Mountain Weather and Climate, Third Edition
NASA Astrophysics Data System (ADS)
Hastenrath, Stefan
2009-05-01
For colleagues with diverse interests in the atmosphere, glaciers, radiation, landforms, water resources, vegetation, human implications, and more, Mountain Weather and Climate can be a valuable source of guidance and literature references. The book is organized into seven chapters: 1, Mountains and their climatological study; 2,Geographical controls of mountain meteorological elements; 3, Circulation systems related to orography; 4, Climatic characteristics of mountains; 5, Regional case studies; 6, Mountain bioclimatology; and 7, Changes in mountain climates. These chapters are supported by l78 diagrams and photographs, 47 tables, and some 2000 literature references. The volume has an appendix of units and energy conversion factors and a subject index, but it lacks an author index.
S. Karen Dante-Wood
2018-01-01
The Northern Rockies Adaptation Partnership (NRAP) is a science-management partnership among the Forest Service, U.S. Department of Agriculture (USFS) regional offices and national forests (mostly in the Northern Region, and small portions of the Intermountain and Rocky Mountain Regions); USFS Pacific Northwest and Rocky Mountain Research Stations; Glacier, Yellowstone...
Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste
Levich, R.A.; Stuckless, J.S.
2006-01-01
Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.
Climate change, fish, and aquatic habitat in the Blue Mountains [Chapter 5
Daniel J. Isaak; Katherine Ramsey; John C. Chatel; Deborah L. Konnoff; Robert A. Gecy; Dona Horan
2017-01-01
National Forest System lands in the Blue Mountains region support a diversity of important native aquatic species that will be affected by climate change. As part of the Blue Mountains Adaptation Partnership, four of these species (spring Chinook salmon (Oncorhynchus tshawytscha Walbaum in Artedi), bull trout (Salvelinus confluentus Suckley), summer steelhead (O....
Overview of the Future Forest Webinar Series [Chapter 1
Sarah Hines; Megan Matonis
2014-01-01
The Future Forest Webinar Series was created to facilitate dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle1 (MPB) epidemic. A core team of scientists and managers from the USFS Rocky Mountain Research Station and the Northern and Rocky Mountain Regions worked together to develop the format and content...
The San Franciscan volcanic field, Arizona
Robinson, Henry Hollister
1913-01-01
LOCATION OF AREAThe San Franciscan volcanic field, which takes its name from San Francisco Mountain, the largest volcano of the group, covers about 3,000 square miles in the north-central part of Arizona, as shown by the shaded space on the index map forming figure 1. The center of the field lies about 50 miles south of the Grand Canyon of the Colorado and the southern boundary is in part coterminous with that of the San Francisco Plateau, which forms the southwestern division of the great Colorado Plateau.The region is easily reached, for the main line of the Atchison, Topeka, & Santa Fe Railway traverses it from east to west for more than 60 miles. Flagstaff, a town of 1,500 inhabitants 10 miles south of the summit of San Francisco Mountain, is on the railroad, amid a branch line runs from Williams, 34 miles farther west, to the Grand Canyon. All the more important points of interest in the field may be reached without difficulty by wagon, and outfits may be obtained at Flagstaff.OUTLINE OF THE REPORTThis report deals primarily with the volcanic phenomena of the region as determined in the field and laboratory. Chapter I contains a brief description of the geography of the field and Chapter II is devoted largely to the sedimentary formations and structure. The rest of the report Chapters III to VI—treats entirely of the various features of the volcanoes and igneous rocks, both individually and collectively. Detailed descriptions of the volcanoes and lava fields are given in Chapter III; the volcanic history of the region and its correlation with the general history of the surrounding country are presented in Chapter IV. These two chapters will presumably suffice for the general reader who may desire to become acquainted with the broader volcanic features of the region. Chapter V (Petrography) is devoted entirely to the detailed description of the individual igneous rocks of the region, as represented by a selected set of type specimens. In Chapter VI (Petrology) is presented a discussion of the igneous rocks considered collectively—that is, as a series of genetically related members. These last two chapters will be more especially interesting to petrologists, although there is considerable matter in the last chapter which may also be of interest to the general reader.EXTENT OF FIELD WORKThe field work on which the report is based was carried on during the summers of 1901 to 1903, a portion of the time, however, being occupied by side trips to the Grand Canyon of the Colorado, the Verde Valley, and the Moqui Buttes. It was the original intention to study only San Francisco Mountain, but scattered observations made during the first summer at other localities, especially at Elden Mountain and Kendrick Peak, seemed to indicate that the region would repay wider study. The work was accordingly extended so as to embrace all the large cones that lie in the vicinity of San Francisco Mountain and some 2,000 square miles of the surrounding plateau country. The more detailed work was confined to the large cones and the laccoliths, as they presented the greatest variety of phenomena within the smallest space. Reconnaissance work was carried on in the surrounding country more especially for the purpose of determining the limits of the widespread basalt flows, their relation to the underlying sedimentary formations, and the character of those formations.
Volcanism Studies: Final Report for the Yucca Mountain Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce M. Crowe; Frank V. Perry; Greg A. Valentine
1998-12-01
This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period ofmore » a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit« less
SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, F. V.; Crowe, G. A.; Valentine, G. A.
1997-09-23
This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certaintymore » but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies.« less
Status of volcanism studies for the Yucca Mountain Site Characterization Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.; Perry, F.; Murrell, M.
1995-02-01
Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detailmore » because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.« less
Biogeographic, cultural, and historical setting of the Northern Rocky Mountains [Chapter 2
S. Karen Dante-Wood
2018-01-01
The Northern Rockies Adaptation Partnership (NRAP) includes diverse landscapes, ranging from high mountains to grasslands, from alpine glaciers to broad rivers (fig. 1.1). This region, once inhabited solely by Native Americans, has been altered by two centuries of settlement by Euro- Americans through extractive practices such as timber harvest, grazing, and mining,...
Williams, Richard S.; Ferrigno, Jane G.
2010-01-01
This chapter is the ninth to be released in U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, a series of 11 chapters. In each of the geographic area chapters, remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, are used to analyze the specific glacierized region of our planet under consideration and to monitor glacier changes. Landsat images, acquired primarily during the middle to late 1970s and early 1980s, were used by an international team of glaciologists and other scientists to study various geographic regions and (or) to discuss related glaciological topics. In each glacierized geographic region, the present areal distribution of glaciers is compared, wherever possible, with historical information about their past extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of a growing international scientific effort to measure global environmental change on the Earth?s surface. The chapter is divided into seven geographic parts and one topical part: Glaciers of the Former Soviet Union (F-1), Glaciers of China (F-2), Glaciers of Afghanistan (F?3), Glaciers of Pakistan (F-4), Glaciers of India (F-5), Glaciers of Nepal (F?6), Glaciers of Bhutan (F-7), and the Paleoenvironmental Record Preserved in Middle-Latitude, High-Mountain Glaciers (F-8). Each geographic section describes the glacier extent during the 1970s and 1980s, the benchmark time period (1972-1981) of this volume, but has been updated to include more recent information. Glaciers of the Former Soviet Union are located in the Russian Arctic and various mountain ranges of Russia and the Republics of Georgia, Kyrgyzstan, Tajikistan, and Kazakstun. The Glacier Inventory of the USSR and the World Atlas of Ice and Snow Resources recorded a total of 28,881 glaciers covering an area of 78,938 square kilometers (km2). China includes many of the mountain-glacier systems of the world including the Himalaya, Karakorum, Tien Shan and Altay mountain ranges. The glaciers are widely scattered and cover an area of about 59,425 km2. The mountain glaciers may be classified as maritime, subcontinental or extreme continental. In Afghanistan, more than 3,000 small glaciers occur in the Hindu Kush and Pamir mountains. Most glaciers occur on north-facing slopes shaded by mountain peaks and on east and southeast slopes that are shaded by monsoon clouds. The glaciers provide vital water resources to the region and cover an area of about 2,700 km2. Glaciers of northern Pakistan are some of the largest and longest mid-latitude glaciers on Earth. They are located in the Hindu Kush, Himalaya, and Karakoram mountains and cover an area of about 15,000 km2. Glaciers here are important for their role in providing water resources and their hazard potential. The glaciers in India are located in the Himalaya and cover about 8,500 km2. The Himalaya contains one of the largest reservoirs of snow and ice outside the polar regions. The glaciers are a major source of fresh water and supply meltwater to all the rivers in northern India, thereby affecting the quality of life of millions of people. In Nepal, the glaciers are located in the Himalaya as individual glaciers; the glacierized area covers about 5,324 km2. The region is the highest mountainous region on Earth and includes the Mt. Everest region. Glaciers in the Bhutan Himalaya have a total area of about 1,317 km2. Many recent glacier studies are focused on glacier lakes that have the potential of generating dangerous glacier lake outburst floods. Research on the glaciers of the middle-latitude, high-mountain glaciers of Asia has also focused on the information contained in the ice cores from the glaciers. This information helps in the reconstruction of paleoclimatic records, and the computer modeling of global climate change.
Climate change and the Rocky Mountains: Chapter 20
Byrne, James M.; Fagre, Daniel B.; MacDonald, Ryan; Muhlfeld, Clint C.
2014-01-01
For at least half of the year, the Rocky Mountains are shrouded in snow that feeds a multitude of glaciers. Snow and ice eventually melt into rivers that have eroded deep valleys that contain rich aquatic and terrestrial ecosystems. Because the Rocky Mountains are the major divide on the continent, rainfall and melt water from glaciers and snowfields feed major river systems that run to the Pacific, Atlantic, and Arctic oceans. The Rockies truly are the water tower for much of North America, and part of the Alpine backbone of North and South America. For purposes of this chapter, we limit our discussion to the Rocky Mountains of the Canadian provinces of Alberta and British Columbia, and the U.S. states of Montana, Idaho, Wyoming, and Colorado. Similar to other mountain systems, the altitude of the Rocky Mountains condenses the weather, climate and ecosystems of thousands of kilometres of latitude into very short vertical distances. In one good day, a strong hiker can journey by foot from the mid-latitude climates of the great plains of North America to an arctic climate near the top of Rocky Mountain peaks. The steep climatic gradients of mountain terrain create some of the most diverse ecosystems in the world, but it is those rapid changes in microclimate and ecology that make mountains sensitive to climate change. The energy budget in mountains varies dramatically not only with elevation but with slope and aspect. A modest change in the slope of the terrain over short distances may radically change the solar radiation available in that location. Shaded or north facing slopes have very different microclimates than the same elevations in a sunlit location, or for a hill slope facing south. The complexities associated with the mountain terrain of the Rockies compound complexities of weather and climate to create diverse, amazing ecosystems. This chapter addresses the impacts of climate change on Rocky Mountain ecosystems in light of their complexities and sensitivities. The chapter emphasizes how climate change affects aquatic resources of the Rockies because they are impacted so directly by the changing snow and ice regimes. The chapter also suggests some approaches for coping with these impacts. Climate change is real and ever present, and the role of each of us in changing the climate is also real and present. The Rocky Mountains are a vast and complex region that is valuable both for resources and ecosystems, but the Rockies cannot provide the valuable resources we need, unless we protect and conserve mountain ecosystems. Hopefully this discussion of the major changes ongoing in the Rocky Mountains due to climate change will add to the collective societal will to minimize this change in the future.
Effects of climate change on recreation in the Northern Rockies Region [Chapter 10
Michael S. Hand; Megan Lawson
2018-01-01
Outdoor recreation is an important benefit provided by Federally managed and other public lands throughout the Rocky Mountains. National forests in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and Greater Yellowstone Area (a region hereafter called the Northern Rockies region) have an estimated 13.3 million visits per year; Yellowstone,...
Ground-water levels in intermontane basins of the northern Rocky Mountains, Montana and Idaho
Briar, David W.; Lawlor, S.M.; Stone, M.A.; Parliman, D.J.; Schaefer, J.L.; Kendy, Eloise
1996-01-01
The Regional Aquifer-System Analysis (RASA) program is a series of studies by the U.S. Geological Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nation's water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study regions in this national program. The main objectives of the RASA studies are to (1) describe the groundwater systems as they exist today, (2) analyze the known changes that have led to the systems present condition, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide means by which effects of future ground-water development can be estimated.The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of the intermontane basins of the Northern Rocky Mountains area. This report is Chapter B of a three-part series and shows the general distribution of ground-water levels in basin-fill deposits in the study area. Chapter A (Tuck and others, 1996) describes the geologic history and generalized hydrogeologic units. Chapter C (Clark and Dutton, 1996) describes the quality of ground and surface waters in the study area.Ground-water levels shown in this report were measured primarily during summer 1991 and summer 1992; however, historical water levels were used for areas where more recent data could not be obtained. The information provided allows for the evaluation of general directions of ground-water flow, identification of recharge and discharge areas, and determination of hydraulic gradients within basin-fill deposits.
Clayton D. Apps
2000-01-01
Snowshoe hares are considered the primary prey of Canada lynx throughout their range. Relative to northern populations, hares occurring in mountainous regions at southern latitudes are thought to remain at low and stable densities through time. Hence, the ecology of associated southern lynx populations is expected to resemble that of northern populations during the low...
L.H. Pardo; C.L. Goodale; E.A. Lilleskov; L.H. Geiser
2011-01-01
The Northern Forests ecological region spans much of Canada, from Saskatchewan to Newfoundland; its southern portion extends into the northern United States (CEC 1997). The U.S. component includes the northern hardwood and spruce-fir forest types and encompasses parts of the Northeast (mountainous regions in Pennsylvania, New York, New Jersey, Connecticut,...
Historical and projected climate [Chapter 3
Linda A. Joyce; Marian Talbert
2018-01-01
The Intermountain Adaptation Partnership (IAP) region is characterized by extreme temperatures and precipitation; it is home to some of the driest, hottest, and coldest locations in the conterminous United States. The region has numerous mountain ranges, high-elevation basins and valleys, and low-elevation mesas and canyons. Climate is influenced by this diverse and...
Biogeographic, cultural, and historical setting [Chapter 2
Hanna K. Olson; Don W. Fallon
2018-01-01
The Intermountain Adaptation Partnership (IAP) encompasses unique landscapes within the Intermountain Region of the U.S. Forest Service (USFS), from rugged mountains to deep canyons, from alpine snowfields to wild and scenic rivers (fig. 1.1). The area defined by the boundaries of the Intermountain Region contains both private and Federally owned lands, including 12...
Geology of the Yucca Mountain region
Stuckless, J.S.; O'Leary, Dennis W.
2006-01-01
Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.
Effects of Climatic Variability and Change on Upland Vegetation in the Blue Mountains [Chapter 6].
Becky K. Kerns; David C. Powell; Sabine Mellmann-Brown; Gunnar Carnwath; John Kim
2017-01-01
The Blue Mountains ecoregion (BME) extends from the Ochoco Mountains in central Oregon to Hells Canyon of the Snake River in extreme northeastern Oregon and adjacent Idaho, and then north to the deeply carved canyons and basalt rimrock of southeastern Washington (see fig. 1.1 in chapter 1). The BME consists of a series of mountain ranges occurring in a southwest to...
Effects of Climate Change on Cultural Resources in the Northern Rockies Region [Chapter 12
Carl M. Davis
2018-01-01
People have inhabited the Northern Rocky Mountains of the United States since the close of the last Pleistocene glacial period, some 14,000 years B.P. (Fagan 1990; Meltzer 2009). Evidence of this ancient and more recent human occupation is found throughout the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, J.L.
The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)
1980-12-01
PARMER COUNTY, TX. FAmt- M R LUNG IE ’ ALEA LONG Tam NATIVE *-X INUCED CHNGE NATIVE N-x INDE CANG 0( above normal growth baseline) ( above normal...your family, the clean air to see the next mountain and the freedom to climb it. The concerns expressed by local residents about population growth and... mountain passes, where capacity is severely reduced by steep grades and winding alignment, congestion might occur at times due to slow moving trucks
C.M. Clark
2011-01-01
The North American Great Plains are the largest contiguous ecoregion in North America, covering 3.5 million square km2, or 16 percent of the continental area (CEC 1997). In the United States, the Great Plains ecoregion encompasses a roughly triangular region (Figure 2.2), bordered on the west by the Rocky Mountains and the southwestern deserts in...
Sleeter, Benjamin M.; Calzia, James P.
2012-01-01
The Klamath Mountains Ecoregion covers approximately 47,791 km2 (18,452 mi2) of the Klamath and Siskiyou Mountains of northern California and southern Oregon (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is flanked by the Coast Range Ecoregion to the west, the Southern and Central California Chaparral and Oak Woodlands Ecoregion to the south, the Cascades and the Eastern Cascades Slopes and Foothills Ecoregions to the east, and the Willamette Valley Ecoregion to the north. The mild Mediterranean climate of the ecoregion is characterized by hot, dry summers and wet winters; the amount of winter moisture varies within the ecoregion, decreasing from west to east. The Klamath–Siskiyou Mountains region is widely recognized as an important biodiversity hotspot (Whittaker, 1960; Kruckeberg, 1984; Wagner, 1997; DellaSala and others, 1999), containing more than 3,500 plant species, more than 200 of which are endemic (Sawyer, 2007). A biological assessment by DellaSala and others (1999) ranked the Klamath–Siskiyou Mountains region as the fifth richest coniferous forest in terms of species diversity. In addition, the International Union for the Conservation of Nature considers the region an area of notable botanical importance (Wagner, 1997). Twenty-nine different species of conifers can be found in the Klamath Mountains Ecoregion (Sawyer, 1996).
NASA Astrophysics Data System (ADS)
Almeida, Rafael V.
The central Basin and Range Province of Nevada and Utah was one of the first areas in which the existence of widespread low-angle normal faults or detachments was first recognized. The magnitude of associated crustal extension is estimated by some to be large, in places increasing original line lengths by as much as a factor of four. However, rock mechanics experiments and seismological data cast doubt on whether these structures slipped at low inclination in the manner generally assumed. In this dissertation, I review the evidence for the presence of detachment faults in the Lake Mead and Beaver Dam Mountains areas and place constraints on the amount of extension that has occurred there since the Miocene. Chapter 1 deals with the source-provenance relationship between Miocene breccias cropping out close to Las Vegas, Nevada and their interpreted source at Gold Butte, currently located 65 km to the east. Geochemical, geochronological and thermochronological data provide support for that long-accepted correlation, though with unexpected mismatches requiring modification of the original hypothesis. In Chapter 2, the same data are used to propose a refinement of the timing of ~1.45 Ga anorogenic magmatism, and the distribution of Proterozoic crustal boundaries. Chapter 3 uses geophysical methods to address the subsurface geometry of faults along the west flank of the Beaver Dam Mountains of southwestern Utah. The data suggest that the range is bounded by steeply inclined normal faults rather than a regional-scale detachment fault. Footwall folding formerly ascribed to Miocene deformation is reinterpreted as an expression of Cretaceous crustal shortening. Fission track data presented in Chapter 4 are consistent with mid-Miocene exhumation adjacent to high-angle normal faults. They also reveal a protracted history dating back to the Pennsylvanian-Permian time, with implications for the interpretation of other basement-cored uplifts in the region. A key finding of this dissertation is that the magnitude of crustal extension in this region has been overestimated. The pre-extensional width was increased by a factor of two across Lake Mead, through a combination of high-angle normal faulting and strike-slip deformation. Data from the transect across the Beaver Dam Mountains suggest substantially less extension, with the difference accommodated for the most part by displacement on the intervening Las Vegas Valley Shear Zone. The Colorado Plateau-Basin and Range transition zone may be a long-lived tectonic boundary where this assumption may be especially ill-suited.
2008-04-01
Utah, Washington, and Wyoming. DISCLAIMER: The contents of this report are not to be used for advertising , publication, or promotional purposes...Paragraph 48, including Table 5 and the accompanying User Note in the online version of the Manual Chapter 5, Wetlands that Pe- riodically Lack...online_surveys/ and soil maps and data are available online at http://websoilsurvey.nrcs.usda.gov/. Most de- tailed soil surveys in the region are mapped at
Paleozoic and mesozoic GIS data from the Geologic Atlas of the Rocky Mountain Region: Volume 1
Graeber, Aimee; Gunther, Gregory
2017-01-01
The Rocky Mountain Association of Geologists (RMAG) is, once again, publishing portions of the 1972 Geologic Atlas of the Rocky Mountain Region (Mallory, ed., 1972) as a geospatial map and data package. Georeferenced tiff (Geo TIFF) images of map figures from this atlas has served as the basis for these data products. Shapefiles and file geodatabase features have been generated and cartographically represented for select pages from the following chapters:• Phanerozoic Rocks (page 56)• Cambrian System (page 63)• Ordovician System (pages 78 and 79)• Silurian System (pages 87 - 89)• Devonian System (pages 93, 94, and 96 - 98)• Mississippian System (pages 102 and 103)• Pennsylvanian System (pages 114 and 115)• Permian System (pages 146 and 149 - 154)• Triassic System (pages 168 and 169)• Jurassic System (pages 179 and 180)• Cretaceous System (pages 197 - 201, 207 - 210, 215, - 218, 221, 222, 224, 225, and 227).The primary purpose of this publication is to provide regional-scale, as well as local-scale, geospatial data of the Rocky Mountain Region for use in geoscience studies. An important aspect of this interactive map product is that it does not require extensive GIS experience or highly specialized software.
Climate vulnerability of native cold-water salmonids in the Northern Rockies Region [Chapter 5
Michael K. Young; Daniel J. Isaak; Scott Spaulding; Cameron A. Thomas; Scott A. Barndt; Matthew C. Groce; Dona Horan; David E. Nagel
2018-01-01
During the 21st century, climate change is expected to alter aquatic habitats throughout the Northern Rocky Mountains, intermountain basins, and western Great Plains. Particularly in montane watersheds, direct changes are likely to include warmer water temperatures, earlier snowmelt-driven runoff, earlier declines to summer baseflow, downhill movement of perennial...
Chapter 6: Creating a basis for watershed management in high elevation forests
Gerald J. Gottfried; Leonard F. DeBano; Peter F. Ffolliott
1999-01-01
Higher mountains and plateaus in the Central Arizona Highlands generally support southwestern mixed conifer forests, associated aspen and spruce-fir forests, and a small acreage of grasslands interspersed among the forested areas. Most of the major rivers in the region originate on headwater watersheds that support mixed conifer forests where annual precipitation,...
Follansbee, Robert
1925-01-01
Records of run-off in the Rocky Mountain States since the nineties and for a few stations since the eighties afford a means of studying the variation in the annual run-off in this region. The data presented in this report show that the variation in annual run-off differs in different areas in the Rocky Mountain region, owing to the differences in the sources of the precipitation in these areas. Except in the drainage basins of streams in northern Montana the year of lowest run-off shown by the records was 1902, when the run-ff at one station was only 36 per cent of the mean run-ff for the periods covered by the several records available. The percentage variation of run-ff for streams in different parts of Colorado is less for any one year than that for streams in the mountain region as a whole, and for streams in the same major drainage basin the annual variation is markedly similar. The influence of topography upon variation in annual run-ff for streams in Colorado is marked, the streams that rise in the central mountain region having a smaller range in variation than the streams that rise on the eastern or western edges of the central mountain mass. The streams that rise on the plains just east of the mountains have a greater variation than those of any of the mountain groups. The ratio of any 10-year mean to the mean for the entire period covered by the records ranges from 72 to 133 per cent. For the South Platte, Arkansas, and Rio Grande the run-off during the nineties was below the normal, but since about 1903 it has been above normal. For the Cache la Poudre low-water periods occurred during the eighties and from 1905 to 1922, but during the nineties the run-off was above the normal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1988-12-01
This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Planmore » for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 68 figs., 102 tabs.« less
2010-05-01
application of irrigation water can alter soil characteristics (e.g., color, redox features, and salt content) and vegetation of affected areas. Long... affected areas in both intended and unintended ways, through leakage of water from delivery channels and ditches, application of water to irrigated...indicators described in this chapter. Many factors in addition to site wetness affect the composition of the plant community in an area, including
Contributions of studies on experimental forests to hydrology and watershed management [Chapter 14
Gerald J. Gottfried; Peter F. Ffolliott; Kenneth N. Brooks; Randall K. Kolka; Carol B. Raish; Daniel G. Neary
2014-01-01
The link between healthy forests and watersheds and healthy streamflow and quality water is universally recognized. The major rivers of the USA originate in the forested mountains of the western and eastern USA and the glaciated regions of the Lake States and Great Plains and produce almost two-thirds of the nationâs clean water supply. Original logging and...
Human aspects of air quality in the San Bernardino Mountains
P.L. Winter
1999-01-01
The preceding chapters of this book have provided infomation on the ecological characteristics of the San Bernardino Mountains, as well as the effects of ozone and other air pollutants on vegetation and soil in the San Bernardinos, and additional interactions with air pollution and forest health. This chapter focuses on the human aspects of air quality in the San...
Simpson, Robert W.
1994-01-01
If there is a single theme that unifies the diverse papers in this chapter, it is the attempt to understand the role of the Loma Prieta earthquake in the context of the earthquake 'machine' in northern California: as the latest event in a long history of shocks in the San Francisco Bay region, as an incremental contributor to the regional deformation pattern, and as a possible harbinger of future large earthquakes. One of the surprises generated by the earthquake was the rather large amount of uplift that occurred as a result of the reverse component of slip on the southwest-dipping fault plane. Preearthquake conventional wisdom had been that large earthquakes in the region would probably be caused by horizontal, right-lateral, strike-slip motion on vertical fault planes. In retrospect, the high topography of the Santa Cruz Mountains and the elevated marine terraces along the coast should have provided some clues. With the observed ocean retreat and the obvious uplift of the coast near Santa Cruz that accompanied the earthquake, Mother Nature was finally caught in the act. Several investigators quickly saw the connection between the earthquake uplift and the long-term evolution of the Santa Cruz Mountains and realized that important insights were to be gained by attempting to quantify the process of crustal deformation in terms of Loma Prieta-type increments of northward transport and fault-normal shortening.
Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson
2006-01-01
This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.
Ruhlman, Jana; Gass, Leila; Middleton, Barry
2012-01-01
As the name suggests, the Arizona/New Mexico Mountains Ecoregion includes much of the mountainous regions of these two states, plus a very small part in the Guadalupe Mountains of northwestern Texas. Several isolated areas of higher terrain in Arizona and New Mexico are also included in the ecoregion, which occupies approximately 108,432 km2 (41,866 mi2) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is bounded on the south by the Sonoran Basin and Range, Madrean Archipelago, and Chihuahuan Deserts Ecoregions; to the north, the ecoregion is both bounded and surrounded by the Arizona/New Mexico Plateau Ecoregion (fig. 1). The ecoregion encompasses the largest contiguous ponderosa pine (Pinus ponderosa) forest in the United States (Strom and Fulé, 2007), which stretches from Williams, Arizona, along the Mogollon Rim, Arizona, into southwestern New Mexico, north and west of Silver City, New Mexico.
Environmental exposures to agrochemicals in the Sierra Nevada mountain range
LeNoir, J.; Aston, L.; Data, S.; Fellers, G.; McConnell, L.; Sieber, J.
2000-01-01
The release of pesticides into the environment may impact human and environmental health. Despite the need for environmental exposure data, few studies quantify exposures in urban areas and even fewer determine exposures to wildlife in remote areas. Although it is expected that concentrations in remote regions will be low, recent studies suggest that even low concentrations may have deleterious effects on wildlife. Many pesticides are known to interfere with the endocrine systems of humans and wildlife, adversely affecting growth, development, and behavior. This chapter reviews the fate and transport of pesticides applied in the Central Valley of California and quantifies their subsequent deposition into the relatively pristine Sierra Nevada Mountain Range.
Cotter, R.D.; Rogers, J.E.
1964-01-01
The surficial clayey till in the vicinity of Mountain Iron, Virginia, and Eveleth is of post-Cary age. In the southern part of the area studied, this till is overlain by deposits of glacial Lake Upham, and throughout the area it is underlain successively by stratified drift and bouldery till, both of Cary age, and by remnants of older tills.
Wells, Ray E.
2004-01-01
Although some scientists considered the Ms=7.1 Loma Prieta, Calif., earthquake of 1989 to be an anticipated event, some aspects of the earthquake were surprising. It occurred 17 km beneath the Santa Cruz Mountains along a left-stepping restraining bend in the San Andreas fault system. Rupture on the southwest-dipping fault plane consisted of subequal amounts of right-lateral and reverse motion but did not reach the surface. In the area of maximum uplift, severe shaking and numerous ground cracks occurred along Summit Road and Skyland Ridge, several kilometers south of the main trace of the San Andreas fault. The relatively deep focus of the earthquake, the distribution of ground failure, the absence of throughgoing surface rupture on the San Andreas fault, and the large component of uplift raised several questions about the relation of the 1989 Loma Prieta earthquake to the San Andreas fault: Did the earthquake actually occur on the San Andreas fault? Where exactly is the San Andreas fault in the heavily forested Santa Cruz Mountains, and how does the fault relate to ground ruptures that occurred there in 1989 and 1906? What is the geometry of the San Andreas fault system at depth, and how does it relate to the major crustal blocks identified by geologic mapping? Subsequent geophysical and geologic investigations of crustal structure in the Loma Prieta region have addressed these and other questions about the relation of the earthquake to geologic structures observed in the southern Santa Cruz Mountains. The diverse papers in this chapter cover several topics: geologic mapping of the region, potential- field and electromagnetic modeling of crustal structure, and the velocity structure of the crust and mantle in and below the source region for the earthquake. Although these papers were mostly completed between 1992 and 1997, they provide critical documentation of the crustal structure of the Loma Prieta region. Together, they present a remarkably coherent, three-dimensional picture of the earthquake source region--a geologically complex volume of crust with a long history of both right-lateral faulting and fault-normal compression, thrusting, and uplift.
Follansbee, Robert; Hodges, Paul V.
1925-01-01
In 1923 severe floods occurred on the larger streams in Wyoming and a number of cloudburst floods on small streams in Wyoming and especially in Colorado. An investigation of the principal floods in each State was made, and the results are given in this paper, together with descriptions of two Colorado floods of 1922. In addition a study was made of all cloudburst floods to determine the areas chiefly subject to them.
Wildlife of southern forests habitat & management (Chapter 4): Defining the Forests
James G. Dickson; Raymond M. Sheffield
2003-01-01
Forests of the South are very diverse and productive. Included among southern forests are the boreal spruce- fir forests of the highest mountain peaks of the Blue Ridge Mountains to the lowest bottomland hardwoods on flood-deposited soil with elevations near sea level. In between are the diverse upland hardwood stands in northerly mountainous areas of the South and...
Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard
2015-01-01
Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...
Chapter 3. Current management situation: Flammulated owls
Jon Verner
1994-01-01
The flammulated owl (Otus flammeolus) is a western mountain species associated mainly with ponderosa (Pinus ponderosa) and Jeffrey pine (Pinus jefferyi) forests in the United States and Canada (see Chapter 4). As a neotropical migrant, this small forest owl occurs on national forests in the United States during...
ERIC Educational Resources Information Center
Coyle, David A.; And Others
One of five supplements which accompany chapter 3 of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains a master listing of all Mountain-Plains curriculum, compiled by job title, course, unit, and Learning activity package (LAPS) and arranged…
ERIC Educational Resources Information Center
Slotten, Marjorie Hacker
Information is provided about the use of telecommunications in the delivery of postsecondary coursework to off-campus nonmetropolitan sites in the Mountain Plains states. The five chapters cover the following: introduction; review of the literature (shift to information society, underserved rural adult population, historical sketch, selected…
Chapter 4: Managing chaparral in Yavapai County
Leonard F. DeBano; Malchus B. Baker; Steven T. Overby
1999-01-01
Yavapai County in central Arizona supports extensive stands of chaparral in the Bradshaw Mountains, Mingus Mountain, and the Santa Maria Range. Chaparral occupies about 400,300 acres of the Prescott National Forest (Anderson 1986). These chaparral communities provide a wide range of benefits including watershed protection, grazing for wildlife and domestic animals,...
Chapter 8. Current management situation: Boreal owls
Jon Verner
1994-01-01
The range of boreal owls (Aegolius funereus) in the United States includes Alaska, the mountains of the western United States, and the northern tier states from the Atlantic to Pacific (see Chapter 9). Based on the species' documented distribution (see National Geographic Society 1987, Hayward et al. 1987, Johnsgard 1988, and others) the owl may...
J. D. Haines; R. C. Musselman; C. M. Regan
1994-01-01
The initial habitat classification as described in Chapter 2 was conducted in 1986 and 1987 based upon field identification of plant species. A field collection of vascular plant species was made during the 1988, 1989, and 1990 summer seasons. The plant species collected were identified and verified in cooperation with the Rocky Mountain Herbarium at the University of...
Webinar summary: Important findings for managers [Chapter 2
Claudia Regan
2014-01-01
This chapter summarizes key findings and offers take-home messages of the Future Forest Webinar Series with regard to resource management planning, analyses, and project design. In the wake of the mountain pine beetle (MPB) epidemic, resource managers are especially concerned with developing more resilient forests, providing for the sustainability of wildlife and fish...
Parcher, Jean W.; Papoulias, Diana M.; Woodward, Dennis G.; Durall, Roger A.
2013-01-01
The area surrounding the United States–Mexican border is very physically and culturally diverse and cannot be generalized by any single description. To assist in an accurate appraisal and understanding of this remarkable region, the Borderlands team has divided it into eight subareas based on the watershed subareas of the U.S. Geological Survey Border Environmental Health Initiative (http://borderhealth.cr.usgs.gov) (fig. 2–1), the boundaries of which are defined primarily by surface-water drainage basins. The drainage basins directly adjacent to or crossing the international boundary were automatically included in the defined border region, as were those basins that contain unconsolidated aquifers that extend to or cross the international boundary. Also, “protected areas” adjacent to included basins were selectively added to the defined border region. Though some geographic features are entirely within the Borderlands, many features—deserts, mountain ranges, rivers, etc.— extend beyond the region boundaries but are still influential to Borderlands environments (fig. 2–2). In some cases, the authors of the following chapters have made fine adjustments to the Borderlands boundaries, and they have described those alterations where necessary. By describing and studying these subareas individually and comparing them to one another, we can emphasize the physical and cultural diversity that makes the Borderlands such an important geographic area.
Inertia critical layers and their impacts on nongeostrophic baroclinic instability
NASA Astrophysics Data System (ADS)
Shen, Bo-Wen
We investigate the effects of critical levels (CLs) on a baroclinic flow over mountains, nongeostrophic (NG) inertia critical layer instability, and NG baroclinic instability (BI) in a three-layer atmosphere with a small Richardson number (Ri) in the middle layer. We develop a numerical wave decomposition method in Chapter 2, which is found to be useful in determining the reflection coefficient (Ref) numerically when the flow system is too complicated to obtain Ref analytically. Effects of CLs on flow over mountains are studied both analytically and numerically in Chapter 3. We define the effective inertia critical level (ICL) as the height above which inertia-gravity waves attenuate significantly. Based on numerical simulations with a broad range of Rossby number (Ro) and Ri, four wave regimes are found: (a) Regime I: inertia- gravity waves. The flow behaves like unsheared inertia- gravity waves and the effective lower ICL plays a similar role as the classical critical level (CCL) does in a nonrotating flow. (b) Regime II: combined inertia-gravity waves and baroclinic lee waves. These waves behave like those in Regime I below the lower effective ICL, and like baroclinic lee waves near the CCL. (c) Regime III: combined evanescent and baroclinic lee waves. These waves still behave like baroclinic lee waves near the CCL, but are trapped near the surface. (d) Regime IV: transient waves. NG baroclinic instability exists, as evidenced by the positive domain-averaged north-south heat flux. Wave regime IV is further investigated in Chapter 5. We identify the NG baroclinic instability in Chapter 3 as an inertia critical layer (ICLY) instability. The role of the upper inertia critical level in this instability has been studied by choosing a periodic mountain. When only the CCL and upper ICL are present in the domain, the mesoscale ICLY instability tends to occur. For a periodic mountain ridge, the ICLY instability selects the mountain's tvavelength as its wavelength of maximum growth. For an isolated mountain ridge, the NG baroclinic lee wave is established in the beginning for flows with small Ri, which then develops its own upper ICL. The stability of Lindzen and Tung's (1976, hereafter LT76) type of three-layer nonrotating/rotating atmosphere is discussed in Chapter 6. We first investigate the transient dynamics of wave ducting by a numerical model. The adjustment time for waves to be ducted depends on the atmospheric structure and horizontal wavelength. Second, we study the effects of Coriolis force on LT76's wave ducting mechanism, and show that a wave with wavelength on the order of 100 km is hardly ducted. (Abstract shortened by UMI.)
Climate change, water resources, and roads in the Blue Mountains [Chapter 4
Caty F. Clifton; Kate T. Day; Gordon E. Grant; Jessica E. Halofsky; Charles H. Luce; Brian P. Staab
2017-01-01
Water is a critical resource in dry forest and rangeland environments of western North America, largely determining the distribution of plant and animal species across a broad range of elevations and ecosystems. Water is also essential for human endeavors, directly affecting where and how human communities and local economies have developed. The Blue Mountains of...
Chapter 13. Current management situation: Great gray owls
Jon Verner
1994-01-01
The breeding range of great gray owls (Strix nebulosa) in the United States includes portions of Alaska, mountains in the western United States including portions of the Cascades and Sierra Nevada ranges and the northern Rockies, and portions of Minnesota, Michigan, Wisconsin, and New York (see Chapter 14 and Map 3). The species is sometimes observed...
Broadscale assessment of aquatic species and habitats [Chapter 4
Danny C. Lee; James R. Sedell; Bruce F. Rieman; Russell F. Thurow; Jack E. Williams
1997-01-01
In this chapter, we report on a broad-scale scientific assessment of aquatic resources conducted as part of the Interior Columbia Basin Ecosystem Management Project. Our assessment area, collectively referred to as the Basin, includes the Columbia River Basin east of the crest of the Cascade Mountains (Washington, Oregon, Idaho, western Montana, and small portions of...
Ethington, Raymond L.; Repetski, John E.; Derby, James R.
2012-01-01
The oldest formation that crops out in the region is the Jefferson City Dolomite, which may be present in outcrops along incised river valleys near the Missouri-Arkansas border. Rare fossil gastropods, bivalves, brachiopods, conodonts, and trilobites permit correlation of the Cotter through Powell Dolomites with Ibexian strata elsewhere in Laurentia. Conodonts in the Black Rock Limestone Member of the Smithville Formation and the upper part of the Powell Dolomite confirm regional relationships that have been suggested for these units; those of the Black Rock Limestone Member are consistent with deposition under more open marine conditions than existed when older and younger units were forming. Brachiopods and conodonts from the overlying Everton Formation assist in interpreting complex facies within that formation and its correlation to equivalent rocks elsewhere. The youngest conodonts in the Everton Formation provide an age limit for the Sauk-Tippecanoe unconformity near the southern extremity of the great American carbonate bank. The correlation to coeval strata in the Ouachita Mountains of central Arkansas and in the Arbuckle Mountains of Oklahoma and to rocks penetrated in wells drilled in the Reelfoot rift basin has been improved greatly in recent years by integration of biostratigraphic data with lithologic information.
ERIC Educational Resources Information Center
Anderson, Newell B.; And Others
One of two supplements which accompany chapter 5 of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains specific information concerning the following components of the administrative services division: purchasing, property control, and…
ERIC Educational Resources Information Center
Anderson, Newell B.; And Others
One of two supplements which accompany chapter 5 of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains specific information concerning the reprographic and personnel components of the administrative services division. Several job descriptions…
Climate change and hydrology in the Blue Mountains [Chapter 3
Caty F. Clifton; Kate T. Day; Kathie Dello; Gordon E. Grant; Jessica E. Halofsky; Daniel J. Isaak; Charles H. Luce; Mohammad Safeeq; Brian P. Staab; John Stevenson
2017-01-01
The dominant influences on climatic patterns in the Pacific Northwest are the Pacific Ocean and the Cascade Range. The diurnal temperature range is higher east of the Cascade crest, further inland from the Pacific Ocean. More precipitation falls west of the Cascade Mountains crest, and a strong rain shadow greatly reduces precipitation east of the crest. The southern...
Sound Advice: How To Live in Harmony with Our Coast.
ERIC Educational Resources Information Center
North Carolina Coastal Federation, Inc. Newport.
Most people tend to take coastal areas for granted, but, if steps are not taken now to improve the quality of the water from the mountains to the coast, it may someday be unfit for human use. Following a statement of the reasons for such concern are 13 chapters discussing various aspects of water conservation. Chapter titles include: (1) "Erosion…
G. Sam Foster; Todd Mower; Russell Graham; Theresa B. Jain
2014-01-01
How does forest growth integrate weather, insect and disease attach, management actions, and natural disturbance? Which of these has the most impact on forest growth, composition, structure, and change? These questions have animated the activities of scientists of the Rocky Mountain Research Station (RMRS) since its earliest days, and continue to animate our research...
Kathleen A. Dwire; Sabine Mellmann-Brown
2017-01-01
In the Blue Mountains, climate change is likely to have significant, long-term implications for freshwater resources, including riparian areas, wetlands (box 7.1), and groundwater-dependent ecosystems (GDEs, box 7.2). Climate change is expected to cause a transition from snow to rain, resulting in diminished snowpack and shifts in streamflow to earlier in the season (...
ERIC Educational Resources Information Center
Mutterer, Richard H.
One of three supplements which accompany chapter 7 of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains specific information concerning the mobility and transportation component and marketing and tourism component of the educational services…
Quantitative Measures of Immersion in Cloud and the Biogeography of Cloud Forests
NASA Technical Reports Server (NTRS)
Lawton, R. O.; Nair, U. S.; Ray, D.; Regmi, A.; Pounds, J. A.; Welch, R. M.
2010-01-01
Sites described as tropical montane cloud forests differ greatly, in part because observers tend to differ in their opinion as to what constitutes frequent and prolonged immersion in cloud. This definitional difficulty interferes with hydrologic analyses, assessments of environmental impacts on ecosystems, and biogeographical analyses of cloud forest communities and species. Quantitative measurements of cloud immersion can be obtained on site, but the observations are necessarily spatially limited, although well-placed observers can examine 10 50 km of a mountain range under rainless conditions. Regional analyses, however, require observations at a broader scale. This chapter discusses remote sensing and modeling approaches that can provide quantitative measures of the spatiotemporal patterns of cloud cover and cloud immersion in tropical mountain ranges. These approaches integrate remote sensing tools of various spatial resolutions and frequencies of observation, digital elevation models, regional atmospheric models, and ground-based observations to provide measures of cloud cover, cloud base height, and the intersection of cloud and terrain. This combined approach was applied to the Monteverde region of northern Costa Rica to illustrate how the proportion of time the forest is immersed in cloud may vary spatially and temporally. The observed spatial variation was largely due to patterns of airflow over the mountains. The temporal variation reflected the diurnal rise and fall of the orographic cloud base, which was influenced in turn by synoptic weather conditions, the seasonal movement of the Intertropical Convergence Zone and the north-easterly trade winds. Knowledge of the proportion of the time that sites are immersed in clouds should facilitate ecological comparisons and biogeographical analyses, as well as land use planning and hydrologic assessments in areas where intensive on-site work is not feasible.
Ground-water recharge in the arid and semiarid southwestern United States
Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.
2007-01-01
Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge areas, and distinct modes of recharge in the Colorado Plateau and Basin and Range subregions.The chapters in this professional paper present (first) an overview of climatic and hydrogeologic framework (chapter A), followed by a regional analysis of ground-water recharge across the entire study area (chapter B). These are followed by an overview of site-specific case studies representing different subareas of the geographically diverse arid and semiarid southwestern United States (chapter C); the case studies themselves follow in chapters D–K. The regional analysis includes detailed hydrologic modeling within the framework of a high-resolution geographic-information system (GIS). Results from the regional analysis are used to explore both the distribution of ground-water recharge for mean climatic conditions as well as the influence of two climatic patterns—the El Niño-Southern Oscillation and Pacific Decadal Oscillation—that impart a high degree of variability to the hydrologic cycle. Individual case studies employ a variety of geophysical and geochemical techniques to investigate recharge processes and relate the processes to local geologic and climatic conditions. All of the case studies made use of naturally occurring tracers to quantify recharge. Thermal and geophysical techniques that were developed in the course of the studies are presented in appendices.The quantification of ground-water recharge in arid settings is inherently difficult due to the generally low amount of recharge, its spatially and temporally spotty nature, and the absence of techniques for directly measuring fluxes entering the saturated zone from the unsaturated zone. Deep water tables in arid alluvial basins correspond to thick unsaturated zones that produce up to millennial time lags between changes in hydrologic conditions at the land surface and subsequent changes in recharge to underlying ground water. Recent advances in physical, chemical, isotopic, and modeling techniques have fostered new types of recharge assessments. Chemical and isotopic techniques include an increasing variety of environmental tracers that are useful and robust. Physically based techniques include the use of heat as a tracer and computationally intensive geophysical imaging tools for characterizing hydrologic conditions in the unsaturated zone. Modeling-based techniques include spatially distributed water-budget computations using high-resolution remotely sensed and ground-based geographic data. Application of these techniques to arid and semiarid settings in the southwestern United States reveals distinct patterns of recharge corresponding to geologic setting, climatic and vegetative history, and land use. Analysis of recharge patterns shows that large expanses of alluvial basin floors are drying out under current climatic conditions, with little to no recharge to underlying ground water. Ground-water recharge occurs mainly beneath upland catchments in which thin soils overlie permeable bedrock, ephemeral channels in which flow may average only several hours per year, and active agricultural areas. The chapters in this professional paper represent a coordinated attempt to develop a better understanding of one of the Nation's most critical yet difficult-to-quantify renewable resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The literature review and empirical analyses presented in this report were undertaken, for the most part, between August and October 1983. They are not comprehensive. No primary data were gathered, nor were any formal surveys conducted. Additionally, because construction of a repository at Yucca Mountain, if that site is selected for a repository, is not scheduled to begin until 1993, engineering design and planned physical appearance of the repository are very preliminary. Therefore, specific design features or visual appearance were not addressed in the analyses. Finally, because actual transportation routes have not been designated, impacts on tourism generated specifically bymore » transportation activities are not considered separately. Chapter 2 briefly discusses possible means by which a repository could impact tourism in the Las Vegas area. Chapter 3 presents a review of previous research on alternative methods for predicting the response of people to potential hazards. A review of several published studies where these methods have been applied to facilities and activities associated with radioactive materials is included in Chapter 3. Chapter 4 contains five case studies of tourism impacts associated with past events that were perceived by the public to represent safety hazards. These perceptions of safety hazards were evidenced by news media coverage. These case studies were conducted specifically for this report. Conclusions of this preliminary analysis regarding the potential impact on tourism in the Las Vegas area of a repository at Yucca Mountain are in Chapter 5. Recommendations for further research are contained in Chapter 6.« less
Soulard, Christopher E.
2012-01-01
The Blue Mountains Ecoregion encompasses approximately 65,461 km² (25,275 mi²) of land bordered on the north by the Columbia Plateau Ecoregion, on the east by the Northern Rockies Ecoregion, on the south by the Snake River Basin and the Northern Basin and Range Ecoregions, and on the west by the Cascades and the Eastern Cascades Slopes and Foothills Ecoregions (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). Most of the Blue Mountains Ecoregion is located within Oregon (83.5 percent); 13.8 percent is in Idaho, and 2.7 percent is in Washington. The Blue Mountains are composed of primarily Paleozoic volcanic rocks, with minor sedimentary, metamorphic, and granitic rocks. Lower mountains and numerous basin-and-range areas, as well as the lack of Quaternary-age volcanoes, distinguish the Blue Mountains from the adjacent Cascade Range (Thorson and others, 2003).
Stuckless, John S.; Levich, Robert A.
2012-01-01
This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.
Stuckless, John S.; Levich, Robert A.
2012-01-01
This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.
Mediterranean California, Chapter 13
M.E. Fenn; E.B. Allen; L.H. Geiser
2011-01-01
The Mediterranean California ecoregion (CEC 1997; Fig 2.2) encompasses the greater Central Valley, Sierra foothills, and central coast ranges of California south to Mexico and is bounded by the Pacific Ocean, Sierra Nevada Mountains and Mojave Desert.
The Colorado Plateau II: biophysical, socioeconomic, and cultural research
Mattson, David J.; van Riper, Charles
2005-01-01
The publication of The Colorado Plateau: Cultural, Biological, and Physical Research in 2004 marked a timely summation of current research in the Four Corners states. This new volume, derived from the seventh Biennial Conference on the Colorado Plateau in 2003, complements the previous book by focusing on the integration of science into resource management issues. The 32 chapters range in content from measuring human impacts on cultural resources, through grazing and the wildland-urban interface issues, to parameters of climate change on the Plateau. The book also introduces economic perspectives by considering shifting patterns and regional disparities in the Colorado Plateau economy. A series of chapters on mountain lions explores the human-wildland interface. These chapters deal with the entire spectrum of challenges associated with managing this large mammal species in Arizona and on the Colorado Plateau, conveying a wealth of timely information of interest to wildlife managers and enthusiasts. Another provocative set of chapters on biophysical resources explores the management of forest restoration, from the micro scale all the way up to large-scale GIS analyses of ponderosa pine ecosystems on the Colorado Plateau. Given recent concerns for forest health in the wake of fires, severe drought, and bark-beetle infestation, these chapters will prove enlightening for forest service, park service, and land management professionals at both the federal and state level, as well as general readers interested in how forest management practices will ultimately affect their recreation activities. With broad coverage that touches on topics as diverse as movement patterns of rattlesnakes, calculating watersheds, and rescuing looted rockshelters, this volume stands as a compendium of cutting-edge research on the Colorado Plateau that offers a wealth of insights for many scholars.
Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.
2007-01-01
Water samples with the lowest pH values, highest specific conductances, and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, and particularly Zn and the REEs are all found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH values, lower specific conductances, lower metal concentrations, and measurable alkalinities. Water samples collected downstream of the alteration zone have pH values and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb, and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not support, and probably never have supported, significant megascopic faunal aquatic life.
NASA Astrophysics Data System (ADS)
Perez, Adriana Evangelina
The primary goal of this dissertation was to utilize a geographic information system (GIS) to better understand geological, geophysical, forestry and environmental issues in the west Texas-New Mexico region. Studies such as these are especially important in the border region where economic limitations are usually a factor in studying and solving some of these problems. The availability of satellite imagery through the Pan-American Center for Earth and Environmental Studies (PACES), data from the Geospatial Center and the collaboration with the United States Department of Agriculture (USDA) and National Forest entities (Guadalupe and Lincoln Ranger Districts) enhance the value of our investigation. Research was conducted in two distinct areas: Cloudcroft-Ruidoso, New Mexico, and the Salt Flat basin of southwest Texas (Figure 1). The dissertation will be presented as a set of independent chapters. Chapter 1. A GIS and remote sensing investigation of the effects of interactions of terrain, soil, and other physiographic factors on the Pine Community of Lincoln National Park in the Sacramento Mountains of Southwest New Mexico. This study utilized GIS and remote sensing to better understand the dynamics of White Pine Blister Rust (WPBR) infestation in the white pine community of the Sacramento Mountains of southwest New Mexico. Both field spectral sampling of the needles and imagery analysis were incorporated to better understand the infestation, progression and vulnerability of the forest to this and other diseases. A major contribution of this study was to construct a GIS database, which was utilized to analyze USDA, elevation, satellite imagery, geological, and hydrological data to produce a hazard-rating map. The GIS environment also allowed for a 3-D perspective on the data, which was very useful in spatial visualization. Chapter 2. An integrated study of the basin structure of the Salt Flat basin. In this study we utilized, gravity and magnetic data, satellite imagery and geological digital data to analyze various anomalies and crustal stucture of the basin and to produce an updated, georeferenced, and integrated basin model. Salt Flat basin has been modeled as a graben with Neogene sediment fill ranging in thickness from 450 to 600 meters. A major contribution of this work was to integrate recently available technologies and data such as Geonet data repository (gravity and magnetic), the PACES GIS database, USGS Quaternary faults database, satellite imagery, and digital elevation models from the National Elevation dataset (NED). The compilation of all available resources enabled us to produce, update, and delineate boundaries, layers and maps in a Geographic Information System (GIS). An important product of this project was to produce a manageable database (SALT.mxd project) that can be used by future researchers to view, investigate, and produce new maps and models. Chapter 3. Dust production and transport within the playa systems of the Salt Flat basin. This investigation has been conducted in order to better understand the processes of dust mobilization, provenance and trajectory in the Salt Flat basin region of western Texas (USA). Acquisition of a dust signature of the area was examined through several techniques such as Proton Induced X-Ray Emission (PIXE), X-Ray Diffraction (XRD), Ion Chromatography (IC), and particulate size distribution. Our investigation found that the type, amount, and size of particulate matter generated and transported from the Salt Flat basin is highly dependent on spatial, and temporal parameters. Geo-morphological, land cover, and wind current variations affect the amount and type of surface material and aerosols that will be produced at different areas of the Salt Flat basin floor. For the duration of the study the Salt Flat did not appear to be a biasing agent for the dust that is received in the GUMO IMPROVE sampler. Thus the IMPROVE network at Guadalupe Mountains National Park appears to be a valid regional sampler that is not greatly influenced by emissions from the Salt Flat basin. A major contribution of this study was to provide independent analysis of local and regional dust composition to validate the effectiveness of GUMO as an effective regional sampler. (Abstract shortened by UMI.)
40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
40 CFR 81.274 - Mountain Counties Intrastate Air Quality Control Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Mountain Counties Intrastate Air... Air Quality Control Regions § 81.274 Mountain Counties Intrastate Air Quality Control Region. The Mountain Counties Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
Effects of acid deposition on ecosystems: Advances in the state of the science
Burns, Douglas A.; Fenn, Mark E.; Baron, Jill S.
2011-01-01
Chapter 2 focused on the environmental results of the ARP, presenting data from national monitoring networks on SO2 and NOx emissions, air quality, atmospheric deposition, surface water chemistry, and visibility. This chapter expands on this information by examining the most recent research into how ecosystems respond to acid deposition, especially the processes that control the recovery of ecosystems as acid deposition decreases. In Chapter 2, two general trends were discussed regarding the current recovery status of affected ecosystems: (1) these ecosystems are trending generally towards recovery, but improvements in ecosystem condition shown by surface water chemistry monitoring data thus far have been less than the improvements in deposition; and (2) ecosystem impacts and trends vary widely by geographic region, but the evidence of improvement is strongest and most evident in the Northeast. These trends are not uniform across the United States, however, and in some regions (e.g., central Appalachian Mountain region), trends in improved water quality are generally not evident. Despite the strong link in many areas between reduced emissions and reduced acidity of atmospheric deposition, the link is less clear between reduced acidity and recovery of the biological communities that live in aquatic and terrestrial ecosystems that have experienced deleterious effects from acid deposition. The recovery of these communities is proceeding at a slower pace than, for example, the improvements in stream and lake ANC would indicate. The goal of this chapter is to synthesize the science in a weightof-evidence manner to provide policy makers with tangible evidence and likely causative factors regarding ecosystem status and recovery patterns to date. This chapter serves as an update to the 2005 NAPAP RTC (NSTC, 2005), with an emphasis on scientific studies and monitoring since 2003, which was the last year for consideration of research results in the 2005 report. Several issues pertinent to ecosystem response to emission controls and acid deposition are receiving increasing attention in the scientific literature and will be discussed in this chapter, including the (1) observed delay in ecosystem recovery in the eastern United States, even with decreases in emissions and deposition over the past 30 years; (2) emerging ecosystem impacts of nitrogen deposition in the western United States; (3) the application of critical deposition loads as a tool for scientists to better inform air quality policies; (4) the role of changes in climate and the carbon cycle as factors that affect the response of ecosystems to acid deposition; and (5) the interaction of multiple pollutants in ecosystems. Throughout this chapter, the value of long-term environmental monitoring data in informing air quality policy will be highlighted, including the limitations of assessing the current status of some ecosystem indicators for which continuous, long-term data are lacking.
NASA Astrophysics Data System (ADS)
Lung, Mark A.
This dissertation is a composite of biological and educational research. The biological research concerns Rocky Mountain elk (Cervus elaphus ) behavior. The educational research presents ideas and findings on the influence of a thematic general biology course on student interest and perception of learning. The dissertation begins with a Preface that attempts to bring the ideas presented in later chapters together. Chapter One is a review of the literature concerning sociality, social behaviors, and elk biology. It summarizes current research literature as a means of introduction to Chapter Two. Chapter Two presents findings concerning the effects of herd size, predation risk, and the risk of being near conspecifics on two behaviors commonly associated with social animals---vigilance and aggression. Vigilance and aggression were measured in elk in Yellowstone National Park in two regions that varied in their presence of elk predators (wolves---Canis lupus, and grizzly bears---Ursus arctos) and in two seasons (spring and fall) that varied in the risks of being near conspecifics. Overall, male and female elk responded very differently. Male elk adjust their vigilance and aggression in response to changes in conspecific risk, but not to changes in predation risk. Female elk adjust their vigilance in response to changes in predation risk, but not to changes in conspecific risk. Males show no response in vigilance to changes in herd size. Non-reproductive females, however, adjust their levels of vigilance with changes in herd size in high risk regions. Interestingly, in the spring, vigilance decreases with increasing herd size, but in the fall, vigilance increases with increasing herd size. Chapter Three presents findings concerning the influence of a thematic course design on student perceptions of interest and teaming in a non-major's biology course (Bins 100: Concepts of Biology). I compared responses on student evaluations from two sections of Bios 100 taught in a traditional, survey style with a section taught using a thematic approach. Students in the thematic section responded significantly more positively in all responses concerning the effect of the course on interest and perception of learning.
Seismic reflection imaging with conventional and unconventional sources
NASA Astrophysics Data System (ADS)
Quiros Ugalde, Diego Alonso
This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant seismic activity.
Gary M. Koehler; Keith B. Aubry
1994-01-01
Three species of wild cats (felids) occur in the temperate forests of North America: the cougar (Fells concolor), bobcat (Lynx rufus), and lynx (Lynx canadensis). The cougar is found in both temperate and tropical forests from the mountains of southern British Columbia to the southern...
The ASA Regional Chapters program
NASA Astrophysics Data System (ADS)
McLaughlin, Elizabeth; Arvelo, Juan
2005-04-01
Are you involved in a Regional Chapter? The Regional Chapters Program certainly embraces the intent of our Society. ``The ASA was founded... to increase and diffuse the knowledge of acoustics and promote its practical applications. Any person... interested in acoustics is eligible for membership.'' The history and the activities of each Chapter are unique. There are currently twenty active chapters uniquely positioned to promote acoustics through outreach and involvement with the public. There have been several new developments in the Regional Chapters Program, the most exciting being the incorporation of Student Chapters! Our first, the Nebraska Student Chapter, was approved at the 75th Meeting of the ASA in NYC. Several more are on their way! Existing Chapters are revitalizing! The Washington DC Chapter has recently found new enthusiasm, re-establishing a robust program. A new student scholarship has been organized thanks to the generosity of Larry and Julia Royster. Another recent enhancement is the expansion of the Regional Chapters Website. There one can find useful materials including an updated Chapter Start-up Kit. Involvement in a chapter is a great way to give back to the ASA, to learn, promote acoustics, to socialize, and to involve new persons in our exciting field!
Eugene M. Wengert; Dennis M. Donnelly; Donald C. Markstrom; Harold E. Worth
1985-01-01
In the past, markets for quaking aspen timber from the Rocky Mountains have been insufficient to support significant harvesting. This shortage of markets severely restrained the potential for aspen management. As a result, many stands protected from wildfire gradually reverted to conifers (see the VEGETATIVE REGENERATION and FIRE chapters).
Laboratory earned international awards from the Society for Technical Communications (STC). The awards were part of STC's International Technical Publications Competition. Fifteen publications (including the six international winners) also won awards in STC's Rocky Mountain Chapter's annual Publications, Art & Online
Human impacts to mountain streams
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2006-09-01
Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope/channel connections, process domains, physical and ecological roles of disturbance, and stream resilience.
Digital mountains: toward development and environment protection in mountain regions
NASA Astrophysics Data System (ADS)
Jiang, Xiaobo
2007-06-01
Former studies on mountain system are focused on the department or subject characters, i.e. different department and branches of learning carry out researches only for their individual purposes and with individual characters of the subject of interests. As a whole, their investigation is lacking of comprehensive study in combination with global environment. Ecological environment in mountain regions is vulnerable to the disturbance of human activities. Therefore, it is a key issue to coordinate economic development and environment protection in mountain regions. On the other hand, a lot of work is ongoing on mountain sciences, especially depending on the application of RS and GIS. Moreover, the development of the Digital Earth (DE) provides a clue to re-understand mountains. These are the background of the emergence of the Digital Mountains (DM). One of the purposes of the DM is integrating spatial related data and information about mountains. Moreover, the DM is a viewpoint and methodology of understanding and quantifying mountains holistically. The concept of the DM is that, the spatial and temporal data related to mountain regions are stored and managed in computers; moreover, manipulating, analyzing, modeling, simulating and sharing of the mountain information are implemented by utilizing technologies of RS, GIS, GPS, Geo-informatic Tupu, computer, virtual reality (VR), 3D simulation, massive storage, mutual operation and network communication. The DM aims at advancing mountain sciences and sustainable mountain development. The DM is used to providing information and method for coordinating the mountain regions development and environment protection. The fundamental work of the DM is the design of the scientific architecture. Furthermore, construct and develop massive databases of mountains are the important steps these days.
Wang, X-Y; He, J; Yang, K; Liang, S
2016-01-01
Schistosomiasis, as the important parasitic disease, has caused serious threats to human health globally. The People's Republic of China has acquired significant achievements based on large-scale interventions and innovational technology. The spatial technology was introduced in 1980s and widely used in the study and control of schistosomiasis in The People's Republic of China. This chapter reviews the progress and application of spatial technology in schistosomiasis control by analysing the spatiotemporal pattern of and the impact of ecological changes on schistosomiasis transmission, which have provided the information to design and select the control strategy, and assisted the establishment of the monitoring and early warning system in The People's Republic of China, especially in the marshland and mountainous regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tectonic and neotectonic framework of the Yucca Mountain Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweickert, R.A.
1992-09-30
Highlights of major research accomplishments concerned with the tectonics and neotectonics of the Yucca Mountain Region include: structural studies in Grapevine Mountains, Bullfrog Hills, and Bare Mountain; recognition of significance of pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; compilation of map of quaternary faulting in Southern Amargosa Valley; and preliminary paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain.
Miller, David M.; Menges, Christopher M.; Lidke, David J.; Buesch, David C.
2014-01-01
The geology and landscape of the Fort Irwin area, typical of many parts of the Mojave Desert, consist of rugged mountains separated by broad alluviated valleys that form the main coarse-resolution features of the geologic map. Crystalline and sedimentary rocks, Mesozoic and older in age, form most of the mountains with lesser accumulations of Miocene sedimentary and volcanic rocks. In detail, the area exhibits a fairly complex distribution of surficial deposits resulting from diverse rock sources and geomorphology that has been driven by topographic changes caused by recent and active faulting. Depositional environments span those typical of the Mojave Desert: alluvial fans on broad piedmonts, major intermittent streams along valley floors, eolian sand dunes and sheets, and playas in closed valleys that lack through-going washes. Erosional environments include rocky mountains, smooth gently sloping pediments, and badlands in readily eroded sediment. All parts of the landscape, from regional distribution of mountains, valleys, and faults to details of degree of soil development in surface materials, are portrayed by the surficial geologic map. Many of these attributes govern infiltration and recharge, and the surface distribution of permeable rock units such as Miocene sedimentary and volcanic rocks provides a basis for evaluating potential groundwater storage. Quaternary faults are widespread in the Fort Irwin area and include sinistral, east-striking faults that characterize the central swath of the area and the contrasting dextral, northwest-striking faults that border the east and west margins. Bedrock distribution and thickness of valley-fill deposits are controlled by modern and past faulting, and faults on the map help to identify targets for groundwater exploration.
Brooks, Mark S.
2012-01-01
The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu
2012-12-15
The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions.more » We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30°N-40°N and 40°N-50°N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.« less
Post, Austin
1967-01-01
The 1964 Alaska earthquake occurred in a region where there are many hundreds of glaciers, large and small. Aerial photographic investigations indicate that no snow and ice avalanches of large size occurred on glaciers despite the violent shaking. Rockslide avalanches extended onto the glaciers in many localities, seven very large ones occurring in the Copper River region 160 kilometers east of the epicenter. Some of these avalanches traveled several kilometers at low gradients; compressed air may have provided a lubricating layer. If long-term changes in glaciers due to tectonic changes in altitude and slope occur, they will probably be very small. No evidence of large-scale dynamic response of any glacier to earthquake shaking or avalanche loading was found in either the Chugach or Kenai Mountains 16 months after the 1964 earthquake, nor was there any evidence of surges (rapid advances) as postulated by the Earthquake-Advance Theory of Tarr and Martin.
36 CFR 7.7 - Rocky Mountain National Park.
Code of Federal Regulations, 2011 CFR
2011-07-01
... signs, snow poles or other appropriate means. (2) When may I operate a snowmobile on the North Supply...) Fishing. (1) Fishing restrictions, based on management objectives described in the park's Resources... 1.7 of this chapter, on any activity pertaining to fishing, including, but not limited to species of...
36 CFR 7.7 - Rocky Mountain National Park.
Code of Federal Regulations, 2010 CFR
2010-07-01
... signs, snow poles or other appropriate means. (2) When may I operate a snowmobile on the North Supply...) Fishing. (1) Fishing restrictions, based on management objectives described in the park's Resources... 1.7 of this chapter, on any activity pertaining to fishing, including, but not limited to species of...
Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.
2008-01-01
Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP. Because the last geologic map of the entire BBNP was published in the 1960s, one of the primary goals of the USGS is to provide a new geologic map of BBNP at a scale 1:100,000; this work is ongoing among the USGS, NPS, the Texas Bureau of Economic Geology, and university scientists. This USGS Circular summarizes eight studies funded and primarily carried out by the USGS, but it is not intended to be a comprehensive reference of work conducted in BBNP. This Circular describes topical research of the recently completed interdisciplinary USGS project, which has provided information leading to a more complete understanding of the following topics in BBNP: Tectonic and geologic history (Chapters 1, 2, and 3), Age and formation processes of a skarn mineral deposit (Chapter 4), Geoenvironmental effects of abandoned mercury mines (Chapter 5), Age, source, and geochemistry of surface and subsurface water resources (Chapter 6), Isotopic tracing of food sources of bears (Chapter 7), and Geophysical characteristics of surface and subsurface geology (Chapter 8).Additional information and the geochemical and geophysical data of the USGS studies in BBNP are available on line at http://minerals.cr.usgs.gov/projects/big_bend/index.html.
The Influence of Intensifying Irrigation on Glacier Mass Balances in High Mountain Asia
NASA Astrophysics Data System (ADS)
de Kok, R.; Tuinenburg, O.; Bonekamp, P. N. J.; Immerzeel, W. W.
2017-12-01
Melt water from snow and glaciers in High Mountain Asia provide a major source of water for millions of inhabitants in the downstream low lying plains. This densely populated region also hosts some of the largest areas of irrigated land in the world. Not only is the water from High Mountain Asia important as a source of irrigation water, the irrigation itself might also change the regional, and even global, climate by increasing atmospheric moisture and by cooling the surface through evapotranspiration. We explore the effect of irrigation in the region on the synoptic climate patterns in High Mountain Asia using the WRF regional climate model. By studying the changes in the energy balance, temperatures and precipitation, we assess how the changes in irrigation patterns may have contributed to the observed trends in mountain climates and associated glacier mass balances. Initial results show that the intensifying irrigation during the last decades causes an increase in summer snowfall in the mountains in Central Karakoram and Kunlun Shan, which are the regions where slight positive mass balances have been observed in recent years. A moisture tracking model confirms that the irrigated areas are a significant moisture source for summer precipitation in High Mountain Asia. These results thus suggest that irrigation may significantly influence glaciers in High Mountain Asia, especially in the regions of observed anomalous mass balance.
Chapter 16: Inland Habitat Associations of Marbled Murrelets in British Columbia
Alan E. Burger
1995-01-01
Most Marbled Murrelets (Brachyramphus marmoratus) in British Columbia nest in the Coastal Western Hemlock biogeoclimatic zone. In this zone, detection frequencies were highest in the moister ecosections and in low elevation forests. Nests and moderately high levels of activity were also found in some forest patches in the subalpine Mountain Hemlock...
27 CFR 9.186 - Niagara Escarpment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Escarpment”. For purposes of part 4 of this chapter, “Niagara Escarpment” is a term of viticultural... the contour line's junction with Sunset Drive; then (6) Proceed north on Sunset Drive 0.3 mile to its...) Proceed north-northwesterly on Upper Mountain Road 0.65 mile and then northerly on Sunset Drive 0.25 mile...
27 CFR 9.186 - Niagara Escarpment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Escarpment”. For purposes of part 4 of this chapter, “Niagara Escarpment” is a term of viticultural... the contour line's junction with Sunset Drive; then (6) Proceed north on Sunset Drive 0.3 mile to its...) Proceed north-northwesterly on Upper Mountain Road 0.65 mile and then northerly on Sunset Drive 0.25 mile...
Norbert V. DeByle
1985-01-01
Quaking aspen dominates several million acres on mountainous watersheds in the West. The sites occupied receive enough precipitation to yield water to lower elevations. Most aspen areas receive 16 inches (40 cm) or more precipitation annually; many receive more than 39 inches (100 cm) (see the CLIMATES chapter), well in excess of on-site loss from evapotranspiration....
1980-12-01
Analysis of the White Pine Power Project. Bureau of Business and Economic Research, University of Nevada, Reno. Basile , J. V., and T. N. Lonner, 1979...Suspected of Pesticide Poisoning. Avian Diseases 18:487-489. Resource Area, Nye County, Nevada. Bureau of Land Management, Battle Mountain District. Rhoads, W
Chapter 2. The Intermountain setting
E. Durant McArthur; Sherel K. Goodrich
2004-01-01
This book is intended to assist range managers throughout the Intermountain West (fig. 1). The areas of greatest applicability are the Middle and Southern Rocky Mountains, Wyoming Basin, Columbia and Colorado Plateaus, and much of the basin and range physiographic provinces of Fenneman (1981) or about 14° latitude, from the Mohave, Sonoran, and Chihuahuan...
Paul R. Fish; Suzanne K. Fish
2006-01-01
The Malpai Borderlands study area is in those portions of southeastern Arizona and southwestern New Mexico that have been biogeographically described as the Madrean Archipelago (DeBano and others 1994: 580). The area covers approximately 1,600 square miles of the Basin and Range Physiographic Province south of the Rocky Mountains and north of the Sierra Madre...
E. A. Rochette
1994-01-01
The Medicine Bow Mountains have a core of Precambrian rocks. They contain the boundary, the Cheyenne Belt, between the Wyoming Province to the NW and the accreted Proterozoic continental crust to the SE (Karlstrom and Houston 1984). The Wyoming Province consists of Archean rocks that are locally intruded and (or) overlain by rocks of Proterozoic age, including the...
Northeastern plateaus bioregion
Gregg M. Riegel; Richard F. Miller; Carl N. Skinner; Sydney E. Smith
2006-01-01
Northeastern California landscape is a mixture of vast arid basins and uplands, and forested mountain ranges interspersed with both fresh water and alkaline wetlands. The entire bioregion is significantly influenced by the rain shadow effect of the Cascade Range to the west. Three ecological unit subsections are treated in this chapter: (1) Modoc Plateau Section (M261G...
From Mountain to Metropolis: Appalachian Migrants in American Cities.
ERIC Educational Resources Information Center
Borman, Kathryn M., Ed.; Obermiller, Phillip J., Ed.
This book consists of 14 essays that focus on the condition of urban Appalachians (former migrants to cities from Appalachia and their descendants). Chapters address issues of health, environment, education, and cultural identity in an urban Appalachian context, and are meant to be a resource for educators and health and human service…
Options for the management of white pine blister rust in the Rocky Mountain Region
Kelly S. Burns; Anna W. Schoettle; William R. Jacobi; Mary F. Mahalovich
2008-01-01
This publication synthesizes current information on the biology, distribution, and management of white pine blister rust (WPBR) in the Rocky Mountain Region. In this Region, WPBR occurs within the range of Rocky Mountain bristlecone pine (Pinus aristata), limber pine (P. flexilis), and whitebark pine (P. albicaulis...
Biodiversity losses: The downward spiral
Tomback, Diana F.; Kendall, Katherine C.; Tomback, Diana F.; Arno, Stephen F.; Keane, Robert E.
2001-01-01
The dramatic decline of whitebark pine (Pinus albicaulis) populations in the northwestern United States and southwestern Canada from the combined effects of fire exclusion, mountain pine beetles (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola), and the projected decline of whitebark pine populations rangewide (Chapters 10 and 11) do not simply add up to local extirpations of a single tree species. Instead, the loss of whitebark pine has broad ecosystem-level consequences, eroding local plant and animal biodiversity, changing the time frame of succession, and altering the distribution of subalpine vegetation (Chapter 1). One potential casualty of this decline may be the midcontinental populations of the grizzly bear (Ursus arctos horribilis), which use whitebark pine seeds as a major food source (Chapter 7). Furthermore, whitebark pine is linked to other white pine ecosystems in the West through its seed-disperser, Clark's nutcracker (Nucifraga columbiana) (Chapter 5). Major declines in nutcracker populations ultimately seal the fate of several white pine ecosystems, and raise the question of whether restoration is possible once a certain threshold of decline is reached.
Foshag, William F.
1927-01-01
In the course of general geologic mapping of the Hawthorne quadrangle, in western Nevada, the writer undertook a short study of the quicksilver deposits of the Pilot Mountains. The work was. done under the supervision of Henry G. Ferguson, in charge of the field work in the Hawthorne quadrangle, and the writer was accompanied by L. B. Spencer, mining engineer, of Mina, Nev., whose intimate knowledge of the district greatly facilitated the study and to whom the writer is indebted for much valuable information. Data on the general geology of the district, collected by Messrs. Ferguson and Cathcart, were freely drawn upon.The deposits of the Pilot Mountains were first described by Knopf* and later briefly by Ransome.2
The Mountains of Io: Global and Geological Perspectives from Voyager and Galileo
NASA Technical Reports Server (NTRS)
Schenk, Paul; Hargitai, Henrik; Wilson, Ronda; McEwen, Alfred; Thomas, Peter; Bredekamp, Joe (Technical Monitor)
2001-01-01
To search for local and global scale geologic associations that may be related to the internal dynamics of Io, we have completed a global catalog of all mountains and volcanic centers. We have identified 115 mountain structures (covering approx. 3% of the surface) and 541 volcanic centers, including paterae (calderas and dark spots) and shield volcanoes. The average length of an Ionian mountain is 157 km, with the longest being 570 km. The mean height of Ionian mountains is 6.3 km, and the highest known mountain is Boosaule Montes (17.5 +/- 3 km). Five basic morphologic types of mountains have been identified; mesa, plateau peak, ridge, and massif. Very few mountains bear any physical similarity. to classic volcanic landforms, but many resemble flatiron mountains on Earth and are interpreted as tilted crustal blocks. This would be consistent with the hypothesis that most mountains are thrust blocks formed as a result of compressive stresses built up in the lower crust due to the global subsidence of volcanic layers as they are buried over time. More than one mechanism may be responsible for all Ionian mountains, however. The proximity of some mountains to paterae may indicate a direct link between some mountains and volcanism, although it is not always clear which came first. In contrast to earlier studies, a pronounced bimodal pattern is observed in the global distribution of both mountains and volcanic centers. The regions of highest areal densities of volcanic centers are near the sub- and anti-Jovian regions, but are offset roughly 90deg in longitude from the two, regions of greatest concentration of mountains. This anticorrelation may indicate the overprinting of a second stress field on the global compressive stresses due to subsidence. The bimodal distribution of volcanic centers and mountains is consistent with models of asthenospheric tidal heating and internal convection developed by Tackley et al.Over regions of mantle upwelling, compressive stresses in the lower crust induced by global subsidence might be reduced, encouraging volcanism and discouraging mountain building. In regions of mantle downwelling, these compressive stresses in the lower crust might be increased, discouraging volcanism and encouraging mountain building. Alternatively, the global pattern may be related to possible (but undocumented) nonsynchronous rotation of lo, which would produce two regions each of compression and extension in the crust. Evidence of layering and of mass wasting, including landslides, block sliding, debris aprons and downslope creep, on Ionian mountains suggests that the crust of Io is essentially a layered stack of partially consolidated volcanic lavas and plume deposits, becoming more consolidated with depth. The lower crust especially may also be ductily deformed, punctuated by volcanic intrusions and faulting at paterae, and broken into blocks, some of which have been uplifted to form mountains.
NASA Astrophysics Data System (ADS)
Helman, E. Udi
This dissertation conducts research into the large-scale simulation of oligopolistic competition in wholesale electricity markets. The dissertation has two parts. Part I is an examination of the structure and properties of several spatial, or network, equilibrium models of oligopolistic electricity markets formulated as mixed linear complementarity problems (LCP). Part II is a large-scale application of such models to the electricity system that encompasses most of the United States east of the Rocky Mountains, the Eastern Interconnection. Part I consists of Chapters 1 to 6. The models developed in this part continue research into mixed LCP models of oligopolistic electricity markets initiated by Hobbs [67] and subsequently developed by Metzler [87] and Metzler, Hobbs and Pang [88]. Hobbs' central contribution is a network market model with Cournot competition in generation and a price-taking spatial arbitrage firm that eliminates spatial price discrimination by the Cournot firms. In one variant, the solution to this model is shown to be equivalent to the "no arbitrage" condition in a "pool" market, in which a Regional Transmission Operator optimizes spot sales such that the congestion price between two locations is exactly equivalent to the difference in the energy prices at those locations (commonly known as locational marginal pricing). Extensions to this model are presented in Chapters 5 and 6. One of these is a market model with a profit-maximizing arbitrage firm. This model is structured as a mathematical program with equilibrium constraints (MPEC), but due to the linearity of its constraints, can be solved as a mixed LCP. Part II consists of Chapters 7 to 12. The core of these chapters is a large-scale simulation of the U.S. Eastern Interconnection applying one of the Cournot competition with arbitrage models. This is the first oligopolistic equilibrium market model to encompass the full Eastern Interconnection with a realistic network representation (using a DC load flow approximation). Chapter 9 shows the price results. In contrast to prior market power simulations of these markets, much greater variability in price-cost margins is found when using a realistic model of hourly conditions on such a large network. Chapter 10 shows that the conventional concentration indices (HHIs) are poorly correlated with PCMs. Finally, Chapter 11 proposes that the simulation models are applied to merger analysis and provides two large-scale merger examples. (Abstract shortened by UMI.)
Rocky road in the Rockies: Challenges to biodiversity
Tomback, Diana F.; Kendall, Katherine C.; Baron, Jill S.
2002-01-01
To people worldwide, the Rocky Mountains of the United States and Canada represent a last bastion of nature in its purest and rawest form-unspoiled forests teeming with elk and deer stalked by mountain lions and grizzly bears; bald eagles nesting near lakes and rivers; fat, feisty native trout in rushing mountain streams; and dazzling arrays of wildflowers in lush meadows. In fact, the total biodiversity of the Rocky Mountains is considerable, with relatively high diversity in birds, mammals, butterflies, reptiles, and conifers (Ricketts et al. 1999) and with geographic variation in the flora and fauna of alpine, forest, foothill, and adjacent shortgrass prairie and shrub communities over more than 20 degrees of latitude and more than 10' of longitude. Although the biodiversity of most North American regions has declined because of anthropogenic influences, the perception remains that the biodiversity of the Rocky Mountains is intact. This view exists in part because the Rocky Mountains are remote from urban centers, in part because so much of the land comprises protected areas such as national parks and wilderness areas, and in part because of wishful thinking-that nothing bad could happen to the biodiversity that is so much a part of the history, national self-image, legends, nature films, and movies of the United States and Canada. Despite modern technology and the homogenization and globalization of their cities and towns, at heart North Americans still regard their land as the New World, with pristine nature and untamed landscapes epitomized by the Rockies. The reality is that the biodiversity of the Rocky Mountains has not been free of anthropogenic influences since the West was settled in the 1800s, and in fact it was altered by Native Americans for centuries prior to settlement. A number of escalating problems and consequences of management choices are currently changing Rocky Mountain ecological communities at a dizzying pace. In Order to maintain some degree of natural ecosystem processes and preserve natural biodiversity in light of these challenges, Americans and Canadians are faced with the need for intensive, hands-on management of both ecosystems and selected plant and animal populations. In this chapter, we first discuss the primary issues regarding the biodiversity of the Rocky Mountains, including the Rocky Mountain portions of Arizona, Colorado, Idaho, Montana, New Mexico, Utah, Wyoming, British Columbia, and Alberta. Next, we survey groups of organisms to examine their status and special problems. Finally, we touch on major challenges to biodiversity that loom in the near future. Given that entire books may be written on these issues, the discussion is brief and general, but with case histories for more detailed examples.
Assessing climate change impacts on water resources in remote mountain regions
NASA Astrophysics Data System (ADS)
Buytaert, Wouter; De Bièvre, Bert
2013-04-01
From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically relevant variables such as streamflow and groundwater recharge. Fundamental limitations in both the understanding of hydrological processes in mountain regions (e.g., glacier melt, wetland attenuation, groundwater flows) and in data availability introduce large uncertainties. Lastly, assessing access to water resources is a major challenge. Topographical gradients and barriers, as well as strong spatiotemporal variations in hydrological processes, makes it particularly difficult to assess which parts of the mountain population is most vulnerable to future perturbations of the water cycle.
Discussing the Future of U. S. Western Mountains, Climate Change, and Ecosystems
Henry F. Diaz; Constance I. Millar
2004-01-01
Mountain regions are uniquely sensitive to changes in climate, and are especially vulnerable to climate effects acting on many biotic systems and the physical settings. Because mountain regions serve as sources of needed natural resources (e.g.,water, forests) and as foundations for desired human activities (e.g., tourism, places to live),changes in mountain systems...
A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations
NASA Astrophysics Data System (ADS)
Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.
2018-02-01
Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.
Rosamonde R. Cook; Curtis H. Flather; Kenneth R. Wilson
2000-01-01
To define the faunal context within which local and regional resource management decisions are made, conservation of biological diversity requires an understanding of regional species occurrence patterns. Our study focused on the Southern Rocky Mountains of New Mexico and included the San Juan, the Sangre de Cristo, and the Jemez Mountains. Across this region, we...
14 CFR 91.177 - Minimum altitudes for IFR operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... mountainous area in part 95 of this chapter, an altitude of 2,000 feet above the highest obstacle within a... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Minimum altitudes for IFR operations. 91... Instrument Flight Rules § 91.177 Minimum altitudes for IFR operations. (a) Operation of aircraft at minimum...
Ecology and conservation of lynx in the United States
Leonard F. Ruggiero; Keith B. Aubry; Steven W. Buskirk; Gary M. Koehler; Charles J. Krebs; Kevin S. McKelvey; John R. Squires
1999-01-01
Once found throughout the Rocky Mountains and forests of the northern states, the lynx now hides in pockets of its former range while feeding mostly on small animals like snowshoe hares. A team of government and university scientists review the newest scientific knowledge of this unique cat's history, distribution, and ecology. The chapters on this web site...
Forests in transition: Post-epidemic vegetation conditions [Chapter 4
Rob Hubbard; Michael Battaglia; Chuck Rhoades; Jim Thinnes; Tom Martin; Jeff Underhill; Mark Westfahl
2014-01-01
More than 23 million acres of lodgepole pine forests across the western U.S. have experienced overstory mortality following the recent mountain pine beetle (MPB) epidemic (USDA Forest Service 2013). Unknowns regarding the immediate and long-term consequences of the epidemic challenge the ability of managers to make informed decisions aimed at sustaining forest health...
Chapter 9: Fire and nonnative invasive plants in the Southwest Coastal bioregion
Rob Klinger; Robin Wills; Matthew L. Brooks
2008-01-01
The Southwest Coastal bioregion is closely aligned with the geographic boundaries of the California Floristic Province. Excluding Great Basin and Mojave Desert plant communities, the bioregion is defined by the Transverse Ranges of Southern California, the eastern edge of the Sierra Nevada and southern Cascade Ranges, and the northern edge of the Siskiyou Mountains of...
Management for esthetics and recreation, forage, water, and wildlife
Norbert V. DeByle
1985-01-01
In the West, aspen forests have not been actively managed for wood products largely because of the lack of markets for quaking aspen timber from the Rocky Mountains (see the WOOD UTILIZATION chapter). Despite this, the aspen ecosystem has been used to provide a variety of resources and opportunities (see PART 111. RESOURCES AND USES).
Nature-Computer Camp 1991. Chapter 2 Program Evaluation Report.
ERIC Educational Resources Information Center
District of Columbia Public Schools, Washington, DC. Dept. of Research and Evaluation.
The District of Columbia Public Schools Nature Computer Camp (NCC) is an environmental/computer program which has been operating in the Catoctin Mountain Park (Maryland) since 1983. The camp operates for five one-week sessions serving a total of 406 regular sixth-grade students representing 84 elementary schools with an average of 81 students per…
Gregory M. Filip; Alan Kanaskie; Will R. Littke; John Browning; Kristen L. Chadwick; David C. Shaw; Robin L. Mulvey
2014-01-01
Swiss needle cast (SNC), caused by the fungus Phaeocryptopus gaeumannii, is one of the most damaging diseases of coast Douglasfir (Pseudotsuga menziesii var. menziesii) in the Pacific Northwest (Hansen and others 2000, Mainwaring and others 2005, Shaw and others 2011).
Chapter 2. Borderlands environment, past and present
Guadalupe Sanchez de Carpenter; A.C. MacWilliams
2006-01-01
The major mountain ranges in the study area today were produced by Middle Miocene and younger extensional faulting. Faulting continued into the late Pleistocene as evidenced by fault scarps along the margins of the Animas, Hachita, and Playas Valleys. These long-term geologic events resulted in the present basin and range physiography of the Malpai Borderlands, as...
ERIC Educational Resources Information Center
Jelinek, James J.
This resource book contains demographic data for the eight states of the Mountain Plains Adult Education Association. All information is current (1990-92) and comes from the national census and hundreds of research studies. Chapter I provides a demographic perspective of the nation, describes a holistic view of demographics, and discusses…
Study on the path selection of sustainable development in the mountainous area of Beijing
NASA Astrophysics Data System (ADS)
Chen, Malin; Zhou, Zhujun; Zhang, Huizhi; Chen, Ci; Chen, Junhong; Zhou, Zhongren
2018-02-01
The mountainous area of Beijing is the broad region with weak economic features, ecologically fragile and special ecological functions. The ecological conditions, sustainability and regional economic development are intercorrelated in the region. It is arduous to enhance the regional competitive advantage and improve the economic development level through the environmental protection and ecological conservation. This study elaborates the relationship between ecology and economic development from the perspectives of ecology, productivity and life style in mountainous areas of Beijing. Then this paper discusses how to increase sustainable development of mountain areas from several aspects, including key regional developments, industrial development, and ecological compensation mechanism, considering the strategic goals of accelerating economic transformation, coordinating urban and rural development, and promoting new-type urbanization.
NASA Astrophysics Data System (ADS)
Greenwood, G. B.
2014-12-01
Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.
NASA Astrophysics Data System (ADS)
Letcher, Theodore
As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing the thermal contrast between the mountain slopes and the surrounding lowlands which drives these wind systems. This analysis is extended to investigate the impacts that the SAF has on the large-scale mountain-plain circulation that develops east of the Rockies over the Great Plains. To help isolate the SAF, a more idealized regional climate experiment which isolates the SAF is performed. It was found that SAF may influence thermally driven atmospheric dynamics up-to 200km east of the Mountains where the SAF originates, suggesting broader regional impacts of the SAF which may not be well resolved by coarser resolution global climate models. The implications of these changes on pollution transport and moist convection are also explored using these simulations.
A computer simulation model to compute the radiation transfer of mountainous regions
NASA Astrophysics Data System (ADS)
Li, Yuguang; Zhao, Feng; Song, Rui
2011-11-01
In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.
Waste management outlook for mountain regions: Sources and solutions.
Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia
2017-09-01
Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.
Beetles among us: Social and economic impacts of the MPB epidemic [Chapter 6
Krista Gebert; Greg Jones; Patty Champ; Mike Czaja; Chuck Oliver; Paul E. Cruz; Jessica Clement
2014-01-01
Healthy forest ecosystems provide many goods and services that are vital to human well-being. When forest ecosystems are impacted by disturbances, such as the widespread mountain pine beetle (MPB) epidemic, the services provided by these ecosystems are also affected. Likewise, management in response to large-scale forest disturbances impacts both the natural and human...
Cloé Garnache; Lorie Srivastava; José J Sánchez; Frank Lupi
2018-01-01
This chapter examines recreation ecosystem services provided by chaparral dominated landscapes. Such areas are popular around the world amongst recreation users, including hikers, mountain bikers, campers, and nature enthusiasts. Yet, relatively few studies have documented the recreation services provided by chaparral landscapes such as national forests. For policy...
Susan L. Stout; Matthew B. Dickinson; Gregory J. Nowacki
2012-01-01
The Hot Continental Division is one of the larger ecoregions within the continental United States (McNab and Avers 1994), incorporating portions of 19 States and extending from the eastern seacoast to areas west of the Mississippi River (chapter 1). The Division includes the Eastern (Oceanic) and Eastern (Continental) Broadleaf Forest Provinces and two Mountain...
Vertical Gun Test Environmental Assessment
2004-05-18
antillarum E E Mexican spotted owl Strix occidentalis lucida T, CH - Mountain plover Charadrius montanus SOC - New Mexican meadow jumping mouse Zapus...community, there is only one tribal reservation within the County. The Alamo Navajo Band is a satellite community of the Navajo Nation with approximately...860 residents. (Alamo Chapter, 2004) The Alamo Navajo reservation is isolated from the other Navajo Nation communities, and is located
Chapter 7: Fire and nonnative invasive plants in the Central bioregion
James B. Grace; Kristin Zouhar
2008-01-01
The Central bioregion is a vast area, stretching from Canada to Mexico and from the eastern forests to the Rocky Mountains, dominated by grasslands and shrublands, but inclusive of riparian and other forests. This bioregion has been impacted by many human-induced changes, particularly relating to agricultural practices, over the past 150 years. Also changed are fire...
Distribution and role of mat-forming saprobic basidiomycetes in a tropical forest
D. Jean Lodge; William H. McDowell; Jordan Macy; Sarah Katherine Ward; Rachel Leisso; Karla Claudio-Campos; Kerstin Kuhnert
2007-01-01
This chapter provides a brief synopsis of previous studies on the ecology of agaric decomposers that form litter 'mats' in tropical forests, augmented by data from temperate forest studies. Description of several experiments in tropical forests of the Luquillo Mountains in Puerto Rico is included. These studies showed higher rates of mass loss in leaves that...
Thomas Merlan; Kurt F. Anschuetz
2007-01-01
Adolf Bandelier described the Valles Caldera in the mid-1880s: The Valles Mountains separate the northern section of the Queres district from that claimed by the Jémez tribe. Against the chain of gently sloping summits which forms the main range from the peak of Abiquiu to the Sierra de la Palisada in the south abuts in the west an elevated plateau, containing a series...
Effects of fire on cultural resources-Introduction [Chapter 1
Kevin C. Ryan; Cassandra L. Koerner; Kristine M. Lee; Nelson Siefkin
2012-01-01
The worldâs diverse cultures have their varying creation stories (Moyers and Campbell 1988; UGA 2000). Many of these stories contain physical features: the mountains, hills, plains, and rivers of their native lands that are integral components of cultural traditions (Berkes and others 2000; Goetcheus 2002; King 2003; Martin 2002; Parker 1993; Parker and King 1990;...
Spaceborne Radar Observations of High Mountain Asia Snow and Ice
NASA Astrophysics Data System (ADS)
Lund, J.
2016-12-01
The glaciers of High Mountain Asia show a negative trend in mass balance. Within its sub regions, however, a complex pattern of climate regions and glacial forcings arise. This complexity, coupled with the challenges of field study in the region, illicit notable uncertainties both in observation and prediction of glacial mass balance. Beyond being valuable indicators of climate variability, the glaciers of High Mountain Asia are important water resources for densely populated downstream regions, and also contribute to global sea level rise. Scatterometry, regularly used in polar regions to detect melt in snow and ice, has seen little use in lower latitude glaciers. In High Mountain Asia, focus has been placed on spatial and temporal trends in scatterometer signals for melt onset and freeze-up. In polar regions, scatterometry and synthetic aperture radar (SAR) data have been used to estimate snow accumulation, along with interferometric SAR (InSAR) to measure glacier velocity, better constraining glacial mass balance estimates. For this poster, multiple radar sensors will be compared with both in situ as well as reanalysis precipitation data in varying climate regions in High Mountain Asia to explore correlations between snow accumulation and radar signals. Snowmelt timing influences on InSAR coherence may also be explored.
Geographic Names of Iceland's Glaciers: Historic and Modern
Sigurðsson, Oddur; Williams, Richard S.
2008-01-01
Climatic changes and resulting glacier fluctuations alter landscapes. In the past, such changes were noted by local residents who often documented them in historic annals; eventually, glacier variations were recorded on maps and scientific reports. In Iceland, 10 glacier place-names are to be found in Icelandic sagas, and one of Iceland's ice caps, Snaefellsjokull, appeared on maps of Iceland published in the 16th century. In the late 17th century, the first description of eight of Iceland's glaciers was written. Therefore, Iceland distinguishes itself in having a more than 300-year history of observations by Icelanders on its glaciers. A long-term collaboration between Oddur Sigurdsson and Richard S. Williams, Jr., led to the authorship of three books on the glaciers of Iceland. Much effort has been devoted to documenting historical glacier research and related nomenclature and to physical descriptions of Icelandic glaciers by Icelanders and other scientists from as far back as the Saga Age to recent (2008) times. The first book, Icelandic Ice Mountains, was published by the Icelandic Literary Society in 2004 in cooperation with the Icelandic Glaciological Society and the International Glaciological Society. Icelandic Ice Mountains was a glacier treatise written by Sveinn Palsson in 1795 and is the first English translation of this important scientific document. Icelandic Ice Mountains includes a Preface, including a summary of the history and facsimiles of page(s) from the original manuscript, a handwritten copy, and an 1815 manuscript (without maps and drawings) by Sveinn Palsson on the same subject which he wrote for Rev. Ebenezer Henderson; an Editor's Introduction; 82 figures, including facsimiles of Sveinn Palsson's original maps and perspective drawings, maps, and photographs to illustrate the text; a comprehensive Index of Geographic Place-Names and Other Names in the treatise; References, and 415 Endnotes. Professional Paper 1746 (this book) is the second of the three books; it is being published in both English and Icelandic editions. This book provides information about all named glaciers in Iceland, historic and modern. Descriptions, with geographic coordinates, and bibliographic citations to all glacier place-names on published maps, books, and scientific articles are included. Maps, oblique aerial photographs, ground photographs, and satellite images document each of the 269 modern named glaciers of Iceland. The third book, Glaciers of Iceland, is Chapter D of the 11-chapter [volume] U.S. Geological Survey Professional Paper 1386-A-K. Chapter D includes a 1:500,000-scale Map of the Glaciers of Iceland; it is a comprehensive historical and modern review and assessment of what is currently known about glaciers in Iceland's eight Regional Glacier Groups from a review of the scientific literature and from analysis of maps and remotely sensed data (ground, airborne, and satellite); topics include geology and geography, climate and climate variability, types of glaciers, history of glacier variation (including the 21 surge-type glaciers), and frequency and magnitude of volcanic and lacustrine jokulhlaups.
Ermakova, N V
2003-01-01
This article contains results of the comparative study of the functional state of respiratory and cardiovascular systems of almost healthy students (man) of age 19-22, inhabitants of mountain and plain regions of Latin America during their adaptation to the conditions of middle Russia. We have established that there are reliable distinctions in the functional state of cardio-respiratory system of students from mountain and plain regions of Latin America. So for representatives of mountain regions of LA were typical higher indicators of vital capacity, permeability of large and medium bronchial tubes, stroke volume, lower indicators of heart rate, systolic arterial pressure, myocard tension index, but higher coefficient of myocard efficiency than for inhabitants the plain. Considerable distinctions have been observed also in the intercommunication between different indicators. There have been marked considerable correlation connections between small bronchial tubes permeability and cardiovascular system indicators for plain inhabitants. For mountain regions inhabitants almost every indicator of bronchial tubes permeability correlate reliably with vital capacity, but didn't correlate with hemodynamics indicators.
Suicide in the Mountain West Region of the United States.
Pepper, Carolyn M
2017-09-01
The Mountain West region of the United States consistently reports the highest rates of suicide in the country. This pattern could reflect a regional culture-of-suicide script in support of suicide that implicitly influences individual's behavior. The primary aim of this study was to investigate whether suicide rates are elevated in the Mountain West across a wide range of demographic groups, thereby supporting a regional cultural script. Suicide rates in the Mountain West between 1999 and 2014 were compared to the rest of the country across a wide range of demographic categories and levels of population density using the Center for Disease Control Multiple Causes of Death dataset published on the WONDER online database. Suicide rates are elevated in the Mountain West for men and women, all racial groups, all age groups, and at every level of population density compared to the rest of the country. Missing and suppressed data, the use of coroner reports, and the arbitrary nature of state and regional boundaries are all discussed as possible limitations to this study. These findings support a broad culture-of-suicide script that is pervasive in this region across demographic groups and all levels of population density.
NASA Astrophysics Data System (ADS)
Buskop, J.; Buskop, W.
2013-12-01
The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.
Astuti, M; Brega; Casali, L; Dal Vecchio, A; Domenichini, M; Pontello, M
2005-01-01
The Regional Veterinary Service of Lombardy (northern Italian region) developed guideline on good hygienic practices to improve the safety of milk production and transformation in the mountain pastures and to grant the European acknowledgment (EU seal). Therefore we carried out 26 inspections in Valcamonica (Province of Brescia) and 30 in the Sondrio's province (26% and 16% respectively) in mountain pastures that had required the acknowledgment. The data analysis has shown that in Valcamonica 26.9% of the mountains pastures was conform to the regulations, in Sondrio's province instead 6.6% was conform; the frequency of acceptable conformity level increases respectively to 46% and to 33%, if we also consider the mountains pastures in restructuring phase and with very low level of non conformity. Our study emphasizes the need of structural adjustments of these traditional setting and of education of workers in order to improve the food safety and operator's life quality, and also to promote the maintenance of mountain pastures in the Alpine region.
Liu, Y; Zhou, Y-B; Li, R-Z; Wan, J-J; Yang, Y; Qiu, D-C; Zhong, B
2016-01-01
Schistosomiasis is a parasitic disease that affects over 200million people worldwide in at least 76 countries, ranking second only after malaria in terms of its socio-economic and public health importance in tropical and subtropical areas of the world. Chinese surveillance data since the mid-1950s have shown that endemic areas are divided into three types based on geographical, ecological and epidemiological factors, such as marshland and lake region, plain region with waterway networks and hilly and mountainous region. As confirmed by numerous epidemiological investigations, schistosomiasis endemic areas of the mountainous type are distributed in 178 counties in 11 provinces of The People's Republic of China. Over the past several decades great success in transmission control has been achieved by implementation of control strategies that were suitable for the mountainous and hilly endemic region. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chapter 8: Fire and nonnative invasive plants in the Interior West bioregion
Peter M. Rice; Guy R. McPherson; Lisa J. Rew
2008-01-01
The Interior West bioregion is bounded on the east by the eastern slope of the Rocky Mountains from Canada south to Mexico and on the west by the eastern foothills of the Cascade Range in Washington and Oregon and the eastern foothills of the Sierra Nevada in California. The bioregion includes the Chihuahuan, Sonoran, and Mojave hot deserts and the Great Basin cold...
Forest resources of the Ouachita Mountain region of Arkansas
I.F. Eldredge
1938-01-01
The Ouachita Mountain region of Arkansas is a rugged, timbered area extending fanwise from Little Rock westward to the Oklahoma state line. The Arkansas River form the northern boundary, and the southernmost ridges of the Ouachita Mountains approximate the southern limits of the area (map, fig. 3). It includes all 9 counties and part of 3 others, totaling 4,917,700...
Bringing wisents back to the Caucasus Mountains: 70 years of a grand mission
Sipko, Taras; Trepet, Sergei; Gogan, Peter J.; Mizin, Ivan
2010-01-01
We describe the history of mountain wisent restoration in the north-west Caucasus region. We review information on wisent during the 18th and 19th centuries, contemporary regional development and reasons for wisent extirpation. We emphasize the key role of the Kuban Hunting Reserve as a main factor in preserving wisent in this region between 1888 and 1909. The article provides information on the fate of three known Caucasus wisent and their impact on the common pedigree of EuropeanWisent. The importance of scientist’s efforts to conserve the survived wisent in Europe in 1920th and international cooperation is underscored. The issues of hybridization between wisent and American bison and the possible influence of hybridization events on the and taxonomic status of contemporary mountain wisent are discussed. We describes in detail the history of wisent reintroduced to the Caucasus, the establishment of seasonal migration patterns and adaptation to the mountainous region and poaching pressures. Mountain wisent reached a maximum number of 1500 animals in 1991. We review the significant role of the Caucasian Biosphere Reserve and its zoologists in conservation of mountain wisent in its historical area and current research objectives with the support of German conservation organizations.
NASA Astrophysics Data System (ADS)
Allen, Simon; Ballesteros, Juan Antonio; Huggel, Christian; Linsbauer, Andreas; Mal, Suraj; Singh Rana, Ranbir; Singh Randhawa, Surjeet; Ruiz-Villanueva, Virginia; Salzmann, Nadine; Singh Samant, Sher; Stoffel, Markus
2017-04-01
Mountain environments around the world are often considered to be amongst the most sensitive to the impacts of climate change. For people living in mountain communities, there are clear challenges to be faced as their livelihoods and subsistence are directly dependent on their surrounding natural environment. But what of the wider implications for societies and large urban settlements living downstream - why should they care about the climate-driven changes occurring potentially hundreds of kilometers away in the snow and ice capped mountains? In this contribution we address this question, drawing on studies and experiences gained within joint Indo-Swiss research collaborations focused on the Indian Himalayan states of Himachal Pradesh and Uttarakhand. With the Intergovernmental Panel on Climate Change currently embarking on the scoping of their 6th Assessment Cycle, which includes a planned Special Report on Oceans and the Cryosphere, this contribution provides a timely reminder of the importance of mountain regions, and potential far-reaching consequences of changes in the mountain cryosphere. Our studies highlight several key themes which link the mountain environment to the lowland populated areas, including the role of the mountain cryosphere as a water source, far-reaching hazards and disasters that can originate from mountain regions, the role of mountains in providing essential ecosystem services, the economic importance of tourism in mountain regions, and the importance of transportation routes which pass through mountain environments. These themes are intricately linked, as for example demonstrated during the 2013 Uttarakhand flood disaster where many of the approximately 6000 fatalities were tourists visiting high mountain pilgrimage sites. As a consequence of the disaster, tourists stayed away during subsequent seasons with significant economic impacts felt across the State. In Himachal Pradesh, a key national transportation corridor is the Rohtang pass and tunnel, linking Kullu with Lahual and Spiti districts in the north. Our studies have shown that this corridor is threatened by a range of climate related hazards, including debris flows, flash floods, and snow avalanches, highlighting the need to consider climate change scenarios to ensure the long-term sustainability of vital transportation networks in mountain regions. Often a transboundary perspective is required. For example, in 2000 a landslide dammed lake located in Tibet breached, causing the loss of at least 156 lives in the Indian district of Kinnaur located 100 km downstream, with infrastructural damage and loss of revenue estimated at up to US 222 million. Considering the wide-ranging ways in which downstream societies interact with and depend upon mountain environments, systematic monitoring and assessment of changes in the high mountain cryosphere is essential to ensure that adaptation decisions are evidence-based, and well supported by latest scientific understanding.
Sleeter, Benjamin M.
2012-01-01
Located in eastern Washington and northern Oregon, the Columbia Plateau Ecoregion is characterized by sagebrush steppe and grasslands with extensive areas of dryland farming and irrigated agriculture. The ecoregion, which is approximately 90,059 km2 (34,772 mi2), is surrounded on all sides by mountainous ecoregions: to the west, the North Cascades Ecoregion and the Eastern Cascades Slopes and Foothills Ecoregion (and to the west of it, the Cascades Ecoregion); to the south, the Blue Mountains Ecoregion; and to the east, the Northern Rockies Ecoregion (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The climate is Mediterranean, with cool wet winters and hot dry summers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuesong
2012-12-17
Precipitation is an important input variable for hydrologic and ecological modeling and analysis. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the continental United States with a high resolution display of approximately 4 × 4 km2. Two major issues concerning the applications of NEXRAD data are (1) lack of a NEXRAD geo-processing and geo-referencing program and (2) bias correction of NEXRAD estimates. In this chapter, a geographic information system (GIS) based software that can automatically support processing of NEXRAD data for hydrologic and ecological models is presented. Some geostatistical approaches to calibrating NEXRAD data using rainmore » gauge data are introduced, and two case studies on evaluating accuracy of NEXRAD Multisensor Precipitation Estimator (MPE) and calibrating MPE with rain-gauge data are presented. The first case study examines the performance of MPE in mountainous region versus south plains and cold season versus warm season, as well as the effect of sub-grid variability and temporal scale on NEXRAD performance. From the results of the first case study, performance of MPE was found to be influenced by complex terrain, frozen precipitation, sub-grid variability, and temporal scale. Overall, the assessment of MPE indicates the importance of removing bias of the MPE precipitation product before its application, especially in the complex mountainous region. The second case study examines the performance of three MPE calibration methods using rain gauge observations in the Little River Experimental Watershed in Georgia. The comparison results show that no one method can perform better than the others in terms of all evaluation coefficients and for all time steps. For practical estimation of precipitation distribution, implementation of multiple methods to predict spatial precipitation is suggested.« less
Finn, Thomas M.
2007-01-01
The stratigraphic cross sections presented in this report were constructed as part of a project conducted by the U.S. Geological Survey to characterize and evaluate the undiscovered oil and gas resources of the Wind River Basin (WRB) in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic framework and facies relations of Cretaceous and lower Tertiary rocks in this large, intermontane structural and sedimentary basin, which formed in the Rocky Mountain foreland during the Laramide orogeny (Late Cretaceous through early Eocene time). The WRB is nearly 200 miles (mi) long, 70 mi wide, and encompasses about 7,400 square miles (mi2) (fig. 1). The basin is structurally bounded by the Owl Creek and Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and the Wind River Range on the west.
Executive summary - Geologic assessment of coal in the Gulf of Mexico coastal plain, U.S.A.
Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.
2011-01-01
The National Coal Resource Assessment (NCRA) project of the U.S. Geological Survey (USGS) has assessed the quantity and quality of the nation's coal deposits that potentially could be mined during the next few decades. For eight years, geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the western part of the Gulf of Mexico Coastal Plain (Gulf Coast) region (Figure 1). In particular, the NCRA assessed resource estimates, compiled coal-quality information, and characterized environmentally sensitive trace elements, such as arsenic and mercury, that are mentioned in the 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of the USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal-assessments/index.html and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).Detailed assessments of the major coal-producing areas for the Gulf Coast region along with reviews of the stratigraphy, coal quality, resources, and coalbed methane potential of the Cretaceous, Paleocene, and Eocene coal deposits are presented in this report (Chapters 5-10).
Ruhlman, Jana; Gass, Leila; Middleton, Barry
2012-01-01
The Madrean Archipelago Ecoregion (Omernik, 1987; U.S. Environmental Protection Agency, 1997), also known as the “Madrean Sky Islands” or “Sky Islands,” covers an area of approximately 40,536 km2 (15,651 mi2) in southeastern Arizona and southwestern New Mexico (fig. 1). The ecoregion is bounded on the west by the Sonoran Basin and Range Ecoregion, on the east by the Chihuahuan Deserts Ecoregion, and on the north by the Arizona/New Mexico Mountains Ecoregion. This area of basin-and-range topography is one of the most biologically diverse in the world (Koprowski, 2005; Skroch, 2008). Although the mountains in the ecoregion bridge the Rocky Mountains to the north and the Sierra Madre Occidental in Mexico to the south (U.S. Environmental Protection Agency, 1997), the lower elevations act as a barrier to species dispersal. Nevertheless, the geographic convergence of these two major continental mountain ranges, as well as of the Chihuahuan Desert to the east and the Sonoran Desert to the west, forms the foundation for ecological interactions found nowhere else on Earth (Skroch, 2008).
Prototype Engineered Barrier System Field Test (PEBSFT); Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A.L.; Buscheck, T.; Carlson, R.
1991-08-01
This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity andmore » attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.« less
Changes in vegetation cover and composition in the Swedish mountain region.
Hedenås, Henrik; Christensen, Pernilla; Svensson, Johan
2016-08-01
Climate change, higher levels of natural resource demands, and changing land use will likely lead to changes in vegetation configuration in the mountain regions. The aim of this study was to determine if the vegetation cover and composition have changed in the Swedish region of the Scandinavian Mountain Range, based on data from the long-term landscape biodiversity monitoring program NILS (National Inventory of Landscapes in Sweden). Habitat type and vegetation cover were assessed in 1740 systematically distributed permanent field plots grouped into 145 sample units across the mountain range. Horvitz-Thompson estimations were used to estimate the present areal extension of the alpine and the mountain birch forest areas of the mountain range, the cover of trees, shrubs, and plants, and the composition of the bottom layer vegetation. We employed the data from two subsequent 5-year monitoring periods, 2003-2007 and 2008-2012, to determine if there have been any changes in these characteristics. We found that the extension of the alpine and the mountain birch forest areas has not changed between the inventory phases. However, the total tree canopy cover increased in the alpine area, the cover of graminoids and dwarf shrubs and the total cover of field vegetation increased in both the alpine area and the mountain birch forest, the bryophytes decreased in the alpine area, and the foliose lichens decreased in the mountain birch forest. The observed changes in vegetation cover and composition, as assessed by systematic data in a national and regional monitoring scheme, can validate the results of local studies, experimental studies, and models. Through benchmark assessments, monitoring data also contributes to governmental policies and land-management strategies as well as to directed cause and effect analyses.
Mankinen, Edward A.; Irwin, William P.
1990-01-01
Paleomagnetic studies of the Klamath Mountains, Blue Mountains, Sierra Nevada, and northwestern Nevada pertain mostly to Jurassic and Cretaceous rocks, but some data also are available for Permian and Triassic rocks of the region. Large vertical-axis rotations are indicated for rocks in many of the terranes, but few studies show statistically significant latitudinal displacements. The most complete paleomagnetic record is from the Eastern Klamath terrane, which shows large post-Triassic clockwise rotations and virtual cessation of rotation by Early Cretaceous time, when accretion to the continent was completed. Data from Permian strata of the Eastern Klamath terrane indicate no paleolatitude anomaly, in contrast to preliminary results from coeval strata of Hells Canyon in the Blue Mountains region, which are suggestive of some southward movement. If these Hells Canyon results are confirmed, some of the terranes in these two regions must have been traveling on separate plates during late Paleozoic time. Data from Triassic and younger strata in the Blue Mountains region indicate paleolatitudes that are concordant with North America. Results from Triassic rocks of the Koipato Formation in west-central Nevada also indicate southward transport, but when this movement ceased is unknown. The Nevadan orogeny may have occurred in the Sierra Nevada during Jurassic accretion of the ophiolitic and volcanic-arc terranes of that province to the continent, whereas what has been considered to be the same orogeny in the Klamath Mountains may have occurred before accretion. Using the concordance of observed and expected paleomagnetic directions as a guide, the allochthonous Sierra Nevada, Klamath Mountains, and Blue Mountains composite terranes seem to have accreted to the continent sequentially from south to north.
ERIC Educational Resources Information Center
Byers, Alton; Gilligan, Nancy; Golston, Syd; Linville, Rex
1999-01-01
Provides a lesson that enables students to explain the global importance of mountains by applying the five themes of geography (location, place, relationships within places, movement, and regions) to a particular mountain range. Explains that students work in teams to prepare a brochure about their mountain range. (CMK)
Catherine G. Parks; Steven R. Radosevich; Bryan A. Endress; Bridgett J. Naylor; Dawn Anzinger; Lisa J. Rew; Bruce D. Maxwell; Kathleen A. Dwire
2005-01-01
Although the Northwest currently has the least proportion of non-native invasive plant species relative to other regions or North America, invasions continue to increase into the mountainous areas of the region. Landscape structure, such as the variation found along the complex gradients of the Northwest mountain ecoregions, affects the expansion of invasive plant...
Steinkampf, W.C.
2000-01-01
Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program, The first day focuses on the regional seeing with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be in southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The filed trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, and element of the hydrologic system that historically has received little attention. Discussions during the second day will comprise selected topics of Yucca Mountain geology, mic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.
77 FR 31566 - Notice of Meeting; Federal Lands Recreation Enhancement Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-29
... Group Site, fee changes to Green Mountain Reservoir and the elimination of fees at Cataract Lake. There.... Maribeth Gustafson, Deputy Regional Forester, Operations, Rocky Mountain Region. [FR Doc. 2012-12731 Filed...
Coal-bed gas resources of the Rocky Mountain region
Schenk, C.J.; Nuccio, V.F.; Flores, R.M.; Johnson, R.C.; Roberts, S.B.; Collett, T.S.
2001-01-01
The Rocky Mountain region contains several sedimentary provinces with extensive coal deposits and significant accumulations of coal-bed gas. This summary includes coal-bed gas resources in the Powder River Basin (Wyoming and Montana), Wind River Basin (Wyoming), Southwest Wyoming (Greater Green River Basin of Wyoming, Colorado, and Utah), Uinta-Piceance Basin (Colorado and Utah), Raton Basin (Colorado and New Mexico), and San Juan Basin (Colorado and New Mexico). Other provinces in the Rocky Mountain region may contain significant coal-bed gas resources, but these resource estimates are not available at this time.
Small bugs with big impacts: Ecosystem and watershed-level responses to the MPB epidemic [Chapter 7
Rob Hubbard; Kelly Elder; Chuck Rhoades; Polly Hays; Bruce Sims
2014-01-01
Mountain pine beetle (MPB) outbreaks have the potential for prolonged impacts on the delivery of clean water from infested subalpine watersheds throughout the West. Sixty-five percent of the Westâs water supply originates on forested land (Brown and others 2008), much of which has been affected by an unprecedented MPB epidemic over the past decade. Some lodgepole pine...
Sharon M. Hood; Robert E. Keane; Helen Y. Smith; Joel Egan; Lisa Holsinger
2018-01-01
Understanding the impacts of mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) on fire behavior is important from both an ecological and land management viewpoint. However, numerous uncertainties exist in the linkages of MPB-caused treemortality to changes in canopy and surface fuels (e.g., fuel loading, arrangement, and availability) and the...
NASA Astrophysics Data System (ADS)
Wang, K.; Xiong, X.; Hao, X.; Li, J.
2017-12-01
Tienshan mountain is located about 1500 km away from the plate boundary, but it absorbs approximately 30% of the total effect of the Indian-Eurasian collision. As its rapid shortening and distinct deformation, Tienshan is considered as a good laboratory for studying the dynamics of intra-plate compressional deformation. However, a better understanding of the mechanics of Tienshan mountain building processes demands a detailed knowledge of the rheological structure of the lithosphere in Tienshan region.Here we take advantages of the new data sets from the geothermal, seismology and geodesy to re-estimate the strength of lithosphere in the Tienshan mountain and neighbouring region. We have developed two numerical deformation models (two-dimension profile) along the eastern and western Tienshan Mountain in order to investigate the effects of lateral strength heterogeneities on mountain building.We find that (1) the lithospheric strength of Tienshan mountain has significant difference with adjacent area, and its strength is significantly lower than that of Tarim Basin and Junggar Basin; (2) the strength also shows difference between the eastern and western of Tienshan Mountain, the eastern is strong and the western is weak. Our numerical results reveal that (3) the presence of strong Tarim Basin caused the Indian-Eurasian collision effect to be transferred to the Tienshan Mountains beyond 1500km, while the Tarim Basin shows little internal deformation; (4) the Tienshan region with weak lithosphere contributes to its horizontal shortening and vertical uplift; (5) the existence of high strength Junggar Basin is advantageous to the deformation and orogenic of Tienshan, and also prevents the orogenic range from spreading further northward.
David J. Millar; David J. Cooper; Kathleen A. Dwire; Robert M. Hubbard; Joseph von Fischer
2016-01-01
Mountain fens found in western North America have sequestered atmospheric carbon dioxide (CO2) for millennia, provide important habitat for wildlife, and serve as refugia for regionally-rare plant species typically found in boreal regions. It is unclear how Rocky Mountain fens are responding to a changing climate. It is possible that fens found at lower elevations may...
Reading for Young People: The Rocky Mountains.
ERIC Educational Resources Information Center
Laughlin, Mildred, Ed.
One of five annotated bibliographies that describe books about certain regions of the United States, this compilation focuses on books about the Rocky Mountain area. The stated purposes of these regional bibliographies are: (1) to introduce young people living in the subject region to books dealing with their cultural heritage, (2) to help young…
NASA Technical Reports Server (NTRS)
Frei, Allan; Nolin, Anne W.; Serreze, Mark C.; Armstrong, Richard L.; McGinnis, David L.; Robinson, David A.
2004-01-01
The purpose of this three-year study is to develop and evaluate techniques to estimate the range of potential hydrological impacts of climate change in mountainous areas. Three main objectives are set out in the proposal. (1) To develop and evaluate transfer functions to link tropospheric circulation to regional snowfall. (2) To evaluate a suite of General Circulation Models (GCMs) for use in estimating synoptic scale circulation and the resultant regional snowfall. And (3) to estimate the range of potential hydrological impacts of changing climate in the two case study areas: the Upper Colorado River basin, and the Catskill Mountains of southeastern New York State. Both regions provide water to large populations.
NASA Astrophysics Data System (ADS)
Taylor, P. C.
2017-12-01
Rapid and visible climate change is happening across the Arctic, outpacing global change. Annual average near-surface air temperatures across the Arctic are increasing at more than twice the rate of global average surface temperature. In addition to surface temperature, all components of the Arctic climate system are responding in kind, including sea ice, mountain glaciers and the Greenland Ice sheet, snow cover, and permafrost. Many of these changes with a discernable anthropogenic imprint. While Arctic climate change may seem physically remote to those living in other regions of the planet, Arctic climate change can affect the global climate influencing sea level, the carbon cycle, and potentially atmospheric and oceanic circulation patterns. As an Arctic nation, United States' adaptation, mitigation, and policy decisions depend on projections of future Alaskan and Arctic climate. This chapter of the Climate Science Special Report documents significant scientific progress and knowledge about how the Alaskan and Arctic climate has changed and will continue to change.
Paces, J.B.; Ludwig, K. R.; Peterman, Z.E.; Neymark, L.A.
2002-01-01
Uranium concentrations and 234U/238U ratios in saturated-zone and perched ground water were used to investigate hydrologic flow and downgradient dilution and dispersion in the vicinity of Yucca Mountain, a potential high-level radioactive waste disposal site. The U data were obtained by thermal ionization mass spectrometry on more than 280 samples from the Death Valley regional flow system. Large variations in both U concentrations (commonly 0.6-10 ??g 1-1) and 234U/238U activity ratios (commonly 1.5-6) are present on both local and regional scales; however, ground water with 234U/238U activity ratios from 7 up to 8.06 is restricted largely to samples from Yucca Mountain. Data from ground water in the Tertiary volcanic and Quaternary alluvial aquifers at and adjacent to Yucca Mountain plot in 3 distinct fields of reciprocal U concentration versus 234U/238U activity ratio correlated to different geographic areas. Ground water to the west of Yucca Mountain has large U concentrations and moderate 234U/238U whereas ground water to the east in the Fortymile flow system has similar 234U/238U, but distinctly smaller U concentrations. Ground water beneath the central part of Yucca Mountain has intermediate U concentrations but distinctive 234U/238U activity ratios of about 7-8. Perched water from the lower part of the unsaturated zone at Yucca Mountain has similarly large values of 234U/238U. These U data imply that the Tertiary volcanic aquifer beneath the central part of Yucca Mountain is isolated from north-south regional flow. The similarity of 234U/238U in both saturated- and unsaturated-zone ground water at Yucca Mountain further indicates that saturated-zone ground water beneath Yucca Mountain is dominated by local recharge rather than regional flow. The distinctive 234U/238U signatures also provide a natural tracer of downgradient flow. Elevated 234U/238U in ground water from two water-supply wells east of Yucca Mountain are interpreted as the result of induced flow from 40 a of ground-water withdrawal. Elevated 234U/238U in a borehole south of Yucca Mountain is interpreted as evidence that natural downgradient flow is more likely to follow southerly paths in the structurally anisotropic Tertiary volcanic aquifer where it becomes diluted by regional flow in the Fortymile system.
Multi-scale nest-site selection by black-backed woodpeckers in outbreaks of mountain pine beetles
Thomas W. Bonnot; Joshua J. Millspaugh; Mark A. Rumble
2009-01-01
Areas of mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks in the Black Hills can provide habitat for black-backed woodpeckers (Picoides arcticus), a U.S. Forest Service, Region 2 Sensitive Species. These outbreaks are managed through removal of trees infested with mountain pine beetles to control mountain pine...
A comparison of northern and southern table mountain pine stands
Patrick H. Brose; Thomas A. Waldrop; Helen H. Mohr
2010-01-01
Table Mountain pine (Pinus pungens) stands occur throughout the Appalachian Mountains, but ecological research has concentrated on the southern part of this region. In 2006, research was initiated in northern Table Mountain pine stands growing in PA to compare some basic attributes of those stands with previously described ones in TN. Overall, the...
Lavin, Karen S; Hageman, Kimberly J
2013-02-05
Twenty-one halogenated legacy and current-use pesticides and pesticide degradation products were measured in pine needles along a coast-to-coast transect that crossed the Southern Alps of New Zealand. Concentration profiles of nine pesticides were used to determine the influence of geographic sources on the atmospheric pesticide burden at the mountain sites. Pesticide concentration profiles were calculated for each source and mountain site by normalizing concentrations (adjusted for temperature at the site and air-needle partitioning) to the sum of all pesticide concentrations at the site. Each mountain site profile was compared to varying mixtures of the potential source profiles to determine the percent contribution of each source. The highest elevation mountain sites were primarily influenced by long-range, synoptic-scale northwesterly winds. Westerly upslope winds had little influence on any of the mountain sites. Easterly upslope winds from the Canterbury Plains, an agricultural region, strongly influenced the mountain sites within close proximity and had progressively less influence with distance.
DOT National Transportation Integrated Search
2016-09-01
the ISSUE : the RESEARCH : Earthquake Fragility : Assessment of Curved : and Skewed Bridges in : Mountain West Region : Reinforced concrete bridges with both skew and curvature are common in areas with complex terrains. : These bridges are irregular ...
Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McPherson, Brian; Matthews, Vince
2013-09-30
The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.
Regional geology and tectonics
Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.
2017-01-01
This chapter describes the regional geology and tectonic origins of the major geologic units for the Northern Cordillera. The goals of the chapter are to: (1) provide a summary and regional overview of this vast region that contains a complicated geologic history; and (2) describe the major geologic units and tectonic events that cover a broad geologic time span from the Proterozoic to the Holocene (Recent).
Russell T. Graham; Theresa B. Jain; Kathy L. Graham; Robert Denner; Colin Hardy
2014-01-01
The 1910 fires, which burned more than 1.3 million ha of northern Rocky Mountain forests, provided a mission and management objectives for the newly created Forest Service. By 1911, the Priest River Experimental Station (Forest- PREF) was established in northern Idaho to help meet the needs of the Forest Service. Harry T. Gisborne, whose work was centered at PREF,...
Environmental Impacts of Economic and Population Change in Arkansas.
ERIC Educational Resources Information Center
Graff, Thomas; And Others
This text is intended to portray the interrelationships of a region's environment, population, and economy. The first chapter defines these interrelationships. The second chapter focuses on economic changes in Arkansas since 1940. The third chapter examines population changes in Arkansas since 1940. The final chapter demonstrates that all these…
NASA Astrophysics Data System (ADS)
Tatiana, K.; Nosenko, G.; Popova, V.; Muraviev, A.; Nikitin, S.; Chernova, L.
2017-12-01
Mountain glaciers are vital sources of water worldwide to many densely-populated regions. Most glaciers are now shrinking, resulting in variable water supplies and sustained sea level rise. Rapid glacier change threatens water, energy and food security. Further glacier mass loss is likely in response to recent climate change, driven by global increases in air temperatures and the production of atmospheric pollutants. However, high altitudes and rugged topography generate regional weather systems that complicate the investigation of the relationship between climate and glacier change. Predictive models need to move beyond the state-of-the-art to couple advanced climate models with accurate representations of glacier processes, and more detailed and reliable data describing the state of mountain glaciers are required to constrain these models, both from monitoring individual glaciers and regional remote-sensing observations. Glaciation exists on the territory of Russia for thousands of years. At present both mountain glaciers and continental ice sheets are present there. Continental ice sheets are located on islands and archipelagoes of Russian Arctic region and mountain glaciers are wide-spread on continental part of the country where it currently covers the area of about 3,480,000 km². Now there are 18 mountain glacier regions on the territory of Russia. We present recent data on glaciers state and changes in mountain regions of Russia based on remote sensing and in situ studies and distribution of main climatic parameters that affect the existence of glaciers: summer air temperature, winter precipitations and maximum value of snow thickness. Acknowledgements. This presentation includes the results of research project № 0148-2014-0007 of the Research Plan of the Institute of Geography, RAS and research project supported by the Russian Geographical Society (grant number 05/2017/RGS-RFBR).
Cities and Regions in the New Learning Economy. Education and Skills.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.
This publication analyzes relationships between various forms of learning and economic performance at the regional level and provides rather strong evidence of the importance of individual and firm-level organizational learning for regions' economic performance. Chapter 1 is an introduction. Chapter 2 maps out a conceptual framework for the…
Forested communities of the pine mountain region, Georgia, USA
Robert Floyd; Robert Carter
2013-01-01
Seven landscape scale communities were identified in the Pine Mountain region having a mixture of Appalachian, Piedmont, and Coastal Plain species. The diagnostic environmental variables included elevation, B-horizon depth, A-horizon silt, topographic relative moisture index, and A-horizon potassium (K).
Atmospheric deposition maps for the Rocky Mountains
Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.
2003-01-01
Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.
Global Measurements of Stratospheric Mountain Waves from Space
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Preusse, Peter; Jackman, Charles H. (Technical Monitor)
1999-01-01
Temperatures acquired by the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) during shuttle mission STS-66 have provided measurements of stratospheric mountain waves from space. Large-amplitude, long-wavelength mountain waves at heights of 15 to 30 kilometers above the southern Andes Mountains were observed and characterized, with vigorous wave breaking inferred above 30 kilometers. Mountain waves also occurred throughout the stratosphere (15 to 45 kilometers) over a broad mountainous region of central Eurasia. The global distribution of mountain wave activity accords well with predictions from a mountain wave model. The findings demonstrate that satellites can provide the global data needed to improve mountain wave parameterizations and hence global climate and forecast models.
Changes of flood risk on the northern foothills of the Tatra Mountains
NASA Astrophysics Data System (ADS)
Kundzewicz, Z. W.; Stoffel, M.; Wyżga, B.; Ruiz-Villanueva, V.; Niedźwiedź, T.; Kaczka, R.; Ballesteros-Cánovas, J. A.; Pińskwar, I.; Łupikasza, E.; Zawiejska, J.; Mikuś, P.; Choryński, A.; Hajdukiewicz, H.; Spyt, B.; Janecka, K.
2017-08-01
The present paper reviews selected outcomes of the FLORIST project devoted to flood risk in the region of the northern foothills of the Tatra Mountains in Poland and summarizes novel results. The project encompassed theoretical, field, and modeling work. It was focused around observation-based hydroclimatology; projections for the future; dendrogeomorphology; as well as influence of transport of large wood on fluvial processes. The project improved understanding and interpreting changes in high-flow frequency and magnitude as well as changes in flood risk in the region, related to the presence of large wood in mountain streams. A unique database on past episodes of intense precipitation and flooding was created, harnessing multiple sources. The project showed that the analysis of tree rings and wood logs can offer useful information, complementing and considerably enriching the knowledge of river floods in the region of northern foothills of the Tatra Mountains. Retrospective and scenario-defined modeling of selected past fluvial events in the region was also performed.
Edward Gage; David J. Cooper
2013-01-01
This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...
NASA Astrophysics Data System (ADS)
Hermawan, Prianto, Eddy; Setyowati, Erni; Sunaryo
2017-11-01
Adaptive thermal comfort is the latest theory used to analyze thermal acceptability of the naturally ventilated buildings for occupants in tropical areas. Vernacular residences are considered capable to meet the thermal comfort for the occupants. The combination between adaptive and passive theory is still rarely conducted. This study aims to compare the adaptive and passive thermal comfort for occupants of vernacular residences in mountainous and coastal regions using AMV (Actual Mean Vote) and PMV (Predicted Mean Vote). This research uses a quantitative method with a statistical analysis on variables of air temperature, globe temperature, velocity, relative humidity, age, weight, and height. AMV data are collected based on questionnaires with ASHRAE (American Society of Heating, Refrigeration, Air conditioning Engineering) standards. The samples consist of 100 vernacular residences of both coastal and mountainous regions. The results show that there are AMV and PMV differences in each region. The AMV values in those vernacular residences in mountainous and coastal regions are respectively -0.4982 and 0.1673. It indicates that the occupants of vernacular residences in coastal regions accept the thermal conditions better. Thus, it can be concluded that vernacular residences in coastal areas comfort the occupants more.
NASA Astrophysics Data System (ADS)
Palazzi, Elisa; Mortarini, Luca; Terzago, Silvia; von Hardenberg, Jost
2017-04-01
The enhancement of warming rates with elevation, the so-called elevation-dependent warming (EDW), is one of the clearest regional expressions of global warming. Real sentinels of climate and environmental changes, mountains have experienced more rapid and intense warming rates in the recent decades, leading to serious impacts on mountain ecosystems and downstream societies, some of which are already occurring. In this study we use the historical and scenario simulations of one state-of-the-art global climate model, the EC-Earth GCM, run at five different spatial resolutions, from ˜125 km to ˜16 km, to explore the existence, characteristics and driving mechanisms of EDW in three different mountain regions of the world - the Colorado Rocky Mountains, the Greater Alpine Region and the Tibetan Plateau-Himalayas. The aim of this study is twofold: to investigate the impact (if any) of increasing model resolution on the representation of EDW and to highlight possible differences in this phenomenon and its driving mechanisms in different mountain regions of the northern hemisphere. Preliminary results indicate that autumn (September to November) is the only season in which EDW is simulated by the model in both the maximum and the minimum temperature, in all three regions and across all model resolutions. Regional differences emerge in the other seasons: for example, the Tibetan Plateau-Himalayas is the only area in which EDW is detected in winter. As for the analysis of EDW drivers, we identify albedo and downward longwave radiation as being the most important variables for EDW, in all three areas considered and in all seasons. Further these results are robust to changes in model resolution, even though a clearer signal is associated with finer resolutions. We finally use the highest resolution EC-Earth simulations available (˜16 km) to identify what areas, within the three considered mountain ranges, are expected to undergo a significant reduction of snow or ice cover in the period 2039-2068 with respect to the period 1979-2008, using the EC-Earth projections under the RCP 8.5 concentration scenario.
Health risk assessment of fluoride in drinking water from Anhui Province in China.
Gao, Hong-jian; Jin, You-qian; Wei, Jun-ling
2013-05-01
This study analyzes the concentrations and health risks of fluoride in 249 drinking water samples collected from different regions of Anhui Province in China. Results indicated that fluoride content in drinking water ranged from 0.12 to 1.94 mg L(-1) (mean = 0.57 mg L(-1)) in the following order: Huaibei plain region > Jianghuai hill region ≈ Dabieshan mountainous region > plain along the Yangtze River region > southern Anhui mountainous region. The fluoride contents were less than 0.50 mg L(-1) in 66.66 % of the drinking water samples, 0.51-1.0 mg L(-1) in 23.29 %, and higher than 1.0 mg L(-1) in 12.04 %. The fluoride levels in some samples were lower than the recommended values for controlling dental caries (0.50-1.0 mg L(-1)). The total fluoride intake from drinking water was between 0.14 and 2.33 mg per day in different regions of the province, supposing an individual consumes 1.2 L of water per day. Therefore, measures should be taken to increase fluoride intake in the Jianghuai hill region, Dabieshan mountainous region, plain along the Yangtze River, and southern Anhui mountainous region to control dental caries. On the other hand, the fluoride levels must be reduced in the Huaibei plain region to decrease endemic fluorosis. The results serve as crucial guidelines for managing fluoride safety in drinking water and controlling endemic fluorosis in different regions of Anhui Province.
Lineations and structural mapping of Io's paterae and mountains: Implications for internal stresses
NASA Astrophysics Data System (ADS)
Ahern, Alexandra A.; Radebaugh, Jani; Christiansen, Eric H.; Harris, Ronald A.; Tass, E. Shannon
2017-11-01
The mountains of Jupiter's volcanic moon Io are tall, steep, and tectonic in origin, yet their precise modes of formation and their associations with volcanic paterae are not fully understood. Global spatial statistics of paterae and mountains and their associated lineations reveal that both types of features are more common at low latitudes and tectonic lineations have preferred orientations, whereas straight patera margins are randomly oriented. Additionally, structurally controlled lineations tend to cluster with each other, and in areas of high concentrations these tectonic lineations are shorter in length than their global average. These results indicate that global-scale (rather than local or regional) processes are involved in forming Io's tectonic structures, but that the diversity of mountain characteristics and the collapse of paterae adjacent to mountain complexes are more locally controlled. Regional structural mapping of the Hi'iaka, Shamshu, Tohil, and Zal regions reveals Io's mountains reside in large, fault-bounded crustal blocks that have undergone modification through local responses of subsurface structures to variable stresses. Strike-slip motion along reactivated faults led to the formation of transpressional and transtensional features, creating tall peaks and low basins, some of which are now occupied by paterae. We propose Io's mountains result from a combination of crustal stresses involving global and local-scale processes, dominantly volcanic loading and tidal flexing. These stresses sometimes are oriented at oblique angles to pre-existing faults, reactivating them as reverse, normal, or strike-slip faults, modifying the large, cohesive crustal blocks that many of Io's mountains reside in. Further degradation of mountains and burial of faults has occurred from extensive volcanism, mass wasting, gravitational collapse, and erosion by sublimation and sapping of sulfur-rich layers. This model of fault-bounded blocks being modified by global stresses and local structural response accounts for the variation and patterns of mountain sizes, shapes, and orientations, along with their isolation and interactions with other features. It also provides a context for the operation and extent of global and regional stresses in shaping Io's surface.
Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
Because of the many names used to identify individual coal beds and coal zones in the historic Appalachian basin coal-mining districts, coal bed designations may differ even more than stratigraphic nomenclature. In eastern Kentucky, northwest of the Pine Mountain thrust fault on the Cumberland overthrust sheet, for example, coal beds or coal zones equivalent to the Lower Elkhorn coal zone (within the Pikeville Formation) are identified also as the Eagle coal zone, Pond Creek coal zone, and Blue Gem coal bed (fig. 1). Southeast of the Pine Mountain thrust fault, yet still in Kentucky, equivalent coals in this same interval are known as the Imboden and Rich Mountain. Moreover, this same interval of coal is identified as the Blue Gem coal in Tennessee, the Imboden coal bed or Campbell Creek or Pond Creek coal zones in Virginia, and the Eagle coal zone in West Virginia.
Genetics and the physiological ecology of conifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitton, J.B.
1995-07-01
Natural selection acts on the diversity of genotypes, adapting populations to their specific environments and driving evolution in response to changes in climate. Genetically based differences in physiology and demography adapt species to alternate environments and produce, along with historical accidents, the present distribution of species. The sorting of conifer species by elevation is so marked that conifers help to define plant communities arranged in elevational bands in the Rocky Mountains. For these reasons, a genetic perspective is necessary to appreciate the evolution of ecophysiological patterns in the coniferous forests of the Rocky Mountains. The fascinating natural history and themore » economic importance of western conifers have stimulated numerous studies of their ecology, ecological genetics, and geographic variation. These studies yield some generalizations, and present some puzzling contradictions. This chapter focuses on the genetic variability associated with the physiological differences among genotypes in Rocky Mountain conifers. Variation among genotypes in survival, growth, and resistance to herbivores is used to illustrate genetically based differences in physiology, and to suggest the mechanistic studies needed to understand the relationships between genetic and physiological variation.« less
Yang, Yong; Chen, Ren-sheng; Song, Yao-xuan; Liu, Jun-feng; Han, Chun-tan; Liu, Zhang-wen
2013-04-01
Evapotranspiration (ET) is an important component of water cycle, but its measurement in high altitude mountainous region is quite difficult, inducing the insufficient understanding on the actual ET in high altitude mountainous region and the effects of ET on this region' s water cycle. In this paper, two small type weighing mini-lysimeters were applied to measure the daily ET in a piece of grassland in a high altitude mountainous region of the Heihe River basin from July 1st, 2009 to June 30th, 2010. Based on the measured data, the methods of FAO-56 Penman-Monteith (F-P-M), Priestley-Taylor (P-T), and Hargreaves-Samani (H-S) were employed to estimate the ET to analyze the applicability of the three methods for the mountainous region, and the pan coefficient at the measurement spots was discussed. During the measurement period, the total annual ET at the measurement spots was 439.9 mm, accounting for 96.5% of the precipitation in the same period, and the ET showed an obvious seasonal distribution, being 389. 3 mm in May-October, accounting for 88. 5% of the annual value. All the three methods could be well applied to estimate the summer ET but not the winter ET, and their applicability followed the sequence of P-T > F-P-M > H-S. At the measurement spots, the daily pan coefficient in summer was 0.7-0. 8, while that in winter was quite variable.
Livelihood Vulnerability Assessment Of Farmers and Nomads in Eastern Ecotone of Tibetan Plateau
NASA Astrophysics Data System (ADS)
Yan, J.; Zhang, Y.
2011-12-01
Livelihood vulnerability assessment provides a scientific basis for anti-poverty of people and regional sustainable development in vulnerable area. Although there are massive discussions on concept of vulnerability, it is still difficult to make it quantitative and to carry out comprehensive appraise. Vulnerability assessments based on sustainable livelihood frame are widely accepted in case studies for attentions to vulnerable groups. However, these case studies are always on regional scale and never reflect how climate change affects people's livelihood and adaptive capability of people. It is necessary to seek vulnerable assessment index system and means based on livelihood process of local people. This paper develops a livelihood vulnerability assessment index system on the basis of sustainable livelihood framework and appraises livelihood vulnerability values of 11 townships, using data of 879 sample households. Livelihood vulnerability assessment index system reflects main risks, livelihood assets and adaptation strategies of local people and government. The results show that livelihood vulnerability level of plateau region is higher than that of mountain to plateau region and mountain gorge region. Manzhang Township in plateau region is the most vulnerable township and nomads there cannot cope with risks of climate change, meadow degeneration and herbs degradation. Upper part of mountain to plateau region and the whole plateau region have high livelihood vulnerability values and local nomads would not cope with risks if no measures are taken by government. The driving forces of livelihood vulnerability include strikes of risks and deficiency of livelihood assets and adaptive capability. Farmers and nomads in high mountain gorge region and lower part of mountain to plateau region can cope with these risks, meanwhile, there are more employment opportunities in second and tertiary industries are needed to help them realize livelihood diversification. Therefore, plateau region and upper part of mountain to plateau region is vulnerable region and active steps should be taken by government to strengthen adaptive capabilities of farmers and nomads. Government relief should shift from improvement of natural assets to improvement of human assets and financial assets, such as technique training, hospitalization insurance, animal disease prevention and treatment, low interest or interest-free loan, restoring gazing areas to grassland in black beach, restoring other degraded pastures.
M. Matonis; R. Hubbard; K. Gebert; B. Hahn; C. Regan
2014-01-01
The Future Forest Webinar Series facilitated dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle (MPB) epidemic. The series consisted of six webinar facilitated by the USFS Rocky Mountain Research Station, the Northern and Rocky Mountain Regions, and the Colorado Forest Restoration Institute. The series...
Refugia, biodiversity, and pollination roles of bumble bees in the Madrean Archipelago
Justin O. Schmidt; Robert S. Jacobson
2005-01-01
Eight species of bumble bees (Hymenoptera: Apidae: Bombus) are present within five major Sky Island mountains of southern Arizona. Another four species exist in the nearby large mountainous region stretching from the Arizona White Mountains to Flagstaff. The distribution and number of bumble bee species within the individual Sky Island mountains varies from six in the...
Fluid geochemistry of Yucca Mountain and vicinity
Marshall, Brian D.; Moscati, Richard J.; Patterson, Gary L.; Stuckless, John S.
2012-01-01
Yucca Mountain, a site in southwest Nevada, has been proposed for a deep underground radioactive waste repository. An extensive database of geochemical and isotopic characteristics has been established for pore waters and gases from the unsaturated zone, perched water, and saturated zone waters in the Yucca Mountain area. The development of this database has been driven by diverse needs of the Yucca Mountain Project, especially those aspects of the project involving process modeling and performance assessment. Water and gas chemistries influence the sorption behavior of radionuclides and the solubility of the radionuclide compounds that form. The chemistry of waters that may infiltrate the proposed repository will be determined in part by that of water present in the unsaturated zone above the proposed repository horizon, whereas pore-water compositions beneath the repository horizon will influence the sorption behavior of the radionuclides transported toward the water table. However, more relevant to the discussion in this chapter, development and testing of conceptual flow and transport models for the Yucca Mountain hydrologic system are strengthened through the incorporation of natural environmental tracer data into the process. Chemical and isotopic data are used to establish bounds on key hydrologic parameters and to provide corroborative evidence for model assumptions and predictions. Examples of specific issues addressed by these data include spatial and temporal variability in net fluxes, the role of faults in controlling flow paths, fracture-matrix interactions, the age and origin of perched water, and the distribution of water traveltimes.
Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Main Shock Characteristics
Spudich, Paul
1996-01-01
The October 17, 1989, Loma Prieta, Calif., earthquake (0004:15.2 G.m.t. October 18; lat 37.036? N., long 121.883? W.; 19-km depth) had a local magnitude (ML) of about 6.7, a surface-wave magnitude (MS) of 7.1, a seismic moment of 2.2x1019 N-m to 3.5x1019 N-m, a source duration of 6 to 15 s, and an average stress drop of at least 50 bars. Slip occurred on a dipping fault surface about 35 km long and was largely confined to a depth of about 7 to 20 km. The slip vector had a large vertical component, and slip was distributed in two main regions situated northwest and southeast of the hypocenter. This slip distribution caused about half of the earthquake's energy to be focused toward the urbanized San Francisco Bay region, while the other half was focused toward the southeast. Had the rupture initiated at the southeast end of the aftershock zone, shaking in the bay region would have been both longer and stronger. These source parameters suggest that the earthquake was not a typical shallow San Andreas-type event but a deeper event on a different fault with a recurrence interval of many hundreds of years. Therefore, the potential for a damaging shallow event on the San Andreas fault in the Santa Cruz Mountains may still exist.
Contributions to the gold metallogeny of northern Nevada
Tosdal, Richard M.
1998-01-01
Nevada is one of the Earth's premier gold producing regions, accounting for approximately 64 percent of the U.S and nine percent of the world total. The impact of these mines on nearby local economies and on our national balance of payments is profound, and will continue well into the next century. Of principal importance in this region are giant sedimentary-rock-hosted (Carlin-type) deposits. These are some of the world's largest deposits, but yet are poorly understood. Other sedimentary-rock hosted deposits in the region, the distal-disseminated Ag-Au type, are genetically related to shallow plutonic complexes. Hot-spring gold-silver systems associated with Tertiary volcanic rocks represent a third type of precious metal deposit in northern Nevada. These deposits, despite being generally smaller than sedimentary-rock-hosted gold deposits, are also important gold-silver resources. Aspects about the geologic and metallogenic setting of gold-silver deposits in northern Nevada are addressed in the twenty-two chapters that compose this volume. The volume is organized along four themes: (1) crustal structure; (2) Carlin-type deposits; (3) pluton-related gold-silver deposits near Battle Mountain; and (4) hot-spring gold-silver deposits. This Open-File Report, the result of ongoing geologic and mineral-resource investigations, provides a basis for mineral exploration, for land-use planning decisions, and for environmental questions in northern Nevada.
Soulard, Christopher E.
2012-01-01
This chapter has been modified from original material published in Soulard (2006), entitled “Land-cover trends of the Central Basin and Range Ecoregion” (U.S. Geological Survey Scientific Investigations Report 2006–5288). The Central Basin and Range Ecoregion (Omernik, 1987; U.S. Environmental Protection Agency, 1997) encompasses approximately 343,169 km² (132,498 mi2) of land bordered on the west by the Sierra Nevada Ecoregion, on the east by the Wasatch and Uinta Mountains Ecoregion, on the north by the Northern Basin and Range and the Snake River Basin Ecoregions, and on the south by the Mojave Basin and Range and the Colorado Plateaus Ecoregions (fig. 1). Most of the Central Basin and Range Ecoregion is located in Nevada (65.4 percent) and Utah (25.1 percent), but small segments are also located in Idaho (5.6 percent), California (3.7 percent), and Oregon (0.2 percent). Basin-and-range topography characterizes the Central Basin and Range Ecoregion: wide desert valleys are bordered by parallel mountain ranges generally oriented northsouth. There are more than 33 peaks within the Central Basin and Range Ecoregion that have summits higher than 3,000 m (10,000 ft), but valleys in the ecoregion are also high, most having elevations above 1,200 m (4,000 ft) (Grayson, 1993).
NASA Astrophysics Data System (ADS)
Zhang, X.; Anagnostou, E. N.
2016-12-01
This research contributes to the improvement of high resolution satellite applications in tropical regions with mountainous topography. Such mountainous regions are usually covered by sparse networks of in-situ observations while quantitative precipitation estimation from satellite sensors exhibits strong underestimation of heavy orographically enhanced storm events. To address this issue, our research applies a satellite error correction technique based solely on high-resolution numerical weather predictions (NWP). Our previous work has demonstrated the accuracy of this method in two mid-latitude mountainous regions (Zhang et al. 2013*1, Zhang et al. 2016*2), while the current research focuses on a comprehensive evaluation in three topical mountainous regions: Colombia, Peru and Taiwan. In addition, two different satellite precipitation products, NOAA Climate Prediction Center morphing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), are considered. The study includes a large number of heavy precipitation events (68 events over the three regions) in the period 2004 to 2012. The NWP-based adjustments of the two satellite products are contrasted to their corresponding gauge-adjusted post-processing products. Preliminary results show that the NWP-based adjusted CMORPH product is consistently improved relative to both original and gauge-adjusted precipitation products for all regions and storms examined. The improvement of PERSIANN-CCS product is less significant and less consistent relative to the CMORPH performance improvements from the NWP-based adjustment. *1Zhang, Xinxuan, Emmanouil N. Anagnostou, Maria Frediani, Stavros Solomos, and George Kallos. "Using NWP simulations in satellite rainfall estimation of heavy precipitation events over mountainous areas." Journal of Hydrometeorology 14, no. 6 (2013): 1844-1858.*2 Zhang, Xinxuan, Emmanouil N. Anagnostou, and Humberto Vergara. "Hydrologic Evaluation of NWP-Adjusted CMORPH Estimates of Hurricane-Induced Precipitation in the Southern Appalachians." Journal of Hydrometeorology 17.4 (2016): 1087-1099.
Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, Jill S.; Stohlgren, T.J.
1999-01-01
Evidence from both meteorological stations and vegetational successional studies suggests that summer temperatures are decreasing in the mountain-plain system in northeast Colorado, particularly since the early 1980s. These trends are coincident with large changes in regional land cover. Trends in global, Northern Hemisphere and continental surface temperatures over the same period are insignificant. These observations suggest that changes in the climate of this mountain-plain system may be, in some part, a result of localized forcing mechanisms. In this study the effects of land use change on the northern Colorado plains, where large regions of grasslands have been transformed into both dry and irrigated agricultural lands, on regional weather is examined in an effort to understand this local deviation from larger-scale trends. We find with high-resolution numerical simulations of a 3-day summer period using a regional atmospheric-land surface model that replacing grasslands with irrigated and dry farmland can have impacts on regional weather and therefore climate which are not limited to regions of direct forcing. Higher elevations remote from regions of land use change are affected as well. Specifically, cases with altered landcover had cooler, moister boundary layers, and diminished low-level upslope winds over portions of the plains. At higher elevations, temperatures also were lower as was low-level convergence. Precipitation and cloud cover were substantially affected in mountain regions. We advance the hypothesis that observed land use changes may have already had a role in explaining part of the observed climate record in the northern Colorado mountain-plain system. Copyright 1999 by the American Geophysical Union.
Data on morphotectonic indices of Dashtekhak district, Iran.
Fadaie Kermani, Ali; Derakhshani, Reza; Shafiei Bafti, Shahram
2017-10-01
Morphotectonic indices by representing the longer period of time than recorded earthquake data, are useful in evaluating the tectonic activity of a region. Dashtkhak area is located in Kerman province of Iran, where one of the most active faults, Kouhbanan strike slip fault, passes through. This data article provides a precise level data on mountain fronts and valleys of Dashtkhak region that is fundamental for morphotectonic investigations of the relationship among geomorphology and tectonic activity. This data is valuable in the field of geology and geography. Mountain fronts and valleys data is more relevant in the field of tectonics and geomorphology. It helps to evaluate a region from the viewpoint of tectonic activity. The data which are presented for 31 mountain fronts and 61 valleys, is taken by processing of remotely sensed Landsat satellite data, photogeology of areal photographs, measuring on topographic maps and controlled by field checking. This data is useful for calculating of some morphotectonic indices such as sinuosity of mountain fronts ( s mf ), mountain front faceting percentage (Facet%), the ratio of valley floor width to valley height ( V f ) and the valley ratio ( V ).
Celeste Journey; Paul M. Bradley; Peter Van Metre
2016-01-01
During the spring and summer of 2014, the U.S. Geological Survey (USGS) National Water- Quality Assessment Program (NAWQA) assessed stream quality across the Piedmont and southern Appalachian Mountain region in the southeastern United States.
Forest vegetation in the Rocky Mountain and Intermountain regions: Habitat types and community types
Robert R. Alexander
1988-01-01
Habitat types and community types and their phases for the major forest tree species in the Rocky Mountain and Intermountain regions are tabulated. Included are the name(s), general location, elevation, relative site, successional status, principal tree and undergrowth associates, and the authority.
Advances in global mountain geomorphology
NASA Astrophysics Data System (ADS)
Slaymaker, Olav; Embleton-Hamann, Christine
2018-05-01
Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.
NASA Astrophysics Data System (ADS)
Cataldo, K.; Douglas, B. J.; Yanites, B.
2017-12-01
Landscape response to active tectonics, such as fault motion or regional uplift, can be recorded in river profiles as changes in slope (i.e. knickpoints) or topography. North Boulder basin region (SW Montana), experienced two separate phases of extension, from 45 - 35 Ma and again beginning 14 Ma to the present, producing basin-and-range style fault-blocks. Focusing on the Bull Mountain region, located on the western margin of the North Boulder basin, data is collected to test the hypothesis that Bull Mountain is located on the hanging wall of a half-graben. Our objective is to elucidate the active tectonics of the study area within a regional context by utilizing river profile analysis and thermochronometric data. High-resolution (< 5cm) river profile data is obtained from five of the main tributaries of Bull Mountain. Comprehensive geologic mapping along the main tributaries and topographic highs of the region allowed for the identification and measurement of knickpoints, composition of detailed lithologic descriptions, and analysis of key structural features. The absence of knickpoints within the four tributaries mapped on east Bull Mountain are consistent with a lack of tectonic activity. In contrast, Dearborn Creek, on western Bull Mountain, is located along an active normal fault and presents several knickpoints. Geologic mapping confirms that the primary lithologies of the region belong to the Elkhorn Mountain Volcanics. At lower elevations, there are massive plutonic intrusions of Quartz Monzonite and Diorite, both constituents of the Boulder batholith. These lithologies contain minerals suited for low-temperature thermochronology (U-Th/He) to constrain the timing of tectonic activity (i.e. uplift and exhumation) and erosion rates in the region. High-resolution stream profiles and a 10m DEM are used to delineate watersheds and produce steepness and concavity maps of major tributaries to investigate changes in slope or topography. The effects of extensional tectonic events can reshape drainage patterns of streams and their distribution of water, which is an important commodity in SW Montana for ranchers and farmers. Thus, the ability to discern the probability of recurring tectonic events and the effects on the regional watersheds, could help facilitate solutions before these events take place.
Modeling the biophysical impacts of global change in mountain biosphere reserves
Bugmann, H.K.M.; Bjornsen, F. Ewert; Haeberli, W.; Guisan, Antoine; Fagre, Daniel B.; Kaab, A.
2007-01-01
Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.
Grauch, V.J.S.; Drenth, Benjamin J.; Thompson, Ren A.; Bauer, Paul W.
2015-08-01
This report presents geophysical interpretations of regional subsurface geology in the vicinity of the Tailing Facility of the Questa Mine near Guadalupe Mountain, Taos County, New Mexico, in cooperation with the New Mexico Environment Department. The interpretations were developed from aeromagnetic data, regional gravity data, data from four ground magnetic traverses, geologic mapping, a digital elevation model, and information from a few shallow wells. The resolution of the geophysical data is only appropriate for a broad assessment of the regional setting. Aeromagnetic data provided the most comprehensive information for interpretation. Qualitative and semiquantitative interpretations indicate the nature and extent of volcanic rocks, their relative depths, and inferred contacts between them, as well as conjectured locations of faults. In particular, the aeromagnetic data indicate places where volcanic rocks extend at shallow depths under sedimentary cover. Trachydacites of Guadalupe Mountain are magnetic, but their associated aeromagnetic anomalies are opposite in sign over the northern versus the southern parts of the mountain. The difference indicates that lavas erupted during different magnetic-polarity events in the north (reverse polarity) versus the south (normal polarity) and therefore have different ages. We postulate a buried volcano with reverse-polarity magnetization lies under the northeast side of Guadalupe Mountain, which likely predated the exposed trachydacites. Faults interpreted for the study area generally align with known fault zones. We interpret a northern extension to one of these faults that crosses northwesterly underneath the Tailing Facility. Gravity data indicate that Guadalupe Mountain straddles the western margin of a subbasin of the Rio Grande rift and that significant (>400 meters) thicknesses of both volcanic and sedimentary rocks underlie the mountain.
Ruiz-Labourdette, Diego; Martínez, Felipe; Martín-López, Berta; Montes, Carlos; Pineda, Francisco D
2011-05-01
Mediterranean mountains harbour some of Europe's highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.
Effects of climate change on ecosystem services in the Northern Rockies Region [Chapter 11
Travis Warziniack; Megan Lawson; S. Karen Dante-Wood
2018-01-01
In this chapter, we focus on the ecosystem services provided to people who visit, live adjacent to, or otherwise benefit from natural resources on public lands. Communities in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area (GYA), hereafter called the Northern Rockies region, are highly dependent on ecosystem...
Kingsley, Jonathan; Patrick, Rebecca; Horwitz, Pierre; Parkes, Margot; Jenkins, Aaron; Massy, Charles; Henderson-Wilson, Claire; Arabena, Kerry
2015-01-01
This article highlights contributions that can be made to the public health field by incorporating “ecosystem approaches to health” to tackle future environmental and health challenges at a regional level. This qualitative research reviews attitudes and understandings of the relationship between public health and the environment and the priorities, aspirations and challenges of a newly established group (the Oceania EcoHealth Chapter) who are attempting to promote these principles. Ten semi-structured interviews with Oceania EcoHealth Chapter members highlighted the important role such groups can play in informing organisations working in the Oceania region to improve both public health and environmental outcomes simultaneously. Participants of this study emphasise the need to elevate Indigenous knowledge in Oceania and the role regional groups play in this regard. They also emphasis that regional advocacy and ecosystem approaches to health could bypass silos in knowledge and disciplinary divides, with groups like the Oceania EcoHealth Chapter acting as a mechanism for knowledge exchange, engagement, and action at a regional level with its ability to bridge the gap between environmental stewardship and public health. PMID:26473903
NASA Technical Reports Server (NTRS)
Tosdal, R. M.; Sherrod, D. R.
1985-01-01
The geometry of Miocene extensional deformation, which changes along a 120 km-long, northeast-trending transect from the southestern Chocolate Mountains, southeastern California, to the Trigo and southern Dome Rock Mountains, southwestern Arizona is discussed. Based upon regional differences in the structural response to extension and estimated extensional strain, the transet can be divided into three northwesterly-trending structural domains. From southwest to northeast, these domains are: (1) southestern Chocolate-southernmost Trigo Mountains; (2) central to northern Trigo Mountains; and (3) Trigo Peaks-southern Dome Rock Mountains. All structures formed during the deformation are brittle in style; fault rocks are composed of gouge, cohesive gouge, and local microbreccia. In each structural domain, exposed lithologic units are composed of Mesozoic crystalline rocks unconformably overlain by Oligocene to Early Miocene volcanic and minor interbedded sedimentary rocks. Breccia, conglomerate, and sandstone deposited synchronously with regional extension locally overlie the volcanic rocks. Extensional deformation largely postdated the main phase of volcanic activity, but rare rhyolitic tuff and flows interbedded with the syndeformational clastic rocks suggest that deformation began during the waning stages of valcanism. K-Ar isotopic ages indicate that deformation occurred in Miocene time, between about 22 and m.y. ago.
Mukwada, Geoffrey; Manatsa, Desmond
2018-05-24
The impact of climate change on mountain ecosystems has been in the spotlight for the past three decades. Climate change is generally considered to be a threat to ecosystem health in mountain regions. Vegetation indices can be used to detect shifts in ecosystem phenology and climate change in mountain regions while satellite imagery can play an important role in this process. However, what has remained problematic is determining the extent to which ecosystem phenology is affected by climate change under increasingly warming conditions. In this paper, we use climate and vegetation indices that were derived from satellite data to investigate the link between ecosystem phenology and climate change in the Namahadi Catchment Area of the Drakensberg Mountain Region of South Africa. The time series for climate indices as well as those for gridded precipitation and temperature data were analyzed in order to determine climate shifts, and concomitant changes in vegetation health were assessed in the resultant epochs using vegetation indices. The results indicate that vegetation indices should only be used to assess trends in climate change under relatively pristine conditions, where human influence is limited. This knowledge is important for designing climate change monitoring strategies that are based on ecosystem phenology and vegetation health.
Pennsylvanian-Permian tectonism in the Great Basin: The Dry Mountain trough and related basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, W.S.; Spinosa, C.; Gallegos, D.M.
1991-02-01
Pennsylvanian-Permian tectonism affected the continental margin of western North America from the Yukon to the Mojave Desert. Specific signatures of this tectonism include local angular unconformities, regional disconformities, renewed outpouring of clastic debris from a reactivated Antler and related highlands, and development of deeper water basins with anoxic sediments deposited below wave base. The basins formed include Ishbel trough (Canada), the Wood River basin (Idaho), Cassia basin, Ferguson trough, Dry Mountain trough (all Nevada), and unnamed basins in Death Valley-Mojave Desert region. The Dry Mountain trough (DMT) was initiated during early Wolfcampian and received up to 1,200 m of sedimentmore » by the late Leonardian. The lower contact is a regional unconformity with the Ely Limestone, or locally with the Diamond Peak or Vinini formations. Thus, following a period of localized regional uplift that destroyed the Ely basin, portions of the uplifted and exposed shelf subsided creating the Dry Mountain trough. Evidence suggesting a tectonic origin for the DMT includes (1) high subsidence rates (60-140 m/m.y.); (2) renewed influx of coarse clastic debris from the Antler highlands: (3) possible pre-Early Permian folding, thrusting, and tilting within the highlands; and (4) differential subsidence within the Dry Mountain trough, suggesting the existence of independent fault blocks.« less
Slatyer, Rachel A; Nash, Michael A; Miller, Adam D; Endo, Yoshinori; Umbers, Kate D L; Hoffmann, Ary A
2014-10-02
Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation, divergence among populations was on the same scale as that detected in much more extensive Northern hemisphere mountain systems. The processes driving divergence in the Australian mountains might therefore differ from their Northern hemisphere counterparts.
Saltus, Richard W.; Stanley, Richard G.; Haeussler, Peter J.; Jones, James V.; Potter, Christopher J.; Lewis, Kristen A.
2016-01-01
The Cenozoic Susitna basin lies within an enigmatic lowland surrounded by the Central Alaska Range, Western Alaska Range (including the Tordrillo Mountains), and Talkeetna Mountains in south-central Alaska. Some previous interpretations show normal faults as the defining structures of the basin (e.g., Kirschner, 1994). However, analysis of new and existing geophysical data shows predominantly (Late Oligocene to present) thrust and reverse fault geometries in the region, as previously proposed by Hackett (1978). A key example is the Beluga Mountain fault where a 50-mGal gravity gradient, caused by the density transition from the igneous bedrock of Beluga Mountain to the >4-km-thick Cenozoic sedimentary section of Susitna basin, spans a horizontal distance of ∼40 km and straddles the topographic front. The location and shape of the gravity gradient preclude a normal fault geometry; instead, it is best explained by a southwest-dipping thrust fault, with its leading edge located several kilometers to the northeast of the mountain front, concealed beneath the shallow glacial and fluvial cover deposits. Similar contractional fault relationships are observed for other basin-bounding and regional faults as well. Contractional structures are consistent with a regional shortening strain field inferred from differential offsets on the Denali and Castle Mountain right-lateral strike-slip fault systems.
Hales, T C; Abt, D L; Humphreys, E D; Roering, J J
2005-12-08
Flood basalts appear to form during the initiation of hotspot magmatism. The Columbia River basalts (CRB) represent the largest volume of flood basalts associated with the Yellowstone hotspot, yet their source appears to be in the vicinity of the Wallowa Mountains, about 500 km north of the projected hotspot track. These mountains are composed of a large granitic pluton intruded into a region of oceanic lithosphere affinity. The elevation of the interface between Columbia River basalts and other geological formations indicates that mild pre-eruptive subsidence took place in the Wallowa Mountains, followed by syn-eruptive uplift of several hundred metres and a long-term uplift of about 2 km. The mapped surface uplift mimics regional topography, with the Wallowa Mountains in the centre of a 'bull's eye' pattern of valleys and low-elevation mountains. Here we present the seismic velocity structure of the mantle underlying this region and erosion-corrected elevation maps of lava flows, and show that an area of reduced mantle melt content coincides with the 200-km-wide topographic uplift. We conclude that convective downwelling and detachment of a compositionally dense plutonic root can explain the timing and magnitude of Columbia River basalt magmatism, as well as the surface uplift and existence of the observed melt-depleted mantle.
NASA Technical Reports Server (NTRS)
Hoppin, R. A. (Principal Investigator)
1974-01-01
The author has identified the following significant results. S-190A color transparencies from SL-2 of the Big Horn basin region provide the best format to date for geologic study of that region; red beds are quite mappable and resistant key beds sharply outlined. An S-190B color frame from SL-3 of the Pryor-Bighorn mountains provides no indication that the Nye-Bowler lineament extends east of East Pryor Mountain. This has important implications regarding the role of this and other lineaments (which also appear to be of restricted length) in the tectonics of the region. Extensions of these lineaments for great distances does not seem warranted on the basis of surface evidence.
Evaluation of mean-monthly streamflow-regression equations for Colorado, 2014
Kohn, Michael S.; Stevens, Michael R.; Bock, Andrew R.; Char, Stephen J.
2015-01-01
The median absolute differences between the observed and computed mean-monthly streamflow for Mountain, Northwest, and Southwest hydrologic regions are fairly uniform throughout the year, with the exception of late summer and early fall (July, August, and September), when each hydrologic region exhibits a substantial increase in median absolute percent difference. The greatest difference occurs in the Northwest hydrologic region, and the smallest difference occurs in the Mountain hydrologic region. The Rio Grande hydrologic region shows seasonal variation in median absolute percent difference with March, April, August, and September having a median absolute difference near or below 40 percent, and the remaining months of the year having a median absolute difference near or above 50 percent. In the Mountain, Northwest, and Southwest hydrologic regions, the mean-monthly streamflow equations perform the best during spring (March, April, and May). However, in the Rio Grande hydrologic region, the mean-monthly streamflow equations perform the best during late summer and early fall (August and September).
Remote sensing and geologic studies of the orientale basin region
NASA Technical Reports Server (NTRS)
Hawke, B. Ray; Lucey, P. G.; Taylor, G. J.; Bell, Jeffrey F.; Peterson, C. A.; Blewett, D.; Horton, K.; Spudis, P. D.
1991-01-01
Both visual and near-infrared spectral observations are combined with multispectral imaging to study the Orientale interior and exterior, the Cruger region, Grimaldi Region, the Schiller-Schickard Region, and the Humorum Region of the Moon. It was concluded that anorthosites occur in the Inner Rook Mountains of Orientale, the inner ring of Grimaldi, and the main ring of Humorum. Imaging spectroscopy shows that the entire eastern Inner Rook Mountains are composed of anorthosites. Orientale ejecta are strikingly like the surface materials in the region where Apollo 16 landed. This similarity indicates similar mineralogy, i.e., noritic anorthosite. Thus, Orientile ejecta is more mafic than the Inner Rook Mountains. This situation is also true for the Nectaris, Humorum, and Gramaldi basins. Isolated areas of the Orientale region show the presence of gabbroic rocks, but, in general, Orientale ejecta are noritic anorthosites, which contain much more low-Ca pyroxene than high-Ca pyroxene. Ancient (pre-Orientale) mare volcanism apparently occurred in several areas of the western limb.
Food and nutrition security in the Hindu Kush Himalayan region.
Rasul, Golam; Hussain, Abid; Mahapatra, Bidhubhusan; Dangol, Narendra
2018-01-01
The status of food and nutrition security and its underlying factors in the Hindu-Kush Himalayan (HKH) region is investigated. In this region, one third to a half of children (<5 years of age) suffer from stunting, with the incidence of wasting and under-weight also being very high. The prevalence of stunting, wasting and under-weight in children is particularly high in some mountain areas such as Meghalaya state in India, the western mountains and far-western hills of Nepal, Balochistan province in Pakistan, eastern Afghanistan, and Chin state in Myanmar. Food habits in the HKH region are changing. This has led to a deterioration in traditional mountain food systems with a decline in agrobiodiversity. Factors such as high poverty and low dietary energy intakes, a lack of hygienic environments, inadequate nutritional knowledge, and climate change and environmental degradation are also influencing food and nutrition security in the HKH region. To achieve sustainable food and nutrition security in the mountains, this study suggests a multi-sectoral integrated approach with consideration of nutritional aspects in all development processes dealing with economic, social, agricultural and public health issues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Xiang, T.; Vivoni, E. R.; Gochis, D. J.; Mascaro, G.
2015-12-01
Heterogeneous land surface conditions are essential components of land-atmosphere interactions in regions of complex terrain and have the potential to affect convective precipitation formation. Yet, due to their high complexity, hydrologic processes over mountainous regions are not well understood, and are usually parameterized in simple ways within coupled land-atmosphere modeling frameworks. With the improving model physics and spatial resolution of numerical weather prediction models, there is an urgent need to understand how land surface processes affect local and regional meteorological processes. In the North American Monsoon (NAM) region, the summer rainy season is accompanied by a dramatic greening of mountain ecosystems that adds spatiotemporal variability in vegetation which is anticipated to impact the conditions leading to convection, mountain-valley circulations and mesoscale organization. In this study, we present results from a detailed analysis of a high-resolution (1 km) land surface model, Noah-MP, in a large, mountainous watershed of the NAM region - the Rio Sonora (21,264 km2) in Mexico. In addition to capturing the spatial variations in terrain and soil distributions, recently-developed features in Noah-MP allow the model to read time-varying vegetation parameters derived from remotely-sensed vegetation indices; however, this new implementation has not been fully evaluated. Therefore, we assess the simulated spatiotemporal fields of soil moisture, surface temperature and surface energy fluxes through comparisons to remote sensing products and results from coarser land surface models obtained from the North American Land Data Assimilation System. We focus attention on the impact of vegetation changes along different elevation bands on the diurnal cycle of surface energy fluxes to provide a baseline for future analyses of mountain-valley circulations using a coupled land-atmosphere modeling system. Our study also compares limited streamflow observations in the large watershed to simulations using the terrain and channel routing when Noah-MP is run within the WRF-Hydro modeling framework, with the goals of validating the rainfall-runoff partitioning and translating the spatiotemporal mountain processes into improvements in streamflow predictions.
The geohydrologic setting of Yucca Mountain, Nevada
Stuckless, J.S.; Dudley, W.W.
2002-01-01
This paper provides a geologic and hydrologic framework of the Yucca Mountain region for the geochemical papers in this volume. The regional geologic units, which range in age from late Precambrian through Holocene, are briefly described. Yucca Mountain is composed of dominantly pyroclastic units that range in age from 11.4 to 15.2 Ma. The principal focus of study has been on the Paintbrush Group, which includes two major zoned and welded ash-flow tuffs separated by an important hydrogeologic unit referred to as the Paintbrush non-welded (PTn). The regional structural setting is currently one of extension, and the major local tectonic domains are presented together with a tectonic model that is consistent with the known structures at Yucca Mountain. Streamflow in this arid to semi-arid region occurs principally in intermittent or ephemeral channels. Near Yucca Mountain, the channels of Fortymile Wash and Amargosa River collect infrequent runoff from tributary basins, ultimately draining to Death Valley. Beneath the surface, large-scale interbasin flow of groundwater from one valley to another occurs commonly in the region. Regional groundwater flow beneath Yucca Mountain originates in the high mesas to the north and returns to the surface either in southern Amargosa Desert or in Death Valley, where it is consumed by evapotranspiration. The water table is very deep beneath the upland areas such as Yucca Mountain, where it is 500-750 m below the land surface, providing a large thickness of unsaturated rocks that are potentially suitable to host a nuclear-waste repository. The nature of unsaturated flow processes, which are important for assessing radionuclide migration, are inferred mainly from hydrochemical or isotopic evidence, from pneumatic tests of the fracture systems, and from the results of in situ experiments. Water seeping down through the unsaturated zone flows rapidly through fractures and more slowly through the pores of the rock matrix. Although capillary forces are expected to divert much of the flow around repository openings, some may drip onto waste packages, ultimately causing release of radionuclides, followed by transport down to the water table. ?? 2002 Elsevier Science Ltd. All rights reserved.
Extinction of Harrington's mountain goat
Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.
1986-01-01
Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters. Images PMID:16593655
ERIC Educational Resources Information Center
College Entrance Examination Board, Princeton, NJ.
The Admissions Testing Program (ATP) is a service of the College Board. The 1979 ATP summary reports on college-bound seniors were produced for each region of the United States, including New England, the Middle, Southern, Midwestern, Southwestern, Rocky Mountain, and Western States. The national and each regional report are in separate booklets.…
An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; LV, M.
2017-12-01
Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS/PALSAR data. The results show that the strategy can effectively improve the accuracy of velocity estimation by reducing the mean and standard deviation values from 0.32 m and 0.4 m to 0.16 m. It is proved to be highly appropriate for monitoring glacier motion over a widely varying range of ice velocities with a relatively high accuracy.
Liu, Yifei; Wang, Yong; Huang, Hongwen
2009-06-01
Myricaria species in China occur mostly in the major high-altitude mountain areas in and around the Qinghai-Tibetan Plateau. The one major exception to this is M. laxiflora which is restricted to the Three Gorges mountain region. In this study, we investigate species-level phylogeographical patterns of Myricaria species in western China and the origin of M. laxiflora. The results show that most chloroplast haplotypes are species-specific, except for one haplotype which is shared by three widespread species. Higher haplotype diversity within the Qinghai-Tibetan Plateau region supports the hypothesis that the Himalayas are the centre of origin for Myricaria. The phylogeny of Myricaria was geographically structured, and an estimated Bayesian chronology suggested the main divergence events occurred during the Late Pliocene and Early Pleistocene (approximately 1.46-2.30 million years ago). The overall phylogeographical pattern was characterized by vicariance events and regional demographical expansion, reflecting a major influence of geological and climatic events on the evolution of Myricaria species. Our data suggest that M. laxiflora has an ancient origin, but has experienced recent population expansion through the Three Gorges Valley. The origin of M. laxiflora was estimated to be during the Early Pleistocene but its demographical expansion was more recent at about 0.015 million years ago. This highlights the unique phylogeographical history of the Three Gorges mountain region, and the deep imprint of the watercourse connections of the Yangtze River Valley on the phylogeographical structure of the species in this region.
NASA Astrophysics Data System (ADS)
Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rhoades, Alan M.; Ullrich, Paul A.; Zarzycki, Colin M.; Lu, Zheng; Rahimi-Esfarjani, Stefan R.
2017-10-01
The reliability of climate simulations and projections, particularly in the regions with complex terrains, is greatly limited by the model resolution. In this study we evaluate the variable-resolution Community Earth System Model (VR-CESM) with a high-resolution (0.125°) refinement over the Rocky Mountain region. The VR-CESM results are compared with observations, as well as CESM simulation at a quasi-uniform 1° resolution (UNIF) and Canadian Regional Climate Model version 5 (CRCM5) simulation at a 0.11° resolution. We find that VR-CESM is effective at capturing the observed spatial patterns of temperature, precipitation, and snowpack in the Rocky Mountains with the performance comparable to CRCM5, while UNIF is unable to do so. VR-CESM and CRCM5 simulate better the seasonal variations of precipitation than UNIF, although VR-CESM still overestimates winter precipitation whereas CRCM5 and UNIF underestimate it. All simulations distribute more winter precipitation along the windward (west) flanks of mountain ridges with the greatest overestimation in VR-CESM. VR-CESM simulates much greater snow water equivalent peaks than CRCM5 and UNIF, although the peaks are still 10-40% less than observations. Moreover, the frequency of heavy precipitation events (daily precipitation ≥ 25 mm) in VR-CESM and CRCM5 is comparable to observations, whereas the same events in UNIF are an order of magnitude less frequent. In addition, VR-CESM captures the observed occurrence frequency and seasonal variation of rain-on-snow days and performs better than UNIF and CRCM5. These results demonstrate the VR-CESM's capability in regional climate modeling over the mountainous regions and its promising applications for climate change studies.
The Color and Surface Composition of Mountains on Pluto
NASA Astrophysics Data System (ADS)
Olkin, Catherine B.; Reuter, D. C.; Stern, S. Alan; Young, Leslie; Weaver, Harold A.; Ennico, Kimberly; Binzel, Richard; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Grundy, W. M.; Howett, Carly; Parker, Alex; Protopapa, Silvia; Schmitt, Bernard; Singer, Kelsi N.; Spencer, John R.; Stansberry, John A.; Philippe, Sylvain; New Horizons Science Team
2016-10-01
The New Horizons mission revealed that there are mountains along the western edge of the large glacier that dominates Pluto's anti-Charon hemisphere. This talk will focus on the color and surface composition of the four large mountainous regions named Al Idrisi Montes, Bare Montes, Hillary Montes and Norgay Montes (all feature names are informal).The Al Idrisi Montes are large blocks up to 40 km across and 5 km high that appear to be broken off of the ice crust and transported into Sputnik Planum (Moore et al. 2016). The color of this region as a function of latitude will be presented as well as the color differences between the blocks and the interstitial material between the blocks. Moving south along the edge of Sputnik Planum, the next mountainous region is Bare Montes. Part of the Bare Montes resembles Al Idrisi Montes with its chaotic blocky structure, but there is a significant difference in color between these regions. The Bare Montes are more red than Al Idrisi Montes and this region's color more closely matches the nearby terrain of Cthulhu Regio. Continuing south, to the Hillary and Norgay Montes regions these topographic features become less red with both red and neutral colors on their slopes. The Hillary Montes show both red and neutral colors in the ices surrounding the peaks.This work will provide a quantitative comparison of the color and composition across these 4 mountainous regions using data from the Ralph instrument. Ralph has 4 color filters: blue (400-550 nm), red (540-700 nm), near IR (780-975) and methane filter (860-910 nm) and collects infrared imaging spectrometric data (from 1.25-2.5 microns).This work was supported by NASA's New Horizons project.
ERIC Educational Resources Information Center
Kentucky State Dept. of Education, Frankfort. Bureau of Rehabilitation Services.
The purpose of this project was to demonstrate that comprehensive rehabilitation services can more effectively meet the needs of severely and chronically disabled persons living in an isolated, mountainous, and depressed area: the Appalachian region. Specific subsidiary purposes were (1) to demonstrate that utilization of various…
ROCKY MOUNTAIN REGIONAL HAZARDOUS SUBSTANCE RESEARCH CENTER FOR REMEDIATION OF MINE WASTE SITES
A total of 11 research projects were funded as part of the Rocky Mountain Regional HSRC. The typical project duration was 2 years, with one project funded for 3 years and another project funded for only 1 year. Three projects were funded in each of three research focus areas, ...
Remnant fire disturbed montane longleaf pine forest in west central georgia
Robert Carter; Andrew J. Londo
2006-01-01
Fire disturbed ecosystems are characteristic of the Southeastern Coastal Plain of the United States. Less well known are fire disturbed mountainous regions of the Piedmont and Appalachian region that support longleaf pine (Pinus palustris P. Mill.) ecosystems. The Pine Mountain Range in the Piedmont of west central Georgia has remnant longleaf pine...
Deborah M. Finch
1991-01-01
This report describes the current status of 67 threatened, endangered, and vulnerable wildlife species in the Rocky Mountain Region of the U.S. Forest Service. Known or potential reasons for population declines and species susceptibility are identified; and distributions, habitats, specialized needs, and perceived threats of individual species are discusses.
ERIC Educational Resources Information Center
Wei, Shiyuan; Zhou, Guangda
1989-01-01
Describes the historical development of educational programs which could enhance the culture and knowledge of minorities in the mountainous regions of China. Identifies current major problems in minority education and lists statistical information for the school population. Provides guidelines for developing a minority education program. (KO)
Fire control planning in the Northern Rocky Mountain region
L. G. Hornby
1936-01-01
In the northern Rocky Mountain region a high degree of protection from fire is necessary to perpetuate forest yields and communities industrially dependent upon them. On rugged and inaccessible areas a green, healthy forest cover is needed for recreation, erosion control, and regulation of water resources. Immense conflagrations continue to challenge the forester. In...
78 FR 38705 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
.... Applicants: Copper Mountain Solar 1, LLC, Copper Mountain Solar 2, LLC, Energia Sierra Juarez U.S., LLC, Mesquite Power, LLC, Mesquite Solar 1, LLC, San Diego Gas & Electric Company, Sempra Generation... Analysis for the Southwest Region of Copper Mountain Solar 1, LLC, et al. Filed Date: 6/19/13. Accession...
Regional Development Impacts Multi-Regional - Multi-Industry Model (MRMI) Users Manual,
1982-09-01
indicators, described in Chapter 2, are estimated as well. Finally, MRMI is flexible, as it can incorporate alternative macroeconomic , national inter...national and regional economic contexts and data sources for estimating macroeconomic and direct impacts data. Considerations for ensuring consistency...Chapter 4 is devoted to model execution and the interpretation of its output. As MRMI forecasts are based upon macroeconomic , national inter-industry
NASA Astrophysics Data System (ADS)
Rawling, Geoffrey C.; Newton, B. Talon
2016-06-01
The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86 × 106 to 209.42 × 106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.
Moraes, Leandro J C L; de Almeida, Alexandre P; de Fraga, Rafael; Rojas, Rommel R; Pirani, Renata M; Silva, Ariane A A; de Carvalho, Vinícius T; Gordo, Marcelo; Werneck, Fernanda P
2017-01-01
The Brazilian mountain ranges from the Guiana Shield highlands are largely unexplored, with an understudied herpetofauna. Here the amphibian and reptile species diversity of the remote Serra da Mocidade mountain range, located in extreme northern Brazil, is reported upon, and biogeographical affinities and taxonomic highlights are discussed. A 22-days expedition to this mountain range was undertaken during which specimens were sampled at four distinct altitudinal levels (600, 960, 1,060 and 1,365 m above sea level) using six complementary methods. Specimens were identified through an integrated approach that considered morphological, bioacoustical, and molecular analyses. Fifty-one species (23 amphibians and 28 reptiles) were found, a comparable richness to other mountain ranges in the region. The recorded assemblage showed a mixed compositional influence from assemblages typical of other mountain ranges and lowland forest habitats in the region. Most of the taxa occupying the Serra da Mocidade mountain range are typical of the Guiana Shield or widely distributed in the Amazon. Extensions of known distribution ranges and candidate undescribed taxa are also recorded. This is the first herpetofaunal expedition that accessed the higher altitudinal levels of this mountain range, contributing to the basic knowledge of these groups in remote areas.
Moraes, Leandro J.C.L.; de Almeida, Alexandre P.; de Fraga, Rafael; Rojas, Rommel R.; Pirani, Renata M.; Silva, Ariane A.A.; de Carvalho, Vinícius T.; Gordo, Marcelo; Werneck, Fernanda P.
2017-01-01
Abstract The Brazilian mountain ranges from the Guiana Shield highlands are largely unexplored, with an understudied herpetofauna. Here the amphibian and reptile species diversity of the remote Serra da Mocidade mountain range, located in extreme northern Brazil, is reported upon, and biogeographical affinities and taxonomic highlights are discussed. A 22-days expedition to this mountain range was undertaken during which specimens were sampled at four distinct altitudinal levels (600, 960, 1,060 and 1,365 m above sea level) using six complementary methods. Specimens were identified through an integrated approach that considered morphological, bioacoustical, and molecular analyses. Fifty-one species (23 amphibians and 28 reptiles) were found, a comparable richness to other mountain ranges in the region. The recorded assemblage showed a mixed compositional influence from assemblages typical of other mountain ranges and lowland forest habitats in the region. Most of the taxa occupying the Serra da Mocidade mountain range are typical of the Guiana Shield or widely distributed in the Amazon. Extensions of known distribution ranges and candidate undescribed taxa are also recorded. This is the first herpetofaunal expedition that accessed the higher altitudinal levels of this mountain range, contributing to the basic knowledge of these groups in remote areas. PMID:29302235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenn, Mark E.; Driscoll, Charles; Zhou, Qingtao
2015-01-01
Empirical and dynamic biogeochemical modelling are complementary approaches for determining the critical load (CL) of atmospheric nitrogen (N) or other constituent deposition that an ecosystem can tolerate without causing ecological harm. The greatest benefits are obtained when these approaches are used in combination. Confounding environmental factors can complicate the determination of empirical CLs across depositional gradients, while the experimental application of N amendments for estimating the CL does not realistically mimic the effects of chronic atmospheric N deposition. Biogeochemical and vegetation simulation models can provide CL estimates and valuable ecosystem response information, allowing for past and future scenario testing withmore » various combinations of environmental factors, pollutants, pollutant control options, land management, and ecosystem response parameters. Even so, models are fundamentally gross simplifications of the real ecosystems they attempt to simulate. Empirical approaches are vital as a check on simulations and CL estimates, to parameterize models, and to elucidate mechanisms and responses under real world conditions. In this chapter, we provide examples of empirical and modelled N CL approaches in ecosystems from three regions of the United States: mixed conifer forest, desert scrub and pinyon- juniper woodland in California; alpine catchments in the Rocky Mountains; and lakes in the Adirondack region of New York state.« less
Diagnosis and treatment of pineal region tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuwelt, E.A.
The aim of this volume is to review the pertinent literature dealing with pineal tumors and thus aid in the handling of these rather uncommon lesions. After the first, introductory, chapter, three chapters treat the pathology and diagnosis of pineal tumors. There is also one chapter on intracranial germ cell tumors (natural history and pathogenesis) and one on the normal function of the pineal gland. With the exception of the chapter on diagnostic radiology of pineal tumors, which seems somewhat superficial, these five chapters summarize current knowledge about the nature of these complex lesions and their symptomatology very well. Themore » next nine chapters deal with biopsy and surgery of these tumors and how to manage the patient. The first of these gives a historical review of the development of surgical techniques - from the first attempt by Horsley in 1905 to the microsurgical techniques of today. It is followed by a very important and detailed description of the microsurgical anatomy of the pineal region.« less
The Climate Effect of the Topographies at the Northern Margin of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Sha, Y.; Shi, Z.; Liu, X.
2017-12-01
The Tibetan Plateau play a crucial role in the formation and evolution of the Asian monsoon-interior aridity climate system. However, the climate effect of other relatively smaller topographies receives less attention. Based on high-resolved general circulation models, we conducted a series of sensitive experiments as with/without mountains, which include the Mongolian Plateau and the Tian Shan Mountains. The numerical simulations reveal the important impacts of the mountain ranges at the northern margins of the Tibetan Plateau. Compared to the main body of the Tibetan Plateau, the uplift of the Mongolian Plateau is essential for the establishment of the strong Siberian High. The East Asian winter monsoon and the westerly jet over the North Pacific Ocean are also significantly strengthened. At present, the Tian Shan Mountains geographically separate the arid interior Asia to the west and east sub-regions. However, the arid west sub-region (Central Asia) and the east sub-region (arid northwestern China) was connected as one large arid region before the uplift of the Tian Shan Mountains. The large arid interior land shares the same precipitation seasonality, with most rains fall in spring and winter while lowest precipitation in summer. After the uplift of the Tian Shan, the large arid region is divided into the west and east sub-regions by the wetter uplifted mountain ranges. More importantly, the precipitation seasonality in the east of the Tian Shan is reversed to be the summer-peak type, which is opposite to that in the Central Asia. The precipitation alteration corresponds well with the change of vertical motion. By the conservation of potential vorticity, the atmosphere stationary waves are modulated. Thus, the remote East Asian monsoon is also modulated. Though enhanced southerly wind blows over East Asia, the monsoon precipitation over the east coast of China and subtropical western Pacific Ocean is significantly reduced as an anticyclonic circulation appears. The Tian Shan also contributes to the intensification of the East Asian winter monsoon.
Snow hydrology in Mediterranean mountain regions: A review
NASA Astrophysics Data System (ADS)
Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard
2017-08-01
Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that is suitable for hydrological applications. Further advances in our understanding of the snow processes in Mediterranean snow-dominated basins will be achieved by finer and more accurate representation of the climate forcing. While the theory on the snowpack energy and mass balance is now well established, the connections between the snow cover and the water resources involve complex interactions with the sub-surface processes, which demand future investigation.
Regional demand forecasting and simulation model: user's manual. Task 4, final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhizgari, A M
1978-09-25
The Department of Energy's Regional Demand Forecasting Model (RDFOR) is an econometric and simulation system designed to estimate annual fuel-sector-region specific consumption of energy for the US. Its purposes are to (1) provide the demand side of the Project Independence Evaluation System (PIES), (2) enhance our empirical insights into the structure of US energy demand, and (3) assist policymakers in their decisions on and formulations of various energy policies and/or scenarios. This report provides a self-contained user's manual for interpreting, utilizing, and implementing RDFOR simulation software packages. Chapters I and II present the theoretical structure and the simulation of RDFOR,more » respectively. Chapter III describes several potential scenarios which are (or have been) utilized in the RDFOR simulations. Chapter IV presents an overview of the complete software package utilized in simulation. Chapter V provides the detailed explanation and documentation of this package. The last chapter describes step-by-step implementation of the simulation package using the two scenarios detailed in Chapter III. The RDFOR model contains 14 fuels: gasoline, electricity, natural gas, distillate and residual fuels, liquid gases, jet fuel, coal, oil, petroleum products, asphalt, petroleum coke, metallurgical coal, and total fuels, spread over residential, commercial, industrial, and transportation sectors.« less
The recent glacier changes in Mongolian Altai Mountains
NASA Astrophysics Data System (ADS)
Yabuki, H.; Ohata, T.
2009-12-01
In the 4th IPCC report (AR-4) is reported that global warming in recent years is a clear thing. Shrinkage of the mountain glacier and two poles is reporting as an observation fact as the actual condition of the cryosphere by warming. There are mass balance reports of the glacier of 80 of world by WGMS (World Glacier Monitoring Service) as a report of the actual condition of glacier mass balance change, and the actual condition of the glacier mass change in world is clarified. In the report of WGMS, after 1980’s the glacier mass balance, in the Europe Alps and the Alaska region are decreases, and in Scandinavia region are increases. On the other hand, the glacier mass balance in the Russia Altai Mountains located in Central Asia has the little change after 1980’s. These are research using the long-term observational data of Russian region of western part of Altai Mountains. The Altai Mountains including Russia, China, and Mongolia Kazakhstan, and there are description to a World Glacier Inventory (WGI) about the glaciers of Russia, China and Kazakhstan area, but the glaciers of a Mongolian area, there are no description to the WGI. There is almost no information on the glacier of a Mongolian Altai region, and there are many unknown points about glacier change of the whole Altai Mountain region. In this research, while research clarified the present condition of glacier distribution of the Mongolia Altai region, the actual condition of a glacier change in recent years was clarified by comparison with the past topographical map. In this research, the glacier area was distinguished based on the satellite image of the Mongolian glacier regions. The used satellite image were 17 Landsat 7 ETM+ in 1999 to 2002. The glacier distinguishes using NDSI (Normalized Difference Snow Index) indexusing Band5 and Band2. The topographical map of the Mongolian area was got based on the distribution information on this satellite glacier area. The topographical map is 1/100,000 which used the aerial photograph of the 1945-47. The altitude information on creation of a glacier inventory using SRTM3(Shuttle Radar Topography Mission) which special resolution was 90m and ASTER GDEM (Global Digital Elevation Model ) which special resolution was 30m. The glacier inventory indicated the Glacier ID, maximum and the minimum altitude, glacial aspect. We obtain in Mongolian regions, the glacier distributed 16 area, total glacier number 578 and total area 423 square km. The glacier area of the whole Altai Mountains which included this research Mongolian glacier area to the WGI was set to 1730 square km, and the rate of occupying to the Altai Mountains of a Mongolian glacier becomes 24%.
2015-07-15
New close-up images of a region near Pluto's equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. The mountains likely formed no more than 100 million years ago -- mere youngsters relative to the 4.56-billion-year age of the solar system -- and may still be in the process of building. That suggests the close-up region, which covers less than one percent of Pluto's surface, may still be geologically active today. The youthful age estimate is based on the lack of craters in this scene. Like the rest of Pluto, this region would presumably have been pummeled by space debris for billions of years and would have once been heavily cratered -- unless recent activity had given the region a facelift, erasing those pockmarks. Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape. The mountains are probably composed of Pluto's water-ice "bedrock." Although methane and nitrogen ice covers much of the surface of Pluto, these materials are not strong enough to build the mountains. Instead, a stiffer material, most likely water-ice, created the peaks. The close-up image was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 47,800 miles (770,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across. http://photojournal.jpl.nasa.gov/catalog/PIA19710
Constraining the Surface Energy Balance of Snow in Complex Terrain
NASA Astrophysics Data System (ADS)
Lapo, Karl E.
Physically-based snow models form the basis of our understanding of current and future water and energy cycles, especially in mountainous terrain. These models are poorly constrained and widely diverge from each other, demonstrating a poor understanding of the surface energy balance. This research aims to improve our understanding of the surface energy balance in regions of complex terrain by improving our confidence in existing observations and improving our knowledge of remotely sensed irradiances (Chapter 1), critically analyzing the representation of boundary layer physics within land models (Chapter 2), and utilizing relatively novel observations to in the diagnoses of model performance (Chapter 3). This research has improved the understanding of the literal and metaphorical boundary between the atmosphere and land surface. Solar irradiances are difficult to observe in regions of complex terrain, as observations are subject to harsh conditions not found in other environments. Quality control methods were developed to handle these unique conditions. These quality control methods facilitated an analysis of estimated solar irradiances over mountainous environments. Errors in the estimated solar irradiance are caused by misrepresenting the effect of clouds over regions of topography and regularly exceed the range of observational uncertainty (up to 80Wm -2) in all regions examined. Uncertainty in the solar irradiance estimates were especially pronounced when averaging over high-elevation basins, with monthly differences between estimates up to 80Wm-2. These findings can inform the selection of a method for estimating the solar irradiance and suggest several avenues of future research for improving existing methods. Further research probed the relationship between the land surface and atmosphere as it pertains to the stable boundary layers that commonly form over snow-covered surfaces. Stable conditions are difficult to represent, especially for low wind speed values and coupled land-atmosphere models have difficulty representing these processes. We developed a new method analyzing turbulent fluxes at the land surface that relies on using the observed surface temperature, which we called the offline turbulence method. We used this method to test a number of stability schemes as they are implemented within land models. Stability schemes can cause small biases in the simulated sensible heat flux, but these are caused by compensating errors, as no single method was able to accurately reproduce the observed distribution of the sensible heat flux. We described how these turbulence schemes perform within different turbulence regimes, particularly noting the difficulty representing turbulence during conditions with faster wind speeds and the transition between weak and strong wind turbulence regimes. Heterogeneity in the horizontal distribution of surface temperature associated with different land surface types likely explains some of the missing physics within land models and is manifested as counter-gradient fluxes in observations. The coupling of land and atmospheric models needs further attention, as we highlight processes that are missing. Expanding on the utility of surface temperature, Ts, in model evaluations, we demonstrated the utility of using surface temperature in snow models evaluations. Ts is the diagnostic variable of the modeled surface energy balance within physically-based models and is an ideal supplement to traditional evaluation techniques. We demonstrated how modeling decisions affect Ts, specifically testing the impact of vertical layer structure, thermal conductivity, and stability corrections in addition to the effect of uncertainty in forcing data on simulated Ts. The internal modeling decisions had minimal impacts relative to uncertainty in the forcing data. Uncertainty in downwelling longwave was found to have the largest impact on simulated Ts. Using Ts, we demonstrated how various errors in the forcing data can be identified, noting that uncertainty in downwelling longwave and wind are the easiest to identify due to their effect on night time minimum Ts.
Hawbaker, Todd J.
2012-01-01
The Wyoming Basin Ecoregion (Omernik 1987; U.S. Environmental Protection Agency, 1999) covers approximately 128,914 km2 (49,774 mi2) in Wyoming and parts of northwestern Colorado, northeastern Utah, southeastern Idaho, and southern Montana (fig. 1). The ecoregion is bounded on the east by the Northwestern Great Plains Ecoregion; on the south and east by the Southern Rockies Ecoregion; on the south by the Colorado Plateaus Ecoregion; on the south and west by the Wasatch and Uinta Mountains Ecoregion; and on the north by the Middle Rockies Ecoregion and parts of the Montana Valley and Foothill Prairies Ecoregion (fig. 1). The ecoregion generally consists of broad intermountain basins dominated by arid grasslands and shrublands, as well as isolated hills and low mountains that merge to the south into a dissected plateau.
Rocky Mountain Research Station: 2012-2013 Annual Report
Cass Cairns
2013-01-01
The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the...
Rocky Mountain Research Station: 2002 Research Accomplishments
Rick Fletcher
2003-01-01
The Rocky Mountain Research Station is one of six regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 14-state territory encompassing the Great Basin, Southwest, Rocky Mountains and parts of the Great...
Rocky Mountain Research Station: 2003 Research Accomplishments
Rick Fletcher
2004-01-01
The Rocky Mountain Research Station is one of six regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 14-state territory encompassing the Great Basin, Southwest, Rocky Mountains and parts of the Great...
Rocky Mountain Research Station: 2004 Research Accomplishments
Rick Fletcher
2005-01-01
The Rocky Mountain Research Station is one of six regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 14-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great...
Rocky Mountain Research Station: Looking back on 2014
Cass Cairns
2015-01-01
The Rocky Mountain Research Station (RMRS) is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains and parts of...
Rocky Mountain Research Station: 2013-2014 Annual Report
Cass Cairns
2014-01-01
The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains and parts of the Great...
Climate change vulnerability and adaptation in the Blue Mountains
Jessica E. Halofsky; David L. Peterson
2017-01-01
The Blue Mountains Adaptation Partnership was developed to identify climate change issues relevant to resource management in the Blue Mountains region, to find solutions that can minimize negative effects of climate change, and to facilitate transition of diverse ecosystems to a warmer climate. Partnering organizations included three national forests (Malheur, Umatilla...
Baboquivari Mountain plants: Identification, ecology, and ethnobotany [Book Review
Rosemary L. Pendleton
2011-01-01
The Sky Islands of southern Arizona and northwestern Mexico make up a region that is rich, both biologically and culturally. These isolated mountain ranges, separated by desert "seas," contain a unique and diverse flora and have long been home to indigenous peoples of the southwestern US. This book, Baboquivari Mountain Plants: Identification, Ecology, and...
78 FR 2389 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
...; ER10-2814-002; ER10-3026-002. Applicants: Copper Mountain Solar 1, LLC, Copper Mountain Solar 2, LLC, Energia Sierra Juarez U.S., LLC, Mesquite Power, LLC, Mesquite Solar 1, LLC, San Diego Gas & Electric... Power Analysis for the Southwest Power Pool, Inc. Region of Copper Mountain Solar 1, LLC, et. al. Filed...
NASA Astrophysics Data System (ADS)
Hilberg, Sylke
2016-08-01
Extensive in-depth research is required for the implementation of natural tracer approaches to hydrogeological investigation to be feasible in mountainous regions. This review considers the application of hydrochemical and biotic parameters in mountain regions over the past few decades with particular reference to the Austrian Alps, as an example for alpine-type mountain belts. A brief introduction to Austria's hydrogeological arrangement is given to show the significance of fractured hard-rock aquifers for hydrogeological science as well as for water supply purposes. A literature search showed that research concerning fractured hard-rock aquifers in Austria is clearly underrepresented to date, especially when taking the abundance of this aquifer type and the significance of this topic into consideration. The application of abiotic natural tracers (hydrochemical and isotope parameters) is discussed generally and by means of examples from the Austrian Alps. The potential of biotic tracers (microbiota and meiofauna) is elucidated. It is shown that the meiofauna approach to investigating fractured aquifers has not yet been applied in the reviewed region, nor worldwide. Two examples of new approaches in mountainous fractured aquifers are introduced: (1) use of CO2 partial pressure and calcite saturation of spring water to reconstruct catchments and flow dynamics (abiotic approach), and, (2) consideration of hard-rock aquifers as habitats to reconstruct aquifer conditions (biotic approach).
Patricia A. Flebbe
1994-01-01
In the southern Appalachian Mountains, native brook trout Salvelinus fontinalis and introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are at the southern extremes of their distributions, an often overlooked kind of marginal habitat. At a regional scale composed of the states of Virginia...
Adult Re-Entry Students: Experiences Preceding Entry into a Rural Appalachian Community College
ERIC Educational Resources Information Center
Genco, Jessica T.
2007-01-01
Mountain Empire Community College (MECC)'s service region covers the extreme southwestern corner of Virginia and includes four counties and one city: Dickenson, Lee, Scott, and Wise Counties, and the city of Norton. With a service region population of 93,000 residents, MECC currently serves over 5,000 students annually (Mountain Empire Community…
Past and future changes in frost day indices on Catskill Mountain Region of New York
USDA-ARS?s Scientific Manuscript database
Changes in frost indices in the New York’s Catskill Mountains region, the location of water supply reservoirs for New York City, have potentially important implications. Frost day is defined as a day with Tmin < 0ºC. The objective of this study was to investigate past and predicted changes in minimu...
Profile models for estimating log end diameters in the Rocky Mountain Region
Raymond L. Czaplewski; Amy S. Brown; Raymond C. Walker
1989-01-01
The segmented polynomial stem profile model of Max and Burkhart was applied to seven tree species in the Rocky Mountain Region of the Forest Service. Errors were reduced over the entire data set by use of second-stage models that adjust for transformation bias and explained weak patterns in the residual diameter predictions.
Field guide to diseases & insects of the Rocky Mountain Region
Forest Health Protection Rocky Mountain Region
2010-01-01
This field guide is a forest management tool for field identification of biotic and abiotic agents that damage native trees in Colorado, Kansas, Nebraska, South Dakota, and Wyoming, which constitute the USDA Forest Service's Rocky Mountain Region. The guide focuses only on tree diseases and forest insects that have significant economic, ecological, and/ or...
ERIC Educational Resources Information Center
Krolikowska, Karolina; Kronenberg, Jakub; Maliszewska, Karolina; Sendzimir, Jan; Magnuszewski, Piotr; Dunajski, Andrzej; Slodka, Anna
2007-01-01
This article describes a process of role-playing simulation (RPS) as it was used during an educational exercise in community dialogue in the Karkonosze Mountains region of southwest Poland. Over the past decade Karkonosze National Park, a regional tourist magnet, has provided an excellent example of environmental conflict emerging from the…
Forest statistics for the Northern Mountain region of Virginia 1977
Raymond M. Sheffield
1977-01-01
This report highlights the principal findings of the fourth inventory of timber resources in the Northern Mountain Region of Virginia. The inventory was started in August 1976 and completed in December 1976. Three previous inventories, completed in 1940, 1957 and 1966, provide statistics for measuring changes and trends over the past 37 years. In this report, the...
Early Paleozoic development of the Maine-Quebec boundary Mountains region
Gerbi, C.C.; Johnson, S.E.; Aleinikoff, J.N.; Bedard, J.H.; Dunning, G.R.; Fanning, C.M.
2006-01-01
Pre-Silurian bedrock units played key roles in the early Paleozoic history of the Maine-Quebec Appalachians. These units represent peri-Laurentian material whose collision with the craton deformed the Neoproteozoic passive margin and initiated the Appalachian mountain-building cycle. We present new field, petrological, geochronological, and geochemical data to support the following interpretations related to these units. (1) The Boil Mountain Complex and Jim Pond Formation do not represent part of a coherent ophiolite. (2) Gabbro and tonalite of the Boil Mountain Complex intruded the Chain Lakes massif at ca. 477 Ma. (3) The Skinner pluton, an arc-related granodiorite, intruded the Chain Lakes massif at ca. 472 Ma. (4) The Attean pluton, with a reconfirmed age of ca. 443 Ma, is unrelated to Early Ordovician orogenesis. (5) The most likely timing for the juxtaposition of the Jim Pond Formation and the Boil Mountain Complex was during regional Devonian deformation. These interpretations suggest that the Boundary Mountains were once part of a series of arcs extending at least from central New England through Newfoundland. ?? 2006 NRC Canada.
Taylor, Janis L.
2012-01-01
The Canadian Rockies Ecoregion covers approximately 18,494 km2 (7,141 mi2) in northwestern Montana (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The east side of the ecoregion is bordered by the Montana Valley and Foothill Prairies Ecoregion, which also forms a large part of the western border of the ecoregion. In addition, the Northern Rockies Ecoregion wraps around the ecoregion to the northwest and south (fig. 1). As the name implies, the Canadian Rocky Mountains are located mostly in Canada, straddling the border between Alberta and British Columbia. However, this ecoregion only includes the part of the northern Rocky Mountains that is in the United States. This ecoregion is characterized by steep, high-elevation mountain ranges similar to most of the rest of the Rocky Mountains. Compared to the Northern Rockies Ecoregion, however, the Canadian Rockies Ecoregion reaches higher elevations and contains a greater proportion of perennial snow and ice (Omernik, 1987) (fig. 2). Over the years, this section of the Rocky Mountains has garnered many different names, including “Crown of the Continent” by George Bird Grinnell (Waldt, 2008) and “Backbone of the World” by the Blackfeet (Pikuni) Nation. Throughout the ecoregion, montane, subalpine, and alpine ecosystems have distinct flora and fauna elevation zones. Glaciers, permanent snowfields, and seasonal snowpack are found at the highest elevations. Spring and summer runoff fills lakes and tarns that form the headwaters of numerous streams and rivers, including the Columbia and Missouri Rivers that flow west and east, respectively, from the Continental Divide.
Taren, Douglas L; Varela, Frances; Dotson, Jo Ann W; Eden, Joan; Egger, Marlene; Harper, John; Johnson, Rhonda; Kennedy, Kathy; Kent, Helene; Muramoto, Myra; Peacock, Jane C; Roberts, Richard; Sjolander, Sheila; Streeter, Nan; Velarde, Lily; Hill, Anne
2011-10-01
The objective of the article is to provide the socio-cultural, political, economic, and geographic conditions that justified a regional effort for training maternal and child health (MCH) professionals in the Rocky Mountain region, describe a historical account of factors that led to the development of the Rocky Mountain Public Health Education Consortium (RMPHEC), and present RMPHEC as a replicable model developed to enhance practice/academic partnerships among state, tribal, and public health agencies and universities to enhance public health capacity and MCH outcomes. This article provides a description of the development of the RMPHEC, the impetus that drove the Consortium's development, the process used to create it, and its management and programs. Beginning in 1997, local, regional, and federal efforts encouraged stronger MCH training and continuing education in the Rocky Mountain Region. By 1998, the RMPHEC was established to respond to the growing needs of MCH professionals in the region by enhancing workforce development through various programs, including the MCH Certificate Program, MCH Institutes, and distance learning products as well as establishing a place for professionals and MCH agencies to discuss new ideas and opportunities for the region. Finally over the last decade local, state, regional, and federal efforts have encouraged a synergy of MCH resources, opportunities, and training within the region because of the health disparities among MCH populations in the region. The RMPHEC was founded to provide training and continuing education to MCH professionals in the region and as a venue to bring regional MCH organizations together to discuss current opportunities and challenges. RMPHEC is a consortium model that can be replicated in other underserved regions, looking to strengthen MCH training and continuing education.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.
A regional hydrogeologic model is used to investigate the potential for water recharging in the Tushar Mountains to move at depth beneath the Mineral Mountains to discharge in Milford Valley. Simulations carried out over a range of water table positions and assumed depths to a lower impermeable boundary suggest it is unlikely that the topographic configuration alone could drive such a flow system. Specific geologic conditions are necessary if interbasin flow is to occur. However, simulations based on a simplified hydrologic model of the regional geology suggest this is not the case. A regional hydraulic anisotropy greater than 10:1 (Kx/Kz)more » leads to interflow if the granitic Mineral Mountain pluton and the volcanics in the Tushar Mountains have similar hydraulic conductivities. If either of these units is more nearly isotropic or if the granitic rocks have a greater vertical than horizontal hydraulic conductivity, no interbasin flow is observed. On the basis of available geologic evidence, this latter case seems to be the most likely.« less
Rocky Mountain snowpack physical and chemical data for selected sites, 2009
Ingersoll, George P.; Mast, M. Alisa; Swank, James M.; Campbell, Chelsea D.
2010-01-01
The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region from New Mexico to Montana to monitor the chemical content of snow and to understand the effects of regional atmospheric deposition. The U.S. Geological Survey, in cooperation with the National Park Service; the U.S. Department of Agriculture Forest Service; the Colorado Department of Public Health and Environment; Teton County, Wyoming; and others, collected and analyzed snowpack samples annually for 48 or more sites in the Rocky Mountain region during 1993-2009. Sixty-three snowpack-sampling sites were sampled once each in 2009 and data are presented in this report. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow-water equivalent, snow depth, total mercury concentrations, and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for 2009 also are included.
Johnson, R.C.; Flores, R.M.
1998-01-01
The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured from hydrocarbon generation as they form, and this overpressuring is probably responsible for driving out most of the water. Sandstone permeabilities are low, in part because of diagenesis caused by highly reactive water given off during the early stages of coalification. Coals within these basin-centered deposits commonly have high gas contents and produce little water, but they generally occur at depths greater than 5000 ft and have low permeabilities. Significant uplift and removal of overburden has occurred throughout the Rocky Mountain region since the end of the Eocene, and much of this erosion occurred after regional uplift began about 10 Ma. The removal of overburden generally causes methane saturation levels in coals to decrease, and thus a significant drop in pressure is required to initiate methane production. The most successful coalbed methane production in the Rocky Mountain region occurs in areas where gas contents were increased by post-Eocene thermal events and/or the generation of late-stage biogenic gas. Methane-generating bacteria were apparently reintroduced into the coals in some areas after uplift and erosion, and subsequent changes in pressure and temperature, allowed surface waters to rewater the coals. Groundwater may also help open up cleat systems making coals more permeable to methane. If water production is excessive, however, the economics of producing methane are impacted by the cost of water disposal.The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 to 1981 m from coal of lignite to low volatile bituminous rank. Despite more than two decades of exploration for coalbed methane in Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Sources of coalbed gases can be early biogenic, formed during the main stages of coa
NASA Astrophysics Data System (ADS)
Flügel, W.-A.
2011-04-01
The EC-project BRAHMATWINN was carrying out a harmonised integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs of the twinning Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basins (UBRB) in Europe and Southeast Asia respectively. Social and natural scientists in cooperation with water law experts and local stakeholders produced the project outcomes presented in Chapter 2 till Chapter 10 of this publication. BRAHMATWINN applied a holistic approach towards IWRM comprising climate modelling, socio-economic and governance analysis and concepts together with methods and integrated tools of applied Geoinformatics. A detailed description of the deliverables produced by the BRAHMATWINN project is published on the project homepage http://www.brahmatwinn.uni-jena.de.
NASA Astrophysics Data System (ADS)
Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rahimi-Esfarjani, Stefan R.; Lu, Zheng
2018-01-01
The deposition of light-absorbing aerosols (LAAs), such as black carbon (BC) and dust, onto snow cover has been suggested to reduce the snow albedo and modulate the snowpack and consequent hydrologic cycle. In this study we use the variable-resolution Community Earth System Model (VR-CESM) with a regionally refined high-resolution (0.125°) grid to quantify the impacts of LAAs in snow in the Rocky Mountain region during the period 1981-2005. We first evaluate the model simulation of LAA concentrations both near the surface and in snow and then investigate the snowpack and runoff changes induced by LAAs in snow. The model simulates similar magnitudes of near-surface atmospheric dust concentrations as observations in the Rocky Mountain region. Although the model underestimates near-surface atmospheric BC concentrations, the model overestimates BC-in-snow concentrations by 35 % on average. The regional mean surface radiative effect (SRE) due to LAAs in snow reaches up to 0.6-1.7 W m-2 in spring, and dust contributes to about 21-42 % of total SRE. Due to positive snow albedo feedbacks induced by the LAA SRE, snow water equivalent is reduced by 2-50 mm and snow cover fraction by 5-20 % in the two regions around the mountains (eastern Snake River Plain and southwestern Wyoming), corresponding to an increase in surface air temperature by 0.9-1.1 °C. During the snow melting period, LAAs accelerate the hydrologic cycle with monthly runoff increases of 0.15-1.00 mm day-1 in April-May and reductions of 0.04-0.18 mm day-1 in June-July in the mountainous regions. Of all the mountainous regions, the Southern Rockies experience the largest reduction of total runoff by 15 % during the later stage of snowmelt (i.e., June and July). Compared to previous studies based on field observations, our estimation of dust-induced SRE is generally 1 order of magnitude smaller in the Southern Rockies, which is ascribed to the omission of larger dust particles (with the diameter > 10 µm) in the model. This calls for the inclusion of larger dust particles in the model to reduce the discrepancies. Overall these results highlight the potentially important role of LAA interactions with snowpack and the subsequent impacts on the hydrologic cycles across the Rocky Mountains.
Geology of the Great Smoky Mountains National Park, Tennessee and North Carolina
King, Philip Burke; Neuman, Robert B.; Hadley, Jarvis B.
1968-01-01
Every year, thousands of our fellow Americans visit Great Smoky Mountains National Park, in the heart of the southern Appalachian highlands. All visitors find refreshment in this mountain wilderness, some of them are also inspired by its deeper meanings - by observing the varied forests and other living things of the mountains, and by contemplating the long ages of the past during which the mountains and their living things must have evolved. These past ages can be deciphered by geologic study, which interprets first of all how the land has been shaped into its present form, and more remotely, the nature and history of the rocks from which the land has been carved. The account which follows deals primarily with this more remote part of the geologic story - the rocks which compose the mountains. How the present mountains came into being is a later chapter of the story, interesting in itself, which deserves its own presentation in another place. The present account summarizes the results of a long investigation of the rocks of the Great Smoky Mountains (1946-55) by geologists of the staff of the U.S. Geological Survey, in collaboration with those of the Tennessee Division of Geology. The technical details of this investigation have already been set forth at length in professional papers of the U.S. Geological Survey. The present account contains the gist of these findings about the rocks of the mountains, and is accompanied by a map and structure sections in which the surface and underground extent of the rocks are displayed. This summary, by cutting through the many technical problems involved, will be useful to students interested in geology and the other natural sciences, and to a wider audience as well. Even so, to portray adequately the rocks of the mountains and their history involves at least some recourse to geologic terminology, so that all the assertions made herein may not be comprehensible to the general reader. As an aid to the reader, a glossary of the geologic terms used is therefore included at the end. For those readers who desire more detailed information regarding the findings so briefly summarized in this account, reference should be made to the more lengthy professional papers on which the account is based.
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Clark, K. E.; Van Beusekom, A.; Shanley, J. B.; Torres-Sanchez, A.; Murphy, S. F.; Gonzalez, G.
2017-12-01
Like many island and coastal areas, the Luquillo Mountains of Puerto Rico receive orographic precipitation (rain and cloud water), maintaining headwater streamflow and allowing diverse forest ecosystems to thrive. Although rainfall from regional-scale convective systems is greater in volume, multiple lines of evidence (stable isotope tracers; precipitation amount, frequency, and intensity; cloud immersion; regional cloud dynamics; weather analysis) show that trade-wind orographic precipitation contributes significantly to streamflow, soil water, and shallow groundwater. Ceilometer data and time-lapse photography of cloud-immersed conditions at the mountain indicated a seasonally invariant, sustained overnight regime of cloud water precipitation, in addition to the abundant rainfall in the mountains. Rising ocean temperatures and a warming tropical climate lead to questions about persistence of the trade-wind associated orographic precipitation and the resilience of similar mountain ecosystems to change. Projections for Caribbean climate change include amplification of trade winds; less frequent, more intense large convective systems; and a warming ocean. These may have opposing effects on mountain precipitation, increasing uncertainty about processes that mitigate drought. Field studies provide insights regarding these questions. Ceilometer and satellite observations showed cloud base is higher over the mountains than in the surrounding Caribbean region; with the trade-wind inversion cap, further rise in cloud base may produce shallower clouds and reduced precipitation. We analyzed the February-October 2015 drought, characterized by strong El Niño conditions, an absence of tropical storm systems, and reduced convection in easterly waves. Combined δ2H, δ18O and d-excess signatures of streamflow indicated precipitation was derived from shallow convective systems, trade-wind showers and cloud water. During severe drought on the island, streamflow-sustaining rainfall at the mountain station at 640 m persisted, albeit with 19% lower frequency and 52% fewer large (>10 mm) rain events than the 20-year average. Clearly, resilience of the mountain forest ecosystem and of streamflow to drought periods depends on orographic precipitation.
NASA Astrophysics Data System (ADS)
Ahern, A.; Radebaugh, J.; Christiansen, E. H.; Harris, R. A.
2015-12-01
Paterae and mountains are some of the most distinguishing and well-distributed surface features on Io, and they reveal the role of tectonism in Io's crust. Paterae, similar to calderas, are volcano-tectonic collapse features that often have straight margins. Io's mountains are some of the highest in the solar system and contain linear features that reveal crustal stresses. Paterae and mountains are often found adjacent to one another, suggesting possible genetic relationships. We have produced twelve detailed regional structural maps from high-resolution images of relevant features, where available, as well as a global structural map from the Io Global Color Mosaic. The regional structural maps identify features such as fractures, lineations, folds, faults, and mass wasting scarps, which are then interpreted in the context of global and regional stress regimes. A total of 1048 structural lineations have been identified globally. Preliminary analyses of major thrust and normal fault orientations are dominantly 90° offset from each other, suggesting the maximum contractional stresses leading to large mountain formation are not a direct result of tidal extension. Rather, these results corroborate the model of volcanic loading of the crust and global shortening, leading to thrust faulting and uplift of coherent crustal blocks. Several paterae, such as Hi'iaka and Tohil, are found adjacent to mountains inside extensional basins where lava has migrated up normal faults to erupt onto patera floors. Over time, mass wasting and volcanic resurfacing can change mountains from young, steep, and angular peaks to older, gentler, and more rounded hills. Mass wasting scarps make up 53% of all features identified. The structural maps highlight the significant effect of mass wasting on Io's surface, the evolution of mountains through time, the role of tectonics in the formation of paterae, and the formation of mountains through global contraction due to volcanism.
NASA Astrophysics Data System (ADS)
Bostwick, Todd W.
The Hohokam culture, one of the major pre-Columbian cultural groups in the American Southwest, is well known for their extensive irrigation systems, the largest in the New World. Choreographing the movement of people and scheduling the cleaning and repair of their canals during low water periods, as well as harvesting their bountiful crops during two growing seasons, would have required a calendar system that reflected the natural cycles of the Sonoran Desert. In addition, orienting their ritual architecture and public spaces such as ball courts, platform mounds, and plazas according to the cardinal directions would have required knowledge of the sun's daily and annual movement through the sky. This chapter describes archaeological evidence at Hohokam sites for marking of the sun's cycles, especially during the solstices and equinoxes, with rock art and adobe architecture. Several locations are identified in the Phoenix region of Arizona, including mountains and prominent rock formations, where the solstices and equinoxes could be tracked through horizon alignments during sunrise and sunset and by light-and-shadow patterns during midday on those solar events. Several Hohokam villages also are described where ritual space was oriented according to basic cardinal directions.
Hydrogeochemical investigations in the Osgood mountains, north-central Nevada. Chapter B.
Wanty, Richard B.; Berger, Byron R.; Tuttle, Michele L.W.; Briggs, Paul H.; Meier, Allen L.; Crock, James G.; Stillings, Lisa L.
2006-01-01
Field investigations performed in the Osgood Mountains during the summers of 1999 and 2000 were designed to test methods of combining geologic, hydrologic, and geochemical investigations. The goals were to develop a more thorough understanding of the movement of water through the study area and to understand the water-rock reactions that may occur along flow paths. The Osgood Mountains were chosen for study because they represent a well-defined geologic system, based on existing and new field data. New work in the area focused on gathering more data about fractures, faults, and joints and on collecting water samples to evaluate the role of geologic structures on hydrologic and geochemical properties of the ground-water/surface-water system. Chemical methods employed in the study included measuring traditional field parameters (e.g., pH, temperature, conductivity, dissolved oxygen) as well as Fe2+ and collecting a variety of samples that were preserved for later laboratory analysis. Hydrologic methods included closely spaced evaluations of substream hydraulic head to define ground-water discharge and recharge zones as well as some measurements of stream discharge. Geologic investigations focused on the locations and orientations of fractures and kinematic indicators of slip observable in outcrops.
McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B
2014-11-18
Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.
Regional Observation of Seismic Activity in Baekdu Mountain
NASA Astrophysics Data System (ADS)
Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol
2015-04-01
Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.
Bankfull-channel geometry and discharge curves for the Rocky Mountains Hydrologic Region in Wyoming
Foster, Katharine
2012-01-01
Regional curves relate bankfull-channel geometry and bankfull discharge to drainage area in regions with similar runoff characteristics and are used to estimate the bankfull discharge and bankfull-channel geometry when the drainage area of a stream is known. One-variable, ordinary least-squares regressions relating bankfull discharge, cross-sectional area, bankfull width, and bankfull mean depth to drainage area were developed from data collected at 35 streamgages in or near Wyoming. Watersheds draining to these streamgages are within the Rocky Mountains Hydrologic Region of Wyoming and neighboring states.
A seismic study of Yucca Mountain and vicinity, southern Nevada; data report and preliminary results
Hoffman, L.R.; Mooney, W.D.
1983-01-01
From 1980 to 1982, the U.S. Geological Survey conducted seismic refraction studies at the Nevada Test Site to aid in an investigation of the regional crustal structure at a possible nuclear waste repository site near Yucca Mountain. Two regionally distributed deployments and one north-south deployment recorded nuclear events. First arrival times from these deployments were plotted on a location map and contoured to determine traveltime delays. The results indicate delays as large as 0.5 s in the Yucca Mountain and Crater Flat areas relative to the Jackass Flats area. A fourth east-west deployment recorded a chemical explosion and was interpreted using a two-dimensional computer raytracing technique. Delays as high as 0.7 s were observed over Crater Flat and Yucca Mountain. The crustal model derived from this profile indicates that Paleozoic rocks, which outcrop to the east at Skull Mountain and the Calico Hills, and to the west at Bare Mountain, lie at a minimum depth of 3 km beneath part of Yucca Mountain. These results confirm earlier estimates based on the modeling of detailed gravity data. A mid-crustal boundary at 15 ? 2 km beneath Yucca Mountain is evidenced by a prominent reflection recorded beyond 43 km range at 1.5 s reduced time. Other mid-crustal boundaries have been identified at 24 and 30 km and the total crustal thickness is 35 km.
Tectonic models for Yucca Mountain, Nevada
O'Leary, Dennis W.
2006-01-01
Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.
1982-05-01
Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed.more » The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.« less
Climate change velocity underestimates climate change exposure in mountainous regions
Dobrowski, Solomon Z.; Parks, Sean A.
2016-01-01
Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545
Rocky Mountain Research Station: 2011 Annual Accomplishments
Rick Fletcher
2011-01-01
The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization  the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...
Rocky Mountain Research Station: 2010 Research Accomplishments
Rick Fletcher
2010-01-01
The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization  the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...
Long-term shifts in the phenology of rare and endemic Rocky Mountain plants
Munson, Seth M.; Sher, Anna A
2015-01-01
CONCLUSIONS: These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions.
Preliminary fuel characterization of the chauga ridges region of the Southern Appalachian Mountains
Aaron D. Stottlemyer; Victor B. Shelburne; Thomas A. Waldrop; Sandra Rideout-Hanzak; William C. Bridges
2006-01-01
Many areas of the southern Appalachian Mountains contain large amounts of dead and/or ericaceous fuel. Fuel information critical in modeling fire behavior and its effects is not available to forest managers in the southern Appalachian Mountains, and direct measurement is often impractical due to steep, remote topography. An existing landscape ecosystem classification (...
ERIC Educational Resources Information Center
Gates, Carmella Ficociello
1985-01-01
A survey of visually impaired children (from birth to age 12) in the Rocky Mountain/Great Plains region indicated that the majority were multiply handicapped, and that within this group, the greatest number were in the mild to moderate range. Data are presented on age ranges, current service delivery options, vocational and alternative-living…
ERIC Educational Resources Information Center
National Commission on Libraries and Information Science, Washington, DC.
Many librarians, library students, and other concerned citizens accepted the opportunity to write to the National Commission on Libraries and Information Science on the occasion of the Mountain Plains Regional Hearing, September 18, 1974 in Denver, Colorado. There were communications on countless facets of library and information services. Some…
Survival in forest plantations in the northern Rocky Mountain Region
C. S. Schopmeyer
1939-01-01
Although forest planting has been carried on for more than a quarter of a century in the Northern Rocky Mountain Region, the ultimate in planting practice has not yet been attained. Information on several phases of planting work has been obtained by studying all available plantation records. Results of the study are presented together with a brief description of the...
Lance R. Williams; Christopher M. Taylor; Melvin L. Warren; J. Alan Clingenpeel
2003-01-01
In 1990-1992, the United States Forest Service sampled six hydrologically variable streams paired in three different drainage basins in the Ouachita Mountains, Arkansas, U.S.A. Fishes, macroinvertebrates, and stream environmental variables were quantified for each stream. We used these data to examine the relationship between regional faunas (based on taxonomy and...
USDA-ARS?s Scientific Manuscript database
Snow cover and its melt dominate regional climate and water resources in many of the world’s mountainous regions. Snowmelt timing and magnitude in mountains tend to be controlled by absorption of solar radiation and snow water equivalent, respectively, and yet both of these are very poorly known ev...
Wildlife survey and monitoring in the Sky Island Region with an emphasis on neotropical felids
Sergio Avila-Villegas; Jessica Lamberton-Moreno
2013-01-01
The Sky Island region of southwestern United States and northwestern Mexico consists of isolated mountain ranges separated by deserts and grasslands. It mixes elements from five major ecosystems: the Rocky Mountains, Sierra Madre Occidental, the Sonoran and Chihuahuan deserts and the Neotropics. Here some Neotropical species reach their northern ranges, such as jaguars...
Forest statistics for the mountain region of North Carolina 1974
Noel D. Cost
1974-01-01
This report highlights the principal findings of the fourth inventory of the timber resource in the Mountain Region of North Carolina. The inventory was started in May 1974 and completed in September 1974. Three previous inventories, completed in 1938, 1955, and 1964, provide statistic for measuring changes and trends over the past 36 years. In this report, the primary...
Forest statistics for the Southern Mountain region of Virginia, 1977
Raymond M. Sheffield
1977-01-01
This report highlights the principal findings of the fourth inventory of the timber resource in the Southern Mountain Region of Virginia. The inventory was started in December 1976 and completed in March 1977. Three previous inventories, completed in 1940, 1957, and 1966, provide statistics for measuring changes and trends over the past 37 years. In this report, the...
Blastomycosis in the mountainous region of northeast Tennessee.
Hussein, Rezhan; Khan, Saad; Levy, Foster; Mehta, Jay B; Sarubbi, Felix A
2009-04-01
In the United States, cases of human blastomycosis are largely described in defined geographic areas, with Mississippi reporting the highest prevalence of disease in the southeast region. The infection is uncommonly recognized in mountainous areas, and our previous report of blastomycosis in the southern Appalachian mountains of northeast Tennessee appeared to be an exception to the usual disease distribution. Our current retrospective study was undertaken to determine whether blastomycosis has persisted as an endemic fungal infection in our northeast Tennessee geographic area and whether epidemiologic features have changed over a 25-year time period. Results show that clinical aspects of the disease have remained fairly constant with few exceptions; mass-type pulmonary lesions have become more common, and itraconazole has emerged as the therapy of choice. Most notably, however, are the observations that blastomycosis persists as a major endemic fungal infection in our mountain region, more than half of all cases occurring during the period from 1996 to 2005 were found in a core area centered on two counties, Washington and Unicoi; three of five counties surrounding the core counties experienced rate increases compared to our previous study. These findings suggest a further expansion of this endemic fungal disease beyond the core region.
Mountain waves modulate the water vapor distribution in the UTLS
NASA Astrophysics Data System (ADS)
Heller, Romy; Voigt, Christiane; Beaton, Stuart; Dörnbrack, Andreas; Giez, Andreas; Kaufmann, Stefan; Mallaun, Christian; Schlager, Hans; Wagner, Johannes; Young, Kate; Rapp, Markus
2017-12-01
The water vapor distribution in the upper troposphere-lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m-2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our regional study may motivate further investigations of the global effects of mountain waves on the UTLS water vapor distributions and its radiative effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laes, Denise; Eisinger, Chris; Morgan, Craig
2013-07-30
The purpose of this report is to provide a summary of individual local-scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site- specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-scale analyses is to provide a basis for regional-scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high- resolution characterization of a state-sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and suchmore » can provide insight regarding limiting factors for the regional-scale geology. For the RMCCS project, the outcomes of these local-scale studies provide a starting point for future local-scale site characterization efforts in the Rocky Mountain region.« less
Mountain Hydrology of the Semi-Arid Western U.S.: Research Needs, Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Bales, R.; Dozier, J.; Molotch, N.; Painter, T.; Rice, R.
2004-12-01
In the semi-arid Western U.S., water resources are being stressed by the combination of climate warming, changing land use, and population growth. Multiple consensus planning documents point to this region as perhaps the highest priority for new hydrologic understanding. Three main hydrologic issues illustrate research needs in the snow-driven hydrology of the region. First, despite the hydrologic importance of mountainous regions, the processes controlling their energy, water and biogeochemical fluxes are not well understood. Second, there exists a need to realize, at various spatial and temporal scales, the feedback systems between hydrological fluxes and biogeochemical and ecological processes. Third, the paucity of adequate observation networks in mountainous regions hampers improvements in understanding these processes. For example, we lack an adequate description of factors controlling the partitioning of snowmelt into runoff versus infiltration and evapotranspiration, and need strategies to accurately measure the variability of precipitation, snow cover and soil moisture. The amount of mountain-block and mountain-front recharge and how recharge patterns respond to climate variability are poorly known across the mountainous West. Moreover, hydrologic modelers and those measuring important hydrologic variables from remote sensing and distributed in situ sites have failed to bridge rifts between modeling needs and available measurements. Research and operational communities will benefit from data fusion/integration, improved measurement arrays, and rapid data access. For example, the hydrologic modeling community would advance if given new access to single rather than disparate sources of bundles of cutting-edge remote sensing retrievals of snow covered area and albedo, in situ measurements of snow water equivalent and precipitation, and spatio-temporal fields of variables that drive models. In addition, opportunities exist for the deployment of new technologies, taking advantage of research in spatially distributed sensor networks that can enhance data recovery and analysis.
Geodesy and contemporary strain in the Yucca Mountain region, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.
Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small upliftsmore » also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data.« less
4th National Climate Assessment: Public Webinar for Air Quality Chapter
On May 8, 2017, the NCA4 Air Quality chapter team held a public engagement webinar. The objectives of the webinar were to gather input from stakeholders, including authors of the regional chapters, to help inform the writing and development of NCA4, and to raise awareness of the ...
NASA Astrophysics Data System (ADS)
Arrillaga, Jon A.; Cano, Darío; Sastre, Mariano; Román-Cascón, Carlos; Maqueda, Gregorio; Morales, Gema; Viana, Samuel; Inclán, Rosa M.; Fidel González-Roúco, J.; Santolaria, Edmundo; Durán, Luis; Yagüe, Carlos
2017-04-01
Diurnal mountain wind systems that develop in the surroundings of the Guadarrama mountain range (Spain) are studied in this work. This area is highly interesting: the city of Madrid is located at approximately 50 km towards the SE; and on the other hand, unlike in other mountainous regions, the summers are characterised to be significantly dry, providing an interesting case study of energy balance in the context of complex orography. Slope and basin circulations formed play an important role in the development of fog and pollution episodes in the whole region. On top of that, when upslope basin winds strengthened by diurnal convection exceed 10 m s-1, the runway configuration at the airport of Madrid needs to be modified. Continuous meteorological data and turbulent fluxes of carbon dioxide, water vapour, momentum and heat are provided since June 2016 from measurements at a 10 m tower at La Herrería site, which is located at the foot of the Guadarrama mountain range. Besides, a 4 m high portable station is available for complementary measurements. La Herrería is part of the Guadarrama Monitoring Network (GuMNet; www.ucm.es/gumnet/), an atmospheric and subsurface observational facility distributed over the Guadarrama mountain range. As a support for the analysis, data from conventional meteorological stations within the region and a wind profiler at the airport are also employed. The wind roses for the period analysed (summer 2016) show how the diurnal cycle of the flows is influenced by local slopes and by the configuration of the basin. The irruption of the downslope flow in the evening produces a significant increase of the turbulence intensity and the eventual breakdown of the surface-based thermal inversion. However, the severe drying out of the soil throughout the summer, evident from the evolution of the surface latent and sensible heat fluxes, seems to play a role in altering the characteristics of the mountain-breeze system and its impact on turbulence. For instance, the evening secondary maximum of the friction velocity is almost non-existent at the end of the season. Downslope winds, indeed, present a weaker intensity than at the beginning of the summer, when the soil is wetter, whereas anabatic winds are stronger. Physical mechanisms responsible for differences in the diurnal mountain winds are investigated as well as their potential impacts on Madrid airport.
NASA Astrophysics Data System (ADS)
Yuan, S.; Xin, C.; Ying, Z.
2016-12-01
In recent years, earthquake disaster occurred frequently in Chinese mainland, the secondary disaster which have been caused by it is more serious in mountainous region. Because of the influence of terrain and geological conditions, the difficulty of earthquake emergency rescue work greatly increased, rescue force is also urged. Yet, it has been studied less on earthquake emergency rescue in mountainous region, the research in existing equipment whether can meet the actual needs of local earthquake emergency rescue is poorly. This paper intends to discuss and solve these problems. Through the mountainous regions Ganzi and Liangshan states in Sichuan field research, we investigated the process of earthquake emergency response and the projects for rescue force after an earthquake, and we also collected and collated local rescue force based data. By consulting experts and statistical analyzing the basic data, there are mainly two problems: The first is about local rescue force, they are poorly equipped and lack in the knowledge of medical help or identify architectural structure. There are no countries to establish a sound financial investment protection mechanism. Also, rescue equipment's updates and maintenance; The second problem is in earthquake emergency rescue progress. In the complicated geologic structure of mountainous regions, traffic and communication may be interrupted by landslides and mud-rock flows after earthquake. The outside rescue force may not arrive in time, rescue equipment was transported by manpower. Because of unknown earthquake disaster information, the local rescue force was deployed unreasonable. From the above, the local government worker should analyze the characteristics of the earthquake disaster in mountainous regions, and research how to improve their earthquake emergency rescue ability. We think they can do that by strengthening and regulating the rescue force structure, enhancing the skills and knowledge, training rescue workers, outfitting the light and portable rescue equipment, improving the public's self and mutual aid ability. All these measures will help local government reach the final goal of reducing the earthquake disaster.
NASA Astrophysics Data System (ADS)
Parker, Don F.; White, John C.; Ren, Minghua; Barnes, Melanie
2017-11-01
Voluminous silicic lava flows, erupted 37.4 Ma from widespread centers within the Davis Mountains Volcanic Field (DMVF), covered approximately 10,000 km2 with an initial volume as great as 1000 km3. Lava flows form three major stratigraphic units: the Star Mountain Rhyolite (minimum 220 km3) of the eastern Davis Mountains and adjacent Barilla Mountains, the Crossen Formation ( 75 km3) of the southern Davis Mountains, and the Bracks Rhyolite ( 75 km3) of the Rim Rock region west of the Davis Mountains proper. Similar extensive rhyolite lava also occurs in slightly younger units (Adobe Canyon Rhyolite, 125 km3, 37.1 Ma), Sheep Pasture Formation ( 125 km3, 36 Ma) and, less voluminously, in the Paisano central volcano ( 36.9 Ma) and younger units in the Davis Mountains. Individual lava flows from these units formed fields as extensive as 55 km and 300-m-thick. Flood rhyolite lavas of the Davis Mountains are marginally peralkaline quartz trachyte to low-silica rhyolite. Phenocrysts include alkali feldspar, clinopyroxene, FeTi oxides, and apatite, and, rarely, fayalite, as well as zircon in less peralkaline units. Many Star Mountain flows may be assigned to one of four geochemical groupings. Temperatures were moderately high, ranging from 911 to 860 °C in quartz trachyte and low silica rhyolite. We suggest that flood rhyolite magma evolved from trachyte magma by filter pressing processes, and trachyte from mafic magma in deeper seated plutons. The Davis Mountains segment of Trans-Pecos Texas overlies Grenville basement and is separated from the older Southern Granite and Rhyolite Province to the north by the Grenville Front, and from the younger Coahuila terrane to the south by the Ouachita Front. We suggest that basement structure strongly influenced the timing and nature of Trans-Pecos magmatism, probably in varying degrees of impeding the ascent of mantle-derived mafic magmas, which were produced by upwelling of asthenospheric mantle above the foundered Farallon slab. Basalt was able to penetrate Coahuila crust in the Big Bend region. Thicker Grenville crust under the Davis Mountains retarded ascent of mafic magmas, allowing mafic plutons to differentiate into silicic magma that was eventually erupted as flood lava. North of the Grenville Front, magmatism was further delayed and thicker, older crust there may have helped concentrate magmatism under the Davis Mountain region. Only after the onset of Basin and Range faulting was true basalt erupted over much of the Trans Pecos.
Periglacial Landforms and Processes in the Southern Kenai Mountains, Alaska.
1985-04-01
RD-RI57 459 PERIGLACIAL LANDFOR;S AND PROCESSES IN THE SOUTHERN i/i KENAI MOUNTAINS ALASKA(U) COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH P...PERIOD COVERED PERIGLACIAL LANDFORMS AND PROCESSES IN THE SOUTHERN KE’AI MOUNTAINS, ALASKA S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) S. CONTRACT OR...Gelifluction Patterned ground Geomorphology Periglacial Kenai Mountains Permafrost Nunatak 2&, ABST’RAC (T Ve nf, en revee n esee~7miy and idmy b block numabet
Himalayan Mountain Range, India/Tibet
1973-06-22
SL2-102-900 (22 June 1973) --- The Great Himalayan Mountain Range, India/Tibet (30.5N, 81.5E) is literally the top of the world where mountains soar to over 20,000 ft. effectively isolating Tibet from the rest of the world. The two lakes seen in the center of the image are the Laga Co and the Kunggyu Co located just inside the Tibet border. Although clouds and rainfall are rare in this region, snow is always present on the mountain peaks. Photo credit: NASA
Aeromagnetic search for Cenozoic magmatism over the Admiralty Mountains Block (East Antarctica)
,; ,; Ferraccioli, F.; Zunino, A.; Bozzo, E.; Rocchi, S.; Armienti, P.
2007-01-01
Cenozoic magmatic rocks of the Transantarctic Mountains provide an important window on the tectonic and magmatic processes of the West Antarctic Rift System. Previous aeromagnetic investigations in northern Victoria Land have delineated Cenozoic volcanic and intrusive complexes assigned to the McMurdo Volcanic Group and Meander Intrusives over the Transantarctic Mountains. We present a new aeromagnetic anomaly map for the region north of the Mariner Glacier to study the extent and spatial distribution of these Cenozoic rocks over the previously unexplored Admiralty Mountains. The new map shows that the Meander Intrusives are restricted to the coastal region between the Malta Plateau and the Daniell Peninsula. However, the McMurdo Volcanic Group rocks extend further inland, and may delineate a hitherto unrecognised volcano-tectonic rift zone, extending as far north as the Trafalgar Glacier.
NASA Technical Reports Server (NTRS)
Beratan, K. K.; Blom, R. G.; Crippen, R. E.; Nielson, J. E.
1990-01-01
Enhanced Landsat TM images were used in conjunction with field work to investigate the regional correlation of Miocene rocks in the Colorado River extensional corridor of California and Arizona. Based on field investigations, four sequences of sedimentary and volcanic strata could be recognized in the Mohave Mountains (Arizona) and the eastern Whipple Mountains (California), which display significantly different relative volumes and organization of lithologies. The four sequences were also found to have distinctive appearances on the TM image. The recognition criteria derived from field mapping and image interpretation in the Mohave Mountains and Whipple Mountains were applied to an adjacent area in which stratigraphic affinities were less well known. The results of subsequent field work confirmed the stratigraphic and structural relations suggested by the Tm image analysis.
NASA Astrophysics Data System (ADS)
Hu, Shanshan; Ma, Jianyong; Shugart, Herman H.; Yan, Xiaodong
2018-03-01
Mountain forests provide the main water resources and lumber for Northwest China. The understanding of the differences in forests growing among individual slope aspects in mountainous regions is of great significance to the wise management and planning of these natural systems. The aim of this study was to investigate the impacts of slope aspect on forest dynamic succession in Northwest China by using the dynamic forest succession model (FAREAST). First, the simulated forest composition and vertical forest zonation produced by the model were compared against recorded data in three sub-regions of the Altai Mountains. The FAREAST model accurately reproduced the vertical zonation, forest composition, growth curves of the dominant species (Larix sibirica), and forest biomass in the Altai Mountains. Transitions along the forest zones of the Altai Mountains averaged about a 400 m difference between the northern and southern sites. Biomass for forests on north-facing slopes were 11.0, 15.3 and 55.9 t C ha-1 higher than for south-facing slopes in the Northeast, Central and Southeast sub-regions, respectively. Second, our analyses showed that the FAREAST model can be used to predict dynamic forest succession in Northwest China under the influence of slope and aspect. In the Altai Mountains, the north-facing slopes supported the best forest growth, followed by the west- and east-facing slopes. South-facing slopes consistently exhibited the lowest growth, biomass storage and forest diversity.
Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot.
Xing, Yaowu; Ree, Richard H
2017-04-25
A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification-that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai-Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots.
Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot
Xing, Yaowu; Ree, Richard H.
2017-01-01
A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification—that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai–Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots. PMID:28373546
Li, Yao; Zhang, Xing-wang; Fang, Yan-ming
2014-12-01
The geographical distribution of Quercus variabilis in China with its climate characteristics was analyzed based on DIVA-GIS which was also used to estimate the response of future potential distribution to global warming by Bioclim and Domain models. Analysis results showed the geographical distribution of Q. variabilis could be divided into 7 subregions: Henduan Mountains, Yunnan-Guizhou Plateau, North China, East China, Liaodong-Shandong Peninsula, Taiwan Island, and Qinling-Daba Mountains. These subregions are across 7 temperature zones, 2 moisture regions and 17 climatic subregions, including 8 climate types. The modern abundance center of Q. variabilis is Qinling, Daba and Funiu mountains. The condition of mean annual temperature 7.5-19.8 degrees C annual precipitation 471-1511 mm, is suitable for Q. variabilis. Areas under the receiver operating characteristic curve (AUC values), of Domain and Boiclim models were 0.910, 0.779; the former predicted that the potential regions of high suitability for Q. variabilis are Qinling, Daba, Funiu, Tongbai, and Dabie mountains, eastern and western Yunnan-Guizhou Plateau, hills of southern Jiangsu and Anhui, part of the mountains in North China. Global warming might lead to the shrinking in suitable region and retreating from the south for Q. variabilis.
NASA Astrophysics Data System (ADS)
Mieth, Matthias; Steinhage, Daniel; Ruppel, Antonia; Damaske, Detlef; Jokat, Wilfried
2013-04-01
We are presenting new magnetic and gravity data of a high-resolution aerogephysical survey over the area of the Sør Rondane Mountains in the eastern Dronning Maud Land (DML). The aircraft survey is part of the joint geological and geophysical GEA campaign (Geodynamic Evolution of East Antarctica) of the Federal Agency for Geosciences and Natural Resources (BGR) and Alfred-Wegener-Institute for Polar and Marine Research (AWI), in cooperation with the Universities of Ghent, Bremen and Bergen. It was completed during the Antarctic summer season 2012/13, covering an area of more than 100000 square kilometer with a line spacing of 5 km. The data will be correlated with geological structures exposed in the mountain range as well as matched and merged with the data sets of the eastern and southern DML (acquired by AWI during the last decade) for comparison and discussion in the greater context of the tectonic evolution of East Antarctica. Preliminary results show that the magnetic anomaly pattern over the Sør Rondane Mountains differs from the pattern found over the central DML mountains as well as from the low amplitude pattern in between both regions, indicating a significant difference in the evolution of this region, which is in accordance with latest geological findings in this region.
2010-01-01
Background Vampire bat related rabies harms both livestock industry and public health sector in central Brazil. The geographical distributions of vampire bat-transmitted rabies virus variants are delimited by mountain chains. These findings were elucidated by analyzing a high conserved nucleoprotein gene. This study aims to elucidate the detailed epidemiological characters of vampire bat-transmitted rabies virus by phylogenetic methods based on 619-nt sequence including unconserved G-L intergenic region. Findings The vampire bat-transmitted rabies virus isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values. The distributions of most variants were reconfirmed to be delimited by mountain chains. Furthermore, variants in undulating areas have narrow distributions and are apparently separated by mountain ridges. Conclusions This study demonstrates that the 619-nt sequence including G-L intergenic region is more useful for a state-level phylogenetic analysis of rabies virus than the partial nucleoprotein gene, and simultaneously that the distribution of vampire bat-transmitted RABV variants tends to be separated not only by mountain chains but also by mountain ridges, thus suggesting that the diversity of vampire bat-transmitted RABV variants was delimited by geographical undulations. PMID:21059233
A management-oriented classification of pinyon-juniper woodlands of the Great Basin
Neil E. West; Robin J. Tausch; Paul T. Tueller
1998-01-01
A hierarchical framework for the classification of Great Basin pinyon-juniper woodlands was based on a systematic sample of 426 stands from a random selection of 66 of the 110 mountain ranges in the region. That is, mountain ranges were randomly selected, but stands were systematically located on mountain ranges. The National Hierarchical Framework of Ecological Units...
ERIC Educational Resources Information Center
Smith, Gary R.; Bienstock, Eric M.
Activities to supplement secondary school global or future studies courses in the 10 state Mountain West region are presented in this teacher handbook. Material is divided into 3 sections. Section 1, an introduction to international connectedness, contains 7 activities focusing on the Mountain West's interdependence with the rest of the world. A…
Vascular plant flora of the alpine zone in the southern Rocky Mountains, U.S.A
James F. Fowler; B. E. Nelson; Ronald L. Hartman
2014-01-01
Field detection of changes in occurrence, distribution, or abundance of alpine plant species is predicated on knowledge of which species are in specific locations. The alpine zone of the Southern Rocky Mountain Region has been systematically inventoried by the staff and floristics graduate students from the Rocky Mountain Herbarium over the last 27 years. It is...
Victoria A. Saab; Hugh D. W. Powell; Natasha B. Kotliar; Karen R. Newlon
2005-01-01
Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain...
Kim, Peter T W; Jangra, Dalbhir; Ritchie, Alec H; Lower, Mary Ellen; Kasic, Sharon; Brown, D Ross; Baldwin, Greg A; Simons, Richard K
2006-02-01
Mountain biking has become an increasingly popular recreational and competitive sport with increasingly recognized risks. The purpose of this study was to review a population based approach to serious injuries requiring trauma center admission related to mountain biking, identify trends and develop directions for related injury prevention programs. Three trauma centers in the Greater Vancouver area exclusively serve a major mountain bike park and the North Shore Mountains biking trails. The Trauma Registries and the patient charts were reviewed for mountain bike injuries from 1992 to 2002. The data were analyzed according to demographics, distribution, and severity of injuries, and need for operative intervention. Findings were reviewed with injury prevention experts and regional and national mountain-biking stakeholders to provide direction to injury prevention programs. A total of 1,037 patients were identified as having bicycling-related injuries. Of these, 399 patients sustained 1,092 injuries while mountain biking. There was a threefold increase in the incidence of mountain biking injuries over a 10-year period. Young males were most commonly affected. Orthopedic injuries were most common (46.5%) followed by head (12.2%), spine (12%), chest (10.3%), facial (10.2%), abdominal (5.4%), genitourinary (2.2%), and neck injuries (1%). High operative rate was observed: 38% of injuries and 66% of patients required surgery. One patient died from his injuries. Injury prevention programs were developed and successfully engaged the target population. Mountain biking is a growing cause of serious injuries. Young males are principally at risk and serious injuries result from intended activity and despite protective equipment. Injury prevention programs were developed to address these concerns.
Levich, R.A.; Linden, R.M.; Patterson, R.L.; Stuckless, J.S.
2000-01-01
Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program. The first day focuses on the regional setting with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The field trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, an element of the hydrologic system that historically has received little attention. Discussions during the second day will compromise selected topics of Yucca Mountain geology, hydrology and geochemistry and will include the probabilistic volcanic hazard analysis and the seismicity and seismic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the results of recent hydrologic studies by the Nye County Nuclear Waste Program Office, and the relationship of the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.
Xu, Manhou; Ma, Li; Jia, Yanyan; Liu, Min
2017-01-01
Varying patterns of plant community diversity along geographical gradients are a significant topic in biodiversity research. Here, to explore the integrated effects of latitude and altitude on the plant community diversity in a mountainous ecosystem, we set Guancen Mountain in the northern section, Guandi Mountain in the middle section, and Wulu Mountain in the southern section of the Lvliang Mountains as study areas, and the plant community diversity (basal diameter and height of tree and species diversity indices of shrub and herb) was measured horizontally at different latitude gradients and vertically at different altitude gradients in late July 2015. The results showed that (1) the trees were taller and wider at the middle latitude and higher altitude with a stronger spatial heterogeneity in the structures along the latitudinal and altitudinal gradients. The evergreen tree growth preceded that of the deciduous trees in the higher latitude and lower altitude regions, whereas the deciduous tree growth preceded that of the evergreen trees in the middle latitude and higher altitude regions. (2) Shrubs and herbs tended to grow well in the lower latitude and middle-lower altitude regions. The shrubs had a larger species diversity at lower latitude and lower altitude, but the species diversity of the herbs was not sensitive to the influences of the latitudinal and altitudinal gradients. With the latitude and altitude increasing, perennial herbs tended to grow well at higher latitude and higher altitude, while annual herbs tended to thrive at the middle latitude and lower altitude. In conclusion, environmental deviations caused by latitudinal and altitudinal gradients had great influences on the spatial distributions of the plant community diversity in the Lvliang Mountains. PMID:28323909
Xu, Manhou; Ma, Li; Jia, Yanyan; Liu, Min
2017-01-01
Varying patterns of plant community diversity along geographical gradients are a significant topic in biodiversity research. Here, to explore the integrated effects of latitude and altitude on the plant community diversity in a mountainous ecosystem, we set Guancen Mountain in the northern section, Guandi Mountain in the middle section, and Wulu Mountain in the southern section of the Lvliang Mountains as study areas, and the plant community diversity (basal diameter and height of tree and species diversity indices of shrub and herb) was measured horizontally at different latitude gradients and vertically at different altitude gradients in late July 2015. The results showed that (1) the trees were taller and wider at the middle latitude and higher altitude with a stronger spatial heterogeneity in the structures along the latitudinal and altitudinal gradients. The evergreen tree growth preceded that of the deciduous trees in the higher latitude and lower altitude regions, whereas the deciduous tree growth preceded that of the evergreen trees in the middle latitude and higher altitude regions. (2) Shrubs and herbs tended to grow well in the lower latitude and middle-lower altitude regions. The shrubs had a larger species diversity at lower latitude and lower altitude, but the species diversity of the herbs was not sensitive to the influences of the latitudinal and altitudinal gradients. With the latitude and altitude increasing, perennial herbs tended to grow well at higher latitude and higher altitude, while annual herbs tended to thrive at the middle latitude and lower altitude. In conclusion, environmental deviations caused by latitudinal and altitudinal gradients had great influences on the spatial distributions of the plant community diversity in the Lvliang Mountains.
Hydrology of Yucca Mountain and vicinity, Nevada-California : investigative results through mid-1983
Waddell, R.K.; Robison, J.H.; Blankennagel, R.K.
1984-01-01
Yucca Mountain, Nevada, is one of several sites under consideration for construction of the first repository for high-level nuclear waste. The climate is arid; few perennial streams are present in the region. Flash floods occasionally occur. The site is underlain by at least 1,800 meters of volcanic tuffs of Tertiary age; limestones and dolomites of Paleozoic age underlie much of the surrounding region, and, together with alluvial deposits, comprise the major aquifers. Yucca Mountain is in the Alkali Flat-Furnace Creek Ranch ground-water subbasin, which is part of the Death Valley ground-water basin. Discharge occurs at Alkali Flat almost entirely by evapotranspiration, and at Furnace Creek Ranch from small springs and seeps. Beneath Yucca Mountain, depth to water ranges from about 460 to 700 meters; the rock under consideration for construction of the repository is in the unsaturated zone. Rate of recharge at Yucca Mountain is small, perhaps much less than 5 millimeters per year. Within the saturated zone, water movement is principally along fractures. The hydraulic gradient is small east (downgradient) of Yucca Mountain, and increases to the north and west. Lack of effective-porosity data presently precludes accurate calculation of flow velocity and travel times. (USGS)
1985-07-01
ptical properties 5pley. I(-,8). Table 5. Chart 4-Percentage of one-degree squares. 13 f plankton aleae . 0 Table 6. Global coverage-Percentage of one...optical properties result from (e.g., Colorado River), typical in mountainous (tectonic) regions, 9. Hunghlo (Red)110 Mekong and/or organic sediments...typical in mountainous (tectonic) regions, 9. Hungho (Red) 160 Inadequate 10. Mekong 160 Sufficient larger-sized particles in suspension. The
Kelly Goonan; Robert Manning; Carena J. van Riper; Christopher Monz
2010-01-01
Land managers in the Northern Forest region of Maine, New Hampshire, New York, and Vermont face the challenge of providing high-quality recreation opportunities and experiences while also protecting fragile summit resources. The goals of this study were to identify indicators and standards of quality for visitor experiences and summit resources for three mountains with...
Paul V. Bolstad; Lloyd Swift; Fred Collins; Jacques Regniere
1998-01-01
Landscape and temporal patterns of temperature were observed for local (13 station) and regional (35 station) networks in the Southern Appalachian mountains of North America. Temperatures decreased with altitude at mean rates of 7EC/km (maximum temperature) and 3EC/km (minimum temperature). Daily lapse rates depended on the method and stations used in the calculations...
YUCCA MOUNTAIN SITE DESCRIPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.M. Simmons
The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work donemore » at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.« less
NASA Astrophysics Data System (ADS)
Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz
2018-02-01
The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.
Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson
2018-01-01
This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.
ERIC Educational Resources Information Center
Southern Univ. and Agricultural and Mechanical Coll., Baton Rouge, LA.
This final report of the third year of the Southern University-Tulane University Regional Head Start Evaluation and Research Center is a statement of activities engaged in since September 1968. Chapter I includes an introduction and description of the centers; Chapter II, evaluation guidelines, test battery, quality control, evaluation design and…
ERIC Educational Resources Information Center
National Inst. for Educational Research, Tokyo (Japan).
Proceedings of a Pacific regional workshop to identify developments and problems in educational information services are presented in four chapters. In chapter 1, seminar objectives and participants are listed. Objectives were to review and exchange experiences on the existing information systems and services; to identify crucial issues related to…
75 FR 3617 - Outer Continental Shelf Air Regulations Update To Include New Jersey State Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
... requirements, Sulfur oxides. Dated: December 30, 2009. Judith A. Enck, Regional Administrator, Region 2. 0.... Emissions tests N.J.A.C. 7:27-6.5. Variances N.J.A.C. 7:27-6.7. Exceptions Chapter 27 Subchapter 7--Sulfur... from sulfur compounds Chapter 27 Subchapter 8--Permits and Certificates for Minor Facilities (and Major...
Diverse elevational diversity gradients in Great Smoky Mountains National Park, U.S.A.: Chapter 10
Sanders, Nathan J.; Dunn, Robert R.; Fitzpatrick, Matthew C.; Carlton, Christopher E.; Pogue, Michael R.; Parker, Charles R.; Simons, Theodore R.
2009-01-01
Why does the number of species vary geographically? The earliest naturalists puzzled over this question, as do many biogeographers and macroecologists today. Over the last 200-plus years, the most striking geographic pattern in species richness – the decline in species richness with increasing latitude – has received the most attention. Thanks to many recent theoretical developments, coupled with global-scale databases and satellite technology, the number of candidate mechanisms that shape the latitudinal diversity gradient has been whittled down to a manageable number.
12. MOUNTAIN LAUREL (KALMIA LATIFOLIA) AT LAUREL POOL Photocopy of ...
12. MOUNTAIN LAUREL (KALMIA LATIFOLIA) AT LAUREL POOL Photocopy of photograph, 1930s National Park Service, National Capital Region files - Dumbarton Oaks Park, Thirty-second & R Streets Northwest, Washington, District of Columbia, DC
Magellan radar image of Danu Montes in Lakshmi Region of Venus
NASA Technical Reports Server (NTRS)
1990-01-01
This Magellan radar mosaic image is of part of the Danu Montes in the Lakshmi Region of Venus. The area in the image is located at 329.6 degrees east longitude and 58.75 degrees north latitude. This image shows an area 40 kilometers (km) (19.6 miles) wide and 60 km (39.2 miles) long. Danu Montes is a mountain belt located at the southern edge of the Ishtar Terra highland region. It rises one to three kilometers above a flat plain to the north known as Lakshmi Planum. On the basis of Pioneer Venus, Arecibo and Venera data, Danu Montes and the other mountain belts surrounding Lakshmi Planum have been interpreted to be orogenic belts marking the focus of compressional deformation, much like the Appalachian and Andes ranges on Earth. In the upper right part of this image, relatively bright, smooth-textured plains of Lakshmi Planum are seen to embay the heavily deformed mountain range to the south. In the mountain range south of these plains the geology is dominated by abundant faults at mu
Catalogue of Diptera of Colombia: an introduction.
Wolff, Marta; Nihei, Silvio S; Carvalho, Claudio J B De
2016-06-14
Colombia has an imposing natural wealth due to its topography has many unique characteristics as a consequence of having Caribbean and Pacific shores, as well as sharing part of the Amazon basin and northern Andes mountains. Thus, many natural and biological features are due to the convergence of three biogeographical regions: Pacific, Andes and Amazonia. The Andean uplift created a complex mosaic of mountains and isolated valleys, including eleven biogeographical provinces (Morrone 2006). The Andes dominate the Colombian topography and cross the country south to north. There are three mountain ranges (Western, Central, and Eastern) with a maximum elevation of 5,775 m, and an average elevation of 2,000 m. The Magdalena and Cauca River valleys separate these ranges, that along with the Putumayo and Caquetá Rivers, the Catatumbo watershed, the Darién, Pique Hill, the Orinoquia Region (with its savannas), the Amazon region (with tropical rainforests), and some lower mountain ranges (Macarena and Chiribiquete), have generated the conditions for very high levels of endemism. This variety of conditions has resulted in an extremely diverse plant and animal biota, and in which 48% of the nation remains unexplored.
Rocky Mountain snowpack physical and chemical data for selected sites, 2010
Ingersoll, George P.; Mast, M. Alisa; Swank, James M.; Campbell, Chelsea D.
2010-01-01
The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region, from New Mexico to Montana, to monitor the chemical content of snow and to understand the effects of regional atmospheric deposition on freshwater systems. Scientists with the U.S. Geological Survey, in cooperation with the National Park Service; the U.S. Department of Agriculture Forest Service; the Colorado Department of Public Health and Environment; Teton County, Wyoming; and others, annually collected and analyzed snow-pack samples at 48 or more sites in the Rocky Mountain region during 1993-2010. Sixty-three snowpack-sampling sites were each sampled once in 2010, and those data are presented in this report. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow-water equivalent, snow depth, total mercury concentrations, and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for 2010 also are included.
Rocky Mountain Snowpack Physical and Chemical Data for Selected Sites, 1993-2008
Ingersoll, George P.; Mast, M. Alisa; Campbell, Donald H.; Clow, David W.; Nanus, Leora; Turk, John T.
2009-01-01
The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region from New Mexico to Montana to monitor the chemical content of snow to help in the understanding of the effects of atmospheric deposition to this region. The U.S. Geological Survey, in cooperation with the National Park Service, the USDA Forest Service, Teton County in Wyoming, Rio Blanco County in Colorado, Pitkin County in Colorado, and others, collected and analyzed snowpack samples annually for 48 or more sites in the Rocky Mountain region during 1993-2008. Forty-eight of the 162 snow-sampling sites have been sampled annually since 1993. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow/ water equivalent, snow depth, stable sulfur isotope ratios, total mercury concentrations (beginning in 2001), and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for individual years (1993-2008) also are included.
Murphy, Sheila F.; Stallard, Robert F.; Scholl, Martha A.; Gonzalez, Grizelle; Torres-Sanchez, Angel J.
2017-01-01
Mountains receive a greater proportion of precipitation than other environments, and thus make a disproportionate contribution to the world’s water supply. The Luquillo Mountains receive the highest rainfall on the island of Puerto Rico and serve as a critical source of water to surrounding communities. The area’s role as a long-term research site has generated numerous hydrological, ecological, and geological investigations that have been included in regional and global overviews that compare tropical forests to other ecosystems. Most of the forest- and watershed-wide estimates of precipitation (and evapotranspiration, as inferred by a water balance) have assumed that precipitation increases consistently with elevation. However, in this new analysis of all known current and historical rain gages in the region, we find that similar to other mountainous islands in the trade wind latitudes, leeward (western) watersheds in the Luquillo Mountains receive lower mean annual precipitation than windward (eastern) watersheds. Previous studies in the Luquillo Mountains have therefore overestimated precipitation in leeward watersheds by up to 40%. The Icacos watershed, however, despite being located at elevations 200–400 m below the tallest peaks and to the lee of the first major orographic barrier, receives some of the highest precipitation. Such lee-side enhancement has been observed in other island mountains of similar height and width, and may be caused by several mechanisms. Thus, the long-reported discrepancy of unrealistically low rates of evapotranspiration in the Icacos watershed is likely caused by previous underestimation of precipitation, perhaps by as much as 20%. Rainfall/runoff ratios in several previous studies suggested either runoff excess or runoff deficiency in Luquillo watersheds, but this analysis suggests that in fact they are similar to other tropical watersheds. Because the Luquillo Mountains often serve as a wet tropical archetype in global assessments of basic ecohydrological processes, these revised estimates are relevant to regional and global assessments of runoff efficiency, hydrologic effects of reforestation, geomorphic processes, and climate change.
View east over the Rocky Mountains and Great Plains
1974-02-01
SL4-138-3875 (February 1974) --- A color oblique photograph looking east over the Rocky Mountains and Great Plains. This view covers a portion of the States of Colorado, Wyoming, and Nebraska. A Skylab 4 crewmen took this picture with a hand-held 70mm Hasselblad camera. This entire region, covered with a blanket of snow, depicts much of the structural and topographic features of the Rocky Mountain chain. Man's only apparent change to the snow pattern seen here is the (right center) metropolitan areas of Denver and Colorado Springs, Colorado, which can be observed along the eastern edge of the mountain front. Grand Junction, Colorado on the western slope of the Rocky Mountains is just off the photograph at left center bottom. The major inter-montane valleys of South Park (right center), Middle Park (center), and North Park (left center) are clearly visible and separate the Colorado Rockies Front Range from the high rugged mountains can be discovered such as Pikes Peak near right border (center), Mt. Cunnison region, circular feature accentuated by the Cunnison River (dark) in the right center (bottom) of the photograph. The snow covered peaks of Mts. Harvard, Princeton and Yale form the high region of the Collegiate Range which is the pronounced mountain area in the right center. Snow cover not only enhances mountain features but also the drainage patterns. East of Denver (right corner) the sinuous trace of the South Platte River (center) and its junction with the North Platte River near North Platte, Nebraska. Lake McConaughy in Nebraska is the body of water (black) near the river intersection. The trace of the Republic River in southern Nebraska is visible near the right corner of the photography. Geologic and hydro logic studies using this photograph will be conducted by Dr. Roger Morrison, U.S. Geological Survey. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Lehmkuhl, Frank; Nottebaum, Veit; Hülle, Daniela
2018-07-01
The reconstruction of geomorphological processes as a result of environmental change is approached by investigating and dating some fluvial, aeolian and lacustrine archives at specific locations that form a N-S basin and range transect across the Khangai Mountains south to the eastern Gobi Altai mountains in Mongolia. Geomorphological processes varied a) spatially with different climatic conditions and vegetation cover in relation to different elevation and latitude and b) temporally due to climatic shifts during the late Quaternary. In total, 15 sections from three distinct sub-regions along that transect were dated by 22 OSL ages. The Khangai Mountain sub-region exhibits mainly late Glacial to Holocene aeolian silty to sandy cover sediments mainly in the upper catchment reaches (>1800 m a.s.l.). Sections in the northern and central Gobi represent river terraces and alluvial fans in basin areas as well as aeolian sediments in the mountains above 2200 m a.s.l. The oldest terrace surface found in this study (T2; NGa1) dates to the penultimate Glacial cycle. The T1 terrace surfaces, on the northern Khangai Mountain front and in the central Gobi sub-region yield a maximum accumulation during the global Last Glacial Maximum (gLGM) and late Glacial time. During the gLGM phase represents rather sheetflow dominated transport built the alluvial fans and in late Glacial times the sediments exhibit more debrisflow controlled accumulation. Incision, forming the T1-terrace edges is therefore, supposed for the Pleistocene-Holocene transition and subsequent early Holocene. The geomorphic evidence is interpreted as stronger fluvial morphodynamics induced by enhanced humidity under beginning interglacial conditions. These processes coincided with the development of aeolian mantles at higher altitudes in the Khangai and Gobi Altai mountains where higher temperatures and humidities supported the formation of a vegetation cover, that served as a dust trap at least since late Glacial times and reduced the sediment supply on the alluvial fans.
Stallard, Robert F.; Scholl, Martha A.; González, Grizelle; Torres-Sánchez, Angel J.
2017-01-01
Mountains receive a greater proportion of precipitation than other environments, and thus make a disproportionate contribution to the world’s water supply. The Luquillo Mountains receive the highest rainfall on the island of Puerto Rico and serve as a critical source of water to surrounding communities. The area’s role as a long-term research site has generated numerous hydrological, ecological, and geological investigations that have been included in regional and global overviews that compare tropical forests to other ecosystems. Most of the forest- and watershed-wide estimates of precipitation (and evapotranspiration, as inferred by a water balance) have assumed that precipitation increases consistently with elevation. However, in this new analysis of all known current and historical rain gages in the region, we find that similar to other mountainous islands in the trade wind latitudes, leeward (western) watersheds in the Luquillo Mountains receive lower mean annual precipitation than windward (eastern) watersheds. Previous studies in the Luquillo Mountains have therefore overestimated precipitation in leeward watersheds by up to 40%. The Icacos watershed, however, despite being located at elevations 200–400 m below the tallest peaks and to the lee of the first major orographic barrier, receives some of the highest precipitation. Such lee-side enhancement has been observed in other island mountains of similar height and width, and may be caused by several mechanisms. Thus, the long-reported discrepancy of unrealistically low rates of evapotranspiration in the Icacos watershed is likely caused by previous underestimation of precipitation, perhaps by as much as 20%. Rainfall/runoff ratios in several previous studies suggested either runoff excess or runoff deficiency in Luquillo watersheds, but this analysis suggests that in fact they are similar to other tropical watersheds. Because the Luquillo Mountains often serve as a wet tropical archetype in global assessments of basic ecohydrological processes, these revised estimates are relevant to regional and global assessments of runoff efficiency, hydrologic effects of reforestation, geomorphic processes, and climate change. PMID:28686734
Torres, Javier; Correa, Pelayo; Ferreccio, Catterina; Hernandez-Suarez, Gustavo; Herrero, Rolando; Cavazza-Porro, Maria; Dominguez, Ricardo; Morgan, Douglas
2013-01-01
In Latin America, gastric cancer is a leading cancer, and countries in the region have some of the highest mortality rates worldwide, including Chile, Costa Rica, and Colombia. Geographic variation in mortality rates is observed both between neighboring countries and within nations. We discuss epidemiological observations suggesting an association between altitude and gastric cancer risk in Latin America. In the Americas, the burden of gastric cancer mortality is concentrated in the mountainous areas along the Pacific rim, following the geography of the Andes sierra, from Venezuela to Chile, and the Sierra Madre and Cordillera de Centroamérica, from southern Mexico to Costa Rica. Altitude is probably a surrogate for host genetic, bacterial, dietary, and environmental factors that may cluster in the mountainous regions. For example, H. pylori strains from patients of the Andean Nariño region of Colombia display European ancestral haplotypes, whereas strains from the Pacific coast are predominantly of African origin. The observation of higher gastric cancer rates in the mountainous areas is not universal: the association is absent in Chile, where risk is more strongly associated with the age of H. pylori acquisition and socio-economic determinants. The dramatic global and regional variations in gastric cancer incidence and mortality rates offer the opportunity for scientific discovery and focused prevention programs. PMID:23224271
Torres, Javier; Correa, Pelayo; Ferreccio, Catterina; Hernandez-Suarez, Gustavo; Herrero, Rolando; Cavazza-Porro, Maria; Dominguez, Ricardo; Morgan, Douglas
2013-02-01
In Latin America, gastric cancer is a leading cancer, and countries in the region have some of the highest mortality rates worldwide, including Chile, Costa Rica, and Colombia. Geographic variation in mortality rates is observed both between neighboring countries and within nations. We discuss epidemiological observations suggesting an association between altitude and gastric cancer risk in Latin America. In the Americas, the burden of gastric cancer mortality is concentrated in the mountainous areas along the Pacific rim, following the geography of the Andes sierra, from Venezuela to Chile, and the Sierra Madre and Cordillera de Centroamérica, from southern Mexico to Costa Rica. Altitude is probably a surrogate for host genetic, bacterial, dietary, and environmental factors that may cluster in the mountainous regions. For example, H. pylori strains from patients of the Andean Nariño region of Colombia display European ancestral haplotypes, whereas strains from the Pacific coast are predominantly of African origin. The observation of higher gastric cancer rates in the mountainous areas is not universal: the association is absent in Chile, where risk is more strongly associated with the age of H. pylori acquisition and socio-economic determinants. The dramatic global and regional variations in gastric cancer incidence and mortality rates offer the opportunity for scientific discovery and focused prevention programs.
Drummond, Mark A.
2012-01-01
The Southern Rockies Ecoregion is a high-elevation mountainous ecoregion that covers approximately 138,854 km2 (53,612 mi2), including much of central Colorado and parts of southern Wyoming and northern New Mexico (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). It abuts six other ecoregions: the Wyoming Basin and Colorado Plateaus Ecoregions on the north and west, the Arizona/New Mexico Plateau Ecoregion on the south, and the Northwestern Great Plains, Western High Plains, and Southwestern Tablelands Ecoregions on the east (fig. 1). The ecoregion receives most of its annual precipitation (25–100 cm) as snowfall, which provides a significant amount of high-elevation snowpack that is an important water source for surrounding ecoregions. The Southern Rockies Ecoregion has a steep elevation gradient from low foothills to high peaks, with several hundred summits higher than 3,660 m (12,000 ft). As a southern extension of the larger RockyMountain system, it is composed primarily of seven main north-south trending mountain ranges that are separated by four large intermontane basins. A fifth basin, the San Luis Valley, is outside the ecoregion, forming a northern finger of the Arizona/New Mexico Plateau Ecoregion that lies mostly to the south. To the east, late Tertiary sand and gravel deposits that were eroded from the relatively young Rocky Mountains were carried eastward by streams, forming the nearby Western High Plains Ecoregion and its underlying Ogallala aquifer.
World Shale Resource Assessments
2015-01-01
Four countries: Chad, Kazakhstan, Oman and the United Arab Emirates (UAE) have been added to report “Technically Recoverable Shale Oil and Shale Gas Resources.” The report provides an estimate of shale resources in selected basins around the world. The new chapters cover shale basins from the Sub-Saharan Africa region, represented by Chad; the Caspian region, represented by Kazakhstan; and the Middle East region, represented by Oman and the United Arab Emirates (UAE) and are available as supplemental chapters to the 2013 report.
NASA Astrophysics Data System (ADS)
Millar, C. I.; Fagre, D. B.
2004-12-01
Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate research symposium (MTNCLIM), the first to be held in spring 2005; developing a strategy for climate-monitoring in WNA; installing and networking high-elevation (>3000m) climate-monitoring stations; and completing three target regions (Glacier National Park, MT; Sierra Nevada and White Mountains, CA) of the international GLORIA (Global Observation Research Initiative in Alpine Environments) plant-monitoring project, the first in WNA. CIRMOUNT emphasizes integration at the regional scale in WNA, collaborating with and complementing projects such as the Western Mountain Initiative, whose mandate is more targeted than CIRMOUNT's, and global programs such as GLORIA and the international Mountain Research Initiative. Achievement of continuing success in WNA hinges on the capacity to secure long-term funding and institutional investment. (1) See associated URL for paper and poster pdfs (2) Discussing the future of western U.S. mountains, climate change, and ecosystems. EOS 31 August 2004, 85(35), p. 329
Synoptic variability of extreme snowfall in the St. Elias Mountains, Yukon, Canada
NASA Astrophysics Data System (ADS)
Andin, Caroline; Zdanowicz, Christian; Copland, Luke
2015-04-01
Glaciers in the Wrangell and St. Elias Mountains (Alaska and Yukon) are presently experiencing some of the highest regional wastage rates worldwide. While the effect of regional temperatures on glacier melt rates in this region has been investigated, comparatively little is known about how synoptic climate variations, for example in the position and strength of the Aleutian Low, modulate snow accumulation on these glaciers. Such information is needed to accurately forecast future wastage rates, glacier-water resource availability, and contributions to sea-level rise. Starting in 2000, automated weather stations (AWS) were established in the central St-Elias Mountains (Yukon) at altitudes ranging from 1190 to 5400 m asl, to collect climatological data in support of glaciological research. These data are the longest continuous year-round observations of surface climate ever obtained from this vast glaciated region. Here we present an analysis of snowfall events in the icefields of the St-Elias Mountains based on a decade-long series of AWS observations of snow accumulation. Specifically, we investigated the synoptic patterns and air mass trajectories associated with the largest snowfall events (> 25 cm/12 hours) that occurred between 2002 and 2012. Nearly 80% of these events occurred during the cold season (October-March), and in 74 % of cases the precipitating air masses originated from the North Pacific south of 50°N. Zonal air mass advection over Alaska, or from the Bering Sea or the Arctic Ocean, was comparatively rare (20%). Somewhat counter-intuitively, dominant surface winds in the St. Elias Mountains during high snowfall events were predominantly easterly, probably due to boundary-layer frictional drag and topographic funneling effects. Composite maps of sea-level pressure and 700 mb winds reveal that intense snowfall events between 2002 and 2012 were associated with synoptic situations characterized by a split, eastwardly-shifted or longitudinally-stretched Aleutian Low (AL) having an easternmost node near the Kenai Peninsula, conditions that drove a strong southwesterly upper airstream across the Gulf of Alaska towards the coast. Situations with a single-node, westerly-shifted AL were comparatively rare. The spatial configuration of the synoptic AL pressure pattern appears to play a greater role in determining snowfall amount in the central St. Elias Mountains than do pressure anomalies within the AL. The estimated snowfall gradient from coastal Alaska to the central St. Elias Mountains during intense snowfall events averaged +2.0 ± 0.7 mm/km (SWE), while the continental-side gradient from the mountains towards the Yukon plateau averaged -3.3 ± 0.9 mm/km (SWE). The findings presented here can better constrain the climatic interpretation of long proxy records of snow accumulation variations developed from glacier cores drilled in the St. Elias Mountains or nearby regions.
Moore, Stephanie J.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.
2007-01-01
Infiltration events in channels that flow only sporadically produce focused recharge to the Tesuque aquifer in the Española Basin. The current study examined the quantity and timing of streamflow and associated infiltration in Arroyo Hondo, an unregulated mountain-front stream that enters the basin from the western slope of the Sangre de Cristo Mountains. Traditional methods of stream gaging were combined with environmental-tracer based methods to provide the estimates. The study was conducted during a three-year period, October 1999–October 2002. The period was characterized by generally low precipitation and runoff. Summer monsoonal rains produced four brief periods of streamflow in water year 2000, only three of which extended beyond the mountain front, and negligible runoff in subsequent years. The largest peak flow during summer monsoon events was 0.59 cubic meters per second. Snowmelt was the main contributor to annual streamflow. Snowmelt produced more cumulative flow downstream from the mountain front during the study period than summer monsoonal rains.The presence or absence of streamflow downstream of the mountain front was determined by interpretation of streambed thermographs. Infiltration rates were estimated by numerical modeling of transient vertical streambed temperature profiles. Snowmelt extended throughout the instrumented reach during the spring of 2001. Flow was recorded at a station two kilometers downstream from the mountain front for six consecutive days in March. Inverse modeling of this event indicated an average infiltration rate of 1.4 meters per day at this location. For the entire study reach, the estimated total annual volume of infiltration ranged from 17,100 to 246,000 m3 during water years 2000 and 2001. During water year 2002, due to severe drought, streamflow and streambed infiltration in the study reach were both zero.
Holocene erosion, sedimentation, and stratigraphy at Raven Fork, Southern Blue Ridge Mountains, USA
David S. Leigh; Paul A. Webb
2006-01-01
Holocene colluvial and alluvial stratigraphy and a radiocarbon chronology are presented for the valley of the lower three kilometers of Raven Fork, a mountain stream draining 194 km2 of high relief (1.3 km) terrain of the Southern Blue Ridge Mountains in western North Carolina, USA, which is in a region that lacks good chronological data. Lower hillslopes, alluvial/...
ERIC Educational Resources Information Center
Howard, Jeff S.
2013-01-01
The purpose of this study was to examine the association between the retention rate and 9 first-year student programs at Liberal Arts Colleges in the Mountain South, a region in the southern Appalachian Mountains of the United States. Nine first-year programs were studied: Summer Bridge Programs, Preterm Orientation, Outdoor Adventure Orientation,…
Five years of research on the Fernow Experimental Forest
Sidney Weitzman
1953-01-01
In 1948 the U. S. Forest Service's Northeastern Forest Experiment Station set up a research center in West Virginia to study forestry problems in the Appalachian Mountain region. It was named the Mountain State Research Center.
A case of Rocky Mountain spotted fever.
Rubel, Barry S
2007-01-01
Rocky Mountain spotted fever is a serious, generalized infection that is spread to humans through the bite of infected ticks. It can be lethal but it is curable. The disease gets its name from the Rocky Mountain region where it was first identified in 1896. The fever is caused by the bacterium Rickettsia rickettsii and is maintained in nature in a complex life cycle involving ticks and mammals. Humans are considered to be accidental hosts and are not involved in the natural transmission cycle of this pathogen. The author examined a 47-year-old woman during a periodic recall appointment. The patient had no dental problems other than the need for routine prophylaxis but mentioned a recent problem with swelling of her extremities with an accompanying rash and general malaise and soreness in her neck region. Tests were conducted and a diagnosis of Rocky Mountain spotted fever was made.
Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence
Anderson, G.; Ji, C.
2003-01-01
On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.
Tim Seipel; Christoph Kueffer; Lisa J. Rew; Curtis C. Daehler; Aníbal Pauchard; Bridgett J. Naylor; Jake M. Alexander; Peter J. Edwards; Catherine G. Parks; Jose Ramon Arevalo; Lohengrin A. Cavieres; Hansjorg Dietz; Gabi Jakobs; Keith McDougall; Rudiger Otto; Neville. Walsh
2012-01-01
We compared the distribution of non-native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41-84 sites along elevational gradients using 100-m2 plots located 0, 25 and 75 m from roadsides. We used mixed-effects models to examine how local variation in species richness and...
ERIC Educational Resources Information Center
Delameter, Cynthia
The physical geography of the Los Angeles, California, area is composed of six natural regions: mountains, valleys, bays, rivers, a basin, and a peninsula. When the Spanish first explored the region they saw a fairly level plain, extending some miles back from the seacoast, with high mountains in the background. Most of the land near the ocean was…
Regional geology and geophysics of the Jemez Mountains
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, F.G.
1973-08-01
The western margin of the Rocky Mountain tectonic belt is the initial site for the Los Alamos Geothermal Project. lgneous activity in the area culminated with the formation of a collapsed volcanic caldera and the deposition of thick beds of tuff. Geophysical studies indicate that the region is one of relatively highterrestrial heat flow, low-crustal density, low-crustal seismic velocities, low-crustal magnetoelectric impedance, and thin crust. 34 references. (auth)
Dennis Haddow; Robert Musselman; Tamara Blett; Richard Fisher
1998-01-01
This document is the product of an ongoing effort begun at a 4-day workshop sponsored by the Rocky Mountain Region of the USDA Forest Service, held in December 1990 in Estes Park, Colorado. Workshop participants gathered in groups to work on pollution impacts in three specific areas: aquatic ecosystems; terrestrial ecosystems; and visibility. Because the groups met...
NASA Astrophysics Data System (ADS)
Provenzale, Antonello
2013-04-01
Mountains are sentinels of climate and environmental change and many marine regions provide information on past climate variations. The Project of Interest NextData will favour the implementation of measurement networks in remote mountain and marine areas and will develop efficient web portals to access meteoclimatic and atmospheric composition data, past climate information from ice and sediment cores, biodiversity and ecosystem data, measurements of the hydrological cycle, marine reanalyses and climate projections at global and regional scale. New data on the present and past climatic variability and future climate projections in the Alps, the Himalaya-Karakoram, the Mediterranean region and other areas of interest will be obtained and made available. The pilot studies conducted during the project will allow for obtaining new estimates on the availability of water resources and on the effects of atmospheric aerosols on high-altitude environments, as well as new assessments of the impact of climate change on ecosystems, health and societies in mountain regions. The system of archives and the scientific results produced by the NextData project will provide a unique data base for research, for environmental management and for the estimate of climate change impacts, allowing for the development of knowledge-based environmental and climate adaptation policies.
NASA Astrophysics Data System (ADS)
Schmidt, Cynthia L.
Global forests are experiencing dramatic changes due to changes in climate as well as anthropogenic activities. Increased warming is causing the advancement of some species upslope and northward, while it is also causing widespread mortality due to increased drought conditions. In addition, increasing human population in mountain regions is resulting in elevated risk of human life and property loss due to larger and more severe wildfires. My research focuses on assessing the current vulnerability of forests and their communities in the Sierra Nevada, and how forests are projected to change in the future based on different climate change scenarios. In the first chapter I use Landsat satellite imagery to identify and attribute cause of forest disturbance between 1985 and 2011, primarily focusing on disturbances due to insect, diseases and drought. The change-detection algorithm, Landtrendr, was successfully used to identify forest disturbance, but identifying cause of disturbance was challenging due to the spectral similarities between disturbance types. Landtrendr was most successful in identifying disturbance due to insect, disease and drought in the San Bernardino National Forest, where there is little forest management activity. In the second chapter, I assess whether state or local land use policies in high-fire prone regions exist to reduce the vulnerability of residential developments to wildfire. Three specific land-use tools associated with reducing wildfire vulnerability are identified: (1) buffers around developments; (2) clustered developments; (3) restricting construction on slopes greater than 25%. The study also determines whether demographic and physical characteristics of selected California counties were related to implementing land use policies related to reducing wildfire vulnerability. Results indicate that land use policies related to preventing wildfire-related losses focus on building materials, road access, water availability and vegetation management, not the three identified land-use tools. San Diego County, the county that has experienced the most devastating fires, had the highest percentage of residential developments with both clustering and buffering. The third chapter focuses on future forest conditions. I used a Dynamic Global Vegetation Model (DGVM) to assess future vegetation dynamics and productivity under changing climate and atmospheric CO2 concentrations in the Sierra Nevada. Model results suggest that Temperate Broadleaved Evergreen Plant Functional Types (PFTs) will move upslope and eastward, replacing Temperate Needleleaved PFTs. Boreal Needleleaved Evergreen PFTs, found primarily at higher elevations, will decline dramatically as temperatures continue to increase. Gross Primary Productivity (GPP) will increase as atmospheric CO2 concentration increases, due primarily to the increase in the more productive broadleaved PFTs. Forest ecosystems play an important role in maintaining climate stability at the regional and global scales as a vital carbon sink, so understanding the role of disturbance and climate change will be vital to both scientists and policy makers in the future.
Spatial distribution and hazard degree of soil erosion of sloping croplands in northeast China
NASA Astrophysics Data System (ADS)
Zhang, T.
2017-12-01
Soil erosion is causing damage to the sloping croplands of northeast China and threatening the food security of the nation. However, little is known about the problem in macro scale. This study aims to investigate the area, slope gradient, soil erosion rate and year limit of erosion of the sloping croplands in whole northeast China and different geomorphologic regions, soil types, watersheds and administrative divisions of it, to estimate quantitatively the necessity and urgency of soil conservation and to offer advices. Meteorological data, topography data, geomorphology data, soil data and landuse data were collected. The China Soil Loss Equation was applied. The results indicated that: (1) Total area of the sloping croplands of northeast China is 195000 km2. They mainly distributed in Changbai mountainous region, eastern Songnen plain and Daxinganling mountainous region, with dark-brown earth, black soil and brown earth as main soil types. Total area of the sloping croplands steeper than 5 degree is 31000 km2. They mainly distributed in the mountain regions, with dark-brown earth and brown earth as main soil types. (2) The soil erosion rates of 92% of the sloping croplands have exceeded the soil loss tolerance in the national standard (0.15 mm/a). These croplands need to be conserved. The A horizon depths of 66% of the sloping croplands are less than 30 cm , while the year limit of A horizon erosion of 59% of the sloping croplands are less than 100 a. These croplands need to be conserved immediately. (3) Contour farming is suitable to 84% of the sloping croplands and deserves more attention. The sloping croplands steeper than 15 degree and those located in the aeolian sandy soil and some others soil types contributed little in grain production with high hazard degrees of erosion and should be reused for other purposes, as soon as possible. (4) The Changbai mountainous region, Daxinganling mountainous region, the dark-brown earth region and the brown earth region are the key regions, difficult regions and priority regions of the conversation work and deserve more attention. (5) The load, difficulty and urgency of the conservation work varies widely among counties. Therefore, each county should be dealt with on its individual merits, but not as the same case.
ERIC Educational Resources Information Center
Lange, Lis; Saavedra, F. Mauricio; Romano, Jeanine
2013-01-01
This chapter presents a synthesis of the conceptualization and practice of institutional research (IR) in higher education (HE) in emerging countries across Southern Africa, Latin America and the Middle East and North Africa (MENA) regions. The chapter contextualizes the growing need for IR in these regions, identifies problems and challenges…
P. B. Woodbury; D. A. Weinstein
2010-01-01
We reviewed probabilistic regional risk assessment methodologies to identify the methods that are currently in use and are capable of estimating threats to ecosystems from fire and fuels, invasive species, and their interactions with stressors. In a companion chapter, we highlight methods useful for evaluating risks from fire. In this chapter, we highlight methods...
Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems
Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.
2013-01-01
In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.
Kellogg, Karl S.
2005-01-01
Mount Pinos and Frazier Mountain are two prominent mountains just south of the San Andreas fault in the western Transverse Ranges of southern California, a region that has undergone rapid Quaternary contraction and uplift. Both mountains are underlain, at least in part, by thrusts that place granitic and gneissic rocks over sedimentary rocks as young as Pliocene. Broad profiles and nearly flat summits of each mountain have previously been interpreted as relicts of a raised erosion surface. However, several features bring this interpretation into question. First, lag or stream gravels do not mantle the summit surfaces. Second, extensive landslide deposits, mostly pre?Holocene and deeply incised, mantle the flanks of both mountains. Third, a pervasive fracture and crushed?rock network pervades the crystalline rocks underlying both mountains. The orientation of the fractures, prominent in roadcuts on Mount Pinos, is essentially random. 'Hill?and?saddle' morphology characterizes ridges radiating from the summits, especially on Mount Pinos; outcrops are sparse on the hills and are nonexistent in the saddles, suggesting fractures are concentrated in the saddles. Latest movement on the thrusts underlying the two mountain massifs is probably early Quaternary, during which the mountains were uplifted to considerably higher (although unknown) elevations than at present. A model proposes that during thrusting, ground accelerations in the hanging wall, particularly near thrust tips, were high enough to pervasively fracture the hanging?wall rocks, thereby weakening them and producing essentially an assemblage of loose blocks. Movement over flexures in the fault surface accentuated fracturing. The lowered shear stresses necessary for failure, coupled with deep dissection and ongoing seismic activity, reduced gravitational potential by spreading the mountain massifs, triggering flanking landslides and producing broad, flat?topped mountains. This study developed from mapping in the western Transverse Ranges as part of the U.S. Geological Survey's Southern California Areal Mapping Project (SCAMP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubensky, M.J.; Bagby, W.C.
1990-11-10
Two widespread lower Miocene rhyolite ash flow tuffs in the Kofa and Castle Dome Mountains of southwestern Arizona are products of caldera-forming eruptions. These closely erupted tuffs, the tuff of Yaqui Tanks and the tuff of Ten Ewe Mountain, are approximately 22 Ma in age and their eruptions culminate a 1- to 2-m.y.-long burst of calc-alkaline volcanic activity centered on the northern Castle Dome Mountains. Exotic blocks of Proterozoic and Mesozoic crystalline rocks up to 20 m across are present in exposures of the tuff of Yaqui Tanks exposed in the central Castle Dome Mountains and the southern Kofa Mountains.more » A single, thick cooling unit of the tuff of Ten Ewe Mountain that includes thick lenses of mesobreccia marks the location of the younger caldera that extends from Palm Canyon in the western Kofa Mountains eastward more than 7 km along strike to the central part of the range. Large residual Bouguer gravity anomalies, one beneath each inferred caldera, are interpreted as batholithic rocks or low-density caldera fill. Caldera-related volcanism in the Kofa region occurred during a transition in extensional tectonic regimes: From a regime of east-west trending uplifts and basins to a regime manifest primarily by northwest striking normal faults. A narrow corridor of folding and strike-slip faulting formed during volcanism in the southern Kofa Mountains. Upper Oligocene or lower Miocene coarse sedimentary rocks along the southern flank of the Chocolate Mountains anticlinorium in the southern Castle Dome Mountains mark the periphery of a basin similar to other early and middle Tertiary basins exposed in southern California. The volcanic section of the Kofa region was dissected by high-angle normal faults related to northeast-southwest oriented crustal extension typical of the southern Basin and Range province.« less
Couch, Richard W.; Gemperle, Michael
1982-01-01
Spectral analysis of aeromagnetic data collected over 6orth-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: 1) Secret Spring Mountain and National Lava Beds Monument area, 2) the Mount Shasta area, 3) the Eddys Mountain area, 4) the Big Valley Mountains area, and 5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. The elevated Curie-point depth beneath Secret Spring Mountain and the National Lava Beds Monument area was found to be 4-7 km BSL (Below Sea Level) and is an extension of a zone mapped beneath an area immediately to the north in Oregon. A similar depth was detected for the Mount Shasta area and the area northeast of Lassen Peak. A depth of 4-6 km BSL was detected beneath the Big Valley Mountains area. The shallow Curie-point depths beneath Secret Spring Mountain, Mount Shasta, Big Valley Mountains, and the area northeast of Lassen Peak appear to form a segmented Zone of elevated Curie-point isotherm depths which underlies the High Cascade Mountains and Modoc Plateau in north-central California. A small area of shallow depths to magnetic-source bottoms, 4-5 km BSL, beneath the Eddys Mountain area is attributed to a lithologic boundary rather than an elevated Curie-point isotherm. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than ii km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.
Pierce, Herbert A.
2001-01-01
As of 1999, surface water collected and stored in reservoirs is the sole source of municipal water for the city of Williams. During 1996 and 1999, reservoirs reached historically low levels. Understanding the ground-water flow system is critical to managing the ground-water resources in this part of the Coconino Plateau. The nearly 1,000-meter-deep regional aquifer in the Redwall and Muav Limestones, however, makes studying or utilizing the resource difficult. Near-vertical faults and complex geologic structures control the ground-water flow system on the southwest side of the Kaibab Uplift near Williams, Arizona. To address the hydrogeologic complexities in the study area, a suite of techniques, which included aeromagnetic, gravity, square-array resistivity, and audiomagnetotelluric surveys, were applied as part of a regional study near Bill Williams Mountain. Existing well data and interpreted geophysical data were compiled and used to estimate depths to the water table and to prepare a potentiometric map. Geologic characteristics, such as secondary porosity, coefficient of anisotropy, and fracture-strike direction, were calculated at several sites to examine how these characteristics change with depth. The 14-kilometer-wide, seismically active northwestward-trending Cataract Creek and the northeastward-trending Mesa Butte Fault systems intersect near Bill Williams Mountain. Several north-south-trending faults may provide additional block faulting north and west of Bill Williams Mountain. Because of the extensive block faulting and regional folding, the volcanic and sedimentary rocks are tilted toward one or more of these faults. These faults provide near-vertical flow paths to the regional water table. The nearly radial fractures allow water that reaches the regional aquifer to move away from the Bill Williams Mountain area. Depth to the regional aquifer is highly variable and depends on location and local structures. On the basis of interpreted audiomagnetotelluric and square-array resistivity sounding curves and limited well data, depths to water may range from 450 to 1,300 meters.
Guide to the common Potentilla species of the Blue Mountains ecoregion.
Marti Aitken; Catherine Gray. Parks
2004-01-01
This guide will assist field identification of Potentilla species likely to be found in the Blue Mountains region. Many species formerly classified in the genus Potentilla are also included. Illustrations accompany the descriptions and glossary.
75 FR 45655 - Notice of Inventory Completion: University of Colorado Museum, Boulder, CO
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
...). The site also yielded several tools made from mountain goat humeri and metapodial. Although not extinct, mountain goat is no longer present in the region of Little Box Elder. Officials of the University...
NASA Astrophysics Data System (ADS)
Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.
2005-12-01
The high aerosol loadings over the UAE reflect local to regional natural and anthropogenic pollution sources. To understand the impact of the high levels of pollution on both local and global climate systems, aerosol characterization flights in summer 2002 were used to sample major source areas, and to provide information on the interaction of aerosol particles within different geographic regions of the UAE. Atmospheric information and aerosol samples were collected from the marine/oil-industry region, NW coastal industries and cities, Oman Mountain Range, and NE coastal region. Aerosol samples were collected with multi-stage impactors and were analysed later using transmission electron microscopy. All samples are dominated by mineral grains or mineral aggregates in the coarse-mode fraction, and ammonium sulfate droplets in the fine-mode fraction. Differences in the types of mineral grains (different regional desert sources), inorganic salt and soot fractions, and types of internally mixed particles occur between regions. Oil-related industry sites have an abundance of coated and internally mixed particles, including sulfate-coated mineral grains, and mineral aggregates with chloride and sulfate. Cities have slightly elevated soot fractions, and typically have metal oxides. The NE coastal area is characterized by high soot fractions (local shipping) and mixed volatile droplets (regional Asian pollution). Particle populations within the convection zone over the Oman Mountain Range comprise an external mixture of particles from NW and NE sources, with many deliquesced particles. Both land-sea breezes in the NW regions and convection systems in the mountains mix aerosol particles from different local and regional sources, resulting in the formation of abundant internally mixed particles. The interaction between desert dust and anthropogenic pollution, and in particular the formation of mineral aggregates with chloride and sulfate, enhances the coarse-mode fraction and droplet fraction in industrial and mountainous regions.
Goodsman, Devin W; Grosklos, Guenchik; Aukema, Brian H; Whitehouse, Caroline; Bleiker, Katherine P; McDowell, Nate G; Middleton, Richard S; Xu, Chonggang
2018-05-29
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2 , that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Kammerlander, Barbara; Breiner, Hans-Werner; Filker, Sabine; Sommaruga, Ruben; Sonntag, Bettina; Stoeck, Thorsten
2015-01-01
We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs97%, operational taxonomic units), Stramenopiles (34.0% OTUs97%), Cryptophyta (4.0% OTUs97%), Chloroplastida (3.6% OTUs97%) and Fungi (1.7% OTUs97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes. PMID:25764458
Kammerlander, Barbara; Breiner, Hans-Werner; Filker, Sabine; Sommaruga, Ruben; Sonntag, Bettina; Stoeck, Thorsten
2015-04-01
We analyzed the genetic diversity (V4 region of the 18S rRNA) of planktonic microbial eukaryotes in four high mountain lakes including two remote biogeographic regions (the Himalayan mountains and the European Alps) and distinct habitat types (clear and glacier-fed turbid lakes). The recorded high genetic diversity in these lakes was far beyond of what is described from high mountain lake plankton. In total, we detected representatives from 66 families with the main taxon groups being Alveolata (55.0% OTUs 97%, operational taxonomic units), Stramenopiles (34.0% OTUs 97%), Cryptophyta (4.0% OTUs 97%), Chloroplastida (3.6% OTUs 97%) and Fungi (1.7% OTUs 97%). Centrohelida, Choanomonada, Rhizaria, Katablepharidae and Telonema were represented by <1% OTUs 97%. Himalayan lakes harbored a higher plankton diversity compared to the Alpine lakes (Shannon index). Community structures were significantly different between lake types and biogeographic regions (Fisher exact test, P < 0.01). Network analysis revealed that more families of the Chloroplastida (10 vs 5) and the Stramenopiles (14 vs 8) were found in the Himalayan lakes than in the Alpine lakes and none of the fungal families was shared between them. Biogeographic aspects as well as ecological factors such as water turbidity may structure the microbial eukaryote plankton communities in such remote lakes. © FEMS 2015.
A Regional Atmospheric Continuous CO2 Network In The Rocky Mountains (Rocky RACCOON)
NASA Astrophysics Data System (ADS)
Stephens, B.; de Wekker, S.; Watt, A.; Schimel, D.
2005-12-01
We have established a continuous CO2 observing network in the Rocky Mountains, building on technological and modeling advances made during the Carbon in the Mountains Experiment (CME), to improve our understanding of regional carbon fluxes and to fill key gaps in the North American Carbon Program (NACP). We will present a description of the Rocky RACCOON network and early results from the first three sites. There are strong scientific and societal motivations for determining CO2 exchanges on regional scales. NACP aims to address these concerns through a dramatic expansion in observations and modeling capabilities over North America. Mountain forests in particular represent a significant potential net CO2 sink in the U.S. and are highly sensitive to land-use practices and climate change. However, plans for new continuous CO2 observing sites have omitted the mountain west. This resulted from expensive instrumentation in the face of limited resources, and a perception that current atmospheric transport models are not sophisticated enough to interpret CO2 measurements made in complex terrain. Through our efforts in CME, we have a new autonomous, inexpensive, and robust CO2 analysis system and are developing mountain CO2 modeling tools that will help us to overcome these obstacles. Preliminary observational and modeling results give us confidence that continuous CO2 observations from mountain top observatories will provide useful constraints on regional carbon cycling and will be valuable in the continental inverse modeling efforts planned for NACP. We began at three Colorado sites in August 2005 and hope to add three to six sites in other western states in subsequent years, utilizing existing observatories to the maximum extent possible. The first three sites are at Niwot Ridge, allowing us to have an ongoing intercomparison with flask measurements made by NOAA CMDL; at Storm Peak Laboratory near Steamboat Springs, allowing us to investigate comparisons between these two relatively nearby sites; and at Fraser Experimental Forest, allowing us to investigate nocturnal respiration rates across a large intermountain valley. Our data are available to the public on the internet in near real time to support quality control, local science, and larger scale synthesis efforts.
Sohl, Terry L.
2012-01-01
The Coast Range Ecoregion, which covers approximately 57,338 km2 (22,138 mi2), is a thin, linear ecoregion along the Pacific Coast, stretching roughly 1,300 km from the Olympic Peninsula, in northwest Washington, to an area south of San Francisco, California (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). It is bounded on the east by the Puget Lowland, the Willamette Valley, the Klamath Mountains, and the Southern and Central California Chaparral and Oak Woodlands Ecoregions. Almost the entire Coast Range Ecoregion lies within 100 km of the coast. Topography is highly variable, with coastal mountain ranges and valleys ranging from sea level to over 1,000 m in elevation (fig. 2). A maritime climate, along with high topographic relief, results in substantial, but regionally variable, amounts of rainfall, ranging from 130 cm to more than 350 cm per year. The favorable climate of the Coast Range Ecoregion has supported forests of Sitka spruce (Picea sitchensis) along its northern coast and coast redwoods (Sequoia sempervirens) along its southern coast, as well as Douglas-fir (Pseudotsuga menziesii), western red cedar (Thuja plicata), and western hemlock (Tsuga heterophylla) inland (Omernik, 1987). Today, however, much of the forest is heavily managed for logging (fig. 3), although the ecoregion still supports some of the largest remaining areas of old-growth forest in the Pacific Northwest. Agriculture is a minor component of the landscape, present locally in flat lands and valleys near the coast. Urban development is minimal; Eureka, California, is the only urban center in the ecoregion, with a population of over 26,000 (U.S. Census Bureau, 2000).
W. Mark Ford; Timothy S. McCay; Michael A. Menzel; W. David Webster; Cathryn H. Greenberg; John F. Pagels; Joseph F. Merritt; Joseph F. Merritt
2005-01-01
We analyzed shrew community data from 398,832 pitfall trapnights at 303 sites across the upper Piedmont, Blue Ridge, northern Ridge and Valley, southern Ridge and Valley, Cumberland Plateau and Allegheny Mountains and Plateau sections of the central and southern Appalachian Mountains from Alabama to Pennsylvania. The objectives of our research were to describe regional...
W. Mark Ford; Timothy S. McCay; Michael A. Menzel; W. David Webster; Cathryn H. Greenberg; John F. Pagels; Joseph F. Merritt
2006-01-01
We analyzed shrew community data from 398,832 pitfall trapnights at 303 sites across the upper Piedmont, Blue Ridge, northern Ridge and Valley, southern Ridge and Valley, Cumberland Plateau and Allegheny Mountains and Plateau sections of the central and southern Appalachian Mountains from Alabama to Pennsylvania. The objectives of our research were to describe regional...
W. Mark Ford; Timothy S. McCay; Michael A. Menzel; W. David Webster; Cathryn H. Greenberg; John F. Pagels; Joseph F. Merritt
2005-01-01
We analyzed shrew community data from 398,832 pitfall trapnights at 303 sites across the upper Piedmont, Blue ridge, northern Ridge and Valley, southern Ride and Valley, Cumberland Plateau and Allegheny Mountains and Plateau sections of the central and southern Appalachian Mountains from Alabama to Pennsylvania. The objectives of our research were to describe regional...
Beaufort scale of wind force as adapted for use on forested areas of the northern Rocky Mountains
George M. Jemison
1934-01-01
The Beaufort scale of wind force, internationally employed by weather agencies, was not designed for use on mountainous and forested areas like those of the Rocky Mountains of northern Idaho and western Montana. The United States Forest Service has used it to estimate wind velocities in this region, but has found that in too many cases the resulting estimates were...
Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect
NASA Astrophysics Data System (ADS)
Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur
2017-06-01
Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.
Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region
NASA Astrophysics Data System (ADS)
Krasnoshchekov, Yu. N.
2018-04-01
Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.
NASA Astrophysics Data System (ADS)
Leonard, E. M.; Laabs, B. J.; Plummer, M. A.; Huss, E.; Spiess, V. M.; Mackall, B. T.; Jacobsen, R. E.; Quirk, B.
2012-12-01
Climate conditions at the time of the local Last Glacial Maximum (LGM) in the US Rocky Mountains were assessed using a 2-d coupled glacier energy/mass-balance and ice-flow model (Plummer and Phillips, 2003). The model was employed to understand the conditions that would be necessary to sustain valley glaciers and small mountain icecaps at their maximum extents in eight areas distributed along the crest of the range from northern New Mexico (35.8oN) to northern Montana (48.6oN). For each setting, model experiments yield a set of temperature and precipitation combinations that may have accompanied the local LGM. If the results of global and regional climate models are used to constrain temperature depression estimates from our model experiments, the following precipitation pattern emerges for the local LGM. In the northern Rocky Mountains in Montana and northern Wyoming, model results suggest a strong reduction in precipitation of 50% or more. In the central Rocky Mountains of southern Wyoming and Colorado, precipitation appears to have been 50-90% of modern. By contrast, precipitation appears to have been strongly enhanced in the southern Rocky Mountains of New Mexico. These results are broadly consistent with a pattern of precipitation observed in global and regional climate simulations of the LGM in the western U.S., in which precipitation was reduced in the northern Rocky Mountains but increased in the southern Rocky Mountains. This pattern may reflect a southward displacement of mean position the Pacific Jet Stream in western North America during and possibly following the LGM.
Ruhlman, Jana; Gass, Leila; Middleton, Barry
2012-01-01
Situated between ecoregions of distinctly different topographies and climates, the Arizona/New Mexico Plateau Ecoregion represents a large area of approximately 192,869 km2 (74,467 mi2) that stretches across northern Arizona, central and northwestern New Mexico, and parts of southwestern Colorado; in addition, a small part extends into southeastern Nevada (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). Forested, mountainous terrain borders the ecoregion on the northeast (Southern Rockies Ecoregion) and southwest (Arizona/New Mexico Mountains Ecoregion). Warmer and drier climates exist to the south (Chihuahuan Deserts Ecoregion) and west (Mojave Basin and Range Ecoregion). The semiarid grasslands of the western Great Plains are to the east (Southwestern Tablelands Ecoregion), and the tablelands of the Colorado Plateau in Utah and western Colorado lie to the north (Colorado Plateaus Ecoregion). The Arizona/New Mexico Plateau Ecoregion occupies a significant portion of the southern half of the Colorado Plateau.
Adoption of Geospatial Systems towards evolving Sustainable Himalayan Mountain Development
NASA Astrophysics Data System (ADS)
Murthy, M. S. R.; Bajracharya, B.; Pradhan, S.; Shestra, B.; Bajracharya, R.; Shakya, K.; Wesselmann, S.; Ali, M.; Bajracharya, S.; Pradhan, S.
2014-11-01
Natural resources dependence of mountain communities, rapid social and developmental changes, disaster proneness and climate change are conceived as the critical factors regulating sustainable Himalayan mountain development. The Himalayan region posed by typical geographic settings, diverse physical and cultural diversity present a formidable challenge to collect and manage data, information and understands varied socio-ecological settings. Recent advances in earth observation, near real-time data, in-situ measurements and in combination of information and communication technology have transformed the way we collect, process, and generate information and how we use such information for societal benefits. Glacier dynamics, land cover changes, disaster risk reduction systems, food security and ecosystem conservation are a few thematic areas where geospatial information and knowledge have significantly contributed to informed decision making systems over the region. The emergence and adoption of near-real time systems, unmanned aerial vehicles (UAV), board-scale citizen science (crowd-sourcing), mobile services and mapping, and cloud computing have paved the way towards developing automated environmental monitoring systems, enhanced scientific understanding of geophysical and biophysical processes, coupled management of socio-ecological systems and community based adaptation models tailored to mountain specific environment. There are differentiated capacities among the ICIMOD regional member countries with regard to utilization of earth observation and geospatial technologies. The region can greatly benefit from a coordinated and collaborative approach to capture the opportunities offered by earth observation and geospatial technologies. The regional level data sharing, knowledge exchange, and Himalayan GEO supporting geospatial platforms, spatial data infrastructure, unique region specific satellite systems to address trans-boundary challenges would go a long way in evolving sustainable Himalayan livelihoods.
Atmospheric Science Data Center
2014-05-15
... scheduled events are at city (indoor) locations, and five in mountain (outdoor) facilities. All ten can be found within the area contained ... Lake City is surrounded by mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake ...
Zhang, Hai Ping; Li, Feng Ri; Dong, Li Hu; Liu, Qiang
2017-06-18
Based on the 212 re-measured permanent plots for natural Betula platyphylla fore-sts in Daxing'an Mountains and Xiaoxing'an Mountains and 30 meteorological stations data, an individual tree growth model based on meteorological factors was constructed. The differences of stand and meteorological factors between Daxing'an Mountains and Xiaoxing'an Mountains were analyzed and the diameter increment model including the regional effects was developed by dummy variable approach. The results showed that the minimum temperature (T g min ) and mean precipitation (P g m ) in growing season were the main meteorological factors which affected the diameter increment in the two study areas. T g min and P g m were positively correlated with the diameter increment, but the influence strength of T g min was obviously different between the two research areas. The adjusted coefficient of determination (R a 2 ) of the diameter increment model with meteorological factors was 0.56 and had an 11% increase compared to the one without meteorological factors. It was concluded that meteorological factors could well explain the diameter increment of B. platyphylla. R a 2 of the model with regional effects was 0.59, and increased by 18% compared to the one without regional effects, and effectively solved the incompatible problem of parameters between the two research areas. The validation results showed that the individual tree diameter growth model with regional effect had the best prediction accuracy in estimating the diameter increment of B. platyphylla. The mean error, mean absolute error, mean error percent and mean prediction error percent were 0.0086, 0.4476, 5.8% and 20.0%, respectively. Overall, dummy variable model of individual tree diameter increment based on meteorological factors could well describe the diameter increment process of natural B. platyphylla in Daxing'an Mountains and Xiaoxing'an Mountains.
Snowpack regimes of the Western United States
NASA Astrophysics Data System (ADS)
Trujillo, Ernesto; Molotch, Noah P.
2014-07-01
Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime classification are discussed in the context of possible changes in accumulation and melt patterns associated with regional warming.
NASA Astrophysics Data System (ADS)
Samimi, S.; Gholami, E.
2017-03-01
At the end of the western part of Bagharan Kuh Mountain in the northeast of Iran, mountain growth has been stopped toward the west because of the stress having been consumed by the thrusting movements and region rising instead of shear movement. Chahkand fault zone is situated at the western part of this mountain; this fault zone includes several thrust sheets that caused upper cretaceous ophiolite rocks up to younger units, peridotite exposure and fault related fold developing in the surface. In transverse perpendicular to the mountain toward the north, reduction in the parameters like faults dip, amount of deformation, peridotite outcrops show faults growth sequence and thrust sheets growth from mountain to plain, thus structural vergence is toward the northeast in this fault zone. Deformation in the east part of the region caused fault propagation fold with axial trend of WNW-ESE that is compatible with trending of fault plane. In the middle part, two types of folds is observed; in the first type, folding occurred before faulting and folds was cut by back thrust activity; in the second type, faults activity caused fault related folds with N60-90W axial trend. In order to hanging wall strain balance, back thrusts have been developed in the middle and western part which caused popup and fault bend folds with N20-70E trend. Back thrusts activity formed footwall synclines, micro folds, foliations, and uplift in this part of the region. Kinematic analysis of faults show stress axis σ1 = N201.6, 7, σ2 = N292.6, 7.1, σ3 = N64.8, 79.5; stress axis obtained by fold analysis confirm that minimum stress (σ3) is close to vertical so it is compatible with fault analysis. Based on the results, deformation in this region is controlled by compressional stress regime. This stress state is consistent with the direction of convergence between the Arabian and Eurasian plates. Also study of transposition, folded veins, different movements on the fault planes and back thrusts confirm the progressive deformation is dominant in this region that it increases from the east to the west.
Sheldon, Andrew L
2018-01-01
Abstract Background The Talladega Mountain region of eastern Alabama is the southernmost outlier of the ancient Appalachian Mountains, including the highest peaks and ranges in the state. Collections of stoneflies (Plecoptera) previously here have been sporadic yet has led to several new species descriptions in modern times (James 1974, James 1976, Stark and Szczytko 1976, Kondratieff and Kirchner 1996, Szczytko and Kondratieff 2015) and expanded our understanding of southeastern US stoneflies. During the period 2003–2012 we conducted an intensive inventory of the stonefly fauna of the Talladega Mountain region. We collected across all months from 192 unique localities, covering a broad range of stream sizes and elevation gradients present in the region. New information A total of 57 confirmed species across eight of the nine Nearctic families were collected as adults (Table 4), including four species described as new during the study period (Table 2). Leuctra crossi James, 1974 was easily the most common species collected. Median elevations per species ranged from 174 m (Clioperla clio (Newman, 1839)) to 410 m (Leuctra triloba Claassen, 1923 (Fig. 3). Dot distribution maps were included for all 57 species plus one for undetermined nymphs of Pteronarcys Newman, 1838 (Figs. 4–19). As many as seven species may be endemic to the region but sampling efforts northeastward into Georgia, plus additional focused sampling in Alabama and a comprehensive examination of all available material held in museums and personal collections, are needed for confirmation. PMID:29434489
Grubbs, Scott A; Sheldon, Andrew L
2018-01-01
Background The Talladega Mountain region of eastern Alabama is the southernmost outlier of the ancient Appalachian Mountains, including the highest peaks and ranges in the state. Collections of stoneflies (Plecoptera) previously here have been sporadic yet has led to several new species descriptions in modern times (James 1974, James 1976, Stark and Szczytko 1976, Kondratieff and Kirchner 1996, Szczytko and Kondratieff 2015) and expanded our understanding of southeastern US stoneflies. During the period 2003-2012 we conducted an intensive inventory of the stonefly fauna of the Talladega Mountain region. We collected across all months from 192 unique localities, covering a broad range of stream sizes and elevation gradients present in the region. New information A total of 57 confirmed species across eight of the nine Nearctic families were collected as adults (Table 4), including four species described as new during the study period (Table 2). Leuctra crossi James, 1974 was easily the most common species collected. Median elevations per species ranged from 174 m ( Clioperla clio (Newman, 1839)) to 410 m ( Leuctra triloba Claassen, 1923 (Fig. 3). Dot distribution maps were included for all 57 species plus one for undetermined nymphs of Pteronarcys Newman, 1838 (Figs. 4-19). As many as seven species may be endemic to the region but sampling efforts northeastward into Georgia, plus additional focused sampling in Alabama and a comprehensive examination of all available material held in museums and personal collections, are needed for confirmation.
Population genetic analysis of Mountain Plover using mitochondrial DNA sequence data
Oyler-McCance, S.J.; St. John, J.; Knopf, F.L.; Quinn, T.W.
2005-01-01
Mountain Plover (Charadrius montanus) distribution and abundance have been reduced drastically in the past 30 years and the conversion of shortgrass prairie to agriculture has caused breeding populations to become geographically isolated. This, coupled with the fact that Mountain Plovers are thought to show fidelity to breeding grounds, leads to the prediction that the isolated breeding populations would be genetically distinct. This pattern, if observed, would have important management implications for a species at risk of extinction. Our study examined genetic variation at two mitochondrial regions for 20–30 individuals from each of four breeding sites. We found no evidence of significant population differentiation in the data from the control region or the ATPase 6/8 region. Nested-clade analysis revealed no relationship between haplotype phylogeny, and geography among the 47 control region haplotypes. In the ATPase 6/8 region, however, one of the two clades provided information suggesting that, historically, there has been continuous range expansion. Analysis of mismatch distributions and Tajima's D suggest that the Mountain Plover underwent a population expansion, following the Pleistocene glacial period. To explain the lack of detectable genetic differentiation among populations, despite their geographic isolation and fidelity to breeding locations, we speculate that there is sufficient female-mediated gene flow to homogenize gene pools among populations. Such gene flow might ensue if pair bonds are formed in mixed flocks on wintering grounds rather than on the summer breeding grounds.
Gross, John E.; Tercek, Michael; Guay, Kevin; Chang, Tony; Talbert, Marian; Rodman, Ann; Thoma, David; Jantz, Patrick; Morisette, Jeffrey T.
2016-01-01
Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.
Surface mass balance of Greenland mountain glaciers and ice caps
NASA Astrophysics Data System (ADS)
Benson, R. J.; Box, J. E.; Bromwich, D. H.; Wahr, J. M.
2009-12-01
Mountain glaciers and ice caps contribute roughly half of eustatic sea-level rise. Greenland has thousands of small mountain glaciers and several ice caps > 1000 sq. km that have not been included in previous mass balance calculations. To include small glaciers and ice caps in our study, we use Polar WRF, a next-generation regional climate data assimilation model is run at grid resolution less than 10 km. WRF provides surface mass balance data at sufficiently high resolution to resolve not only the narrow ice sheet ablation zone, but provides information useful in downscaling melt and accumulation rates on mountain glaciers and ice caps. In this study, we refine Polar WRF to simulate a realistic surface energy budget. Surface melting is calculated in-line from surface energy budget closure. Blowing snow sublimation is computed in-line. Melt water re-freeze is calculated using a revised scheme. Our results are compared with NASA's Gravity Recovery and Climate Experiment (GRACE) and associated error is calculated on a regional and local scale with validation from automated weather stations (AWS), snow pits and ice core data from various regions along the Greenland ice sheet.
Elevation-dependent cooling caused by volcanic eruptions during last millennium
NASA Astrophysics Data System (ADS)
Ning, L.; Liu, J.; Bradley, R. S.; Yan, M.; Sun, W.; Liu, L.
2017-12-01
The amplified warming over the high-elevation regions in recent decades due to the increases of greenhouse gases has attracted lots of attentions, due to the potential severe impacts on mountain hydrological systems and ecosystems and corresponding social and economic influences. Similarly, the model simulations show that the rate of cooling is also amplified with elevation after volcanic eruptions during last millennium, such that high-mountain environments experience larger decreases in temperature than environments at lower elevations. This elevation-dependent cooling (EDC) testifies two important mechanisms, i.e. snow albedo feedback and tropical deep convection mechanism, which also induce the elevation-dependent warming (EDW) found in recent decades due to the increases of greenhouse gases that accelerates the rates of changes in mountain hydrological regimes and ecosystems. It can be concluded that although the influences from natural forcing and anthropogenic forcing on the high-mountain regions are opposite, the mechanisms behind the influences are the same. This finding shows that the temperature change over high-elevation regions is more sensitive to the background climate changes, and needs more attention for adaptations and mitigations due to their bio-diversity and fragile ecosystems.
Mountain cartography: revival of a classic domain
NASA Astrophysics Data System (ADS)
Häberling, Christian; Hurni, Lorenz
The abstract representation of landscape objects such as mountain peaks, valleys, river networks, lakes, cultivated land and nonproductive areas (forests, pastures, boulder fields, glaciers), settlement areas, infrastructure and traffic networks has been the main concept behind all kind of maps for a long time. For over 300 years, mountain regions became an appropriate subject to be extensively explored and mapped. Together with the growing importance of mountainous areas, the demand for adequate cartographic representations with respect to its contents, graphic design and the presentation media has given new life to a classic domain of cartography: Mountain cartography. This paper gives an overview of the development and the current state of mountain cartography. After a brief description of the beginnings and the historic achievements, basic concepts of cartography such as map purpose, data management, cartographic design and map production and their application in modern mountain cartography are summarised. The paper then provides an overview of different kinds of cartographic representations in mountain cartography like topographic maps, maps derived from Geographical Information Systems (GIS) data, image maps, animations, perspective views and personalised maps. Finally, selected examples of modern mountain map applications are presented.
Sensitivity of alpine watersheds to global change
NASA Astrophysics Data System (ADS)
Zierl, B.; Bugmann, H.
2003-04-01
Mountains provide society with a wide range of goods and services, so-called mountain ecosystem services. Besides many others, these services include the most precious element for life on earth: fresh water. Global change imposes significant environmental pressure on mountain watersheds. Climate change is predicted to modify water availability as well as shift its seasonality. In fact, the continued capacity of mountain regions to provide fresh water to society is threatened by the impact of environmental and social changes. We use RHESSys (Regional HydroEcological Simulation System) to analyse the impact of climate as well as land use change (e.g. afforestation or deforestation) on hydrological processes in mountain catchments using sophisticated climate and land use scenarios. RHESSys combines distributed flow modelling based on TOPMODEL with an ecophysiological canopy model based on BIOME-BGC and a climate interpolation scheme based on MTCLIM. It is a spatially distributed daily time step model designed to solve the coupled cycles of water, carbon, and nitrogen in mountain catchments. The model is applied to various mountain catchments in the alpine area. Dynamic hydrological and ecological properties such as river discharge, seasonality of discharge, peak flows, snow cover processes, soil moisture, and the feedback of a changing biosphere on hydrology are simulated under current as well as under changed environmental conditions. Results of these studies will be presented and discussed. This project is part of an over overarching EU-project called ATEAM (acronym for Advanced Terrestrial Ecosystem Analysis and Modelling) assessing the vulnerability of European ecosystem services.
Geologic map of the Yucca Mountain region, Nye County, Nevada
Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake II, Ronald M.; Taylor, Emily M.; Fridrich, Christopher J.; San Juan, Carma A.; Day, Warren C.
2002-01-01
Yucca Mountain, Nye County, Nev., has been identified as a potential site for underground storage of high-level radioactive waste. This geologic map compilation, including all of Yucca Mountain and Crater Flat, most of the Calico Hills, western Jackass Flats, Little Skull Mountain, the Striped Hills, the Skeleton Hills, and the northeastern Amargosa Desert, portrays the geologic framework for a saturated-zone hydrologic flow model of the Yucca Mountain site. Key geologic features shown on the geologic map and accompanying cross sections include: (1) exposures of Proterozoic through Devonian strata inferred to have been deformed by regional thrust faulting and folding, in the Skeleton Hills, Striped Hills, and Amargosa Desert near Big Dune; (2) folded and thrust-faulted Devonian and Mississippian strata, unconformably overlain by Miocene tuffs and lavas and cut by complex Neogene fault patterns, in the Calico Hills; (3) the Claim Canyon caldera, a segment of which is exposed north of Yucca Mountain and Crater Flat; (4) thick densely welded to nonwelded ash-flow sheets of the Miocene southwest Nevada volcanic field exposed in normal-fault-bounded blocks at Yucca Mountain; (5) upper Tertiary and Quaternary basaltic cinder cones and lava flows in Crater Flat and at southernmost Yucca Mountain; and (6) broad basins covered by Quaternary and upper Tertiary surficial deposits in Jackass Flats, Crater Flat, and the northeastern Amargosa Desert, beneath which Neogene normal and strike-slip faults are inferred to be present on the basis of geophysical data and geologic map patterns. A regional thrust belt of late Paleozoic or Mesozoic age affected all pre-Tertiary rocks in the region; main thrust faults, not exposed in the map area, are interpreted to underlie the map area in an arcuate pattern, striking north, northeast, and east. The predominant vergence of thrust faults exposed elsewhere in the region, including the Belted Range and Specter Range thrusts, was to the east, southeast, and south. The vertical to overturned strata of the Striped Hills are hypothesized to result from successive stacking of three south-vergent thrust ramps, the lowest of which is the Specter Range thrust. The CP thrust is interpreted as a north-vergent backthrust that may have been roughly contemporaneous with the Belted Range and Specter Range thrusts. The southwest Nevada volcanic field consists predominantly of a series of silicic tuffs and lava flows ranging in age from 15 to 8 Ma. The map area is in the southwestern quadrant of the southwest Nevada volcanic field, just south of the Timber Mountain caldera complex. The Claim Canyon caldera, exposed in the northern part of the map area, contains thick deposits of the 12.7-Ma Tiva Canyon Tuff, along with widespread megabreccia deposits of similar age, and subordinate thick exposures of other 12.8- to 12.7-Ma Paintbrush Group rocks. An irregular, blocky fault array, which affects parts of the caldera and much of the nearby area, includes several large-displacement, steeply dipping faults that strike radially to the caldera and bound south-dipping blocks of volcanic rock. South and southeast of the Claim Canyon caldera, in the area that includes Yucca Mountain, the Neogene fault pattern is dominated by closely spaced, north-northwest- to north-northeast-striking normal faults that lie within a north-trending graben. This 20- to 25-km-wide graben includes Crater Flat, Yucca Mountain, and Fortymile Wash, and is bounded on the east by the 'gravity fault' and on the west by the Bare Mountain fault. Both of these faults separate Proterozoic and Paleozoic sedimentary rocks in their footwalls from Miocene volcanic rocks in their hanging walls. Stratigraphic and structural relations at Yucca Mountain demonstrate that block-bounding faults were active before and during eruption of the 12.8- to 12.7-Ma Paintbrush Group, and significant motion on these faults continued unt
Strauss, Lukas; Serafin, Stefano; Haimov, Samuel; Grubišić, Vanda
2015-10-01
Atmospheric turbulence generated in flow over mountainous terrain is studied using airborne in situ and cloud radar measurements over the Medicine Bow Mountains in southeast Wyoming, USA. During the NASA Orographic Clouds Experiment (NASA06) in 2006, two complex mountain flow cases were documented by the University of Wyoming King Air research aircraft carrying the Wyoming Cloud Radar. The structure of turbulence and its intensity across the mountain range are described using the variance of vertical velocity σw2 and the cube root of the energy dissipation rate ɛ 1/3 (EDR). For a quantitative analysis of turbulence from the cloud radar, the uncertainties in the Doppler wind retrieval have to be taken into account, such as the variance of hydrometeor fall speed and the contamination of vertical Doppler velocity by the horizontal wind. A thorough analysis of the uncertainties shows that 25% accuracy or better can be achieved in regions of moderate to severe turbulence in the lee of the mountains, while only qualitative estimates of turbulence intensity can be obtained outside the most turbulent regions. Two NASA06 events exhibiting large-amplitude mountain waves, mid-tropospheric wave breaking, and rotor circulations are examined. Moderate turbulence is found in a wave-breaking region with σw2 and EDR reaching 4.8 m 2 s -2 and 0.25 m 2/3 s -1 , respectively. Severe turbulence is measured within the rotor circulations with σw2 and EDR respectively in the ranges of 7.8-16.4 m 2 s -2 and 0.50-0.77 m 2/3 s -1 . A unique result of this study is the quantitative estimation of the intensity of turbulence and its spatial distribution in the interior of atmospheric rotors, provided by the radar-derived turbulence fields.
NASA Astrophysics Data System (ADS)
Harpold, A. A.; Dettinger, M. D.; Rajagopal, S.
2017-12-01
Although drought is a recurring problem, recent extreme snow droughts have refocused attention on the interaction of meteorological extremes and snow accumulation in mountains. Only recently have two distinct types of snow drought been defined that help to differentiate a variety of water management implications. Dry snow drought is caused by deficits of winter precipitation and resulting low snow accumulation. Warm snow drought is characterized by temperature extremes causing faster and earlier snowmelt and/or shifts from snow to rain. Here we use 462 Snow Telemetry (SNOTEL) sites in the western U.S. to quantify snow drought as 75% of the long-term average snow water equivalent (SWE). We further subdivide dry snow droughts using SWE to winter precipitation (SWE/P) ratios that were near normal from warm snow droughts where SWE/P ratios were below normal and experienced SWE losses (warm-melt) or received unusual amounts of winter rain (warm-rain snow drought). Using this method we show clear regional patterns in the type and frequency of snow drought. Warm snow droughts on April 1st were most common in all but the highest elevations of the Rocky Mountains. The middle Rocky Mountains sites also experienced less frequent snow drought than the maritime and southern mountains. Warm-melt snow droughts were the primary cause in the Cascade Mountains and the southwestern sites, with only the Sierra Nevada and Wasatch mountains showing consistent warm-rain snow drought. These regional differences limited the predictability of snow drought with simple models of temperature and precipitation. We will discuss the effects of snow drought type and magnitude on streamflow forecasting skill using empirical relationships developed by water management agencies. We expect these types of snow drought to differentially affect streamflow regime and its predictability, as well as forest growth and mortality during and following drought.
NASA Astrophysics Data System (ADS)
Suarez, Wilson; Cerna, Marcos; Ordoñez, Julio; Frey, Holger; Giráldez, Claudia; Huggel, Christian
2013-04-01
The Urubamba and Vilcabamba mountain ranges are two geological structures belonging to the Andes in the southern part of Peru, which is located in the tropical region. These mountain ranges are especially located within the transition area between the Amazon region (altitudes close to 1'000 m a.s.l.) and the Andes. These mountains, with a maximum height of 6'280 m a.s.l. (Salkantay Snow Peak in the Vilcabamba range), are characterized by glaciers mainly higher than 5000 m a.s.l. Here we present a study on the evolution of the ice cover based on "Landsat 5" images from 1991 and 2011 is presented in this paper. These data are freely available from the USGS in a georeferenced format and cover a time span of more than 25 years. The glacier mapping is based on the Normalized Difference Snow Index (NDSI). In 1991 the Vilcabamba mountain range had 221 km2 of glacier cover, being reduced to 116.4 km2 in 2011, which represents a loss of 48%. In the Urubamba mountain range, the total glacier area was 64.9 km2 in 1991 and 29.4 km2 in 2011, representing a loss of 54.7%. It means that the glacier area was halved during the past two decades although precipitation patterns show an increase in recent years (the wet season lasts from September to April with precipitation peaks in February and March). Glacier changes in these two tropical mountain ranges also impact from an economic point of view due to small local farming common in this region (use of water from the melting glacier). Furthermore, potential glacier related hazards can pose a threat to people and infrastructure in the valleys below these glaciers, where the access routes to Machu Picchu Inca City, Peru's main tourist destination, are located too.
Theodore Roosevelt
1902-01-01
To the Senate and House of Representatives: I transmit herewith a report of the Secretary of Agriculture, prepared in collaboration with the Department of the Interior, upon the forests, rivers, and mountains; of the Southern Appalachian region, and upon its agricultural situation as affected by them. The report of the Secretary presents the final results of an...
[Evaluation of ecosystem resilience in the regions across Qinghai-Tibet railway based on GIS].
Gao, Jiang-bo; Zhao, Zhi-qiang; Li, Shuang-cheng
2008-11-01
Based on GIS technique and the methods of mean-squared deviation weight decision and catastrophe progression, a more clear definition and associated evaluation for ecosystem resilience were given, with a case study in the regions across Qinghai-Tibet railway by using the indices of plant community coverage, species diversity, and biomass. It was shown that the areas with high ecosystem resilience were mainly located in the Qilian Mountain meadow grassland, Huangshui Valley needle-leaved and deciduous broad-leaved forest, and south Tanggula Mountain kobresia swamp meadow, while those with the lowest resilience were in the central part of Qaidam Basin, and the Kunlun Mountains. Most areas in the regions had higher or medium ecosystem resilience, with a trend of that in the south of Kunlun Mountains, the resilience in the north of the railway was lower, while in the east of Qaidam Basin (especially in the Qinghai Lake area), the resilience was lower in the south than in the north of the railway. Through the evaluation of ecosystem resilience, the key issues in the process of ecological resilience could be found, and corresponding effective measures would be pointed out to manage alpine ecosystems. Moreover, combining with the evaluation of vulnerability, scientific basis for regional development could be provided to avoid or mitigate the negative effects of human activities on eco-environment.
Regional hydrothermal commercialization plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-14
This plan for the Rocky Mountain Basin and Range Region articulates the complete range of initiatives (federal, state, local, and industrial) required for the early commercialization of the regions geothermal resources. (MHR)
Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM
NASA Astrophysics Data System (ADS)
Rhoades, Alan M.; Ullrich, Paul A.; Zarzycki, Colin M.
2018-01-01
Climate change will impact western USA water supplies by shifting precipitation from snow to rain and driving snowmelt earlier in the season. However, changes at the regional-to-mountain scale is still a major topic of interest. This study addresses the impacts of climate change on mountain snowpack by assessing historical and projected variable-resolution (VR) climate simulations in the community earth system model (VR-CESM) forced by prescribed sea-surface temperatures along with widely used regional downscaling techniques, the coupled model intercomparison projects phase 5 bias corrected and statistically downscaled (CMIP5-BCSD) and the North American regional climate change assessment program (NARCCAP). The multi-model RCP8.5 scenario analysis of winter season SWE for western USA mountains indicates by 2040-2065 mean SWE could decrease -19% (NARCCAP) to -38% (VR-CESM), with an ensemble median change of -27%. Contrary to CMIP5-BCSD and NARCCAP, VR-CESM highlights a more pessimistic outcome for western USA mountain snowpack in latter-parts of the 21st century. This is related to temperature changes altering the snow-albedo feedback, snowpack storage, and precipitation phase, but may indicate that VR-CESM resolves more physically consistent elevational effects lacking in statistically downscaled datasets and teleconnections that are not captured in limited area models. Overall, VR-CESM projects by 2075-2100 that average western USA mountain snowfall decreases by -30%, snow cover by -44%, SWE by -69%, and average surface temperature increase of +5.0°C. This places pressure on western USA states to preemptively invest in climate adaptation measures such as alternative water storage, water use efficiency, and reassess reservoir storage operations.
NASA Astrophysics Data System (ADS)
de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J. R.; Llamedo, P.; Alexander, P.
2015-04-01
On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.
Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection
NASA Astrophysics Data System (ADS)
Ji, D.
2017-12-01
As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.
NASA Astrophysics Data System (ADS)
Terzi, Stefano; Torresan, Silvia; Schneiderbauer, Stefan
2017-04-01
Keywords: Climate change, mountain regions, multi-risk assessment, climate change adaptation. Climate change has already led to a wide range of impacts on the environment, the economy and society. Adaptation actions are needed to cope with the impacts that have already occurred (e.g. storms, glaciers melting, floods, droughts) and to prepare for future scenarios of climate change. Mountain environment is particularly vulnerable to the climate changes due to its exposure to recent climate warming (e.g. water regime changes, thawing of permafrost) and due to the high degree of specialization of both natural and human systems (e.g. alpine species, valley population density, tourism-based economy). As a consequence, the mountain local governments are encouraged to undertake territorial governance policies to climate change, considering multi-risks and opportunities for the mountain economy and identifying the best portfolio of adaptation strategies. This study aims to provide a literature review of available qualitative and quantitative tools, methodological guidelines and best practices to conduct multi-risk assessments in the mountain environment within the context of climate change. We analyzed multi-risk modelling and assessment methods applied in alpine regions (e.g. event trees, Bayesian Networks, Agent Based Models) in order to identify key concepts (exposure, resilience, vulnerability, risk, adaptive capacity), climatic drivers, cause-effect relationships and socio-ecological systems to be integrated in a comprehensive framework. The main outcomes of the review, including a comparison of existing techniques based on different criteria (e.g. scale of analysis, targeted questions, level of complexity) and a snapshot of the developed multi-risk framework for climate change adaptation will be here presented and discussed.
Relationship between the parent material and the soil, in plain and mountainous areas
NASA Astrophysics Data System (ADS)
Kerek, Barbara; Kuti, Laszlo; Dobos, Timea; Vatai, Jozsef; Szentpetery, Ildiko
2013-04-01
One of the most important tasks of the soil is the nutrition of plants. This function is determinated by those parts of the geological media on what is the soil situated and from what the soil was formed (those two can be different). Soil can be formed definitely just from sediment, so it is more proper to speak about parent material than parent rock. Soil forming sediment is defined as the loose sediment on the surface, which is the upper layer of near-surface rocks in flat and hilly regions, and it is the upper layer of the sediment-ensemble situated on the undisturbed bedrock in mountainous areas. Considering its origin, these sediments could be autochthon or allochton. Soil forming is determinated, besides other factors (climate, elevation, vegetation, etc.), by the parent material, which has a crucial influence on the type, quality and fertility of soils through its mineral composition, physical and chemical characteristics. Agrogeological processes happen in the superficial loose sediments in mountainous areas, but the underlying solid rock (where on the surface or close to it, there is solid rock), has an effect on them. The plain and hilly regions covered by thick loose sediment and the areas build up by solid rock and covered with thinner loose sediment in mountainous areas should be searched separately. In plain areas the near-surface formations have to be studied as a whole down to the saturated zone, but at least to 10 m. In regions of mountain and mountain fronts, the thickness, the composition and genetics of the young unconsolidated sediments situated above the older solid rocks have a vital importance, and also the relations among the soils, soil forming sediments and the base rocks have to be understood.
Qiong, La; Zhang, Wenju; Wang, Hao; Zeng, Liyan; Birks, H. John B.; Zhong, Yang
2017-01-01
Hippophae tibetana is a small, dioecious wind-pollinated shrub endemic to the Tibetan-Qinghai Plateau. It is one of the shrubs that occur at very high elevations (5250 m a.s.l.). The Himalayan mountains provides a significant geographical barrier to the Qinghai-Tibetan Plateau, dividing the Himalayan area into two regions with Nepal to the south and Tibet to the north. There is no information on how the Himalayan mountains influence gene flow and population differentiation of alpine plants. In this study, we analyzed eight nuclear microsatellite markers and cpDNA trnT-trnF regions to test the role of the Himalayan mountains as a barrier to gene flow between populations of H. tibetana. We also examined the fine-scale genetic structure within a population of H. tibetana on the north slope of Mount (Mt.) Everest. For microsatellite analyses, a total of 241 individuals were sampled from seven populations in our study area (4 from Nepal, 3 from Tibet), including 121 individuals that were spatially mapped within a 100 m × 100 m plot. To test for seed flow, the cpDNA trnT-trnF regions of 100 individuals from 6 populations (4 from Nepal, 2 from Tibet) were also sequenced. Significant genetic differentiation was detected between the two regions by both microsatellite and cpDNA data analyses. These two datasets agree about southern and northern population differentiation, indicating that the Himalayan mountains represent a barrier to H. tibetana limiting gene flow between these two areas. At a fine scale, spatial autocorrelation analysis suggests significant genetic structure within a distance of less than 45 m, which may be attributed mainly to vegetative reproduction and habitat fragmentation, as well as limited gene flow. PMID:28489850
Qiong, La; Zhang, Wenju; Wang, Hao; Zeng, Liyan; Birks, H John B; Zhong, Yang
2017-01-01
Hippophae tibetana is a small, dioecious wind-pollinated shrub endemic to the Tibetan-Qinghai Plateau. It is one of the shrubs that occur at very high elevations (5250 m a.s.l.). The Himalayan mountains provides a significant geographical barrier to the Qinghai-Tibetan Plateau, dividing the Himalayan area into two regions with Nepal to the south and Tibet to the north. There is no information on how the Himalayan mountains influence gene flow and population differentiation of alpine plants. In this study, we analyzed eight nuclear microsatellite markers and cpDNA trnT-trnF regions to test the role of the Himalayan mountains as a barrier to gene flow between populations of H. tibetana. We also examined the fine-scale genetic structure within a population of H. tibetana on the north slope of Mount (Mt.) Everest. For microsatellite analyses, a total of 241 individuals were sampled from seven populations in our study area (4 from Nepal, 3 from Tibet), including 121 individuals that were spatially mapped within a 100 m × 100 m plot. To test for seed flow, the cpDNA trnT-trnF regions of 100 individuals from 6 populations (4 from Nepal, 2 from Tibet) were also sequenced. Significant genetic differentiation was detected between the two regions by both microsatellite and cpDNA data analyses. These two datasets agree about southern and northern population differentiation, indicating that the Himalayan mountains represent a barrier to H. tibetana limiting gene flow between these two areas. At a fine scale, spatial autocorrelation analysis suggests significant genetic structure within a distance of less than 45 m, which may be attributed mainly to vegetative reproduction and habitat fragmentation, as well as limited gene flow.
Age and character of basaltic rocks of the Yucca Mountain region, southern Nevada
Fleck, R.J.; Turrin, B.D.; Sawyer, D.A.; Warren, R.G.; Champion, D.E.; Hudson, M.R.; Minor, S.A.
1996-01-01
Volcanism in the Yucca Mountain region of southern Nevada in the last 5 m.y. is restricted to moderate-to-small volumes of subalkaline basaltic magmas, produced during at least 6 intervals, and spanning an age range from 4.6 Ma to about 125 ka. Where paleomagnetic evidence is available, the period of volcanism at individual eruptive centers apparently was geologically short-lived, even where multiple eruptions involved different magma types. K-Ar studies are consistent with most other geochronologic information, such as the minimum ages of exposure-dating techniques, and show no evidence of renewed volcanism after a significant quiescence at any of the centers in the Yucca Mountain region. A volcanic recurrence interval of 860 ?? 350 kyr is computed from a large K-Ar data set and an evaluation of their uncertainties. Monte Carlo error propagations demonstrate the validity of uncertainties obtained for weighted-mean ages when modified using the goodness of fit parameter, MSWD. Elevated 87Sr/86Sr initial ratios (Sri) in the basalts, nearly constant at 0.707, combined with low SiO2 and Rb/Sr ratios indicate a subcontinental, lithospheric mantle source, previously enriched in radiogenic Sr and depleted in Rb. Beginning with eruptions of the most voluminous eruptive center, the newly dated Pliocene Thirsty Mountain volcano, basaltic magmas have decreased in eruptive volume, plagioclase-phenocryst content, various trace element ratios, and TiO2, while increasing in light rare earth elements, U, Th, P2O5, and light REE/heavy REE ratios. These time-correlated changes are consistent with either increasing depths of melting or a decreasing thermal gradient in the Yucca Mountain region during the last 5 m.y.
Population Representation in the Military Services, Fiscal Year 1992
1993-10-01
accessions and members. Chapter 1 provides a summary of military social composition issues since the inception of the all- volunteer force. The chapter...intelligent, well-educated volunteers , representing all socioeconomic groups. Chapter 8 concludes with a focus on the future. This report will contribute...Selected Statistics for FY 1992 NPS Accessions by Region, Division, and State with Civilians 18-24 Years Old ............. 2-26 3.1 Parents Who Are
NASA Astrophysics Data System (ADS)
Chen, Ningsheng; Li, Jun; Liu, Lihong; Yang, Chenglin; Liu, Mei
2018-05-01
This study characterizes significant changes in denudation and disasters in mountainous areas induced in the humid Chengdu Longmenshan region by the Wenchuan Earthquake in 2008. A study focusing on the Longxi-Baisha River Basin was conducted to investigate the amount of denudation triggered by specific flash flood and debris flow events in 2009-2014. The following results were obtained through a comparison of pre-seismic regional denudation rates and denudation characteristics of other seismically active mountain regions. (1) Regional denudation processes occurred in a wave-like process of initial increase then decline, with a peak exhibiting a hyperbolic attenuation trend. This trend indicates that the denudation rate in the Chengdu Longmenshan region is expected to return to the pre-seismic rate of 0.3 mm a-1 after 81 years. In 22 years after the earthquake (Year 2030), debris flow disasters are expected to be rare. (2) Disasters increased significantly in the Chengdu Longmenshan region after the Wenchuan earthquake, with an average of 29.5 people missing or dead per year (22 times greater than the pre-earthquake rate) and average economic losses of 192 million Yuan per year (1.6 times greater than the pre-earthquake rate). (3) The denudation process was jointly controlled by the quantities of loose solid material and precipitation after the Wenchuan earthquake. The amount of loose solid material influenced the extent of denudation, while vegetation coverage rates and soil consolidation determined the overall denudation trend in the region, and changes in precipitation led to denudation fluctuations. (4) The results can be used to analyze the relationship between the potential flash flood-debris flow disasters after earthquakes in the ancient Shu kingdom and changes in historical social settlements. The results can also be used to predict denudation processes and disaster risks from earthquakes in humid mountainous regions around the world, such as the southern slope of the Himalayas, Japan and the Taiwan mountains.
[Book review] The history of ornithology in Virginia
Robbins, C.S.
2005-01-01
Virginia is arguably the birthplace of ornithology in North America. Captain John Smith and naturalist Mark Catesby were among the early describers of Virginia's common birds. David Johnston's book, however, begins by taking the reader back to the Tertiary period, some 65 million years ago, with Storrs Olson's description of fossils from tidewater Virginia. John Guilday, studying bone deposits in mountain caves, identified 80 species of birds, including Rock Ptarmigan and Spruce Grouse, from a time when Virginia's climate differed greatly from that of today. Archaeological studies and accounts of aboriginals in the 17th century complete Chapter 1.
NASA Astrophysics Data System (ADS)
Miao, Qinghua; Yang, Dawen; Yang, Hanbo; Li, Zhe
2016-10-01
Flash flooding is one of the most common natural hazards in China, particularly in mountainous areas, and usually causes heavy damage and casualties. However, the forecasting of flash flooding in mountainous regions remains challenging because of the short response time and limited monitoring capacity. This paper aims to establish a strategy for flash flood warnings in mountainous ungauged catchments across humid, semi-humid and semi-arid regions of China. First, we implement a geomorphology-based hydrological model (GBHM) in four mountainous catchments with drainage areas that ranges from 493 to 1601 km2. The results show that the GBHM can simulate flash floods appropriately in these four study catchments. We propose a method to determine the rainfall threshold for flood warning by using frequency analysis and binary classification based on long-term GBHM simulations that are forced by historical rainfall data to create a practically easy and straightforward approach for flash flood forecasting in ungauged mountainous catchments with drainage areas from tens to hundreds of square kilometers. The results show that the rainfall threshold value decreases significantly with increasing antecedent soil moisture in humid regions, while this value decreases slightly with increasing soil moisture in semi-humid and semi-arid regions. We also find that accumulative rainfall over a certain time span (or rainfall over a long time span) is an appropriate threshold for flash flood warnings in humid regions because the runoff is dominated by excess saturation. However, the rainfall intensity (or rainfall over a short time span) is more suitable in semi-humid and semi-arid regions because excess infiltration dominates the runoff in these regions. We conduct a comprehensive evaluation of the rainfall threshold and find that the proposed method produces reasonably accurate flash flood warnings in the study catchments. An evaluation of the performance at uncalibrated interior points in the four gauged catchments provides results that are indicative of the expected performance at ungauged locations. We also find that insufficient historical data lengths (13 years with a 5-year flood return period in this study) may introduce uncertainty in the estimation of the flood/rainfall threshold because of the small number of flood events that are used in binary classification. A data sample that contains enough flood events (10 events suggested in the present study) that exceed the threshold value is necessary to obtain acceptable results from binary classification.
Transportation Fuels Markets, Midwest and Rocky Mountain
2017-01-01
A new study commissioned by the U.S. Energy Information Administration (EIA), finds that changes in North American energy markets over the past decade have strengthened the supply of transportation fuels including motor gasoline, distillates, and jet fuel in the Midwest and Rocky Mountain regions.
Behavior of rigid and flexible culvert pipes under deep fill.
DOT National Transportation Integrated Search
1977-01-01
Along a section of Interstate 77 in Carroll County, in the mountainous region of southwestern Virginia, it was necessary to construct a fill approximately 258 ft (78 m) deep. The flow of a mountain stream had to be carried through this massive embank...
7. Photographic copy of photograph (Source: National Archives, Rocky Mountain ...
7. Photographic copy of photograph (Source: National Archives, Rocky Mountain Region, Denver, Salt River Project History, Final History to 1916. p. 506) Interior view of transformer house. No date. CA. 1916. - Theodore Roosevelt Dam, Transformer House, Salt River, Tortilla Flat, Maricopa County, AZ
Regional-Scale Climate Change: Observations and Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Raymond S; Diaz, Henry F
2010-12-14
This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less
NASA Astrophysics Data System (ADS)
Feucht, D. W.; Sheehan, A. F.; Bedrosian, P.
2015-12-01
A recent magnetotelluric (MT) survey in central Colorado, USA, when interpreted alongside existing seismic tomography, reveals potential mechanisms of support for high topography both regionally and locally. Broadband and long period magnetotelluric data were collected at twenty-three sites along a 330 km E-W profile across the Southern Rocky Mountains and High Plains of central North America as part of the Deep RIFT Electrical Resistivity (DRIFTER) experiment. Remote-reference data processing yielded high quality MT data over a period range of 100 Hz to 10,000 seconds. A prominent feature of the regional geo-electric structure is the Denver Basin, which contains a thick package of highly conductive shales and porous sandstone aquifers. One-dimensional forward modeling was performed on stations within the Denver Basin to estimate depth to the base of this shallow conductor. Those estimates were then used to place a horizontal penalty cut in the model mesh of a regularized two-dimensional inversion. Two-dimensional modeling of the resistivity structure reveals two major anomalous regions in the lithosphere: 1) a high conductivity region in the crust under the tallest peaks of the Rocky Mountains and 2) a lateral step increase in lithospheric resistivity beneath the plains. The Rocky Mountain crustal anomaly coincides with low seismic wave speeds and enhanced heat flow and is thus interpreted as evidence of partial melt and/or high temperature fluids emplaced in the crust by tectonic activity along the Rio Grande Rift. The lateral variation in the mantle lithosphere, while co-located with a pronounced step increase in seismic velocity, appears to be a gradational boundary in resistivity across eastern Colorado and could indicate a small degree of compositional modification at the edge of the North American craton. These inferred conductivity mechanisms, namely crustal melt and modification of mantle lithosphere, likely contribute to high topography locally in the Rocky Mountains and regionally in the High Plains.
Stallard, R.F.; Koehnken, L.; Johnsson, M.J.
1991-01-01
The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos to the main stem of the Orinoco. After mixing into the main stem, there seems to be little subsequent alteration of sediment. ?? 1991.
Stratigraphy of the Descartes region /Apollo 16/ - Implications for the origin of samples
NASA Technical Reports Server (NTRS)
Head, J. W.
1974-01-01
Analysis of terrain in the Apollo 16 Descartes landing region shows a series of features that form a stratigraphic sequence which dominates the history and petrogenesis at the site. An ancient 150-km diam crater centered on the Apollo 16 site is one of the earliest recognizable major structures. Nectaris ejecta was concentrated in a regional low at the base of the back slope of the Nectaris basin to form the Descartes Mountains. Subsequently, a 60-km diam crater formed in the Descartes Mountains centered about 25 km to the west of the site. This crater dominates the geology and petrogenetic history of the site. Stone and Smoky Mountains represent the degraded terraced crater walls, and the dark matrix breccias and metaclastic rocks derived from North and South Ray craters represent floor fallback breccias from this cratering event. The interpretation is developed that the stratigraphy of the Cayley and Descartes, and thus the historical record of the Apollo 16 region, documents the complex interaction of deposits and morphology of local and regional impact cratering events. Large local 60- to 150-km diam craters have had a dramatic and previously unrecognized effect on the history and petrology of the Apollo 16 site.
Medical Surveillance Monthly Report (MSMR). Volume 6, Number 3, March 2000
2000-03-01
Rocky Mountain spotted fever (RMSF), are more common in temperate regions such as the United States...0.2 1. Through September 30, 1999. Characteristics N Rate2 Malaria Rocky Mountain Spotted Fever Rate2NRate2 Lyme disease 3. IAW DoD Occupational...085.9); Lyme disease (ICD-9-CM code: 088.81); dengue fever (ICD-9-CM code: 061); or Rocky Mountain spotted fever (ICD-9-CM code: 082.0). If an
The Altai Mountains environmental disaster (Eastern Kazakhstan)
NASA Astrophysics Data System (ADS)
Akhmadiyeva, Z. K.
2009-12-01
The space centre "Baikoniyr" (Kazakhstan) has had substantial affects on the environment. During the past several decades as a result of the launching of carrier rockets, such as "Proton" that use as fuel the asymmetrical dimethylhydrazine (ASDH), more well-known as "heptyl", the unique mountain landscapes in Eastern Kazakhstan have been subjected to pollution. In 2004, RSE "Kazakh research Institute of Ecology and Climate" carried out the complex geochemical and radiation researches in East Kazakhstan that is an impact area of second stages of carrier rockets. Such detailed examinations of this area were conducted for the first time because the Eastern Kazakhstan Mountains are difficult for human access. The landscape-geochemical research over the natural landscapes covered the ridge, low, and middle mountains with fir forests. The research results have shown the presence of heptyl in the samples of the soil, plants, and rivers’ bottom sediments. The findings of the influence of space activity on environment of the Kazakhstan part of the Altai Mountains confirm and complement the Russian scientific research results over the territory of the neighbouring Altai Krai. Though the heptyl pollution in the investigated region is of a local nature and highly spatially inhomogeneous, nevertheless, this anthropogenic effect intensifying from year to year increases the load on the natural ecosystems. In particular, it strengthens the desertification process of mountain regions of East Kazakhstan.
NASA Astrophysics Data System (ADS)
Gannon, J. P.; Zimmer, M. A.
2017-12-01
The balance between surficial watershed properties (e.g. topography) and subsurface watershed properties (e.g. soil depth, horizonation) as drivers of runoff characteristics is not well understood. We addressed this knowledge gap by investigating long-term ( 20 years) daily discharge and precipitation for 74 USGS in-stream gaging sites across the Appalachian Mountain and Piedmont regions of North Carolina, USA. Gaging sites included in this analysis had <10% developed land and ranged in size from 14.1 - 4390 km2. Thirty-five sites were located in the Piedmont Region, which is typically classified as a low relief landscape with deep, highly weathered soils and shallow, clay-rich soil horizons. Thirty-nine sites were located in the Appalachian Mountains, which are typically classified as a steeper landscape with comparatively shallow, highly weathered soils. We calculated an annual baseflow index (BFI) for each site to investigate the changes in stormflow generation in each gaged watershed. We also conducted a stepwise multiple linear regression analysis to identify which landscape and climate characteristics contributed to individual watershed runoff responses. Our results showed that watersheds in the Appalachian Mountain region had BFIs that were generally higher and less dependent on the rainfall of the corresponding year, as compared to the Piedmont region. This suggests that while the Appalachian Mountain region is steeper with comparatively shallower soils, the effective storage is higher than watersheds in the Piedmont. In contrast, while the Piedmont region has deep soils, the shallow soil horizon impeding layers produce flashier runoff responses and a shorter watershed memory. More work is needed to further understand the balance between critical zone structure and watershed structure on runoff responses across a range of landscape types.
Elevation-dependent warming in global climate model simulations at high spatial resolution
NASA Astrophysics Data System (ADS)
Palazzi, Elisa; Mortarini, Luca; Terzago, Silvia; von Hardenberg, Jost
2018-06-01
The enhancement of warming rates with elevation, so-called elevation-dependent warming (EDW), is one of the regional, still not completely understood, expressions of global warming. Sentinels of climate and environmental changes, mountains have experienced more rapid and intense warming trends in the recent decades, leading to serious impacts on mountain ecosystems and downstream. In this paper we use a state-of-the-art Global Climate Model (EC-Earth) to investigate the impact of model spatial resolution on the representation of this phenomenon and to highlight possible differences in EDW and its causes in different mountain regions of the Northern Hemisphere. To this end we use EC-Earth climate simulations at five different spatial resolutions, from ˜ 125 to ˜ 16 km, to explore the existence and the driving mechanisms of EDW in the Colorado Rocky Mountains, the Greater Alpine Region and the Tibetan Plateau-Himalayas. Our results show that the more frequent EDW drivers in all regions and seasons are the changes in albedo and in downward thermal radiation and this is reflected in both daytime and nighttime warming. In the Tibetan Plateau-Himalayas and in the Greater Alpine Region, an additional driver is the change in specific humidity. We also find that, while generally the model shows no clear resolution dependence in its ability to simulate the existence of EDW in the different regions, specific EDW characteristics such as its intensity and the relative role of different driving mechanisms may be different in simulations performed at different spatial resolutions. Moreover, we find that the role of internal climate variability can be significant in modulating the EDW signal, as suggested by the spread found in the multi-member ensemble of the EC-Earth experiments which we use.
On the teleconnection patterns to precipitation in the eastern Tianshan Mountains, China
NASA Astrophysics Data System (ADS)
Zhong, Yu; Wang, Binbin; Zou, Chris B.; Hu, Bill X.; Liu, Youcun; Hao, Yonghong
2017-11-01
The Tianshan Mountains are known as the "water tower" in the arid region of Central Asia. Change in precipitation amount and pattern can have a profound impact on regional civilization and life supporting ecosystems. For this study, a systematic analysis of long-term precipitation data for the eastern Tianshan Mountains was conducted to investigate the influence of climate teleconnections on annual and intra-annual precipitation using data collected between 1951 and 2014 from 39 meteorological stations. Annual precipitation has increased during the past six decades at an average rate of 6.7 mm/10 years largely due to the increase in precipitation during the intra-annual wet period (May-October). The annual precipitation and its rate of increase were higher in the northwestern region. Annual precipitation was found to be most strongly correlated with index of Indian Summer Monsoon (ISM), and partially correlated with indices of Pacific Decadal Oscillation (PDO), Pacific North American Teleconnection Pattern (PNA), Arctic Oscillation (AO), El Nino-Southern Oscillation (ENSO), and North Atlantic Oscillation (NAO). ISM was positively correlated with the precipitation in almost the entire region during the intra-annual wet period, while it showed positive correlations in the northern slope and the alpine region, and negative correlations in the southern slope during the intra-annual dry period (November to April). PDO had much weaker influence both in spatial scale and strength and primarily affected low elevations on the southern slopes of the middle and western regions. The impacts of PNA and AO on precipitation were weak and localized. ENSO and NAO indices were almost not correlated with annual precipitation observation in the eastern Tianshan Mountains.
Earth Observations taken by Expedition 32 crewmember
2012-09-03
ISS032-E-024687 (3 Sept. 2012) --- Idaho fires are featured in this image photographed by an Expedition 32 crew member on the International Space Station. Taken with a short lens (45 mm), this west-looking photograph has a field of view covering much of the forested region of central Idaho. The dark areas are all wooded mountains—the Salmon River Mountains (left), Bitterroot Mountains (lower right) and Clearwater Mountains (right). All three areas experienced wildfires in September 2012—this image illustrates the situation early in the month. Smaller fire ‘complexes” appear as tendrils of smoke near the sources (e.g. Halstead complex at left), and as major white smoke plumes from the Mustang fire complex in the densest forests (darkest green, center) of the Clearwater Mountains. This was the largest plume noted in the region with thick smoke blowing eastward over the Beaverhead Mountains at bottom. The linear shape of the smoke plumes gives a sense of the generally eastward smoke transport on this day in early September. The smoke distribution shows another kind of transport: at night, when winds are weak, cooling of the atmosphere near the ground causes drainage of cooled (denser) air down into the major valleys. Here the smoke can be seen flowing west down into the narrow Salmon and Lochsa River valleys (at a local time of 12:18:50 p.m.) – in the opposite direction to the higher winds and the thick smoke masses. The bright yellow-tan areas at top left and top right contrasting with the mountains are grasslands of the Snake River in southern Idaho around Boise, and the Palouse region in western Idaho–SE Washington state. This latter area is known to ecologists as the Palouse Grasslands Ecoregion. Light green areas visible in the center of many of the valleys are agricultural crops including barley, alfalfa, and wheat. The image also shows several firsts of which Idaho can boast. The Snake River between Boise and the Palouse region has cut Hells Canyon (top), the deepest gorge in the U.S. at almost 2,436 meters (8,000 feet). The largest single wilderness area in the contiguous U.S., the Frank Church-River of No Return Wilderness occupies the wooded zones of the Salmon River Mountains and the Clearwater Mountains, i.e. most of the area shown in the middle of the image. Idaho’s highest peak is Borah Peak (lower left) at 3,860 meters above sea level (12,662 feet ASL). The Continental Divide cuts through the bottom of the image—rivers on the eastern slopes of the Beaverhead Mountains drain to the Atlantic Ocean, whereas rivers in the rest of the area drain to the Pacific Ocean.
Paleoglaciology of the Tian Shan and Altai Mountains, Central Asia
NASA Astrophysics Data System (ADS)
Blomdin, Robin
Central Asia is home to some of the highest and most spectacular mountain ranges in the world, including the Tian Shan and Altai Mountains, and plays a major role in global and regional climate and hydrology. Understanding the glacial history of this vast region is important for several reasons, but in particular there is a general lack of paleoclimatic data from this highly continental region, at the confluence of major climate systems, and glaciers are sensitive monitors of climate change. This thesis examines the pattern and history of glacial deposition and erosion in the Tian Shan and Altai Mountains using a combined approach including 1) geomorphological mapping, 2) spatial analysis of glacial geomorphology, 3) hypsometry, 4) Equilibrium Line Altitudes (ELA), and 5) 10Be exposure dating of erratic boulders on glacial landforms. Preliminary mapping of the Altai Mountains suggests the area mainly experienced alpine style glaciations, with glacial centers as ice caps and ice fields located around the higher mountainous areas. This is consistent with previous work on the Tian Shan. For the Tian Shan we have new apparent minimum 10Be exposure ages from ~0.2 ka to ~ 180 ka, with large site-specific scatter. Most of our apparent exposure ages come from boulders with an age range between 30 ka to 0.2 ka. Although we recognize that more studies combining mapping, dating and modeling are needed to understand the full history of past glaciation in this region, our conclusions to date include: 1) The oldest recorded glacial event occurred in the Taragay Basin in the Tian Shan, dated to 92.1+/-11.4 ka, and two MIS 2 glacial advances have been recorded on opposite sides of the Ak-Shyrak Range, dated to 16.0+/-3.4 and 17.3+/-4.7 ka respectively. 2) Remote-sensing-based mapping and cosmogenic nuclide dating indicate that Pleistocene glaciations were restricted to the mountains and plateau areas of the Tian Shan. 3) Glaciation ages indicate that glacial events occurred during, MIS 2, 3 and 5. 4) There are no regional spatial trends in changes in ELA (DeltaELA) however, when comparing the distribution of ELAs to the hypsometric signature (area elevation relationship) of individual catchments across the Tian Shan, there is a range of cases from valleys experiencing "typical" or "extensive" modes of glaciation, where paleo ELAs coincide with hypsometric maxima (peaks in area-elevation curves), to valleys with more complicated signatures, either reflecting "dynamic" or "limited" glaciations at H MAX. This suggests that in future work "typical" catchments should be targeted for geochronological studies and paleo-ELA reconstructions. 5) Finally, when comparing deglaciation ages to global and regional climate records we observe both northern hemispheric and monsoonal signatures as potential drivers behind glacial expansions in the Tian Shan.
AVIRIS data calibration information: Wasatch Mountains and Park City region, Utah
Rockwell, Barnaby W.; Clark, Roger N.; Livo, K. Eric; McDougal, Robert R.; Kokaly, Raymond F.
2002-01-01
This report contains information regarding the reflectance calibration of spectroscopic imagery acquired over the Wasatch Mountains and Park City region, Utah, by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor on August 5, 1998. This information was used by the USGS Spectroscopy Laboratory to calibrate the Park City AVIRIS imagery to unitless reflectance prior to spectral analysis. The Utah AVIRIS data were analyzed as a part of the USEPA-USGS Utah Abandoned Mine Lands Imaging Spectroscopy Project.
Opportunities for Tropical Cyclone Motion Research in the Northwest Pacific Region.
1987-08-01
Taiwan (from Wang, 1980). LAL I LIST OF TABLES Table 1. Frequency of typhoons occurring In the Northwest Pacific region by month from 1959 to 1985. Table...e.g., the Philippines, Taiwan , Japan and also the Korean peninsula) are very mountainous with coastal mountains of 6000 to 10,000 ft and peaks as...strength of typhoons In Taiwan and Its vicinity. Research Report 18, National Science Council (NSC-67M-0202-0501), Taipei, Taiwan , 100 pp. 3 APPENDIX A DATA
Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk
USDA-ARS?s Scientific Manuscript database
Background: Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids including whitetail (Odocoileus virginianus) and mule deer (Odocoileus hemionus), Rocky Mountain elk (Cervus elaphus nelsoni), and moose (Alces alces). A leucine variant at position 132 (132L) in...
7. Photographic copy of photograph (Source: National Archives, Rocky Mountain ...
7. Photographic copy of photograph (Source: National Archives, Rocky Mountain Region, Denver, Salt River Project History, Final History to 1916. p. 504) Inside Roosevelt power plant showing size of valve. CA. 1916. - Theodore Roosevelt Dam, Power Plant, Salt River, Tortilla Flat, Maricopa County, AZ
Anaglyph Image of the Mountain-Central Complex in Vesta South Polar Region
2011-10-11
The broad morphology of asteroid Vesta mountain/central complex is clear in this image from NASA Dawn spacecraft; it is a roughly circular topographic mound, which is approximately 200km in diameter and has approximately 20km of relief from its base.
Teacher Contract Non-Renewal: Midwest, Rocky Mountains, and Southeast
ERIC Educational Resources Information Center
Nixon, Andy; Dam, Margaret; Packard, Abbot L.
2012-01-01
This quantitative study investigated reasons that school principals recommend non-renewal of probationary teachers' contracts. Principal survey results from three regions of the US (Midwest, Rocky Mountains, & Southeast) were analyzed using the Kruskal-Wallis and Mann-Whitney U statistical procedures, while significance was tested applying a…
Natural Gas in the Rocky Mountains: Developing Infrastructure
2007-01-01
This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.
Education Tomorrow: A Collection of Articles From Mountain-Plains.
ERIC Educational Resources Information Center
Fenenbock, Michael C., Comp.
The booklet contains 18 articles, essentially journalistic efforts topically organized according to the categories overview, research, education, human growth and development, and support, which describe the Mountain-Plains Program, a regional program in comprehensive family career education in Montana. Article titles and their authors are:…
Doug Benevento, Regional Administrator for EPA's Mountains & Plains (Region 8)
The Region 8 administrator oversees the implementation and enforcement of the federal environmental rules and regulations in the states of Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.
ERIC Educational Resources Information Center
Sullivan, Ellen Wahl
This document contains chapter 9 of the final report of the Project on Social Architecture in Education. Chapter 9 is about a regional experimental high school program for the arts. Several features distinguished Arts Co-op from the other schools in the study. For one, it was a special purpose school, focused on the arts, and not offering a…
NASA Astrophysics Data System (ADS)
Xiao, Hua-Yun; Tang, Cong-Guo; Liu, Xue-Yan; Xiao, Hong-Wei; Liu, Cong-Qiang
2008-10-01
Many mountainous regions in South China have been confronted with the consequences of acidic deposition, but studies on atmospheric S sources are still very limited. In this study, isotopic ratios in mosses were used to discriminate atmospheric S sources. A continuous increase in S isotopic ratios was observed from the south to the north in mountainous mosses and in accord with the previously reported changing trends in urban mosses, indicating a contribution of local anthropogenic S from urban cities. Based on comparisons of S isotopic ratios in mountainous mosses with those in nearby urban mosses, we found that mountainous mosses had significantly higher 34S contents than urban mosses, especially in West China, reflecting an introduction of 34S-enriched sulphur. In conjunction with cloud water data in the literature, we concluded that 34S-enriched sulphur in northerly air masses contributed much to atmospheric S in southern Chinese mountainous areas.
Williams, Richard S.; Ferrigno, Jane G.; Williams, Richard S.; Ferrigno, Jane G.
2012-01-01
This chapter is the tenth in a series of 11 book-length chapters, collectively referred to as “this volume,” in the series U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World. In the other 10 chapters, each of which concerns a specific glacierized region of Earth, the authors used remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, in order to analyze that glacierized region and to monitor changes in its glaciers. Landsat images, acquired primarily during the period 1972 through 1981, were used by an international team of glaciologists and other scientists to study the various glacierized regions and (or) to discuss related glaciological topics. In each glacierized region, the present distribution of glaciers within its geographic area is compared, wherever possible, with historical information about their past areal extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of an expanding international scientific effort to measure global environmental change on the Earth’s surface. However, this chapter differs from the other 10 in its discussion of observed changes in all four elements of the Earth’s cryosphere (glaciers, snow cover, floating ice, and permafrost) in the context of documented changes in all components of the Earth System. Human impact on the planet at the beginning of the 21st century is pervasive. The focus of Chapter A is on changes in the cryosphere and the importance of long-term monitoring by a variety of sensors carried on Earth-orbiting satellites or by a ground-based network of observatories in the case of permafrost. The chapter consists of five parts. The first part provides an introduction to the Earth System, including the interrelationships of the geosphere (cryosphere, hydrosphere, lithosphere, and atmosphere), the biosphere, climate processes, biogeochemical cycles, and the critically important hydrologic cycle, in which glacier ice is the second largest reservoir of water after the oceans. The second part assesses the state of glaciers in all of the glacierized regions of the planet, primarily as drawn in the other 10 chapters. It includes sections on ice cores and the climate record they contain, volumetric changes in glaciers, harnessing spaceborne sensors to measure changes in glaciers, and related topics. The third part summarizes trends in global snow cover. The fourth part summarizes long-term changes in area and thickness of floating ice, including polar sea ice and freshwater (lake and river) ice. The fifth part assesses the loss of permafrost and changes in periglacial environments at high latitudes and high altitudes.
A 2 °C warmer world is not safe for ecosystem services in the European Alps.
Elkin, Ché; Gutiérrez, Alvaro G; Leuzinger, Sebastian; Manusch, Corina; Temperli, Christian; Rasche, Livia; Bugmann, Harald
2013-06-01
Limiting the increase in global average temperature to 2 °C is the objective of international efforts aimed at avoiding dangerous climate impacts. However, the regional response of terrestrial ecosystems and the services that they provide under such a scenario are largely unknown. We focus on mountain forests in the European Alps and evaluate how a range of ecosystem services (ES) are projected to be impacted in a 2 °C warmer world, using four novel regional climate scenarios. We employ three complementary forest models to assess a wide range of ES in two climatically contrasting case study regions. Within each climate scenario we evaluate if and when ES will deviate beyond status quo boundaries that are based on current system variability. Our results suggest that the sensitivity of mountain forest ES to a 2 °C warmer world depends heavily on the current climatic conditions of a region, the strong elevation gradients within a region, and the specific ES in question. Our simulations project that large negative impacts will occur at low and intermediate elevations in initially warm-dry regions, where relatively small climatic shifts result in negative drought-related impacts on forest ES. In contrast, at higher elevations, and in regions that are initially cool-wet, forest ES will be comparatively resistant to a 2 °C warmer world. We also found considerable variation in the vulnerability of forest ES to climate change, with some services such as protection against rockfall and avalanches being sensitive to 2 °C global climate change, but other services such as carbon storage being reasonably resistant. Although our results indicate a heterogeneous response of mountain forest ES to climate change, the projected substantial reduction of some forest ES in dry regions suggests that a 2 °C increase in global mean temperature cannot be seen as a universally 'safe' boundary for the maintenance of mountain forest ES. © 2013 Blackwell Publishing Ltd.
The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006
Chowell, Gerardo; Munayco, Cesar V; Escalante, Ananias A; McKenzie, F Ellis
2009-01-01
Background Malaria is the direct cause of approximately one million deaths worldwide each year, though it is both preventable and curable. Increasing the understanding of the transmission dynamics of falciparum and vivax malaria and their relationship could suggest improvements for malaria control efforts. Here the weekly number of malaria cases due to Plasmodium falciparum (1994–2006) and Plasmodium vivax (1999–2006) in Perú at different spatial scales in conjunction with associated demographic, geographic and climatological data are analysed. Methods Malaria periodicity patterns were analysed through wavelet spectral analysis, studied patterns of persistence as a function of community size and assessed spatial heterogeneity via the Lorenz curve and the summary Gini index. Results Wavelet time series analyses identified annual cycles in the incidence of both malaria species as the dominant pattern. However, significant spatial heterogeneity was observed across jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for P. vivax than P. falciparum. While the incidence of P. falciparum has been declining in recent years across geographic regions, P. vivax incidence has remained relatively steady in jungle and mountain regions with a slight decline in coastal regions. Factors that may be contributing to this decline are discussed. The time series of both malaria species were significantly synchronized in coastal (ρ = 0.9, P < 0.0001) and jungle regions (ρ = 0.76, P < 0.0001) but not in mountain regions. Community size was significantly associated with malaria persistence due to both species in jungle regions, but not in coastal and mountain regions. Conclusion Overall, findings highlight the importance of highly refined spatial and temporal data on malaria incidence together with demographic and geographic information in improving the understanding of malaria persistence patterns associated with multiple malaria species in human populations, impact of interventions, detection of heterogeneity and generation of hypotheses. PMID:19558695
Prudic, David E.; Niswonger, Richard G.; Harrill, James R.; Wood, James L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.
2007-01-01
Ground water is abundant in many alluvial basins of the Basin and Range Physiographic Province of the western United States. Water enters these basins by infiltration along intermittent and ephemeral channels, which originate in the mountainous regions before crossing alluvial fans and piedmont alluvial plains. Water also enters the basins as subsurface ground-water flow directly from the mountains, where infiltrated precipitation recharges water-bearing rocks and sediments at these higher elevations. Trout Creek, a typical intermittent stream in the Middle Humboldt River Basin in north-central Nevada, was chosen to develop methods of estimating and characterizing streambed infiltration and ground-water recharge in mountainous terrains. Trout Creek has a drainage area of about 4.8 × 107 square meters. Stream gradients range from more than 1 × 10–1 meter per meter in the mountains to 5 × 10–3 meter per meter at the foot of the piedmont alluvial plain. Trout Creek is perennial in short reaches upstream of a northeast-southwest trending normal fault, where perennial springs discharge to the channel. Downstream from the fault, the water table drops below the base of the channel and the stream becomes intermittent.Snowmelt generates streamflow during March and April, when streamflow extends onto the piedmont alluvial plain for several weeks in most years. Rates of streambed infiltration become highest in the lowest reaches, at the foot of the piedmont alluvial plain. The marked increases in infiltration are attributed to increases in streambed permeability together with decreases in channel-bed armoring, the latter which increases the effective area of the channel. Large quartzite cobbles cover the streambed in the upper reaches of the stream and are absent in the lowest reach. Such changes in channel deposits are common where alluvial fans join piedmont alluvial plains. Poorly sorted coarse and fine sediments are deposited near the head of the fan, while finer-grained but better sorted gravels and sands are deposited near the foot.All flow in Trout Creek is lost to infiltration in the upper and middle reaches of the channel during years of normal to below-normal precipitation. During years of above-normal precipitation, streamflow extends beyond the piedmont alluvial plain to the lower reaches of the channel, where high rates of infiltration result in rapid stream loss. The frequency and duration of streambed infiltration is sufficient to maintain high water contents and low chloride concentrations, compared with interchannel areas, to depths of at least 6 m beneath the channel. Streamflow, streambed infiltration, and unsaturated-zone thickness are all highly variable along intermittent streams, resulting in recharge that is highly variable as well.Average annual ground-water recharge in the mountainous part of the Trout Creek drainage upstream of Marigold Mine was estimated on the basis of chloride balance to be 5.2 × 105 cubic meters. Combined with an average annual surface runoff exiting the mountains of 3.4 × 105cubic meters, the total annual volume of inflow to alluvial-basin sediments from the mountainous part of the Trout Creek is 8.6 × 105 cubic meters, assuming that all runoff infiltrates the stream channel. This equates to about 7 percent of average annual precipitation, which is about the same percentage estimated for ground-water recharge using the original Maxey-Eakin method.
Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan
2016-06-29
The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.
Mesoscale Variability in SUCCESS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Stewart, Richard W. (Technical Monitor)
1998-01-01
Analysis of meteorological, chemical and microphysical data from the airborne SUCCESS (SUbsonic aircraft Contrail and Cloud Effects Special Study) mission is reported. Careful analysis of the complex DC-8 flight pattern of May 2, 1996 reveals 19 linear flight segments within six main geographical areas, which we have analyzed. Significant mountain wave activity is revealed in the data from the MMS (Meteorology Measurement System) and MTP (Microwave Temperature Profiler) instruments on the DC-8, which resembles previous observations of mountain wave structures near Boulder, Colorado. Strong mountain-wave-induced upwelling downwind of the Rockies is noted. Turbulence is also noted in regions of the mountain wave consistent with overturning near the tropopause. Zonal winds recorded on the ER-2 are shown to be consistent with mountain wave breaking at or near critical levels in the stratosphere, consistent with the strong turbulence reported by the pilot during the ER-2 flight. These observations have been supported with spectral analyses and modeling studies. 'Postcasts' of mountain wave activity on May 2, 1996 using the Naval Research Laboratory Mountain Wave Forecast Model predicts both strong mountain wave activity near the tropopause and strong mountain-wave-induced turbulence in the stratosphere.
Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan
2016-01-01
The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861
Benowitz, Jeff A.; Haeussler, Peter J.; Layer, Paul W.; O'Sullivan, Paul B.; Wallace, Wes K.; Gillis, Robert J.
2012-01-01
Topographic development inboard of the continental margin is a predicted response to ridge subduction. New thermochronology results from the western Alaska Range document ridge subduction related orogenesis. K-feldspar thermochronology (KFAT) of bedrock samples from the Tordrillo Mountains in the western Alaska Range complement existing U-Pb, 40Ar/39Ar and AFT (apatite fission track) data to provide constraints on Paleocene pluton emplacement, and cooling as well as Late Eocene to Miocene vertical movements and exhumation along fault-bounded blocks. Based on the KFAT analysis we infer rapid exhumation-related cooling during the Eocene in the Tordrillo Mountains. Our KFAT cooling ages are coeval with deposition of clastic sediments in the Cook Inlet, Matanuska Valley and Tanana basins, which reflect high-energy depositional environments. The Tordrillo Mountains KFAT cooling ages are also the same as cooling ages in the Iliamna Lake region, the Kichatna Mountains of the western Alaska Range, and Mt. Logan in the Wrangell-St. Elias Mountains, thus rapid cooling at this time encompasses a broad region inboard of, and parallel to, the continental margin extending for several hundred kilometers. We infer these cooling events and deposition of clastic rocks are related to thermal effects that track the eastward passage of a slab window in Paleocene-Eocene time related to the subduction of the proposed Resurrection-Kula spreading ridge. In addition, we conclude that the reconstructed KFATmax negative age-elevation relationship is likely related to a long period of decreasing relief in the Tordrillo Mountains.
Comparisons of Rain Estimates from Ground Radar and Satellite Over Mountainous Regions
NASA Technical Reports Server (NTRS)
Lin, Xin; Kidd, Chris; Tao, Jing; Barros, Ana
2016-01-01
A high-resolution rainfall product merging surface radar and an enhanced gauge network is used as a reference to examine two operational surface radar rainfall products over mountain areas. The two operational rainfall products include radar-only and conventional-gauge-corrected radar rainfall products. Statistics of rain occurrence and rain amount including their geographical, seasonal, and diurnal variations are examined using 3-year data. It is found that the three surface radar rainfall products in general agree well with one another over mountainous regions in terms of horizontal mean distributions of rain occurrence and rain amount. Frequency of rain occurrence and fraction of rain amount also indicate similar distribution patterns as a function of rain intensity. The diurnal signals of precipitation over mountain ridges are well captured and joint distributions of coincident raining samples indicate reasonable correlations during both summer and winter. Factors including undetected low-level precipitation, limited availability of gauges for correcting the Z-R relationship over the mountains, and radar beam blocking by mountains are clearly noticed in the two conventional radar rainfall products. Both radar-only and conventional-gauge-corrected radar rainfall products underestimate the rain occurrence and fraction of rain amount at intermediate and heavy rain intensities. Comparison of PR and TMI against a surface radar-only rainfall product indicates that the PR performs equally well with the high-resolution radar-only rainfall product over complex terrains at intermediate and heavy rain intensities during the summer and winter. TMI, on the other hand, requires improvement to retrieve wintertime precipitation over mountain areas.
Snowmelt and water resources in a changing climate and dustier world
NASA Astrophysics Data System (ADS)
Painter, T. H.
2015-12-01
Snow cover and its melt dominate regional climate and water resources in the world's mountain regions, providing for critical agricultural and sustaining populations in otherwise dry regions. Snowmelt timing and magnitude in mountains tend to be controlled by absorption of solar radiation and snow water equivalent, respectively, and yet both of these are very poorly known even in the best-instrumented mountain regions of the globe. In this talk, we discuss developments in the spaceborne and airborne remote sensing of snow properties, and the assimilation of these products into research water cycle modeling and operational forecasting. Our work with the NWS Colorado Basin River Forecast Center has shown marked improvements in runoff forecasting through inclusion of MODIS and VIIRS fractional snow covered area data. Moreover, the analyses have shown that the CBRFC forecasting errors are strongly sensitive to actual dust radiative forcing in snow with rising limb excursions as large as 40%. With MODIS retrievals of dust radiative forcing, the CBRFC will be implementing modifications to forecasts to reduce those errors to order < 10%. In the last few years, the NASA Airborne Snow Observatory has emerged to provide the first spatially explicit distributions of snow water equivalent and coincident snow albedo products for mountain basins. ASO is an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. ASO has been flying in the Western US for three snowmelt seasons. In 2015, ASO provided complete basin coverage for the Tuolumne, Merced, Lakes, Rush Creek, and Middle+South Forks of Kings River Basins in the California Sierra Nevada and the Upper Rio Grande, Conejos, and Uncompahgre Basins in the Colorado Rocky Mountains. Analyses show that with ASO data, river flows and reservoir inflows from the ASO acquisition date to 1 July can be estimated with uncertainties of less than 2%. The synergy of the ASO and the satellite retrievals will ultimately allow extension of quantitative knowledge to addressing the snowmelt water resources and availability for agricultural regions in sparsely instrumented regions of the globe.
NASA Astrophysics Data System (ADS)
Modrick, Theresa M.; Georgakakos, Konstantine P.
2014-09-01
This study develops and intercompares regional relationships for bankfull channel width, hydraulic depth, and cross-sectional area for southern California mountain streams based on several data sources: surveyed streams, US Geological Survey stream survey reports, and existing literature. Although considerable uncertainty exists in estimating bankfull conditions, the relationships developed from the varying data sources show significant agreement. For small watersheds with drainage area ranging from 15 to ~ 2000 km2, the estimates of bankfull top width ranged from 7.2 to 44.5 m and hydraulic depth estimates ranged from 0.35 to 1.15 m. The utility of the developed bankfull geometry regional curves is demonstrated for southern California catchments through (a) the computation of the bankfull discharge and (b) the estimation of the surface runoff response necessary to produce bankfull conditions in the streams at the outlet of these catchments. For selected locations with instantaneous flow records, the occurrence frequency of events exceeding bankfull flow was examined for the available 10-15 year span of observational records. Bankfull discharge estimates for all small watersheds in the region ranged from 1.3 to 74 m3/s, while the range at the selected gauged stream locations was from 2.6 to 16.4 m3/s. Stream locations along the Transverse Mountains of southern California showed an average occurrence frequency of less than 1 year, whereas along the Peninsular Mountains the average return period tended to be greater than 1 year. The application of the regional curves to the estimation of the surface runoff response necessary to produce bankfull conditions at the channel outlets of small catchments may be used as an index for conditions of minor flooding with saturated soils. This surface runoff response index ranges from 2.0 to 5.5 mm for a 3-hour rainfall duration for southern California watersheds greater than 15 km2 in area. Differences between the values for the Peninsular and Transverse Mountain Ranges are linked to geological, climatic, and geomorphologic differences. The developed regional geometry relationships are suitable for use in various hydrologic modeling applications, including distributed modeling with high resolution pertinent to flash flood forecasting.
Page, William R.; Scheirer, Daniel S.; Langenheim, V.E.; Berger, Mary A.
2006-01-01
This report presents revisions to parts of seven of the ten cross sections originally published in U.S. Geological Survey Open-File Report 2006-1040. The revisions were necessary to correct errors in some of the original cross sections, and to show new parts of several sections that were extended and (or) appended to the original section profiles. Revisions were made to cross sections C-C', D-D', E-E', F-F', G-G', I-I', and J-J', and the parts of the sections revised or extended are highlighted below the sections on plate 1 by red brackets and the word "revised," or "extended." Sections not listed above, as well as the interpretive text and figures, are generally unchanged from the original report. Cross section C-C' includes revisions in the east Mormon Mountains in the east part of the section; D-D' includes revisions in the Mormon Mesa area in the east part of the section; E-E' includes revisions in the Muddy Mountains in the east part of the section; F-F' includes revisions from the Muddy Mountains to the south Virgin Mountains in the east part of the section; and J-J' includes some revisions from the east Mormon Mountains to the Virgin Mountains. The east end of G-G' was extended about 16 km from the Black Mountains to the southern Virgin Mountains, and the northern end of I-I' was extended about 45 km from the Muddy Mountains to the Mormon Mountains, and revisions were made in the Muddy Mountains part of the original section. This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional groundwater flow systems in Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical groundwater model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting groundwater from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards. The rocks in the study area were complexly deformed by episodes of Mesozoic compression and Cenozoic extensional tectonism. Some Cretaceous thrust faults and folds of the Sevier orogenic belt form duplex zones and define areas of maximum thickness for the Paleozoic carbonate rocks. Cenozoic faults are important because they are the primary structures that control groundwater flow in the regional flow systems.
Transportation Energy Data Book: Edition 34
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary
2015-08-01
The Transportation Energy Data Book: Edition 34 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less
Transportation Energy Data Book: Edition 35
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stacy Cagle; Williams, Susan E.; Boundy, Robert Gary
2016-10-01
The Transportation Energy Data Book: Edition 35 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less
Transportation Energy Data Book: Edition 30
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary
2011-07-01
The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less
Transportation Energy Data Book. Edition 33
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stacy Cagle; Williams, Susan E.; Boundy, Robert Gary
2014-07-01
The Transportation Energy Data Book: Edition 33 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less
Transportation Energy Data Book: Edition 32
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary
2013-08-01
The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less
Transportation Energy Data Book: Edition 31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary
2012-08-01
The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less
Transportation Energy Data Book: Edition 29
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary
2010-07-01
The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available tomore » a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.« less
Transportation Energy Data Book: Edition 36
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Susan E.; Davis, Stacy Cagle; Boundy, Robert Gary
The Transportation Energy Data Book: Edition 36 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available viamore » the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 – energy; Chapter 3 – highway vehicles; Chapter 4 – light vehicles; Chapter 5 – heavy vehicles; Chapter 6 – alternative fuel vehicles; Chapter 7 – fleet vehicles; Chapter 8 – household vehicles; Chapter 9 – nonhighway modes; Chapter 10 – transportation and the economy; Chapter 11 – greenhouse gas emissions; and Chapter 12 – criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms is also included for the reader’s convenience.« less
Tectonic evolution of the central Brooks Range mountain front: Evidence from the Atigun Gorge region
Mull, C.G.; Glenn, R.K.; Adams, K.E.
1997-01-01
Atigun Gorge, at the northern front of the eastern Endicott Mountains, contains well-exposed rocks of the upper part of the Endicott Mountains allochthon and rocks of the structurally higher Picnic Creek or Ipnavik River allochthon. These allochthons contain rocks as young as Early Cretaceous (Valanginian) and are separated by a nearly vertical fault zone that contains exotic blocks of Triassic and Jurassic chert and silicified mudstone. Siliceous rocks of this type are not present in the Endicott Mountains allochthon but are characteristic of the Picnic Creek, Ipnavik River, and some of the other allochthons that structurally overlie the Endicott Mountains allochthon in the central and western Brooks Range. These exotic blocks, therefore indicate that structurally higher rocks of either the Picnic Creek or Ipnavik River allochthon were emplaced during the Early Cretaceous and are preserved along the northern flank of the eastern Endicott Mountains. The deformed thickness of this higher allochthon in the subsurface north of the mountains is unknown but probably exceeds 2 kilometers. Similar relations are mapped east of Atigun Gorge in an area of structural transition from the eastern Endicott Mountains into the northern Philip Smith Mountains, which are formed by the parautochthonous North Slope stratigraphic assemblage. The allochthonous rocks at the mountain front are regionally unconformably overlain by proximal Lower Cretaceous (Albian) foredeep conglomerate at the southern flank of the Colville basin, but at Atigun Gorge, the base of these deposits is interpreted as a possible back thrust at a triangle zone. Conglomerate clasts in the foredeep deposits are dominantly chert, mafic igneous rock, and other lithologies characteristic of the Picnic Creek and Ipnavik River allochthons and scattered clasts from the Endicott Mountains allochthon. The conglomerates show that the chert-rich allochthonous rocks and the Endicott Mountains allochthon were emplaced in the north-central Brooks Range by large-scale crustal shortening (>300 km) between the Valanginian and Albian (??135 to ??112 Ma). This orogenic event significantly postdates early stages of Brooks Range orogeny but predates later stages of orogeny documented by stratigraphic and apatite fission-track data. These relations reduce the magnitude of shortening inferred at the triangle zone at the Brooks Range mountain front. The outcrop data suggest that some of the strata preserved at a structurally low level north of the mountain front and visible in the seismic data of the Trans-Alaska Crustal Transect (TACT) may consist of clastic sedimentary rocks of the structurally higher Picnic Creek or Ipnavik River allochthon. Copyright 1997 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Rybak, O. O.; Rybak, E. A.
2018-01-01
Mountain glaciers act as regulators of run-off in the summer period, which is very crucial for economy especially in dynamically developing regions with rapidly growing population, such as Central Asia or the Northern Caucasus in Russia. In overall, glaciers stabilize water consumption in comparatively arid areas and provide conditions for sustainable development of the economy in mountainous regions and in the surrounding territories. A proper prediction of the glacial run-off is required to elaborate strategies of the regional development. This goal can be achieved by implementation of mathematical modeling methods into planning methodologies. In the paper, we consider one of the first steps in glacier dynamical modeling - surface mass balance simulation. We focus on the Djankuat Glacier in the Central Caucasus, where regular observations have been conducted during the last fifty years providing an exceptional opportunity to calibrate and to validate a mathematical model.
NASA Technical Reports Server (NTRS)
Chao, Winston C.
2015-01-01
The excessive precipitation over steep and high mountains (EPSM) in GCMs and meso-scale models is due to a lack of parameterization of the thermal effects of the subgrid-scale topographic variation. These thermal effects drive subgrid-scale heated slope induced vertical circulations (SHVC). SHVC provide a ventilation effect of removing heat from the boundary layer of resolvable-scale mountain slopes and depositing it higher up. The lack of SHVC parameterization is the cause of EPSM. The author has previously proposed a method of parameterizing SHVC, here termed SHVC.1. Although this has been successful in avoiding EPSM, the drawback of SHVC.1 is that it suppresses convective type precipitation in the regions where it is applied. In this article we propose a new method of parameterizing SHVC, here termed SHVC.2. In SHVC.2 the potential temperature and mixing ratio of the boundary layer are changed when used as input to the cumulus parameterization scheme over mountainous regions. This allows the cumulus parameterization to assume the additional function of SHVC parameterization. SHVC.2 has been tested in NASA Goddard's GEOS-5 GCM. It achieves the primary goal of avoiding EPSM while also avoiding the suppression of convective-type precipitation in regions where it is applied.
NASA Astrophysics Data System (ADS)
Rasmussen, R.; Liu, C.; Ikeda, K.
2016-12-01
The NCAR Water System program strives to improve the full representation of the water cycle in both regional and global models. Our previous high-resolution simulations using the WRF model over the Rocky Mountains revealed that proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing (< 6 km horizontal) and parameterizations. The climate sensitivity experiment consistent with expected climate change showed an altered hydrological cycle with increased fraction of rain versus snow, increased snowfall at high altitudes, earlier melting of snowpack, and decreased total runoff. In order to investigate regional differences between the Rockies and other major mountain barriers and to study climate change impacts over other regions of the contiguous U.S. (CONUS), we have expanded our prior CO Headwaters modeling study to encompass most of North America at a horizontal grid spacing of 4 km (see figure below). A domain expansion provides the opportunity to assess changes in orographic precipitation across different mountain ranges in the western USA. This study will examine the water cycle over Western U.S. seven U.S. mountain ranges, including likely changes to amount of snowpack and spring melt-off, critical to agriculture in the western U.S.
Yesterday's People: Life in Contemporary Appalachia.
ERIC Educational Resources Information Center
Weller, Jack E.
The author attempts to describe life in contemporary Appalachia on the basis of his service as a minister in the mountain region of the area for thirteen years. Included is an interpretation of the individualism, traditionalism, fatalism, and personal orientation which characterize the mountaineer population of Appalachia, as well as extensive…
40 CFR 52.256 - Control of evaporative losses from the filling of vehicular tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the Metropolitan Los Angeles and Sacramento Valley Intrastate Air Quality Control Regions, except as.... (ii) El Dorado County APCD (Mountain Counties Air Basin portion). (iii) Placer County APCD (Mountain... dispensing tank or to an adsorption, absorption, incineration, refrigeration-condensation system or its...
40 CFR 52.256 - Control of evaporative losses from the filling of vehicular tanks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the Metropolitan Los Angeles and Sacramento Valley Intrastate Air Quality Control Regions, except as.... (ii) El Dorado County APCD (Mountain Counties Air Basin portion). (iii) Placer County APCD (Mountain... dispensing tank or to an adsorption, absorption, incineration, refrigeration-condensation system or its...
40 CFR 52.256 - Control of evaporative losses from the filling of vehicular tanks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the Metropolitan Los Angeles and Sacramento Valley Intrastate Air Quality Control Regions, except as.... (ii) El Dorado County APCD (Mountain Counties Air Basin portion). (iii) Placer County APCD (Mountain... dispensing tank or to an adsorption, absorption, incineration, refrigeration-condensation system or its...
40 CFR 52.256 - Control of evaporative losses from the filling of vehicular tanks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the Metropolitan Los Angeles and Sacramento Valley Intrastate Air Quality Control Regions, except as.... (ii) El Dorado County APCD (Mountain Counties Air Basin portion). (iii) Placer County APCD (Mountain... dispensing tank or to an adsorption, absorption, incineration, refrigeration-condensation system or its...
40 CFR 52.256 - Control of evaporative losses from the filling of vehicular tanks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the Metropolitan Los Angeles and Sacramento Valley Intrastate Air Quality Control Regions, except as.... (ii) El Dorado County APCD (Mountain Counties Air Basin portion). (iii) Placer County APCD (Mountain... dispensing tank or to an adsorption, absorption, incineration, refrigeration-condensation system or its...
Forestry Herbicide Environmental Risks--An EIS Perspective
D.G. Neary
1989-01-01
The U.S. Forest Service is in the process of completing Environmental Impact Statements (EIS's) on vegetation management for three physiographic regions of the South. This includes all forestry activities involving manipulation of plants in national forests and grasslands of the Coastal Plain-Piedmont, Appalachian Mountains, and the Ozark/Ouachita Mountains. These...
Air pollution: worldwide effects on mountain forests
Anne M. Rosenthal; Andrzej Featured: Bytnerowicz
2004-01-01
Widespread forest decline in remote areas of the Carpathian Mountains has been linked to air pollution from urban and industrial regions. Besides injuring plant tissues directly, pollutants may deposit to soils and water, drastically changing susceptible ecosystems. Researcher Andrzej Bytnerowicz has developed effective methods for assessing air quality over wildlands...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigal, L.L.; Nash T.H. III
1983-01-01
In comparison with collections from the early 1900's when oxidant air pollution was essentially absent, 50% fewer lichen species were found on conifers during 3 yr (1976-1979) of collecting and sampling in the mountains of Southern California. Among the five mountain ranges studied, the San Bernardino Mountains, the region with the highest oxidant levels, had lower lichen frequency and cover values. Within the San Bernardino study sites, lichen cover was inversely related to estimated oxidant doses. Furthermore, at sites with high oxidant levels, marked morphological deterioration of the common species Hypogymnia enteromorpha was documented. Transplants of this species from themore » relatively unpolluted Cuyamaca Rancho State Park in the San Bernardino Mountains exhibited similar deterioration after a year's exposure.« less
Crystal L. Raymond
2012-01-01
Alaskan forests cover one-third of the stateâs 52 million ha of land (Parson et al. 2001), and are regionally and globally significant. Ninety percent of Alaskan forests are classified as boreal, representing 4 percent of the worldâs boreal forests, and are located throughout interior and south-central Alaska (fig. A1-1). The remaining 10 percent of Alaskan forests are...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Tamil Nadu is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
Floods in mountain environments: A synthesis
NASA Astrophysics Data System (ADS)
Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.
2016-11-01
Floods are a crucial agent of geomorphic change in the channels and valley floors of mountains watercourses. At the same time, they can be highly damaging to property, infrastructure, and life. Because of their high energy, mountain watercourses are highly vulnerable to environmental changes affecting their catchments and channels. Many factors have modified and frequently still tend to modify the environmental conditions in mountain areas, with impacts on geomorphic processes and the frequency, magnitude, and timing of floods in mountain watercourses. The ongoing climate changes vary between regions but may affect floods in mountain areas in many ways. In many mountain regions of Europe, widespread afforestation took place over the twentieth century, considerably increasing the amounts of large wood delivered to the channels and the likelihood of jamming bridges. At the same time, deforestation continues in other mountain areas, accelerating runoff and amplifying the magnitude and frequency of floods in foreland areas. In many countries, in-channel gravel mining has been a common practice during recent decades; the resultant deficit of bed material in the affected channels may suddenly manifest during flood events, resulting in the failure of scoured bridges or catastrophic channel widening. During the past century many rivers in mountain and foreland areas incised deeply; the resultant loss of floodplain water storage has decreased attenuation of flood waves, hence increasing flood hazard to downstream river reaches. On the other hand, a large amount of recent river restoration activities worldwide may provide examples of beneficial changes to flood risk, attained as a result of increased channel storage or reestablished floodplain water storage. Relations between geomorphic processes and floods operate in both directions, which means that changes in flood probability or the character of floods (e.g., increased wood load) may significantly modify the morphology of mountain rivers, but morphological changes of rivers can also affect hydrological properties of floods and the associated risk for societies. This paper provides a review of research in the field of floods in mountain environments and puts the papers of this special issue dedicated to the same topic into context. It also provides insight into innovative studies, methods, or emerging aspects of the relations between environmental changes, geomorphic processes, and the occurrence of floods in mountain rivers.
Regional economy : review and outlook for the New York-New Jersey Metropolitan Region
DOT National Transportation Integrated Search
1999-08-01
This report contains a summary of the 1998 economic gains of the New York-New Jersey metropolitan region. The table of contents lists following chapter headings: Outlook; The NY-NJ Region Up Close : 1998; Regional Employment - Regional Patterns of Gr...
Separating local topography from snow effects on momentum roughness in mountain regions
NASA Astrophysics Data System (ADS)
Diebold, M.; Katul, G. G.; Calaf, M.; Lehning, M.; Parlange, M. B.
2013-12-01
Parametrization of momentum surface roughness length in mountainous regions continues to be an active research topic given its application to improved weather forecasting and sub-grid scale representation of mountainous regions in climate models. A field campaign was conducted in the Val Ferret watershed (Swiss Alps) to assess the role of topographic variability and snow cover on momentum roughness. To this end, turbulence measurements in a mountainous region with and without snow cover have been analyzed. A meteorological mast with four sonic anemometers together with temperature and humidity sensors was installed at an elevation of 2500 m and data were obtained from October 2011 until May 2012. Because of the long-term nature of these experiments, natural variability in mean wind direction allowed a wide range of terrain slopes and snow depths to be sampled. A theoretical framework that accounted only for topographically induced pressure perturbations in the mean momentum balance was used to diagnose the role of topography on the effective momentum roughness height as inferred from the log-law. Surface roughness depended systematically on wind direction but was not significantly influenced by the presence of snow depth variation. Moreover, the wind direction and so the surface roughness influenced the normalized turbulent kinetic energy, which in theory should not depend on these factors in the near-neutral atmospheric surface layer. The implications of those findings to modeling momentum roughness heights and turbulent kinetic energy (e.g. in conventional K-epsilon closure) in complex terrain are briefly discussed.
O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.
2007-01-01
The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.
Water Resources by 2100 in Mountains with Declining Glaciers
NASA Astrophysics Data System (ADS)
Beniston, M.
2015-12-01
Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a more integrated and comprehensive approach to water use and management. In particular, beyond the conventional water basin management perspective, there is a need to consider other socio-economic factors and the manner in which water policies interact with, or are affected by, other policies at the local, national, and supra-national levels.
Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.
Munson, Seth M; Sher, Anna A
2015-08-01
• Mountainous regions support high plant productivity, diversity, and endemism, yet are highly vulnerable to climate change. Historical records and model predictions show increasing temperatures across high elevation regions including the Southern Rocky Mountains, which can have a strong influence on the performance and distribution of montane plant species. Rare plant species can be particularly vulnerable to climate change because of their limited abundance and distribution.• We tracked the phenology of rare and endemic species, which are identified as imperiled, across three different habitat types with herbarium records to determine if flowering time has changed over the last century, and if phenological change was related to shifts in climate.• We found that the flowering date of rare species has accelerated 3.1 d every decade (42 d total) since the late 1800s, with plants in sagebrush interbasins showing the strongest accelerations in phenology. High winter temperatures were associated with the acceleration of phenology in low elevation sagebrush and barren river habitats, whereas high spring temperatures explained accelerated phenology in the high elevation alpine habitat. In contrast, high spring temperatures delayed the phenology of plant species in the two low-elevation habitats and precipitation had mixed effects depending on the season.• These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions. © 2015 Botanical Society of America, Inc.
Skipper Richness (Hesperiidae) Along Elevational Gradients in Brazilian Atlantic Forest.
Carneiro, E; Mielke, O H H; Casagrande, M M; Fiedler, K
2014-02-01
Hesperiidae are claimed to be a group of elusive butterflies that need major effort for sampling, thus being frequently omitted from tropical butterfly surveys. As no studies have associated species richness patterns of butterflies with environmental gradients of high altitudes in Brazil, we surveyed Hesperiidae ensembles in Serra do Mar along elevational transects (900-1,800 m above sea level) on three mountains. Transects were sampled 11-12 times on each mountain to evaluate how local species richness is influenced by mountain region, vegetation type, and elevational zones. Patterns were also analyzed for the subfamilies, and after disregarding species that exhibit hilltopping behavior. Species richness was evaluated by the observed richness, Jacknife2 estimator and Chao 1 estimator standardized by sample coverage. Overall, 155 species were collected, but extrapolation algorithms suggest a regional richness of about 220 species. Species richness was far higher in forest than in early successional vegetation or grassland. Richness decreased with elevation, and was higher on Anhangava mountain compared with the two others. Patterns were similar between observed and extrapolated Jacknife2 richness, but vegetation type and mountain richness became altered using sample coverage standardization. Hilltopping species were more easily detected than species that do not show this behavior; however, their inclusion did neither affect estimated richness nor modify the shape of the species accumulation curve. This is the first contribution to systematically study highland butterflies in southern Brazil where all records above 1,200 m are altitudinal extensions of the known geographical ranges of skipper species in the region.
Last Glacial-Interglacial Transition ice dynamics in the Wicklow Mountains, Ireland
NASA Astrophysics Data System (ADS)
Knight, Lauren; Boston, Clare; Lovell, Harold; Pepin, Nick
2017-04-01
Understanding of the extent and dynamics of former ice masses in the Wicklow Mountains, Ireland, during the Last Glacial-Interglacial Transition (LGIT; 15-10 ka BP) is currently unresolved. Whilst it is acknowledged that the region hosted a local ice cap within the larger British-Irish Ice Sheet at the Last Glacial Maximum (LGM; 27 ka BP), there has been little consideration of ice cap disintegration to a topographically constrained ice mass during the LGIT. This research has produced the first regional glacial geomorphological map, through remote sensing (aerial photograph and digital terrain model interrogation) and field mapping. This has allowed both the style and extent of mountain glaciation and ice recession dynamics during the LGIT to be established. This geomorphological mapping has highlighted that evidence for local glaciation in the Wicklow Mountains is more extensive than previously recognised, and that small icefields and associated outlet valley glaciers existed during the LGIT following disintegration of the Wicklow Ice Cap. A relative chronology based on morphostratigraphic principles is developed, which indicates complex patterns of ice mass oscillation characterised by periods of both sustained retreat and minor readvance. Variations in the pattern of recession across the Wicklow Mountains are evident and appear to be influenced, in part, by topographic controls (e.g. slope, aspect, glacier hypsometry). In summary, this research establishes a relative chronology of glacial events in the region during the LGIT and presents constraints on ice mass extent, dynamics and retreat patterns, offering an insight into small ice mass behaviour in a warming climate.
78 FR 35149 - Addresses of Regional Offices
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
..., and Texas), 500 Gold Avenue SW., Room 9018 (P.O. Box 1306), Albuquerque, New Mexico 87102. (c) Midwest... 01035. (f) Mountain-Prairie Regional Office (Region 6--comprising the States of Colorado, Kansas...), Lakewood, Colorado 80228. (g) Alaska Regional Office (Region 7--comprising the State of Alaska), 1011 E...
Crew Earth Observations over Utah taken during Expedition 12
2005-10-14
ISS012-E-05172 (14 October 2005) --- Navajo Mountain, Utah is featured in this image photographed by an Expedition 12 crewmember on the international space station. According to scientists, the Colorado Plateau of Arizona, Colorado, New Mexico, and Utah is characterized by mostly flat-lying sedimentary layers that record paleoclimate extremes ranging from oceans to widespread deserts over the last 1.8 billion years. Navajo Mountain is formed by a dome-shaped body of igneous rock (called a laccolith by geologists), one of several in southeast Utah that intrude and uplift the surrounding sedimentary layers of the Plateau. This oblique image highlights Navajo Mountain in the center of the image, surrounded by light red-brown Navajo Sandstone (also visible in canyons at bottom of image). Scientists believe the peak of Navajo Mountain, at approximately 3148 meters (10,388 feet) elevation, is comprised of uplifted Dakota Sandstone deposited during the Cretaceous Period. The establishment of Rainbow Bridge National Monument (1910), and the filling of Glen Canyon by Lake Powell in 1963 (upper right), have facilitated tourism and aesthetic appreciation of this previously remote region. Access to Navajo Mountain is still regulated by the sovereign Navajo Nation, and the process of permitting is required to hike in the region.
NASA Astrophysics Data System (ADS)
McLeod, Jeffrey
The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production and use by illustrating links between relevant economic and environmental variables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Perry
Studies of volcanic risk to the proposed high-level radioactive waste repository at Yucca Mountain have been ongoing for 25 years. These studies are required because three episodes of small-volume, alkalic basaltic volcanism have occurred within 50 km of Yucca Mountain during the Quaternary. Probabilistic hazard estimates for the proposed repository depend on the recurrence rate and spatial distribution of past episodes of volcanism in the region. Several independent research groups have published estimates of the annual probability of a future volcanic disruption of the proposed repository, most of which fall in the range of 10{sup -7} to 10{sup -9} permore » year; similar conclusions were reached. through an extensive expert elicitation sponsored by the Department of Energy in 1995-1996. The estimated probability values are dominated by a regional recurrence rate of 10{sup -5} to 10{sup -6} volcanic events per year (equating to recurrence intervals of several hundred thousand years). The recurrence rate, as well as the spatial density of volcanoes, is low compared to most other basaltic volcanic fields in the western United States, factors that may be related to both the tectonic history of the region and a lithospheric mantle source that is relatively cold and not prone to melting. The link between volcanism and tectonism in the Yucca Mountain region is not well understood beyond a general association between volcanism and regional extension, although areas of locally high extension within the region may control the location of some volcanoes. Recently, new geologic data or hypotheses have emerged that could potentially increase past estimates of the recurrence rate, and thus the probability of repository disruption. These are (1) hypothesized episodes of anomalously high strain rate, (2) hypothesized presence of a regional mantle hotspot, and (3) new aeromagnetic data suggesting as many as twelve previously unrecognized volcanoes buried in alluvial-filled basins near Yucca Mountain.« less
Chen, Weicai; Liu, Shaoying; Liu, Yang; Hao, Haibang; Zeng, Bo; Chen, Shunde; Peng, Hongyuan; Yue, Bisong; Zhang, Xiuyue
2010-06-01
The Hengduan Mountains, situated in the southeastern Tibetan Plateau, have undergone dramatic geological and climatic changes over the Pleistocene epoch. Several studies have revealed that the mountains served as a refugium during the ice age. The large white-bellied rat Niviventer excelsior is a rodent endemic to the Hengduan Mountains, which makes it an appropriate species for investigating the influence of glacial movements on the genetic structure of mammals. In this study, we sequenced the partial mitochondrial DNA control region from 72 N. excelsior specimens collected from 20 localities. The results revealed very high levels of haplotype diversity (h = 0.947) and nucleotide diversity (pi = 0.101) in this species. No common haplotype was found to be shared in samples from all geographic regions. Demographic analyses suggested that N. excelsior populations had not been subject to either expansion or bottleneck. The phylogenetic relationships among the haplotypes have no correlation with their geographical origins, while topology revealed two major clades. We speculate that the populations of N. excelsior may have been restricted to two separate refugia during the Last Glacial Maximum (0.60-0.17 Mya), with one west and one east of the Shaluli Mountains. Between the two major refugia, there existed a more widely distributed network subrefugia, which conserved genetic variations in N. excelsior. These results indicated that complex topographic configuration in the Hengduan Mountains provided a network of refugia to maintain the high level of genetic diversity in Pleistocene glaciations.
NASA Astrophysics Data System (ADS)
Piersol, Mark W.
2016-08-01
This dissertation is composed of three separate papers presented in three chapters. Although largely unrelated, the three papers all deal with mafic igneous rock. Chapter 1 is an investigation into the petrological properties of basalts found in the western and eastern Snake River plain of Idaho and the Saddle Mountain basalts of Washington and Idaho. Many of these basalts, separated by up to 600 km and spanning a period of over 12 Ma, appear to have been produced by a common mantle source. A tectonic model is proposed to explain their common origins. This paper was submitted to the journal Geosphere with co-author Professor Dennis J. Geist. Chapter 2 describes a geophysical model of the Kamiak Gap located in the basalt-hosted Moscow-Pullman aquifer of Idaho and Washington. Contrary to previous models, we conclude that there is indeed a hydrological connection between the southern and northern sections of the aquifer through the Kamiak Gap. This chapter is shown on the Palouse Basin Aquifer Committee Website http://www.webpages.uidaho.edu/pbac) and contributed, in part, to the publication of a separate hydrology oriented paper in the journal Resources (Piersol and Sprenke, 2015). Chapter 3 presents a geomorphometric model of impact craters on the Lunar highlands that is used in conjunction with published GRAIL Bouguer reduction density and residual Bouguer anomaly results to model the average bulk density of the mafic megaregolithic crust of the Moon. The currently visible craters in the lunar highlands are shown to have negative mass deficiencies, which correlate with elevation. The bulk density of the lunar megaregolith crust is found to be much lower than the generally used value found by minimizing the correlation between gravity and topography. This research has been published in part in a Lunar and Planetrary Science Institute meeting paper (Piersol and Sprenke, 2014) and is written in a form for future publication in the journal Icarus..
Public Notice Distribution List for CAA Permits in the Mountains and Plains Region (Region 8)
Clean Air Act public notice notification list - subscription form. Currently this is for EPA Region 8 states Colorado, Utah, Wyoming, Montana, North Dakota and South Dakota, and 27 Indian Reservations
Drake, Brandon Lee; Wills, Wirt H.; Hamilton, Marian I.; Dorshow, Wetherbee
2014-01-01
Strontium isotope sourcing has become a common and useful method for assigning sources to archaeological artifacts. In Chaco Canyon, an Ancestral Pueblo regional center in New Mexico, previous studies using these methods have suggested that significant portion of maize and wood originate in the Chuska Mountains region, 75 km to the East. In the present manuscript, these results were tested using both frequentist methods (to determine if geochemical sources can truly be differentiated) and Bayesian methods (to address uncertainty in geochemical source attribution). It was found that Chaco Canyon and the Chuska Mountain region are not easily distinguishable based on radiogenic strontium isotope values. The strontium profiles of many geochemical sources in the region overlap, making it difficult to definitively identify any one particular geochemical source for the canyon's pre-historic maize. Bayesian mixing models support the argument that some spruce and fir wood originated in the San Mateo Mountains, but that this cannot explain all 87Sr/86Sr values in Chaco timber. Overall radiogenic strontium isotope data do not clearly identify a single major geochemical source for maize, ponderosa, and most spruce/fir timber. As such, the degree to which Chaco Canyon relied upon outside support for both food and construction material is still ambiguous. PMID:24854352