volume (75 × 10 6 m 3 of magma) on land and at least 70-100 × 60 6 m 3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in

  2. Mount St. Helens erupts again: activity from September 2004 through March 2005

    USGS Publications Warehouse

    Major, Jon J.; Scott, William E.; Driedger, Carolyn; Dzurisin, Dan

    2005-01-01

    Eruptive activity at Mount St. Helens captured the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. Over the next 6 years, episodic extrusions of lava built a large dome in the crater. From 1987 to 2004, Mount St. Helens returned to a period of relative quiet, interrupted by occasional, short-lived seismic swarms that lasted minutes to days, by months-to-yearslong increases in background seismicity that probably reflected replenishment of magma deep underground, and by minor steam explosions as late as 1991. During this period a new glacier grew in the crater and wrapped around and partly buried the lava dome. Although the volcano was relatively quiet, scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network continued to closely monitor it for signs of renewed activity.

  3. Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.; Fishman, Jack; Brackett, Vincent G.; Veiga, Robert E.; Nganga, Dominique; Minga, A.; Cros, Bernard; Butler, Carolyn F.; Fenn, Marta A.

    1994-01-01

    The large amount of sulfuric acid aerosol formed in the stratosphere by conversion of sulfur dioxide emitted by the eruption of Mount Pinatubo (15.14 deg N, 120.35 deg E) in the Philippines around June 15, 1991, has had a pronounced effect on lower stratospheric ozone in the tropics. Measurements of stratospheric ozone in the tropics using electrochemical concentration cell (ECC) sondes before and after the eruption and the airborne UV differential absorption lidar (DIAL) system after the eruption are compared with Stratospheric Aerosol and Gas Experiment II (SAGE II) measurements from several years before the eruption and ECC sonde measurements from the year prior to the eruption to determine the resulting changes. Ozone decreases of up to 33 % compared with SAGE II climatological values were found to be directly correlated with altitude regions of enhanced aerosol loading in the 16- to 28-km range. A maximum partial-column decrease of 29 +/- Dobson units (DU) was found over the 16- to 28-km range in September 1991 along with small increases (to 5.9 +/- 2 DU) from 28 to 31.5 km. A large decrease of ozone was also found at 4 deg to 8 deg S from May to August 1992, with a maximum decrease of 33 +/- 7 DU found above Brazzaville in July. Aerosol data form the visible channel of the advanced very high resolution radiometer (AVHRR) and the visible wavelength of the UV DIAL system were used to examine the relationship between aerosol (surface area) densities and ozone changes. The tropical stratospheric ozone changes we observed in 1991 and 1992 are likely be explained by a combination of dynamical (vertical transport) perturbations, radiative perturbations on ozone photochemistry, and heterogeneous chemistry.

  4. Timing of degassing and plagioclase growth in lavas erupted from Mount St. Helens, 2004-2005, from 210Po-210Pb-226Ra disequilibria: Chapter 37 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Reagan, Mark K.; Cooper, Kari M.; Pallister, John S.; Thornber, Carl R.; Wortel, Matthew; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Disequilibrium between 210Po, 210Pb, and 226Ra was measured on rocks and plagioclase mineral separates erupted during the first year of the ongoing eruption of Mount St. Helens. The purpose of this study was to monitor the volatile fluxing and crystal growth that occurred in the weeks, years, and decades leading up to eruption. Whole-rock samples were leached in dilute HCl to remove 210Po precipitated in open spaces. Before leaching, samples had variable initial (210Po) values, whereas after leaching, the groundmasses of nearly all juvenile samples were found to have had (210Po) ≈ 0 when they erupted. Thus, most samples degassed 210Po both before and after the magmas switched from open- to closed-system degassing. All juvenile samples have (210Pb)/(226Ra) ratios within 2 δ of equilibrium, suggesting that the magmas involved in the ongoing eruption did not have strong, persistent fluxes of 222Rn in or out of magmas during the decades and years leading to eruption. These equilibrium values also require a period of at least a century after magma generation and the last significant differentiation of the Mount St. Helens dacites. Despite this, the elevated (210Pb)/(226Ra) value measured in a plagioclase mineral separate from lava erupted in 2004 suggests that a significant proportion of this plagioclase grew within a few decades of eruption. The combined dataset suggests that for most 2004-5 lavas, the last stage of open-system degassing of the dacite magmas at Mount St. Helens is confined to the period between 1-2 years and 1-2 weeks before eruption, whereas plagioclase large enough to be included in the mineral separate grew around the time of the 1980s eruption or earlier.

  5. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A.

    USGS Publications Warehouse

    Bacon, C.R.

    1983-01-01

    New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber ??? 7000 yr B.P. The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone ??? 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation ??? 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until ??? 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between ??? 22,000 and ??? 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is ??? 25,000 yr old. These relatively

  6. Ash loading and insolation at Hanford, Washington during and after the eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Laulainen, N. S.

    1982-01-01

    The effects of volcanic ash suspended in the atmosphere on the incident solar radiation was monitored at the Hanford Meteorological Station (HMS) subsequent to the major eruption of Mount St. Helens on May 18, 1980. Passage of the ash plume over Hanford resulted in a very dramatic decrease of solar radiation intensity to zero. A reduction in visibility to less than 1 km was observed, as great quantities of ash fell out of the plume onto the ground. Ash loading in the atmosphere remained very high for several days following the eruption, primarily as a result of resuspension from the surface. Visibilities remained low (2 to 8 km) during this period. Estimates of atmospheric turbidity were made from the ratio of diffuse-to-direct solar radiation; these turbidities were used to estimate extinction along a horizontal path, a quantity which can be related to visibility. Comparisons of observed and estimated visibilities were very good, in spite of the rather coarse approximations used in the estimates. Atmospheric clarity and visibility improved to near pre-eruption conditions following a period of rain showers. The diffuse-to-direct ratio of solar radiation provided a useful index for estimating volcanic ash loading of the atmosphere.

  7. Dispersion of the Volcanic Sulfate Cloud from the Mount Pinatubo Eruption

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Colarco, Peter R.; Newman, Paul A.

    2012-01-01

    We simulate the transport of the volcanic cloud from the 1991 eruption of Mount Pinatubo with the GEOS-5 general circulation model. Our simulations are in good agreement with observational data. We tested the importance of initial condition corresponding to the specific meteorological situation at the time of the eruption by employing reanalysis from MERRA. We found no significant difference in the transport of the cloud. We show how the inclusion of the interaction between volcanic sulfate aerosol and radiation is essential for a reliable simulation of the transport of the volcanic cloud. The absorption of long wave radiation by the volcanic sulfate induces a rising of the volcanic cloud up to the middle stratosphere, combined with divergent motion from the latitude of the eruption to the tropics. Our simulations indicate that the cloud diffuses to the northern hemisphere through a lower stratospheric pathway, and to mid- and high latitudes of the southern hemisphere through a middle stratospheric pathway, centered at about 30 hPa. The direction of the middle stratospheric pathway depends on the season. We did not detect any significant change of the mixing between tropics and mid- and high latitudes in the southern hemisphere.

  8. Temporal changes in stress preceding the 2004-2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Lehto, H.L.; Roman, D.C.; Moran, S.C.

    2010-01-01

    The 2004-2008 eruption of Mount St. Helens (MSH), Washington, was preceded by a swarm of shallow volcano-tectonic earthquakes (VTs) that began on September 23, 2004. We calculated locations and fault-plane solutions (FPS) for shallow VTs recorded during a background period (January 1999 to July 2004) and during the early vent-clearing phase (September 23 to 29, 2004) of the 2004-2008 eruption. FPS show normal and strike-slip faulting during the background period and on September 23; strike-slip and reverse faulting on September 24; and a mixture of strike-slip, reverse, and normal faulting on September 25-29. The orientation of ??1 beneath MSH, as estimated from stress tensor inversions, was found to be sub-horizontal for all periods and oriented NE-SW during the background period, NW-SE on September 24, and NE-SW on September 25-29. We suggest that the ephemeral ~90?? change in ??1 orientation was due to intrusion and inflation of a NE-SW-oriented dike in the shallow crust prior to the eruption onset. ?? 2010 Elsevier B.V.

  9. Airborne thermal infrared imaging of the 2004-2005 eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Vallance, J. W.; Logan, M.; Wessels, R.; Ramsey, M.

    2005-12-01

    A helicopter-mounted forward-looking infrared imaging radiometer (FLIR) documented the explosive and effusive activity at Mount St. Helens during the 2004-2005 eruption. A gyrostabilzed gimbal controlled by a crew member houses the FLIR radiometer and an optical video camera attached at the lower front of the helicopter. Since October 1, 2004 the system has provided an unprecedented data set of thermal and video dome-growth observations. Flights were conducted as frequently as twice daily during the initial month of the eruption (when changes in the crater and dome occurred rapidly), and have been continued on a tri-weekly basis during the period of sustained dome growth. As with any new technology, the routine use of FLIR images to aid in volcano monitoring has been a learning experience in terms of observation strategy and data interpretation. Some of the unique information that has been derived from these data to date include: 1) Rapid identification of the phreatic nature of the early explosive phase; 2) Observation of faulting and associated heat flow during times of large scale deformation; 3) Venting of hot gas through a short lived crater lake, indicative of a shallow magma source; 4) Increased heat flow of the crater floor prior to the initial dome extrusion; 5) Confirmation of new magma reaching the surface; 6) Identification of the source of active lava extrusion, dome collapse, and block and ash flows. Temperatures vary from ambient, in areas insulated by fault gouge and talus produced during extrusion, to as high as 500-740 degrees C in regions of active extrusion, collapse, and fracturing. This temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques as such features are sub-pixel size in satellite images.

  10. A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Mount St. Helens began a dome-building eruption in September 2004 after nearly two decades of quiescence. Dome growth was initially robust, became more sluggish with time, and ceased completely in late January 2008. The volcano has been quiet again since January 2008. Professional Paper 1750 describes the first 1 1/2 years of this eruptive activity, chiefly from September 2004 until December 2005. Its 37 chapters contain contributions of 87 authors from 23 institutions, including the U.S. Geological Survey, Forest Service, many universities, and local and State emergency management agencies. Chapter topics range widely - from seismology, geology, geodesy, gas geochemistry, and petrology to the human endeavor required for managing the public volcanic lands and distributing information during the hectic early days of a renewed eruption. In PDF format, the book may be downloaded in its entirety or by its topical sections, each section including a few prefatory paragraphs that describe the general findings, recurrent themes, and, in some cases, the unanswered questions that arise repeatedly. Those readers who prefer downloading the smaller files of only a chapter or two have this option available as well. Readers are directed to chapter 1 for a general overview of the eruption and the manner in which different chapters build our knowledge of events. More detailed summaries for specific topics can be found in chapter 2 (seismology), chapter 9 (geology), chapter 14 (deformation), chapter 26 (gas geochemistry), and chapter 30 (petrology). The printed version of the book may be purchased as a hardback weighty tome (856 printed pages) that includes a DVD replete with the complete online version, including all chapters and several additional appendixes not in the printed book.

  11. Constraints and conundrums resulting from ground-deformation measurements made during the 2004-2005 dome-building eruption of Mount St. Helens, Washington: Chapter 14 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Dzurisin, Daniel; Lisowski, Michael; Poland, Michael P.; Sherrod, David R.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Lack of precursory inflation suggests that the volcano was poised to erupt magma already stored in a crustal reservoir when JRO1 was installed in 1997. Trilateration and campaign GPS data indicate surface dilatation, presumably caused by reservoir expansion between 1982 and 1991, but no measurable deformation between 1991 and 2003. We conclude that all three of the traditionally reliable eruption precursors (seismicity, ground deformation, and volcanic gas emission) failed to provide warning that an eruption was imminent until a few days before a visible welt appeared at the surface--a situation reminiscent of the 1980 north-flank bulge at Mount St. Helens.

  12. Three-Dimensional Modeling of Mount Etna Volcano: Volume Assessment, Trend of Eruption Rates, and Geodynamic Significance

    NASA Astrophysics Data System (ADS)

    Barreca, Giovanni; Branca, Stefano; Monaco, Carmelo

    2018-03-01

    3-D modeling of Mount Etna, the largest and most active volcano in Europe, has for the first time enabled acquiring new information on the volumes of products emitted during the volcanic phases that have formed Mount Etna and particularly during the last 60 ka, an issue previously not fully addressed. Volumes emitted over time allow determining the trend of eruption rates during the volcano's lifetime, also highlighting a drastic increase of emitted products in the last 15 ka. The comparison of Mount Etna's eruption rates with those of other volcanic systems in different geodynamic frameworks worldwide revealed that since 60 ka ago, eruption rates have reached a value near to that of oceanic-arc volcanic systems, although Mount Etna is considered a continental rift strato-volcano. This finding agrees well with previous studies on a possible transition of Mount Etna's magmatic source from plume-related to island-arc related. As suggested by tomographic studies, trench-parallel breakoff of the Ionian slab has occurred north of Mount Etna. Slab gateway formation right between the Aeolian magmatic province and the Mount Etna area probably induced a previously softened and fluid-enriched suprasubduction mantle wedge to flow toward the volcano with consequent magmatic source mixing.

  13. Forward scattering and backscattering of solar radiation by the stratospheric limb after Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Ackerman, M.; Lippens, C.

    1982-01-01

    Stratospheric limb radiance profiles versus altitude of closest approach of the line of sight to the Earth's surface have been measured before and after the Mount St. Helens eruptions by means of photographs taken from a Sun-oriented balloon gondola floating above 35 km altitude over France. Preliminary data were reported for flights in October 1979 and in May and June 1980. The radiance integrated along the line of sight as in-situ radiance (R) can be derived taking into account absorption by ozone and air. The onion peeling inversion method was used to derive the vertical radiance (R) profiles respectively. The values of R were determined in the solar azimuth. The solar elevation angles are chosen larger for the backscattering observation than for the forward scattering observation to deal with as similar illumination conditions as possible despite the Earth's sphericity.

  14. Gaseous constituents in the plume from eruptions of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Condon, E. P.; Ohara, D.

    1981-01-01

    Measurements in the stratosphere of gaseous constituents in the plume of Mount St. Helens were obtained during five flights of the NASA U-2 aircraft between 19 May and 17 June 1980. Mixing ratios from gas chromatographic measurements on samples acquired about 24 hours after the initial eruption show considerable enhancement over nonvolcanic concentrations for sulfur dioxide (more than 1000 times), methyl chloride (about 10 times), and carbon disulfide (more than 3 times). The mixing ratio of carbonyl sulfide was comparable to nonvolcanic mixing ratios although 3 days later it was enhanced two to three times. Ion chromatography measurements on water-soluble constituents are also reported. Very large concentrations of chloride, nitrate, and sulfate ions were measured, implying large mixing ratios for the water-soluble gaseous constituents from which the anions are derived. Measurements of radon-222 present in the plume are also reported.

  15. Chronology and pyroclastic stratigraphy of the May 18, 1980, eruption of Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Criswell, C. William

    1987-01-01

    The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.

  16. Precise relocation of earthquakes following the 15 June 1991 eruption of Mount Pinatubo (Philippines)

    USGS Publications Warehouse

    Battaglia, J.; Thurber, C.H.; Got, J.-L.; Rowe, C.A.; White, R.A.

    2004-01-01

    The 15 June 1991 climactic eruption of Mount Pinatubo (Philippines) was followed by intense seismicity that remained at a high level for several months. We located 10,839 events recorded between 1 July and mid-December 1991. In contrast to the preeruptive seismicity which was focused in two groups below the summit area, posteruptive events were widely distributed below and around the volcano. The classification of the events indicates the presence of several large multiplets, and the application of relative relocation techniques to the similar events by calculating high-precision delays between traces outlines a number of clear seismogenic structures. We used different methods to confirm the validity of our results; these tests indicate that reliable features can be detected with a small monitoring network. While the main cluster of activity can be attributed to an intrusive process starting from below the 15 June crater, the volcanic origin of the seismic activity in the other areas is more difficult to establish. Away from the summit, relocations define streaks or planes which are oriented predominantly southwest-northeast, with in several cases the presence of northwest-southeast conjugate structures. Most of the composite focal mechanisms that we could determine indicate predominantly strike-slip, right-lateral faulting. Our results indicate that most of the seismicity that occurred after the 15 June eruption is related to the east-west regional compressional stress field related to the subduction. We suggest that the regional stress field induces seismicity along new or preexisting faults in the medium surrounding the volcano where the stress field was locally disturbed by the volcanic eruption. Copyright 2004 by the American Geophysical Union.

  17. The 1980 eruptions of Mount St. Helens - Physical and chemical processes in the stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Hamill, P.; Keesee, R. G.

    1983-01-01

    The large and diverse set of observational data collected in the high-altitude plumes of the May 18, May 25, and June 13, 1980 eruptions is organized and analyzed with a view to discerning the processes at work. The data serve to guide and constrain detailed model simulations of the volcanic clouds. For this purpose, use is made of a comprehensive one-dimensional model of stratospheric sulfate aerosols, sulfur precursor gases, and volcanic ash and dust. The model takes into account gas-phase and condensed-phase (heterogeneous) chemistry in the clouds, aerosol nucleation and growth, and cloud expansion. Computational results are presented for the time histories of the gaseous species concentrations, aerosol size distributions, and ash burdens of the eruption clouds. Also investigated are the long-term buildup of stratospheric aerosols in the Northern Hemisphere and the persistent effects of injected chlorine and water vapor on stratospheric ozone. It is concluded that SO2, water vapor, and ash were probably the most important substances injected into the stratosphere by the Mount St. Helens volcano, both with respect to their widespread effects on composition and their effect on climate.

  18. Changes in Seismic Velocity During the 2004 - 2008 Eruption of Mount St. Helens Volcano

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J. S.; Moran, S. C.; Thelen, W. A.

    2013-12-01

    Mount St. Helens (MSH) effusively erupted in late 2004, following an 18-year quiescence. Many swarms of repeating earthquakes accompanied the extrusion and in some cases the waveforms from these earthquakes evolved slowly, possibly reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify these changes in terms of small (usually <1%) changes in seismic velocity structure by determining how relatively condensed or stretched the coda is between two similar earthquakes. We then utilize several hundred distinct families of repeating earthquakes at once to create a continuous function of velocity change observed at any station in the seismic network. The rate of earthquakes allows us to track these changes on a daily or even hourly time scale. Following years of no seismic velocity changes larger than those due to climatic processes (tenths of a percent), we observed decreases in seismic velocity of >1% coincident with the onset of increased earthquake activity beginning September 23, 2004. These changes are largest near the summit of the volcano, and likely related to shallow deformation as magma first worked its way to the surface. Changes in velocity are often attributed to deformation, especially volumetric strain and the opening or closing of cracks, but also with nonlinear responses to ground shaking and fluid intrusion. We compare velocity changes across the eruption with other available observations, such as deformation (e.g., GPS, tilt, photogrammetry), to better constrain the relationships between velocity change and its possible causes.

  19. Leaching characteristics of ash from the May 18, 1980, eruption of Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Smith, David Burl; Zielinski, Robert A.; Taylor, Howard E.

    1982-01-01

    Leaching of freshly erupted air-fall ash, unaffected by rain, from the May 18, 1.980,eruption of Mount St. Helens volcano, Washington, shows that Ca 2+, Na+, Mg+, SO4 2-, and Cl- are the predominant chemical species released on first exposure of the ash to water. Extremely high correlation of Ca with SO4 and Na with Cl in water leachates suggests the presence of CaSO4 and NaCl salts on the ash. The amount of water soluble material on ash increases with distance from source and with the weight fraction of small (less than 63 micrometers) ash particles of high-surface area. This suggests that surface reactions such as adsorption are responsible for concentrating the soluble material. CaSO4, NaCl, and other salts are probably formed as microscopic crystals in the high-temperature core of the eruption column and are then adsorbed by silicate ash particles. The environmentally important elements Zn, Cu, Cd, F, Pb, and Ba are released by a water leach in concentrations which could pose short-term hazards to some forms of aquatic life. However, calculated concentrations are based on a water-to-ash ratio of 4:1 or less, which is probably an underestimation of the regionally operative ratio. A subsequent leach of ash by warm alkaline solution shows dramatic increases in the amount of dissolved SiO2, U, and V, which are probably caused by increased dissolution of the glassy component of ash. Glass dissolution by alkaline ground water is a mechanism for providing these three elements to sedimentary traps where they may co-accumulate as uraniferous silica or U-V minerals. Leaching characteristics of ash from Mount St. Helens are comparable to characteristics of ash of similar composition from volcanoes in Guatemala. Ashes from each locality show similar ions predominating for a given leachate and similar fractions of a particular element in the ash removed on contact with the leach solution.

  20. Mount St. Helens: biological responses following the 1980 eruptions — an indexed bibliography and research abstracts (1980 - 93).

    Treesearch

    Peter M. Frenzen; Anne M. Delano

    1994-01-01

    The May 18, 1980, eruption of Mount St. Helens in Washington is possibly the best documented geological event in history. The bibliography displays the results of 13 years of biological and related research in a convenient, indexed format. Our intent is to facilitate collaboration between scientists contemplating new research initiatives and experienced investigators...

  1. Observations of the eruptions of July 22 and August 7, 1980, at Mount St. Helens, Washington

    USGS Publications Warehouse

    Hoblitt, Richard P.

    1986-01-01

    The explosive eruptions of July 22 and August 7, 1980, at Mount St. Helens, Wash., both included multiple eruptive pulses. The beginnings of three of the pulses-two on July 22 and one on August 7-were witnessed and photographed. Each of these three began with a fountain of gases and pyroclasts that collapsed around the vent and generated a pyroclastic density flow. Significant vertical-eruption columns developed only after the density flows were generated. This behavior is attributable to either an increase in the gas content of the eruption jet or a decrease in vent radius with time. An increase in the gas content may have occurred as the vent was cleared (by expulsion of a plug of pyroclasts) or as the eruption began to tap deeper, gas-rich magma after first expelling the upper, gas-depleted part of the magma body. An effective decrease of the vent radius with time may have occurred as the eruption originated from progressively deeper levels in the vent. All of these processes-vent clearing; tapping of deeper, gas-rich magma; and effective decrease in vent radius-probably operated to some extent. A 'relief-valve' mechanism is proposed here to account for the occurrence of multiple eruptive pulses. This mechanism requires that the conduit above the magma body be filled with a bed of pyroclasts, and that the vesiculation rate in the magma body be inadequate to sustain continuous eruption. During a repose interval, vesiculation of the magma body would cause gas to flow upward through the bed of pyroclasts. If the rate at which the magma produced gas exceeded the rate at which gas escaped to the atmosphere, the vertical pressure difference across the bed of pyroclastic debris would increase, as would the gas-flow rate. Eventually a gas-flow rate would be achieved that would suddenly diminish the ability of the bed to maintain a pressure difference between the magma body and the atmosphere. The bed of pyroclasts would then be expelled (that is, the relief valve would

  2. Hydrometeor-enhanced tephra sedimentation: Constraints from the 18 May 1980 eruption of Mount St. Helens

    USGS Publications Warehouse

    Durant, A.J.; Rose, William I.; Sarna-Wojcicki, A. M.; Carey, Steven; Volentik, A.C.M.

    2009-01-01

    Uncertainty remains on the origin of distal mass deposition maxima observed in many recent tephra fall deposits. In this study the link between ash aggregation and the formation of distal mass deposition maxima is investigated through reanalysis of tephra fallout from the Mount St. Helens 18 May 1980 (MSH80) eruption. In addition, we collate all the data needed to model distal ash sedimentation from the MSH80 eruption cloud. Four particle size subpopulations were present in distal fallout with modes at 2.2 ??, 4.2 ??, 5.9 ??, and 8.3 ??. Settling rates of the coarsest subpopulation closely matched predicted single-particle terminal fall velocities. Sedimentation of particles <100 ??m was greatly enhanced, predominantly through aggregation of a particle subpopulation with modal diameter 5.9 ?? 0.2 ?? (19 ?? 3 ??m). Mammatus on the MSH80 cloud provided a mechanism to transport very fine ash particles, with predicted atmospheric lifetimes of days to weeks, from the upper troposphere to the surface in a matter of hours. In this mechanism, ash particles initiate ice hydrometeor formation high in the troposphere. Subsequently, the volcanic cloud rapidly subsides as mammatus develop from increased particle loading and cloud base sublimation. Rapid fallout occurs as the cloud passes through the melting level in a process analogous to snowflake aggregation. Aggregates sediment en masse and form the distal mass deposition maxima observed in many recent volcanic ash fall deposits. This work provides a data resource that will facilitate tephra sedimentation modeling and allow model intercomparisons. Copyright 2009 by the American Geophysical Union.

  3. Source mechanisms of persistent shallow earthquakes during eruptive and non-eruptive periods between 1981 and 2011 at Mount St. Helens, Washington

    USGS Publications Warehouse

    Lehto, Heather L.; Roman, Diana C.; Moran, Seth C.

    2013-01-01

    Shallow seismicity between 0 and 3-km depth has persisted at Mount St. Helens, Washington (MSH) during both eruptive and non-eruptive periods for at least the past thirty years. In this study we investigate the source mechanisms of shallow volcano-tectonic (VT) earthquakes at MSH by calculating high-quality hypocenter locations and fault plane solutions (FPS) for all VT events recorded during two eruptive periods (1981–1986 and 2004–2008) and two non-eruptive periods (1987–2004 and 2008–2011). FPS show a mixture of normal, reverse, and strike-slip faulting during all periods, with a sharp increase in strike-slip faulting observed in 1987–1997 and an increase in normal faulting in 1998–2004. FPS P-axis orientations show a ~ 90° rotation with respect to regional σ1 (N23°E) during 1981–1986 and 2004–2008, bimodal orientations (~ N-S and ~ E-W) during 1987–2004, and bimodal orientations at ~ N-E and ~ S-W from 2008–2011. We interpret these orientations to likely be due to pressurization accompanying the shallow intrusion and subsequent eruption of magma as domes during 1981–1986 and 2004–2008 and the buildup of pore pressure beneath a seismogenic volume (located at 0–1 km) with a smaller component due to the buildup of tectonic forces during 1987–2004 and 2008–2011.

  4. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    USGS Publications Warehouse

    Klug, C.; Cashman, K.; Bacon, C.

    2002-01-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by

  5. Mount St. Helens a decade after the 1980 eruptions: magmatic models, chemical cycles, and a revised hazards assessment

    USGS Publications Warehouse

    Pallister, J.S.; Hoblitt, R.P.; Crandell, D.R.; Mullineaux, D.R.

    1992-01-01

    Available geophysical and geologic data provide a simplified model of the current magmatic plumbing system of Mount St. Helens (MSH). This model and new geochemical data are the basis for the revised hazards assessment presented here. The assessment is weighted by the style of eruptions and the chemistry of magmas erupted during the past 500 years, the interval for which the most detailed stratigraphic and geochemical data are available. This interval includes the Kalama (A. D. 1480-1770s?), Goat Rocks (A.D. 1800-1857), and current eruptive periods. In each of these periods, silica content decreased, then increased. The Kalama is a large amplitude chemical cycle (SiO2: 57%-67%), produced by mixing of arc dacite, which is depleted in high field-strength and incompatible elements, with enriched (OIB-like) basalt. The Goat Rocks and current cycles are of small amplitude (SiO2: 61%-64% and 62%-65%) and are related to the fluid dynamics of magma withdrawal from a zoned reservoir. The cyclic behavior is used to forecast future activity. The 1980-1986 chemical cycle, and consequently the current eruptive period, appears to be virtually complete. This inference is supported by the progressively decreasing volumes and volatile contents of magma erupted since 1980, both changes that suggest a decreasing potential for a major explosive eruption in the near future. However, recent changes in seismicity and a series of small gas-release explosions (beginning in late 1989 and accompanied by eruption of a minor fraction of relatively low-silica tephra on 6 January and 5 November 1990) suggest that the current eruptive period may continue to produce small explosions and that a small amount of magma may still be present within the conduit. The gas-release explosions occur without warning and pose a continuing hazard, especially in the crater area. An eruption as large or larger than that of 18 May 1980 (???0.5 km3 dense-rock equivalent) probably will occur only if magma rises from

  6. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: Summit flows, tephra, and caldera collapse

    USGS Publications Warehouse

    Harpel, C.J.; Kyle, P.R.; Esser, R.P.; McIntosh, W.C.; Caldwell, D.A.

    2004-01-01

    Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ?? 8 to 1 ?? 5 ka. Dated pre-caldera summit flows display two age populations at 95 ?? 9 to 76 ?? 4 ka and 27 ?? 3 to 21 ??4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ?? 5 and 15 ?? 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ?? 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka. ?? Springer-Verlag 2004.

  7. Eruptive history and petrology of Mount Drum volcano, Wrangell Mountains, Alaska

    USGS Publications Warehouse

    Richter, D.H.; Moll-Stalcup, E. J.; Miller, T.P.; Lanphere, M.A.; Dalrymple, G.B.; Smith, R.L.

    1994-01-01

    Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80x200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occured in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and

  8. The December 2015 Mount Etna eruption: An analysis of inflation/deflation phases and faulting processes

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Jin, Shuanggen; Pulvirenti, Fabio; Scaltrito, Antonio

    2017-06-01

    During the first days of December 2015, there were four paroxysmal events at the ;Voragine; crater on Mount Etna, which were among the most violent observed during the last two decades. A few days after the ;Voragine; paroxysms, the Pernicana - Provenzana fault system, located near the crater area, underwent an intense seismic swarm with a maximum ;local; magnitude ML of 3.6. This paper investigates the relationship between the eruptive phenomenon and the faulting process in terms of Coulomb stress changes. The recorded seismicity is compatible with a multicausal stress redistribution inside the volcano edifice, occurring after the four paroxysmal episodes that interrupted the usual trend of inflation observed at Mt. Etna. The recorded seismicity falls within the framework of a complex chain of various and intercorrelated processes that started with the inflation preparing the ;Voragine; magmatic activity. This was followed with the rapid deflation of the volcano edifice during the paroxysmal episodes. We determined that the recorded deflation was not the direct cause of the seismic swarm. In fact, the associated Coulomb stress change, in the area of seismic swarm, was of about -1 [bar]. Instead, the fast deflation caused the rarely observed inversion of dislocation in the eastern flank at the same time as intense hydrothermal activity that, consequently, underwent an alteration. This process probably reduced the friction along the fault system. Then, the new phase of inflation, observed at the end of the magmatic activity, triggered the faulting processes.

  9. Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo

    USGS Publications Warehouse

    Hayes, S.K.; Montgomery, D.R.; Newhall, C.G.

    2002-01-01

    The 1991 eruption of Mount Pinatubo generated extreme sediment yields from watersheds heavily impacted by pyroclastic flows. Bedload sampling in the Pasig-Potrero River, one of the most heavily impacted rivers, revealed negligible critical shear stress and very high transport rates that reflected an essentially unlimited sediment supply and the enhanced mobility of particles moving over a smooth, fine-grained bed. Dimensionless bedload transport rates in the Pasig-Potrero River differed substantially from those previously reported for rivers in temperate regions for the same dimensionless shear stress, but were similar to rates identified in rivers on other volcanoes and ephemeral streams in arid environments. The similarity between volcanically disturbed and arid rivers appears to arise from the lack of an armored bed surface due to very high relative sediment supply; in arid rivers, this is attributed to a flashy hydrograph, whereas volcanically disturbed rivers lack armoring due to sustained high rates of sediment delivery. This work suggests that the increases in sediment supply accompanying massive disturbance induce morphologic and hydrologic changes that temporarily enhance transport efficiency until the watershed recovers and sediment supply is reduced. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Estimation of ballistic block landing energy during 2014 Mount Ontake eruption

    NASA Astrophysics Data System (ADS)

    Tsunematsu, Kae; Ishimine, Yasuhiro; Kaneko, Takayuki; Yoshimoto, Mitsuhiro; Fujii, Toshitsugu; Yamaoka, Koshun

    2016-05-01

    The 2014 Mount Ontake eruption started just before noon on September 27, 2014. It killed 58 people, and five are still missing (as of January 1, 2016). The casualties were mainly caused by the impact of ballistic blocks around the summit area. It is necessary to know the magnitude of the block velocity and energy to construct a hazard map of ballistic projectiles and design effective shelters and mountain huts. The ejection velocities of the ballistic projectiles were estimated by comparing the observed distribution of the ballistic impact craters on the ground with simulated distributions of landing positions under various sets of conditions. A three-dimensional numerical multiparticle ballistic model adapted to account for topographic effect was used to estimate the ejection angles. From these simulations, we have obtained an ejection angle of γ = 20° from vertical to horizontal and α = 20° from north to east. With these ejection angle conditions, the ejection speed was estimated to be between 145 and 185 m/s for a previously obtained range of drag coefficients of 0.62-1.01. The order of magnitude of the mean landing energy obtained using our numerical simulation was 104 J.

  11. The case of the 1981 eruption of Mount Etna: An example of very fast moving lava flows

    NASA Astrophysics Data System (ADS)

    Coltelli, Mauro; Marsella, Maria; Proietti, Cristina; Scifoni, Silvia

    2012-01-01

    Mount Etna despite being an extremely active volcano which, during the last 400 years, has produced many lava flow flank eruptions has rarely threatened or damaged populated areas. The reconstruction of the temporal evolution of potentially hazardous flank eruptions represents a useful contribution to reducing the impact of future eruptions by and analyzing actions to be taken for protecting sensitive areas. In this work, we quantitatively reconstructed the evolution of the 1981 lava flow field of Mt Etna, which threatened the town of Randazzo. This reconstruction was used to evaluate the cumulated volume, the time averaged discharge rate trend and to estimate its maximum value. The analysis was conducted by comparing pre- and post-eruption topographic surfaces, extracted by processing historical photogrammetric data sets and by utilizing the eruption chronology to establish the lava flow front positions at different times. An unusually high discharge rate (for Etna) of 640 m3/s was obtained, which corresponds well with the very fast advance rate observed for the main lava flow. A comparison with other volcanoes, presenting high discharge rate, was proposed for finding a clue to unveil the 1981 Etna eruptive mechanism. A model was presented to explain the high discharge rate, which includes an additional contribution to the lava discharge caused by the interception of a shallow magma reservoir by a dike rising from depth and the subsequent emptying of the reservoir.

  12. Database for geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington

    USGS Publications Warehouse

    Furze, Andrew J.; Bard, Joseph A.; Robinson, Joel; Ramsey, David W.; Kuntz, Mel A.; Rowley, Peter D.; MacLeod, Norman S.

    2017-10-31

    This publication releases digital versions of the geologic maps in U.S. Geological Survey Miscellaneous Investigations Map 1950 (USGS I-1950), “Geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington” (Kuntz, Rowley, and MacLeod, 1990) (https://pubs.er.usgs.gov/publication/i1950). The 1980 Mount St. Helens eruptions on May 18, May 25, June 12, July 22, August 7, and October 16–18 produced pyroclastic-flow and related deposits. The distribution and morphology of these deposits, as determined from extensive field studies and examination of vertical aerial photographs, are shown on four maps in I-1950 (maps A–D) on two map sheets. Map A shows the May 18, May 25, and June 12 deposits; map B shows the July 22 deposits; map C shows the August 7 deposits; and map D shows the October 16–18 deposits. No digital geospatial versions of the geologic data were made available at the time of publication of the original maps. This data release consists of attributed vector features, data tables, and the cropped and georeferenced scans from which the features were digitized, in order to enable visualization and analysis of these data in GIS software. This data release enables users to digitally re-create the maps and description of map units of USGS I-1950; map sheet 1 includes text sections (Introduction, Physiography of Mount St. Helens at the time of the 1980 eruptions, Processes of the 1980 eruptions, Deposits of the 1980 eruptions, Limitations of the maps, Preparation of the maps, and References cited) and associated tables and figures that are not included in this data release.

  13. Managing public and media response to a reawakening volcano: lessons from the 2004 eruptive activity of Mount St. Helens: Chapter 23 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Frenzen, Peter M.; Matarrese, Michael T.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Volcanic eruptions and other infrequent, large-scale natural disturbances pose challenges and opportunities for public-land managers. In the days and weeks preceding an eruption, there can be considerable uncertainty surrounding the magnitude and areal extent of eruptive effects. At the same time, public and media interest in viewing developing events is high and concern for public safety on the part of local land managers and public safety officials is elevated. Land managers and collaborating Federal, State, and local officials must decide whether evacuations or restrictions to public access are necessary, the appropriate level of advance preparation, and how best to coordinate between overlapping jurisdictions. In the absence of a formal Federal or State emergency declaration, there is generally no identified source of supplemental funding for emergency-response preparation or managing extraordinary public and media response to developing events. In this chapter, we examine responses to escalating events that preceded the 2004 Mount St. Helens eruption and changes in public perception during the extended period of the largely nonexplosive, dome-building eruption that followed. Lessons learned include the importance of maintaining up-to-date emergency-response plans, cultivating close working relationships with collaborating agencies, and utilizing an organized response framework that incorporates clearly defined roles and responsibilities and effective communication strategies.

  14. Modeling the dynamics of a phreatic eruption based on a tilt observation: Barrier breakage leading to the 2014 eruption of Mount Ontake, Japan

    NASA Astrophysics Data System (ADS)

    Maeda, Yuta; Kato, Aitaro; Yamanaka, Yoshiko

    2017-02-01

    Although phreatic eruptions are common volcanic phenomena that sometimes result in significant disasters, their dynamics are poorly understood. In this study, we address the dynamics of the phreatic eruption of Mount Ontake, Japan, in 2014 based on analyses of a tilt change observed immediately (450 s) before the eruption onset. We conducted two sets of analysis: a waveform inversion and a modified phase-space analysis. Our waveform inversion of the tilt signal points to a vertical tensile crack at a depth of 1100 m. Our modified phase-space analysis suggests that the tilt change was at first a linear function in time that then switched to exponential growth. We constructed simple analytical models to explain these temporal functions. The linear function was explained by the boiling of underground water controlled by a constant heat supply from a greater depth. The exponential function was explained by the decompression-induced boiling of water and the upward Darcy flow of the water vapor through a permeable region of small cracks that were newly created in response to ongoing boiling. We interpret that this region was intact prior to the start of the tilt change, and thus, it has acted as a permeability barrier for the upward migration of fluids; it was a breakage of this barrier that led to the eruption.

  15. Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980-88

    NASA Astrophysics Data System (ADS)

    Gerlach, T. M.; McGee, K. A.

    1994-12-01

    SO2 from explosive volcanism can cause significant climatic and atmospheric impacts, but the source of the sulfur is controversial. Total ozone mapping spectrometer (TOMS), correlation spectrometer (COSPEC), and ash leachate data for Mount St. Helens from the time of the climactic eruption on 18 May 1980 to the final stages of non-explosive degassing in 1988 give a total SO2 emission of 2 Mt. COSPEC data show a sharp drop in emission rate that was apparently controlled by a decreasing rate of magma supply. A total SO2 emission of only 0.08 Mt is estimated from melt inclusion data and the conventional assumption that the main sulfur source was pre-eruption melt; commonly invoked sources of 'excess sulfur' (anhydrite decomposition, basaltic magma, and degassing of non-erupted magma) are unlikely in this case. Thus melt inclusions may significantly underestimate SO2 emissions and impacts of explosive volcanism on climate and the atmosphere. Measured CO2 emissions, together with the H2O content of melt inclusions and experimental solubility data, indicate the Mount St. Helens dacite was vapor-saturated at depth prior to ascent and suggest that a vapor phase was the main source of sulfur for the 2-Mt of SO2. A vapor source is consistent with experimental studies on the Mount St. Helens dacite and removes the need for a much debated shallow magma body.

  16. Chronology, morphology and stratigraphy of pumiceous pyroclastic-flow (ignimbrite) deposits from the eruption of Mount St. Helens on 18 May 1983

    NASA Technical Reports Server (NTRS)

    Criswell, C. W.; Elston, W. E.

    1984-01-01

    Between 1217 and 1620 hours (PDT), on May 18, 1980, the magmatic eruption column of Mount St. Helens formed an ash fountain and pyroclastic flows dominated the eruption process over tephra ejection. Eurption-rate pulsations generally increased to a maximum at 1600 to 1700 hrs. After 1620 hrs, the eruption assumed an open-vent discharge with strong, vertical ejection of tephra. Relative eruption rates (relative mass flux rates) of the pyroclastic flows were determined by correlating sequential photographs and SLAR images, obtained during the eruption, with stratigraphy and surface morphology of the deposits.

  17. Constraints on Eruption Dynamics, Mount St. Helens, WA, 2004-2008

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Rempel, A. W.; Cashman, K. V.

    2009-12-01

    Different models have been proposed for the “drumbeat” earthquakes that accompanied recent eruptive behavior at Mount St. Helens. Debate continues as to whether seismicity is related to brittle failure during the extrusion of solid dacite spines, or is the result of hydrothermal fluids interacting with a crack buried in the volcanic edifice. The thermomechanical properties at the interface between conduit magma and the solid plug play a central role in governing the extrusive behavior. To constrain predictions of conditions at this interface, we model the three-phase magma transport from chamber to plug using pMELTS to account for partial crystallization caused by gas exsolution and degassing during ascent. The model predicts that magma compressibility beneath the plug is lower than necessary to release accommodated elastic strain at intervals that match the periods of the drumbeat earthquakes. While our results are not consistent with episodic whole-plug slip, they may nevertheless be compatible with stick-slip behavior on discrete patches of the bounding fault. We supplement our conduit modeling with a quantitative examination of the roughness of slip surfaces. Power spectral analysis of high-resolution digital elevation models yield a power-law relationship, that is similar to results from tectonic faults that have experienced only limited (typically less than 1 meter) amounts of slip. Structural evidence for expansion at different scales may indicate high-temperature deformation near the brittle-ductile transition. Our results suggest that simultaneous magma fracture and expansion may have generated key seismic characteristics including the observed dilatational first motions and moment magnitude-corner frequency scaling consistent with brittle tectonic faults.

  18. Communicating Uncertainty to the Public During Volcanic Unrest and Eruption -A Case Study From the 2004-2005 Eruption of Mount St. Helens, USA

    NASA Astrophysics Data System (ADS)

    Gardner, C. A.; Pallister, J. S.

    2005-12-01

    The earthquake swarm beneath Mount St. Helens that began on 23 September 2004 did not initially appear different from previous swarms (none of which culminated in an eruption) that had occurred beneath the volcano since the end of the 1980-1986 eruptions. Three days into the swarm, however, a burst of larger-magnitude earthquakes indicated that this swarm was indeed different and prompted the U.S. Geological Survey's Cascades Volcano Observatory (CVO) to issue a change in alert level, the first time such a change had been issued in the Cascades in over 18 years. From then on, the unrest accelerated quickly as did the need to communicate the developing conditions to the public and public officials, often in the spotlight of intense media attention. Within three weeks of the onset of unrest, magma reached the surface. Since mid-October 2004, lava has been extruding through a glacier within the crater of Mount St. Helens, forming a 60 Mm3 dome by August 2005. The rapid onset of the eruption required a rapid ramping up of communication within and among the scientific, emergency-response and land-management communities, as well as the reestablishment of protocols that had not been rigorously tested for 18 years. Early on, daily meetings of scientists from CVO and the University of Washington's Pacific Northwest Seismograph Network were established to discuss incoming monitoring data and to develop a consensus on the likely course of activity, hazard potential and the uncertainty inherent in these forecasts. Subgroups developed scenario maps to describe the range of activity likely under different eruptive behaviors and sizes, and assessed short- and long-term probabilities of eruption, explosivity and hazardous events by employing a probability-tree methodology. Resultant consensual information has been communicated to a variety of groups using established alert levels for ground-based and aviation communities, daily updates and media briefings, postings on the

  19. Monitoring lava-dome growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography

    USGS Publications Warehouse

    Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, Michael P.

    2009-01-01

    We present an analysis of lava dome growth during the 2004–2008 eruption of Mount St. Helens using oblique terrestrial images from a network of remotely placed cameras. This underutilized monitoring tool augmented more traditional monitoring techniques, and was used to provide a robust assessment of the nature, pace, and state of the eruption and to quantify the kinematics of dome growth. Eruption monitoring using terrestrial photography began with a single camera deployed at the mouth of the volcano's crater during the first year of activity. Analysis of those images indicates that the average lineal extrusion rate decayed approximately logarithmically from about 8 m/d to about 2 m/d (± 2 m/d) from November 2004 through December 2005, and suggests that the extrusion rate fluctuated on time scales of days to weeks. From May 2006 through September 2007, imagery from multiple cameras deployed around the volcano allowed determination of 3-dimensional motion across the dome complex. Analysis of the multi-camera imagery shows spatially differential, but remarkably steady to gradually slowing, motion, from about 1–2 m/d from May through October 2006, to about 0.2–1.0 m/d from May through September 2007. In contrast to the fluctuations in lineal extrusion rate documented during the first year of eruption, dome motion from May 2006 through September 2007 was monotonic (± 0.10 m/d) to gradually slowing on time scales of weeks to months. The ability to measure spatial and temporal rates of motion of the effusing lava dome from oblique terrestrial photographs provided a significant, and sometimes the sole, means of identifying and quantifying dome growth during the eruption, and it demonstrates the utility of using frequent, long-term terrestrial photography to monitor and study volcanic eruptions.

  20. After the disaster: the hydrogeomorphic, ecological, and biological responses to the 1980 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Major, Jon J.; Crisafulli, Charlie; Bishop, John

    2009-01-01

    The 1980 eruption of Mount St. Helens caused instantaneous landscape disturbance on a grand scale. On 18 May 1980, an ensemble of volcanic processes, including a debris avalanche, a directed pyroclastic density current, voluminous lahars, and widespread tephra fall, abruptly altered landscape hydrology and geomorphology, and created distinctive disturbance zones having varying impacts on regional biota. Response to the geological and ecological disturbances has been varied and complex. In general, eruption-induced alterations in landscape hydrology and geomorphology led to enhanced stormflow discharge and sediment transport. Although the hydrological response to landscape perturbation has diminished, enhanced sediment transport persists in some basins. In the nearly 30 years since the eruption, 350 million (metric) tons of suspended sediment has been delivered from the Toutle River watershed to the Cowlitz River (roughly 40 times the average annual preeruption suspended-sediment discharge of the Columbia River). Such prodigious sediment loading has wreaked considerable socioeconomic havoc, causing significant channel aggradation and loss of flood conveyance capacity. Significant and ongoing engineering efforts have been required to mitigate these problems. The overall biological evolution of the eruption-impacted landscape can be viewed in terms of a framework of survivor legacies. Despite appearances to the contrary, a surprising number of species survived the eruption, even in the most heavily devastated areas. With time, survivor “hotspots” have coalesced into larger patches, and have served as stepping stones for immigrant colonization. The importance of biological legacies will diminish with time, but the intertwined trajectories of geophysical and biological successions will influence the geological and biological responses to the 1980 eruption for decades to come.

  1. Chlorine as a geobarometer for alkaline magmas: Evidence from a systematic study of the eruptions of Mount Somma-Vesuvius

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, H.; Boudon, G.; Cioni, R.; Webster, J. D.; Zdanowicz, G.; Orsi, G.; Civetta, L.

    2016-02-01

    Defining the magma storage conditions of a volcanic system is a major goal in modern volcanology due to its direct implications for the style of a possible eruption, and thus on the associated risk of any crisis and the necessary management and mitigation strategies. Below 200 MPa and at equivalent depths, the strongly non-ideal behaviour of the H-C-O-S-Cl-F system in the silicate melt causes unmixing of the fluid phase to form an H2O-rich vapour and a hydrosaline phase in equilibrium with the silicate melt, both responsible for buffering the chlorine (Cl) concentration. Following this equilibrium, the Cl concentration in melts may be used as a geobarometer for alkaline magmas. Systematic application of this method to the main explosive eruptions of Mount Somma-Vesuvius highlights two main magma ponding zones, at ~180-200 and ~100 MPa. At these pressures, the maximum pre-eruptive H2O contents for the different magma compositions can be estimated; the results obtained, largely in agreement with the current literature, therefore confirm the validity of the method. The Cl geobarometer may help scientists to define the variation of the magmatic reservoir location through time and thus provide strong constraints on pre-eruptive conditions, which are of utmost importance for volcanic crisis management.

  2. Post-traumatic stress disorder among survivors two years after the 2010 Mount Merapi volcano eruption: A survey study.

    PubMed

    Warsini, Sri; Buettner, Petra; Mills, Jane; West, Caryn; Usher, Kim

    2015-06-01

    The Mount Merapi volcanic eruption in October 2010 was one of Indonesia's largest and most recent natural disasters. A cross-sectional study was undertaken to measure the psychosocial impact of the eruption on survivors in two locations in Yogyakarta, Java, Indonesia. The Impact of Event Scale Revised was used to assess participants' symptoms of post-traumatic stress disorder. Post-Traumatic Stress Disorder responses and demographic characteristics were compared in both locations by conducting bivariate analysis using Mann-Whitney and t tests. The relative contributions of demographic variables and psychosocial impact were examined using multiple linear regression analyses. Two years after the eruption, survivors from the area closest to the eruption had significantly higher Impact of Event Scale Revised scores than those in the comparison area. In particular, females, adults between the ages of 18 and 59, and people who owned their own home experienced the highest levels of psychosocial impact. Nurses and other health professionals need to be aware of the impact of natural disasters on survivors and develop interventions to help people adjust to the psychosocial impact of these events. © 2014 Wiley Publishing Asia Pty Ltd.

  3. Chlorine as a geobarometer for alkaline magmas: Evidence from a systematic study of the eruptions of Mount Somma-Vesuvius

    PubMed Central

    Balcone-Boissard, H.; Boudon, G.; Cioni, R.; Webster, J. D.; Zdanowicz, G.; Orsi, G.; Civetta, L.

    2016-01-01

    Defining the magma storage conditions of a volcanic system is a major goal in modern volcanology due to its direct implications for the style of a possible eruption, and thus on the associated risk of any crisis and the necessary management and mitigation strategies. Below 200 MPa and at equivalent depths, the strongly non-ideal behaviour of the H-C-O-S-Cl-F system in the silicate melt causes unmixing of the fluid phase to form an H2O-rich vapour and a hydrosaline phase in equilibrium with the silicate melt, both responsible for buffering the chlorine (Cl) concentration. Following this equilibrium, the Cl concentration in melts may be used as a geobarometer for alkaline magmas. Systematic application of this method to the main explosive eruptions of Mount Somma-Vesuvius highlights two main magma ponding zones, at ~180–200 and ~100 MPa. At these pressures, the maximum pre-eruptive H2O contents for the different magma compositions can be estimated; the results obtained, largely in agreement with the current literature, therefore confirm the validity of the method. The Cl geobarometer may help scientists to define the variation of the magmatic reservoir location through time and thus provide strong constraints on pre-eruptive conditions, which are of utmost importance for volcanic crisis management. PMID:26888358

  4. Digital Elevation Models of the Pre-Eruption 2000 Crater and 2004-07 Dome-Building Eruption at Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Messerich, J.A.; Schilling, S.P.; Thompson, R.A.

    2008-01-01

    Presented in this report are 27 digital elevation model (DEM) datasets for the crater area of Mount St. Helens. These datasets include pre-eruption baseline data collected in 2000, incremental model subsets collected during the 2004-07 dome building eruption, and associated shaded-relief image datasets. Each dataset was collected photogrammetrically with digital softcopy methods employing a combination of manual collection and iterative compilation of x,y,z coordinate triplets utilizing autocorrelation techniques. DEM data points collected using autocorrelation methods were rigorously edited in stereo and manually corrected to ensure conformity with the ground surface. Data were first collected as a triangulated irregular network (TIN) then interpolated to a grid format. DEM data are based on aerotriangulated photogrammetric solutions for aerial photograph strips flown at a nominal scale of 1:12,000 using a combination of surveyed ground control and photograph-identified control points. The 2000 DEM is based on aerotriangulation of four strips totaling 31 photographs. Subsequent DEMs collected during the course of the eruption are based on aerotriangulation of single aerial photograph strips consisting of between three and seven 1:12,000-scale photographs (two to six stereo pairs). Most datasets were based on three or four stereo pairs. Photogrammetric errors associated with each dataset are presented along with ground control used in the photogrammetric aerotriangulation. The temporal increase in area of deformation in the crater as a result of dome growth, deformation, and translation of glacial ice resulted in continual adoption of new ground control points and abandonment of others during the course of the eruption. Additionally, seasonal snow cover precluded the consistent use of some ground control points.

  5. Comparing Simultaneous Stratospheric Aerosol and Ozone Lidar Measurements with SAGE 2 Data after the Mount Pinatubo Eruption

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Poole, L. R.; McCormick, M. P.; Veiga, R. E.; Wang, P.-H.; Rizi, V.; Masci, F.; DAltorio, A.; Visconti, G.

    1995-01-01

    Stratospheric aerosol and ozone profiles obtained simultaneously from the lidar station at the University of L'Aquila (42.35 deg N, 13.33 deg E, 683 m above sea level) during the first 6 months following the eruption of Mount Pinatubo are compared with corresponding nearby Stratospheric Aerosol and Gas Experiment (SAGE) 2 profiles. The agreement between the two data sets is found to be reasonably good. The temporal change of aerosol profiles obtained by both techniques showed the intrusion and growth of Pinatubo aerosols. In addition, ozone concentration profiles derived from an empirical time-series model based on SAGE 2 ozone data obtained before the Pinatubo eruption are compared with measured profiles. Good agreement is shown in the 1991 profiles, but ozone concentrations measured in January 1992 were reduced relative to time-series model estimates. Possible reasons for the differences between measured and model-based ozone profiles are discussed.

  6. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Major, Jon J.; Mark, Linda E.

    2006-01-01

    Years of discharge measurements that precede and follow the cataclysmic 1980 eruption of Mount St. Helens, Washington, provide an exceptional opportunity to examine the responses of peak flows to abrupt, widespread, devastating landscape disturbance. Multiple basins surrounding Mount St. Helens (300–1300 km2 drainage areas) were variously disturbed by: (1) a debris avalanche that buried 60 km2 of valley; (2) a lateral volcanic blast and associated pyroclastic flow that destroyed 550 km2 of mature forest and blanketed the landscape with silt-capped lithic tephra; (3) debris flows that reamed riparian corridors and deposited tens to hundreds of centimeters of gravelly sand on valley floors; and (4) a Plinian tephra fall that blanketed areas proximal to the volcano with up to tens of centimeters of pumiceous silt, sand, and gravel. The spatially complex disturbances produced a variety of potentially compensating effects that interacted with and influenced hydrological responses. Changes to water transfer on hillslopes and to flow storage and routing along channels both enhanced and retarded runoff. Rapid post-eruption modifications of hillslope surface textures, adjustments of channel networks, and vegetation recovery, in conjunction with the complex nature of the eruptive impacts and strong seasonal variability in regional climate hindered a consistent or persistent shift in peak discharges. Overall, we detected a short-lived (5–10 yr) increase in the magnitudes of autumn and winter peak flows. In general, peak flows were larger, and moderate to large flows (>Q2 yr) were more substantively affected than predicted by early modeling efforts. Proportional increases in the magnitudes of both small and large flows in basins subject to severe channel disturbances, but not in basins subject solely to hillslope disturbances, suggest that eruption-induced modifications to flow efficiency along alluvial channels that have very mobile beds differentially affected flows of

  7. Ambient airborne solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Sehmel, G. A.

    1982-01-01

    Airborne solids concentrations were measured on a near daily basis at two Hanford, Washington sites after the eruption of Mount St. Helens on May 18, 1980. These sites are about 211 km east of Mount St. Helens. Collected airborne solids included resuspended volcanic ash plus normal ambient solids. Average airborne solids concentrations were greater at the Hanford meteorological station sampling site which is 24 km northwest of the Horn Rapids dam sampling site. These increased concentrations reflect the sampling site proximity to greater ash fallout depths. Both sites are in low ash fallout areas although the Hanford meteorological station site is closer to the greater ash fallout areas. Airborne solids concentrations were decreased by rain, but airborne solids concentrations rapidly increased as surfaces dried. Airborne concentrations tended to become nearly the same at both sampling sites only for July 12 and 13.

  8. Overview of the 2004 to 2006, and continuing, eruption of Mount St. Helens, Washington: Chapter 1 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Scott, William E.; Sherrod, David R.; Gardner, Cynthia A.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Rapid onset of unrest at Mount St. Helens on September 23, 2004, initiated an uninterrupted lava-dome-building eruption that continues to the time of writing this overview (spring 2006) for a volume of papers focused on this eruption. About three weeks of intense seismic unrest and localized surface uplift, punctuated by four brief explosions, constituted a ventclearing phase, during which there was a frenzy of media attention and considerable uncertainty regarding the likely course of the eruption. The third week exhibited lessened seismicity and only minor venting of steam and ash, but rapid growth of the uplift, or welt, south of the 1980-86 lava dome proceeded as magma continued to push upward. Crystalrich dacite (~65 weight percent SiO2) lava first appeared at the surface on October 11, 2004, beginning the growth of a complex lava dome of uniform chemical composition accompanied by persistent but low levels of seismicity, rare explosions, low gas emissions, and frequent rockfalls. Petrologic studies suggest that the dome lava is chiefly of 1980s vintage, but with an admixed portion of new dacite. Alternatively, it may derive from a part of the magma chamber not tapped by 1980s eruptions. Regardless, detailed investigations of crystal chemistry, melt inclusions, and isotopes reveal a complex magmatic history. Largely episodic extrusion between 1980 and 1986 produced a relatively symmetrical lava dome composed of stubby lobes. In contrast, continuous extrusion at mean rates of about 5 m3/s in autumn 2004 to 3/s in early 2006 has produced an east-west ridge of three mounds with total volume about equal to that of the old dome. During much of late 2004 to summer 2005, a succession of spines, two recumbent and one steeply sloping and each mantled by striated gouge, grew to nearly 500 m in length in the southeastern sector of the 1980 crater and later disintegrated into two mounds. Since then, growth has been concentrated in the southwestern sector, producing a

  9. Mts. Agung and Batur, Bali, Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This perspective view shows the major volcanic group of Bali, one 13,000 islands comprising the nation of Indonesia. The conical mountain to the left is Gunung Agung, at 3,148 meters (10,308 feet) the highest point on Bali and an object of great significance in Balinese religion and culture. Agung underwent a major eruption in 1963 after more than 100 years of dormancy, resulting in the loss of over 1,000 lives.

    In the center is the complex structure of Batur volcano, showing a caldera (volcanic crater) left over from a massive catastrophic eruption about 30,000 years ago. Judging from the total volume of the outer crater and the volcano, that once lay above it, approximately 140 cubic kilometers(33.4 cubic miles) of material must have been produced by this eruption, making it one of the largest known volcanic events on Earth. Batur is still active and has erupted at least 22 times since the 1800's.

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA

  10. Isotopic Insights Into the Degassing and Secondary Hydration Rates of Volcanic Glass From the 1980 Eruptions of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Seligman, A. N.; Bindeman, I. N.; Van Eaton, A. R.; Hoblitt, R. P.

    2016-12-01

    Following eruption, volcanic glass undergoes hydration in its depositional environment, which overprints the history of magmatic degassing recorded in the glass. However, the rates of secondary hydration of volcanic glass used for paleoclimate studies are poorly constrained. Here, we present our results of a natural experiment using products of the 1980 eruptions of Mount St. Helens. We measured the δD of extracted water and the δ18O of the bulk glass of samples collected during the dry summer months of 1980 and compared them with material resampled in August of 2015. Results demonstrate that only samples collected from the subsurface near gas escape pipes show elevated water concentrationss (near 2.0 wt.%) and low δD (-110 to -130 ‰) and δ18O (6.0 to 6.6 ‰) values, and that the initial process of secondary hydration is not always a simple addition of low δD waters at ambient temperature. On average, the 2015 surface samples have slightly higher water contents (0.1-0.2 wt.%) and similar δ18O (6.8 - 6.9 ‰) to those collected in 1980. Given the moderate vesicularity of the samples and the slow rate of surface temperature diffusion, we attribute these observations to hydration during cooling, with only little exchange after. We also compare our results to rapidly quenched air fall pumice from the May 18th eruption, which shows moderate δD values (-74 ‰) and water concentrations (0.3 wt.%) that are closer to those for the 1980 samples. Surprisingly, the 2015 surface samples show higher δD values (+15 ‰), which we attribute to any of four possibilities: (1) evaporation or (2) degassing of underlying deposits; (3) exchange of hydrogen with local vegetation; and/or (4) microlite crystallization that aided diffusion of water. Reconstructed δD-H2O trends for the Mount St. Helens samples collected in 1980 support previous studies proposing that exsolved volatiles were trapped within a rapidly rising magma that degassed at shallow depths. The dacitic Mount

  11. Remote Monitoring of Post-eruption Volcano Environment Based-On Wireless Sensor Network (WSN): The Mount Sinabung Case

    NASA Astrophysics Data System (ADS)

    Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi

    2017-01-01

    An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.

  12. Comparison of Mount Saint Helens Volcanic Eruption to a Nuclear Explosion.

    DTIC Science & Technology

    1981-01-01

    River to deep-draft ships. The volcano ejected materials for a relatively long period of time--the only tiltmeter that survived the eruption showed...shown because they are not standard microbarograph re- cordings. The sensor includes a high-pass electronic filter so that the output must be

  13. Tracking Volatile Movement and Fluxing in Magmatic Systems with Mineral Geochemistry: A Comparison Between two Mount St. Helens Eruptions

    NASA Astrophysics Data System (ADS)

    Rowe, M. C.; Kent, A. J.; Cashman, K.; Thornber, C. R.

    2008-12-01

    Lithium abundances in amphibole and feldspar have recently been applied to studies of volatile migration and fluxing in shallow magmatic systems. Lithium is advantageous because it 1) partitions into Cl- and H2O- rich volatile components at shallow pressures and 2) has a high diffusion coefficient in many minerals, recording relative short timescales of crystallization, enrichment, and depletion in magmatic systems. Prior studies at Mount St. Helens have identified high Li concentrations in feldspar phenocrysts, interpreted to record volatile fluxing to shallow magma in both the 1980 and 2004 eruptions. This interpretation is based largely on rapid diffusion and re-equilibration of Li in feldspar but is also supported by fluctuations in Li concentrations in melt inclusions. We have extended previous results by measuring the concentration of Li in amphibole phenocrysts, in addition to associated plagioclase. Amphibole is stable only at pressures > ~100 MPa and therefore is expected to retain information about degassing deep in the magmatic systems. In 1980 eruptive material, the temporal variability in amphibole Li abundance parallels that of feldspar and Li partitioning between both phases is in accord with measured equilibrium values. In contrast, amphibole grains in the 2004 eruptive products have Li abundances that are antithetical to those in feldspar, recording an initial depletion, followed by significant enrichment by Jan 2005 (from ~10 to ~1000 ug/g). One interpretation of the 2004- 08 trend is that Li abundances simply reflect melt composition and concentrations are dictated by amphibole/melt partitioning. Alternatively, because Li rapid diffuses, low-Li amphibole in 2004 could also result from extensive diffusion between a high-Li amphibole and low-Li melt. The vastly different temporal trends in amphibole Li concentrations between the 1980s and the 2004-08 eruptions raise significant questions about partitioning and diffusion of Li in shallow magmatic

  14. Sixty thousand years of magmatic volatile history before the caldera-forming eruption of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Wright, Heather M.; Bacon, Charles R.; Vazquez, Jorge A.; Sisson, Thomas W.

    2012-01-01

    The well-documented eruptive history of Mount Mazama, Oregon, provides an excellent opportunity to use pre-eruptive volatile concentrations to study the growth of an explosive silicic magmatic system. Melt inclusions (MI) hosted in pyroxene and plagioclase crystals from eight dacitic–rhyodacitic eruptive deposits (71–7.7 ka) were analyzed to determine variations in volatile-element concentrations and changes in magma storage conditions leading up to and including the climactic eruption of Crater Lake caldera. Temperatures (Fe–Ti oxides) increased through the series of dacites, then decreased, and increased again through the rhyodacites (918–968 to ~950 to 845–895 °C). Oxygen fugacity began at nickel–nickel-oxide buffer (NNO) +0.8 (71 ka), dropped slightly to NNO +0.3, and then climbed to its highest value with the climactic eruption (7.7 ka) at NNO +1.1 log units. In parallel with oxidation state, maximum MI sulfur concentrations were high early in the eruptive sequence (~500 ppm), decreased (to ~200 ppm), and then increased again with the climactic eruption (~500 ppm). Maximum MI sulfur correlates with the Sr content (as a proxy for LREE, Ba, Rb, P2O5) of recharge magmas, represented by basaltic andesitic to andesitic enclaves and similar-aged lavas. These results suggest that oxidized Sr-rich recharge magmas dominated early and late in the development of the pre-climactic dacite–rhyodacite system. Dissolved H2O concentrations in MI do not, however, correlate with these changes in dominant recharge magma, instead recording vapor solubility relations in the developing shallow magma storage and conduit region. Dissolved H2O concentrations form two populations through time: the first at 3–4.6 wt% (with a few extreme values up to 6.1 wt%) and the second at ≤2.4 wt%. CO2 concentrations measured in a subset of these inclusions reach up to 240 ppm in early-erupted deposits (71 ka) and are below detection in climactic deposits (7.7 ka). Combined H2O and

  15. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Aquila. Valentina; Oman, Luke D.; Stolarsk, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2012-01-01

    Observations have shown that the global mass of nitrogen dioxide decreased in both hemispheres in the year following the eruption of Mt. Pinatubo, indicating an enhanced heterogeneous chemistry. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little change in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere, contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  16. Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Browell, E. V.; Fishman, J.; Brackett, V. G.; Fenn, M. A.; Butler, C. F.; Nganga, D.; Minga, A.; Cros, B.; Mayor, S. D.

    1994-01-01

    Measurements of lower stratospheric ozone in the Tropics using electrochemical concentrations cell (ECC) sondes and the airborne UV Differential Absorption Lidar (DIAL) system after the eruption of Mt. Pinatubo are compared with the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and ECC sonde measurements from below the eruption to determine what changes have occurred as a result. Aerosol data from the Advanced Very High Resolution Radiometer (AVHRR) and the visible and IR wavelengths of the lidar system are used to examine the relationship between aerosols and ozone changes. Ozone decreases of 30 percent at altitudes between 19 and 26 km, partial column (16-28 km) decreases of about 27 D.U., and slight increases (5.4 D.U.) between 28 and 31 km are found in comparison with SAGE 2 climatological values.

  17. Isotopic insights into the degassing and secondary hydration of volcanic glass from the 1980 eruptions of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Seligman, Angela N.; Bindeman, Ilya; Van Eaton, Alexa; Hoblitt, Richard

    2018-04-01

    Abstract The magmatic degassing history of newly erupted volcanic glass is recorded in its remaining volatile content. However, this history is subsequently overprinted by post-depositional (secondary) hydration, the rates and origins of which are not yet adequately constrained. Here, we present the results of a natural experiment using products of the 1980 eruptions of Mount St. Helens. We measured water concentration, δDglass, and δ18OBSG (δ18O of the bulk silicate glass) of samples collected during the dry summer months of 1980 and compared them with material resampled in 2015 from the same deposits. Samples collected from the subsurface near gas escape pipes show elevated water concentrations (near 2.0 wt%), and these are associated with lower δDglass (- 110 to - 130‰) and δ18OBSG (6.0 to 6.6‰) values than the 1980 glass (- 70 to - 100‰ and 6.8 to 6.9‰, respectively). Samples collected in 2015 from the surface to 10-cm subsurface of the 1980 summer deposits have a small increase in average water contents of 0.1-0.2 wt% but similar δ18OBSG (6.8-6.9‰) values compared to the 1980 glass values. These samples, however, show 15‰ higher δDglass values; exchange with meteoric water is expected to yield lower δDglass values. We attribute higher δDglass values in the upper portion of the 1980 deposits collected in 2015 to rehydration by higher δD waters that were degassed for several months to a year from the hot underlying deposits, which hydrated the overlying deposits with relatively high δD gases. Our data also contribute to magmatic degassing of crystal-rich volcanoes. Using the 1980 samples, our reconstructed δD-H2O trends for the dacitic Mount St. Helens deposits with rhyolitic groundmass yield a trend that overlaps with the degassing trend for crystal-poor rhyolitic eruptions studied previously elsewhere, suggesting similar behavior of volatiles upon exsolution from magma. Furthermore, our data support previous studies proposing that

  18. Analysis of seismic body waves excited by the Mount Saint Helens eruption of May 18, 1980

    NASA Technical Reports Server (NTRS)

    Kanamori, H.; Given, J. W.; Lay, T.

    1982-01-01

    Seismic body waves which were excited by eruption of Mt. St. Helens, and recorded by the Global Digital Seismographic Network (GDSN) stations are analyzed to determine the nature and the time sequence of the events associated with the eruption. The polarity of teleseismic P waves (period 20 sec) is identical at six stations which are distributed over a wide azimuthal range. This observation, together with a very small S to P amplitude ratio (at 20 sec), suggests that the source is a nearly vertical single force that represents the counter force of the eruption. The time history of the vertical force suggests two distinct groups of events, about two minutes apart, each consisting of several subevents with a duration of about 25 sec. The magnitude of the force is approximately 2.6 to the 17th power dyne. this vertical force is in contrast with the long period (approximately 150 sec) southward horizontal single force which was determined by a previous study and interpreted to be due to the massive landslide.

  19. Holocene Coastal Environments near Pompeii before the A.D. 79 Eruption of Mount Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Pescatore, Tullio; Senatore, Maria Rosaria; Capretto, Giovanna; Lerro, Gaia

    2001-01-01

    Studies of some 70 bore holes around ancient Pompeii, on the southwestern slope of the Somma-Vesuvius volcano, allow the reconstruction of Holocene environments earlier than the A.D. 79 eruption. This eruption produced about 10 km3 of pyroclastic material that buried the Roman cities of Pompeii, Herculaneum, and Stabiae and promoted a shoreline progradation of 1 km. The Sarno coastal plain, in a post-Miocene sedimentary basin, has been affected by Somma-Vesuvius volcanic activity since the late Pleistocene. At the Holocene transgressive maximum, the sea reached an area east of ancient Pompeii and formed a beach ridge (Messigno, 5600 and 4500 14C yr B.P.) more than 2 km inland from the present shore. Progradation of the plain due to high volcanic supply during the following highstand resulted in a new beach ridge (Bottaro-Pioppaino, 3600 14C yr B.P.) 0.5 km seaward of the Messigno ridge. Ancient Pompeii was built as the shoreline continued to prograde toward its present position. Deposits of the A.D. 79 eruption blanketed the natural levees of the Sarno River, marshes near the city and on the Sarno's floodplain, the morphological highs of Messigno and Bottaro-Pioppaino beach ridges, and the seashore. That shore was probably 1 km landward of the present one.

  20. Near-real-time information products for Mount St. Helens -- tracking the ongoing eruption: Chapter 3 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Qamar, Anthony I.; Malone, Stephen; Moran, Seth C.; Steele, William P.; Thelen, Weston A.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The rapid onset of energetic seismicity on September 23, 2004, at Mount St. Helens caused seismologists at the Pacific Northwest Seismic Network and the Cascades Volcano Observatory to quickly improve and develop techniques that summarized and displayed seismic parameters for use by scientists and the general public. Such techniques included webicorders (Web-based helicorder-like displays), graphs showing RSAM (real-time seismic amplitude measurements), RMS (root-mean-square) plots, spectrograms, location maps, automated seismic-event detectors, focal mechanism solutions, automated approximations of earthquake magnitudes, RSAM-based alarms, and time-depth plots for seismic events. Many of these visual-information products were made available publicly as Web pages generated and updated routinely. The graphs and maps included short written text that explained the concepts behind them, which increased their value to the nonseismologic community that was tracking the eruption. Laypeople could read online summaries of the scientific interpretations and, if they chose, review some of the basic data, thereby providing a better understanding of the data used by scientists to make interpretations about ongoing eruptive activity, as well as a better understanding of how scientists worked to monitor the volcano.

  1. Sediment erosion and delivery from Toutle River basin after the 1980 eruption of Mount St. Helens: A 30-year perspective

    USGS Publications Warehouse

    Major, Jon J.; Mosbrucker, Adam; Spicer, Kurt R.; Crisafulli, Charles; Dale, V.

    2018-01-01

    Exceptional sediment yields persist in Toutle River valley more than 30 years after the major 1980 eruption of Mount St. Helens. Differencing of decadal-scale digital elevation models shows the elevated load comes largely from persistent lateral channel erosion across the debris-avalanche deposit. Since the mid-1980s, rates of channel-bed-elevation change have diminished, and magnitudes of lateral erosion have outpaced those of channel incision. A digital elevation model of difference from 1999 to 2009 shows erosion across the debris-avalanche deposit is more spatially distributed compared to a model from 1987 to 1999, in which erosion was strongly focused along specific reaches of the channel.

  2. Eruptive pattern classification on Mount Etna (Sicily) and Piton de la Fournaise (La Réunion)

    NASA Astrophysics Data System (ADS)

    Falsaperla, Susanna; Langer, Horst; Ferrazzini, Valérie

    2016-04-01

    In the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project, Mt. Etna (Italy) and Piton de la Fournaise (La Réunion) were chosen as "European Supersite Demonstrator" and test site, respectively, to promote the transfer and implementation of efficient tools for the identification of impending volcanic activity. Both are "open-conduit volcanoes", forming ideal sites for the test and validation of innovative concepts, which can contribute to minimize volcanic hazard. One of the aims of the MED-SUV project was the development of software for machine learning applicable to data processing for early-warning purposes. Near-real time classification of continuous seismic data stream has been carried out in the control room of INGV Osservatorio Etneo since 2010. Subsequently, automatic alert procedures were activated. In the light of the excellent results for the 24/7 surveillance of Etna, we examine the portability of tools developed in the framework of the project when applied to seismic data recorded at Piton de la Fournaise. In the present application to data recorded at Piton de la Fournaise, the classifier aims at highlighting changes in the frequency content of the background seismic signal heralding the activation of the volcanic source and the imminent eruption. We describe the preliminary results of this test on a set of data of nearly two years starting on January 2014. This period follows three years of inactivity and deflation of the volcano and marks a renewal of the volcano activity with inflation, deep seismicity (-7km bsl) and five eruptions with fountains and lava flows that lasted from a few hours to more than two months. We discuss here the necessary tuning for the implementation of the software to the new dataset analyzed. We also propose a comparison with the results of pattern classification regarding recent eruptive activity at Etna.

  3. Can we explain the observed methane variability after the Mount Pinatubo eruption?

    NASA Astrophysics Data System (ADS)

    Bândă, N.; Krol, M.; van Weele, M.; van Noije, T.; Le Sager, P.; Röckmann, T.

    2016-01-01

    The CH4 growth rate in the atmosphere showed large variations after the Pinatubo eruption in June 1991. A decrease of more than 10 ppb yr-1 in the growth rate over the course of 1992 was reported, and a partial recovery in the following year. Although several reasons have been proposed to explain the evolution of CH4 after the eruption, their contributions to the observed variations are not yet resolved. CH4 is removed from the atmosphere by the reaction with tropospheric OH, which in turn is produced by O3 photolysis under UV radiation. The CH4 removal after the Pinatubo eruption might have been affected by changes in tropospheric UV levels due to the presence of stratospheric SO2 and sulfate aerosols, and due to enhanced ozone depletion on Pinatubo aerosols. The perturbed climate after the eruption also altered both sources and sinks of atmospheric CH4. Furthermore, CH4 concentrations were influenced by other factors of natural variability in that period, such as El Niño-Southern Oscillation (ENSO) and biomass burning events. Emissions of CO, NOX and non-methane volatile organic compounds (NMVOCs) also affected CH4 concentrations indirectly by influencing tropospheric OH levels.

    Potential drivers of CH4 variability are investigated using the TM5 global chemistry model. The contribution that each driver had to the global CH4 variability during the period 1990 to 1995 is quantified. We find that a decrease of 8-10 ppb yr-1 CH4 is explained by a combination of the above processes. However, the timing of the minimum growth rate is found 6&nash;9 months later than observed. The long-term decrease in CH4 growth rate over the period 1990 to 1995 is well captured and can be attributed to an increase in OH concentrations over this time period. Potential uncertainties in our modelled CH4 growth rate include emissions of CH4 from wetlands, biomass burning emissions of CH4 and other compounds, biogenic NMVOC and the sensitivity of OH to NMVOC emission changes

  4. Can we explain the observed methane variability after the Mount Pinatubo eruption?

    NASA Astrophysics Data System (ADS)

    Bândă, N.; Krol, M.; van Weele, M.; van Noije, T.; Le Sager, P.; Röckmann, T.

    2015-07-01

    The CH4 growth rate in the atmosphere showed large variations after the Pinatubo eruption in June 1991. A decrease of more than 10 ppb yr-1 in the growth rate over the course of 1992 was reported and a partial recovery in the following year. Although several reasons have been proposed to explain the evolution of CH4 after the eruption, their contributions to the observed variations are not yet resolved. CH4 is removed from the atmosphere by the reaction with tropospheric OH, which in turn is produced by O3 photolysis under UV radiation. The CH4 removal after the Pinatubo eruption might have been affected by changes in tropospheric UV levels due to the presence of stratospheric SO2 and sulfate aerosols, and due to enhanced ozone depletion on Pinatubo aerosols. The perturbed climate after the eruption also altered both sources and sinks of atmospheric CH4. Furthermore, CH4 concentrations were influenced by other factors of natural variability in that period, such as ENSO and biomass burning events. Emissions of CO, NOX and NMVOCs also affected CH4 concentrations indirectly by influencing tropospheric OH levels. Potential drivers of CH4 variability are investigated using the TM5 global chemistry model. The contribution that each driver had to the global CH4 variability during the period 1990 to 1995 is quantified. We find that a decrease of 8-10 ppb yr-1 CH4 is explained by a combination of the above processes. However, the timing of the minimum growth rate is found 6-9 months later than observed. The long-term decrease in CH4 growth rate over the period 1990 to 1995 is well captured and can be attributed to an increase in OH concentrations over this time period. Potential uncertainties in our modelled CH4 growth rate include emissions of CH4 from wetlands, biomass burning emissions of CH4 and other compounds, biogenic NMVOC and the sensitivity of OH to NMVOC emission changes. Two inventories are used for CH4 emissions from wetlands, ORCHIDEE and LPJ, to investigate

  5. New Constraints on the Geochemistry of the Millennium Eruption of Mount Paektu (Changbaishan), Democratic People's Republic of Korea/China

    NASA Astrophysics Data System (ADS)

    Iacovino, K.; Kim, J. S.; Sisson, T. W.; Lowenstern, J. B.; Jang, J. N.; Song, K. H.; Ham, H. H.; Ri, K. H.; Donovan, A. R.; Oppenheimer, C.; Hammond, J. O. S.; Weber Liu, K.; Ryu, K. R.

    2015-12-01

    Mount Paektu (also known as Changbaishan) is a large caldera located on the border between China and the Democratic People's Republic of Korea. Circa 946 AD, Paektu produced one of the largest volcanic eruptions in recorded history, the so-called Millennium Eruption (ME), whose combined fall and pyroclastic flow deposits total approximately 25 km3 dense rock equivalent (95% commendite, 5% late stage trachyte). Despite its recent and potentially destructive history, the volcano is not well studied due to its relative inaccessibility. A seismic swarm beneath the volcano's summit in 2002-2005 spurred a unique collaboration between scientists from the DPRK, US, and the UK with the goals of characterizing Paektu's eruptive history and assessing its current state of activity. We present new results from this collaboration, including major and trace element (XRF, EMP and SHRIMP-RG) and volatile data (SHRIMP-RG and FTIR) on feldspar-, clinopyroxene-, and olivine-hosted melt inclusions (MI), matrix glasses, and bulk pumices from four ME comendites and one ME trachyte. MI are halogen rich (F≤4000 ppm, Cl≤5000 ppm) with moderate S (≤250 ppm) and H2O (≤4 wt%) and minimal CO2 (≤15 ppm, detection limit ~2 ppm). H2O contents in comendite MI indicate saturation pressures (at 725 °C) of ~150 MPa, corresponding to a magma chamber depth of ~6 km, similar to the depth inferred for the magmatic injection thought to have resulted in the 2002-05 earthquake swarm. ME comendite is consistent with a ca. 25% residual melt by fractional crystallization from an ME trachyte parent. Published U-series zircon ages from ME comendite indicate a magma residence time of 11ky. Thus, the late stage ME trachyte likely represents a mafic recharge event of a melt separate from but geochemically similar to the original ME comendite parent.

  6. Changes in seismic velocity during the first 14 months of the 2004-2008 eruption of Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J.; Thelen, W.; Moran, S. C.

    2015-09-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  7. Large-scale magnetic field perturbation arising from the 18 May 1980 eruption from Mount St. Helens, Washington

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.

    1989-01-01

    A traveling magnetic field disturbance generated by the 18 may 1980 eruption of Mount St. Helens at 1532 UT was detected on an 800-km linear array of recording magnetometers installed along the San Andreas fault system in California, from San Francisco to the Salton Sea. Arrival times of the disturbance field, from the most northern of these 24 magnetometers (996 km south of the volcano) to the most southern (1493 km S23?? E), are consistent with the generation of a traveling ionospheric disturbance stimulated by the blast pressure wave in the atmosphere. The first arrivals at the north and the south ends of the array occurred at 26 and 48 min, respectively, after the initial eruption. Apparent average wave velocity through the array is 309 ?? 14 m s-1 but may have approached 600 m s-1 close to the volcano. The horizontal phase and the group velocity of ??? 300 m s-1 at periods of 70-80 min, and the attenuation with distance, strongly suggest that the magnetic field perturbations at distances of 1000-1500 km are caused by gravity mode acoustic-gravity waves propagating at F-region heights in the ionosphere. ?? 1989.

  8. Effects of the 1980 eruption of Mount St Helens on the limnological characteristics of selected lakes in western Washington

    USGS Publications Warehouse

    Embrey, S.S.; Dion, N.P.

    1988-01-01

    The 1980 eruption of Mount St. Helens provided the opportunity to study its effect on the physical, chemical, and biological characteristics of lakes near the volcano, and to describe two newly created lakes. Concentrations of dissolved solids and organic carbon, measured in June 1980, had increased from 2 to 30 times those observed in the 1970 's in Spirit, St. Helens, and Venus Lakes. Water in the lakes was altered from preeruption calcium-bicarbonate types to calcium-sulfate, calcium sulfate-chloride, or lake surface, as in St. Helens Lake; transparency in Venus Lake had improved to a depth of 24 ft by 1982. Spirit Lake was anoxic into fall 1980, but had reaerated to 5.2 mg/L of dissolved oxygen by May 1981. Phytoplankton communities in existing lakes in the blast zone in 1980 were primarily green and bluegreen algae; diatoms were sparse until summer 1982. Small numbers of zooplankton in Spirit, St. Helens, and Venus Lakes, compared to numbers in Walupt and Fawn Lakes, may indicate some post-eruption mortality. Rotifers were absent from lakes in the blast zone, but by 1981 were observed in all the lakes. The recovery of the physical, chemical, and biological characteristics of the lakes will depend on stabilization of the surrounding environment and biological processes within each lake. Excluding Spirit Lake, it is estimated that St. Helens Lake would be the slowest to recover and Venus Lake the fastest. (USGS)

  9. Eruptive activity at Mount St Helens, Washington, USA, 1984-1988: a gas geochemistry perspective

    USGS Publications Warehouse

    McGee, K.A.; Sutton, A.J.

    1994-01-01

    The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava. ?? 1994 Springer-Verlag.

  10. Predicting and validating the motion of an ash cloud during the 2006 eruption of Mount Augustine volcano

    USGS Publications Warehouse

    Collins, Richard L.; Fochesatto, Javier; Sassen, Kenneth; Webley, Peter W.; Atkinson, David E.; Dean, Kenneson G.; Cahill, Catherine F.; Mizutani, Kohei

    2007-01-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20- year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash (or aerosol) cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. Aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano consistent with the Puff predictions. Two lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the ash cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are

  11. A conceptual model of the Mount Spurr magmatic system from seismic and geochemical observations of the 1992 Crater Peak eruption sequence

    USGS Publications Warehouse

    Power, J.; Jolly, A.; Nye, C.; Harbin, M.

    2002-01-01

    A conceptual model of the geometry and dynamics of the Mount Spurr magmatic system is developed using seismic, geochemical, and visual observations of the 1992 Crater Peak eruption sequence. The basis for this model is a new classification of all located seismic events and results from prior studies of seismology, geology, geochemistry, and geophysics of the Mount Spurr area. Significant seismic features of the 1992 eruption sequence include (1) a distinct swarm of volcano-tectonic (VT) earthquakes in August 1991 directly beneath the Crater Peak vent, (2) a caldera-wide increase in VT earthquakes, lasting 7 months, which preceded the 27 June eruption, (3) two shallow swarms of VT earthquakes that occured on 5 June and 27 June, the latter immediately preceding the 27 June eruption, (4) a mix of VT, long-period (LP), and hybrid events at depths of 20-40 km, which began coincident with the onset of seismic unrest and reached a peak after eruptive activity ended, (5) a strong swarm of VT earthquakes that began as the 16-17 September eruption was ending, (6) a prominent swarm of VT earthquakes on 9-10 November at depths of 1 to 4 km beneath Crater Peak, and (7) a smaller swarm of VT earthquakes in late December 1992, which were located between 7 and 10 km depth. These seismic observations, combined with geological, geochemical, and geophysical data and observations, suggest a deep magmatic source zone for Crater Peak andesites at depths of 20-40 km, a smaller mid-crustal storage zone at about 10 km depth, and a conduit that extends to the surface. We infer that the magmas erupted in 1992 were generated at depths of 20-40 km and rose to the mid-crustal storage zone that fed all three 1992 eruptions. The 1992 eruption sequence may have terminated when additional magma solidified at shallow depths.

  12. Effects of coarse woody debris and its removal on a channel affected by the 1980 eruption of Mount St. Helens, Washington

    Treesearch

    Thomas E. Lisle

    1995-01-01

    Abstract - During the May 18, 1980, eruption of Mount St. Helens, Washington, a pyroclastic surge introduced large volumes of coarse woody debris (CWD) and fine grained sediment to Clearwater Creek, approximately 15 km northeast of the summit. Effects of controlled CWD removal on sediment storage, substrate, and pool frequency and volume were measured in four reaches,...

  13. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  14. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  15. Immediate public health concerns and actions in volcanic eruptions: lessons from the Mount St. Helens eruptions, May 18-October 18, 1980.

    PubMed Central

    Bernstein, R S; Baxter, P J; Falk, H; Ing, R; Foster, L; Frost, F

    1986-01-01

    A comprehensive epidemiological evaluation of mortality and short-term morbidity associated with explosive volcanic activity was carried out by the Centers for Disease Control in collaboration with affected state and local health departments, clinicians, and private institutions. Following the May 18, 1980 eruption of Mount St. Helens, a series of public health actions were rapidly instituted to develop accurate information about volcanic hazards and to recommend methods for prevention or control of adverse effects on safety and health. These public health actions included: establishing a system of active surveillance of cause-specific emergency room (ER) visits and hospital admissions in affected and unaffected communities for comparison; assessing the causes of death and factors associated with survival or death among persons located near the crater; analyzing the mineralogy and toxicology of sedimented ash and the airborne concentration of resuspended dusts; investigating reported excesses of ash-related adverse respiratory effects by epidemiological methods such as cross-sectional and case-control studies; and controlling rumors and disseminating accurate, timely information about volcanic hazards and recommended preventive or control measures by means of press briefings and health bulletins. Surveillance and observational studies indicated that: excess in morbidity were limited to transient increases in ER visits and hospital admissions for traumatic injuries and respiratory problems (but not for communicable disease or mental health problems) which were associated in time, place, and person with exposures to volcanic ash; excessive mortality due to suffocation (76 per cent), thermal injuries (12 per cent), or trauma (12 per cent) by ash and other volcanic hazards was directly proportional to the degree of environmental damage--that is, it was more pronounced among those persons (48/65, or about 74 per cent) who, at the time of the eruption, were residing

  16. Eruption-related lahars and sedimentation response downstream of Mount Hood: Field guide to volcaniclastic deposits along the Sandy River, Oregon

    USGS Publications Warehouse

    Pierson, Tom C.; Scott, William E.; Vallance, James W.; Pringle, Patrick T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian

    2009-01-01

    Late Holocene dome-building eruptions at Mount Hood during the Timberline and Old Maid eruptive periods resulted in numerous dome-collapse pyroclastic flows and lahars that moved large volumes of volcaniclastic sediment into temporary storage in headwater canyons of the Sandy River. During each eruptive period, accelerated sediment loading to the river through erosion and remobilization of volcanic fragmental debris resulted in very high sediment-transport rates in the Sandy River during rain- and snowmelt-induced floods. Large sediment loads in excess of the river's transport capacity led to channel aggradation, channel widening, and change to a braided channel form in the lowermost reach of the river, between 61 and 87 km downstream from the volcano. The post-eruption sediment load moved as a broad bed-material wave, which in the case of the Old Maid eruption took ~2 decades to crest 83 km downstream. Maximum post-eruption aggradation levels of at least 28 and 23 m were achieved in response to Timberline and Old Maid eruptions. In each case, downstream aggradation cycles were initiated by lahars, but the bulk of the aggradation was achieved by fluvial sediment transport and deposition. When the high rates of sediment supply began to diminish, the river degraded, incising the channel fills and forming progressively lower sets of degradational terraces. A variety of debris-flow, hyperconcentrated-flow, and fluvial (upper and lower flow regime) deposits record the downstream passage of the sediment waves that were initiated by these eruptions. The deposits also presage a hazard that may be faced by communities along the Sandy River when volcanic activity at Mount Hood resumes.

  17. Preeruption conditions and timing of dacite-andesite magma mixing in the 2.2 ka eruption at Mount Rainier

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Rutherford, M. J.

    1997-01-01

    Analytical, field, and experimental evidence demonstrate that the Mount Rainier tephra layer C (2.2 ka) preserves a magma mixing event between an andesitic magma (whole rock SiO2 content of 57-60 wt %) and a dacitic magma (whole rock SiO2 content of 65±1 wt %). The end-member andesite (a mix of an injected and chamber andesite) and dacite can be characterized on the basis of the homogeneity of the matrix glass and phenocryst rim compositions. Many pumices, however, contain mixtures of the end-members. The end-member dacite contains a microlite-free matrix glass with 74-77 wt % SiO2, orthopyroxene rims of Mg57-64, clinopyroxene rims of Mg66-74, and plagioclase rim anorthite contents of An45-65. The temperature and oxygen fugacity, from Fe-Ti oxide compositions, are 930±10°C and 0.5-0.75 log units above NNO. The mixed andesite contains Mg73-84 orthopyroxene rims, Mg73-78 clinopyroxene rims, An78-84 plagioclase rims, and Mg67-74 amphibole rims. The temperature from Fe-Ti oxides, hornblendeplagioclase, and two-pyroxene geothermometry is 1060±15°C, and the oxygen fugacity is approximately one log unit above NNO for the injected andesite. The chamber andesite is estimated to be a magma with a ˜64-65 wt % SiO2 melt at 980°C and a NNO oxygen fugacity. We conclude that the andesitic and dacitic magmas are from separate magma storage regions (at >7 km and ˜2.4 km) due to differences in the bimodal whole rock, matrix glass, and phenocryst compositions and the presence or absence of stable hornblende. The time involved from the mixing event through the eruption is limited to a period of 4-5 days based on Fe-Ti oxide reequilibration, phenocryst growth rates, and hornblende breakdown. The eruption sequence is interpreted as having been initiated by an injection of the 1060±15°C andesitic magma into the ˜980°C (>7 km) andesite storage region. The mixed andesitic magma then intersected a shallow, ˜2.4 km, dacitic storage system on its way toward the surface. The

  18. Analysis of recently digitized continuous seismic data recorded during the March-May, 1980, eruption sequence at Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Moran, S. C.; Malone, S. D.

    2013-12-01

    The May 18, 1980, eruption of Mount St. Helens (MSH) was an historic event, both for society and for the field of volcanology. However, our knowledge of the eruption and the precursory period leading up it is limited by the fact that most of the data, particularly seismic recordings, were not kept due to severe limitations in the amount of digital data that could be handled and stored using 1980 computer technology. Because of these limitations, only about 900 digital event files have been available for seismic studies of the March-May seismic sequence out of a total of more than 4,000 events that were counted using paper records. Fortunately, data from a subset of stations were also recorded continuously on a series of 24 analog 14-track IRIG magnetic tapes. We have recently digitized these tapes and time-corrected and cataloged the resultant digital data streams, enabling more in-depth studies of the (almost) complete pre-eruption seismic sequence using modern digital processing techniques. Of the fifteen seismic stations operating near MSH for at least a part of the two months between March 20 and May 18, six stations have relatively complete analog recordings. These recordings have gaps of minutes to days because of radio noise, poor tape quality, or missing tapes. In addition, several other stations have partial records. All stations had short-period vertical-component sensors with very limited dynamic range and unknown response details. Nevertheless, because the stations were at a range of distances and were operated at a range of gains, a variety of earthquake sizes were recorded on scale by at least one station, and therefore a much more complete understanding of the evolution of event types, sizes and character should be achievable. In our preliminary analysis of this dataset we have found over 10,000 individual events as recorded on stations 35-40 km from MSH, spanning a recalculated coda-duration magnitude range of ~1.5 to 4.1, including many M < 3

  19. Landscape Response to the 1980 Eruption of Mount St. Helens: Using Historical Aerial Photography to Measure Surface Change

    NASA Astrophysics Data System (ADS)

    Sweeney, K.; Major, J. J.

    2016-12-01

    Advances in structure-from-motion (SfM) photogrammetry and point cloud comparison have fueled a proliferation of studies using modern imagery to monitor geomorphic change. These techniques also have obvious applications for reconstructing historical landscapes from vertical aerial imagery, but known challenges include insufficient photo overlap, systematic "doming" induced by photo-spacing regularity, missing metadata, and lack of ground control. Aerial imagery of landscape change in the North Fork Toutle River (NFTR) following the 1980 eruption of Mount St. Helens is a prime dataset to refine methodologies. In particular, (1) 14-μm film scans are available for 1:9600 images at 4-month intervals from 1980 - 1986, (2) the large magnitude of landscape change swamps systematic error and noise, and (3) stable areas (primary deposit features, roads, etc.) provide targets for both ground control and matching to modern lidar. Using AgiSoft PhotoScan, we create digital surface models from the NFTR imagery and examine how common steps in SfM workflows affect results. Tests of scan quality show high-resolution, professional film scans are superior to office scans of paper prints, reducing spurious points related to scan infidelity and image damage. We confirm earlier findings that cropping and rotating images improves point matching and the final surface model produced by the SfM algorithm. We demonstrate how the iterative closest point algorithm, implemented in CloudCompare and using modern lidar as a reference dataset, can serve as an adequate substitute for absolute ground control. Elevation difference maps derived from our surface models of Mount St. Helens show patterns consistent with field observations, including channel avulsion and migration, though systematic errors remain. We suggest that subtracting an empirical function fit to the long-wavelength topographic signal may be one avenue for correcting systematic error in similar datasets.

  20. A retrospective study on acute health effects due to volcanic ash exposure during the eruption of Mount Etna (Sicily) in 2002

    PubMed Central

    2013-01-01

    Background Mount Etna, located in the eastern part of Sicily (Italy), is the highest and most active volcano in Europe. During the sustained eruption that occurred in October-November 2002 huge amounts of volcanic ash fell on a densely populated area south-east of Mount Etna in Catania province. The volcanic ash fall caused extensive damage to infrastructure utilities and distress in the exposed population. This retrospective study evaluates whether or not there was an association between ash fall and acute health effects in exposed local communities. Methods We collected the number and type of visits to the emergency department (ED) for diseases that could be related to volcanic ash exposure in public hospitals of the Province of Catania between October 20 and November 7, 2002. We compared the magnitude of differences in ED visits between the ash exposure period in 2002 and the same period of the previous year 2001. Results We observed a significant increase of ED visits for acute respiratory and cardiovascular diseases, and ocular disturbances during the ash exposure time period. Conclusions There was a positive association between exposure to volcanic ash from the 2002 eruption of Mount Etna and acute health effects in the Catania residents. This study documents the need for public health preparedness and response initiatives to protect nearby populations from exposure to ash fall from future eruptions of Mount Etna. PMID:23924394

  1. A retrospective study on acute health effects due to volcanic ash exposure during the eruption of Mount Etna (Sicily) in 2002.

    PubMed

    Lombardo, Daniele; Ciancio, Nicola; Campisi, Raffaele; Di Maria, Annalisa; Bivona, Laura; Poletti, Venerino; Mistretta, Antonio; Biggeri, Annibale; Di Maria, Giuseppe

    2013-08-07

    Mount Etna, located in the eastern part of Sicily (Italy), is the highest and most active volcano in Europe. During the sustained eruption that occurred in October-November 2002 huge amounts of volcanic ash fell on a densely populated area south-east of Mount Etna in Catania province. The volcanic ash fall caused extensive damage to infrastructure utilities and distress in the exposed population. This retrospective study evaluates whether or not there was an association between ash fall and acute health effects in exposed local communities. We collected the number and type of visits to the emergency department (ED) for diseases that could be related to volcanic ash exposure in public hospitals of the Province of Catania between October 20 and November 7, 2002. We compared the magnitude of differences in ED visits between the ash exposure period in 2002 and the same period of the previous year 2001. We observed a significant increase of ED visits for acute respiratory and cardiovascular diseases, and ocular disturbances during the ash exposure time period. There was a positive association between exposure to volcanic ash from the 2002 eruption of Mount Etna and acute health effects in the Catania residents. This study documents the need for public health preparedness and response initiatives to protect nearby populations from exposure to ash fall from future eruptions of Mount Etna.

  2. Geochemical and textural constraints on degassing processes in sub-Plinian eruptions: case-study of the Greenish Pumice eruption of Mount Somma-Vesuvius

    NASA Astrophysics Data System (ADS)

    Zdanowicz, G.; Boudon, G.; Balcone-Boissard, H.; Cioni, R.; Mundula, F.; Orsi, G.; Civetta, L.; Agrinier, P.

    2018-04-01

    Plinian eruptions are characterized by high intensity and an overall steady character, and result in a stable convective column. The main processes controlling the dynamics of such steady and stable plume systems have been extensively investigated. Conversely, sub-Plinian eruptions are unsteady, as recorded by the large variability of the products and deposits. Our knowledge of the processes creating this unsteadiness on various timescales remains limited, and still requires more observations as well as theoretical and experimental investigation. Here, we focus on the sub-Plinian eruption of the Greenish Pumice (GP, 19,265 ± 105 BP), Mt. Somma-Vesuvius (Italy). On the basis of coupled geochemical and textural analyses of samples from the well-established stratigraphy of the GP deposits, we investigate volatiles (H2O, CO2, F, Cl) to better constrain the unsteady sub-Plinian eruptive style. This allows us to carry out a detailed study of the degassing processes in relation to the eruption dynamics. We find that degassing by open-system processes generally dominates throughout the entire eruption, but alternates with episodes of closed-system degassing. The fluctuating degassing regimes, responsible for the variable magma ascent rate within the conduit, are also responsible for the eruptive column instability. Volatile behavior is well correlated with textural heterogeneities of the eruptive products. Both reflect higher conduit heterogeneity than for Plinian eruptions, where we find a higher horizontal gradient in magma ascent velocity due to a smaller conduit diameter.

  3. Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Diefenbach, Angela K.; Crider, Juliet G.; Schilling, Steve P.; Dzurisin, Daniel

    2012-01-01

    We describe a low-cost application of digital photogrammetry using commercially available photogrammetric software and oblique photographs taken with an off-the-shelf digital camera to create sequential digital elevation models (DEMs) of a lava dome that grew during the 2004–2008 eruption of Mount St. Helens (MSH) volcano. Renewed activity at MSH provided an opportunity to devise and test this method, because it could be validated against other observations of this well-monitored volcano. The datasets consist of oblique aerial photographs (snapshots) taken from a helicopter using a digital single-lens reflex camera. Twelve sets of overlapping digital images of the dome taken during 2004–2007 were used to produce DEMs and to calculate lava dome volumes and extrusion rates. Analyses of the digital images were carried out using photogrammetric software to produce three-dimensional coordinates of points identified in multiple photos. The evolving morphology of the dome was modeled by comparing successive DEMs. Results were validated by comparison to volume measurements derived from traditional vertical photogrammetric surveys by the US Geological Survey Cascades Volcano Observatory. Our technique was significantly less expensive and required less time than traditional vertical photogrammetric techniques; yet, it consistently yielded volume estimates within 5% of the traditional method. This technique provides an inexpensive, rapid assessment tool for tracking lava dome growth or other topographic changes at restless volcanoes.

  4. Seismic-monitoring changes and the remote deployment of seismic stations (seismic spider) at Mount St. Helens, 2004-2005: Chapter 7 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.

  5. Subevents of long-period seismicity: implications for hydrothermal dynamics during the 2004-2008 eruption of Mount St. Helens

    USGS Publications Warehouse

    Matoza, Robin S.; Chouet, Bernard A.

    2010-01-01

    One of the most striking aspects of seismicity during the 2004–2008 eruption of Mount St. Helens (MSH) was the precise regularity in occurrence of repetitive long-period (LP) or “drumbeat” events over sustained time periods. However, this precise regularity was not always observed, and at times the temporal occurrence of LP events became more random. In addition, accompanying the dominant LP class of events during the 2004–2008 MSH eruption, there was a near-continuous, randomly occurring series of smaller seismic events. These subevents are not always simply small-amplitude versions of the dominant LP class of events but appear instead to result from a separate random process only loosely coupled to the main LP source mechanism. We present an analysis of the interevent time and amplitude distributions of the subevents, using waveform cross correlation to separate LP events from the subevents. We also discuss seismic tremor that accompanied the 8 March 2005 phreatic explosion event at MSH. This tremor consists of a rapid succession of LPs and subevents triggered during the explosion, in addition to broadband noise from the sustained degassing. Immediately afterward, seismicity returned to the pre-explosion occurrence pattern. This triggering in relation to the rapid ejection of steam from the system, and subsequent return to pre-explosion seismicity, suggests that both seismic event types originated in a region of the subsurface hydrothermal system that was (1) in contact with the reservoir feeding the 8 March 2005 phreatic explosion but (2) not destroyed or drained by the explosion event. Finally, we discuss possible thermodynamic conditions in a pressurized hydrothermal crack that could give rise to seismicity. Pressure drop estimates for typical LP events are not generally large enough to perturb pure water in a shallow hydrothermal crack into an unstable state. However, dissolved volatiles such as CO2 may lead to a more unstable system, increasing the

  6. Ground-coupled acoustic airwaves from Mount St. Helens provide constraints on the May 18, 1980 eruption

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey B.; Malone, Stephen D.

    2007-06-01

    The May 18, 1980 Mount St. Helens eruption perturbed the atmosphere and generated atmosphere-to-ground coupled airwaves, which were recorded on at least 35 seismometers operated by the Pacific Northwest Seismograph Network (PNSN). From 102 distinct travel time picks we identify coherent airwaves crossing Washington State primarily to the north and east of the volcano. The travel time curves provide evidence for both stratospheric refractions (at 200 to 300 km from the volcano) as well as probable thermospheric refractions (at 100 to 350 km). The very few first-hand reports of audible volcano sounds within about 80 km of the volcano coincide with a general absence of ground-coupled acoustic arrivals registered within about 100 km and are attributed to upward refraction of sound waves. From the coherent refracted airwave arrivals, we identify at least four distinct sources which we infer to originate 10 s, 114 s, ˜ 180 s and 319 s after the onset of an 8:32:11 PDT landslide. The first of these sources is attributed to resultant depressurization and explosion of the cryptodome. Most of the subsequent arrivals also appear to be coincident with a source located at or near the presumed volcanic conduit, but at least one of the later arrivals suggests an epicenter displaced about 9 km to the northwest of the vent. This dislocation is compatible with the direction of the sector collapse and lateral blast. We speculate that this concussion corresponds to a northern explosion event associated with hot cryptodome entering the Toutle River Valley.

  7. Ground-coupled acoustic airwaves from Mount St. Helens provide constraints on the May 18, 1980 eruption

    USGS Publications Warehouse

    Johnson, J.B.; Malone, S.D.

    2007-01-01

    The May 18, 1980 Mount St. Helens eruption perturbed the atmosphere and generated atmosphere-to-ground coupled airwaves, which were recorded on at least 35 seismometers operated by the Pacific Northwest Seismograph Network (PNSN). From 102 distinct travel time picks we identify coherent airwaves crossing Washington State primarily to the north and east of the volcano. The travel time curves provide evidence for both stratospheric refractions (at 200 to 300 km from the volcano) as well as probable thermospheric refractions (at 100 to 350 km). The very few first-hand reports of audible volcano sounds within about 80 km of the volcano coincide with a general absence of ground-coupled acoustic arrivals registered within about 100 km and are attributed to upward refraction of sound waves. From the coherent refracted airwave arrivals, we identify at least four distinct sources which we infer to originate 10 s, 114 s, ∼ 180 s and 319 s after the onset of an 8:32:11 PDT landslide. The first of these sources is attributed to resultant depressurization and explosion of the cryptodome. Most of the subsequent arrivals also appear to be coincident with a source located at or near the presumed volcanic conduit, but at least one of the later arrivals suggests an epicenter displaced about 9 km to the northwest of the vent. This dislocation is compatible with the direction of the sector collapse and lateral blast. We speculate that this concussion corresponds to a northern explosion event associated with hot cryptodome entering the Toutle River Valley.

  8. The drag forces exerted by lahar flows on a cylindrical pier: case study of post Mount Merapi eruptions

    NASA Astrophysics Data System (ADS)

    Faizien Haza, Zainul

    2018-03-01

    Debris flows of lahar flows occurred in post mount eruption is a phenomenon in which large quantities of water, mud, and gravel flow down a stream at a high velocity. It is a second stage of danger after the first danger of lava flows, pyroclastic, and toxic gases. The debris flow of lahar flows has a high density and also high velocity; therefore it has potential detrimental consequences against homes, bridges, and infrastructures, as well as loss of life along its pathway. The collision event between lahar flows and pier of a bridge is observed. The condition is numerically simulated using commercial software of computational fluid dynamic (CFD). The work is also conducted in order to investigate drag force generated during collision. Rheological data of lahar is observed through laboratory test of lahar model as density and viscosity. These data were used as the input data of the CFD simulation. The numerical model is involving two types of fluid: mud and water, therefore multiphase model is adopted in the current CFD simulation. The problem formulation is referring to the constitutive equations of mass and momentum conservation for incompressible and viscous fluid, which in perspective of two dimension (2D). The simulation models describe the situation of the collision event between lahar flows and pier of a bridge. It provides sequential view images of lahar flow impaction and the propagation trend line of the drag force coefficient values. Lahar flow analysis used non-dimensional parameter of Reynolds number. According to the results of numerical simulations, the drag force coefficients are in range 1.23 to 1.48 those are generated by value of flow velocity in range 11.11 m/s to 16.67 m/s.

  9. Differences in Landsat TM derived lava flow thermal structures during summit and flank eruption at Mount Etna

    NASA Astrophysics Data System (ADS)

    Lombardo, V.; Buongiorno, M. F.; Pieri, D.; Merucci, L.

    2004-06-01

    The simultaneous solution of the Planck equation (the so-called "dual-band" technique) for two shortwave infrared Landsat Thematic Mapper (TM) bands allows an estimate of the fractional area of the hottest part of an active flow and the temperature of the cooler crust. Here, the dual-band method has been applied to a time series of Mount Etna eruptions. The frequency distribution of the fractional area of the hottest component reveals specific differences between summit and flank lava flows. The shape of the density function shows a trend consistent with a Gaussian distribution and suggests a relationship between the moments of the distribution and the emplacement environment. Because flow composition of Etnean lavas generally remains constant during the duration of their emplacement, it appears that the shape of any particular frequency distribution is probably related to fluid mechanical aspects of flow emplacement that affect flow velocity and flow heat loss and thus the rate of formation of the surface crust. These factors include the influence of topographical features such as changes in slope gradient, changes in volume effusion rate, and progressive downflow increases in bulk or effective viscosity. A form of the general theoretical solution for the 'dual-band' system, which illustrates the relationship between radiance in TM bands 5 and 7, corresponding to hot fractional area and crust temperature, is presented. Generally speaking, it appears that for a given flow at any point in time, larger fractional areas of exposed hot material are correlated with higher temperatures and that, while the overall shape of that distribution is common for the flows studied, its amplitude and slope reflect individual flow rheological regimes.

  10. Eruption dynamics at Mount St. Helens imaged from broadband seismic waveforms: Interaction of the shallow magmatic and hydrothermal systems

    USGS Publications Warehouse

    Waite, G.P.; Chouet, B.A.; Dawson, P.B.

    2008-01-01

    The current eruption at Mount St. Helens is characterized by dome building and shallow, repetitive, long-period (LP) earthquakes. Waveform cross-correlation reveals remarkable similarity for a majority of the earthquakes over periods of several weeks. Stacked spectra of these events display multiple peaks between 0.5 and 2 Hz that are common to most stations. Lower-amplitude very-long-period (VLP) events commonly accompany the LP events. We model the source mechanisms of LP and VLP events in the 0.5-4 s and 8-40 s bands, respectively, using data recorded in July 2005 with a 19-station temporary broadband network. The source mechanism of the LP events includes: 1) a volumetric component modeled as resonance of a gently NNW-dipping, steam-filled crack located directly beneath the actively extruding part of the new dome and within 100 m of the crater floor and 2) a vertical single force attributed to movement of the overlying dome. The VLP source, which also includes volumetric and single-force components, is 250 m deeper and NNW of the LP source, at the SW edge of the 1980s lava dome. The volumetric component points to the compression and expansion of a shallow, magma-filled sill, which is subparallel to the hydrothermal crack imaged at the LP source, coupled with a smaller component of expansion and compression of a dike. The single-force components are due to mass advection in the magma conduit. The location, geometry and timing of the sources suggest the VLP and LP events are caused by perturbations of a common crack system.

  11. Analysis of GPS-measured deformation associated with the 2004-2006 dome-building eruption of Mount St. Helens, Washington: Chapter 15 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Lisowski, Michael; Dzurisin, Daniel; Denlinger, Roger P.; Iwatsubo, Eugene Y.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    . The discrepancy between the estimated cavity-volume loss and the >83×106-m3 volume of the erupted dome can be explained, for the most part, by exsolution of gas in the stored magma and by minor input of new magma during the eruption.

  12. 238U-230Th-226Ra disequilibria in dacite and plagioclase from the 2004-2005 eruption of Mount St. Helens: Chapter 36 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Cooper, Kari M.; Donnelly, Carrie T.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    230Th)/(232Th) measured for the 1980s reference suite. However, (230Th)/(232Th) for plagioclase separates for dome samples erupted during October and November 2004 are significantly different from corresponding whole-rock values, which suggests that a large fraction (>30 percent) of crystals in each sample are foreign to the host liquid. Furthermore, plagioclase in the two 2004 samples have U-series characteristics distinct from each other and from plagioclase in dacite erupted in 1982, indicating that (1) the current eruption must include a component of crystals (and potentially associated magma) that were not sampled by the 1980-86 eruption, and (2) dacite magmas erupted only a month apart in 2004 contain different populations of crystals, indicating that this foreign component is highly heterogeneous within the 2004-5 magma reservoir.

  13. Use of thermal infrared imaging for monitoring renewed dome growth at Mount St. Helens, 2004: Chapter 17 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Schneider, David J.; Vallance, James W.; Wessels, Rick L.; Logan, Matthew; Ramsey, Michael S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    A helicopter-mounted thermal imaging radiometer documented the explosive vent-clearing and effusive phases of the eruption of Mount St. Helens in 2004. A gyrostabilized gimbal controlled by a crew member housed the radiometer and an optical video camera attached to the nose of the helicopter. Since October 1, 2004, the system has provided thermal and video observations of dome growth. Flights conducted as frequently as twice daily during the initial month of the eruption monitored rapid changes in the crater and 1980-86 lava dome. Thermal monitoring decreased to several times per week once dome extrusion began. The thermal imaging system provided unique observations, including timely recognition that the early explosive phase was phreatic, location of structures controlling thermal emissions and active faults, detection of increased heat flow prior to the extrusion of lava, and recognition of new lava extrusion. The first spines, 1 and 2, were hotter when they emerged (maximum temperature 700-730°C) than subsequent spines insulated by as much as several meters of fault gouge. Temperature of gouge-covered spines was about 200°C where they emerged from the vent, and it decreased rapidly with distance from the vent. The hottest parts of these spines were as high as 500-730°C in fractured and broken-up regions. Such temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques, as such features are smaller than pixels in satellite images.

  14. The 1928 eruption of Mount Etna (Italy): Reconstructing lava flow evolution and the destruction and recovery of the town of Mascali

    NASA Astrophysics Data System (ADS)

    Branca, Stefano; De Beni, Emanuela; Chester, David; Duncan, Angus; Lotteri, Alessandra

    2017-04-01

    Mount Etna in Sicily (Italy) shows > 2500 years of interactions between volcanic eruptions and human activity, and these are well documented in historical sources. During the last 400 years, flank eruptions have had major impacts on the urban fabric of the Etna region, especially in 1651-54, 1669, 1923 and 1928, and it is the last of these which is the focus of this paper. A detailed field and historical reconstruction of the 1928 eruption is presented which allows three themes to be discussed: the evolution of the flow field, lava volume and average magma discharge rate trend; the eruption's human impact, particularly the destruction of the town of Mascali; and the recovery of the region with re-construction of Mascali in a new location. Detailed mapping of lava flows allowed the following dimensions to be calculated: total area, 4.38 × 106 m2; maximum length, 9.4 km; volume, 52.91 ± 5.21 × 106 m3 and an average effusion rate of 38.5 m3 s-1. Time-averaged discharged rates are calculated allowing the reconstruction of their temporal variations during the course of the eruption evidencing a high maximum effusion rate of 374 m3 s- 1. These trends, in particular with regard to the Lower Fissure main phase of the eruption, are in accordance with the 'idealized discharge model' of Wadge (1981), proposed for basaltic eruptions driven by de-pressurization of magma sources, mainly through reservoir relaxation (i.e. elastic contraction of a magma body). The eruption took place when Italy was governed by Mussolini and the fascist party. The State response both, during and in the immediate aftermath of the eruption and in the years that followed during which Mascali was reconstructed, was impressive. This masked a less benign legacy, however, that can be traced for several subsequent decades of using responses to natural catastrophes to manufacture State prestige by reacting to, rather than planning for, disasters.

  15. From dome to dust: shallow crystallization and fragmentation of conduit magma during the 2004-2006 dome extrusion of Mount St. Helens, Washington: Chapter 19 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Cashman, Katharine V.; Thornber, Carl R.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Comparison of eruptive conditions during the 2004-6 activity at Mount St. Helens with those of other spine-forming eruptions suggests that magma ascent rates of about 10-4 m/s or less allow sufficient degassing and crystallization within the conduit to form large volcanic spines of intermediate composition (andesite to dacite). Solidification deep within the conduit, in turn, requires transport of the solid plug over long distances (hundreds of meters); resultant large strains are responsible for extensive brittle breakage and development of thick gouge zones. Moreover, similarities between gouge textures and those of ash emitted by explosions from spine margins indicate that fault gouge is the origin for the ash. As the comminution and generation of ash-sized particles was clearly a multistep process, this observation suggests that fragmentation preceded, rather than accompanied, these explosions.

  16. Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-1986 and current (2004-2006) eruptions: Chapter 33 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Blundy, Jon; Cashman, Katharine V.; Berlo, Kim; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    O contents, consistent with magma extraction from shallow depths. Highly enriched Li in melt inclusions suggests that vapor transport of Li is a characteristic feature of Mount St. Helens. Melt inclusions from the current eruption have subtly different trace-element chemistry from all but one of the 1980-86 melt inclusions, with steeper rareearth-element (REE) patterns and low U, Th, and high-fieldstrength elements (HFSE), indicating addition of a new melt component to the magma system. It is anticipated that increasing involvement of the new melt component will be evident as the current eruption proceeds.

  17. Chlorine as a geobarometer tool: Application to the explosive eruptions of the Volcanic Campanian District (Mount Somma-Vesuvius, Phlegrean Fields, Ischia)

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, Hélène; Boudon, Georges; Zdanowicz, Géraldine; Orsi, Giovanni; Civetta, Lucia; Webster, Jim D.; Cioni, Raffaello; D'Antonio, Massimo

    2016-04-01

    volcanoes of the Neapolitan area: Mount Somma-Vesuvius, Phlegrean Fields and Ischia. We have analysed the products of the representative explosive eruptions of each volcano, including Plinian, sub-Plinian and strombolian events. We have focussed our research on the earliest emitted, most evolved products of each eruption, likely representing the shallower, fluid-saturated portion of the reservoir. As the studied eruptions cover the entire eruptive history of each volcanic system, the results allow better constraining the evolution through time of the shallow plumbing system. We highlighted for Mount Somma - Vesuvius two magma ponding zones, at ~170-200 MPa and ~105-115 MPa, alternatively active in time. For Phlegrean Fields, we evidence a progressive deepening of the shallow reservoirs, from the Campanian Ignimbrite (30-50 MPa) to the Monte Nuovo eruption (115 MPa). Only one eruption was studied for Ischia, the Cretaio eruption, that shows a reservoir at 140 MPa. The results on pressure are in large agreement with literature. The Cl geobarometer may help scientists to define the reservoir dynamics through time and provide strong constraints on pre-eruptive conditions, of utmost importance for the interpretation of the monitoring data and the identification of precursory signals.

  18. Better constraints on the size and volatile content of the Mount St. Helens magma reservoir following the end of the 2004-2008 eruption

    NASA Astrophysics Data System (ADS)

    Mastin, L. G.; Lisowski, M.; Beeler, N.; Roeloffs, E.

    2008-12-01

    The October 2004-January 2008 eruption of Mount St. Helens produced about 93 million cubic meters dense-rock equivalent (DRE) lava at a continuous rate that decreased monotonically from ~6 m3 s-1 to zero over its duration. From late October 2004 through the end of the eruption, continuous GPS stations around the mountain recorded inward deflation at a rate that dropped monotonically below the noise level by early 2007. The geodetic signal is consistent with a volume change Δ Vc of ~16-25M m3 in an ellipsoidal reservoir of volume Vc centered at ~9-14 km depth beneath the crater. Throughout the eruption we used physically based models to extrapolate trends in lava-dome volume and deflation, and to forecast the duration and final erupted volume, Ve, using assumed or geologically constrained values of Vc, average recharge rate R into the reservoir, and compressibilities of magma (Km = ( 1/ρ m )( ∂ ρ m /∂ p )) and of the reservoir (Kc = ( 1/Vc )( ∂ Vc /∂ p )), where ρ m is magma density and p is pressure). Curves that neglected recharge consistently under-predicted both the final duration and volume, while those that assumed a constant recharge rate predicted indefinite duration and volume. The fact that the eruption ended several months after deflation stopped suggests that the long-term average recharge was close to zero, or at least much less than the average eruption rate. The discrepancy between Ve (93M m3) and Δ VC (16-25M m3) can be accounted for by the elastic relation Ve /Δ Vc = ( 1 + Km /Kc ), with Km = 3 - 4 × 10- 10 Pa-1 calculated for reservoir magma with 1- 1.5% bubbles (constrained from gas studies of the erupted lava), and Kc = 1.1 - 1.5 × 10 - 10 Pa-1. Assuming that the pressure drop dp in the reservoir was only slightly greater than the ~5 MPa increase in pressure at the 2004 vent elevation due to growth of the 220-m-high lava dome, the elastic relation Ve = VC dp( Kc + Km ) suggests that the eruption could have been fed by a reservoir

  19. Seismicity and infrasound associated with explosions at Mount St. Helens, 2004-2005: Chapter 6 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Moran, Seth C.; McChesney, Patrick J.; Lockhart, Andrew B.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Six explosions occurred during 2004-5 in association with renewed eruptive activity at Mount St. Helens, Washington. Of four explosions in October 2004, none had precursory seismicity and two had explosion-related seismic tremor that marked the end of the explosion. However, seismicity levels dropped following each of the October explosions, providing the primary instrumental means for explosion detection during the initial vent-clearing phase. In contrast, explosions on January 16 and March 8, 2005, produced noticeable seismicity in the form of explosion-related tremor, infrasonic signals, and, in the case of the March 8 explosion, an increase in event size ~2 hours before the explosion. In both 2005 cases seismic tremor appeared before any infrasonic signals and was best recorded on stations located within the crater. These explosions demonstrated that reliable explosion detection at volcanoes like Mount St. Helens requires seismic stations within 1-2 km of the vent and stations with multiple acoustic sensors.

  20. Identification and evolution of the juvenile component in 2004-2005 Mount St. Helens ash: Chapter 29 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Rowe, Michael C.; Thornber, Carl R.; Kent, Adam J.R.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Petrologic studies of volcanic ash are commonly used to identify juvenile volcanic material and observe changes in the composition and style of volcanic eruptions. During the 2004-5 eruption of Mount St. Helens, recognition of the juvenile component in ash produced by early phreatic explosions was complicated by the presence of a substantial proportion of 1980-86 lava-dome fragments and glassy tephra, in addition to older volcanic fragments possibly derived from crater debris. In this report, we correlate groundmass textures and compositions of glass, mafic phases, and feldspar from 2004-5 ash in an attempt to identify juvenile material in early phreatic explosions and to distinguish among the various processes that generate and distribute ash. We conclude that clean glass in the ash is derived mostly from nonjuvenile sources and is not particularly useful for identifying the proportion of juvenile material in ash samples. High Li contents (>30 μg/g) in feldspars provide a useful tracer for juvenile material and suggest an increase in the proportion of the juvenile component between October 1 and October 4, 2004, before the emergence of hot dacite on the surface of the crater on October 11, 2004. The presence of Li-rich feldspar out of equilibrium (based on Liplagioclase/melt partitioning) with groundmass and bulk dacite early in the eruption also suggests vapor enrichment in the initially erupted dacite. If an excess vapor phase was, indeed, present, it may have provided a catalyst to initiate the eruption. Textural and compositional comparisons between dome fault gouge and the ash produced by rockfalls, rock avalanches, and vent explosions indicate that the fault gouge is a likely source of ash particles for both types of events. Comparison of the ash from vent explosions and rockfalls suggests that the fault gouge and new dome were initially heterogeneous, containing a mixture of conduit and crater debris and juvenile material, but became increasingly

  1. Dual polarisation C-band weather radar imagery of the 6 August 2012 Te Maari Eruption, Mount Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Crouch, John F.; Pardo, Natalia; Miller, Craig A.

    2014-10-01

    The 6 August 2012 eruption of Mt. Tongariro from Upper Te Maari Crater in the central North Island of New Zealand was the first volcanic eruption observed by an operational weather radar in New Zealand, and is believed to be one of only a small number of eruptions observed by a dual-polarisation radar worldwide. The eruption was also observed by a GeoNet webcam, and detailed ash deposit studies have permitted analysis of the plume characteristics. A combination of radar and webcam imagery show 5 pulses within the first 13 min of the eruption, and also the subsequent ash transport downwind. Comparison with ash samples show the radar was likely detecting ash particles down to about 0.5 mm diameter. The maximum plume height estimated by the radar is 7.8 ± 1.0 km above mean sea level (amsl), although it is possible this may be a slight under estimation if very small ash particles not detected by the radar rose higher and comprised the very top of the plume. The correlation coefficient and differential reflectivity fields that are additionally measured by the dual polarisation radar provide extra information about the structure and composition of the eruption column and ash cloud. The correlation coefficient easily discriminates between the eruption column and the ash plume, and provides some information about the diversity of ash particle size within both the ash plume and the subsequent detached ash cloud drifting downwind. The differential reflectivity shows that the larger ash particles are falling with a horizontal orientation, and indicates that ice nucleation and aggregation of fine ash particles was probably occurring at high altitudes within 20-25 min of the eruption.

  2. Eruptive history, petrology, and petrogenesis of the Joe Lott Tuff Member of the Mount Belknap Volcanics, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Budding, Karin E.

    1982-01-01

    The Joe Lott Tuff Member of the Mount Belknap Volcanics is the largest rhyolitic ash-flow tuff sheet in the Marysvale volcanic field. It was erupted 19 m.y. ago, shortly after the changeover from intermediate-composition calc-alkalic volcanism to bimodal basalt-rhyolite volcanism. Eruption of the tuff resulted in the formation of the Mount Belknap Caldera whose pyroclastic intracaldera stratigraphy parallels that in the outflow facies. The Joe Loft Tuff Member is a composite ash-flow sheet that changes laterally from a simple cooling unit near the source to four distinct cooling units toward the distal end. The lowest of these units is the largest and most widespread; it is 64 m thick and contains a basal vitrophyre. Eruption of the lower unit led to the initial collapse of the caldera. The lower unit is followed upward by a 43 m middle unit, a 26 m pink-colored unit which is separated by a prominent air- fall layer, and a 31 m upper unit. The Joe Loft Tuff Member is an alkali rhyolite with 75.85-77.31 wt. % silica and 8.06-9.32 wt. % K2O+Na2O; the agpaitic index (Na2O+ K2O/Al2O3) is .77-.98. The tuff contains about I% phenocrysts of quartz, sanidine, oligoclase, augite, apatite, zircon, sphene, biotite, and oxidized Fe-Ti oxides. The basal vitrophyre contains accessory allanite, chevkinite, and magnesiohastingsite. The main cooling units are chemically and mineralogically zoned indicating that the magma chamber restratified prior to each major eruption. Within each of the two thickest cooling units, the mineralogy changes systematically upwards; the Or content and relative volume of sanidine decreases and An content of plagioclase increases. The basal vitrophyre of the lower unit has a bulk composition that lies in the thermal trough near the minima of Or-Ab-Q at 1 kb PH2O. Microprobe analyses of feldspar and chemical modeling on experimental systems indicate that pre-eruption temperatures were near 750?C and that the temperature increased during the eruption of

  3. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.

    PubMed

    Swingedouw, Didier; Ortega, Pablo; Mignot, Juliette; Guilyardi, Eric; Masson-Delmotte, Valérie; Butler, Paul G; Khodri, Myriam; Séférian, Roland

    2015-03-30

    While bidecadal climate variability has been evidenced in several North Atlantic paleoclimate records, its drivers remain poorly understood. Here we show that the subset of CMIP5 historical climate simulations that produce such bidecadal variability exhibits a robust synchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15 years after the 1963 Agung eruption. The mechanisms at play involve salinity advection from the Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the 1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate that coherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the last millennium. Climate simulations and a conceptual model reveal that destructive interference caused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of the AMOC in the 2000s. Our results imply a long-lasting climatic impact and predictability following the next Agung-like eruption.

  4. Effects of lava-dome growth on the crater glacier of Mount St. Helens, Washington: Chapter 13 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Walder, Joseph S.; Schilling, Steve P.; Vallance, James W.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The process of lava-dome emplacement through a glacier was observed for the first time as the 2004-6 eruption of Mount St. Helens proceeded. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry, and geodetic measurements document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal temperate alpine glaciers. Unlike such glaciers, the Mount St. Helens crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano’s groundwater system rather than flowing through a drainage network along the bed. Mechanical consideration of the glacier-squeeze process also leads to an estimate for the driving pressure applied by the growing lava dome.

  5. The initial phases of the 2008-2009 Mount Etna eruption: A multidisciplinary approach for hazard assessment

    NASA Astrophysics Data System (ADS)

    Bonaccorso, A.; Bonforte, A.; Calvari, S.; Del Negro, C.; di Grazia, G.; Ganci, G.; Neri, M.; Vicari, A.; Boschi, E.

    2011-03-01

    Between 2007 and early 2008, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) monitoring networks on Etna volcano recorded a recharging phase that climaxed with a new effusive eruption on 13 May 2008 and lasted about 14 months. A dike-forming intrusion was accompanied by a violent seismic swarm, with more than 230 events recorded in the first 6 h, the largest being ML = 3.9. In the meanwhile, marked ground deformation was recorded by the permanent tilt and GPS networks, and sudden changes in the summit area were detected by five continuously recording magnetic stations. Poor weather conditions did not allow direct observation of the eruptive events, but important information was provided by infrared satellite images that detected the start of lava fountains from the eruptive fissure, feeding a lava flow. This flow spread within the Valle del Bove depression, covering 6.4 km on the southeastern flank of the volcano in a few hours. The seismicity and deformation pattern indicated that the dike-forming intrusion was propagating northward. It produced a dry fracture field, which generated concern for the possibility that the eruptive fissures could expand downslope toward populated areas. Monitoring and modeling of the multidisciplinary data, together with the simulations of ash dispersal and lava flows, allowed us both to infer the eruptive mechanisms and to provide correct interpretation of the ongoing phenomena, furnishing useful information for civil defense purposes. We describe how this approach of feedback between monitoring and research provides critical support to risk evaluation.

  6. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004--2008

    USGS Publications Warehouse

    Anderson, Kyle; Segall, Paul

    2013-01-01

    Physics-based models of volcanic eruptions can directly link magmatic processes with diverse, time-varying geophysical observations, and when used in an inverse procedure make it possible to bring all available information to bear on estimating properties of the volcanic system. We develop a technique for inverting geodetic, extrusive flux, and other types of data using a physics-based model of an effusive silicic volcanic eruption to estimate the geometry, pressure, depth, and volatile content of a magma chamber, and properties of the conduit linking the chamber to the surface. A Bayesian inverse formulation makes it possible to easily incorporate independent information into the inversion, such as petrologic estimates of melt water content, and yields probabilistic estimates for model parameters and other properties of the volcano. Probability distributions are sampled using a Markov-Chain Monte Carlo algorithm. We apply the technique using GPS and extrusion data from the 2004–2008 eruption of Mount St. Helens. In contrast to more traditional inversions such as those involving geodetic data alone in combination with kinematic forward models, this technique is able to provide constraint on properties of the magma, including its volatile content, and on the absolute volume and pressure of the magma chamber. Results suggest a large chamber of >40 km3 with a centroid depth of 11–18 km and a dissolved water content at the top of the chamber of 2.6–4.9 wt%.

  7. Evidence for degassing of fresh magma during the 2004-2008 eruption of Mount St. Helens: Subtle signals from the hydrothermal system

    USGS Publications Warehouse

    Bergfeld, Deborah; Evans, William C.; Spicer, Kurt R.; Hunt, Andrew G.; Kelly, Peter

    2017-01-01

    Results from chemical and isotopic analyses of water and gas collected between 2002 and 2016 from sites on and around Mount St. Helens are used to assess magmatic degassing related to the 2004-2008 eruption. During 2005 the chemistry of hot springs in The Breach of Mount St. Helens showed no obvious response to the eruption, and over the next few years, changes were subtle, giving only slight indications of perturbations in the system. By 2010 however, water chemistry, temperatures, and isotope compositions (δD and δ18O) clearly indicated some inputs of volatiles and heat associated with the eruption, but the changes were such that they could be attributed to a pre-existing, gas depleted magma. An increase of ~ 1.5‰ in the δ13C values of dissolved carbon in the springs was noted in 2006 and continued through 2009, a change that was mirrored by a similar shift in δ13C-CO2 in bubble gas emissions. These changes require input of a new source of carbon to the hydrothermal system and provide clear evidence of CO2 from an undegassed body of magma. Rising trends in 3He/4He ratios in gas also accompanied the increases in δ13C. Since 2011 maximum RC/RA values are ≥ 6.4 and are distinctly higher than 5 samples collected between 1986 and 2002, and provide additional evidence for some involvement of new magma as early as 2006, and possibly earlier, given the unknown time needed for CO2 and He to traverse the system and arrive at the springs.

  8. Using the Mount Pinatubo Volcanic Eruption to Determine Climate Sensitivity: Comments on "Climate Forcing by the Volcanic Eruption of Mount Pinatubo" by David H. Douglass and Robert S. Knox

    SciTech Connect

    Wigley, T L; Ammann, C M; Santer, B D

    2005-04-22

    [1] Douglass and Knox [2005], hereafter referred to as DK, present an analysis of the observed cooling following the 1991 Mt. Pinatubo eruption and claim that these data imply a very low value for the climate sensitivity (equivalent to 0.6 C equilibrium warming for a CO{sub 2} doubling). We show here that their analysis is flawed and their results are incorrect.

  9. Plagioclase populations and zoning in dacite of the 2004-2005 Mount St. Helens eruption: constraints for magma origin and dynamics: Chapter 34 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Streck, Martin J.; Broderick, Cindy A.; Thronber, Carl R.; Clynne, Michael A.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    We propose that crystals with no dissolution surfaces are those that were supplied last to the shallow reservoir, whereas plagioclase with increasingly more complex zoning patterns (that is, the number of zoned bands bounded by dissolution surfaces) result from prolonged residency and evolution in the reservoir. We propose that banding and An zoning across multiple bands are primarily a response to thermally induced fluctuations in crystallinity of the magma in combination with recharge; a lesser role is ascribed to cycling crystals through pressure gradients. Crystals without dissolution surfaces, in contrast, could have grown only in response to steady(?) decompression. Some heating-cooling cycles probably postdate the final eruption in 1986. They resulted from small recharge events that supplied new crystals that then experienced resorption-growth cycles. We suggest that magmatic events shortly prior to the current eruption, recorded in the outermost zones of plagioclase phenocrysts, began with the incorporation of acicular orthopyroxene, followed by last resorption, and concluded with crystallization of euhedral rims. Finally, we propose that 2004-5 dacite is composed mostly of dacite magma that remained after 1986 and underwent subsequent magmatic evolution but, more importantly, contains a component of new dacite from deeper in the magmatic system, which may have triggered the new eruption.

  10. Magnitude and timing of downstream channel aggradation and degradation in response to a dome-building eruption at Mount Hood, Oregon

    USGS Publications Warehouse

    Pierson, Thomas C.; Pringle, Patrick T.; Cameron, Kenneth A.

    2011-01-01

    A dome-building eruption at Mount Hood, Oregon, starting in A.D. 1781 and lasting until ca. 1793, produced dome-collapse lithic pyroclastic flows that triggered lahars and intermittently fed 108 m3 of coarse volcaniclastic sediment to sediment reservoirs in headwater canyons of the Sandy River. Mobilization of dominantly sandy sediment from these reservoirs by lahars and seasonal floods initiated downstream migration of a sediment wave that resulted in a profound cycle of aggradation and degradation in the lowermost reach of the river (depositional reach), 61-87 km from the source. Stratigraphic and sedimentologic relations in the alluvial fill, together with dendrochronologic dating of degradation terraces, demonstrate that (1) channel aggradation in response to sediment loading in the headwater canyons raised the river bed in this reach at least 23 m in a decade or less; (2) the transition from aggradation to degradation in the upper part of this reach roughly coincided with the end of the dome-building eruption; (3) fluvial sediment transport and deposition, augmented by one lahar, achieved a minimum average aggradation rate of ~2 m/yr; (4) the degradation phase of the cycle was more prolonged than the aggradation phase, requiring more than half a century for the river to reach its present bed elevation; and (5) the present longitudinal profile of the Sandy River in this reach is at least 3 m above the pre-eruption profile. The pattern and rate of channel response and recovery in the Sandy River following heavy sediment loading resemble those of other rivers similarly subjected to very large sediment inputs. The magnitude of channel aggradation in the lower Sandy River, greater than that achieved at other volcanoes following much larger eruptions, was likely enhanced by lateral confinement of the channel within a narrow incised valley. A combination of at least one lahar and winter floods from frequent moderate-magnitude rainstorms and infrequent very large

  11. Mount Etna eruptions of the last 2,750 years: revised chronology and location through archeomagnetic and 226Ra-230Th dating

    NASA Astrophysics Data System (ADS)

    Tanguy, Jean-Claude; Condomines, Michel; Le Goff, Maxime; Chillemi, Vito; La Delfa, Santo; Patanè, Giuseppe

    2007-09-01

    A careful re-examination of the well-known written documents pertaining to the 2,750-year-long historical period of Mount Etna was carried out and their interpretation checked through the high-accuracy archeomagnetic method (>1,200 large samples), combined with the 226Ra-230Th radiochronology. The magnetic dating is based upon secular variation of the direction of the geomagnetic field (DGF) and estimated to reach a precision of ±40 years for the last 1,200 years, and ±100 to 200 years up to circa 150 B.C. Although less precise, the 226Ra-230Th method provides a unique tool for distinguishing between historic and prehistoric lavas, which in some cases might have similar DGFs. We show that despite the abundance of details on ancient historical eruptions, the primary sources of information are often too imprecise to identify their lava flows and eruptive systems. Most of the ages of these lavas, which are today accepted on the geological maps and catalogues, were attributed in the 1800s on the basis of their morphology and without any stratigraphical control. In fact, we found that 80% of the “historically dated” flows and cones prior to the 1700s are usually several hundreds of years older than recorded, the discrepancies sometimes exceeding a millennium. This is proper the case for volcanics presumed of the “1651 east” (actually ˜1020), “1595” (actually two distinct flows, respectively, ˜1200 and ˜1060), “1566” (˜1180), “1536” (two branches dated ˜1250 and ˜950), “1444” (a branch dated ˜1270), “1408” (lower branches dated ˜450 and ˜350), “1381” (˜1160), “1329” (˜1030), “1284” (˜1450 and ˜700), “1169 or 812” (˜1000) eruptions. Conversely, well-preserved cones and flows that are undated on the maps were produced by recent eruptions that went unnoticed in historical accounts, especially during the Middle Ages. For the few eruptions that are recorded between A.D. 252 and 750 B.C., none of their presumed lava

  12. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mount Pinatubo at Southern and Northern Midlatitudes

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2013-01-01

    Observations have shown that the mass of nitrogen dioxide decreased at both southern and northern midlatitudes in the year following the eruption of Mt. Pinatubo, indicating that the volcanic aerosol had enhanced nitrogen dioxide depletion via heterogeneous chemistry. In contrast, the observed ozone response showed a northern midlatitude decrease and a small southern midlatitude increase. Previous simulations that included an enhancement of heterogeneous chemistry by the volcanic aerosol but no other effect of this aerosol produce ozone decreases in both hemispheres, contrary to observations. The authors simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and Southern Hemisphere extratropical downwelling. This enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer Dobson circulation, increased Southern Hemisphere ozone via advection, counteracting the ozone depletion due to heterogeneous chemistry on the Pinatubo aerosol.

  13. The influence of stratospheric dynamics on the forcing efficacy of tropical volcanic SO2 injection: a case study around the 1991 Mount Pinatubo eruption

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Marshall, Lauren; Schmidt, Anja; Carslaw, Kenneth; Chipperfield, Martyn; Bellouin, Nicolas; Morgenstern, Olaf; Johnson, Colin; O'Connor, Fiona

    2016-04-01

    Major tropical volcanic eruptions exert significant climate impacts principally via enhanced scattering of solar radiation due to the injected SO2 elevating particle concentrations in the stratospheric aerosol layer. The size distribution of stratospheric aerosol particles also shifts to larger sizes in volcanically-enhanced conditions, which promotes absorption and subsequent stratospheric heating as well as causing faster sedimentation. How the volcanic sulphur cloud is dispersed also strongly affects the longevity of its radiative effects. In this presentation we investigate the role of stratospheric dynamical variability in affecting the temporal evolution of the volcanic aerosol, and also its feedback on subsequent chemical and dynamical ozone changes. Among various processes, the Quasi-Biennial Oscillation (QBO), the dominant mode of dynamical variability in the tropical stratosphere, is known to play a key role in determining the meridional dispersion of the volcanic cloud generated by major tropical eruptions. We have carried out a series of interactive stratospheric aerosol simulations with the UM-UKCA composition-climate model, to explore how different QBO phase impact volcanic radiative forcing, with a test case based around Mount Pinatubo. We will present results from an ensemble of simulations for different easterly and westerly phases of QBO, comparing simulated stratospheric aerosol properties (e.g. extinction, AOD, effective radius, particle size distribution) against a range of satellite and in-situ observational datasets. Changes in dynamics and temperatures would be compared against reanalysis (e.g. ERA-interim, HaDCRUT4) datasets followed by an analysis of radiative and dynamical changes for contrasting phases of QBO. References: Dhomse SS, Chipperfield MP, Feng W, Hossaini R, Mann GW, Santee ML (2015) Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophysical Research

  14. Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater

    USGS Publications Warehouse

    Pallister, John S.; Clynne, Michael A.; Wright, Heather M.; Van Eaton, Alexa R.; Vallance, James W.; Sherrod, David R.; Kokelaar, B. Peter

    2017-08-02

    This field trip will provide an introduction to several fascinating features of Mount St. Helens. The trip begins with a rigorous hike of about 15 km from the Johnston Ridge Observatory (9 km north-northeast of the crater vent), across the 1980 Pumice Plain, to Windy Ridge (3.6 km northeast of the crater vent) to examine features that document the dynamics and progressive emplacement of pyroclastic flows. The next day, we examine classic tephra outcrops of the past 3,900 years and observe changes in thickness and character of these deposits as we traverse their respective lobes. We examine clasts in the deposits and discuss how the petrology and geochemistry of Mount St. Helens deposits reveal the evolution of the magmatic system through time. We also investigate the stratigraphy of the 1980 blast deposit and review the chronology of this iconic eruption as we travel through the remains of the blown-down forest. The third day is another rigorous hike, about 13 km round trip, climbing from the base of Windy Ridge (elevation 1,240 m) to the front of the Crater Glacier (elevation 1,700 m). En route we examine basaltic andesite and basalt lava flows emplaced between 1,800 and 1,700 years before present, a heterolithologic flow deposit produced as the 1980 blast and debris avalanche interacted, debris-avalanche hummocks that are stranded on the north flank and in the crater mouth, and shattered dacite lava domes that were emplaced between 3,900 and 2,600 years before present. These domes underlie the northern part of the volcano. In addition, within the crater we traverse well-preserved pyroclastic-flow deposits that were emplaced on the crater floor during the summer of 1980, and a beautiful natural section through the 1980 deposits in the upper canyon of the Loowit River.Before plunging into the field-trip log, we provide an overview of Mount St. Helens geology, geochemistry, petrology, and volcanology as background. The volcano has been referred to as a

  15. Remote camera observations of lava dome growth at Mount St. Helens, Washington, October 2004 to February 2006: Chapter 11 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Poland, Michael P.; Dzurisin, Daniel; LaHusen, Richard G.; Major, John J.; Lapcewich, Dennis; Endo, Elliot T.; Gooding, Daniel J.; Schilling, Steve P.; Janda, Christine G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Images from a Web-based camera (Webcam) located 8 km north of Mount St. Helens and a network of remote, telemetered digital cameras were used to observe eruptive activity at the volcano between October 2004 and February 2006. The cameras offered the advantages of low cost, low power, flexibility in deployment, and high spatial and temporal resolution. Images obtained from the cameras provided important insights into several aspects of dome extrusion, including rockfalls, lava extrusion rates, and explosive activity. Images from the remote, telemetered digital cameras were assembled into time-lapse animations of dome extrusion that supported monitoring, research, and outreach efforts. The wide-ranging utility of remote camera imagery should motivate additional work, especially to develop the three-dimensional quantitative capabilities of terrestrial camera networks.

  16. Hydrogen isotope investigation of amphibole and glass in dacite magmas erupted in 1980-1986 and 2005 at Mount St. Helens, Washington

    USGS Publications Warehouse

    Underwood, S.J.; Feeley, T.C.; Clynne, M.A.

    2013-01-01

    In active, shallow, sub-volcanic magma conduits the extent of the dehydrogenation–oxidation reaction in amphibole phenocrysts is controlled by energetic processes that cause crystal lattice damage or conditions that increase hydrogen diffusivity in magmatic phases. Amphibole phenocrysts separated from dacitic volcanic rocks erupted from 1980 to 1986 and in 2005 at Mount St. Helens (MSH) were analyzed for δD, water content and Fe3+/Fe2+, and fragments of glassy groundmass were analyzed for δD and water content. Changes in amphibole δD values through time are evaluated within the context of carefully observed volcanic eruption behavior and published petrological and geochemical investigations. Driving forces for amphibole dehydrogenation include increase in magma oxygen fugacity, decrease in amphibole hydrogen fugacity, or both. The phenocryst amphibole (δD value c. –57‰ and 2 wt % H2O) in the white fallout pumice of the May 18, 1980 plinian eruptive phase is probably little modified during rapid magma ascent up an ∼7 km conduit. Younger volcanic rocks incorporate some shallowly degassed dacitic magma from earlier pulses, based on amphibole phenocryst populations that exhibit varying degrees of dehydrogenation. Pyroclastic rocks from explosive eruptions in June–October 1980 have elevated abundances of mottled amphibole phenocrysts (peaking in some pyroclastic rocks erupted on July 22, 1980), and extensive amphibole dehydrogenation is linked to crystal damage from vesiculation and pyroclastic fountain collapse that increased effective hydrogen diffusion in amphibole. Multiple amphibole δD populations in many 1980 pyroclastic rocks combined with their groundmass characteristics (e.g. mixed pumice textures) support models of shallow mixing prior to, or during, eruption as new, volatile-rich magma pulses blended with more oxidized, degassed magma. Amphibole dehydrogenation is quenched at the top surface of MSH dacite lava lobes, but the diversity in the

  17. Changes in channel geometry of six eruption-affected tributaries of the Lewis River, 1980-82, Mount St. Helens, Washington

    USGS Publications Warehouse

    Martinson, H.A.; Finneran, S.D.; Topinka, L.J.

    1984-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars and tephra deposits that altered tributary channels in the Lewis River drainage basin. In order to assess potential flood hazards, study channel adjustments, and construct a sediment budget for the perturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek, and Clearwater Creek during the summer of 1981. The network of 88 channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. The repetitive cross-section surveys provide measurements of bank erosion or accretion and of channel erosion or aggradation. The report presents channel cross-section profiles constructed from the survey data collected during water years 1980-82. (USGS)

  18. Changes in seismic velocity during the first 14 months of the 2004–2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hotovec-Ellis, A.J.; Vidale, J.E.; Gomberg, Joan S.; Thelen, Weston A.; Moran, Seth C.

    2015-01-01

    Mount St. Helens began erupting in late 2004 following an 18 year quiescence. Swarms of repeating earthquakes accompanied the extrusion of a mostly solid dacite dome over the next 4 years. In some cases the waveforms from these earthquakes evolved slowly, likely reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify small changes in seismic velocity structure (usually <1%) between two similar earthquakes and employed waveforms from several hundred families of repeating earthquakes together to create a continuous function of velocity change observed at permanent stations operated within 20 km of the volcano. The high rate of earthquakes allowed tracking of velocity changes on an hourly time scale. Changes in velocity were largest near the newly extruding dome and likely related to shallow deformation as magma first worked its way to the surface. We found strong correlation between velocity changes and the inverse of real-time seismic amplitude measurements during the first 3 weeks of activity, suggesting that fluctuations of pressure in the shallow subsurface may have driven both seismicity and velocity changes. Velocity changes during the remainder of the eruption likely result from a complex interplay of multiple effects and are not well explained by any single factor alone, highlighting the need for complementary geophysical data when interpreting velocity changes.

  19. Radar interferometry observations of surface displacements during pre- and coeruptive periods at Mount St. Helens, Washington, 1992-2005: Chapter 18 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Poland, Michael; Lu, Zhong; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    We analyzed hundreds of interferograms of Mount St. Helens produced from radar images acquired by the ERS-1/2, ENVISAT, and RADARSAT satellites during the 1992-2004 preeruptive and 2004-2005 coeruptive periods for signs of deformation associated with magmatic activity at depth. Individual interferograms were often contaminated by atmospheric delay anomalies; therefore, we employed stacking to amplify any deformation patterns that might exist while minimizing random noise. Preeruptive interferograms show no signs of volcanowide deformation between 1992 and the onset of eruptive activity in 2004. Several patches of subsidence in the 1980 debris-avalanche deposit were identified, however, and are thought to be caused by viscoelastic relaxation of loosely consolidated substrate, consolidation of water-saturated sediment, or melting of buried ice. Coeruptive interferometric stacks are dominated by atmospheric noise, probably because individual interferograms span only short time intervals in 2004 and 2005. Nevertheless, we are confident that at least one of the seven coeruptive stacks we constructed is reliable at about the 1-cm level. This stack suggests deflation of Mount St. Helens driven by contraction of a source beneath the volcano.

  20. Broadband characteristics of earthquakes recorded during a dome-building eruption at Mount St. Helens, Washington, between October 2004 and May 2005: Chapter 5 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Horton, Stephen P.; Norris, Robert D.; Moran, Seth C.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    From October 2004 to May 2005, the Center for Earthquake Research and Information of the University of Memphis operated two to six broadband seismometers within 5 to 20 km of Mount St. Helens to help monitor recent seismic and volcanic activity. Approximately 57,000 earthquakes identified during the 7-month deployment had a normal magnitude distribution with a mean magnitude of 1.78 and a standard deviation of 0.24 magnitude units. Both the mode and range of earthquake magnitude and the rate of activity varied during the deployment. We examined the time domain and spectral characteristics of two classes of events seen during dome building. These include volcano-tectonic earthquakes and lower-frequency events. Lower-frequency events are further classified into hybrid earthquakes, low-frequency earthquakes, and long-duration volcanic tremor. Hybrid and low-frequency earthquakes showed a continuum of characteristics that varied systematically with time. A progressive loss of high-frequency seismic energy occurred in earthquakes as magma approached and eventually reached the surface. The spectral shape of large and small earthquakes occurring within days of each other did not vary with magnitude. Volcanic tremor events and lower-frequency earthquakes displayed consistent spectral peaks, although higher frequencies were more favorably excited during tremor than earthquakes.

  1. The initial giant umbrella cloud of the May 18th, 1980, explosive eruption of Mount St. Helens

    USGS Publications Warehouse

    Sparks, R.S.J.; Moore, J.G.; Rice, C.J.

    1986-01-01

    The initial eruption column of May 18th, 1980 reached nearly 30 km altitude and released 1017 joules of thermal energy into the atmosphere in only a few minutes. Ascent of the cloud resulted in forced intrusion of a giant umbrella-shaped cloud between altitudes of 10 and 20 km at radial horizontal velocities initially in excess of 50 m/s. The mushroom cloud expanded 15 km upwind, forming a stagnation point where the radial expansion velocity and wind velocity were equal. The cloud was initiated when the pyroclastic blast flow became buoyant. The flow reduced its density as it moved away from the volcano by decompression, by sedimentation, and by mixing with and heating the surrounding air. Observations indicate that much of the flow, covering an area of 600 km2, became buoyant within 1.5 minutes and abruptly ascended to form the giant cloud. Calculations are presented for the amount of air that must have been entrained into the flow to make it buoyant. Assuming an initial temperature of 450??C and a magmatic origin for the explosion, these calculations indicate that the flow became buoyant when its temperature was approximately 150??C and the flow consisted of a mixture of 3.25 ?? 1011 kg of pyroclasts and 5.0 ?? 1011 kg of air. If sedimentation is considered, these figures reduce to 1.1 ?? 1011 kg of pyroclasts and 1.0 ?? 1011 kg of air. ?? 1986.

  2. Evolution of the stratospheric aerosol in the northern hemisphere following the June 1991 volcanic eruption of Mount Pinatubo: Role of tropospheric-stratospheric exchange and transport

    NASA Astrophysics Data System (ADS)

    Jónsson, Hafliòi H.; Wilson, James C.; Brock, Charles A.; Dye, J. E.; Ferry, G. V.; Chan, K. R.

    1996-01-01

    Since the eruption of Mount Pinatubo in June, 1991, measurements of particle size and concentration have intermittently been carried out from an ER-2 aircraft at altitudes of up to 21 km at midlatitudes and high latitudes in the northern hemisphere. They show the evolution and purge of the volcanic aerosol to be due to an interaction of aerosol mechanics with tropospheric-stratospheric exchange processes, transport, and mixing. During the first 5 months after the eruption the volcanic plume spread to higher latitudes in laminae and filaments, producing steep spatial gradients in the properties of the stratospheric aerosol. At the same time the concentration of newly formed particles in the plume rapidly decreased toward background values as a result of coagulation while particle size and aerosol surface area continued to increase. By December 1991, the particle number mixing ratios and aerosol surface area mixing ratios had become spatially uniform over a wide range of latitudes above 18 km. The surface area mixing ratios peaked in this region of the stratosphere at ˜35 times their background values in the winter of 1992. The corresponding condensed mass mixing ratio enhancement was by a factor of ˜200. After the winter of 1992, a gradual removal of the volcanic mass began and initially was dominated by sedimentation above 18 km. The aerosol surface area mixing ratio thus decreased by an order of magnitude over 2.5 years, and the aerosol volume, or condensed mass, mixing ratio decayed by an order of magnitude over approximately 1.7 years. Below 18 km, the purging of the Pinatubo aerosol at mid-latitudes appeared sporadic and disorderly and was strongly influenced by episodal rapid quasi-isentropic transport and dilution by tropical air of tropospheric origin having high condensation nuclei mixing ratios but low mixing ratios of aerosol surface area or condensed mass compared to the volcanic aerosol.

  3. Effects of the Mount Pinatubo eruption on the radiative and chemical processes in the troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Kinnison, Douglas E.; Grant, Keith E.; Connell, Peter S.; Wuebbles, Donald J.

    1994-01-01

    The Lawrence Livermore National Laboratory two-dimensional zonally-averaged chemical-radiative-transport model of the global atmosphere was used to study the effects of the 15 June 1991 eruption of the Mt. Pinatubo volcano on stratospheric processes. SAGE 2 time-dependent aerosol surface area density and optical extinction data were used as input into the model. By 22 December 1991, a maximum equatorial change of -1.8 percent in column ozone was derived from heterogeneous chemical processes that convert NO(x) into HNO3 on sulfuric acid aerosols. Radiative feedbacks from increased aerosol optical thickness independently changes column ozone by approximately -3.5 percent for the same period. This occurs from increasing the net heating of the lower stratosphere, which indirectly increases chemical reaction rates via their temperature dependence and from changes in actinic fluxes, which directly modify photodissociation rates. Including both heterogeneous and radiative effects changes column ozone by -5.5 percent. The model-derived change overestimates the decrease in column ozone relative to the TOMS instrument on the Nimbus 7 satellite. Maximum local ozone decreases of 12 percent were derived in the equatorial region, at 25 km. Model-derived column NO2 peaked (-14 percent) at 30 deg S in October 1991. The timing of the NO2 peak is consistent with observation, but the model underestimates the magnitude of the decrease. Local concentrations of NO(x) (NO + NO2), ClO(x) (Cl + ClO), and HO(x) (OH + HO2), in the lower stratosphere between 30 deg S and 30 deg N, were calculated to have changed by -40 percent, +100 to +160 percent, and +120 to +140 percent respectively.

  4. Search for temporal changes in shear-wave splitting associated with the 2012 Te Maari Eruptions at Mount Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Godfrey, Holly J.; Shelley, Adrian; Savage, Martha K.

    2014-10-01

    We investigate changes in shear wave splitting and VP/VS ratios of local earthquakes from the GeoNet catalogue during a 16 month period beginning a year before the first Te Maari eruption at Mount Tongariro on August 6, 2012, focusing on four permanent seismographs located in proximity to the volcano. We identify four time periods bounded by sharp transitions that comprise the study period, during which moving averages of the shear-wave splitting parameters, Φ (fast direction) and δt (delay time), are fairly constant. At all stations, VP/VS is steady throughout most of the study period at 1.75. Small variations occur during the earthquake swarm at the volcano, which started a month before the first eruption, and for some low magnitude events occurring after a change in earthquake location method. Analysis of data sets in which epicentre location, hypocentre depth and event magnitude are restricted illustrates that observed temporal changes in shear-wave splitting parameters are likely due to the spatial variation of paths. This in turn is governed by the spatial distribution of seismicity and measurement quality. We think the short term variation in VP/VS ratios is due to event origin time uncertainty of low magnitude earthquakes or incorrect S-phase arrival timing for events in the Tongariro swarm. These results suggest that any volcanic processes able to cause changes in shear-wave splitting or VP/VS associated with the two eruptions during our study period were too localised to Te Maari to be observed at the seismographs studied using our methods. Dominant Φ observed during the study period are oriented approximately tangential to the Tongariro/Ngauruhoe massif at all four stations. We suggest that this may result from gravitational loading of Tongariro and Ngauruhoe mountains inducing fracturing or dilatation of tangentially oriented microcracks. There may also be some effect from layered material causing horizontal propagating rays yielding faster speed SH

  5. Channel geometry and hydrologic data for six eruption-affected tributaries of the Lewis River, Mount St. Helens, Washington, water years 1983-84

    USGS Publications Warehouse

    Martinson, H.A.; Hammond, H.E.; Mast, W.W.; Mango, P.D.

    1986-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars, and tephra deposits that altered stream channels in the Lewis River drainage basin. In order to assess potential flood hazards, monitor channel adjustments, and construct a sediment budget for disturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek , and Clearwater Creek during 1981. This network of channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. Longitudinal stream profiles of the low-water thalweg and (or) water surfaces were surveyed periodically for selected short reaches of channel. Corresponding map views for these reaches were constructed using the survey data and aerial photographs. This report presents plots of channel cross-section profiles, longitudinal stream profiles, and channel maps constructed from survey data collected during water years 1983-84. (USGS)

  6. Self-similar rupture implied by scaling properties of volcanic earthquakes occurring during the 2004-2008 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Harrington, Rebecca M.; Kwiatek, Grzegorz; Moran, Seth C.

    2015-01-01

    We analyze a group of 6073 low-frequency earthquakes recorded during a week-long temporary deployment of broadband seismometers at distances of less than 3 km from the crater at Mount St. Helens in September of 2006. We estimate the seismic moment (M0) and spectral corner frequency (f0) using a spectral ratio approach for events with a high signal-to-noise (SNR) ratio that have a cross-correlation coefficient of 0.8 or greater with at least five other events. A cluster analysis of cross-correlation values indicates that the group of 421 events meeting the SNR and cross-correlation criteria forms eight event families that exhibit largely self-similar scaling. We estimate the M0 and f0 values of the 421 events and calculate their static stress drop and scaled energy (ER/M0) values. The estimated values suggest self-similar scaling within families, as well as between five of eight families (i.e.,  and  constant). We speculate that differences in scaled energy values for the two families with variable scaling may result from a lack of resolution in the velocity model. The observation of self-similar scaling is the first of its kind for such a large group of low-frequency volcanic tectonic events occurring during a single active dome extrusion eruption.

  7. Dynamics of seismogenic volcanic extrusion resisted by a solid surface plug, Mount St. Helens, 2004-2005: Chapter 21 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Iverson, Richard M.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The 2004-5 eruption of Mount St. Helens exhibited sustained, near-equilibrium behavior characterized by nearly steady extrusion of a solid dacite plug and nearly periodic occurrence of shallow earthquakes. Diverse data support the hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upward by ascending, solidifying, gas-poor magma. I formalize this hypothesis with a mathematical model derived by assuming that magma enters the base of the eruption conduit at a steady rate, invoking conservation of mass and momentum of the magma and plug, and postulating simple constitutive equations that describe magma and conduit compressibilities and friction along the plug margins. Reduction of the model equations reveals a strong mathematical analogy between the dynamics of the magma-plug system and those of a variably damped oscillator. Oscillations in extrusion velocity result from the interaction of plug inertia, a variable upward force due to magma pressure, and a downward force due to the plug weight. Damping of oscillations depends mostly on plug-boundary friction, and oscillations grow unstably if friction exhibits rate weakening similar to that observed in experiments. When growth of oscillations causes the extrusion rate to reach zero, however, gravity causes friction to reverse direction, and this reversal instigates a transition from unstable oscillations to self-regulating stick-slip cycles. The transition occurs irrespective of the details of rate-weakening behavior, and repetitive stick-slip cycles are, therefore, robust features of the system’s dynamics. The presence of a highly compressible elastic driving element (that is, magma containing bubbles) appears crucial for enabling seismogenic slip events to occur repeatedly at the shallow earthquake focal depths (8 N. These results imply that the system’s self-regulating behavior is not susceptible to dramatic change--provided that the

  8. Field-trip guide for exploring pyroclastic density current deposits from the May 18, 1980, eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Brand, Brittany D.; Pollock, Nicholas; Sarocchi, Damiano; Dufek, Josef; Clynne, Michael A.

    2017-07-05

    Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature

  9. Use of digital aerophotogrammetry to determine rates of lava dome growth, Mount St. Helens, Washington, 2004-2005: Chapter 8 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Schilling, Steve P.; Thompson, Ren A.; Messerich, James A.; Iwatsubo, Eugene Y.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Successful application of aerophotogrammetry was possible during the critical earliest parts of the eruption because we had baseline data and photogrammetric infrastructure in place before the eruption began. The vertical aerial photographs, including the DEMs and calculations derived from them, were one of the most widely used data sets collected during the 2004-5 eruption, as evidenced in numerous contributions to this volume. These data were used to construct photogeologic maps, deformation vector fields, and profiles of the evolving dome and glacier. Extruded volumes and rates proved to be critical parameters to constrain models and hypotheses of eruption dynamics and thus helped to assess volcano hazards.

  10. Hot pressing and lithification of gouge during the Mount St. Helens 2004-2008 eruption: insights from high temperature deformation experiments

    NASA Astrophysics Data System (ADS)

    Ryan, Amy G.; Russell, James K.; Heap, Michael J.

    2017-04-01

    We present results from an experimental program designed to investigate the timescales, conditions and mechanisms responsible for the densification and lithification of volcanic gouge at Mount St. Helens (MSH). From 2004-2008, MSH produced a series of lava domes/spines that were mantled by thick layers of gouge resulting from fracturing and cataclasis at the conduit-wall rock interface. The gouge comprises fine crystal-rich rock powder containing little to no glass. The erupted gouge carapace is texturally diverse, and varies from loose granular material to moderately indurated coherent rock to fine-grained cataclasite within tens of centimeters. The spatial association of these materials suggests that the originally unconsolidated conduit-fault gouge is densified and lithified during ascent to the surface. At present the conditions, timescales and mechanisms for lithification of the glass-poor materials are unknown. Here, we present results from a series of high-temperature (T) uniaxial deformation experiments performed on natural gouge collected from MSH (spine 5). The experiments are intended to (1) establish the feasibility of experimentally densifying/lithifying natural gouge materials at laboratory conditions approximating those within the MSH conduit, and to (2) constrain the effects of T, load and time on the extents, rates and mechanisms of densification. Our experimental conditions include T up to 800°C (T

  11. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    USGS Publications Warehouse

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from

  12. Instrumentation in remote and dangerous settings; examples using data from GPS “spider” deployments during the 2004-2005 eruption of Mount St. Helens, Washington: Chapter 16 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    LaHusen, Richard G.; Swinford, Kelly J.; Logan, Matthew; Lisowski, Michael; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Self-contained, single-frequency GPS instruments fitted on lightweight stations suitable for helicopter-sling payloads became a critical part of volcano monitoring during the September 2004 unrest and subsequent eruption of Mount St. Helens. Known as “spiders” because of their spindly frames, the stations were slung into the crater 29 times from September 2004 to December 2005 when conditions at the volcano were too dangerous for crews to install conventional equipment. Data were transmitted in near-real time to the Cascades Volcano Observatory in Vancouver, Washington. Each fully equipped unit cost about $2,500 in materials and, if not destroyed by natural events, was retrieved and redeployed as needed. The GPS spiders have been used to track the growth and decay of extruding dacite lava (meters per day), thickening and accelerated flow of Crater Glacier (meters per month), and movement of the 1980-86 dome from pressure and relaxation of the newly extruding lava dome (centimeters per day).

  13. Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards

    NASA Astrophysics Data System (ADS)

    Andronico, Daniele; Cioni, Raffaello

    2002-09-01

    Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.

  14. Do volcanic eruptions affect climate? Sulfur gases may cause cooling

    NASA Technical Reports Server (NTRS)

    Self, Stephen; Rampino, Michael R.

    1988-01-01

    The relationship between volcanic eruptions on earth and the observed climatic changes is investigated. The results of the comparison and analyses of volcanologic and climatologic data sets for the years between 1880 and 1980 indicate that changes in temperature caused by even of the largest eruptions recorded during this time were about the same as normal variations in temperature. However, when temperature records for several months or years preceding and following a given eruption were analyzed, a statistically significant temperature decrease of 0.2-0.5 C was found for the periods of one to two years immediately following some of the 19th and 20th century explosive events that prodiced large aerosol clouds (e.g., Krakatau and Agung eruptions). It is suggested that the content of sulfur in the erupted magma determines the size of aerosol cloud producing the cooling effect.

  15. Possible effects of volcanic eruptions on stratospheric minor constituent chemistry

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Butler, D. M.

    1979-01-01

    Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constituent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time.

  16. Rebuilding Mount St. Helens

    USGS Publications Warehouse

    Schilling, Steve P.; Ramsey, David W.; Messerich, James A.; Thompson, Ren A.

    2006-01-01

    On May 18, 1980, Mount St. Helens, Washington exploded in a spectacular and devastating eruption that shocked the world. The eruption, one of the most powerful in the history of the United States, removed 2.7 cubic kilometers of rock from the volcano's edifice, the bulk of which had been constructed by nearly 4,000 years of lava-dome-building eruptions. In seconds, the mountain's summit elevation was lowered from 2,950 meters to 2,549 meters, leaving a north-facing, horseshoe-shaped crater over 2 kilometers wide. Following the 1980 eruption, Mount St. Helens remained active. A large lava dome began episodically extruding in the center of the volcano's empty crater. This dome-building eruption lasted until 1986 and added about 80 million cubic meters of rock to the volcano. During the two decades following the May 18, 1980 eruption, Crater Glacier formed tongues of ice around the east and west sides of the lava dome in the deeply shaded niche between the lava dome and the south crater wall. Long the most active volcano in the Cascade Range with a complex 300,000-year history, Mount St. Helens erupted again in the fall of 2004 as a new period of dome building began within the 1980 crater. Between October 2004 and February 2006, about 80 million cubic meters of dacite lava erupted immediately south of the 1980-86 lava dome. The erupting lava separated the glacier into two parts, first squeezing the east arm of the glacier against the east crater wall and then causing equally spectacular crevassing and broad uplift of the glacier's west arm. Vertical aerial photographs document dome growth and glacier deformation. These photographs enabled photogrammetric construction of a series of high-resolution digital elevation models (DEMs) showing changes from October 4, 2004 to February 9, 2006. From the DEMs, Geographic Information Systems (GIS) applications were used to estimate extruded volumes and growth rates of the new lava dome. The DEMs were also used to quantify dome

  17. Volcanic hazards at Mount Shasta, California

    USGS Publications Warehouse

    Crandell, Dwight R.; Nichols, Donald R.

    1989-01-01

    The eruptions of Mount St. Helens, Washington, in 1980 served as a reminder that long-dormant volcanoes can come to life again. Those eruptions, and their effects on people and property, also showed the value of having information about volcanic hazards well in advance of possible volcanic activity. This pamphlet about Mount Shasta provides such information for the public, even though the next eruption may still be far in the future.

  18. Land Use Cover Changes and Run Off Potention of Cipunten Agung Watershed Banten

    NASA Astrophysics Data System (ADS)

    Karima, A.; Kaswanto, R. L.

    2017-10-01

    The changes of landscape form such as Land Use Cover Changes (LUCC) of Cipunten Agung watershed could be identified periodically in 1995, 2005, and 2015. In general, land utilization in Cipunten Agung classified into protected region and cultivated region. In 2011, total of protected area is 885.80 ha or 22.54% of watershed area. Those conditions affected both positively to the community development and negatively to the water quantity condition in Cipunten Agung such as flooding, run off, and erosion. Therefore, the purpose of this research is to analyze LUCC impacts to run off potential in Cipunten Agung watershed. Supervised classification method and Soil Conservation Services (Qscs) approach were correlated to determine the figure out an optimal solution to reduce the rate of LUCC. Cipunten Agung watershed imagery was classified into five classes, namely water bodies, forest, cultivated tree, settlement and paddy field. The result shows that area of cultivation tree and paddy fields are larger than others in midstream, and settlement is denser in downstream, particularly at riparian landscapes. The LUCC into paddy field often occur at two period 1995 to 2005 and 2005 to 2015 with several area are 530.92 ha and 388.17 ha. The Qscs method calculation result for 1995 until 2015 was affected by land use cover composition in each year and it was defined by Curve Number (CN). High rainfall in 1995 was generating high run off potential volume. Nevertheless, curve number value was increase get near to 100, which indicate the potential of run off volume increases along with LUCC in each year, those are 70.95; 72.47; and 72.81.

  19. Chemistry, mineralogy, and petrology of amphibole in Mount St. Helens 2004-2006 dacite: Chapter 32 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Thornber, Carl R.; Pallister, John S.; Lowers, Heather; Rowe, Michael C.; Mandeville, Charles W.; Meeker, Gregory P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Decompression-related reaction rims around subhedral, rounded, resorbed, and fragmented amphibole phenocrysts, regardless of composition, indicate that this mixed-crystal assemblage was being broken, abraded, and dissolved in the magma as a result of mechanical mixing before and during early stages of ascent from conduit roots extending into a mushy cupola of the shallow reservoir. In the earliest lava samples (October 2004), amphiboles with <3-μm rims associated with a glassier matrix than later samples suggest a slightly faster ascent rate consistent with the relatively high eruptive flux of the earliest phases of dome extrusion. Reaction rim widths of ~5 μm on amphibole in all subsequently extruded lava result from a steady influx and upward transport of magma from 3.5-2.5-km to ~1-km depth at rates of ~600 to ~1,200 m/day, through a conduit less than 10 m in radius. Slower ascent rates inferred from volumetric-flux and matrixcrystallization parameters are explained by a widening of the conduit to greater than 60 m radius within 1 km of the surface.

  20. Growth of the 2004-2006 lava-dome complex at Mount St. Helens, Washington: Chapter 9 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Vallance, James W.; Schneider, David J.; Schilling, Steve P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The chief near-surface controls on spine extrusion during 2004-6 have been vent location, relict topographic surfaces from the 1980s, and spine remnants emplaced previously during the present eruption. In contrast, glacier ice has had minimal influence on spine growth. Ice as thick as 150 m has prevented formation of marginal angle-of-repose talus fans but has not provided sufficient resistance to stop spine growth or slow it appreciably. Spines initially emerged along a relict south-facing slope as steep as 40° on the 1980s dome. The open space of the moat between that dome and the crater walls permitted initial southward migration of recumbent spines. An initial spine impinged on the opposing slopes of the crater and stopped; in contrast, recumbent whaleback spines of phase 3 impinged on opposing walls of the crater at oblique angles and rotated eastward before breaking up. Once spine remnants occupied all available open space to the south, spines thrust over previous remnants. Finally, with south and east portions of the moat filled, spine growth proceeded westward. Although Crater Glacier had only a small influence on the growing spines, spine growth affected the glacier dramatically, initially dividing it into two arms and then bulldozing it hundreds of meters, first east and then west, and heaping it more than 100 m higher than its original altitude.

  1. Extrusion rate of the Mount St. Helens lava dome estimated from terrestrial imagery, November 2004-December 2005: Chapter 12 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Major, Jon J.; Kingsbury, Cole G.; Poland, Michael P.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Oblique, terrestrial imagery from a single, fixed-position camera was used to estimate linear extrusion rates during sustained exogenous growth of the Mount St. Helens lava dome from November 2004 through December 2005. During that 14-month period, extrusion rates declined logarithmically from about 8-10 m/d to about 2 m/d. The overall ebbing of effusive output was punctuated, however, by episodes of fluctuating extrusion rates that varied on scales of days to weeks. The overall decline of effusive output and finer scale rate fluctuations correlated approximately with trends in seismicity and deformation. Those correlations portray an extrusion that underwent episodic, broad-scale stick-slip behavior superposed on the finer scale, smaller magnitude stick-slip behavior that has been hypothesized by other researchers to correlate with repetitive, nearly periodic shallow earthquakes.

  2. Mount Rainier: A decade volcano

    NASA Astrophysics Data System (ADS)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  3. Continuous monitoring of Mount St. Helens Volcano

    USGS Publications Warehouse

    Spall, H.

    1980-01-01

    Day by day monitoring of the Mount St. Helens Volcano. These are four scenarios, very different scenarios, that can occur in a average week at Mount St. Helens. Ranging from eruptions of gas and to steam to eruptions of ash and pyroclastic flows to even calm days. This example of monitoring illustrates the differences from day to day volcanic activities at Mount St. Helens. 

  4. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions.

    PubMed

    Baroni, Mélanie; Thiemens, Mark H; Delmas, Robert J; Savarino, Joël

    2007-01-05

    The observed mass-independent sulfur isotopic composition (Delta33S) of volcanic sulfate from the Agung (March 1963) and Pinatubo (June 1991) eruptions recorded in the Antarctic snow provides a mechanism for documenting stratospheric events. The sign of Delta33S changes over time from an initial positive component to a negative value. Delta33S is created during photochemical oxidation of sulfur dioxide to sulfuric acid on a monthly time scale, which indicates a fast process. The reproducibility of the results reveals that Delta33S is a reliable tracer to chemically identify atmospheric processes involved during stratospheric volcanism.

  5. Magmatic conditions and processes in the storage zone of the 2004-2006 Mount St. Helens dacite: Chapter 31 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Rutherford, Malcom J.; Devine, Joseph D.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    O2 values of NNO +1 log unit. Magnetite compositions suggest that the 2004-6 magma was formed by mingling of magmas less than 5-8 weeks before eruption and that the magma last equilibrated within this temperature range. The amphibole phenocryst zoning involves approximately equal amounts of a pressure-sensitive Al-Tschermak molecular substitution and a temperature-sensitive edenite substitution in one cycle of growth. Hydrothermal experiments done on the natural dacite show that crystallization of the Fe- and Al-rich amphibole end member requires pressures of 200-300 MPa at temperatures of 900°C, conditions approaching the upper temperature limit of amphibole stability. The dacitic magma crystallizes the An68 plagioclase when the pressure drops to 200 MPa at 900°C. The magma must cool at this depth to produce a complete An68-An40 plagioclase zone and a Mg-rich layer on the amphiboles before the magma is cycled back to a high pressure, when a new layer of Fe-rich amphibole is acquired. The amphibole crystallizing in the dacite experiments at less than 200 MPa is lower in aluminum than any compositions in the natural cyclically zoned phenocrysts. The outer rim on some 2004-6 amphibole phenocrysts appears to have formed in the 100-200 MPa range, as do some phenocrysts in the May 1980 dacite pumice. Plagioclase rims of An35 in the 2004-6 magmas indicate that phenocryst growth continued until the pressure decreased to 130 MPa and that ascent was slow until this depth. Magma then entered the conduit for a relatively rapid ascent to the surface as indicated by the very thin (less than 5 μm) decompression-induced rims on the amphibole phenocrysts.

  6. Ash leachates from some recent eruptions of Mount Etna (Italy) and Popocatépetl (Mexico) volcanoes and their impact on amphibian living freshwater organisms

    NASA Astrophysics Data System (ADS)

    D'Addabbo, M.; Sulpizio, R.; Guidi, M.; Capitani, G.; Mantecca, P.; Zanchetta, G.

    2015-12-01

    Leaching experiments were carried out on fresh ash samples from Popocatépetl 2012, Etna 2011, and Etna 2012 eruptions, in order to investigate the release of compounds in both double-deionized and lake (Lake Ohrid, FYR of Macedonia) waters. The experiments were carried out using different grain sizes and variable stirring times (from 30 min to 7 days). Results were discussed in the light of changing pH and release of compounds for the different leachates. In particular, Etna samples induced alkalinization, and Popocatépetl samples induced acidification of the corresponding leachates. The release of different elements does not show correlation with the stirring time, with the measured maximum concentrations reached in the first hours of washing. General inverse correlation with grain size was observed only for Na+, K+, Cl-, Ca2+, Mg2+, SO42-, and Mn2+, while the other analysed elements show a complex, scattering relationship with grain size. Geochemical modelling highlights leachates' saturation only for F and Si, with Popocatépetl samples sometimes showing saturation in Fe. The analysed leachates are classified as undrinkable for humans on the basis of European laws, due to excess in F-, Mn2+, Fe, and SO42- (the latter only for Popocatépetl samples). Finally, the Etna 2012 and Popocatépetl leachates were used for toxicity experiments on living biota (Xenopus laevis). They are mildly toxic, and no significant differences exist between the toxic profiles of the two leachates. In particular, no significant embryo mortality was observed; while even at high dilutions, the leachates produced more than 20 % of malformed larvae.

  7. Hazard information management during the autumn 2004 reawakening of Mount St. Helens volcano, Washington: Chapter 24 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Driedger, Carolyn L.; Neal, Christina A.; Knappenberger, Tom H.; Needham, Deborah H.; Harper, Robert B.; Steele, William P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The 2004 reawakening of Mount St. Helens quickly caught the attention of government agencies as well as the international news media and the public. Immediate concerns focused on a repeat of the catastrophic landslide and blast event of May 18, 1980, which remains a vivid memory for many individuals. Within several days of the onset of accelerating seismicity, media inquiries increased exponentially. Personnel at the U.S. Geological Survey, the Pacific Northwest Seismic Network, and the Gifford Pinchot National Forest soon handled hundreds of press inquiries and held several press briefings per day. About one week into the event, a Joint Information Center was established to help maintain a consistent hazard message and to provide a centralized information source about volcanic activity, hazards, area closures, and media briefings. Scientists, public-affairs specialists, and personnel from emergency-management, health, public-safety, and land-management agencies answered phones, helped in press briefings and interviews, and managed media access to colleagues working on science and safety issues. For scientists, in addition to managing the cycle of daily fieldwork, challenges included (1) balancing accurate interpretations of data under crisis conditions with the need to share information quickly, (2) articulating uncertainties for a variety of volcanic scenarios, (3) minimizing scientific jargon, and (4) frequently updating and effectively distributing talking points. Success of hazard information management during a volcanic crisis depends largely on scientists’ clarity of communication and thorough preplanning among interagency partners. All parties must commit to after-action evaluation and improvement of communication plans, incorporating lessons learned during each event.

  8. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    NASA Astrophysics Data System (ADS)

    Pyle, David M.

    2012-09-01

    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  9. Mount St. Helens Rebirth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The catastrophic eruption of Mt. St. Helens 20 years ago today (on May 18, 1980), ranks among the most important natural events of the twentieth century in the United States. Because Mt. St. Helens is in a remote area of the Cascades Mountains, only a few people were killed by the eruption, but property damage and destruction totaled in the billions of dollars. Mount St. Helens is an example of a composite or stratovolcano. These are explosive volcanoes that are generally steep-sided, symmetrical cones built up by the accumulation of debris from previous eruptions and consist of alternating layers of lava flows, volcanic ash and cinder. Some of the most photographed mountains in the world are stratovolcanoes, including Mount Fuji in Japan, Mount Cotopaxi in Ecuador, Mount Hood in Oregon, and Mount Rainier in Washington. The recently erupting Mount Usu on the island of Hokkaido in Japan is also a stratovolcano. Stratovolcanoes are characterized by having plumbing systems that move magma from a chamber deep within the Earth's crust to vents at the surface. The height of Mt. St. Helens was reduced from about 2950 m (9677 ft) to about 2550 m (8364 ft) as a result of the explosive eruption on the morning of May 18. The eruption sent a column of dust and ash upwards more than 25 km into the atmosphere, and shock waves from the blast knocked down almost every tree within 10 km of the central crater. Massive avalanches and mudflows, generated by the near-instantaneous melting of deep snowpacks on the flanks of the mountain, devastated an area more than 20 km to the north and east of the former summit, and rivers choked with all sorts of debris were flooded more than 100 km away. The area of almost total destruction was about 600 sq. km. Ash from the eruption cloud was rapidly blown to the northeast and east producing lightning which started many small forest fires. An erie darkness caused by the cloud enveloped the landscape more than 200 km from the blast area, and ash

  10. Monitoring Mount Baker Volcano

    USGS Publications Warehouse

    Malone, S.D.; Frank, D.

    1976-01-01

    Hisotrically active volcanoes in the conterminous United States are restricted to the Cascade Range and extend to the Cascade Range and extend from Mount Baker near the Canadian border to Lassen Peak in northern California. Since 1800 A.D, most eruptive activity has been on a relatively small scale and has not caused loss of life or significant property damage. However, future  volcanism predictably will have more serious effects because of greatly increased use of land near volcanoes during the present century. (See "Appraising Volcanic Hazards of the Cascade Range of the Northwestern United States," Earthquake Inf. Bull., Sept.-Oct. 1974.) The recognition an impending eruption is highly important in order to minimize the potential hazard to people and property. Thus, a substantial increase in hydrothermal activity at Mount Baker in March 1975 ( see "Mount Baker Heating Up," July-Aug. 1975 issue) was regarded as a possible first signal that an eruption might occur, and an intensive monitoring program was undertaken. 

  11. Lahars of Mount Pinatubo, Philippines

    USGS Publications Warehouse

    Newhall, Christopher G.; Stauffer, Peter H.; Hendley, James W.

    1997-01-01

    On June 15, 1991, Mount Pinatubo in the Philippines exploded in the second largest volcanic eruption on Earth this century. This eruption deposited more than 1 cubic mile (5 cubic kilometers) of volcanic ash and rock fragments on the volcano's slopes. Within hours, heavy rains began to wash this material down into the surrounding lowlands in giant, fast-moving mudflows called lahars. In the next four rainy seasons, lahars carried about half of the deposits off the volcano, causing even more destruction in the lowlands than the eruption itself.

  12. Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits

    USGS Publications Warehouse

    Belousov, Alexander; Voight, Barry; Belousova, Marina

    2007-01-01

    We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3 . The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the

  13. Major Optical Depth Perturbations to the Stratosphere from Volcanic Eruptions: Stellar-Extinction Period, 1961-1978

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A revised chronology of stratospheric aerosol extinction due to volcanic eruptions has been assembled for the period 1961-1978, which immediately precedes the era of dedicated satellite measurements. On the whole, the most accurate data consist of published observations of stellar extinction, supplemented in part by other kinds of observational data. The period covered encompasses the important eruptions of Agung (1963) and Fuego (1974), whose dust veils are discussed with respect to their transport, decay, and total mass. The effective (area-weighted mean) radii of the aerosols for both eruptions are found to be 0.3-0.4 microns. It is confirmed that, among known tropical eruptions, Agung's dust was unique for a low-latitude eruption in remaining almost entirely confined to the hemisphere of its production. A new table of homogeneous visual optical depth perturbations, listed by year and by hemisphere, is provided for the whole period 1881-1978, including the pyrheliometric period before 1961 that was investigated previously.

  14. Mount Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  15. Progress made in understanding Mount Rainier's hazards

    USGS Publications Warehouse

    Sisson, T.W.; Vallance, J.W.; Pringle, P.T.

    2001-01-01

    At 4392 m high, glacier-clad Mount Rainier dominates the skyline of the southern Puget Sound region and is the centerpiece of Mount Rainier National Park. About 2.5 million people of the greater Seattle-Tacoma metropolitan area can see Mount Rainier on clear days, and 150,000 live in areas swept by lahars and floods that emanated from the volcano during the last 6,000 years (Figure 1). These lahars include the voluminous Osceola Mudflow that floors the lowlands south of Seattle and east of Tacoma, and which was generated by massive volcano flank-collapse. Mount Rainier's last eruption was a light dusting of ash in 1894; minor pumice last erupted between 1820 and 1854; and the most recent large eruptions we know of were about 1100 and 2300 years ago, according to reports from the U.S. Geological Survey.

  16. Creeping eruption

    MedlinePlus

    ... eruption is more common in countries with warm climates. In the United States, the Southeast has the ... MD, PhD, Assistant Professor in Medicine, Harvard Medical School; Assistant in Medicine, Division of Infectious Disease, Department ...

  17. Jupiter Eruptions

    NASA Image and Video Library

    2008-01-25

    NASA Hubble Space Telescope shows detailed analysis of two continent-sized storms that erupted in Jupiter atmosphere in March 2007 shows that Jupiter internal heat plays a significant role in generating atmospheric disturbances .

  18. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  19. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  20. Mount Cameroon

    NASA Image and Video Library

    2014-10-09

    NASA Terra spacecraft shows Mount Cameroon, an active volcano in Cameroon near the Gulf of Guinea. It is one of Africa largest volcanoes, rising over 4,000 meters, with more than 100 small cinder cones.

  1. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  2. Popocatepetl Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Popocatepetl Volcano, almost 30 miles south of Mexico City, erupted yesterday (December 18, 2000) in what authorities are calling its most spectacular eruption since 800 A.D. This morning, Popocatepetl (pronounced poh-poh-kah-TEH-peh-til) continued spewing red-hot rocks as well as a column of smoke and ash about 2.5 miles high into the atmosphere. This true-color image of the volcano was acquired today by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the OrbView-2 satellite. In this image, Popocatepetl's plume (greyish pixels) can be seen blowing southward, away from Mexico City. There is a large cloud bank (bright white pixels) just to the east of the volcanic plume. Although Popocatepetl has been active since 1994-when it awoke from a 70-year slumber-this most recent eruption is most concerning to the greater Mexico City region's 20 million residents. The volcano demonstrated what it can do in 800 A.D. when it belched forth enough lava to fill many of the valleys in the surrounding region. Earlier, scientists warned the citizens of Mexico that there is a dome of lava at the base of the volcano that is causing pressure to build inside. They are concerned that, if it continues to build unabated, this pressure could cause even larger eruptions in the future. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  3. Can rain cause volcanic eruptions?

    USGS Publications Warehouse

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  4. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  5. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  6. Mount St. Helens Flyover

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  7. Deformation monitoring at Mount St. Helens in 1981 and 1982

    USGS Publications Warehouse

    Chadwick, W.W.; Swanson, D.A.; Iwatsubo, E.Y.; Heliker, C.C.; Leighley, T.A.

    1983-01-01

    For several weeks before each eruption of Mount St. Helens in 1981 and 1982, viscous magma rising in the feeder conduit inflated the lava dome and shoved the crater floor laterally against the immobile crater walls, producing ground cracks and thrust faults. The rates of deformation accelerated before eruptions, and thus it was possible to predict eruptions 3 to 19 days in advance. Lack of deformation outside the crater showed that intrusion of magma during 1981 and 1982 was not voluminous.

  8. Volcano ecology: flourishing on the flanks of Mount St. Helens

    Treesearch

    Rhonda Mazza; Charlie Crisafulli

    2016-01-01

    Mount St. Helens’ explosive eruption on May 18, 1980, was a pivotal moment in the field of disturbance ecology. The subsequent sustained, integrated research effort has shaped the development of volcano ecology, an emerging field of focused research. Excessive heat, burial, and impact force are some of the disturbance mechanisms following an eruption. They are also...

  9. 25 years of ecological change at Mount St. Helens.

    Treesearch

    V.H. Dale; C.M. Crisafulli; F.J. Swanson

    2005-01-01

    18 May 2005 marks the 25th anniversary of the massive eruption of Mount St. Helens. This eruption involved diverse geological processes (1) that disturbed forests, meadows, lakes, an drivers (2) (see the figure). A huge landslide and searing flows of hot gases and pumic framents (pyroclastic flows) inundated 60 km2 of land, obliterating...

  10. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  11. Assessing eruption column height in ancient flood basalt eruptions

    NASA Astrophysics Data System (ADS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2017-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced

  12. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  13. Incorporating the eruptive history in a stochastic model for volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark

    2008-08-01

    We show how a stochastic version of a general load-and-discharge model for volcanic eruptions can be implemented. The model tracks the history of the volcano through a quantity proportional to stored magma volume. Thus large eruptions can influence the activity rate for a considerable time following, rather than only the next repose as in the time-predictable model. The model can be fitted to data using point-process methods. Applied to flank eruptions of Mount Etna, it exhibits possible long-term quasi-cyclic behavior, and to Mauna Loa, a long-term decrease in activity. An extension to multiple interacting sources is outlined, which may be different eruption styles or locations, or different volcanoes. This can be used to identify an 'average interaction' between the sources. We find significant evidence that summit eruptions of Mount Etna are dependent on preceding flank eruptions, with both flank and summit eruptions being triggered by the other type. Fitted to Mauna Loa and Kilauea, the model had a marginally significant relationship between eruptions of Mauna Loa and Kilauea, consistent with the invasion of the latter's plumbing system by magma from the former.

  14. Making sense of Mount St. Helens

    Treesearch

    Steve Nash

    2010-01-01

    The eruption of Mount St. Helens in 1980 resulted in "a grand experiment that you could never have gotten anybody to fund," says Forest Service ecologist Charles Crisafulli. "Everything's new. It's a new landform." Unlike most misbehaving volcanoes, this one provided an accessible laboratory right along the Interstate-5 corridor, with the...

  15. Mounting structure

    NASA Technical Reports Server (NTRS)

    Ganssle, Eugene Robert (Inventor); Scott, Ralph Richard (Inventor); Williams, Richard Jean (Inventor)

    1978-01-01

    A mounting platform for heat producing instruments operated in a narrow equilibrium temperature range comprises a grid-like structure with relatively large openings therein. The instruments are secured to and thermally coupled with the grid surface facing the instruments. Excess heat from the instruments is selectively radiated to the ambient through openings in the grid, the grid surfaces at these openings exhibiting low thermal emissivity and adsorptivity. The remainder of the grid is maintained at the equilibrium temperature and is covered with a thermal insulating blanket. Thus, the entire system including the platform and instruments is maintained substantially isothermal, whereby the instruments remain in fixed physical relationship to one another.

  16. Arching Eruption

    NASA Image and Video Library

    2015-06-30

    NASA’s Solar Dynamics Observatory caught this image of an eruption on the side of the sun on June 18, 2015. The eruption ultimately escaped the sun, growing into a substantial coronal mass ejection, or CME — a giant cloud of solar material traveling through space. This imagery is shown in the 304 Angstrom wavelength of extreme ultraviolet light, a wavelength that highlights material in the low parts of the sun’s atmosphere and that is typically colorized in red. The video clip covers about four hours of the event. Credit: NASA/Goddard/SDO Download: svs.gsfc.nasa.gov/goto?11908 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Historical evidence for a connection between volcanic eruptions and climate change

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.

    1991-01-01

    The times of historical volcanic aerosol clouds were compared with changes in atmospheric temperatures on regional, hemispheric, and global scales. These involve either a direct comparison of individual significant eruption years with temperature records, or a comparison of eruption years with composited temperature records for several years before and after chosen sets of eruptions. Some studies have challenged the connection between individual eruptions and climate change. Mass and Portman (1989) recently suggested that the volcanic signal was present, but smaller than previously thought. In a study designed to test the idea that eruptions could cause small changes in climate, Hansen and other (1978) chose one of the best monitored eruptions at the time, the 1963 eruption of Agung volcano on the island of Bali. Using a simple radiation-balance model, in which an aerosol cloud in the tropics was simulated, this basic pattern of temperature change in the tropics and subtropics was reproduced. There may be natural limits to the atmospheric effects of any volcanic eruption. Self-limiting physical and chemical effects in eruption clouds were proposed. Model results suggest that aerosol microphysical processes of condensation and coagulation produce larger aerosols as the SO2 injection rate is increased. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on regional temperatures where the effects of volcanic aerosol clouds can be amplified by perturbed atmospheric circulation patterns, especially changes in mid-latitudes where meridional circulation patterns may develop. Such climatic perturbations can be detected in proxy evidence such as decreases in tree-ring widths and frost damage rings in climatically sensitive parts of the world, changes in treelines, weather anomalies such as unusually cold summers, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures.

  18. Nyiragongo Volcano Erupts in the Congo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Nyiragongo, located in the Democratic Republic of the Congo, erupted today (January 17, 2002), ejecting a large cloud of smoke and ash high into the sky and spewing lava down three sides of the volcano. Mount Nyiragongo is located roughly 10 km (6 miles) north of the town of Goma, near the Congo's border with Rwanda. According to news reports, one river of lava is headed straight toward Goma, where international aid teams are evacuating residents. Already, the lava flows have burned through large swaths of the surrounding jungle and have destroyed dozens of homes. This false-color image was acquired today (January 17) by the Moderate-resolution Imaging Spectroradiometer (MODIS) roughly 5 hours after the eruption began. Notice Mount Nyiragongo's large plume (bright white) can be seen streaming westward in this scene. The plume appears to be higher than the immediately adjacent clouds and so it is colder in temperature, making it easy for MODIS to distinguish the volcanic plume from the clouds by using image bands sensitive to thermal radiation. Images of the eruption using other band combinations are located on the MODIS Rapid Response System. Nyiragongo eruptions are extremely hazardous because the lava tends to be very fluid and travels down the slopes of the volcano quickly. Eruptions can be large and spectacular, and flows can reach up to 10s of kilometers from the volcano very quickly. Also, biomass burned from Nyriagongo, and nearby Mount Nyamuragira, eruptions tends to create clouds of smoke that adversely affect the Mountain Gorillas living in the adjacent mountain chain. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Eruptions of Lassen Peak, California, 1914 to 1917

    USGS Publications Warehouse

    Clynne, Michael A.; Christiansen, Robert L.; Felger, Tracey J.; Stauffer, Peter H.; Hendley, James W.

    1999-01-01

    On May 22, 1915, an explosive eruption at Lassen Peak, California, the southernmost active volcano in the Cascade Range, devastated nearby areas and rained volcanic ash as far away as 200 miles to the east. This explosion was the most powerful in a 1914–17 series of eruptions that were the last to occur in the Cascades before the 1980 eruption of Mount St. Helens, Washington. Recent work by scientists with the U.S. Geological Survey (USGS) in cooperation with the National Park Service is shedding new light on these eruptions.

  20. Jupiter Eruptions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover

    Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers.

    This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter.

    Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena.

    According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  1. Mount St. Helens: A 30-year legacy of volcanism

    USGS Publications Warehouse

    Vallance, James W.; Gardner, Cynthia A.; Scott, William E.; Iverson, Richard M.; Pierson, Thomas C.

    2010-01-01

    The spectacular eruption of Mount St. Helens on 18 May 1980 electrified scientists and the public. Photodocumentation of the colossal landslide, directed blast, and ensuing eruption column—which reached as high as 25 kilometers in altitude and lasted for nearly 9 hours—made news worldwide. Reconnaissance of the devastation spurred efforts to understand the power and awe of those moments (Figure 1). The eruption remains a seminal historical event—studying it and its aftermath revolutionized the way scientists approach the field of volcanology. Not only was the eruption spectacular, but also it occurred in daytime, at an accessible volcano, in a country with the resources to transform disaster into scientific opportunity, amid a transformation in digital technology. Lives lost and the impact of the eruption on people and infrastructure downstream and downwind made it imperative for scientists to investigate events and work with communities to lessen losses from future eruptions.

  2. Volcanic crystals as time capsules of eruption history.

    PubMed

    Ubide, Teresa; Kamber, Balz S

    2018-01-23

    Crystals formed prior to a volcanic event can provide evidence of processes leading to and timing of eruptions. Clinopyroxene is common in basaltic to intermediate volcanoes, however, its ability as a recorder of pre-eruptive histories has remained comparatively underexplored. Here we show that novel high-resolution trace element images of clinopyroxene track eruption triggers and timescales at Mount Etna (Sicily, Italy). Chromium (Cr) distribution in clinopyroxene from 1974 to 2014 eruptions reveals punctuated episodes of intrusion of primitive magma at depth. Magma mixing efficiently triggered volcanism (success rate up to 90%), within only 2 weeks of arrival of mafic intrusions. Clinopyroxene zonations distinguish between injections of mafic magma and regular recharges with more evolved magma, which often fail to tip the system to erupt. High Cr zonations can therefore be used to reconstruct past eruptions and inform responses to geophysical signals of volcano unrest, potentially offering an additional approach to volcano hazard monitoring.

  3. Vaginitis test - wet mount

    MedlinePlus

    ... prep - vaginitis; Vaginosis - wet mount; Trichomoniasis - wet mount; Vaginal candida - wet mount ... provider gently inserts an instrument (speculum) into the vagina to hold it open and view inside. A ...

  4. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many

  5. Herculaneum: Clues to Vesuvius eruption

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    More than 80 skeletons have been unearthed in the ancient Mediterranean town of Herculaneum, west of Italy's Mount Vesuvius. This anthropological find corroborates a reinterpretation by three University of Rhode Island scientists of the sequence of the August A.D. 79 eruption of Vesuvius. In addition, the discovery is the first proof that large numbers of people perished as they tried to flee from the eruption, estimated to have been about 10 times more powerful than the May 1980 Mount St. Helens blast.‘Who says dead men don't talk? Their bones have something to say about them and their everyday lives,’ says Sara C. Bisel, a physical anthropologist who analyzed the skeletons. Among the remains are a cluster of skeletons from six adults, four children, and two infants trying to shield themselves from the volcanic onslaught; the skeleton of a sailor, still clutching an oar, lying on his back beside an 8-m-long capsized boat; a woman whose now bony hand was still graced with gem-encrusted gold rings; and a soldier (see Figure 1). From these and other finds the anthropological team was able to discern that the ancient Romans, on average, were shorter than modern citizens and, judging from the condition of some of the teeth, probably had a low-sugar diet.

  6. Medical effects of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Baxter, Peter J.

    1990-09-01

    Excluding famine and tsunamis, most deaths in volcanic eruptions have been from pyroclastic flows and surges (nuées ardentes) and wet debris flows (lahars). Information on the causes of death and injury in eruptions is sparse but the available literature is summarised for the benefit of volcanologists and emergency planners. In nuées, thermal injury may be at least as important as asphyxia in causing immediate deaths. The high temperature of the gases and entrained particles readily causes severe burns to the skin and the air passages and the presence of both types of injury in an individual may combine to increase the delayed mortality risk from respiratory complications or from infection of burns. Trauma from missiles or body displacement is also common, but the role of asphyxiant or irritant gases, and steam, remains unclear. The ratio of dead: injured is much higher than in other natural disasters. At the periphery of a nuée being protected inside buildings which remain intact appears to greatly increase the chances of survival. In lahars, infected wounds and crush injury are the main delayed causes of death, and the scope for preventive measures, other than evacuation, is small. The evidence from Mount St. Helens, 1980, and other major eruptions indicates that, although mortality is high within the main zone of devastation and in the open, emergency planning should concentrate on the periphery of a nuée where preventive measures are feasible and could save many lives in densely populated areas.

  7. Mount St. Helens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution

  8. Discovery of the Largest Historic Silicic Submarine Eruption

    NASA Astrophysics Data System (ADS)

    Carey, Rebecca J.; Wysoczanski, Richard; Wunderman, Richard; Jutzeler, Martin

    2014-05-01

    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred.

  9. PV module mounting method and mounting assembly

    DOEpatents

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  10. Tooth Eruption without Roots

    PubMed Central

    2013-01-01

    Root development and tooth eruption are very important topics in dentistry. However, they remain among the less-studied and -understood subjects. Root development accompanies rapid tooth eruption, but roots are required for the movement of teeth into the oral cavity. It has been shown that the dental follicle and bone remodeling are essential for tooth eruption. So far, only limited genes have been associated with root formation and tooth eruption. This may be due to the difficulties in studying late stages of tooth development and tooth movement and the lack of good model systems. Transgenic mice with eruption problems and short or no roots can be used as a powerful model for further deciphering of the cellular, molecular, and genetic mechanisms underlying root formation and tooth eruption. Better understanding of these processes can provide hints on delivering more efficient dental therapies in the future. PMID:23345536

  11. Magnetic core mounting system

    DOEpatents

    Ronning, Jeffrey J.

    2002-01-01

    A mounting apparatus for an electromagnetic device such as a transformer of inductor includes a generally planar metallic plate as a first heat sink, and a metallic mounting cup as a second heat sink. The mounting cup includes a cavity configured to receive the electromagnetic device, the cavity being defined by a base, and an axially-extending annular sidewall extending from the base to a flange portion of the mounting cup. The mounting cup includes first and second passages for allowing the leads of first and second windings of the electromagnetic device to be routed out of the cavity. The cavity is filled with a polyurethane potting resin, and the mounting cup, including the potted electromagnetic device, is mounted to the plate heat sink using fasteners. The mounting cup, which surrounds the electromagnetic device, in combination with the potting resin provides improved thermal transfer to the plate heat sink, as well as providing resistance to vibration and shocks.

  12. Volcanic hazards at Mount Rainier, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1967-01-01

    Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and

  13. Mt. Spurr's 1992 eruptions

    USGS Publications Warehouse

    1993-01-01

    On 27 June, 1992, the Crater Peak vent on the south side of Mt. Spurr awoke from 39 years of dormancy and burst into sub-plinian eruption after 10 months of elevated seismicity. Two more eruptions followed in August and September. The volcano lies 125 km west of Anchorage, Alaska's largest city and an important international hub for air travel. The Alaska Volcano Observatory (AVO) was able to warn communities and the aviation industry well in advance of these eruptions.

  14. Periodic behavior in lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Barmin, A.; Melnik, O.; Sparks, R. S. J.

    2002-05-01

    Lava dome eruptions commonly display fairly regular alternations between periods of high activity and periods of low or no activity. The time scale for these alternations is typically months to several years. Here we develop a generic model of magma discharge through a conduit from an open-system magma chamber with continuous replenishment. The model takes account of the principal controls on flow, namely the replenishment rate, magma chamber size, elastic deformation of the chamber walls, conduit resistance, and variations of magma viscosity, which are controlled by degassing during ascent and kinetics of crystallization. The analysis indicates a rich diversity of behavior with periodic patterns similar to those observed. Magma chamber size can be estimated from the period with longer periods implying larger chambers. Many features observed in volcanic eruptions such as alternations between periodic behaviors and continuous discharge, sharp changes in discharge rate, and transitions from effusive to catastrophic explosive eruption can be understood in terms of the non-linear dynamics of conduit flows from open-system magma chambers. The dynamics of lava dome growth at Mount St. Helens (1980-1987) and Santiaguito (1922-2000) was analyzed with the help of the model. The best-fit models give magma chamber volumes of ∼0.6 km3 for Mount St. Helens and ∼65 km3 for Santiaguito. The larger magma chamber volume is the major factor in explaining why Santiaguito is a long-lived eruption with a longer periodicity of pulsations in comparison with Mount St. Helens.

  15. Fixed mount wavefront sensor

    DOEpatents

    Neal, Daniel R.

    2000-01-01

    A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.

  16. Large Prominence Eruption [video

    NASA Image and Video Library

    2014-10-07

    The STEREO (Behind) spacecraft captured this large prominence and corona mass ejection as they erupted into space (Sept. 26, 2014). By combining images from three instruments, scientists can see the eruption itself (in extreme UV light) as well as follow its progression over the period of about 13 hours with its two coronagraphs. Credit: NASA/Goddard/STEREO The STEREO (Behind) spacecraft captured this large prominence and corona mass ejection as they erupted into space (Sept. 26, 2014). By combining images from three instruments, scientists can see the eruption itself (in extreme UV light) as well as follow its progression over the period of about 13 hours with its two coronagraphs.

  17. Forest development following mudflow deposition, Mount St. Helens, Washington

    Treesearch

    Marc H. Weber; Keith S. Hadley; Peter M. Frenzen; Jerry F. Franklin

    2006-01-01

    Volcanic mudflows are locally important disturbance agents in the Pacific Northwest rarely studied within the context of forest succession. We describe 18 years (1981–1999) of forest development on the Muddy River mudflow deposit following the 1980 eruption of Mount St. Helens using permanent plot data collected along two transects traversing the Cedar Flats river...

  18. Mount St. Helens 30 years later: a landscape reconfigured.

    Treesearch

    Rhonda Mazza

    2010-01-01

    On May 18, 1980, after two months of tremors, Mount St. Helens erupted spectacularly and profoundly changed a vast area surrounding the volcano. The north slope of the mountain catastrophically failed, forming the largest landslide witnessed in modern times. The largest lobe of this debris avalanche raced 14 miles down the Toutle River...

  19. Effects of volcanism on the glaciers of Mount St. Helens

    USGS Publications Warehouse

    Brugman, Melinda M.; Post, Austin

    1981-01-01

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 km2 (about 0.13 km3) of glacier snow and ice including a large part of Shoestring, Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystalization of snow and ice surviving on Mount St. Helens could cause and lubricate mudflows and generate outburst floods. Study of glaciers that remain on this active volcano may assist in recognizing potential hazards on other volcanoes and lead to new contributions to knowledge of the transient response of glaciers to changes in mass balance or geometry.

  20. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  1. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  2. Dynamics of the Mount Nyiragongo lava lake

    NASA Astrophysics Data System (ADS)

    Burgi, P.-Y.; Darrah, T. H.; Tedesco, D.; Eymold, W. K.

    2014-05-01

    The permanent and presently rising lava lake at Mount Nyiragongo constitutes a major potential geological hazard to the inhabitants of the Virunga volcanic region in the Democratic Republic of Congo (DRC) and Rwanda. Based on two field campaigns in June 2010 and 2011, we estimate the lava lake level from the southeastern crater rim (~400 m diameter) and lava lake area (~46,550 m2), which constrains, respectively, the lava lake volume (~9 × 106 m3) and volume flow rate needed to keep the magma in a molten state (0.6 to 3.5 m3 s-1). A bidirectional magma flow model, which includes the characterization of the conduit diameter and funnel-shaped lava lake geometry, is developed to constrain the amount of magma intruded/emplaced within the magmatic chamber and rift-related structures that extend between Mount Nyiragongo's volcanic center and the city of Goma, DRC, since Mount Nyiragongo's last eruption (17 January 2002). Besides matching field data of the lava lake level covering the period 1977 to 2002, numerical solutions of the model indicate that by 2022, 20 years after the January 2002 eruption, between 300 and 1700 × 106 m3 (0.3 to 1.7 km3) of magma could have intruded/emplaced underneath the edifice, and the lava lake volume could exceed 15 × 106 m3.

  3. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.

    1992-01-01

    A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.

  4. Gravity and magma induces spreading of Mount Etna volcano revealed by satellite radar interferometry

    NASA Technical Reports Server (NTRS)

    Lungren, P.; Casu, F.; Manzo, M.; Pepe, A.; Berardino, P.; Sansosti, E.; Lanari, R.

    2004-01-01

    Mount Etna underwent a cycle of eruptive activity over the past ten years. Here we compute ground displacement maps and deformation time series from more than 400 radar interferograms to reveal Mount Etna's average and time varying surface deformation from 1992 to 2001.

  5. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  6. Initiation of Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2007-01-01

    We consider processes occurring just prior to and at the start of the onset of flare- and CME-producing solar eruptions. Our recent work uses observations of filament motions around the time of eruption onset as a proxy for the evolution of the fields involved in the eruption. Frequently the filaments show a slow rise prior to fast eruption, indicative of a slow expansion of the field that is about co explode. Work by us and others suggests that reconnection involving emerging or canceling flux results in a lengthening of fields restraining the filament-carrying field, and the consequent upward expansion of the field in and around the filament produces the filament's slow rise: that is, the reconnection weakens the magnetic "tethers" ("tether-weakening" reconnection), and results in the slow rise of the filament. It is still inconclusive, however, what mechanism is responsible for the switch from the slow rise to the fast eruption.

  7. Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.

    2008-01-01

    Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.

  8. Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  9. High bandwidth optical mount

    DOEpatents

    Bender, D.A.; Kuklo, T.

    1994-11-08

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  10. High bandwidth optical mount

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas

    1994-01-01

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage.

  11. Mount St. Helens Volcano, WA, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mount St. Helens Volcano (46.0N, 122.0W) and its blast zone can be seen in this northeast looking infrared view. Mt. Rainier and Mt. Adams can also be seen in the near area. The Columbia River can be seen at the bottom of the view. When Mt. St. Helens erupted on 18 May 80, the top 1300 ft. disappeared within minutes. The blast area covered an area of more than 150 sq. miles and sent thousands of tons of ash into the upper atmosphere.

  12. Solar Prominence Eruption

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    1998-01-01

    The prominence that erupts in a prominence eruption is a magnetic structure in the chromosphere and corona. It is visible in chromospheric images by virtue of chromospheric-temperature plasma suspended in the magnetic field, and belongs to that large class of magnetic structures appropriately called filaments because of their characteristic sinewy sigmoidal form. Hence, the term "filament eruption" is used interchangeably with the term "prominence eruption". The magnetic field holding a filament is prone to undergo explosive changes in configuration. In these upheavals, because the filament material is compelled by its high conductivity to ride with the magnetic field that threads it, this material is a visible tracer of the field motion. The part of the magnetic explosion displayed by the entrained filament material is the phenomenon known as a filament eruption, the topic of this article. This article begins with a description of basic observed characteristics of filament eruptions, with attention to the magnetic fields, flares, and coronal mass ejections in which erupting filaments are embedded. The present understanding of these characteristics in terms of the form and action of the magnetic field is then laid out by means of a rudimentary three-dimensional model of the field. The article ends with basic questions that this picture leaves unresolved and with remarks on the observations needed to probe these questions.

  13. SYMPATHETIC SOLAR FILAMENT ERUPTIONS

    SciTech Connect

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan

    2016-08-10

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filamentmore » that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.« less

  14. Liner mounting assembly

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A mounting assembly includes an annular supporting flange disposed coaxially about a centerline axis which has a plurality of circumferentially spaced apart supporting holes therethrough. An annular liner is disposed coaxially with the supporting flange and includes a plurality of circumferentially spaced apart mounting holes aligned with respective ones of the supporting holes. Each of a plurality of mounting pins includes a proximal end fixedly joined to the supporting flange through a respective one of the supporting holes, and a distal end disposed through a respective one of the liner mounting holes for supporting the liner to the supporting flange while unrestrained differential thermal movement of the liner relative to the supporting flange.

  15. Infrasonic component of volcano-seismic eruption tremor

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David

    2014-03-01

    Air-ground and ground-air elastic wave coupling are key processes in the rapidly developing field of seismoacoustics and are particularly relevant for volcanoes. During a sustained explosive volcanic eruption, it is typical to record a sustained broadband signal on seismometers, termed eruption tremor. Eruption tremor is usually attributed to a subsurface seismic source process, such as the upward migration of magma and gases through the shallow conduit and vent. However, it is now known that sustained explosive volcanic eruptions also generate powerful tremor signals in the atmosphere, termed infrasonic tremor. We investigate infrasonic tremor coupling down into the ground and its contribution to the observed seismic tremor. Our methodology builds on that proposed by Ichihara et al. (2012) and involves cross-correlation, coherence, and cross-phase spectra between waveforms from nearly collocated seismic and infrasonic sensors; we apply it to datasets from Mount St. Helens, Tungurahua, and Redoubt Volcanoes.

  16. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  17. Learning to recognize volcanic non-eruptions

    USGS Publications Warehouse

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  18. A sight "fearfully grand": eruptions of Lassen Peak, California, 1914 to 1917

    USGS Publications Warehouse

    Clynne, Michael A.; Christiansen, Robert L.; Stauffer, Peter H.; Hendley, James W.; Bleick, Heather A.

    2014-01-01

    On May 22, 1915, a large explosive eruption at the summit of Lassen Peak, California, the southernmost active volcano in the Cascade Range, devastated nearby areas and rained volcanic ash as far away as 280 miles to the east. This explosion was the most powerful in a series of eruptions during 1914–17 that were the last to occur in the Cascade Range before the 1980 eruption of Mount St. Helens, Washington. A century after the Lassen eruptions, work by U.S. Geological Survey (USGS) scientists in cooperation with the National Park Service is shedding new light on these events.

  19. Forecasting the climate response to volcanic eruptions: prediction skill related to stratospheric aerosol forcing

    NASA Astrophysics Data System (ADS)

    Ménégoz, M.; Bilbao, R.; Bellprat, O.; Guemas, V.; Doblas-Reyes, F. J.

    2018-06-01

    The last major volcanic eruptions, the Agung in 1963, El Chichon in 1982 and Pinatubo in 1991, were each associated with a cooling of the troposphere that has been observed over large continental areas and over the Western Pacific, the Indian Ocean and the Southern Atlantic. Simultaneously, Eastern tropical Pacific temperatures increased due to prevailing El Niño conditions. Here we show that the pattern of these near-surface temperature anomalies is partly reproduced with decadal simulations of the EC-Earth model initialised with climate observations and forced with an estimate of the observed volcanic aerosol optical thickness. Sensitivity experiments highlight a cooling induced by the volcanic forcing, whereas El Niño events following the eruptions would have occurred even without volcanic eruptions. Focusing on the period 1961–2001, the main source of skill of this decadal forecast system during the first 2 years is related to the initialisation of the model. The contribution of the initialisation to the skill becomes smaller than the contribution of the volcanic forcing after two years, the latter being substantial in the Western Pacific, the Indian Ocean and the Western Atlantic. Two simple protocols for real time forecasts are investigated: using the forcing of a past volcanic eruption to simulate the forcing of a new one, and applying a two-year exponential decay to the initial stratospheric aerosol load observed at the beginning of the forecast. This second protocol applied in retrospective forecasts allows a partial reproduction of the skill attained with observed forcing.

  20. The Influence of Conduit Processes During Basaltic Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Sable, J. E.; Wilson, C. J.; Coltelli, M.; Del Carlo, P.

    2001-12-01

    Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e. generating widespread phreatomagmatic, subplinian and Plinian fall deposits. These eruptions are particularly dangerous because the ascent rate of basaltic magma prior to eruption can be very rapid (giving warning times as little as a few hours) and because their precursors may be ignored or misunderstood. The main question addressed in this talk is: what conditions in the conduit cause basaltic magma to adopt an eruption style more typical of chemically evolved, highly viscous magmas? Possible mechanisms (acting singly, or in concert) are: (1) interaction between magma and water, (ii) very rapid ascent producing a delayed onset of degassing then exceptionally rapid "runaway" vesiculation at shallow levels in the conduit, (iii) microlite crystallization and degassing of the magma during ascent leading to increased viscosity. We focus here on two examples of basaltic Plinian volcanism: the 1886 eruption of Tarawera, New Zealand, which is the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well documented 122 BC eruption of Mount Etna, Italy. Field and laboratory evidence suggests that the Plinian phase of the 1886 eruption was a consequence of two processes. Firstly rheologic changes during magma ascent accompanied early (pre-fragmentation) interaction between the basaltic melt and water-bearing rhyolitic units forming the conduit walls and, secondly, late-stage magma:water interaction. In contrast, during the 122 BC eruption tectonic processes, such as slope failure or permanent displacement of a mobile flank of the volcano, appear to have triggered exceptionally rapid ascent, delayed onset of degassing and exceptionally

  1. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska

    USGS Publications Warehouse

    Miller, Thomas P.

    2004-01-01

    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U

  2. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  3. Easily Accessible Camera Mount

    NASA Technical Reports Server (NTRS)

    Chalson, H. E.

    1986-01-01

    Modified mount enables fast alinement of movie cameras in explosionproof housings. Screw on side and readily reached through side door of housing. Mount includes right-angle drive mechanism containing two miter gears that turn threaded shaft. Shaft drives movable dovetail clamping jaw that engages fixed dovetail plate on camera. Mechanism alines camera in housing and secures it. Reduces installation time by 80 percent.

  4. Spherical mirror mount

    NASA Technical Reports Server (NTRS)

    Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)

    2011-01-01

    A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.

  5. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  6. Familial polymorphous cold eruption.

    PubMed

    Martin, S; Eastern, J; Knox, J M

    1981-02-01

    An erythematous, burning papular eruption, constitutional symptoms, fever, and arthropathy developed in a 65-year-old patient after cold exposure. Involvement of other family members occurred in an autosomal dominant pattern. Histopathologic examination of a biopsy specimen revealed telangiectasia and primarily neutrophilic perivascular inflammation, consistent with earlier biopsy reports of this syndrome. Although previously called "familial cold urticaria," this disease is not characterized by urticaria and may be best descriptively termed, "familial polymorphous cold eruption."

  7. Optoelectronic Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R. F.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reber, Cathleen A.; Reysen, Bill H.

    2004-10-05

    An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.

  8. The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century; centennial perspectives

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2012-01-01

    The explosive outburst at Novarupta (Alaska) in June 1912 was the 20th century's most voluminous volcanic eruption. Marking its centennial, we illustrate and document the complex eruptive sequence, which was long misattributed to nearby Mount Katmai, and how its deposits have provided key insights about volcanic and magmatic processes. It was one of the few historical eruptions to produce a collapsed caldera, voluminous high-silica rhyolite, wide compositional zonation (51-78 percent SiO2), banded pumice, welded tuff, and an aerosol/dust veil that depressed global temperature measurably. It emplaced a series of ash flows that filled what became the Valley of Ten Thousand Smokes, sustaining high-temperature metal-transporting fumaroles for a decade. Three explosive episodes spanned ~60 hours, depositing ~17 km3 of fallout and 11±2 km3 of ignimbrite, together representing ~13.5 km3 of zoned magma. No observers were nearby and no aircraft were in Alaska, and so the eruption narrative was assembled from scattered villages and ship reports. Because volcanology was in its infancy and the early investigations (1915-23) were conducted under arduous expeditionary conditions, many provocative misapprehensions attended reports based on those studies. Fieldwork at Katmai was not resumed until 1953, but, since then, global advances in physical volcanology and chemical petrology have gone hand in hand with studies of the 1912 deposits, clarifying the sequence of events and processes and turning the eruption into one of the best studied in the world. To provide perspective on this century-long evolution, we describe the geologic and geographic setting of the eruption - in a remote, sparsely inhabited wilderness; we review the cultural and scientific contexts at the time of the eruption and early expeditions; and we compile a chronology of the many Katmai investigations since 1912. Products of the eruption are described in detail, including eight layers of regionwide fallout

  9. Volcanic eruption induced WWVB transmission path interruption

    NASA Astrophysics Data System (ADS)

    Buckmaster, H. A.; Hansen, C. H.

    1985-07-01

    It is reported that the 60 kHz transmission of WWVB from Fort Collins, Colorado, was not received in Calgary, Alberta, Canada, for about 11 h from 1109 UT to 2153 UT on July 23, 1980. It is suggested that this transmission path interruption is correlated with the 15 km height ash cloud due to the July 22, 1980 volcanic eruption of Mount St. Helens as it drifted eastward interrupting both the ground- and first hop sky-wave paths and that this ash cloud is the source of the conductivity and/or ionization necessary to produce this interruption. Small phase retardations are also reported which could be correlated with other Mount St. Helens volcanic events during May-July 1980.

  10. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Hill, Graham J.; Caldwell, T. Grant; Heise, Wiebke; Chertkoff, Darren G.; Bibby, Hugh M.; Burgess, Matt K.; Cull, James P.; Cas, Ray A. F.

    2009-11-01

    Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)-Mounts St Helens, Adams and Rainier-are located on the margins of a mid-crustal zone of high electrical conductivity. Interconnected melt can increase the bulk conductivity of the region containing the melt, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath this volcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs 9, 10).

  11. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data

    USGS Publications Warehouse

    Hill, G.J.; Caldwell, T.G.; Heise, W.; Chertkoff, D.G.; Bibby, H.M.; Burgess, M.K.; Cull, J.P.; Cas, Ray A.F.

    2009-01-01

    Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)Mounts StHelens, Adams and Rainierare located on the margins of a mid-crustal zone of high electrical conductivity1,5. Interconnected melt can increase the bulk conductivity of the region containing the melt6,7, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath thisvolcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens8, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs9, 10). ?? 2009 Macmillan Publishers Limited. All rights reserved.

  12. Tilt networks of Mount Shasta and Lassen Peak, California

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Murray, T.L.; Myers, Barbara

    1982-01-01

    In response to recent eruptions at Mount St. Helens and with support from the USGS Volcanic Hazards Program, the Cascades Volcano Observatory (CVO) has initiated a program to monitor all potentially-active volcanoes of the Cascade Range. As part of that effort, we installed tilt networks and obtained baseline measurements at Mount Shasta and Lassen Peak, California during July 1981. At the same time, baseline electronic distance measurements (EDM) were made and fumarole surveys were conducted by other crews from CVO. Annual surveys are planned initially, with subsequent visits as conditions warrant. These geodetic and geochemical measurements supplement a program of continuous seismic monitoring of Cascade volcanoes by the USGS Office of Earthquake Studies in cooperation with local universities. Other tilt networks were established at Mount Baker in 1975 and at Mount St. Helens in 1981. EDM networks were established at Mount Baker in 1975, Mount St. Helens in 1980, and Crater Lake in 1981. Additional tilt and/or EDM networks are planned for Mount Rainier, Mount Hood, Glacier Peak, Three Sisters, and Crater Lake as funds permit.

  13. Imaging the Mount St. Helens Magmatic Systems using Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Hill, G. J.; Caldwell, T. G.; Heise, W.; Bibby, H. M.; Chertkoff, D. G.; Burgess, M. K.; Cull, J. P.; Cas, R. A.

    2009-05-01

    A detailed magnetotelluric survey of Mount St. Helens shows that a conduit like zone of high electrical conductivity beneath the volcano is connected to a larger zone of high conductivity at 15 km depth that extends eastward to Mount Adams. We interpret this zone to be a region of connected melt that acts as the reservoir for the silicic magma being extruded at the time of the magnetotelluric survey. This interpretation is consistent with a mid-crustal origin for the silicic component of the Mount St. Helens' magmas and provides an elegant explanation for a previously unexplained feature of the seismicity observed at the time of the catastrophic eruption in 1980. This zone of high mid-crustal conductivity extends northwards to near Mount Rainier suggesting a single region of connected melt comparable in size to the largest silicic volcanic systems known.

  14. Volcanic eruptions on Io

    NASA Technical Reports Server (NTRS)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  15. Internally Mounting Strain Gages

    NASA Technical Reports Server (NTRS)

    Jett, J. R., Jr.

    1984-01-01

    Technique for mounting strain gages inside bolt or cylinder simultaneously inserts gage, attached dowel segment, and length of expandable tubing. Expandable tubing holds gage in place while adhesive cures, assuring even distribution of pressure on gage and area gaged.

  16. Behold Mount Sharp!

    NASA Image and Video Library

    2012-08-06

    This image taken by NASA Curiosity shows what lies ahead for the rover -- its main science target, informally called Mount Sharp. The rover shadow can be seen in the foreground, and the dark bands beyond are dunes.

  17. Mounting for ceramic scroll

    DOEpatents

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  18. Acneiform facial eruptions

    PubMed Central

    Cheung, Melody J.; Taher, Muba; Lauzon, Gilles J.

    2005-01-01

    OBJECTIVE To summarize clinical recognition and current management strategies for four types of acneiform facial eruptions common in young women: acne vulgaris, rosacea, folliculitis, and perioral dermatitis. QUALITY OF EVIDENCE Many randomized controlled trials (level I evidence) have studied treatments for acne vulgaris over the years. Treatment recommendations for rosacea, folliculitis, and perioral dermatitis are based predominantly on comparison and open-label studies (level II evidence) as well as expert opinion and consensus statements (level III evidence). MAIN MESSAGE Young women with acneiform facial eruptions often present in primary care. Differentiating between morphologically similar conditions is often difficult. Accurate diagnosis is important because treatment approaches are different for each disease. CONCLUSION Careful visual assessment with an appreciation for subtle morphologic differences and associated clinical factors will help with diagnosis of these common acneiform facial eruptions and lead to appropriate management. PMID:15856972

  19. Io - Volcanic Eruption

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This photo of a volcanic eruption on Jupiter's satellite Io (dark fountain-like feature near the limb) was taken March 4, 1979, about 12 hours before Voyager 1's closest approach to Jupiter. This and the accompanying photo present the evidence for the first active volcanic eruption ever observed on another body in the solar system. This photo taken from a distance of 310,000 miles (499,000 kilometers), shows a plume-like structure rising more than 60 miles (100 kilometers) above the surface, a cloud of material being produced by an active eruption. At least four eruptions have been identified on Voyager 1 pictures and many more may yet be discovered on closer analysis. On a nearly airless body like Io, particulate material thrown out of a volcano follows a ballistic trajectory, accounting for the dome-like shape of the top of the cloud, formed as particles reach the top of their flight path and begin to fall back. Spherical expansion of outflowing gas forms an even larger cloud surrounding the dust. Several regions have been identified by the infrared instrument on Voyager 1 as being several hundred degrees Fahrenheit warmer than surrounding terrain, and correlated with the eruptions. The fact that several eruptions appear to be going on simultaneously makes Io the most active surface in the solar system and suggests to scientists that Io is undergoing continuous volcanism, revising downward the age of Io's surface once again. JPL manages and controls the Voyager Project for NASA's Office of Space Science.

  20. Catalog of earthquake hypocenters for Augustine, Redoubt, Iliamna, and Mount Spurr volcanoes, Alaska: January 1, 1991 - December 31, 1993

    USGS Publications Warehouse

    Jolly, Arthur D.; Power, John A.; Stihler, Scott D.; Rao, Lalitha N.; Davidson, Gail; Paskievitch, John F.; Estes, Steve; Lahr, John C.

    1996-01-01

    The 1992 eruptions at Mount Spurr's Crater Peak vent provided the highlight of the catalog period. The crisis included three sub-plinian eruptions, which occurred on June 27, August 18, and September 16-17, 1992. The three eruptions punctuated a complex seismic sequence which included volcano-tectonic (VT) earthquakes, tremor, and both deep and shallow long period (LP) earthquakes. The seismic sequence began on August 18, 1991, with a small swarm of volcano-tectonic events beneath Crater Peak, and spread throughout the volcanic complex by November of the same year. Elevated levels of seismicity persisted at Mount Spurr beyond the catalog time period.

  1. On the use of remote infrasound and seismic stations to constrain the eruptive sequence and intensity for the 2014 Kelud eruption

    SciTech Connect

    Caudron, Corentin; Taisne, Benoit; Garces, Milton

    The February 2014 eruption of Kelud volcano (Indonesia) destroyed most of the instruments near it. We use remote seismic and infrasound sensors to reconstruct the eruptive sequence. The first explosions were relatively weak seismic and infrasound events. A major stratospheric ash injection occurred a few minutes later and produced long-lasting atmospheric and ground-coupled acoustic waves that were detected as far as 11,000 km by infrasound sensors and up to 2300 km away on seismometers. A seismic event followed ~12 minutes later and was recorded 7000 km away by seismometers. We estimate a volcanic intensity around 10.9, placing the 2014 Keludmore » eruption between the 1980 Mount St. Helens and 1991 Pinatubo eruptions intensities. As a result, we demonstrate how remote infrasound and seismic sensors are critical for the early detection of volcanic explosions, and how they can help to constrain and understand eruptive sequences.« less

  2. On the use of remote infrasound and seismic stations to constrain the eruptive sequence and intensity for the 2014 Kelud eruption

    DOE PAGES

    Caudron, Corentin; Taisne, Benoit; Garces, Milton; ...

    2015-07-14

    The February 2014 eruption of Kelud volcano (Indonesia) destroyed most of the instruments near it. We use remote seismic and infrasound sensors to reconstruct the eruptive sequence. The first explosions were relatively weak seismic and infrasound events. A major stratospheric ash injection occurred a few minutes later and produced long-lasting atmospheric and ground-coupled acoustic waves that were detected as far as 11,000 km by infrasound sensors and up to 2300 km away on seismometers. A seismic event followed ~12 minutes later and was recorded 7000 km away by seismometers. We estimate a volcanic intensity around 10.9, placing the 2014 Keludmore » eruption between the 1980 Mount St. Helens and 1991 Pinatubo eruptions intensities. As a result, we demonstrate how remote infrasound and seismic sensors are critical for the early detection of volcanic explosions, and how they can help to constrain and understand eruptive sequences.« less

  3. Mount Pinatubo, Philippine Islands as seen from STS-59

    NASA Image and Video Library

    1994-04-10

    STS059-L14-170 (9-20 April 1994) --- Orient with the sea at the left. Then Subic Bay is at the lower left corner, and Clark Air Force Base (abandoned after the eruption) is to the lower right of the volcano. A turquoise lake occupies the caldera just below the center of the photograph. Mount Pinatubo erupted in June, 1991 after several hundred years of quiescence. Eruptive activity has nearly ceased, but every torrential rain in this monsoonal climate causes renewed mud flows of a viscous slurry composed of volcanic ash and pumice. Shuttle crews have been photographing the mountain at every opportunity, to add documentation to unmanned-satellite, aerial, and ground-based observations of changes. SRL scientists will use the excellent radar imagery obtained during STS-59 to help discriminate among different kinds of volcanic material, and to extend their observations to other volcanoes around the world using future, perhaps unmanned, radar satellites. Linhof photograph.

  4. ASTER Images Merapi Continuing Eruption

    NASA Image and Video Library

    2010-11-18

    This thermal infrared image from NASA Terra spacecraft of Merapi continuing eruption has been processed to reveal the dominant presence of volcanic ash in the eruption plume and clouds, displayed in dark red. The warm volcanic flow appears bright.

  5. Volcano hazards in the Mount Hood region, Oregon

    USGS Publications Warehouse

    Scott, W.E.; Pierson, T.C.; Schilling, S.P.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    1997-01-01

    Mount Hood is a potentially active volcano close to rapidly growing communities and recreation areas. The most likely widespread and hazardous consequence of a future eruption will be for lahars (rapidly moving mudflows) to sweep down the entire length of the Sandy (including the Zigzag) and White River valleys. Lahars can be generated by hot volcanic flows that melt snow and ice or by landslides from the steep upper flanks of the volcano. Structures close to river channels are at greatest risk of being destroyed. The degree of hazard decreases as height above a channel increases, but large lahars can affect areas more than 30 vertical meters (100 vertical feet) above river beds. The probability of eruption-generated lahars affecting the Sandy and White River valleys is 1-in-15 to l-in-30 during the next 30 years, whereas the probability of extensive areas in the Hood River Valley being affected by lahars is about ten times less. The accompanying volcano-hazard-zonation map outlines areas potentially at risk and shows that some areas may be too close for a reasonable chance of escape or survival during an eruption. Future eruptions of Mount Hood could seriously disrupt transportation (air, river, and highway), some municipal water supplies, and hydroelectric power generation and transmission in northwest Oregon and southwest Washington.

  6. Vibration isolation mounting system

    NASA Technical Reports Server (NTRS)

    Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)

    1995-01-01

    A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.

  7. Katmai volcanic cluster and the great eruption of 1912

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.

    2000-01-01

    In June 1912, the world's largest twentieth century eruption broke out through flat-lying sedimentary rocks of Jurassic age near the base of Trident volcano on the Alaska Peninsula. The 60 h ash-flow and Plinian eruptive sequence excavated and subsequently backfilled with ejecta a flaring funnel-shaped vent since called Novarupta. The vent is adjacent to a cluster of late Quaternary stratocones and domes that have released about 140 km3 of magma in the past 150 k.y. Although the 1912 vent is closest to the Trident group and is also close to Mageik and Griggs volcanoes, it was the summit of Mount Katmai, 10 km east of Novarupta, that collapsed during the eruption to form a 5.5 km3 caldera. Many earthquakes, including 14 in the range M 6-7, took place during and after the eruption, releasing 250 times more seismic energy than the 1991 caldera-forming eruption of the Philippine volcano, Pinatubo. The contrast in seismic behavior may reflect the absence of older caldera faults at Mount Katmai, lack of upward (subsidence opposing) magma flow owing to lateral magma withdrawal in 1912, and the horizontally stratified structure of the thick shale-rich Mesozoic basement. The Katmai caldera compensates for only 40% of the 13 km3 of 1912 magma erupted, which included 7-8 km3 of slightly zoned high-silica rhyolite and 4.5 km3 of crystal-rich dacite that grades continuously into 1 km3 of crystal-rich andesite. We have now mapped, sampled, and studied the products of all 20 components of the Katmai volcanic cluster. Pyroxene dacite and silicic andesite predominate at all of them, and olivine andesite is also common at Griggs, Katmai, and Trident volcanoes, but basalt and rhyodacite have erupted only at Mount Katmai. Rhyolite erupted only in 1912 and is otherwise absent among Quaternary products of the cluster. Pleistocene products of Mageik and Trident and all products of Griggs are compositionally distinguishable from those of 1912 at Novarupta. Holocene products of Mount

  8. Volcanic Eruptions in Kamchatka

    NASA Image and Video Library

    2007-04-30

    One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. NASA Terra satellite acquired this image on April 26, 2007

  9. Complicated lichenoid drug eruption.

    PubMed

    Armour, Katherine; Lowe, Patricia

    2005-02-01

    We report a case of severe lichenoid drug eruption with multiple possible causative agents. A hepatitis C-positive male presented with a short history of painful erosions of the vermilion, lichenoid lesions on the buccal mucosa and glans penis, and erosions and lichenification of the scrotum. In addition, he had a pruritic polymorphic eruption over the scalp, trunk and limbs, comprising psoriasiform and eczematous lesions. He had received combination therapy of pegylated interferon-alpha-2a and ribavirin, along with granulocyte colony-stimulating factor for interferon-induced leucopenia, and propranolol for portal hypertension. The former three agents were ceased 3 weeks prior to presentation, but he remained on propranolol at the initial dermatology consultation. The polymorphous clinical picture was consistent with lichenoid drug eruption, which was confirmed on histology. The papulosquamous eruption responded quickly to 2 weeks of oral prednisone 25 mg daily, which was tapered to 1 mg over 3 months and then ceased. The mucosal lesions were slow to improve and required the addition of tacrolimus 0.03% solution t.d.s. for complete resolution.

  10. Volcanic Eruptions and Climate

    NASA Technical Reports Server (NTRS)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  11. Pressure vessel bottle mount

    NASA Technical Reports Server (NTRS)

    Wingett, Paul (Inventor)

    2001-01-01

    A mounting assembly for mounting a composite pressure vessel to a vehicle includes a saddle having a curved surface extending between two pillars for receiving the vessel. The saddle also has flanged portions which can be bolted to the vehicle. Each of the pillars has hole in which is mounted the shaft portion of an attachment member. A resilient member is disposed between each of the shaft portions and the holes and loaded by a tightening nut. External to the holes, each of the attachment members has a head portion to which a steel band is attached. The steel band circumscribes the vessel and translates the load on the springs into a clamping force on the vessel. As the vessel expands and contracts, the resilient members expand and contract so that the clamping force applied by the band to the vessel remains constant.

  12. Holocene geomagnetic secular variation recorded by volcanic deposits at Mount St. Helens, Washington

    USGS Publications Warehouse

    Hagstrum, J.T.; Hoblitt, R.P.; Gardner, C.A.; Gray, T.E.

    2002-01-01

    A compilation of paleomagnetic data from volcanic deposits of Mount St. Helens is presented in this report. The database is used to determine signature paleomagnetic directions of products from its Holocene eruptive events, to assign sampled units to their proper eruptive period, and to begin the assembly of a much larger database of paleomagnetic directions from Holocene volcanic rocks in western North America. The paleomagnetic results from Mount St. Helens are mostly of high quality, and generally agree with the division of its volcanic deposits into eruptive episodes based on previous geologic mapping and radiocarbon dates. The Muddy River andesite's paleomagnetic direction, however, indicates that it is more likely part of the Pine Creek eruptive period rather than the Castle Creek period. In addition, the Two-Fingers andesite flow is more likely part of the Middle Kalama eruptive period and not part of the Goat Rocks period. The paleomagnetic data from Mount St. Helens and Mount Hood document variation in the geomagnetic field's pole position over the last ~2,500 years. A distinct feature of the new paleosecular variation (PSV) record, similar to the Fish Lake record (Oregon), indicates a sudden change from rapid clockwise movement of the pole about the Earth's spin axis to relatively slow counterclockwise movement at ???800 to 900 years B.P.

  13. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  14. Impact of major volcanic eruptions on stratospheric water vapour

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  15. Benefits of volcano monitoring far outweigh costs - the case of Mount Pinatubo

    USGS Publications Warehouse

    Newhall, Chris G.; Hendley, James W.; Stauffer, Peter H.

    1997-01-01

    The climactic June 1991 eruption of Mount Pinatubo, Philippines, was the largest volcanic eruption in this century to affect a heavily populated area. Because it was forecast by scientists from the Philippine Institute of Volcanology and Seismology and the U.S. Geological Survey, civil and military leaders were able to order massive evacuations and take measures to protect property before the eruption. Thousands of lives were saved and hundreds of millions of dollars in property losses averted. The savings in property alone were many times the total costs of the forecasting and evacuations.

  16. The Geologic Story of Mount Rainier

    USGS Publications Warehouse

    Crandell, Dwight Raymond

    1969-01-01

    Ice-clad Mount Rainier, towering over the landscape of western Washington, ranks with Fuji-yama in Japan, Popocatepeti in Mexico, and Vesuvius in Italy among the great volcanoes of the world. At Mount Rainier, as at other inactive volcanoes, the ever-present possibility of renewed eruptions gives viewers a sense of anticipation, excitement, and apprehension not equaled by most other mountains. Even so, many of us cannot imagine the cataclysmic scale of the eruptions that were responsible for building the giant cone which now stands in silence. We accept the volcano as if it had always been there, and we appreciate only the beauty of its stark expanses of rock and ice, its flower-strewn alpine meadows, and its bordering evergreen forests.Mount Rainier owes its scenic beauty to many features. The broad cone spreads out on top of a major mountain range - the Cascades. The volcano rises about 7,000 feet above its 7,000-foot foundation, and stands in solitary splendor - the highest peak in the entire Cascade Range. Its rocky ice-mantled slopes above timberline contrast with the dense green forests and give Mount Rainier the appearance of an arctic island in a temperate sea, an island so large that you can see its full size and shape only from the air. The mountain is highly photogenic because of the contrasts it offers among bare rock, snowfields, blue sky, and the incomparable flower fields that color its lower slopes, shadows cast by the multitude of cliffs, ridges, canyons, and pinnacles change constantly from sunrise to sunset, endlessly varying the texture and mood of the mountain. The face of the mountain also varies from day to day as its broad snowfields melt during the summer. The melting of these frozen reservoirs makes Mount Rainier a natural resource in a practical as well as in an esthetic sense, for it ensures steady flows of water for hydroelectric power in the region, regardless of season.Seen from the Puget Sound country to the west, Mount Rainier has

  17. Lava flow risk maps at Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Favalli, M.; Fornaciai, A.; Papale, P.; Tarquini, S.

    2009-04-01

    Mount Cameroon, in the southwest Cameroon, is one of the most active volcanoes in Africa. Rising 4095 m asl, it has erupted nine times since the beginning of the past century, more recently in 1999 and 2000. Mount Cameroon documented eruptions are represented by moderate explosive and effusive eruptions occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast near the village of Biboundi, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea, threatening the villages of Bakingili and Dibunscha. More than 450,000 people live or work around the volcano, making the risk from lava flow invasion a great concern. In this work we propose both conventional hazard and risk maps and novel quantitative risk maps which relate vent locations to the expected total damage on existing buildings. These maps are based on lava flow simulations starting from 70,000 different vent locations, a probability distribution of vent opening, a law for the maximum length of lava flows, and a database of buildings. The simulations were run over the SRTM Digital Elevation Model (DEM) using DOWNFLOW, a fast DEM-driven model that is able to compute detailed invasion areas of lava flows from each vent. We present three different types of risk maps (90-m-pixel) for buildings around Mount Cameroon volcano: (1) a conventional risk map that assigns a probability of devastation by lava flows to each pixel representing buildings; (2) a reversed risk map where each pixel expresses the total damage expected as a consequence of vent opening in that pixel (the damage is expressed as the total surface of urbanized areas invaded); (3) maps of the lava catchments of the main towns around the volcano, within every catchment the pixels are classified according to the expected impact they might produce on the relative town in the case of a vent opening in that pixel. Maps of type (1) and (3) are useful for long term planning

  18. Legendary Mount Vesuvius is subject of intensive volcanological study

    NASA Astrophysics Data System (ADS)

    Spera, Frank

    The Roman population centers of Pompeii and Herculaneum (circa 15,000 inhabitants) were destroyed when Mount Vesuvius erupted in 79 A.D. after centuries of repose. Many times since then its eruptions have claimed human lives; basaltic lava flows from an eruption in 1631 killed 3,000. Vesuvius' location, near the heart of the Roman empire—a center of learning in the ancient world—led it to become the site ofsome of the earliest volcanological studies on record.In letters to Tacitus, Pliny the Younger documented the sequence of events of the 79 A.D. plinian eruption. Geophysical studies of volcanoes were pioneered by Italian volcanologists who installed seismographs in an observatory on the flanks of Vesuvius to study volcano seismology and to forecast and monitor eruptions early this century. It is easy to understand why interest in Vesuvius has been so keen: it is accessible, persistently active, and a large population resides nearby. Today, around 1 million people live within the shadow of this potentially explosive and dangerous volcano.

  19. A method for estimating mount isolations of powertrain mounting systems

    NASA Astrophysics Data System (ADS)

    Qin, Wu; Shangguan, Wen-Bin; Luo, Guohai; Xie, Zhengchao

    2018-07-01

    A method for calculating isolation ratios of mounts at a powertrain mounting systems (PMS) is proposed assuming a powertrain as a rigid body and using the identified powertrain excitation forces and the measured IPI (input point inertance) of mounting points at the body side. With measured accelerations of mounts at powertrain and body sides of one Vehicle (Vehicle A), the excitation forces of a powertrain are identified using conversational method firstly. Another Vehicle (Vehicle B) has the same powertrain as that of Vehicle A, but with different body and mount configuration. The accelerations of mounts at powertrain side of a PMS on Vehicle B are calculated using the powertrain excitation forces identified from Vehicle A. The identified forces of the powertrain are validated by comparing the calculated and the measured accelerations of mounts at the powertrain side of the powertrain on Vehicle B. A method for calculating acceleration of mounting point at body side for Vehicle B is presented using the identified powertrain excitation forces and the measured IPI at a connecting point between car body and mount. Using the calculated accelerations of mounts at powertrain side and body side at different directions, the isolation ratios of a mount are then estimated. The isolation ratios are validated using the experiment, which verified the proposed methods for estimating isolation ratios of mounts. The developed method is beneficial for optimizing mount stiffness to meet mount isolation requirements before prototype.

  20. Transducer-Mounting Fixture

    NASA Technical Reports Server (NTRS)

    Spiegel, Kirk W.

    1990-01-01

    Transducer-mounting fixture holds transducer securely against stud. Projects only slightly beyond stud after installation. Flanged transducer fits into fixture when hinged halves open. When halves reclosed, fixture tightened onto threaded stud until stud makes contact with transducer. Knurled area on fixture aids in tightening fixture on stud.

  1. Housing And Mounting Structure

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.

    2005-03-08

    This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.

  2. Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews

    NASA Astrophysics Data System (ADS)

    Oikawa, Teruki; Yoshimoto, Mitsuhiro; Nakada, Setsuya; Maeno, Fukashi; Komori, Jiro; Shimano, Taketo; Takeshita, Yoshihiro; Ishizuka, Yoshihiro; Ishimine, Yasuhiro

    2016-05-01

    A phreatic eruption at Mount Ontake (3067 m) on September 27, 2014, led to 64 casualties, including missing people. In this paper, we clarify the eruption sequence of the 2014 eruption from recorded images (photographs and videos obtained by climbers) and interviews with mountain guides and workers in mountain huts. The onset of eruption was sudden, without any clear precursory surface phenomena (such as ground rumbling or strong smell of sulfide). Our data indicate that the eruption sequence can be divided into three phases. Phase 1: The eruption started with dry pyroclastic density currents (PDCs) caused by ash column collapse. The PDCs flowed down 2.5 km SW and 2 km NW from the craters. In addition, PDCs moved horizontally by approximately 1.5 km toward N and E beyond summit ridges. The temperature of PDCs at the summit area partially exceeded 100 °C, and an analysis of interview results suggested that the temperature of PDCs was mostly in the range of 30-100 °C. At the summit area, there were violent falling ballistic rocks. Phase 2: When the outflow of PDCs stopped, the altitude of the eruption column increased; tephra with muddy rain started to fall; and ambient air temperature decreased. Falling ballistic rocks were almost absent during this phase. Phase 3: Finally, muddy hot water flowed out from the craters. These models reconstructed from observations are consistent with the phreatic eruption models and typical eruption sequences recorded at similar volcanoes.

  3. Eruption of Kliuchevskoi volcano

    NASA Image and Video Library

    1994-10-05

    STS068-155-094 (30 September-11 October 1994) --- (Kliuchevskoi Volcano) The crewmembers used a Linhof large format Earth observation camera to photograph this nadir view of the Kamchatka peninsula's week-old volcano. The eruption and the follow-up environmental activity was photographed from 115 nautical miles above Earth. Six NASA astronauts spent a week and a half aboard the Space Shuttle Endeavour in support of the Space Radar Laboratory 2 (SRL-2) mission.

  4. Mount Rainier: living safely with a volcano in your backyard

    USGS Publications Warehouse

    Driedger, Carolyn L.; Scott, William E.

    2008-01-01

    Majestic Mount Rainier soars almost 3 miles (14,410 feet) above sea level and looms over the expanding suburbs of Seattle and Tacoma, Washington. Each year almost two million visitors come to Mount Rainier National Park to admire the volcano and its glaciers, alpine meadows, and forested ridges. However, the volcano's beauty is deceptive - U.S. Geological Survey (USGS) research shows that Mount Rainier is one of our Nation's most dangerous volcanoes. It has been the source of countless eruptions and volcanic mudflows (lahars) that have surged down valleys on its flanks and buried broad areas now densely populated. To help people live more safely with the volcano, USGS scientists are working closely with local communities, emergency managers, and the National Park Service.

  5. [Localized eruptive juvenile xanthogranuloma].

    PubMed

    Vanotti, S; Chiaverini, C; Rostain, G; Cardot-Leccia, N; Lacour, J-P

    2014-03-01

    Juvenile xanthogranuloma (JXG) is a non-Langerhans histiocytosis of young children characterized by solitary or multiple yellowish cutaneous nodules. Atypical skin lesions such as lichenoid eruptions, and pedunculated, maculopapular, plaque-like or linear lesions have been described. We report a case of eruptive XGJ en plaque in the left leg in an infant. A 13-month-old child presented asymptomatic eruptive, yellowish papules of the leg measuring 5 to 10mm since the age of 2months. There was no cutaneous infiltration between the lesions. Darier's sign was negative. Histological examination confirmed the diagnosis of JXG. The course of the disease comprised a gradual decrease in the number of active lesions with slight residual pigmentation. Our case was suggestive of JXG en plaque. Only 7 cases have been reported in the literature, all appearing before the age of 5months. The lesions corresponded mostly to an asymptomatic erythematous plaque studded with small yellowish/red nodules of variable localisation. Spontaneous involvement was noted in all cases. No systemic involvement was found. Herein we present a unique case of localised multiple JXG without evident clinical infiltrating plaque progressing with self-resolving flares. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  7. Surficial Geologic Map of Mount Veniaminof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Miller, T. P.; Wallace, K.

    2015-12-01

    Mount Veniaminof volcano is a >300 km3 andesite to dacite stratovolcano, characterized by an 8 x 11 km diameter ice-filled summit caldera. Veniaminof is one of the most active volcanoes in the Aleutian arc and has erupted at least 15 times in the past 200 years. The volcano is located on the Alaska Peninsula (56.1979° N, 159.3931° W) about 780 km SW of Anchorage. Our geologic investigations have documented two large (>VEI 5) caldera-forming or -modifying eruptions (V1, V2) of Holocene age whose eruptive products make up most of the surficial deposits around the volcano. These deposits and other unconsolidated glacial, fluvial, and colluvial deposits are depicted on the accompanying map. The the V2 eruption occurred 4.1-4.4 ka (cal 2-sigma age range) and produced an extensive landscape-mantling sequence of pyroclastic deposits >50 km3 in volume that cover or partly obscure older unconsolidated eruptive products. The V1 eruption occurred 8-9 ka and its deposits lie stratigraphically below the pyroclastic deposits associated with the V2 eruption and a prominent, widespread tephra fall deposit erupted from nearby Black Peak volcano 4.4-4.6 ka. The V2 pyroclastic-flow deposits range from densely welded, columnar jointed units exposed along the main valley floors, to loose, unconsolidated, blanketing accumulations of scoriaceous (55-57% SiO2) and lithic material found as far as 75 km from the edifice. Large lahars also formed during the V2 eruption and flowed as far as 50 km from the volcano. The resulting deposits are present in all glacial valleys that head on the volcano and are 10-15 m thick in several locations. Lahar deposits cover an area of about 800-1000 km2, have an approximate volume of 1-2 km3, and record substantial inundation of the major valleys on all flanks of the edifice. Significant amounts of water are required to form lahars of this size, which suggests that an ice-filled summit caldera probably existed when the V2 eruption occurred.

  8. Geologic map of Mount Gareloi, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2012-01-01

    As part of an effort to both monitor and study all historically active volcanoes in Alaska, the Alaska Volcano Observatory (AVO) undertook a field program at Mount Gareloi in the summer of 2003. During a month-long period, seismic networks were installed at Mount Gareloi and the neighboring Tanaga volcanic cluster. During this time, we undertook the first geologic field study of the volcano since Robert Coats visited Gareloi Island for four days in 1946. Understanding the geology of this relatively small island is important from a hazards perspective, because Mount Gareloi lies beneath a heavily trafficked air route between North America and Asia and has frequently erupted airborne ash since 1760. At least two landslides from the island have deposited debris on the sea floor; thus, landslide-generated tsunamis are also a potential hazard. Since seismic instruments were installed in 2003, they have detected small but consistent seismic signals from beneath Mount Gareloi's edifice, suggesting an active hydrothermal system. Mount Gareloi is also important from the standpoint of understanding subduction-related volcanism, because it lies in the western portion of the volcanically active arc, where subduction is oblique to the arc front. Understanding the compositional evolution of Mount Gareloi fills a spatial gap in along-arc studies.

  9. Mount Pinatubo, Philippines

    NASA Image and Video Library

    1994-09-30

    STS068-232-083 (30 September-11 October 1994) --- This is a view of Mount Pinatubo, Philippine Islands, orient with the coast to the top. View westward across central Luzon and Mount Pinatubo. Manilla Bay is in partial sunglint along the left edge of the frame. The extensive flows of volcanic ash (lahars) extending from the mountain are readily seen despite partial cloud cover. The ash is mobilized with every rain in this typhoon-ridden region, flowing down valleys, filling drainage channels, and covering fields and towns. The STS-68 crew obtained excellent photographs of the region, for comparison to the radar data also obtained on the mission. Photographs in sunglint have proven particularly helpful because they show the exact outlines of surface water, which provides a datum point for the radar returns.

  10. Thread-Mounted Thermocouple

    NASA Technical Reports Server (NTRS)

    Ward, Stanley W.

    1988-01-01

    Thread-mounted thermocouple developed to accurately measure temperature of surrounding material. Comprised of threaded rod or bolt drilled along length, dual-hole ceramic insulator rod, thermocouple wire, optional ceramic filler, and epoxy resin. In contact with and takes average temperature of, surrounding material. Fabricated easily in size and metal to suit particular application. Because of simplicity and ability to measure average temperature, widespread use of design foreseen in varity of applications.

  11. EMU helmet mounted display

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose (Inventor); Smith, Stephen (Inventor); Plough, Alan (Inventor); Clarke, Robert (Inventor); Mclean, William (Inventor); Fournier, Joseph (Inventor)

    1990-01-01

    A helmet mounted display device is disclosed for projecting a display on a flat combiner surface located above the line of sight where the display is produced by two independent optical channels with independent LCD image generators. The display has a fully overlapped field of view on the combiner surface and the focus can be adjusted from a near field of four feet to infinity.

  12. Mount Kilimanjaro, Tanzania

    NASA Image and Video Library

    1996-01-20

    STS072-722-004 (11-20 Jan. 1996) --- Mount Kilimanjaro in Tanzania is featured in this 70mm frame exposed from the Earth-orbiting Space Shuttle Endeavour. Orient with the clouds trailing to the left; then the view is southwest from Kenya past Kilimanjaro to Mount Meru, in Tanzania. Mount Kilimanjaro is about three degrees south of the Equator, but at nearly 6,000 meters has a permanent snowfield. The mountain displays a classic zonation of vegetation types from seasonally dry savannah on the plains at 1,000 meters, to the cloud forest near the top. The mountain is being managed experimentally as an international biosphere reserve. A buffer zone of "traditional" agriculture and pastoral land use is designated around the closed-canopy forest reserve. Specialists familiar with this area say management is partially successful so far, but cleared areas of the forest can be seen on this photograph as light green "nibbles" or "cookie cuts" extending into the dark forest region.

  13. Models of volcanic eruption hazards

    SciTech Connect

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluidmore » flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.« less

  14. Models of volcanic eruption hazards

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  15. Will Teide erupt again?

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Geyer, Adelina

    2016-04-01

    The quantification of hazard in volcanic systems characterised by long repose period is difficult because the lack of knowledge of the past volcanic history and also because in many cases volcanism is not perceived as a potential problem, being only regarded as an attraction for tourism or a source of economic benefit, thus hiding the need to conduct hazard assessment. Teide, in the island of Tenerife (Canary Islands), is not an exception to this general rule and, despite being one of the largest composite volcanoes in the World, it is generally considered as a non-active volcano by population, visitors and even by some scientists. However, geological and geophysical evidence, including a large diversity of monitoring signals recorded during last decades, as well as a simple comparison with similar volcanoes that have erupted in recent times after hundreds or even thousands of years of quiescence, recommend to consider Teide as an active volcano and to take the necessary precaution in an island with nearly one million of permanent inhabitants and nearly 5 millions of visitors per year. What is the potential of Teide to erupt again? is the question that relies behind the fact of considering it as active, and that needs to be answered first. Based on the current volcanological, petrological and geophysical knowledge We propose a conceptual model on the magma recharge mechanisms, structure of the plumbing system, and eruption triggers and dynamics of Teide volcano that helps to understand its behaviour and to anticipate future activity. Ramón y Cajal contract (RYC-2012-11024)

  16. Posteruption arthropod succession on the Mount St. Helens volcano: the ground-dwelling beetle fauna (Coleoptera).

    Treesearch

    R.R. Parmenter; C.M. Crisafulli; N. Korbe; G. Parsons; M. Edgar; J.A. MacMahon

    2005-01-01

    The 1980 eruptions of Mount St. Helens created a complex mosaic of disturbance types over a 600 km2 area. From 1980 through 2000 we monitored beetle species relative abundance and faunal composition of assemblages at undisturbed reference sites and in areas subjected to tephra-fall, blowdown, and pyroclastic flow volcanic disturbance. We...

  17. Evolution of Crater Glacier, Mount St. Helens, Washington, September 2006-November 2009

    USGS Publications Warehouse

    Walder, Joseph S.; Schilling, Steven P.; Sherrod, David R.; Vallance, James W.

    2010-01-01

    Lava-dome emplacement through a glacier was observed for the first time during the 2004-08 eruption of Mount St. Helens and documented using photography, photogrammetry, and geodetic measurements. Previously published reports present such documentation through September 2006; this report extends that documentation until November 2009.

  18. Contingency Planning for Natural Disasters: The Mount St. Helens Experience. AIR Forum 1981 Paper.

    ERIC Educational Resources Information Center

    Burns, James A.; Concordia, Louis R.

    The effectiveness of existing contingency planning efforts at five community colleges, three colleges, and five universities during the Mount St. Helens eruptions in 1980 in Washington state was assessed. Planning efforts in the areas of institutional policy, academic policy, business office, physical plant, residence halls, financial aid, and…

  19. MOUNT WASHINGTON WILDERNESS, OREGON.

    USGS Publications Warehouse

    Taylor, Edward M.; Causey, J. Douglas

    1984-01-01

    On the basis of a mineral survey, Mount Washington Wilderness, Oregon has little promise for the occurrence of metallic mineral or fossil fuel resources. Abundant cinder resources occur in the wilderness, but other large volume cinder deposits are available outside the wilderness and closer to markets. Analysis of the geothermal potential of the High Cascades province cannot be made without data on the subsurface thermal and hydrologic regimes which can only be provided by deep drill holes. Several deep holes could be drilled in areas outside the wildernesses of the High Cascades, from which extrapolations of the geothermal potential of the wildernesses could be made.

  20. Snaking Filament Eruption

    NASA Image and Video Library

    2014-11-14

    A filament (which at one point had an eerie similarity to a snake) broke away from the sun and out into space (Nov. 1, 2014). The video covers just over three hours of activity. This kind of eruptive event is called a Hyder flare. These are filaments (elongated clouds of gases above the sun's surface) that erupt and cause a brightening at the sun's surface, although no active regions are in that area. It did thrust out a cloud of particles but not towards Earth. The images were taken in the 304 Angstrom wavelength of extreme UV light. Credit: NASA/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  2. Snaking Filament Eruption [video

    NASA Image and Video Library

    2014-11-14

    A filament (which at one point had an eerie similarity to a snake) broke away from the sun and out into space (Nov. 1, 2014). The video covers just over three hours of activity. This kind of eruptive event is called a Hyder flare. These are filaments (elongated clouds of gases above the sun's surface) that erupt and cause a brightening at the sun's surface, although no active regions are in that area. It did thrust out a cloud of particles but not towards Earth. The images were taken in the 304 Angstrom wavelength of extreme UV light. Credit: NASA/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This dramatic view of Jupiter's satellite Io shows two simultaneously occurring volcanic eruptions. One can be seen on the limb, (at lower right) in which ash clouds are rising more than 150 miles (260 kilometers) above the satellite's surface. The second can be seen on the terminator (shadow between day and night) where the volcanic cloud is catching the rays of the rising sun. The dark hemisphere of Io is made visible by light reflected from Jupiter. Seen in Io's night sky, Jupiter looms almost 40 times larger and 200 times brighter than our own full Moon. This photo was taken by Voyager 1 on March 8, 1979, looking back 2.6 million miles (4.5 million kilometers) at Io, three days after its historic encounter. This is the same image in which Linda A. Morabito, a JPL engineer, discovered the first extraterrestrial volcanic eruption (the bright curved volcanic cloud on the limb). Jet Propulsion Laboratory manages and controls the Voyager project for NASA's Office of Space Science.

  4. The physics of large eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2015-04-01

    Based on eruptive volumes, eruptions can be classified as follows: small if the volumes are from less than 0.001 km3 to 0.1 km3, moderate if the volumes are from 0.1 to 10 km3, and large if the volumes are from 10 km3 to 1000 km3 or larger. The largest known explosive and effusive eruptions have eruptive volumes of 4000-5000 km3. The physics of small to moderate eruptions is reasonably well understood. For a typical mafic magma chamber in a crust that behaves as elastic, about 0.1% of the magma leaves the chamber (erupted and injected as a dyke) during rupture and eruption. Similarly, for a typical felsic magma chamber, the eruptive/injected volume during rupture and eruption is about 4%. To provide small to moderate eruptions, chamber volumes of the order of several tens to several hundred cubic kilometres would be needed. Shallow crustal chambers of these sizes are common, and deep-crustal and upper-mantle reservoirs of thousands of cubic kilometres exist. Thus, elastic and poro-elastic chambers of typical volumes can account for small to moderate eruptive volumes. When the eruptions become large, with volumes of tens or hundreds of cubic kilometres or more, an ordinary poro-elastic mechanism can no longer explain the eruptive volumes. The required sizes of the magma chambers and reservoirs to explain such volumes are simply too large to be plausible. Here I propose that the mechanics of large eruptions is fundamentally different from that of small to moderate eruptions. More specifically, I suggest that all large eruptions derive their magmas from chambers and reservoirs whose total cavity-volumes are mechanically reduced very much during the eruption. There are two mechanisms by which chamber/reservoir cavity-volumes can be reduced rapidly so as to squeeze out much of, or all, their magmas. One is piston-like caldera collapse. The other is graben subsidence. During large slip on the ring-faults/graben-faults the associated chamber/reservoir shrinks in volume

  5. Clamp-mount device

    NASA Technical Reports Server (NTRS)

    Clark, K. H. (Inventor)

    1983-01-01

    A clamp-mount device is disclosed for mounting equipment to an associated I-beam and the like structural member of the type having oppositely extending flanges wherein the device comprises a base and a pair of oppositely facing clamping members carried diagonally on the base clamping flanges therebetween and having flange receiving openings facing one another. Lock means are carried diagonally by the base opposite the clamping members locking the flanges in the clamping members. A resilient hub is carried centrally of the base engaging and biasing a back side of the flanges maintaining tightly clamped and facilitating use on vertical as well as horizontal members. The base turns about the hub to receive the flanges within the clamping members. Equipment may be secured to the base by any suitable means such as bolts in openings. Slidable gate latches secure the hinged locks in an upright locking position. The resilient hub includes a recess opening formed in the base and a rubber-like pad carried in this opening being depressably and rotatably carried therein.

  6. Surface mount component jig

    DOEpatents

    Kronberg, James W.

    1990-08-07

    A device for bending and trimming the pins of a dual-inline-package component and the like for surface mounting rather than through mounting to a circuit board comprises, in a first part, in pin cutter astride a holder having a recess for holding the component, a first spring therebetween, and, in a second part, two flat members pivotally interconnected by a hinge and urged to an upward peaked position from a downward peaked position by a second spring. As a downward force is applied to the pin cutter it urges the holder downward, assisted by the first spring and a pair of ridges riding on shoulders of the holder, to carry the component against the upward peaked flat members which guide the pins outwardly. As the holder continues downwardly, the flat members pivot to the downward peaked position bending the pins upwardly against the sides of the holder. When the downward movement is met with sufficient resistance, the ridges of the pin cutter ride over the holder's shoulders to continue downward to cut any excess length of pin.

  7. Time-resolved seismic tomography detects magma intrusions at Mount Etna.

    PubMed

    Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C

    2006-08-11

    The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.

  8. Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004-05

    USGS Publications Warehouse

    Iverson, R.M.; Dzurisin, D.; Gardner, C.A.; Gerlach, T.M.; LaHusen, R.G.; Lisowski, M.; Major, J.J.; Malone, S.D.; Messerich, J.A.; Moran, S.C.; Pallister, J.S.; Qamar, A.I.; Schilling, S.P.; Vallance, J.W.

    2006-01-01

    The 2004-05 eruption of Mount St Helens exhibited sustained, near-equilibrium behaviour characterized by relatively steady extrusion of a solid dacite plug and nearly periodic shallow earthquakes. Here we present a diverse data set to support our hypothesis that these earthquakes resulted from stick-slip motion along the margins of the plug as it was forced incrementally upwards by ascending, solidifying, gas-poor magma. We formalize this hypothesis with a dynamical model that reveals a strong analogy between behaviour of the magma-plug system and that of a variably damped oscillator. Modelled stick-slip oscillations have properties that help constrain the balance of forces governing the earthquakes and eruption, and they imply that magma pressure never deviated much from the steady equilibrium pressure. We infer that the volcano was probably poised in a near-eruptive equilibrium state long before the onset of the 2004-05 eruption. ??2006 Nature Publishing Group.

  9. The Eruption Forecasting Information System: Volcanic Eruption Forecasting Using Databases

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Harpel, C. J.; Pesicek, J. D.; Wellik, J.

    2016-12-01

    Forecasting eruptions, including the onset size, duration, location, and impacts, is vital for hazard assessment and risk mitigation. The Eruption Forecasting Information System (EFIS) project is a new initiative of the US Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) and will advance VDAP's ability to forecast the outcome of volcanic unrest. The project supports probability estimation for eruption forecasting by creating databases useful for pattern recognition, identifying monitoring data thresholds beyond which eruptive probabilities increase, and for answering common forecasting questions. A major component of the project is a global relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest. This module allows us to query eruption chronologies, monitoring data, descriptive information, operational data, and eruptive phases alongside other global databases, such as WOVOdat and the Global Volcanism Program. The EFIS database is in the early stages of development and population; thus, this contribution also is a request for feedback from the community. Preliminary data are already benefitting several research areas. For example, VDAP provided a forecast of the likely remaining eruption duration for Sinabung volcano, Indonesia, using global data taken from similar volcanoes in the DomeHaz database module, in combination with local monitoring time-series data. In addition, EFIS seismologists used a beta-statistic test and empirically-derived thresholds to identify distal volcano-tectonic earthquake anomalies preceding Alaska volcanic eruptions during 1990-2015 to retrospectively evaluate Alaska Volcano Observatory eruption precursors. This has identified important considerations for selecting analog volcanoes for global data analysis, such as differences between

  10. Anaglyph with Landsat Overlay, Mount Meru, Tanzania

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Meru is an active volcano located just 70 kilometers (44 miles) west of Mount Kilimanjaro. It reaches 4,566 meters (14,978 feet) in height but has lost much of its bulk due to an eastward volcanic blast sometime in its distant past, perhaps similar to the eruption of Mount Saint Helens in Washington State in 1980. Mount Meru most recently had a minor eruption about a century ago. The several small cones and craters seen in the vicinity probably reflect numerous episodes of volcanic activity. Mount Meru is the topographic centerpiece of Arusha National Park, but Ngurdoto Crater to the east (image top) is also prominent. The fertile slopes of both volcanoes rise above the surrounding savanna and support a forest that hosts diverse wildlife, including nearly 400 species of birds, and also monkeys and leopards, while the floor of Ngurdoto Crater hosts herds of elephants and buffaloes.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a digital elevation data from the Shuttle Radar Topography Mission (SRTM), and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space

  11. Solar Eruptive Events

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2012-01-01

    It s long been known that the Sun plays host to the most energetic explosions in the solar system. But key insights into the forms that energy takes have only recently become available. Solar flares have been phenomena of both academic and practical interest since their discovery in 1859. From the academic point of view, they are the nearest events for studying the explosive release of energy in astrophysical magnetized plasmas. From the practical point of view, they disrupt communication channels on Earth, from telegraph communications in 1859 to radio and television signals today. Flares also wreak havoc on the electrical power grid, satellite operations, and GPS signals, and energetic charged particles and radiation are dangerous to passengers on high-altitude polar flights and to astronauts. Flares are not the only explosive phenomena on the Sun. More difficult to observe but equally energetic are the large coronal mass ejections (CMEs), the ejection of up to ten billion tons of magnetized plasma into the solar wind at speeds that can exceed 1000 km/s. CMEs are primarily observed from the side, with coronagraphs that block out the bright disk of the Sun and lower solar atmosphere so that light scattered from the ejected mass can be seen. Major geomagnetic storms are now known to arise from the interaction of CMEs with Earth's magnetosphere. Solar flares are observed without CMEs, and CMEs are observed without flares. The two phenomena often occur together, however, and almost always do in the case of large flares and fast CMEs. The term solar eruptive event refers to the combination of a flare and a CME. Solar eruptive events generate a lot of heat: They can heat plasma to temperatures as high at 50 million Kelvin, producing radiation across the electromagnetic spectrum. But that s not all. A fascinating aspect of solar eruptive events is the acceleration of electrons and ions to suprathermal often relativistic energies. The accelerated particles are primarily

  12. Eruption at Bardarbunga, Iceland

    NASA Image and Video Library

    2015-01-27

    The main caldera of Bardarbunga volcano is tucked beneath Iceland’s largest glacier, Vatnajökull. Beginning in August, 2014, red-hot basaltic lava originating from Bardarbunga has been pouring from fissures just north of Vatnajökull, creating the massive Holuhraun lava field. As of January 6, 2015, the Holuhraun lava field had spread across more than 84 square kilometers (32 square miles), making it larger than the island of Manhattan. Holuhraun is Iceland’s largest basaltic lava flow since the Laki eruption in 1783–84, an event that killed 20 percent of the island’s population. Scientists from the University of Iceland’s Institute of Earth Sciences have estimated the thickness of the lava field based on data from surveillance flights. On average, the eastern part was about 10 meters (33 feet) thick, the center was 12 meters, and the western part was 14 meters. Their preliminary analysis put the volume of lava at 1.1 cubic kilometers, enough for the eruption to be considered a flood basalt. While Holuhraun continues to spew copious amounts of lava and sulfur dioxide, some observations suggest the eruption may be slowing down. As Edinburgh University volcanologist John Stevenson noted on his blog, Icelandic scientists have shown that the sinking (subsidence) of the caldera has declined from 80 centimeters (31 inches) to 25 centimeters per day—a sign that less magma is moving toward the surface. In addition, magnitude 5 or higher earthquakes that used to occur daily are now happening about once a week. Meanwhile, satellite observations of heat flux show a decline from more than 20 gigawatts in early September to fewer than 5 gigawatts by the end of November. As reported by Volcano Discovery, one bold scientist has even suggested that it is reasonable to forecast that the eruption may be over by March, 2015. The Moderate Resolution Imaging Spectrometer (MODIS) aboard NASA’s Aqua satellite flew over Iceland on January 18, 2015 and captured a false

  13. An Eruption on Io

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The first images returned to Earth by New Horizons during its close encounter with Jupiter feature the Galilean moon Io, snapped with the Long Range Reconnaissance Imager (LORRI) at 0840 UTC on February 26, while the moon was 2.5 million miles (4 million kilometers) from the spacecraft.

    Io is intensely heated by its tidal interaction with Jupiter and is thus extremely volcanically active. That activity is evident in these images, which reveal an enormous dust plume, more than 150 miles high, erupting from the volcano Tvashtar. The plume appears as an umbrella-shaped feature of the edge of Io's disk in the 11 o'clock position in the right image, which is a long-exposure (20-millisecond) frame designed specifically to look for plumes like this. The bright spots at 2 o'clock are high mountains catching the setting sun; beyond them the night side of Io can be seen, faintly illuminated by light reflected from Jupiter itself.

    The left image is a shorter exposure -- 3 milliseconds -- designed to look at surface features. In this frame, the Tvashtar volcano shows as a dark spot, also at 11 o'clock, surrounded by a large dark ring, where an area larger than Texas has been covered by fallout from the giant eruption.

    This is the clearest view yet of a plume from Tvashtar, one of Io's most active volcanoes. Ground-based telescopes and the Galileo Jupiter orbiter first spotted volcanic heat radiation from Tvashtar in November 1999, and the Cassini spacecraft saw a large plume when it flew past Jupiter in December 2000. The Keck telescope in Hawaii picked up renewed heat radiation from Tvashtar in spring 2006, and just two weeks ago the Hubble Space Telescope saw the Tvashtar plume in ultraviolet images designed to support the New Horizons flyby.

    Most of those images will be stored onboard the spacecraft for downlink to Earth in March and April.

  14. Catalog of Mount St. Helens 2004-2007 Dome Samples with Major- and Trace-Element Chemistry

    USGS Publications Warehouse

    Thornber, Carl R.; Pallister, John S.; Rowe, Michael C.; McConnell, Siobhan; Herriott, Trystan M.; Eckberg, Alison; Stokes, Winston C.; Cornelius, Diane Johnson; Conrey, Richard M.; Hannah, Tammy; Taggart, Joseph E.; Adams, Monique; Lamothe, Paul J.; Budahn, James R.; Knaack, Charles M.

    2008-01-01

    Sampling and analysis of eruptive products at Mount St. Helens is an integral part of volcano monitoring efforts conducted by the U.S. Geological Survey?s Cascades Volcano Observatory (CVO). The objective of our eruption sampling program is to enable petrological assessments of pre-eruptive magmatic conditions, critical for ascertaining mechanisms for eruption triggering and forecasting potential changes in eruption behavior. This report provides a catalog of near-vent lithic debris and new dome-lava collected during 34 intra-crater sampling forays throughout the October 2004 to October 2007 (2004?7) eruptive interval at Mount St. Helens. In addition, we present comprehensive bulk-rock geochemistry for a time-series of representative (2004?7) eruption products. This data, along with that in a companion report on Mount St. Helens 2004 to 2006 tephra by Rowe and others (2008), are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, eds., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data. The suite of rock samples related to the 2004?7 eruption of Mount St. Helens and presented in this catalog are archived at the David A. Johnson Cascades Volcano Observatory, Vancouver, Wash. The Mount St. Helens 2004?7 Dome Sample Catalogue with major- and trace-element geochemistry is tabulated in 3 worksheets of the accompanying Microsoft Excel file, of2008-1130.xls. Table 1 provides location and sampling information. Table 2 presents sample descriptions. In table 3, bulk-rock major and trace-element geochemistry is listed for 44 eruption-related samples with intra-laboratory replicate analyses of 19 dacite lava samples. A brief overview of the collection methods and lithology of dome samples is given below as an aid to deciphering the dome sample

  15. Mount Sharp 'Photobombs' Curiosity

    NASA Image and Video Library

    2018-01-31

    This self-portrait of NASA's Curiosity Mars rover shows the vehicle on Vera Rubin Ridge, which it's been investigating for the past several months. Directly behind the rover is the start of a clay-rich slope scientists are eager to begin exploring. In the coming week, Curiosity will begin to climb this slope. North is on the left and west is on the right, with Gale Crater's rim on the horizon of both edges. Poking up just behind Curiosity's mast is Mount Sharp, photobombing the robot's selfie. Curiosity landed on Mars five years ago with the intention of studying lower Mount Sharp, where it will remain for all of its time on Mars. The mountain's base provides access to layers formed over millions of years. These layers formed in the presence of water -- likely due to a lake or lakes that sat at the bottom of the mountain, which sits inside of Gale Crater. This mosaic was assembled from dozens of images taken by Curiosity's Mars Hands Lens Imager (MAHLI). They were all taken on Jan. 23, 2018, during Sol 1943. The view does not include the rover's arm nor the MAHLI camera itself, except in the miniature scene reflected upside down in the parabolic mirror at the top of the mast. That mirror is part of Curiosity's Chemistry and Camera (ChemCam) instrument. MAHLI appears in the center of the mirror. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. A full-resolution image is available at https://photojournal.jpl.nasa.gov/catalog/PIA22207

  16. Magma Intrusion at Mount St. Helens, Washington, from Temporal Gravity Variations

    NASA Astrophysics Data System (ADS)

    Battaglia, Maurizio; Lisowski, Mike; Dzursin, Dan; Poland, Mike; Schilling, Steve; Diefenbach, Angie; Wynn, Jeff

    2017-04-01

    Mount St. Helens is a stratovolcano in the Pacific Northwest region of the United States, best known for its explosive eruption in May 1980 - deadliest and most economically destructive volcanic event in US history. Volcanic activity renewed in September 2004 with a dome forming eruption that lasted until 2008. This eruption was surprising because the preceding four years had seen the fewest earthquakes and no significant deformation since the 1980-86 eruption ended. After the dome forming eruption ended in July 2008, the volcano seismic activity and deformation went back to background values. Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. A high-precision gravity monitoring network (referenced to a base station 36 km NW of the volcano) was set up at Mount St Helens in 2010. Measurements were made at 12 sites on the volcano (at altitudes between 1200 and 2350 m a.s.l.) and 4 sites far afield during the summers of 2010, 2012, and 2014. The repeated gravity measurements revealed an increase in gravity between 2010 and 2014. Positive residual gravity anomalies remained after accounting for changes in surface height, in the Crater Glacier, and in the shallow hydrothermal aquifer. The pattern of residual gravity changes, with a maximum of 57±12 μGal from 2010 to 2014, is radially symmetric and centered on the 2004-08 lava dome. Inversion of the residual gravity signal points to a source 2.5-4 km beneath the crater floor (i.e., in the magma conduit that fed eruptions in 1980-86 and 2004-08). We attribute the gravity increase to re-inflation of the magma plumbing system following the 2004-8 eruption. Recent seismic activity (e.g., the seismic swarm of March 2016) has been interpreted as a response to the slow recharging of the volcano magma chamber.

  17. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    SciTech Connect

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Kristianto, E-mail: kris@vsi.esdm.go.id

    2015-04-24

    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Centermore » for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.« less

  18. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.

    PubMed

    La Spina, G; Burton, M; De' Michieli Vitturi, M; Arzilli, F

    2016-12-12

    Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.

  19. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics

    PubMed Central

    La Spina, G.; Burton, M.; de' Michieli Vitturi, M.; Arzilli, F.

    2016-01-01

    Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1–2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism. PMID:27941750

  20. Tephra-fall deposits from the 1992 eruption of Crater Peak, Alaska: implications of clast textures for eruptive processes

    USGS Publications Warehouse

    Gardner, C.A.; Cashman, K.V.; Neal, C.A.

    1998-01-01

    The 1992 eruption of Crater Peak, Mount Spurr, Alaska, involved three subplinian tephra-producing events of similar volume and duration. The tephra consists of two dense juvenile clast types that are identified by color, one tan and one gray, of similar chemistry, mineral assemblage, and glass composition. In two of the eruptive events, the clast types are strongly stratified with tan clasts dominating the basal two thirds of the deposits and gray clasts the upper one third. Tan clasts have average densities between 1.5 and 1.7 g/cc and vesicularities (phenocryst free) of approximately 42%. Gray clasts have average densities between 2.1 and 2.3 g/cc, and vesicularities of approximately 20%; both contain abundant microlites. Average maximum plagioclase microlite lengths (13-15 ??m) in gray clasts in the upper layer are similar regardless of eruptive event (and therefore the repose time between them) and are larger than average maximum plagioclase microlite lengths (9-11 ???m) in the tan clasts in the lower layer. This suggests that microlite growth is a response to eruptive processes and not to magma reservoir heterogeneity or dynamics. Furthermore, we suggest that the low vesicularities of the clasts are due to syneruptive magmatic degassing resulting in microlitic growth prior to fragmentation and not to quenching of clasts by external groundwater.

  1. An Analysis of Eruptions Detected by the LMSAL Eruption Patrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.

    2014-12-01

    Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.

  2. Geologic field trip guide to Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Wright, Heather M.

    2017-08-08

    Crater Lake partly fills one of the most spectacular calderas of the world—an 8 by 10 kilometer (km) basin more than 1 km deep formed by collapse of the Mount Mazama volcano during a rapid series of explosive eruptions ~7,700 years ago. Having a maximum depth of 594 meters (m), Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 square kilometers (km2) of pristine forested and alpine terrain, including the lake itself, and virtually all of Mount Mazama. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama’s climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest United States, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. In addition, many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama provide information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive processes revealed by

  3. Effects of Volcanic Eruptions on Stratospheric Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    2002-01-01

    The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.

  4. The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon

    USGS Publications Warehouse

    McKay, Daniele; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Champion, Duane E.

    2009-01-01

    The northwest rift zone (NWRZ) eruption took place at Newberry Volcano ~7000 years ago after the volcano was mantled by tephra from the catastrophic eruption that destroyed Mount Mazama and produced the Crater Lake caldera. The NWRZ eruption produced multiple lava flows from a variety of vents including cinder cones, spatter vents, and fissures, possibly in more than one episode. Eruptive behaviors ranged from energetic Strombolian, which produced significant tephra plumes, to low-energy Hawaiian-style. This paper summarizes and in part reinterprets what is known about the eruption and presents information from new and ongoing studies. Total distance spanned by the eruption is 32 km north-south. The northernmost flow of the NWRZ blocked the Deschutes River upstream from the city of Bend, Oregon, and changed the course of the river. Renewed mafic activity in the region, particularly eruptions such as the NWRZ with tephra plumes and multiple lava flows from many vents, would have significant impacts for the residents of Bend and other central Oregon communities.

  5. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.

    PubMed

    Hunt, James E; Cassidy, Michael; Talling, Peter J

    2018-01-18

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (<5 km 3 ) flank collapse on a terrestrial volcano could immediately precede a devastating eruption. The lateral collapse of volcanic island flanks, such as in the Canary Islands, can be far larger (>300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.

  6. A new tree-ring date for the "floating island" lava flow, Mount St. Helens, Washington

    USGS Publications Warehouse

    Yamaguchi, D.K.; Hoblitt, R.P.; Lawrence, D.B.

    1990-01-01

    Anomalously narrow and missing rings in trees 12 m from Mount St. Helens' "floating island" lava flow, and synchronous growth increases in trees farther from the flow margin, are evidence that this andesitic flow was extruded between late summer 1799 and spring 1800 a.d., within a few months after the eruption of Mount St. Helens' dacitic layer T tephra. For ease of reference, we assign here an 1800 a.d. date to this flow. The new date shows that the start of Mount St. Helens' Goat Rocks eruptive period (1800-1857 a.d.) resembled the recent (1980-1986) activity in both petrochemical trends and timing. In both cases, an initial explosive eruption of dacite was quickly succeeded by the eruption of more mafic lavas; dacite lavas then reappeared during an extended concluding phase of activity. This behavior is consistent with a recently proposed fluid-dynamic model of magma withdrawal from a compositionally zoned magma chamber. ?? 1990 Springer-Verlag.

  7. Volcanic Eruptions in Kamchatka

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF

    One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining

  8. Voyager 2 Jupiter Eruption Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie records an eruptive event in the southern hemisphere of Jupiter over a period of 8 Jupiter days. Prior to the event, an undistinguished oval cloud mass cruised through the turbulent atmosphere. The eruption occurs over avery short time at the very center of the cloud. The white eruptive material is swirled about by the internal wind patterns of the cloud. As a result of the eruption, the cloud then becomes a type of feature seen elsewhere on Jupiter known as 'spaghetti bowls'.

    As Voyager 2 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 8 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Violet filter around May 6, 1979. The spacecraft was about 50 million kilometers from Jupiter at that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  9. Geologic map and geothermal assessment of the Mount Adams volcanic field, Cascade Range of southern Washington

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    1990-01-01

    More than 60 Quaternary vents make up the basalt-to-rhyodacite Mount Adams volcanic field and have erupted scoriae and lavas with a total volume of >370 km3. The Mount Adams andesite-dacite stratocone itself is a compound edifice that includes the high cone above 2300 m (20-10 ka), remnants of at least two earlier andesite-dacite cones as old as 0.5 Ma, and 7 Holocene flank vents. Four other Holocene vents and tens of vents contemporaneous with Mount Adams are peripheral to the stratocone. All of these vents, including Mount Adams, lie within a N-S eruptive zone 55 km long and 5 km wide. The age of all known Mount Adams silicic products (>100 ka) and the heterogeneous mafic compositions of the summit cone and Holocene lavas make it unlikely that the stratocone is underlain by an upper-crustal reservoir. Rather, the stratocone at the focus is built up of fractionated hybrid magmas that rise from MASH zones (melting-assimilation-storage-homogenization). The pyroclastic core of breccia and scoria at Mount Adams has undergone acid-sulfate leaching and deposition of alunite, kaolinite, silica, gypsum, sulfur, and Fe-oxides and has been a constant source of avalanches and debris flows. Most heat supplied from depth to the fumarolically altered core is dispersed by the high precipitation rate and high permeability of the rubbly lava flows so that a hydrothermal convection pattern is not maintained. Summit-restricted fumaroles are weak and diffuse.

  10. Can tides influence volcanic eruptions?

    NASA Astrophysics Data System (ADS)

    Girona, T.; Huber, C.

    2015-12-01

    The possibility that the Moon-Sun gravitational force can affect terrestrial volcanoes and trigger eruptions is a controversial issue that has been proposed since ancient times, and that has been widely debated during the last century. The controversy arises mainly from two reasons. First, the days of initiation of eruptions are not well known for many volcanoes, and thus a robust statistical comparison with tidal cycles cannot be performed for many of them. Second, the stress changes induced by tides in the upper crust are very small (10-3 MPa) compared to the tensile strength of rocks (~ 10-1-10 MPa), and hence the mechanism by which tidal stresses might trigger eruptions is unclear. In this study, we address these issues for persistently degassing volcanoes, as they erupt frequently and thus the initiation time of a significant number of eruptions (>30) is well known in several cases (9). In particular, we find that the occurrence of eruptions within ±2 days from neap tides (first and third quarter moon) is lower than 34% (e.g., 29% for Etna, Italy; 28% for Merapi, Indonesia), which is the value expected if eruptions occur randomly with no external influence. To understand this preference for erupting far away from neap tides, we have developed a new lumped-parameter model that accounts for the deformation of magma reservoirs, a partially open conduit, and a gas layer where bubbles accumulate beneath volcanic craters before being released. We demonstrate that this system reservoir-conduit-gas layer acts as an amplifier of the tidal stresses, such that, when a volcano approaches to a critical state, the gas overpressure beneath the crater can reach up to several MPa more during a spring tide (full and new moon) than during a neap tide. This amplification mechanism can explain why active volcanoes are sensitive to the moon cycles.

  11. Modeling lunar volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Simple physical arguments are used to show that basaltic volcanos on different planetary bodies would fountain to the same height if the mole fraction of gas in the magma scaled with the acceleration of gravity. It is suggested that the actual eruption velocities and fountain heights are controlled by the velocities of sound in the two phase gas/liquid flows. These velocities are in turn determined by the gas contents in the magma. Predicted characteristics of Hawaiian volcanos are in excellent accord with observations. Assuming that the only gas in lunar volcano is the CO which would be produced if the observed Fe metal in lunar basalts resulted from graphite reduction, lunar volcanos would fountain vigorously, but not as spectacularly as their terrestrial counterparts. The volatile trace metals, halogens, and sulfur released would be transported over the entire moon by the transient atmosphere. Orange and black glass type pyroclastic materials would be transported in sufficient amounts to produce the observed dark mantle deposits.

  12. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  13. Living through a volcanic eruption: Understanding the experience of survivors as a phenomenological existential phenomenon.

    PubMed

    Warsini, Sri; Mills, Jane; West, Caryn; Usher, Kim

    2016-06-01

    Mount Merapi in Indonesia is the most active volcano in the world with its 4-6-year eruption cycle. The mountain and surrounding areas are populated by hundreds of thousands of people who live near the volcano despite the danger posed to their wellbeing. The aim of this study was to explore the lived experience of people who survived the most recent eruption of Mount Merapi, which took place in 2010. Investigators conducted interviews with 20 participants to generate textual data that were coded and themed. Three themes linked to the phenomenological existential experience (temporality and relationality) of living through a volcanic eruption emerged from the data. These themes were: connectivity, disconnection and reconnection. Results indicate that the close relationship individuals have with Mount Merapi and others in their neighbourhood outweighs the risk of living in the shadow of an active volcano. This is the first study to analyze the phenomenological existential elements of living through a volcanic eruption. © 2016 Australian College of Mental Health Nurses Inc.

  14. Mount Rainier National Park

    USGS Publications Warehouse

    Hoffman, Robert; Woodward, Andrea; Haggerty, Patricia K.; Jenkins, Kurt J.; Griffin, Paul C.; Adams, Michael J.; Hagar, Joan; Cummings, Tonnie; Duriscoe, Dan; Kopper, Karen; Riedel, Jon; Samora, Barbara; Marin, Lelaina; Mauger, Guillaume S.; Bumbaco, Karen; Littell, Jeremy S.

    2014-01-01

    Natural Resource Condition Assessments (NRCAs) evaluate current conditions for a subset of natural resources and resource indicators in national parks. NRCAs also report on trends in resource condition (when possible), identify critical data gaps, and characterize a general level of confidence for study findings. The resources and indicators emphasized in a given project depend on the park’s resource setting, status of resource stewardship planning and science in identifying high-priority indicators, and availability of data and expertise to assess current conditions for a variety of potential study resources and indicators. Although the primary objective of NRCAs is to report on current conditions relative to logical forms of reference conditions and values, NRCAs also report on trends, when appropriate (i.e., when the underlying data and methods support such reporting), as well as influences on resource conditions. These influences may include past activities or conditions that provide a helpful context for understanding current conditions and present-day threats and stressors that are best interpreted at park, watershed, or landscape scales (though NRCAs do not report on condition status for land areas and natural resources beyond park boundaries). Intensive cause-andeffect analyses of threats and stressors, and development of detailed treatment options, are outside the scope of NRCAs. It is also important to note that NRCAs do not address resources that lack sufficient data for assessment. For Mount Rainier National Park, this includes most invertebrate species and many other animal species that are subject to significant stressors from climate change and other anthropogenic sources such as air pollutants and recreational use. In addition, we did not include an analysis of the physical hydrology associated with streams (such as riverine landforms, erosion and aggradation which is significant in MORA streams), due to a loss of staff expertise from the USGS

  15. Eruptions from the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    The Sun often exhibits outbursts, launching material from its surface in powerful releases of energy. Recent analysis of such an outburst captured on video by several Sun-monitoring spacecraft may help us understand the mechanisms that launch these eruptions.Many OutburstsSolar jets are elongated, transient structures that are thought to regularly release magnetic energy from the Sun, contributing to coronal heating and solar wind acceleration. Coronal mass ejections (CMEs), on the other hand, are enormous blob-like explosions, violently ejecting energy and mass from the Sun at incredible speeds.But could these two types of events actually be related? According to a team of scientists at the University of Science and Technology of China, they may well be. The team, led by Jiajia Liu, has analyzed observations of a coronal jet that they believe prompted the launch of a powerful CME.Observing an ExplosionGif of a movie of the CME, taken by the Solar Dynamics Observatorys Atmospheric Imaging Assembly at a wavelength of 304. The original movie can be found in the article. [Liu et al.]An army of spacecraft was on hand to witness the event on 15 Jan 2013 including the Solar Dynamics Observatory (SDO), the Solar and Heliospheric Observatory (SOHO), and the Solar Terrestrial Relations Observatory (STEREO). The instruments on board these observatories captured the drama on the northern limb of the Sun as, at 19:32 UT, a coronal jet formed. Just eight minutes later, a powerful CME was released from the same active region.The fact that the jet and CME occurred in the same place at roughly the same time suggests theyre related. But did the initial motions of the CME blob trigger the jet? Or did the jet trigger the CME?Tying It All TogetherIn a recently published study, Liu and collaborators analyzed the multi-wavelength observations of this event to find the heights and positions of the jet and CME. From this analysis, they determined that the coronal jet triggered the release

  16. Dental eruption in afrotherian mammals

    PubMed Central

    Asher, Robert J; Lehmann, Thomas

    2008-01-01

    Background Afrotheria comprises a newly recognized clade of mammals with strong molecular evidence for its monophyly. In contrast, morphological data uniting its diverse constituents, including elephants, sea cows, hyraxes, aardvarks, sengis, tenrecs and golden moles, have been difficult to identify. Here, we suggest relatively late eruption of the permanent dentition as a shared characteristic of afrotherian mammals. This characteristic and other features (such as vertebral anomalies and testicondy) recall the phenotype of a human genetic pathology (cleidocranial dysplasia), correlations with which have not been explored previously in the context of character evolution within the recently established phylogeny of living mammalian clades. Results Although data on the absolute timing of eruption in sengis, golden moles and tenrecs are still unknown, craniometric comparisons for ontogenetic series of these taxa show that considerable skull growth takes place prior to the complete eruption of the permanent cheek teeth. Specimens showing less than half (sengis, golden moles) or two-thirds (tenrecs, hyraxes) of their permanent cheek teeth reach or exceed the median jaw length of conspecifics with a complete dentition. With few exceptions, afrotherians are closer to median adult jaw length with fewer erupted, permanent cheek teeth than comparable stages of non-afrotherians. Manatees (but not dugongs), elephants and hyraxes with known age data show eruption of permanent teeth late in ontogeny relative to other mammals. While the occurrence of delayed eruption, vertebral anomalies and other potential afrotherian synapomorphies resemble some symptoms of a human genetic pathology, these characteristics do not appear to covary significantly among mammalian clades. Conclusion Morphological characteristics shared by such physically disparate animals such as elephants and golden moles are not easy to recognize, but are now known to include late eruption of permanent teeth, in

  17. SXI prototype mirror mount

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule. A number of development hardware parts have been designed and fabricated jointly by MSFC and UAH for the engineering model of SXI. The major parts include a nickel electroformed mirror and a mirror mount, plating and coating of the ceramic spacers, and gold plating of the contact rings and fingers for the camera assembly. An aluminum model of the high accuracy sun sensor (HASS) was also designed and fabricated. A number of fiber optic tapers for the camera assembly were also coated with indium tin oxide and phosphor for testing and evaluation by MSFC. A large number of the SXI optical bench parts were also redesigned and simplified for a prototype telescope. These parts include the forward and rear support flanges, front aperture plate, the graphite epoxy optical bench and a test fixture for the prototype telescope. More than fifty (50) drawings were generated for various components of the prototype telescope. Some of these parts were subsequently fabricated at UAH machine shop or at MSFC or by the outside contractors. UAH also provide technical support to MSFC staff for a number of preliminary and critical design reviews. These design reviews included PDR and CDR for the mirror assembly by United Technologies Optical Systems (UTOS), and the program quarterly reviews, and SXI PDR and CDR. UAH staff also regularly attended the monthly status reviews, and made a significant number of suggestions to improve

  18. Forecasting eruptions of Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Decker, Robert W.; Klein, Fred W.; Okamura, Arnold T.; Okubo, Paul G.

    Past eruption patterns and various kinds of precursors are the two basic ingredients of eruption forecasts. The 39 historical eruptions of Mauna Loa from 1832 to 1984 have intervals as short as 104 days and as long as 9,165 days between the beginning of an eruption and the beginning of the next one. These recurrence times roughly fit a Poisson distribution pattern with a mean recurrence time of 1,459 days, yielding a probability of 22% (P=.22) for an eruption of Mauna Loa during any next year. The long recurrence times since 1950, however, suggest that the probability is not random, and that the current probability for an eruption during the next year may be as low as 6%. Seismicity beneath Mauna Loa increased for about two years prior to the 1975 and 1984 eruptions. Inflation of the summit area took place between eruptions with the highest rates occurring for a year or two before and after the 1975 and 1984 eruptions. Volcanic tremor beneath Mauna Loa began 51 minutes prior to the 1975 eruption and 115 minutes prior to the 1984 eruption. Eruption forecasts were published in 1975, 1976, and 1983. The 1975 and 1983 forecasts, though vaguely worded, were qualitatively correct regarding the timing of the next eruption. The 1976 forecast was more quantitative; it was wrong on timing but accurate on forecasting the location of the 1984 eruption. This paper urges that future forecasts be specific so they can be evaluated quantitatively.

  19. Role for syn-eruptive plagioclase disequilibrium crystallisation in basaltic magma ascent dynamics

    NASA Astrophysics Data System (ADS)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Arzilli, Fabio

    2017-04-01

    Magma ascent dynamics in volcanic conduits play a key role in determining the eruptive style of a volcano. The lack of direct observations inside the conduit means that numerical conduit models, constrained with observational data, provide invaluable tools for quantitative insights into complex magma ascent dynamics. The highly nonlinear, interdependent processes involved in magma ascent dynamics require several simplifications when modelling their ascent. For example, timescales of magma ascent in conduit models are typically assumed to be much longer than crystallisation and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallisation and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Using observations from Mount Etna's 2001 eruption and a magma ascent model we are able to constrain timescales for crystallisation and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were 1 h. Furthermore, we have related the amount of plagioclase in erupted products with the ascent dynamics of basaltic eruptions. We find that relatively high plagioclase content requires crystallisation in a shallow reservoir, whilst a low plagioclase content reflects a disequilibrium crystallisation occurring during a fast ascent from depth to the surface. Using these new constraints on disequilibrium plagioclase crystallisation we also reproduce observed crystal abundances for different basaltic eruptions: Etna 2002/2003, Stromboli 2007 (effusive eruption) and 1930 (paroxysm) and different Pu'u' O'o eruptions at Kilauea (episodes 49-53). Therefore, our results show that disequilibrium processes play a key role on the ascent dynamics of basaltic magmas and cannot be neglected when describing basaltic

  20. Repose time and cumulative moment magnitude: A new tool for forecasting eruptions?

    USGS Publications Warehouse

    Thelen, W.A.; Malone, S.D.; West, M.E.

    2010-01-01

    During earthquake swarms on active volcanoes, one of the primary challenges facing scientists is determining the likelihood of an eruption. Here we present the relation between repose time and the cumulative moment magnitude (CMM) as a tool to aid in differentiating between an eruption and a period of unrest. In several case studies, the CMM is lower at shorter repose times than it is at longer repose times. The relationship between repose time and CMM may be linear in log-log space, particularly at Mount St. Helens. We suggest that the volume and competence of the plug within the conduit drives the strength of the precursory CMM.

  1. Volcanic hazards from Bezymianny- and Bandai-type eruptions

    USGS Publications Warehouse

    Siebert, L.; Glicken, H.; Ui, T.

    1987-01-01

    Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of

  2. Theoretical mechanisms for solar eruptions

    NASA Astrophysics Data System (ADS)

    Lin, Jun

    This thesis presents new theoretical models of solar eruptions which are derived from older models that involve a loss of equilibrium of the Sun's coronal magnetic field. These models consist of a magnetic flux rope nested within an arcade of magnetic loop. Prior to an eruption, the flux rope floats in the corona under a balance between magnetic compression and tension forces. When an eruption occurs, the magnetic compression exceeds the magnetic tension and causes the flux rope to be thrown outwards, away from the Sun. Three important factors which impact the occurrence and evolution of the eruptive processes are investigated. These factors are magnetic reconnection, new emerging flux, and the large scale curvature of the flux rope. First, our new results confirm that in the absence of reconnection, magnetic tension in two-dimensional configuration is always strong enough to prevent escape of the flux rope to infinity after it erupts. However, only a relatively small reconnection rate is needed to allow the flux rope to escape to infinity. Specifically, for a coronal density model that decreases exponentially with height we find that average Alfvén Mach number MA for the inflow into the reconnection site can be as small as M A = 0.005 and still be fast enough to give a plausible eruption. The best fit to observations is obtained by assuming an inflow rate on the order of MA ~ 0.1. Second, we have found that the emergence of new flux system in the vicinity of a preexisting flux rope can cause a loss of ideal-MHD equilibrium under certain circumstances. But the circumstances which lead to eruption are much richer and more complicated than commonly described in the existing literatures. Our model results suggest that the actual circumstances leading to an eruption are sensitive, not only to the polarity of the emerging region, but to several other parameters, such as its strength, distance, and area as well. The results also indicate that in general there is no

  3. Bayesian analysis of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Hsiang

    1990-10-01

    The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.

  4. Automated detection of solar eruptions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N.

    2015-12-01

    Observation of the solar atmosphere reveals a wide range of motions, from small scale jets and spicules to global-scale coronal mass ejections (CMEs). Identifying and characterizing these motions are essential to advancing our understanding of the drivers of space weather. Both automated and visual identifications are currently used in identifying Coronal Mass Ejections. To date, eruptions near the solar surface, which may be precursors to CMEs, have been identified primarily by visual inspection. Here we report on Eruption Patrol (EP): a software module that is designed to automatically identify eruptions from data collected by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA). We describe the method underlying the module and compare its results to previous identifications found in the Heliophysics Event Knowledgebase. EP identifies eruptions events that are consistent with those found by human annotations, but in a significantly more consistent and quantitative manner. Eruptions are found to be distributed within 15 Mm of the solar surface. They possess peak speeds ranging from 4 to 100 km/s and display a power-law probability distribution over that range. These characteristics are consistent with previous observations of prominences.

  5. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  6. Road guide to volcanic deposits of Mount St. Helens and vicinity, Washington

    USGS Publications Warehouse

    Doukas, Michael P.

    1990-01-01

    Mount St. Helens, the most recently active and most intensively studied Cascades volcano, is in southwestern Washington. The volcano is a superb outdoor laboratory for studying volcanic processes, deposits of observed events, and deposits whose origins are inferred by classic geologic techniques, including analogy to recent deposits. During the past 4,500 years, Mount St. Helens has been more active and more explosive than any other volcano in the conterminous United States. Mount St. Helens became active in mid-March 1980, and eruptive activity began on March 27. Since the climactic eruption of May 18, 1980, the volcano has continued to be active at least until 1988. The 1890 activity of Mount St. Helens is summarized in U.S. Geological Survey Professional Papers 1249 and 1250. This road guide is a tour of Mount St. Helens volcano and vicinity, with emphasis on the effects and deposits of the 1980 eruption. The road log starts from the U.S. Geological Survey's David A. Johnston Cascades Volcano Observatory, Vancouver, Washington. The guide is organized around two primary routes. LEG I is on paved and gravel roads from Vancouver to areas east of Mount St. Helens, including Windy Ridge Overlook near Spirit Lake. This is possibly the most scenic route described in the guide, including a transect of the devastated zone of May 18, 1980, Spirit Lake, and numerous vistas of the volcano. LEG II leads to areas west of the volcano from Vancouver via U.S. Interstate Highway 5, then on a paved ... road along the Toutle River. Highlights include the spectacular effects of mudflows and a view of the huge debris-avalanche deposit that was formed on May 18, 1980.

  7. The Heights of Mount Sharp

    NASA Image and Video Library

    2012-08-20

    With the addition of four high-resolution Navigation Camera, or Navcam, images, taken on Aug. 18 Sol 12, Curiosity 360-degree landing-site panorama now includes the highest point on Mount Sharp visible from the rover.

  8. Solar panel parallel mounting configuration

    NASA Technical Reports Server (NTRS)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  9. Genetic structure among coastal tailed frog populations of Mount St. Helens is moderated by post-disturbance management

    Treesearch

    Stephen F. Spear; Charles M. Crisafulli; Andrew Storfer

    2012-01-01

    Catastrophic disturbances often provide “natural laboratories” that allow for greater understanding of ecological processes and response of natural populations. The 1980 eruption of the Mount St. Helens volcano in Washington, USA, provided a unique opportunity to test biotic effects of a large-scale stochastic disturbance, as well as the influence of post-disturbance...

  10. Mount St. Helens ash and mud: Chemical properties and effects on germination and establishment of trees and browse plants.

    Treesearch

    M.A. Radwan; Dan L. Campbell

    1981-01-01

    Chemical properties of ash and mud from the 1980 volcanic eruption of Mount St. Helens and their effect on germination and seedling production of selected plants were studied. The volcanic materials were low in some important nutrients and cation exchange capacity, and they adversely affected seedling production. Catsear, a preferred wildlife browse, and lodgepole pine...

  11. Plant succession on the Mount St. Helens debris-avalanche deposit and the role of non-native species

    USDA-ARS?s Scientific Manuscript database

    The debris-avalanche deposit is one of the most severely disturbed areas created by the 1980 eruption of Mount St. Helens, with little survival of a few plant fragments, and primary succession mostly being initiated by the seeds dispersed onto the newly emplaced material. Vegetation changes on the d...

  12. Hydrogeomorphic responses to explosive volcanic eruptions-what have we learned?

    NASA Astrophysics Data System (ADS)

    Major, J. J.

    2011-12-01

    Explosive eruptions can greatly alter landscape hydrology and geomorphology. Analyses of hydrogeomorphic responses to four major eruptions, spanning two orders of magnitude in eruption volume, reveal patterns in the timing, pace, and style of landscape response to explosive eruptions. Tephra fall can blanket broad swaths of landscape with sediment having a low-permeability surface, and can cause significant tree damage. Volcanic blasts can also deposit many tens of cm of fines-capped sediment across the landscape, and can raze or completely remove vast tracts of forest. Debris avalanches, pyroclastic flows, and lahars can fill channels and valley floors with meters to tens of meters of gravelly sand for tens of kilometers from source; straighten, smooth or obliterate channel planforms; and remove, bury, or smother riparian vegetation. Such disturbances can radically alter runoff regimes and the manner in which water is routed along channels. Surface-infiltration capacities of landscapes denuded by volcanic blast and pyroclastic flows following eruptions of Mount St. Helens (MSH) and Unzen were reduced 1-2 orders of magnitude (from >100 mm/hr to as little as 2-5 mm/hr). Altered hydrologic processes promoted substantial overland flow in basins normally dominated by subsurface flow; measurements at Unzen showed overland flow 3-5 times greater from barren, tephra-covered ground compared to vegetated ground. Hydrological analysis at MSH showed that post-eruption wet-season peakflow discharges increased by a few to tens of percent in eruption-affected basins. Changes in hydrological processes alter sediment erosion and transport; extensive hillslope and channel erosion can lead to sediment yields that exceed preeruption yields by orders of magnitude. Indeed, sediment yields from volcanically disturbed watersheds rival those of great sediment-producing rivers worldwide. Short-term landscape-denudation rates following explosive eruptions are typically 10-104 times greater

  13. NO2 column changes induced by volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  14. The head-mounted microscope.

    PubMed

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  15. The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Wilson, C. J. N.; Del Carlo, P.; Coltelli, M.; Sable, J. E.; Carey, R.

    2004-09-01

    Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e., generating widespread phreatomagmatic, subplinian and Plinian fall deposits. We focus here on the influence of conduit processes, especially partial open-system degassing, in triggering abrupt changes in style and intensity that occurred during two examples of basaltic Plinian volcanism. We use the 1886 eruption of Tarawera, New Zealand, the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well-documented 122 BC eruption of Mount Etna, Italy, and present new grain size and vesicularity data from the proximal deposits. These data show that even during extremely powerful basaltic eruptions, conduit processes play a critical role in modifying the form of the eruptions. Even with very high discharge, and presumably ascent, rates, partial open-system behaviour of basaltic melts becomes a critical factor that leads to development of domains of largely stagnant and outgassed melt that restricts the effective radius of the conduit. The exact path taken in the waning stages of the eruptions varied, in response to factors which included conduit geometry, efficiency and extent of outgassing and availability of ground water, but a relatively abrupt cessation to sustained high-intensity discharge was an inevitable consequence of the degassing processes.

  16. Digital Data for Volcano Hazards of the Mount Hood Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Scott, W.E.; Pierson, T.C.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    2008-01-01

    Snow-clad Mount Hood dominates the Cascade skyline from the Portland metropolitan area to the wheat fields of Wasco and Sherman Counties. The mountain contributes valuable water, scenic, and recreational resources that help sustain the agricultural and tourist segments of the economies of surrounding cities and counties. Mount Hood is also one of the major volcanoes of the Cascade Range, having erupted repeatedly for hundreds of thousands of years, most recently during two episodes in the past 1,500 yr. The last episode ended shortly before the arrival of Lewis and Clark in 1805. When Mount Hood erupts again, it will severely affect areas on its flanks and far downstream in the major river valleys that head on the volcano. Volcanic ash may fall on areas up to several hundred kilometers downwind. The purpose of the volcano hazard report USGS Open-File Report 97-89 (Scott and others, 1997) is to describe the kinds of hazardous geologic events that have happened at Mount Hood in the past and to show which areas will be at risk when such events occur in the future. This data release contains the geographic information system (GIS) data layers used to produce the Mount Hood volcano hazard map in USGS Open-File Report 97-89. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain. A second data layer contains points that indicate estimated travel times of lahars.

  17. Satellite View of Kilauea Eruption

    NASA Image and Video Library

    2018-05-07

    This image from NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft show recent eruptions of Kilauea volcano on the island of Hawaii (the Big Island). Following days of increased seismic activity, Kilauea erupted May 3, 2018, and triggered a number of additional fissure eruptions along the East Rift Zone. The eruptions and high level of sulfur dioxide gas (SO2) prompted evacuations in the area, including the Leilani Estates subdivision near the town of Pahoa. The ASTER images, acquired on May 6, 2018, show different aspects of the eruption. A color composite depicts vegetation in red, and old lava flows in black and gray. Superimposed on the image in yellow are hotspots detected on the thermal infrared bands. The easternmost hot spots show the newly formed fissures and the lava flow spilling to the northwest. The middle spots are Pu'u O'o crater, and lava flows descending the slopes to the southeast. The westernmost area is the crater and lava lake on Kilauea's summit. The greenish area southwest of Pu'u O'o is ash deposits from its short eruption on Friday. The inset shows the massive sulfur dioxide plume is shown in yellow and yellow-green, extracted from ASTER's multiple thermal bands. A smaller, but thicker, sulfur dioxide gas plume can be seen coming from Kilauea. The prevailing trade winds blow the plumes to the southwest, out over the ocean. The images cover an area of 57.8 by 63 kilometers, and are located at 19.3 degrees North, 155.1 degrees West. https://photojournal.jpl.nasa.gov/catalog/PIA22450

  18. Eruptions of Hawaiian volcanoes - Past, present, and future

    USGS Publications Warehouse

    Tilling, Robert I.; Heliker, Christina; Swanson, Donald A.

    2010-01-01

    Viewing an erupting volcano is a memorable experience, one that has inspired fear, superstition, worship, curiosity, and fascination since before the dawn of civilization. In modern times, volcanic phenomena have attracted intense scientific interest, because they provide the key to understanding processes that have created and shaped more than 80 percent of the Earth's surface. The active Hawaiian volcanoes have received special attention worldwide because of their frequent spectacular eruptions, which often can be viewed and studied with relative ease and safety. In January 1987, the Hawaiian Volcano Observatory (HVO), located on the rim of Kilauea Volcano, celebrated its 75th Anniversary. In honor of HVO's Diamond Jubilee, the U.S. Geological Survey (USGS) published Professional Paper 1350 (see list of Selected Readings, page 57), a comprehensive summary of the many studies on Hawaiian volcanism by USGS and other scientists through the mid-1980s. Drawing from the wealth of data contained in that volume, the USGS also published in 1987 the original edition of this general-interest booklet, focusing on selected aspects of the eruptive history, style, and products of two of Hawai'i's active volcanoes, Kilauea and Mauna Loa. This revised edition of the booklet-spurred by the approaching Centennial of HVO in January 2012-summarizes new information gained since the January 1983 onset of Kilauea's Pu'u 'O'o-Kupaianaha eruption, which has continued essentially nonstop through 2010 and shows no signs of letup. It also includes description of Kilauea's summit activity within Halema'uma'u Crater, which began in mid-March 2008 and continues as of this writing (late 2010). This general-interest booklet is a companion to the one on Mount St. Helens Volcano first published in 1984 and revised in 1990 (see Selected Readings). Together, these publications illustrate the contrast between the two main types of volcanoes: shield volcanoes, such as those in Hawai'i, which generally

  19. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines

    USGS Publications Warehouse

    de Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P.

    2004-01-01

    Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO42, which suggests an oxidized state of the magma (NNO + 1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel-olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO + 1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits. ?? Springer-Verlag 2003.

  20. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  1. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  2. Mt. Etna Eruption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Vis/NIR Image CloseupFigure 2: Difference Image

    October 2002 Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide (SO2) plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of SO2 injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future.

    This image was made from a sensor on the AIRS instrument that is sensitive to the visible and near-infrared portions of the spectrum. The visible/near infrared data show the smoke plume from Mt. Etna. The view is of Europe and the central Mediterranean with Italy in the center. Since the visible/near infrared sensor on AIRS is sensitive to wavelengths that are different than the human eye, vegetated regions appear red (compare the red color of Europe with the tan desert of North Africa in the lower left). Figure 1 is a closer view of Sicily and shows a long, brownish smoke plume extending across the Mediterranean to Africa. This is consistent with the enhanced feature in the difference image in Figure 2 and helps validate the information inferred from that image.

    Figure 2 clearly shows the SO2 plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to SO2. By subtracting out the common water vapor signal in both channels, the SO2 feature remains and shows up as an enhancement in the difference image.

    The

  3. Predicting Major Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    , whether an active region that produces a flare will also produce a CME. Bobra and Ilonidis then use a feature-selection algorithm to try to understand which features distinguish between flaring regions that dont produce a CME and those that do.Predictors of CMEsThe authors reach several interesting conclusions:Under the right conditions, their algorithm is able to predict whether an active region with a given set of features will produce a CME as well as a flare with a fairly high rate of success.None of the 18 features they tested are good predictors in isolation: its necessary to look at a combination of at least 6 features to have success predicting whether a flare will be accompanied by a CME.The features that are the best predictors are all intensive features ones that stay the same independent of the active regions size. Extensive features ones that change as the active region grows or shrinks are less successful predictors.Only the magnetic field properties of the photosphere were considered, so a logical next step is to extend this study to consider properties of the solar corona above active regions as well. In the meantime, these are interesting first results that may well help us better predict these major solar eruptions.BonusCheck out this video for a great description from NASA of the difference between solar flares and CMEs (as well as some awesome observations of both).CitationM. G. Bobra and S. Ilonidis 2016 ApJ 821 127. doi:10.3847/0004-637X/821/2/127

  4. Magmatic Ascent and Eruption Processes on Mercury

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Wilson, L.

    2018-05-01

    MESSENGER volcanic landform data and information on crustal composition allow us to model the generation, ascent, and eruption of magma; Mercury explosive and effusive eruption processes differ significantly from other terrestrial planetary bodies.

  5. A MODEL FOR MAGNETICALLY COUPLED SYMPATHETIC ERUPTIONS

    SciTech Connect

    Toeroek, T.; Titov, V. S.; Mikic, Z.

    2011-10-01

    Sympathetic eruptions on the Sun have been observed for several decades, but the mechanisms by which one eruption can trigger another remain poorly understood. We present a three-dimensional MHD simulation that suggests two possible magnetic trigger mechanisms for sympathetic eruptions. We consider a configuration that contains two coronal flux ropes located within a pseudo-streamer and one rope located next to it. A sequence of eruptions is initiated by triggering the eruption of the flux rope next to the streamer. The expansion of the rope leads to two consecutive reconnection events, each of which triggers the eruption of a flux ropemore » by removing a sufficient amount of overlying flux. The simulation qualitatively reproduces important aspects of the global sympathetic event on 2010 August 1 and provides a scenario for the so-called twin filament eruptions. The suggested mechanisms are also applicable for sympathetic eruptions occurring in other magnetic configurations.« less

  6. Separating volcanic deformation and atmospheric signals at Mount St. Helens using Persistent Scatterer InSAR

    NASA Astrophysics Data System (ADS)

    Welch, Mark D.; Schmidt, David A.

    2017-09-01

    Over the past two decades, GPS and leveling surveys have recorded cycles of inflation and deflation associated with dome building eruptions at Mount St. Helens. Due to spatial and temporal limitations of the data, it remains unknown whether any deformation occurred prior to the most recent eruption of 2004, information which could help anticipate future eruptions. Interferometric Synthetic Aperture Radar (InSAR), which boasts fine spatial resolution over large areas, has the potential to resolve pre-eruptive deformation that may have occurred, but eluded detection by campaign GPS surveys because it was localized to the edifice or crater. Traditional InSAR methods are challenging to apply in the Cascades volcanic arc because of a combination of environmental factors, and past attempts to observe deformation at Mount St. Helens were unable to make reliable observations in the crater or on much of the edifice. In this study, Persistent Scatterer InSAR, known to mitigate issues of decorrelation caused by environmental factors, is applied to four SAR data sets in an attempt to resolve localized sources of deformation on the volcano between 1995 and 2010. Many interferograms are strongly influenced by phase delay from atmospheric water vapor and require correction, evidenced by a correlation between phase and topography. To assess the bias imposed by the atmosphere, we perform sensitivity tests on a suite of atmospheric correction techniques, including several that rely on the correlation of phase delay to elevation, and explore approaches that directly estimate phase delay using the ERA-Interim and NARR climate reanalysis data sets. We find that different correction methods produce velocities on the edifice of Mount St. Helens that differ by up to 1 cm/yr due to variability in how atmospheric artifacts are treated in individual interferograms. Additionally, simple phase-based techniques run the risk of minimizing any surface deformation signals that may themselves be

  7. Optical mounts for harsh environments

    NASA Astrophysics Data System (ADS)

    Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.

    2009-08-01

    Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.

  8. Digital Data for Volcano Hazards from Mount Rainier, Washington, Revised 1998

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Hoblitt, R.P.; Walder, J.S.; Driedger, C.L.; Scott, K.M.; Pringle, P.T.; Vallance, J.W.

    2008-01-01

    Mount Rainier at 4393 meters (14,410 feet) is the highest peak in the Cascade Range; a dormant volcano having glacier ice that exceeds that of any other mountain in the conterminous United States. This tremendous mass of rock and ice, in combination with great topographic relief, poses a variety of geologic hazards, both during inevitable future eruptions and during the intervening periods of repose. The volcano's past behavior is the best guide to possible future hazards. The written history (about A.D. 1820) of Mount Rainier includes one or two small eruptions, several small debris avalanches, and many small lahars (debris flows originating on a volcano). In addition, prehistoric deposits record the types, magnitudes, and frequencies of other events, and areas that were affected. Mount Rainier deposits produced since the latest ice age (approximately during the past 10,000 years) are well preserved. Studies of these deposits indicate we should anticipate potential hazards in the future. Some phenomena only occur during eruptions such as tephra falls, pyroclastic flows and surges, ballistic projectiles, and lava flows while others may occur without eruptive activity such as debris avalanches, lahars, and floods. The five geographic information system (GIS) volcano hazard data layers used to produce the Mount Rainier volcano hazard map in USGS Open-File Report 98-428 (Hoblitt and others, 1998) are included in this data set. Case 1, case 2, and case 3 layers were delineated by scientists at the Cascades Volcano Observatory and depict various lahar innundation zones around the mountain. Two additional layers delineate areas that may be affected by post-lahar sedimentation (postlahar layer) and pyroclastic flows (pyroclastic layer).

  9. Changes in shear-wave splitting before volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Crampin, Stuart

    2015-04-01

    We have shown that observations of shear-wave splitting (SWS) monitor stress-accumulation and stress-relaxation before earthquakes which allows the time, magnitude, and in some circumstances fault-plane of impending earthquakes to be stress-forecast. (We call this procedure stress-forecasting rather than predicting or forecasting to emphasise the different formalism.) We have stress-forecast these parameters successfully three-days before a 1988 M5 earthquake in SW Iceland, and identified characteristic anomalies retrospectively before ~16 other earthquakes in Iceland and elsewhere. SWS monitors microcrack geometry and shows that microcracks are so closely spaced that they verge on fracturing and earthquakes. Phenomena verging on failure in this way are critical-systems with 'butterfly wings' sensitivity. Such critical-systems are very common. The Earth is an archetypal complex heterogeneous interactive phenomenon and must be expected to be a critical-system. We claim this critical system as a New Geophysics of a critically-microcracked rock mass. Such critical systems impose a range of fundamentally-new properties on conventional sub-critical physics/geophysics, one of which is universality. Consequently it is expected that we observe similar stress-accumulation and stress-relaxation before volcanic eruptions to those before earthquakes. There are three eruptions where appropriate changes in SWS have been observed similar to those observed before earthquakes. These are: the 1996 Gjálp fissure eruption, Vatnajökull, Iceland; a 2001 flank eruption on Mount Etna, Sicily (reported by Francesca Bianco, INGV, Naples); and the 2010 Eyjafjajökull ash-cloud eruption, SW Iceland. These will be presented in the same normalised format as is used before earthquakes. The 1996 Gjálp eruption showed a 2½-month stress-accumulation, and a ~1-year stress-relaxation (attributed to the North Atlantic Ridge adjusting to the magma injection beneath the Vatnajökull Ice Cap). The

  10. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  11. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  12. Solar panel truss mounting systems and methods

    SciTech Connect

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the basemore » rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.« less

  13. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens

    USGS Publications Warehouse

    Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L.

    2010-01-01

    Current data and models for Mount St. Helens volcano (Washington, United States) suggest relatively rapid transport from magma genesis to eruption, with no evidence for protracted storage or recycling of magmas. However, we show here that complex zircon age populations extending back hundreds of thousands of years from eruption age indicate that magmas regularly stall in the crust, cool and crystallize beneath the volcano, and are then rejuvenated and incorporated by hotter, young magmas on their way to the surface. Estimated dissolution times suggest that entrained zircon generally resided in rejuvenating magmas for no more than about a century. Zircon elemental compositions reflect the increasing influence of mafic input into the system through time, recording growth from hotter, less evolved magmas tens of thousands of years prior to the appearance of mafic magmas at the surface, or changes in whole-rock geochemistry and petrology, and providing a new, time-correlated record of this evolution independent of the eruption history. Zircon data thus reveal the history of the hidden, long-lived intrusive portion of the Mount St. Helens system, where melt and crystals are stored for as long as hundreds of thousands of years and interact with fresh influxes of magmas that traverse the intrusive reservoir before erupting. ?? 2010 Geological Society of America.

  14. ASTER-SRTM Perspective of Mount Oyama Volcano, Miyake-Jima Island, Japan

    NASA Image and Video Library

    2000-08-10

    Mount Oyama is a 820-meter-high (2,700 feet) volcano on the island of Miyake-Jima, Japan. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity. On June 27, authorities evacuated 2,600 people, and on July 8 the volcano began erupting and erupted five times over that week. The dark gray blanket covering green vegetation in the image is the ash deposited by prevailing northeasterly winds between July 8 and 17. This island is about 180 kilometers (110 miles) south of Tokyo and is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Miyake-Jima is home to 3,800 people. The previous major eruptions of Mount Oyama occurred in 1983 and 1962, when lava flows destroyed hundreds of houses. An earlier eruption in 1940 killed 11 people. This image is a perspective view created by combining image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite with an elevation model from the Shuttle Radar Topography Mission (SRTM). Vertical relief is exaggerated, and the image includes cosmetic adjustments to clouds and image color to enhance clarity of terrain features. http://photojournal.jpl.nasa.gov/catalog/PIA02771

  15. Eruption Cyst in the Neonate.

    PubMed

    de Oliveira, Alline J; Silveira, Maria Lg; Duarte, Danilo A; Diniz, Michele B

    2018-01-01

    The pediatric dental approach to the oral cavity of newborns requires special attention, as many aspects are unique and peculiar to this period of life. It is important that pediatricians and pediatric dentists be aware of the characteristics within normal newborn patterns and prepared to make a correct diagnosis of abnormalities at early stages. Congenital eruption cysts (ECs) are rarely observed in newborns, as at this stage of a child's life, tooth eruption is unusual. This study reports a case of EC treated successfully by monitoring of the lesion, without any surgical procedure. In the 4th month, the lesion had completely regressed, and the deciduous central incisors had erupted without problems. The clinical and radiographic monitoring of ECs in newborns seems to be a satisfactory management procedure, similar to what is recommended for older children. How to cite this article: de Oliveira AJ, Silveira MLG, Duarte DA, Diniz MB. Eruption Cyst in the Neonate. Int J Clin Pediatr Dent 2018;11(1):58-60.

  16. ASTER Tracks Continuing Popocatepetl Eruption

    NASA Image and Video Library

    2012-04-27

    NASA Terra spacecraft shows Popocatepetl, the nearly 18.000-foot-high volcano about 40 miles southeast of Mexico City, continuing to spew water vapor, gas, ashes and glowing rocks from its latest eruption, which started in mid-April 2012.

  17. Ignimbrites of Armenia - Paleomagnetic constraints on flow direction and stratigraphy of pyroclastic activity of Mount Aragats

    NASA Astrophysics Data System (ADS)

    Kirscher, Uwe; Meliksetian, Khachatur; Gevorgyan, Hripsime; Navasardyan, Gevorg; Bachtadse, Valerian

    2017-04-01

    The Aragats volcano is one of the largest stratovolcanoes within the Turkish-Armenian-Iranian orogenic plateau. It is located close to the Armenian capital Yerevan, and only 30 km from the only nuclear power plant within the country. Additional to numerous lava flows, Mount Aragats is thought to be the source of at least two large pyroclastic eruptions leading to a huge number of ignimbrite outcrops, which are located surrounding Mount Aragats with an evaluated eruption radius of 50 km. The age of several ignimbrite outcrops has recently been determined to be 0.65 Ma (Meliksetian et al., 2014). The different ignimbrite flows are characterized by huge diversity of colors, degree of welding and textures. Due to that reason some disagreement exist on how these outcrops can be linked and how the eruption process actually happened in terms of different eruption phases and mixing mechanism of magmas during the eruption. To add constraints to this debate we carried out an intensive paleomagnetic investigation on most of the ignimbrite outcrops (32 sites) in terms of directional and anisotropy measurements. Paleomagnetic directional measurements yield basically two polarities: (1) a well grouped normal polarity is present in the majority of the studied sites including 3 sites which have supposedly originated from a different vent located on Turkish territory in the west; (2) a reversed polarity of the remaining sites with a somewhat increased scatter. Based on secular variation arguments and considering the high quality of the data we suggest that at least all young outcrops represent a single eruption phase in the area at 0.65 Ma, which is in agreement with an occurrence during the Brunhes geomagnetic chron. Additional to that, at least one earlier phase of pyroclastic activity took place prior to the Brunhes-Matuyama boundary (0.781 Ma). Anisotropy of magnetic susceptibility (AMS) suggests initial radial flow directions, which shortly after the eruption become

  18. Debris-flow hazards caused by hydrologic events at Mount Rainier, Washington

    USGS Publications Warehouse

    Vallance, James W.; Cunico, Michelle L.; Schilling, Steve P.

    2003-01-01

    At 4393 m, ice-clad Mount Rainier has great potential for debris flows owing to its precipitous slopes and incised steep valleys, the large volume of water stored in its glaciers, and a mantle of loose debris on its slopes. In the past 10,000 years, more than sixty Holocene lahars have occurred at Mount Rainier (Scott et al., 1985), and, in addition more than thirty debris flows not related to volcanism have occurred in historical time (Walder and Driedger, 1984). Lahars at Mount Rainier can be classed in 3 groups according to their genesis: (1) flank collapse of hydrothermally altered, water-saturated rock; (2) eruption-related release of water and loose debris; and (3) hydrologic release of water and debris (Scott et al., 1985). Lahars in the first two categories are commonly voluminous and are generally related to unrest and explosions that occur during eruptive episodes. Lahars in the third category, distinguished here as debris flows, are less voluminous than the others but occur frequently at Mount Rainier, often with little or no warning. Historically at Mount Rainier, glacial outburst floods, torrential rains, and stream capture have caused small- to moderate-size debris flows (Walder and Driedger, 1984). Such debris flows are most likely to occur in drainages that have large glaciers in them. Less commonly, a drainage diversion has triggered a debris flow in an unglaciated drainage basin. For example, the diversion of Kautz Glacier meltwater into Van Trump basin triggered debris flows on the south side of Rainier in August 2001. On the basis of historical accounts, debris flows having hydrologic origins are likely to be unheralded, and have occurred as seldom as once in 8 years and as often as four times per year at Mount Rainier (Walder and Driedger, 1984). Such debris flows are most likely to occur during periods of hot dry weather or during periods of intense rainfall, and therefore must occur during the summer and fall. They are likely to begin at or

  19. Mounting clips for panel installation

    SciTech Connect

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph

    2017-02-14

    An exemplary mounting clip for removably attaching panels to a supporting structure comprises a base, spring locking clips, a lateral flange, a lever flange, and a spring bonding pad. The spring locking clips extend upwardly from the base. The lateral flange extends upwardly from a first side of the base. The lateral flange comprises a slot having an opening configured to receive at least a portion of one of the one or more panels. The lever flange extends outwardly from the lateral flange. The spring bonding flange extends downwardly from the lever flange. At least a portion of the firstmore » spring bonding flange comprises a serrated edge for gouging at least a portion of the one or more panels when the one or more panels are attached to the mounting clip to electrically and mechanically couple the one or more panels to the mounting clip.« less

  20. VIBRATION DAMPING AND SHOCK MOUNT

    DOEpatents

    Stevens, D.J.; Forman, G.W.

    1963-12-10

    A shock absorbing mount in which vibrations are damped by an interference fit between relatively movable parts of the mount is described. A pair of generally cup-shaped parts or members have skirt portions disposed in an oppositely facing nesting relationship with the skirt of one member frictionally engaging the skirt of the other. The outermost skirt may be slotted to provide spring-like segments which embrace the inner skirt for effecting the interference fit. Belleville washers between the members provide yieldable support for a load carried by the mount. When a resonant frequency of vibration forces acting upon the moumt attains a certain level the kinetic energy of these forces is absorbed by sliding friction between the parts. (AEC)

  1. The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2001

    NASA Astrophysics Data System (ADS)

    Behncke, Boris; Neri, Marco; Pecora, Emilio; Zanon, Vittorio

    2006-09-01

    Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971 2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996 2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996 2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This

  2. Snow and ice volume on Mount Spurr Volcano, Alaska, 1981

    USGS Publications Warehouse

    March, Rod S.; Mayo, Lawrence R.; Trabant, Dennis C.

    1997-01-01

    Mount Spurr (3,374 meters altitude) is an active volcano 130 kilometers west of Anchorage, Alaska, with an extensive covering of seasonal and perennial snow, and glaciers. Knowledge of the volume and distribution of snow and ice on a volcano aids in assessing hydrologic hazards such as floods, mudflows, and debris flows. In July 1981, ice thickness was measured at 68 locations on the five main glaciers of Mount Spurr: 64 of these measurements were made using a portable 1.7 megahertz monopulse ice-radar system, and 4 measurements were made using the helicopter altimeter where the glacier bed was exposed by ice avalanching. The distribution of snow and ice derived from these measurements is depicted on contour maps and in tables compiled by altitude and by drainage basins. Basal shear stresses at 20 percent of the measured locations ranged from 200 to 350 kilopascals, which is significantly higher than the 50 to 150 kilopascals commonly referred to in the literature as the 'normal' range for glaciers. Basal shear stresses higher than 'normal' have also been found on steep glaciers on volcanoes in the Cascade Range in the western United States. The area of perennial snow and ice coverage on Mount Spurr was 360 square kilometers in 1981, with an average thickness of 190?50 meters. Seasonal snow increases the volume about 1 percent and increases the area about 30 percent with a maximum in May or June. Runoff from Mount Spurr feeds the Chakachatna River and the Chichantna River (a tributary of the Beluga River). The Chakachatna River drainage contains 14 cubic kilometers of snow and ice and the Chichantna River drainage contains 53 cubic kilometers. The snow and ice volume on the mountain was 67?17 cubic kilometers, approximately 350 times more snow and ice than was on Mount St. Helens before its May 18, 1980, eruption, and 15 times more snow and ice than on Mount Rainier, the most glacierized of the measured volcanoes in the Cascade Range. On the basis of these relative

  3. Precision alignment and mounting apparatus

    NASA Technical Reports Server (NTRS)

    Preston, Dennis R. (Inventor)

    1993-01-01

    An alignment and mounting apparatus for mounting two modules (10,12) includes a first portion having a cylindrical alignment pin (16) projecting normal to a module surface, a second portion having a three-stage alignment guide (18) including a shoehorn flange (34), a Y-slot (42) and a V-block (22) which sequentially guide the alignment pin (16) with successively finer precision and a third portion in the form of a spring-loaded captive fastener (20) for connecting the two modules after alignment is achieved.

  4. Perspective with Landsat Overlay, Mount Kilimanjaro, Tanzania

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Kilimanjaro (Kilima Njaro or 'shining mountain' in Swahili), the highest point in Africa, reaches 5,895 meters (19,340 feet) above sea level, tall enough to maintain a permanent snow cap despite being just 330 kilometers (210 miles) south of the equator. It is the tallest free-standing mountain on the Earth's land surface world, rising about 4,600 meters (15,000 feet) above the surrounding plain. Kilimanjaro is a triple volcano (has three peaks) that last erupted perhaps more than 100,000 years ago but still exudes volcanic gases. It is accompanied by about 20 other nearby volcanoes, some of which are seen to the west (left) in this view, prominently including Mount Meru, which last erupted only about a century ago. The volcanic mountain slopes are commonly fertile and support thick forests, while the much drier grasslands of the plains are home to elephants, lions, and other savanna wildlife.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 7 satellite image, and a false sky. Topographic expression is vertically exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved

  5. Eruption of Trident Volcano, Katmai National Monument, Alaska, February-June 1953

    USGS Publications Warehouse

    Snyder, George L.

    1954-01-01

    Trident Volcano, one of several 'extinct' volcanoes in Katmai National Monument, erupted on February 15, 1953. Observers in a U. S. Navy plane, 50 miles away, and in King Salmon, 75 miles away, reported an initial column of smoke that rose to an estimated 30, 000 feet. Thick smoke and fog on the succeeding 2 days prevented observers from identifying the erupting volcano or assessing the severity of the eruption. It is almost certain, however, that during the latter part of this foggy period, either Mount Martin or Mount Mageik, or both, were also erupting sizable ash clouds nearby. The first close aerial observations were made in clear weather on February 18. At this time a thick, blocky lava flow was seen issuing slowly from a new vent at an altitude of 3,600 feet on the southwest flank of Trident Volcano. Other volcanic orifices in the area were only steaming mildly on this and succeeding days. Observations made in the following weeks from Naval aircraft patrolling the area indicated that both gas and ash evolution and lava extrusion from the Trident vent were continuing without major interruption. By March 11 an estimated 80-160 million cubic yards of rock material had been extruded. Air photographs taken in April and June show that the extrusion of lava had continued intermittently and, by June 17, the volume of the pile was perhaps 300-400 million cubic yards of rock material. Ash eruptions also apparently occurred sporadically during this period, the last significant surge taking place June 30. No civilian or military installations have been endangered by this eruption at the date of writing.

  6. Volcanic Plumes Tower over Mount Etna

    NASA Image and Video Library

    2013-11-06

    Twin volcanic plumes—one of ash, one of gas—rose from Sicily’ Mount Etna on the morning of October 26, 2013. L’Istituto Nazionale di Geofisica e Vulcanologia (INGV) Osservatorio Etneo (National Institute of Geophysics and Volcanology Etna Observatory) reported that Etna was experiencing its first paroxysm in six months. Multiple eruption columns are common at Etna, a result of complex plumbing within the volcano. The Northeast Crater, one of several on Etna’s summit, was emitting the ash column, while the New Southeast Crater was simultaneously venting mostly gas. This natural-color image collected by Landsat 8 shows the view from space at 11:38 a.m. local time. The towering, gas-rich plume cast a dark shadow over the lower, ash-rich plume and Etna’s northwestern flank. Relatively fresh lava flows (less than a century or so old) are dark gray; vegetation is green; and the tile-roofed buildings of Bronte and Biancavilla lend the towns an ochre hue. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the USGS Earth Explorer. Photograph ©2013, Boris Behncke. Caption by Robert Simmon with contributions from Boris Behncke. Instrument: Landsat 8 - OLI More info: 1.usa.gov/1cEcOFi Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Volcanic Plumes Tower over Mount Etna [annotated

    NASA Image and Video Library

    2013-11-06

    Twin volcanic plumes—one of ash, one of gas—rose from Sicily’ Mount Etna on the morning of October 26, 2013. L’Istituto Nazionale di Geofisica e Vulcanologia (INGV) Osservatorio Etneo (National Institute of Geophysics and Volcanology Etna Observatory) reported that Etna was experiencing its first paroxysm in six months. Multiple eruption columns are common at Etna, a result of complex plumbing within the volcano. The Northeast Crater, one of several on Etna’s summit, was emitting the ash column, while the New Southeast Crater was simultaneously venting mostly gas. This natural-color image collected by Landsat 8 shows the view from space at 11:38 a.m. local time. The towering, gas-rich plume cast a dark shadow over the lower, ash-rich plume and Etna’s northwestern flank. Relatively fresh lava flows (less than a century or so old) are dark gray; vegetation is green; and the tile-roofed buildings of Bronte and Biancavilla lend the towns an ochre hue. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the USGS Earth Explorer. Photograph ©2013, Boris Behncke. Caption by Robert Simmon with contributions from Boris Behncke. Instrument: Landsat 8 - OLI More info: 1.usa.gov/1cEcOFi Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Prediction of Solar Eruptions Using Filament Metadata

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ashna; Schanche, Nicole; Reeves, Katharine K.; Kempton, Dustin; Angryk, Rafal

    2018-05-01

    We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.

  9. SYMPATHETIC FILAMENT ERUPTIONS CONNECTED BY CORONAL DIMMINGS

    SciTech Connect

    Jiang Yunchun; Yang Jiayan; Hong Junchao

    2011-09-10

    We present for the first time detailed observations of three successive, interdependent filament eruptions that occurred one by one within 5 hr from different locations beyond the range of a single active region. The first eruption was observed from an active region and was associated with a coronal mass ejection (CME), during which diffuse and complex coronal dimmings formed, largely extending to the two other filaments located in quiet-Sun regions. Then, both quiescent filaments consecutively underwent the second and third eruptions, while the nearby dimmings were persistent. Comparing the result of a derived coronal magnetic configuration, the magnetic connectivity betweenmore » the dimmings suggested that they were caused by the joint effect of simple expansion of overlying loop systems forced by the first eruption, as well as by its erupting field interacting or reconnecting with the surrounding magnetic structures. Note that the dimming process in the first eruption indicated a weakening and partial removal of an overlying magnetic field constraint on the two other filaments, and thus one can physically connect these eruptions as sympathetic. It appears that the peculiar magnetic field configuration in our event was largely favorable to the occurrence of sympathetic filament eruptions. Because coronal dimmings are frequent and common phenomena in solar eruptions, especially in CME events, it is very likely that they represent a universal agent that can link consecutive eruptions nearby with sympathetic eruptions.« less

  10. Two-step solar filament eruptions

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2018-04-01

    Coronal mass ejections (CMEs) are closely related to eruptive filaments and usually are the continuation of the same eruptive process into the upper corona. There are failed filament eruptions when a filament decelerates and stops at some greater height in the corona. Sometimes the filament after several hours starts to rise again and develops into the successful eruption with a CME formation. We propose a simple model for the interpretation of such two-step eruptions in terms of equilibrium of a flux rope in a two-scale ambient magnetic field. The eruption is caused by a slow decrease of the holding magnetic field. The presence of two critical heights for the initiation of the flux-rope vertical instability allows the flux rope to stay after the first jump some time in a metastable equilibrium near the second critical height. If the decrease of the ambient field continues, the next eruption step follows.

  11. Nyiragongo Volcano before the Eruption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyiragongo is an active stratovolcano situated on the Eastern African Rift; it is part of Africa's Virunga Volcanic Chain. In a massive eruption that occurred on January 17, 2002, Nyiragongo sent a vast plume of smoke and ash skyward, and three swifly-moving rivers of lava streaming down its western and eastern flanks. Previous lava flows from Nyiragongo have been observed moving at speeds of up to 40 miles per hour (60 kph). The lava flows from the January 17 eruption destroyed more than 14 villages in the surrounding countryside, forcing tens of thousands to flee into the neighboring country of Rwanda. Within one day the lava ran to the city of Goma, situated on the northern shore of Lake Kivu about 12 miles (19 km) south of Nyiragongo. The lava cut a 200 foot (60 meter) wide swath right through Goma, setting off many fires, as it ran into Lake Kivu. Goma, the most heavily populated city in eastern Democratic Republic of Congo, is home to about 400,000 people. Most of these citizens were forced to flee, while many have begun to return to their homes only to find their homes destroyed. This true-color scene was captured by the Enhanced Thematic Mapper Plus (ETM+), flying aboard the Landsat 7 satellite, on December 11, 2001, just over a month before the most recent eruption. Nyiragongo's large crater is clearly visible in the image. As recently as June 1994, there was a large lava lake in the volcano's crater which had since solidified. The larger Nyamuragira Volcano is located roughly 13 miles (21 km) to the north of Nyiragongo. Nyamuragira last erupted in February and March 2001. That eruption was also marked by columns of erupted ash and long fluid lava flows, some of which are apparent in the image as dark greyish swaths radiating away from Nyamuragira. Both peaks are also notorious for releasing large amounts of sulfur dioxide, which presents another health hazard to people and animals living in close proximity. Image by Robert Simmon, based on data supplied

  12. The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: Depositional sequences, description of pumiceous deposits

    NASA Astrophysics Data System (ADS)

    Traineau, Hervé; Westercamp, Denis; Bardintzeff, Jacques-Marie; Miskovsky, Jean-Claude

    1989-08-01

    Mount Pelée is one of the most active volcanoes of the Lesser Antilles arc, with more than twenty eruptions over the last 5000 years. Both nuée ardente-type eruptions, which are well known, and pumice eruptions, although little known, are very common in the stratigraphic record. The four younger pumice eruptions, P4 (2440 y.B.P.), P3 (2010 y.B.P.), P2 (1670 y.B.P.) and P1 (650 y.B.P.) can be used to reconstruct the eruption sequences. The various pumiceous deposits can be described as fine lithic ash layer, Plinian fall deposits, pumice and ash flow deposits with associated ash cloud fall deposits, and pumice surge deposits. Three kinds of depositional sequences have been defined. The distinctions between them are based on the occurrence of an initial Plinian phase and the generation of intraflow pyroclastic surges. The pumice eruptions of Mt. Pelée are small in intensity and magnitude, as expressed by the dispersal of their products and by the total mass of erupted material which is estimated to be less than 1 km 3 in each case. The pumice fall deposits have dispersal characteristics of small Plinian eruptions, close to the sub-Plinian type. Nevertheless, the probability of an occurrence of a new pumice eruption at Mt. Pelée is high, and the widespread distribution of pumice deposits around the volcano suggests that such an eruption is a major volcanic risk during the present stage of activity.

  13. Geochronology and eruptive history of the Katmai volcanic cluster, Alaska Peninsula

    USGS Publications Warehouse

    Hildreth, Wes; Lanphere, Marvin A.; Fierstein, Judy

    2003-01-01

    In the Katmai district of the Alaska Peninsula, K–Ar and 40Ar/39Ar ages have been determined for a dozen andesite–dacite stratocones on the arc front and for 11 rear-arc volcanoes, 10 of which are monogenetic. Tied to mapping and stratigraphic studies, our dating emphasized proximal basal lavas that rest on basement rocks, in order to estimate ages of inception of each polygenetic cone. Oldest among arc-front cones is Alagogshak Volcano (690–43 ka), succeeded in the Holocene by the active Mount Martin cone. Mount Mageik consists of four overlapping subedifices, basal lavas of which give ages of 93, 71, and 59 ka, and Holocene. The three small prehistoric cones of Trident Volcano yield ages of 143, 101–58, and 44 ka. Falling Mountain and Mount Cerberus, dacite domes near the 1912 Novarupta vent, are related compositionally to the Trident group and give ages of 70 ka and 114 ka. Mount Katmai, which underwent caldera collapse in 1912, consists of two subedifices that overlapped in space and time, and is the only arc-front center here to include basalt and rhyolite; one cone began by 90 ka, the other by 47 ka. Snowy Mountain also consists of two contiguous cones, which started around 200 and 171 ka, respectively, the younger remaining active into the Holocene. Devils Desk, the only mafic cone on the arc front, was short-lived at about 245 ka. In the rear-arc, (1) Mount Griggs produced mafic-to-silicic andesite in several episodes between 292 ka and the Holocene; (2) the Savonoski River cluster includes a Pliocene dacite dome and five small mafic cones (390–88 ka); (3) Gertrude Creek cone (49.8% SiO2) yields an age of 500 ka; and (4) the Saddlehorn Creek cluster includes five Pliocene basalt-to-andesite remnants. Eruptive volumes were reconstructed, permitting estimates of average eruption rates for edifice lifetimes. Since the mid Pleistocene, total volume erupted along the arc front here is 210±47 km3 and in the rear-arc 39±6 km3, of which Mount Griggs

  14. Impact of volcanic eruptions on the marine carbon cycle

    NASA Astrophysics Data System (ADS)

    Segschneider, Joachim; Ulrike, Niemeier; Martin, Wiesner; Claudia, Timmreck

    2010-05-01

    the upper ocean and hence the atmosphere. Large-magnitude eruptions such as of Mount Pinatubo in 1991 were in fact followed by a slowing-down in the increase of atmospheric CO2 for several years, entailing a weakening of the global warming trend. For Mount Pinatubo it has been argued that the estimated CO2 uptake (1.6 x 1015 g C) could have been caused by rapid iron fertilization of the Southern Ocean with about 6.3 x 1015 g of ash. However, this would approximate the overall amount of the ash generated by the eruption, of which about 80% fell out over the South China Sea (~4.9 x 1015 g). This suggests additional avenues for the removal of CO2, among which the 1991 explosive eruption of Cerro Hudson could have played an important role as more than 2 km3 of the aerosols released by the volcano fell out directly over the Southern Ocean.

  15. Primary Igneous Anhydrite: Progress Since the 1982 El Chichón Eruption (Mexico)

    NASA Astrophysics Data System (ADS)

    Luhr, J. F.

    2006-05-01

    Anhydrite (CaSO4) was confirmed as a stable primary igneous mineral, capable of precipitating from a silicate melt, through petrographic observations of fresh trachyandesitic pumices erupted in the spring of 1982 from El Chichón, a little known, isolated tuff and lava-dome complex in eastern Mexico. The 1982 eruption was also notable for the associated release of an estimated 5-9 megatons of SO2 to the stratosphere and troposphere, as measured by the Total Ozone Mapping Spectrometer. Subsequent years saw confirmation of primary igneous anhydrite in laboratory phase-equilibrium experiments, and anhydrite was also observed in the products of several subsequent explosive eruptions, most importantly dacitic pumices from the massive 15 June 1991 eruption of Mount Pinatubo, in the Philippines. That eruption involved ~5X the mass of magma and ~3X the mass of SO2 release compared to El Chichón's eruption. For both the Pinatubo and El Chichón eruptions, it has been concluded that the sulfur released to the atmosphere was too great in mass to have been dissolved in the erupted melt volume just prior to eruption. In both cases workers advocated the existence of a separate gas phase prior to eruption, where much of the subsequently released sulfur was present. Thus, primary igneous anhydrite has been linked with another important phenomenon: excess sulfur release during volcanic eruptions. This presentation will review other developments concerning primary igneous anhydrite since 1982. These include: (1) other examples of primary anhydrite from volcanic samples (Nevado del Ruiz, Colombia; Lascar, Chile; Sutter Buttes, USA; Eagle Mountain, USA; Shiveluch, Russia; (2) examples of primary anhydrite from plutonic samples (Julcani, Peru; Santa Rita, USA; Cajon Pass Scientific Drillhole, USA); (3) laboratory experiments that have expanded our understanding of the T-P-fO2 conditions of anhydrite stability, melt/vapor partition coefficients for sulfur as a function of these

  16. Shock Mounting for Heavy Machines

    NASA Technical Reports Server (NTRS)

    Thompson, A. R.

    1984-01-01

    Elastomeric bearings eliminate extraneous forces. Rocket thrust transmitted from motor to load cells via support that absorbs extraneous forces so they do not affect accuracy of thrust measurements. Adapter spoked cone fits over forward end of rocket motor. Shock mounting developed for rocket engines under test used as support for heavy machines, bridges, or towers.

  17. Cryogenically cooled detector pin mount

    DOEpatents

    Hunt, Jr., William E; Chrisp, Michael P

    2014-06-03

    A focal plane assembly facilitates a molybdenum base plate being mounted to another plate made from aluminum. The molybdenum pin is an interference fit (press fit) in the aluminum base plate. An annular cut out area in the base plate forms two annular flexures.

  18. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-01-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber–dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10–30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  19. Volcanic eruption detection with TOMS

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.

    1987-01-01

    The Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) is designed for mapping of the atmospheric ozone distribution. Absorption by sulfur dioxide at the same ultraviolet spectral wavelengths makes it possible to observe and resolve the size of volcanic clouds. The sulfur dioxide absorption is discriminated from ozone and water clouds in the data processing by their spectral signatures. Thus, the sulfur dioxide can serve as a tracer which appears in volcanic eruption clouds because it is not present in other clouds. The detection limit with TOMS is close to the theoretical limit due to telemetry signal quantization of 1000 metric tons (5-sigma threshold) within the instrument field of view (50 by 50 km near the nadir). Requirements concerning the use of TOMS in detection of eruptions, geochemical cycles, and volcanic climatic effects are discussed.

  20. Chilean Volcanic Eruption Nighttime View

    NASA Image and Video Library

    2015-04-27

    The April 18, 2015 eruption of Calbuco Volcano in Chile, as seen by NASA Terra spacecraft, led to the evacuation of thousands of citizens near the summit, blanketed nearby towns with a layer of ash, and disrupted air traffic. One week later, on April 26, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft acquired this nighttime thermal infrared image of Calbuco. Hot eruptive material at the summit appears in white (hot), with a purple plume streaming to the right, indicating that it is ash-laden. The image covers an area of 3.1 by 4.1 miles (5 by 6.6 kilometers), and is located at 41.3 degrees south, 72.5 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19382

  1. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  2. The 1883 eruption of Krakatau

    NASA Technical Reports Server (NTRS)

    Self, S.; Rampino, M. R.

    1981-01-01

    The 1883 eruption of Krakatau was a modest ignimbrite-forming event. The deposits are primarily coarse-grained dacitic, non-welded ignimbrite. Large explosions produced pyroclastic flows that entered the sea, generating destructive tsunami. Grain-size studies of the ignimbrite suggest that these explosions were not driven by magma-seawater interaction. The total bulk volume of pyroclastic deposits, including co-ignimbrite ash, is estimated to be 18-21 cu km.

  3. Volatiles of Mount St. Helens and their origins

    USGS Publications Warehouse

    Barnes, I.

    1984-01-01

    Analyses have been made of gases in clouds apparently emanating from Mount St. Helens. Despite appearances, most of the water in these clouds does not issue from the volcano. Even directly above a large fumarole ??D and ?? 18O data indicate that only half the water can come from the volcano. Isotopic and chemical evidence also shows the steam in the volcano (-33.0 per mol ??D) from which a condensate of 0.2 N HCI was obtained is not a major cause of the explosions. The steam in the volcano is derived from a metamorphic brine in the underlying Tertiary meta andesite. The gas that caused the explosive eruptions is carbon dioxide. ?? 1984.

  4. Structure and Dynamics of Quiescent Prominence Eruptions

    NASA Astrophysics Data System (ADS)

    Su, Y.; Lu, M.; van Ballegooijen, A.

    2012-05-01

    We present a survey on the fine structure and dynamics of quiescent prominence eruptions observed both on the disk and at the limb. We have identified 45 quiescent prominence eruptions by looking at the SDO (Solar Dynamics Observatory)/AIA (Atmospheric Imaging Assembly) daily movies from April to June in 2011. Among these events, there are 24 symmetric eruptions (coherent loop-like eruptions) and 21 asymmetric eruptions (one footpoint lifts off) as shown by AIA and STEREO/EUVI observations. Vertical filament threads are identified in 10 out of the 45 events, while horizontal threads are observed in almost all eruptions. We find 23 events with twisting/untwisting motions. For 14 selected limb events, we carry out a detailed study of the eruption dynamics using AIA observations at 304 Å. We find that the initial heights of these erupting prominences are located around 50-110 Mm above the limb. The eruptions start from a speed of less than 5 km/s, then increase to several tens km/s in the AIA field of view. The maximum speed of these events is 50 km/s. The acceleration plots show a positive acceleration in the range of 0 to 20 m/s2. No significant difference is identified in the dynamics of the symmetric and asymmetric eruptions.

  5. Geology of Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Fiske, Richard S.; Hopson, Clifford Andrae; Waters, Aaron Clement

    1963-01-01

    Mount Rainier National Park includes 378 square miles of rugged terrain on the west slope of the Cascade Mountains in central Washington. Its mast imposing topographic and geologic feature is glacier-clad Mount Rainier. This volcano, composed chiefly of flows of pyroxene andesite, was built upon alt earlier mountainous surface, carved from altered volcanic and sedimentary rocks invaded by plutonic and hypabyssal igneous rocks of great complexity. The oldest rocks in the park area are those that make up the Olmnapecosh Formation of late Eocene age. This formation is more than 10,000 feet thick, and consists almost entirely of volcanic debris. It includes some lensoid accumulations of lava and coarse mudflows, heaped around volcanic centers., but these are surrounded by vastly greater volumes of volcanic clastic rocks, in which beds of unstratified coarse tuff-breccia, about 30 feet in average thickness, alternate with thin-bedded breccias, sandstones, and siltstones composed entirely of volcanic debris. The coarser tuff-breccias were probably deposited from subaqueous volcanic mudflows generated when eruption clouds were discharged directly into water, or when subaerial ash flows and mudflows entered bodies of water. The less mobile mudflows and viscous lavas built islands surrounded by this sea of thinner bedded water-laid clastics. In compostion the lava flows and coarse lava fragments of the Ohanapecosh Formation are mostly andesite, but they include less abundant dacite, basalt, and rhyolite. The Ohanapecosh Formation was folded, regionally altered to minerals characteristic of the zeolite facies of metamorphism, uplifted, and deeply eroded before the overlying Stevens Ridge Formation of Oligocene or early Miocene age was deposited upon it. The Stevens Ridge rocks, which are about 3,000 feet in maximum total thickness, consist mainly of massive ash flows. These are now devitrified and altered, but they originally consisted of rhyodacite pumice lapilli and glass

  6. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion

    PubMed Central

    McConnell, Joseph R.; Burke, Andrea; Dunbar, Nelia W.; Köhler, Peter; Thomas, Jennie L.; Chellman, Nathan J.; Maselli, Olivia J.; Sigl, Michael; Adkins, Jess F.; Baggenstos, Daniel; Burkhart, John F.; Brook, Edward J.; Buizert, Christo; Cole-Dai, Jihong; Fudge, T. J.; Knorr, Gregor; Graf, Hans-F.; Grieman, Mackenzie M.; Iverson, Nels; McGwire, Kenneth C.; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H.; Saltzman, Eric S.; Steffensen, Jørgen Peder; Taylor, Kendrick C.; Winckler, Gisela

    2017-01-01

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics—similar to those associated with modern stratospheric ozone depletion over Antarctica—plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka. PMID:28874529

  7. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    PubMed

    McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela

    2017-09-19

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

  8. Experiments- Skylab General (Apollo Telescope Mount) S082

    NASA Image and Video Library

    2013-10-23

    S74-15583 (July 1973) --- A huge solar eruption can be seen in this Spectroheliogram obtained during the Skylab 3 mission by the Extreme Ultraviolet Spectrograph/Spectroheliograph SO82A Experiment aboard the Skylab space station in Earth orbit. SO82 is one of the Apollo Telescope Mount experiments. The SO82 "A" instrument covers the wavelength region from 150-650 angstroms (EUV regions). The magnitude of the eruption can be visualized by comparing it with the small white dot that represents the size of Earth. This photograph reveals for the first time that helium erupting from the sun can stay together to altitudes of up to 500,000 miles. After being ejected from the sun, the gas clouds seem to have come to a standstill, as though blocked by an unseen wall. Some materials appear to have been directed back toward the sun as a rain, distinguished by fine threads. At present it is a challenge to explain this mystery--what forces expelled these huge clouds, then blocked its further progress, yet allowed the cloud to maintain its threads. Both magnetic fields and gravity must play a part, but these curious forms seem to defy explanation based on magnetic and gravitational fields alone. The EUV spectroheliograph was designed and constructed by the U.S. Naval Research Laboratory and the Ball Brothers Research Corporation under the direction of Dr. R. Tousey, the principal investigator for this NASA experiment. On the left may be seen the sun's image in emission from iron atoms which have lost 14 electrons by collision in the sun's million-degree coronal plasma gas. Photo credit: NASA

  9. Worldwide environmental impacts from the eruption of Thera

    NASA Astrophysics Data System (ADS)

    Lamoreaux, P. E.

    1995-10-01

    The eruptions of Thera (Santorini) between 1628 and 1450 BC constituted a natural catastrophe unparalleled in all of history. The last major eruption in 1450 BC destroyed the entire Minoan Fleet at Crete at a time when the Minoans dominated the Mediterranean world. In addition, there had to be massive loss of life from ejecta gases, volcanic ash, bombs, and flows. The collapse of a majestic mountain into a caldera 15 km in diameter caused a giant ocean wave, a tsunami, that at its source was estimated in excess of 46 m high. The tsunami destroyed ships as far away as Crete (105 km) and killed thousands of people along the shorelines in the eastern Mediterranean area. At distant points in Asia Minor and Africa, there was darkness from ash fallout, lightning, and destructive earthquakes. Earthquake waves emanating from the epicenter near the ancient volcano were felt as far away as the Norwegian countries. These disturbances caused great physical damage in the eastern Mediterranean and along the rift valley system from Turkey to the south into central Africa. They caused major damage and fires in north Africa from Sinai to Alexandria, Egypt. Volcanic ash spread upward as a pillar of fire and clouds into the atmosphere and blocked out the sun for many days. The ash reached the stratosphere and moved around the world where the associated gases and fine particulate matter impacted the atmosphere, soils, and waters. Ground-hugging, billowing gases moved along the water surface and destroyed all life downwind, probably killing those who attempted to flee from Thera. The deadly gases probably reached the shores of north Africa. Climatic changes were the aftermath of the eruption and the atmospheric plume was to eventually affect the bristlecone pine of California; the bog oaks of Ireland, England, and Germany, and the grain crops of China. Historical eruptions at Krakatau, Tambora, Vesuvius, and, more currently, eruptions at Nevado del Ruiz, Pinatubo, and Mount Saint

  10. Volcanic Eruptions and Climate: Outstanding Research Issues

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  11. Dental eruption sequence among colobine primates.

    PubMed

    Harvati, K

    2000-05-01

    Dental development is one aspect of growth that is linked to diet and to life history but has not been investigated among colobines since the work of Schultz [1935]. This study establishes the dental eruption sequence for several colobine species and compares it to that of other catarrhines. The mandibles and maxillae of two hundred and four juvenile colobine specimens were scored for presence or absence of permanent teeth and for stages of partial eruption. Eruption was defined as ranging between tooth emergence (any part of a tooth crown above the alveolar margin) and full occlusion, with three intermediate levels manifest between these boundaries. In African colobines, represented by C. guereza, C. angolensis and P. badius, M2 erupts before I2, and in C. angolensis it also erupts before I1. The canine is delayed, erupting after the premolars in females and after M3 in males. Asian colobines show greater diversity in eruption sequences. Nasalis shows no early eruption of the molars and is very similar to Macaca. In Trachypithecus and Pygathrix M(2) erupts before I(2). The canine in Trachypithecus is delayed, erupting after the premolars and, in some males, after M3. In Presbytis M2 erupts before both incisors; M3 erupts before C in both sexes, and often before both premolars. Although the actual timing of eruption is unknown, all colobine species examined except N. larvatus showed some degree of relatively early eruption of M2 and M3. The lack of this tendency in Nasalis sets this genus apart from all other colobines represented in this study. Dental eruption sequence is thought to reflect life history patterns. Early molar eruption in colobines was thought by Schultz (1935) to be a primitive character reflecting shorter life history. Faster growth rates found in folivorous primates have been interpreted as being related to an adaptation to folivory (Leigh 1994), and early eruption of molars may be part of this dietary specialization. The relationships between

  12. Sample mounts for microcrystal crystallography

    NASA Technical Reports Server (NTRS)

    Thorne, Robert E. (Inventor); Kmetko, Jan (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor)

    2007-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tapered tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  13. Sample mounts for microcrystal crystallography

    NASA Technical Reports Server (NTRS)

    O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor); Thorne, Robert E. (Inventor); Stum, Zachary (Inventor)

    2009-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  14. Ozone depletion following future volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  15. Characterization of Engine Mount Elastomers

    DTIC Science & Technology

    2005-02-01

    blend of carbon black filled nitrile rubber ( NBR ), polyvinylchloride (PVC), and diisooctyl phthalate (DIOP) that was formulated at PSL (as AMRL 2046...a suitable replacement for natural rubber and neoprene rubber in engine mounts where exposure to hydrocarbon fluids is a concern. The data for NBR ...range 3-7 MPa. The loss factors of the elastomers at 1 Hz, 20oC varied considerably, from 0.02 for natural rubber to 0.27 for ethylene acrylic

  16. MOUNT JEFFERSON PRIMITIVE AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Pattee, Eldon C.

    1984-01-01

    Mineral and reconnaissance geothermal surveys of the Mount Jefferson Primitive Area in the Cascade Range of Oregon indicate little likelihood that metallic or nonmetallic mineral or energy resources exist in the area. Several mining claims, presumably located for gold, are present, but analyses of samples from the claims failed to detect the presence of gold or other valuable metals. Rock for construction purposes is abundantly present, but better and more accessible deposits are available in adjacent areas.

  17. Flux Cancellation Leading to CME Filament Eruptions

    NASA Technical Reports Server (NTRS)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  18. Geomorphic and Sedimentation Investigation of the 15 June 1991 Eruption of Mount Pinatubo, the Philippines

    DTIC Science & Technology

    1994-05-01

    IS45 TABIL WS A•.Wn Sato Tomw River sedia fd c in milion a ....... .- 50 TABLE 8 WACE a PHIVOLCUSGS mdia vtkams in millio c’...... B-54...process. For purposes of economic analysis, the potential deposition reaches were divided into inner and outer zones, and probabilities of being...natural variations in sediment yields that are useful in assessing the potential damages or economic benefits. The internal formulation of the model is

  19. Mounting support for a photovoltaic module

    DOEpatents

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  20. Anaglyph with Landsat Overlay, Mount Meru, Tanzania

    NASA Image and Video Library

    2002-09-12

    This anaglyph, from NASA Shuttle Radar Topography Mission, is of Mount Meru, an active volcano located just 70 kilometers 44 miles west of Mount Kilimanjaro. 3D glasses are necessary to view this image.

  1. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  2. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  3. Large Prominence Eruption (October 3, 2014)

    NASA Image and Video Library

    2017-12-08

    The STEREO (Behind) spacecraft captured this large prominence and corona mass ejection as they erupted into space (Sept. 26, 2014). By combining images from three instruments, scientists can see the eruption itself (in extreme UV light) as well as follow its progression over the period of about 13 hours with its two coronagraphs. Credit: NASA/Goddard/STEREO The STEREO (Behind) spacecraft captured this large prominence and corona mass ejection as they erupted into space (Sept. 26, 2014). By combining images from three instruments, scientists can see the eruption itself (in extreme UV light) as well as follow its progression over the period of about 13 hours with its two coronagraphs.

  4. SOLAR ERUPTION AND LOCAL MAGNETIC PARAMETERS

    SciTech Connect

    Lee, Jeongwoo; Chae, Jongchul; Liu, Chang

    It is now a common practice to use local magnetic parameters such as magnetic decay index for explaining solar eruptions from active regions, but there can be an alternative view that the global properties of the source region should be counted as a more important factor. We discuss this issue based on Solar Dynamics Observatory observations of the three successive eruptions within 1.5 hr from the NOAA active region 11444 and the magnetic parameters calculated using the nonlinear force-free field model. Two violent eruptions occurred in the regions with relatively high magnetic twist number (0.5–1.5) and high decay index (0.9–1.1)more » at the nominal height of the filament (12″) and otherwise a mild eruption occurred, which supports the local-parameter paradigm. Our main point is that the time sequence of the eruptions did not go with these parameters. It is argued that an additional factor, in the form of stabilizing force, should operate to determine the onset of the first eruption and temporal behaviors of subsequent eruptions. As supporting evidence, we report that the heating and fast plasma flow continuing for a timescale of an hour was the direct cause for the first eruption and that the unidirectional propagation of the disturbance determined the timing of subsequent eruptions. Both of these factors are associated with the overall magnetic structure rather than local magnetic properties of the active region.« less

  5. Rootless eruption of a mandibular permanent canine.

    PubMed

    Shapira, Yehoshua; Kuftinec, Mladen M

    2011-04-01

    The purpose of this article was to describe the rootless eruption of a mandibular permanent canine in a 10-year-old boy; his mandible had been fractured in a car accident. The fracture was at the region of the developing canine, resulting in arrested root formation and causing abnormal, rootless eruption. Current theories on tooth eruption and the important role of the dental follicle in the process of eruption are discussed. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  6. Flush Mounting Of Thin-Film Sensors

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  7. Mount St. Helens and Kilauea volcanoes

    USGS Publications Warehouse

    Barrat, J.

    1989-01-01

    From the south, snow-covered Mount St. Helens looms proudly under a fleecy halo of clouds, rivaling the majestic beauty of neighboring Mount Rainer, Mount Hood, and Mount Adams. Salmon fishermen dot the shores of lakes and streams in the mountain's shadow, trucks loaded with fresh-cut timber barrel down backroads, and deer peer out from stands of tall fir trees. 

  8. Building a large magma chamber at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Karlstrom, L.; Bacon, C. R.

    2012-12-01

    Crater Lake caldera, Oregon, a structure produced by the 50 km3 eruption of Mount Mazama ~7.7 ka, is one of only three identified Quaternary calderas in the Cascades volcanic chain (Hildreth 2007). What were the conditions necessary to build a large volume magma chamber capable of producing this caldera-forming eruption at Mount Mazama? Using the well-documented >400,000 year volcanic history at Mazama (Bacon and Lanphere 2006), an approximation of vent locations for each eruptive unit (Bacon 2008), and a compilation of over 900 whole-rock compositions from Mount Mazama and regional volcanic rocks, we examine questions of magma chamber assembly in an active volcanic arc. These questions include: (1) is magmatic input approximately constant in composition between Mazama and regional monogenetic volcanic centers? (2) how did melt evolution differ in the two cases (Mazama vs. regional volcanism)? (3) is there spatiotemporal evidence in eruption data (including eruptive volume and chemistry) for a growing magma chamber at depth? and (4) does stability of that chamber require pre-warming of the surrounding country rock? An assumption of approximately constant major-element composition magmatic input is consistent with observed compositional overlap between basaltic to basaltic andesitic eruptive products at Mount Mazama and its vicinity (within 15 km of the volcano). MELTS modeling (Ghiorso and Sack 1995) from an initial composition of magnesian basaltic andesite of monogenetic Red Cone (erupted at a distance of ~8 km from the climactic vent) is consistent with water-saturated magmatic evolution at relatively shallow depths (<500 MPa, with the caveat that shallow pressure calibration data are largely lacking from MELTS models). Within this pressure range, differences in whole-rock compositions indicate that regional magmatic rocks evolved at shallower depths and/or drier conditions than those at the Mazama center. Observations of eruptive ages, compositions, vent

  9. Morphologic Evolution of the Mount St. Helens Crater Area, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1985-01-01

    The large rockslide-avalanche that preceded the eruption of Mount St. Helens on 18 May 1980 removed approximately 2.8 cubic km of material from the summit and north flank of the volcano, forming a horseshoe-shaped crater 2.0 km wide and 3.9 km long. A variety of erosional and depositional processes, notably mass wasting and gully development, acted to modify the topographic configuration of the crater area. To document this morphologic evolution, a series of annual large-scale topographic maps is being produced as a base for comparitive geomorphic analysis. Four topographic maps of the Mount St. Helens crater area at a scale of 1:4000 were produced by the National Mapping Division of the U. S. Geological Survey. Stereo aerial photography for the maps was obtained on 23 October 1980, 10 September 1981, 1 September 1982, and 17 August 1983. To quantify topographic changes in the study area, each topographic map is being digitized and corresponding X, Y, and Z values from successive maps are being computer-compared.

  10. Mounting Thin Samples For Electrical Measurements

    NASA Technical Reports Server (NTRS)

    Matus, L. G.; Summers, R. L.

    1988-01-01

    New method for mounting thin sample for electrical measurements involves use of vacuum chuck to hold a ceramic mounting plate, which holds sample. Contacts on mounting plate establish electrical connection to sample. Used to make electrical measurements over temperature range from 77 to 1,000 K and does not introduce distortions into magnetic field during Hall measurements.

  11. Holding fixture for metallographic mount polishing

    DOEpatents

    Barth, C.H.; Cramer, C.E.

    1997-12-30

    A fixture is described for holding mounted specimens for polishing, having an arm; a body attached to one end of the arm, the body having at least one flange having an opening to accommodate a mounted specimen; and a means applying pressure against the outer surface of the mounted specimen to hold the specimen in contact with the polishing surface. 3 figs.

  12. Holding fixture for metallographic mount polishing

    DOEpatents

    Barth, Clyde H.; Cramer, Charles E.

    1997-01-01

    A fixture for holding mounted specimens for polishing, having an arm; a body attached to one end of the arm, the body having at least one flange having an opening to accommodate a mounted specimen; and a means applying pressure against the outer surface of the mounted specimen to hold the specimen in contact with the polishing surface.

  13. Reducing the risk of potential hazard in tourist activities of Mount Bromo

    NASA Astrophysics Data System (ADS)

    Meilani, R.; Muthiah, J.; Muntasib, E. K. S. H.

    2018-05-01

    Mount Bromo has been crowned as one of the most beautiful mountains in the world, having a particular landscape uniqueness. Not only volcano, Bromo also has savanna, sea of sands, and culture of Tengger tribe. Its panoramic landscape has attracted a large number of tourists, both domestic and foreign, despites the threat of eruption. To ensure tourists safety and satisfaction, the potentials hazard, both from eruption and other features should be managed carefully. The study objective was to identify and map hazard potentials and identify the existing hazard management. It was carried out in Mei – June 2017. Lava, tephra, eruption cloud, ash, earthquake, land sliding, extreme weather, slope, transportation modes (jeep, motorcycle, and horse), human, and land fire were found as potential hazards in Mount Bromo. Five locations had been identified as hazard area in the tourism areas, i.e. savanna, sea of sand, Bromo caldera and Pananjakan I trail and viewing point. Early warning system should be developed as part of hazard management in the area. Capacity building of local stakeholders and visitors would be needed to reduce risk of the hazard.

  14. Microfilament-Eruption Mechanism for Solar Spicules

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2017-01-01

    Recent studies indicate that solar coronal jets result from eruption of small-scale filaments, or "minifilaments" (Sterling et al. 2015, Nature, 523, 437; Panesar et al. ApJL, 832L, 7). In many aspects, these coronal jets appear to be small-scale versions of long-recognized large-scale solar eruptions that are often accompanied by eruption of a large-scale filament and that produce solar flares and coronal mass ejections (CMEs). In coronal jets, a jet-base bright point (JBP) that is often observed to accompany the jet and that sits on the magnetic neutral line from which the minifilament erupts, corresponds to the solar flare of larger-scale eruptions that occurs at the neutral line from which the large-scale filament erupts. Large-scale eruptions are relatively uncommon (approximately 1 per day) and occur with relatively large-scale erupting filaments (approximately 10 (sup 5) kilometers long). Coronal jets are more common (approximately 100s per day), but occur from erupting minifilaments of smaller size (approximately 10 (sup 4) kilometers long). It is known that solar spicules are much more frequent (many millions per day) than coronal jets. Just as coronal jets are small-scale versions of large-scale eruptions, here we suggest that solar spicules might in turn be small-scale versions of coronal jets; we postulate that the spicules are produced by eruptions of "microfilaments" of length comparable to the width of observed spicules (approximately 300 kilometers). A plot of the estimated number of the three respective phenomena (flares/CMEs, coronal jets, and spicules) occurring on the Sun at a given time, against the average sizes of erupting filaments, minifilaments, and the putative microfilaments, results in a size distribution that can be fitted with a power-law within the estimated uncertainties. The counterparts of the flares of large-scale eruptions and the JBPs of jets might be weak, pervasive, transient brightenings observed in Hinode/CaII images, and

  15. The 2014 eruptions of Pavlof Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  16. El Cobreloa: A geyser with two distinct eruption styles

    NASA Astrophysics Data System (ADS)

    Namiki, Atsuko; Muñoz-Saez, Carolina; Manga, Michael

    2014-08-01

    We performed field measurements at a geyser nicknamed "El Cobreloa," located in the El Tatio Geyser Field, Northern Andes, Chile. The El Cobreloa geyser has two distinct eruption styles: minor eruptions and more energetic and long-lived major eruptions. Minor eruptions splash hot water intermittently over an approximately 4 min time period. Major eruptions begin with an eruption style similar to minor eruptions, but then transition to a voluminous liquid water-dominated eruption, and finally end with energetic steam discharge that continues for approximately 1 h. We calculated eruption intervals by visual observations, acoustic measurements, and ground temperature measurements and found that each eruption style has a regular interval: 4 h and 40 min for major eruptions and ˜14 min for minor eruptions. Eruptions of El Cobreloa and geochemical measurements suggest interaction of three water sources. The geyser reservoir, connected to the surface by a conduit, is recharged by a deep, hot aquifer. More deeply derived magmatic fluids heat the reservoir. Boiling in the reservoir releases steam and hot liquid water to the overlying conduit, causing minor eruptions, and heating the water in the conduit. Eventually the water in the conduit becomes warm enough to boil, leading to a steam-dominated eruption that empties the conduit. The conduit is then recharged by a shallow, colder aquifer, and the eruption cycle begins anew. We develop a model for minor eruptions which heat the water in the conduit. El Cobreloa provides insight into how small eruptions prepare the geyser system for large eruptions.

  17. Flux Cancellation Leading to Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Popescu, R. M.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2016-12-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to 100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable by either magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both onboard the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions and find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two events in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field and are in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  18. Inherited retarded eruption in the permanent dentition.

    PubMed

    Rasmussen, P; Kotsaki, A

    1997-01-01

    The term retarded eruption, may be used in cases where eruption is inhibited, causing an interruption in the coordination of tooth formation and tooth eruption. The phenomenon may be local or general, and several etiological factors for retarded eruption have been listed, comprising a lack of space, ankylosis, cysts, supernumerary teeth, hormone and vitamin deficiencies and several developmental disturbances and syndromes. The present paper describes several cases of retarded eruption where no factors other than inheritance have been evident. So far 14 cases have been evaluated, 9 boys and 5 girls. In addition several cases have been registered among parents and grandparents of the probands. Typical features are: retarded eruption, defined as more than 3 SD beyond mean eruption figures, comprises all teeth in the permanent dentition, and in 5 cases also second primary molars. The chronology of tooth formation are within normal limits. Consequently the teeth finish development still laying deeply buried in the jaws, often in aberrant positions and with curves or hooks on the roots. When the teeth finally get the "signal" for eruption, 5-15 years beyond normal eruption time, they move rather quickly into right positions, despite the long eruption paths and the hooked roots. Permanent teeth without, as well as with predecessors, are affected. Extraction of predecessors does not seem to provoke eruption. The main features in management are to take care of the primary teeth, to improve-esthetics, and offer surgery and orthodontics when needed. Analyses of pedigrees indicates that the genetic transmittance may be autosomal dominant as both sexes are affected, about half of the siblings show the trait, and the trait shows continuity through generations.

  19. Apparent Brecciation Gradient, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hawkins, A. T.; Johnson, S. E.

    2004-05-01

    Mount Desert Island, Maine, comprises a shallow level, Siluro-Devonian igneous complex surrounded by a distinctive breccia zone ("shatter zone" of Gilman and Chapman, 1988). The zone is very well exposed on the southern and eastern shores of the island and provides a unique opportunity to examine subvolcanic processes. The breccia of the Shatter Zone shows wide variation in percent matrix and clast, and may represent a spatial and temporal gradient in breccia formation due to a single eruptive or other catastrophic volcanic event. The shatter zone was divided into five developmental stages based on the extent of brecciation: Bar Harbor Formation, Sols Cliffs breccia, Seeley Road breccia, Dubois breccia, and Great Head breccia. A digital camera was employed to capture scale images of representative outcrops using a 0.5 m square Plexiglas frame. Individual images were joined in Adobe Photoshop to create a composite image of each outcrop. The composite photo was then exported to Adobe Illustrator, which was used to outline the clasts and produce a digital map of the outcrop for analysis. The fractal dimension (Fd) of each clast was calculated using NIH Image and a Euclidean distance mapping method described by Bérubé and Jébrak (1999) to quantify the morphology of the fragments, or the complexity of the outline. The more complex the fragment outline, the higher the fractal dimension, indicating that the fragment is less "mature" or has had less exposure to erosional processes, such as the injection of an igneous matrix. Sols Cliffs breccia has an average Fd of 1.125, whereas Great Head breccia has an average Fd of 1.040, with the stages between having intermediate values. The more complex clasts of the Sols Cliffs breccia with a small amount (26.38%) of matrix material suggests that it is the first stage in a sequence of brecciation ending at the more mature, matrix-supported (71.37%) breccia of Great Head. The results of this study will be used to guide isotopic

  20. Jupiter Eruptions Captured in Infrared

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover

    Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers.

    This infrared image shows two bright plume eruptions obtained by the NASA Infrared Telescope Facility on April 5, 2007.

    Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena.

    According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vigorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  1. Palifermin-associated papular eruption.

    PubMed

    King, Brett; Knopp, Eleanor; Galan, Anjela; Nuovo, Gerard; Tigelaar, Robert; McNiff, Jennifer

    2009-02-01

    Palifermin is a recombinant human keratinocyte growth factor that is used to reduce the duration and severity of oral mucositis in patients undergoing hematopoietic stem cell transplantation after myelotoxic therapy. Cutaneous adverse reactions associated with keratinocyte growth factor are reported to be rash, pruritus, and erythema. After receiving palifermin following autologous hematopoietic stem cell transplantation and treatment with melphalan, a patient developed erythema and lichenoid papules that were distributed primarily in intertriginous areas. A biopsy specimen of the papules showed a striking resemblance to verrucae, but in situ hybridization studies were negative for human papillomavirus. Immunohistochemical staining with antibodies to Ki-67 and cytokeratin 5/6 showed increased keratinocyte proliferation in lesional skin. After treatment with palifermin, a papular eruption clinically resembling lichen planus or plane warts, with histologic features of verruca plana, and intertriginous erythema may occur. In this case, neither eruption required treatment, and spontaneous resolution was observed over days to weeks. Histopathologic staining patterns of Ki-67 and cytokeratin 5/6 may be useful in identifying adverse reactions to palifermin therapy.

  2. Textural and geochemical constraints on eruptive style of the 79AD eruption at Vesuvius

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, Hélène; Boudon, Georges; Villemant, Benoît.

    2010-05-01

    The 79AD eruption of Vesuvius, also known as the "Pompeii eruption", is the reference for one of the explosive eruptive styles, the plinian-type eruption. The eruption involved H2O-rich phonolitic magmas and is commonly divided into three phases: an initial phreatomagmatic phase, followed by a plinian event which produced a thick pumice fallout deposit and a final phase that was dominated by numerous column-collapse events. During the plinian phase, a first white pumice fallout was produced from a high steady eruptive column, followed by a grey pumice fallout originated by an oscillatory eruptive column with several partial column collapse events. This study focuses on the pumice fallout deposits, sampled in a proximal thick section, at the Terzigno quarry, 6 km southeast of the present crater. In order to constrain the degassing processes and the eruptive dynamics, major element compositions, residual volatile contents (H2O, Cl) and textural characteristics (vesicularity and microcrystallinity) were studied. A previous study that we pe