Islam, Syed S.; Mokhtari, Reza Bayat; Kumar, Sushil; Maalouf, Joe; Arab, Sara; Yeger, Herman; Farhat, Walid A.
2013-01-01
Although Shh, TGF-β and BMP-4 regulate radial patterning of the bladder mesenchyme and smooth muscle differentiation, it is not known what transcription factors, local environmental cues or signaling cascades mediate bladder smooth muscle differentiation. We investigated the expression patterns of signaling mediated by Smad2 and Smad3 in the mouse embryonic bladder from E12.5 to E16.5 by using qRT-PCR, in situ hybridization and antibodies specifically recognizing individual Smad proteins. The role of Smad2 and Smad3 during smooth muscle formation was examined by disrupting the Smad2/3 signaling pathway using TβR1 inhibitor SB-431542 in organ culture system. qRT-PCR results showed that R-Smads, Co-Smad and I-Smads were all expressed during bladder development. RNA ISH for BMP-4 and immunostaining of TGF-β1 showed that BMP-4 and TGF-β1 were expressed in the transitional epithelium, lamina propia and muscularis mucosa. Smad1, Smad5 and Smad8 were first expressed in the bladder epithelium and continued to be expressed in the transitional epithelium, muscularis mesenchyme and lamina propia as the bladder developed. Smad2, Smad3 and Smad4 were first detected in the bladder epithelium and subsequently were expressed in the muscularis mesenchyme and lamina propia. Smad6 and Smad7 showed overlapping expression with R-Smads, which are critical for bladder development. In bladder explants (E12.5 to E16.5) culture, Smad2 and Smad3 were found localized within the nuclei, suggesting critical transcriptional regulatory effects during bladder development. E12.5 to E16.5 bladders were cultured with and without TβR1 inhibitor SB-431542 and assessed by qRT-PCR and immunofluorescence. After three days in culture in SB-431542, α-SMA, Smad2 and Smad3 expressions were significantly decreased compared with controls, however, with no significant changes in the expression of smooth muscle myosin heavy chain (SM-Myh. Based on the Smad expression patterns, we suggest that individual or combinations of Smads may be necessary during mouse bladder organogenesis and may be critical mediators for bladder smooth muscle differentiation. PMID:23620745
Speich, John E; Wilson, Cameron W; Almasri, Atheer M; Southern, Jordan B; Klausner, Adam P; Ratz, Paul H
2012-10-01
The length-tension (L-T) relationships in rabbit detrusor smooth muscle (DSM) are similar to those in vascular and airway smooth muscles and exhibit short-term length adaptation characterized by L-T curves that shift along the length axis as a function of activation and strain history. In contrast to skeletal muscle, the length-active tension (L-T(a)) curve for rabbit DSM strips does not have a unique peak tension value with a single ascending and descending limb. Instead, DSM can exhibit multiple ascending and descending limbs, and repeated KCl-induced contractions at a particular muscle length on an ascending or descending limb display increasingly greater tension. In the present study, mouse bladder strips with and without urothelium exhibited KCl-induced and carbachol-induced length adaptation, and the pressure-volume relationship in mouse whole bladder displayed short-term volume adaptation. Finally, prostaglandin-E(2)-induced low-level rhythmic contraction produced length adaptation in rabbit DSM strips. A likely role of length adaptation during bladder filling is to prepare DSM cells to contract efficiently over a broad range of volumes. Mammalian bladders exhibit spontaneous rhythmic contraction (SRC) during the filling phase and SRC is elevated in humans with overactive bladder (OAB). The present data identify a potential physiological role for SRC in bladder adaptation and motivate the investigation of a potential link between short-term volume adaptation and OAB with impaired contractility.
Boopathi, Ettickan; Hypolite, Joseph A.; Zderic, Stephen A.; Gomes, Cristiano Mendes; Malkowicz, Bruce; Liou, Hsiou-Chi; Wein, Alan J.
2013-01-01
Protein kinase C (PKC)-potentiated inhibitory protein of 17 kDa (CPI-17) inhibits myosin light chain phosphatase, altering the levels of myosin light chain phosphorylation and Ca2+ sensitivity in smooth muscle. In this study, we characterized the CPI-17 promoter and identified binding sites for GATA-6 and nuclear factor kappa B (NF-κB). GATA-6 and NF-κB upregulated CPI-17 expression in cultured human and mouse bladder smooth muscle (BSM) cells in an additive manner. CPI-17 expression was decreased upon GATA-6 silencing in cultured BSM cells and in BSM from NF-κB knockout (KO) mice. Moreover, force maintenance by BSM strips from KO mice was decreased compared with the force maintenance of BSM strips from wild-type mice. GATA-6 and NF-κB overexpression was associated with CPI-17 overexpression in BSM from men with benign prostatic hyperplasia (BPH)-induced bladder hypertrophy and in a mouse model of bladder outlet obstruction. Thus, aberrant expression of NF-κB and GATA-6 deregulates CPI-17 expression and the contractile function of smooth muscle. Our data provide insight into how GATA-6 and NF-κB mediate CPI-17 transcription, PKC-mediated signaling, and BSM remodeling associated with lower urinary tract symptoms in patients with BPH. PMID:23275439
Chen, Cai-Ping; Chen, Xin; Qiao, Yan-Ning; Wang, Pei; He, Wei-Qi; Zhang, Cheng-Hai; Zhao, Wei; Gao, Yun-Qian; Chen, Chen; Tao, Tao; Sun, Jie; Wang, Ye; Gao, Ning; Kamm, Kristine E; Stull, James T; Zhu, Min-Sheng
2015-01-01
Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle. Key points Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. PMID:25433069
Chen, Cai-Ping; Chen, Xin; Qiao, Yan-Ning; Wang, Pei; He, Wei-Qi; Zhang, Cheng-Hai; Zhao, Wei; Gao, Yun-Qian; Chen, Chen; Tao, Tao; Sun, Jie; Wang, Ye; Gao, Ning; Kamm, Kristine E; Stull, James T; Zhu, Min-Sheng
2015-02-01
Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.
Menzel, Robin; Böl, Markus; Siebert, Tobias
2017-02-01
The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.
Micucci, Matteo; Aldini, Rita; Cevenini, Monica; Colliva, Carolina; Spinozzi, Silvia; Roda, Giulia; Montagnani, Marco; Camborata, Cecilia; Camarda, Luca; Chiarini, Alberto; Mazzella, Giuseppe; Budriesi, Roberta
2013-01-01
Curcuma extract exerts a myorelaxant effect on the mouse intestine. In view of a possible use of curcuma extract in motor functional disorders of the gastrointestinal tract, a safety profile study has been carried out in the mouse. Thirty mice were used to study the in vitro effect of curcuma on gallbladder, bladder, aorta and trachea smooth muscular layers and hearth inotropic and chronotropic activity. The myorelaxant effect on the intestine was also thoroughly investigated. Moreover, curcuma extract (200 mg/Kg/day) was orally administered to twenty mice over 28 days and serum liver and lipids parameters were evaluated. Serum, bile and liver bile acids qualitative and quantitative composition was were also studied. In the intestine, curcuma extract appeared as a not competitive inhibitor through cholinergic, histaminergic and serotoninergic receptors and showed spasmolytic effect on K(+) induced contraction at the level of L type calcium channels. No side effect was observed on bladder, aorta, trachea and heart when we used a dose that is effective on the intestine. An increase in gallbladder tone and contraction was observed. Serum liver and lipids parameters were normal, while a slight increase in serum and liver bile acids concentration and a decrease in bile were observed. Although these data are consistent with the safety of curcuma extract as far as its effect on the smooth muscular layers of different organs and on the heart, the mild cholestatic effect observed in absence of alteration of liver function tests must be further evaluated and the effective dose with minimal side effects considered.
Curcuma longa L. as a Therapeutic Agent in Intestinal Motility Disorders. 2: Safety Profile in Mouse
Micucci, Matteo; Aldini, Rita; Cevenini, Monica; Colliva, Carolina; Spinozzi, Silvia; Roda, Giulia; Montagnani, Marco; Camborata, Cecilia; Camarda, Luca; Chiarini, Alberto; Mazzella, Giuseppe; Budriesi, Roberta
2013-01-01
Background Curcuma extract exerts a myorelaxant effect on the mouse intestine. In view of a possible use of curcuma extract in motor functional disorders of the gastrointestinal tract, a safety profile study has been carried out in the mouse. Methods Thirty mice were used to study the in vitro effect of curcuma on gallbladder, bladder, aorta and trachea smooth muscular layers and hearth inotropic and chronotropic activity. The myorelaxant effect on the intestine was also thoroughly investigated. Moreover, curcuma extract (200 mg/Kg/day) was orally administered to twenty mice over 28 days and serum liver and lipids parameters were evaluated. Serum, bile and liver bile acids qualitative and quantitative composition was were also studied. Results In the intestine, curcuma extract appeared as a not competitive inhibitor through cholinergic, histaminergic and serotoninergic receptors and showed spasmolytic effect on K+ induced contraction at the level of L type calcium channels. No side effect was observed on bladder, aorta, trachea and heart when we used a dose that is effective on the intestine. An increase in gallbladder tone and contraction was observed. Serum liver and lipids parameters were normal, while a slight increase in serum and liver bile acids concentration and a decrease in bile were observed. Conclusions Although these data are consistent with the safety of curcuma extract as far as its effect on the smooth muscular layers of different organs and on the heart, the mild cholestatic effect observed in absence of alteration of liver function tests must be further evaluated and the effective dose with minimal side effects considered. PMID:24260512
Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki
2017-01-01
Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380
Laboratory practical to study the differential innervation pathways of urinary tract smooth muscle.
Rembetski, Benjamin E; Cobine, Caroline A; Drumm, Bernard T
2018-06-01
In the mammalian lower urinary tract, there is a reciprocal relationship between the contractile state of the bladder and urethra. As the bladder fills with urine, it remains relaxed to accommodate increases in volume, while the urethra remains contracted to prevent leakage of urine from the bladder to the exterior. Disruptions to the normal contractile state of the bladder and urethra can lead to abnormal micturition patterns and urinary incontinence. While both the bladder and urethra are smooth-muscle organs, they are differentially contracted by input from cholinergic and sympathetic nerves, respectively. The laboratory practical described here provides an experiential approach to understanding the anatomy of the lower urinary tract. Several key factors in urinary tract physiology are outlined, e.g., the bladder is contracted by activation of the parasympathetic pathway via cholinergic stimulation on muscarinic receptors, whereas the urethra is contracted by activation of the sympathetic pathway via adrenergic stimulation on α 1 -adrenoceptors. This is achieved by measuring the force generated by bladder and urethra smooth muscle to demonstrate that acetylcholine contracts the smooth muscle of the bladder, whereas adrenergic agonists contract the urethral smooth muscle. An inhibition of these effects is also demonstrated by application of the muscarinic receptor antagonist atropine and the α 1 -adrenergic receptor blocker phentolamine. A list of suggested techniques and exam questions to evaluate student understanding on this topic is also provided.
Deng, Maoxian; Boopathi, Ettickan; Hypolite, Joseph A.; Raabe, Tobias; Chang, Shaohua; Zderic, Stephen; Wein, Alan J.
2013-01-01
Caldesmon (CaD), a component of smooth muscle thin filaments, binds actin, tropomyosin, calmodulin, and myosin and inhibits actin-activated ATP hydrolysis by smooth muscle myosin. Internal deletions of the chicken CaD functional domain that spans from amino acids (aa) 718 to 731, which corresponds to aa 512–530 including the adjacent aa sequence in mouse CaD, lead to diminished CaD-induced inhibition of actin-activated ATP hydrolysis by myosin. Transgenic mice with mutations of five aa residues (Lys523 to Gln, Val524 to Leu, Ser526 to Thr, Pro527 to Cys, and Lys529 to Ser), which encompass the ATPase inhibitory determinants located in exon 12, were generated by homologous recombination. Homozygous (−/−) animals did not develop, but heterozygous (+/−) mice carrying the expected mutations in the CaD ATPase inhibitory domain (CaD mutant) matured and reproduced normally. The peak force produced in response to KCl and electrical field stimulation by the detrusor smooth muscle from the CaD mutant was high compared with that of the wild type. CaD mutant mice revealed nonvoiding contractions during bladder filling on awake cystometry, suggesting that the CaD ATPase inhibitory domain suppresses force generation during the filling phase and this suppression is partially released by mutations in 50% of CaD in heterozygous. Our data show for the first time a functional phenotype, at the intact smooth muscle tissue and in vivo organ levels, following mutation of a functional domain at the COOH-terminal region of CaD. PMID:23986516
Modeling bladder cancer in mice: opportunities and challenges
Kobayashi, Takashi; Owczarek, Tomasz B.; McKiernan, James M.; Abate-Shen, Cory
2015-01-01
The prognosis and treatment of bladder cancer have hardly improved in the last 20 years. Bladder cancer remains a debilitating and often fatal disease, and among the most costly cancers to treat. The generation of informative mouse models has the potential to improve our understanding of bladder cancer progression, as well as impact its diagnosis and treatment. However, relatively few mouse models of bladder cancer have been described and particularly few that develop invasive cancer phenotypes. This review focuses on opportunities for improving the landscape of mouse models of bladder cancer. PMID:25533675
Regulation of IGF-1 but not TGF-β1 by NGF in the smooth muscle of the inflamed urinary bladder
Zhang, Qing L.; Qiao, Li-Ya
2012-01-01
Intraperitoneal injection of cyclophosphamide (CYP) causes haemorrhagic cystitis with excess growth of muscular layer leading to bladder hypertrophy; this could be attributable to changes in the expression profiles of growth factors in the inflamed urinary bladder. The growth factors characterized in the current study include nerve growth factor (NGF), insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-β1. We found that following CYP injection for 8h and 48h, the mRNA levels of all three factors were increased in the inflamed bladder when compared to control. The level of NGF mRNA was mainly increased in the urothelium layer while the levels of IGF-1 mRNA and TGF-β1 mRNA were increased in the smooth muscle layer. The level of NGF high affinity receptor TrkA mRNA was also increased in both the urothelium and the smooth muscle layers during bladder inflammation. When we blocked NGF action with NGF neutralizing antibody in vivo, we found that the up-regulation of IGF-1 in the inflamed bladder was reversed while the up-regulation of TGF-β1 was not affected by NGF neutralization. The effect of NGF on regulating IGF-1 expression was further confirmed in bladder smooth muscle culture showing that exogenous NGF increased the mRNA level of IGF-1 after 30 min to 1h stimulation. These results suggest that bladder inflammation induced region-specific changes in the expression profiles of NGF, IGF-1 and TGF-β1. The up-regulation of NGF in the urothelium may have a role in affecting bladder smooth muscle cell physiology by regulating IGF-1 expression. PMID:22579999
Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena
2016-01-01
Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982
Sex-dependent expression of TRPV1 in bladder arterioles
Phan, Thieu X.; Ton, Hoai T.; Chen, Yue; Basha, Maureen E.
2016-01-01
Transient receptor potential vanilloid type 1 (TRPV1) is a major nociceptive ion channel implicated in bladder physiology and/or pathophysiology. However, the precise expression of TRPV1 in neuronal vs. nonneuronal bladder cells is uncertain. Here we used reporter mouse lines (TRPV1-Cre:tdTomato and TRPV1PLAP-nlacZ) to map expression of TRPV1 in postnatal bladder. TRPV1 was not detected in the urothelium, however, we found marked expression of TRPV1 lineage in sensory nerves, and surprisingly, in arterial/arteriolar smooth muscle (ASM) cells. Tomato fluorescence was prominent in the vesical arteries and in small-diameter (15–40 μm) arterioles located in the suburothelial layer with a near equal distribution in bladder dome and base. Notably, arteriolar TRPV1 expression was greater in females than in males and increased in both sexes after 90 days of age, suggesting sex hormone and age dependency. Analysis of whole bladder and vesical artery TRPV1 mRNA revealed a similar sex and developmental dependence. Pharmacological experiments confirmed functional TRPV1 protein expression; capsaicin increased intracellular Ca2+ in ∼15% of ASM cells from wild-type female bladders, but we observed no responses to capsaicin in bladder arterioles isolated from TRPV1-null mice. Furthermore, capsaicin triggered arteriole constriction that was rapidly reversed by the TRPV1 antagonist, BCTC. These data show that predominantly in postpubertal female mice, bladder ASM cells express functional TRPV1 channels that may act to constrict arterioles. TRPV1 may therefore play an important role in regulating the microcirculation of the female bladder, and this effect may be of significance during inflammatory conditions. PMID:27654891
Burkhard, Fiona C; Monastyrskaya, Katia; Studer, Urs E; Draeger, Annette
2005-01-01
The decline in contractile properties is a characteristic feature of the dysfunctional bladder as a result of infravesical outlet obstruction. During clinical progression of the disease, smooth muscle cells undergo structural modifications. Since adaptations to constant changes in length require a high degree of structural organization within the sarcolemma, we have investigated the expression of several proteins, which are involved in smooth muscle membrane organization, in specimens derived from normal and dysfunctional organs. Specimen from patients with urodynamically normal/equivocal (n = 4), obstructed (n = 2), and acontractile (n = 2) bladders were analyzed relative to their structural features and sarcolemmal protein profile. Smooth muscle cells within the normal urinary bladder display a distinct sarcolemmal domain structure, characterized by firm actin-attachment sites, alternating with flexible "hinge" regions. In obstructed bladders, foci of cells displaying degenerative sarcolemmal changes alternate with areas of hypertrophic cells in which the membrane appears unaffected. In acontractile organs, the overall membrane structure remains intact, however annexin 6, a protein belonging to a family of Ca2+-dependent, "membrane-organizers," is downregulated. Degenerative changes in smooth muscle cells, which are chronically working against high resistance, are preferentially located within the actin-attachment sites. In acontractile bladders, the downregulation of annexin 6 might have a bearing on the fine-tuning of the plasma membrane during contraction/relaxation cycles. Copyright 2005 Wiley-Liss, Inc.
Zhou, Zhe; Yan, Hao; Liu, Yidong; Xiao, Dongdong; Li, Wei; Wang, Qiong; Zhao, Yang; Sun, Kang; Zhang, Ming; Lu, Mujun
2018-04-01
The study investigated the feasibility of seeding adipose-derived stem cells (ASCs) onto a poly(ϵ-caprolactone)/chitosan (PCL/CS) scaffold for bladder reconstruction using a rat model of bladder augmentation. In the experimental group, the autologous ASCs were seeded onto the PCL/CS scaffold for bladder augmentation. An unseeded scaffold was used for bladder augmentation as control group. The sham group was also set. 8 weeks after implantation, more densely smooth muscles were detected in the experimental group with a larger bladder capacity and more intensive blood vessels. Immunofluorescence staining demonstrated that some of the smooth muscle cells were transdifferentiated from the ASCs. Our findings indicated that ASC-seeded PCL/CS may be a potential scaffold for bladder tissue engineering.
Girard, Beatrice M; Malley, Susan E; Vizzard, Margaret A
2011-02-01
Urothelium-specific overexpression of nerve growth factor (NGF) in the urinary bladder of transgenic mice stimulates neuronal sprouting in the urinary bladder, produces increased voiding frequency, and results in increased referred somatic hypersensitivity. Additional NGF-mediated pleiotropic changes might contribute to the increased voiding frequency and pelvic hypersensitivity observed in these transgenic mice, such as modulation of other growth factor/receptor systems. Chronic overexpression of NGF in the urothelium was achieved through the use of a highly urothelium-specific uroplakin II promoter. In the present study, we examined NGF, brain-derived neurotrophic factor (BDNF), and associated receptor [p75(NTR), tyrosine kinase (Trk)A, TrkB] transcript and protein expression in urothelium and detrusor smooth muscle of NGF-overexpressing (OE) and littermate wild-type mice, using real-time quantitative reverse transcription-polymerase chain reaction, ELISAs, and semiquantitation of immunohistochemistry. We focused on these growth factor/receptors given the established roles of NGF/TrkA, NGF/p75(NTR), and BDNF/TrkB systems in bladder function. Increased voiding frequency in NGF-OE mice was confirmed by examining urination patterns. BDNF, TrkA, and TrkB protein expression was significantly (P ≤ 0.01) reduced and p75(NTR) protein expression was significantly (P ≤ 0.01) increased in urinary bladder of NGF-OE mice. The NGF-OE-induced changes in neurotrophic factor/receptor expression in urinary bladder may represent compensatory changes to reduce voiding frequency in the NGF-OE mouse.
Ju, Yawen; Li, Jie; Xie, Chao; Ritchlin, Christopher T; Xing, Lianping; Hilton, Matthew J; Schwarz, Edward M
2013-09-01
The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach Copyright © 2013 Wiley Periodicals, Inc.
Anderson, U A; Carson, C; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K D
2013-01-01
Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder. PMID:23586426
Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction
NASA Astrophysics Data System (ADS)
Park, Jae Hong; Hong, Jin Ki; Jang, Ja Yun; An, Jieun; Lee, Kyu-Sung; Kang, Tong Mook; Shin, Hyun Joon; Suh, Jun-Kyo Francis
2017-01-01
As current clinical approaches for lower urinary tract (LUT) dysfunction such as pharmacological and electrical stimulation treatments lack target specificity, thus resulting in suboptimal outcomes with various side effects, a better treatment modality with spatial and temporal target-specificity is necessary. In this study, we delivered optogenetic membrane proteins, such as channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), to bladder smooth muscle cells (SMCs) of mice using either the Cre-loxp transgenic system or a viral transfection method. The results showed that depolarizing ChR2-SMCs with blue light induced bladder contraction, whereas hyperpolarizing NpHR-SMCs with yellow light suppressed PGE2-induced overactive contraction. We also confirmed that optogenetic contraction of bladder smooth muscles in this study is not neurogenic, but solely myogenic, and that optogenetic light stimulation can modulate the urination in vivo. This study thus demonstrated the utility of optogenetic modulation of smooth muscle as a means to actively control the urinary bladder contraction with spatial and temporal accuracy. These features would increase the efficacy of bladder control in LUT dysfunctions without the side effects of conventional clinical therapies.
Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle.
Dombkowski, Ryan A; Doellman, Meredith M; Head, Sally K; Olson, Kenneth R
2006-08-01
Hydrogen sulfide (H2S) is a recently identified gasotransmitter that may mediate hypoxic responses in vascular smooth muscle. H2S also appears to be a signaling molecule in mammalian non-vascular smooth muscle, but its existence and function in non-mammalian non-vascular smooth muscle have not been examined. In the present study we examined H2S production and its physiological effects in urinary bladder from steelhead and rainbow trout (Oncorhynchus mykiss) and evaluated the relationship between H2S and hypoxia. H2S was produced by trout bladders, and its production was sensitive to inhibitors of cystathionine beta-synthase and cystathionine gamma-lyase. H2S produced a dose-dependent relaxation in unstimulated and carbachol pre-contracted bladders and inhibited spontaneous contractions. Bladders pre-contracted with 80 mmol l(-1) KCl were less sensitive to H2S than bladders contracted with either 80 mmol l(-1) KC2H3O2 (KAc) or carbachol, suggesting that some of the H2S effects are mediated through an ion channel. However, H2S relaxation of bladders was not affected by the potassium channel inhibitors, apamin, charybdotoxin, 4-aminopyridine, and glybenclamide, or by chloride channel/exchange inhibitors 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt, tamoxifen and glybenclamide, or by the presence or absence of extracellular HCO3-. Inhibitors of neuronal mechanisms, tetrodotoxin, strychnine and N-vanillylnonanamide were likewise ineffective. Hypoxia (aeration with N2) also relaxed bladders, was competitive with H2S for relaxation, and it was equally sensitive to KCl, and unaffected by neuronal blockade or the presence of extracellular HCO3-. Inhibitors of H2S synthesis also inhibited hypoxic relaxation. These experiments suggest that H2S is a phylogenetically ancient gasotransmitter in non-mammalian non-vascular smooth muscle and that it serves as an oxygen sensor/transducer, mediating the effects of hypoxia.
Gevaert, Thomas; Neuhaus, Jochen; Vanstreels, Els; Daelemans, Dirk; Everaerts, Wouter; Der Aa, Frank Van; Timmermans, Jean-Pierre; Roskams, Tania; Steiner, Clara; Pintelon, Isabel; De Ridder, Dirk
2017-12-01
With most research on interstitial cells (IC) in the bladder being conducted on animal models, it remains unclear whether all structural and functional data on IC from animal models can be translated to the human context. This prompted us to compare the structural and immunohistochemical properties of IC in bladders from mouse, rat and human. Tissue samples were obtained from the bladder dome and subsequently processed for immunohistochemistry and electron microscopy. The ultrastructural properties of IC were compared by means of electron microscopy and IC were additionally characterized with single/double immunohistochemistry/immunofluorescence. Our results reveal a similar organization of the IC network in the upper lamina propria (ULP), the deep lamina propria (DLP) and the detrusor muscle in human, rat and mouse bladders. Furthermore, despite several similarities in IC phenotypes, we also found several obvious inter-species differences in IC, especially in the ULP. Most remarkably in this respect, ULP IC in human bladder predominantly displayed a myoid phenotype with abundant presence of contractile micro-filaments, while those in rat and mouse bladders showed a fibroblast phenotype. In conclusion, the organization of ULP IC, DLP IC and detrusor IC is comparable in human, rat and mouse bladders, although several obvious inter-species differences in IC phenotypes were found. The present data show that translating research data on IC in laboratory animals to the human setting should be carried out with caution.
Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V
2012-03-01
Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.
Neuhaus, J; Heinrich, M; Schlichting, N; Oberbach, A; Fitzl, G; Schwalenberg, T; Horn, L-C; Stolzenburg, J-U
2007-09-01
Myofibroblasts play a pivotal role in numerous pathological alterations. Clarification of the structure and function and of the cellular plasticity of this cell type in the bladder may lead to new insights into the pathogenesis of lower urinary tract disorders. Bladder biopsies from patients with bladder carcinoma and interstitial cystitis were used to analyse the morphology and receptor expression using confocal immunofluorescence and electron microscopy. Cytokine effects and coupling behavior were tested in cultured myofibroblasts and detrusor smooth muscle cells. Myofibroblasts are in close contact with the suburothelial capillary network. They express Cx43 and form functional syncytia. The expression of muscarinic and purinergic receptors is highly variable. Dye coupling experiments showed differences to detrusor myocytes. Upregulation of smooth muscle cell alpha-actin and/or transdifferentiation into smooth muscle cells may contribute to the etiology of urge incontinence. A multi-step model is presented as a working hypothesis.
Hong, Sung K; Son, Hwancheol; Kim, Soo W; Oh, Seung-June; Choi, Hwang
2005-12-01
To investigate the effects of glycine on the recovery of bladder smooth muscle contractility after acute urinary retention. Bladder overdistension was induced in Sprague-Dawley rats by an infusion of saline (twice the threshold volume), maintained for 2 h. From 15 min before emptying of the bladder until 2 h after, saline or glycine solution was infused i.v. At 30 min, 2 h and 1 week after bladder emptying, samples of bladder tissue were taken for muscle strip study, malondialdehyde (MDA) assay, ATP assay, Western blotting for apoptosis-related molecules (Bcl-2, Bax, Caspase-3), and histological analysis including terminal deoxynucleotidyl transferase-mediated nick-end labelling staining. The results were compared among normal control, saline-treated and glycine-treated rats. In the glycine-treated group, muscle strip contractile responses induced by electrical-field stimulation and carbachol were both significantly greater at 1 week after bladder emptying than in the saline-treated group. The results of the ATP assay appeared to correspond with those of the muscle strip study. The saline-treated group had significantly higher MDA levels at 30 min after bladder emptying than the glycine-treated group. At 2 h after bladder emptying, there was significantly more apoptosis and greater leukocyte infiltration in the saline-treated group than in the glycine-treated group. While pro-apoptotic Bax and caspase-3 were down-regulated, Bcl-2 was up-regulated in the glycine-treated group. Glycine infusions might improve the contractile responses of bladder smooth muscle after acute urinary retention by reducing oxidative damage and apoptosis.
Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong
2016-06-01
It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.
Expression of Hsp27 correlated with rat detrusor contraction after acute urinary retention.
Xiong, Zhiyong; Wang, Yongquan; Gong, Wei; Zhou, Zhansong; Lu, Gensheng
2013-09-01
Heat shock protein 27 (Hsp27) can regulate actin cytoskeleton dynamics and contractile protein activation. This study investigates whether Hsp27 expression is related to bladder contractile dysfunction after acute urinary retention (AUR). Female rats were randomized either to AUR by urethral ligation or to normal control group. Bladder and smooth muscle strip contraction at time points from 0 h to 7 days after AUR were estimated by cystometric and organ bath studies. Hsp27 expression in bladder tissue at each time point was detected with immunofluorescence, Western blots, and real-time PCR. Expression of the three phosphorylated forms of Hsp27 was detected by Western blots. Smooth muscle ultrastructure was observed by transmission electron microscopy. Data suggest that maximum detrusor pressure and both carbachol-induced and spontaneous detrusor strip contraction amplitude decreased gradually for the duration from 0 to 6 h, and then increased gradually to near-normal values at 24 h. Treatment of muscle strips with the p38MAK inhibitor, SB203580, inhibited carbachol-induced contractions. Smooth muscle ultrastructure damage was the highest at 6 h after AUR, and then lessened gradually during next 7 days, and ultrastructure was close to normal. Expressions of Hsp27 mRNA and protein and the proteins of the three phosphorylated forms were higher at 0 h, decreased to lower levels up to 6 h, and then gradually increased. Therefore, we conclude that rat bladder contractile function after AUR worsens during 0-6 h, and then gradually recovers. The findings of the current study suggest that Hsp27 modulates bladder smooth muscle contraction after AUR, and that phosphorylation of Hsp27 may be an important pathway modulating actin cytoskeleton dynamics in bladder smooth muscle contraction and reconstruction after injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Paul-Yann; Lin, Yung-Lun; Huang, Chin-Chin
Epidemiological studies have revealed that exposure to an arsenic-contaminated environment correlates with the incidence of bladder cancer. Bladder cancer is highly recurrent after intravesical therapy, and most of the deaths from this disease are due to invasive metastasis. In our present study, the role of inorganic arsenic in bladder carcinogenesis is characterized in a mouse model. This work provides the first evidence that inorganic arsenic in drinking water promotes N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced bladder tissue damage, including the urothelium and submucosal layer. This damage to the bladder epithelium induced by BBN includes thickening of the submucosal layer, the loss of the glycosaminoglycanmore » layer and an increase in both the deoxyguanosine oxidation and cytosine methylation levels in the DNA. Further, when 10 ppm inorganic arsenic is combined with BBN, the number of bladder submucosal capillaries is increased. In addition, inorganic arsenic also increases the deoxyguanosine oxidation level, alters the cytosine methylation state, decreases the activities of glutathione reductase and glucose-6-phosphate dehydrogenase, decreases the protein expression of NAD(P)H quinone oxidoreductase-1 (NQO-1) and increases the protein expression of specific protein 1 (Sp1) in bladder tissues. In summary, our data reveal that inorganic arsenic in drinking water promotes the BBN-induced pre-neoplastic damage of bladder tissue in mice, and that the 8-hydroxy-2′-deoxyguanosine, 5-methylcytosine, NQO-1 protein and Sp1 protein levels may be pre-neoplastic markers of bladder tumors. -- Highlights: ► The role of inorganic arsenic in bladder carcinogenesis is characterized in mice. ► We examine the changes in the histology and biochemistry of bladder tissues. ► Inorganic arsenic enhances BBN-induced DNA oxidation while decreases BBN-induced DNA methylation in the mouse bladder. ► Inorganic arsenic alters the activities of the anti-oxidant enzymes in the mouse bladder. ► Inorganic arsenic increases Sp1 while decreases NQO-1 protein expression in the mouse whole bladder.« less
Receptors involved in the modulation of guinea pig urinary bladder motility by prostaglandin D2
Guan, Na N; Svennersten, Karl; de Verdier, Petra J; Wiklund, N Peter; Gustafsson, Lars E
2015-01-01
Background and Purpose We have described a urothelium-dependent release of PGD2-like activity which had inhibitory effects on the motility of guinea pig urinary bladder. Here, we have pharmacologically characterized the receptors involved and localized the sites of PGD2 formation and of its receptors. Experimental Approach In the presence of selective DP and TP receptor antagonists alone or combined, PGD2 was applied to urothelium-denuded diclofenac-treated urinary bladder strips mounted in organ baths. Antibodies against PGD2 synthase and DP1 receptors were used with Western blots and for histochemistry. Key Results PGD2 inhibited nerve stimulation -induced contractions in strips of guinea pig urinary bladder with estimated pIC50 of 7.55 ± 0.15 (n = 13), an effect blocked by the DP1 receptor antagonist BW-A868C. After blockade of DP1 receptors, PGD2 enhanced the contractions, an effect abolished by the TP receptor antagonist SQ-29548. Histochemistry revealed strong immunoreactivity for PGD synthase in the urothelium/suburothelium with strongest reaction in the suburothelium. Immunoreactive DP1 receptors were found in the smooth muscle of the bladder wall with a dominant localization to smooth muscle membranes. Conclusions and Implications In guinea pig urinary bladder, the main effect of PGD2 is an inhibitory action via DP1 receptors localized to the smooth muscle, but an excitatory effect via TP receptors can also be evoked. The urothelium with its suburothelium might signal to the smooth muscle which is rich in PGD2 receptors of the DP1 type. The results are important for our understanding of regulation of bladder motility. PMID:25917171
Schröder, Annette; Kirwan, Tyler P; Jiang, Jia-Xin; Aitken, Karen J; Bägli, Darius J
2013-06-01
Previous molecular studies showed that the mTOR inhibitor rapamycin prevents bladder smooth muscle hypertrophy in vitro. We investigated the effect of rapamycin treatment in vivo on bladder smooth muscle hypertrophy in a rat model of partial bladder outlet obstruction. A total of 48 female Sprague-Dawley® rats underwent partial bladder outlet obstruction and received daily subcutaneous injections of rapamycin (1 mg/kg) or vehicle commencing 2 weeks postoperatively. A total of 36 rats underwent sham surgery and received rapamycin or vehicle. Rats were sacrificed 3, 6 and 12 weeks after surgery. Before sacrifice, voiding was observed in a metabolic cage for 24 hours. Bladder-to-body weight in gm bladder weight per kg body weight and post-void residual urine were assessed. We evaluated Col1a1, Col3a1, Eln and Mmp7 mRNA expression and histology. Two-factor ANOVA and the post hoc t test were applied. Bladder outlet obstruction caused a significant increase in bladder weight in all obstructed groups. Three weeks postoperatively (1 week of treatment) there was no difference in the bladder-to-body weight ratio in the obstructed group. However, at 6 and 12 weeks (4 and 10 weeks of treatment, respectively) the bladder-to-body weight ratio of rats with obstruction plus rapamycin was significantly lower than that of rats with obstruction plus vehicle. Post-void residual urine volume after 6 and 12 weeks of obstruction was lower in obstructed rats with rapamycin compared to that in obstructed rats with vehicle. Rapamycin decreased the obstruction induced expression of Col1a1, Col3a1, Eln and Mmp7. Rapamycin prevents mechanically induced hypertrophy in cardiovascular smooth muscle. In vivo mTOR inhibition may attenuate obstruction induced detrusor hypertrophy and help preserve bladder function. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Jing-Jing; Dai, Yuan-Chang; Lin, Yung-Lun
2014-09-15
Bladder cancer is highly recurrent following specific transurethral resection and intravesical chemotherapy, which has prompted continuing efforts to develop novel therapeutic agents and early-stage diagnostic tools. Specific changes in protein expression can provide a diagnostic marker. In our present study, we investigated changes in protein expression during urothelial carcinogenesis. The carcinogen BBN was used to induce mouse bladder tumor formation. Mouse bladder mucosa proteins were collected and analyzed by 2D electrophoresis from 6 to 20 weeks after commencing continuous BBN treatment. By histological examination, the connective layer of the submucosa showed gradual thickening and the number of submucosal capillaries graduallymore » increased after BBN treatment. At 12-weeks after the start of BBN treatment, the urothelia became moderately dysplastic and tumors arose after 20-weeks of treatment. These induced bladder lesions included carcinoma in situ and connective tissue invasive cancer. In protein 2D analysis, the sequentially downregulated proteins from 6 to 20 weeks included GSTM1, L-lactate dehydrogenase B chain, keratin 8, keratin 18 and major urinary proteins 2 and 11/8. In contrast, the sequentially upregulated proteins identified were GSTO1, keratin 15 and myosin light polypeptide 6. Western blotting confirmed that GSTM1 and NQO-1 were decreased, while GSTO1 and Sp1 were increased, after BBN treatment. In human bladder cancer cells, 5-aza-2′-deoxycytidine increased the GSTM1 mRNA and protein expression. These data suggest that the downregulation of GSTM1 in the urothelia is a biomarker of bladder carcinogenesis and that this may be mediated by DNA CpG methylation. - Highlights: • GSTM1 and NQO-1 proteins decreased in the mouse bladder mucosa after BBN treatment. • BBN induced GSTO1 and Sp1 protein expression in the mouse bladder mucosa. • 5-Aza-2′-deoxycytidine increased GSTM1 mRNA and protein in human bladder cancer cell. • GSTM1 downregulation in the urothelia may be a biomarker of bladder carcinogenesis.« less
Sano, Takeshi; Kobayashi, Takashi; Negoro, Hiromitsu; Sengiku, Atsushi; Hiratsuka, Takuya; Kamioka, Yuji; Liou, Louis S; Ogawa, Osamu; Matsuda, Michiyuki
2016-11-01
To better understand the roles played by signaling molecules in the bladder, we established a protocol of intravital imaging of the bladder of mice expressing a Förster/fluorescence resonance energy transfer (FRET) biosensor for extracellular signal-regulated kinase (ERK), which plays critical roles not only in cell growth but also stress responses. With an upright two-photon excitation microscope and a vacuum-stabilized imaging window, cellular ERK activity was visualized in the whole bladder wall, from adventitia to urothelium. We found that bladder distention caused by elevated intravesical pressure (IVP) activated ERK in the urothelium, but not in the detrusor smooth muscle. When bladder distension was prevented, high IVP failed to activate ERK, suggesting that mechanical stretch, but not the high IVP, caused ERK activation. To delineate its molecular mechanism, the stretch-induced ERK activation was reproduced in an hTERT-immortalized human urothelial cell line (TRT-HU1) in vitro. We found that uniaxial stretch raised the ATP concentration in the culture medium and that inhibition of ATP signaling by apyrase or suramin suppressed the stretch-induced ERK activation in TRT-HU1 cells. In agreement with this in vitro observation, pretreatment with apyrase or suramin suppressed the high IVP-induced urothelial ERK activation in vivo. Thus, we propose that mechanical stretch induces intravesical secretion of ATP and thereby activates ERK in the urothelium. Our method of intravital imaging of the bladder of FRET biosensor-expressing mice should open a pathway for the future association of physiological stimuli with the activities of intracellular signaling networks. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Palea, Stefano; Rekik, Moèz; Rouget, Céline; Camparo, Philippe; Botto, Henri; Rischmann, Pascal; Lluel, Philippe; Westfall, Timothy D
2012-09-05
Fenoterol has been reported to be a potent and selective β(2)-adrenoceptor agonist and is currently used clinically to treat asthma. Electrical field stimulation (EFS) of isolated urinary bladder mimics the voiding contraction by stimulating parasympathetic nerves, resulting in neurogenic contractions. To determine if stimulation of β(2)-adrenoceptors can inhibit this response, fenoterol was tested against EFS-induced contractions in human isolated urinary bladder and compared with mouse and rat. Bladder strips were mounted in organ baths and reproducible contractions induced by EFS. Fenoterol was added cumulatively in the presence of the β(2)-adrenoceptor antagonist ICI118551 or the β(3)-adrenoceptor antagonist L-748337. Fenoterol inhibited neurogenic contractions in all three species in a concentration-dependent manner with pEC(50) values of 6.66 ± 0.11, 6.86 ± 0.06 and 5.71 ± 0.1 in human, mouse and rat respectively. In human bladder strips ICI118551 (100 nM) did not affect responses to fenoterol, while L-748337 (0.3-3 μM) produced rightward shifts of the concentration-response curves with a pA(2) value of 8.10. In mouse bladder strips ICI118551 (30 nM) blocked the inhibitory effect of fenoterol (pA(2)=8.80), while L-748337 (10 μM) inhibited the response with a pA(2) of 5.79. In rat bladder ICI118551 (30 nM) was without effect, while L-748,337 (10 μM) inhibited the response to fenoterol with a pA(2) of 5.40. From these results it is clear that fenoterol potently activates β(3)-adrenoceptors in human isolated urinary bladder to inhibit EFS-induced contractions. Fenoterol also activates β(3)-adrenoceptors in rat, but β(2)-adrenoceptors in mouse bladder to inhibit EFS-induced contractions. Copyright © 2012 Elsevier B.V. All rights reserved.
Shen, Shanwei; Xia, Chun-mei; Qiao, Li-Ya
2014-01-01
The present study aims to systemically characterize the factors that are associated with urinary bladder organ enlargement in the spontaneously hypertensive rats (SHR). Material and Methods We compared the SHR to age-matched normotensive Wistar-Kyoto (WKY) control rats in the levels of bladder pro-inflammatory factors, collagen expression (type I), and detrusor smooth muscle growth. Key Findings Our results showed that enhanced inflammatory responses and fibrosis were key factors that were closely associated with bladder wall thickening in SHR. Specifically the mRNA levels of inflammatory factors interleukin (IL)-1α, IL-6 and TNFα were significantly higher in SHR than those in WKY. The SHR also had a higher number of mast cells in the suburothelium space. Type I collagen production was also significantly higher in SHR when compared to those in control rats. However, the smooth muscle content stayed the same in SHR and WKY rats. This was shown as that the ratio of α-smooth muscle actin (SMA) to the nuclear protein histone H3 showed no difference between these two rat strains. The mRNA and protein levels of proliferating cell nuclear antigen (PCNA) also showed no change in the urinary bladder of SHR and WKY. Further study showed that the phosphorylation level of Akt in the urinary bladder was not changed in SHR when compared to WKY. In contrast, the phosphorylation level of ERK1/2 was significantly higher in SHR bladder when compared to WKY. Significance These results suggest that inflammation and fibrosis are primary factors that may lead to urinary bladder hypertrophy in SHR. PMID:25445218
Lin, Guiting; Fandel, Thomas M; Shindel, Alan W; Wang, Guifang; Banie, Lia; Ning, Hongxiu; Lue, Tom F; Lin, Ching-Shwun
2011-07-01
To assess and compare the expression and activity of myosin light-chain kinase (MLCK) and MLC phosphatase (MLCP) in rat bladder and urethra. Bladder and urethral smooth muscles were obtained from 2-month-old female Sprague-Dawley rats. They were analysed by real-time polymerase chain reaction for the mRNA expression of MLCK and myosin phosphatase-targeting subunit of protein phosphatase type 1 (MYPT1, a subunit of MLCP). Levels of MLCK and MYPT1 mRNA expression were determined as a ratio to the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The tissues were also analysed by Western blotting for MLCK and MYPT1 protein expression as a ratio to the expression of β-actin. A two-step enzymatic activity assay using phosphorylated and dephosphorylated smooth muscle myosin was used to assess MLCK and MLCP activity. MLCK mRNA expression was higher in the bladder than in the urethra [mean (sd) ratio to GAPDH: 0.26 (0.17) vs 0.14 (0.12); P = 0.09]. MYPT1 mRNA expression was significantly higher in the bladder than in the urethra [mean (sd) ratio to GAPDH: 2.31 (1.04) vs 0.56 (0.36); P = 0.001]. Expression of both MLCK and MYPT1 protein was significantly higher in the bladder compared with the urethra [mean (sd) ratio to β-actin: 1.63 (0.25) vs 0.91 (0.29) and 0.97 (0.10) vs 0.37 (0.29), respectively; both P < 0.001]. Enzymatic assay identified significantly greater MLCK activity in the bladder than in the urethra. While, MLCP activity was lower in the bladder than in the urethra. In healthy young female rats, MLCK activity is higher and MLCP activity is lower in the bladder relative to the urethra. These differences probably play a role in modulating the functional differences between bladder and urethral smooth muscle tone. © 2010 THE AUTHORS. BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.
The stem cell growth factor receptor KIT is not expressed on interstitial cells in bladder.
Gevaert, Thomas; Ridder, Dirk De; Vanstreels, Els; Daelemans, Dirk; Everaerts, Wouter; Aa, Frank Van Der; Pintelon, Isabel; Timmermans, Jean-Pierre; Roskams, Tania; Steiner, Clara; Neuhaus, Jochen
2017-06-01
The mast/stem cell growth factor receptor KIT has long been assumed to be a specific marker for interstitial cells of Cajal (ICC) in the bladder, with possible druggable perspectives. However, several authors have challenged the presence of KIT + ICC in recent years. The aim of this study was therefore to attempt to clarify the conflicting reports on KIT expression in the bladder of human beings, rat, mouse and guinea pig and to elucidate the possible role of antibody-related issues and interspecies differences in this matter. Fresh samples were obtained from human, rat, mouse and guinea pig cystectomies and processed for single/double immunohistochemistry/immunofluorescence. Specific antibodies against KIT, mast cell tryptase (MCT), anoctamin-1 (ANO1) and vimentin were used to characterize the cell types expressing KIT. Gut (jejunum) tissue was used as an external antibody control. Our results revealed KIT expression on mast cells but not on ICC in human, rat, mouse and guinea pig bladder. Parallel immunohistochemistry showed KIT expression on ICC in human, rat, mouse and guinea pig gut, which confirmed the selectivity of the KIT antibody clones. In conclusion, we have shown that KIT + cells in human, rat, mouse and guinea pig bladder are mast cells and not ICC. The present report is important as it opposes the idea that KIT + ICC are present in bladder. In this perspective, functional concepts of KIT + ICC being involved in sensory and/or motor aspects of bladder physiology should be revised. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu
2016-07-01
Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. ©2016 American Association for Cancer Research.
Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium.
Dong, Zixun; Ran, Jianhua; Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue
2013-01-01
Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.
Urea Transporter UT-B Deletion Induces DNA Damage and Apoptosis in Mouse Bladder Urothelium
Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue
2013-01-01
Background Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Methodology/Principal Findings Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. Conclusions/Significance UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders. PMID:24204711
Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L
2015-01-01
The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel activity comparable to bladder SMCs which may be important for urological regenerative medicine applications.
Roles of polyuria and hyperglycemia in bladder dysfunction in diabetes.
Xiao, Nan; Wang, Zhiping; Huang, Yexiang; Daneshgari, Firouz; Liu, Guiming
2013-03-01
Diabetes mellitus causes diabetic bladder dysfunction. We identified the pathogenic roles of polyuria and hyperglycemia in diabetic bladder dysfunction in rats. A total of 72 female Sprague-Dawley® rats were divided into 6 groups, including age matched controls, and rats with sham urinary diversion, urinary diversion, streptozotocin induced diabetes mellitus after sham urinary diversion, streptozotocin induced diabetes mellitus after urinary diversion and 5% sucrose induced diuresis after sham urinary diversion. Urinary diversion was performed by ureterovaginostomy 10 days before diabetes mellitus induction. Animals were evaluated 20 weeks after diabetes mellitus or diuresis induction. We measured 24-hour drinking and voiding volumes, and cystometry. Bladders were harvested to quantify smooth muscle, urothelium and collagen. We measured nitrotyrosine and Mn superoxide dismutase in the bladder. Diabetes and diuresis caused increases in drinking and voiding volume, and bladder weight. Bladder weight decreased in the urinary diversion group and the urinary diversion plus diabetes group. The intercontractile interval, voided volume and compliance increased in the diuresis and diabetes groups, decreased in the urinary diversion group and further decreased in the urinary diversion plus diabetes group. Total cross-sectional tissue, smooth muscle and urothelium areas increased in the diuresis and diabetes groups, and decreased in the urinary diversion and urinary diversion plus diabetes groups. As a percent of total tissue area, collagen decreased in the diuresis and diabetes groups, and increased in the urinary diversion and urinary diversion plus diabetes groups. Smooth muscle and urothelium decreased in the urinary diversion and urinary diversion plus diabetes groups. Nitrotyrosine and Mn superoxide dismutase increased in rats with diabetes and urinary diversion plus diabetes. Polyuria induced bladder hypertrophy, while hyperglycemia induced substantial oxidative stress in the bladder, which may have a pathogenic role in late stage diabetic bladder dysfunction. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Alwaal, Amjad; Wang, Guifang; Banie, Lia; Lin, Ching-Shwun; Lin, Guiting; Lue, Tom F.
2016-01-01
Purpose Lines of evidence suggest that Rho-associated protein kinase (ROCK) mediated myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation play a central role in smooth muscle contraction. However, the physiological significance of MYPT1 phosphorylation at Thr696 catalyzed by ROCK in bladder smooth muscle remains controversial. We attempt to directly observe the quantitative protein expression of RhoA/ROCK and phosphorylation of MYPT1 at Thr696 after carbachol administration in rat bladder smooth muscle cells (RBMSCs). Materials and Methods Primary cultured smooth muscle cells were obtained from rat bladders. The effects of both concentration and time-course induced by the muscarinic agonist carbachol were investigated by assessing the expression of Rho A/ROCK and MYPT1 phosphorylation at Thr696 using Western blot. Results In the dose-course studies, carbachol showed significant increase of phosphorylation of MYPT1 at Thr696 (p-MYPT1) from concentrations of 15 μM to 100 μM based on Western blot results (p < 0.05, ANOVA test). In the time-course studies, treatment of cells with 15 μM of carbachol significantly enhanced the expression of p-MYPT1 from 3 to 15 hr (p < 0.05, ANOVA test) and induced the expression of Rho A from 10 to 120 min (p < 0.05, ANOVA test). Conclusions Carbachol can induce the expression of ROCK pathway, leading to MYPT1 phosphorylation at Thr696 and thereby sustained RBSMCs contraction. PMID:27118568
Liu, Benchun; Lee, Yung-Chin; Alwaal, Amjad; Wang, Guifang; Banie, Lia; Lin, Ching-Shwun; Lin, Guiting; Lue, Tom F
2016-08-01
Lines of evidence suggest that Rho-associated protein kinase (ROCK)-mediated myosin phosphatase-targeting subunit 1 (MYPT1) phosphorylation plays a central role in smooth muscle contraction. However, the physiological significance of MYPT1 phosphorylation at Thr696 catalyzed by ROCK in bladder smooth muscle remains controversial. We attempt to directly observe the quantitative protein expression of Rho A/ROCK and phosphorylation of MYPT1 at Thr696 after carbachol administration in rat bladder smooth muscle cells (RBMSCs). Primary cultured smooth muscle cells were obtained from rat bladders. The effects of both concentration and time-course induced by the muscarinic agonist carbachol were investigated by assessing the expression of Rho A/ROCK and MYPT1 phosphorylation at Thr696 using Western blot. In the dose-course studies, carbachol showed significant increase in phosphorylation of MYPT1 at Thr696 (p-MYPT1) from concentrations of 15-100 μM based on Western blot results (p < 0.05, ANOVA test). In the time-course studies, treatment of cells with 15 μM of carbachol significantly enhanced the expression of p-MYPT1 from 3 to 15 h (p < 0.05, ANOVA test) and induced the expression of Rho A from 10 to 120 min (p < 0.05, ANOVA test). Carbachol can induce the expression of ROCK pathway, leading to MYPT1 phosphorylation at Thr696 and thereby sustained RBSMCs contraction.
Roles of Polyuria and Hyperglycemia on Bladder Dysfunction in Diabetes
Xiao, Nan; Wang, Zhiping; Huang, Yexiang; Daneshgari, Firouz; Liu, Guiming
2014-01-01
Purpose Diabetes mellitus (DM) causes diabetic bladder dysfunction (DBD). We aimed to identify the pathogenic roles of polyuria and hyperglycemia on DBD in rats. Materials and Methods Seventy-two female Sprague-Dawley rats were divided: age-matched controls (control), sham urinary diversion (sham), urinary diversion (UD), streptozotocin-induced diabetes after sham UD (DM), streptozotocin-induced diabetes after UD (UD+DM), and 5% sucrose-induced diuresis after sham UD (DIU). UD was performed by ureterovaginostomy 10d before DM induction. Animals were evaluated 20 wks after DM or diuresis induction. We measured 24-hr drinking and voiding volumes and cystometry (CMG). Bladders were harvested for quantification of smooth muscle, urothelium, and collagen. We measured nitrotyrosine and manganese superoxide dismutase (MnSOD) in bladder. Results Diabetes and diuresis caused increases in drinking volume, voiding volume and bladder weight. Bladder weights decreased in the UD and UD+DM groups. Intercontractile intervals, voided volume, and compliance increased in the DIU and DM groups, decreased in the UD, and further decreased in the UD+DM group. The total cross-sectional tissue, smooth muscle and urothelium areas increased in the DIU and DM groups, and decreased in the UD and UD+DM groups. As percentages of total tissue area, collagen decreased in the DIU and DM groups, and increased in the UD and UD+DM groups, and smooth muscle and urothelium decreased in the UD and UD+DM groups. Nitrotyrosine and MnSOD increased in DM and UD+DM rats. Conclusions Polyuria induced bladder hypertrophy, while hyperglycemia induced substantial oxidative stress in the bladder, which may play a pathogenic role in late stage DBD. PMID:22999997
[A simple and efficient method for establishing a mouse model of orthotopic MB49 bladder cancer].
Liang, Zhong-kun; Zhang, Lin; Hu, Zhi-ming; Chen, Zhong; Huang, Xin; Shi, Xiang-hua; Tan, Wan-long; Gao, Ji-min
2009-04-01
To establish a simple and efficient method for establishing a mouse model of orthotopic superficial bladder cancer. C57BL/6 mice were anesthetized with sodium pentobarbital and catheterized with modified IV catheter (24 G). The mice were intravesically pretreated with HCl and then with NaOH, and after washing the bladders with phosphate-buffered saline (PBS), 100 microl (1 x 10(7)) MB49 cells were infused and allowed to incubate in the bladder for 2 h followed intravesical mitomycin C (MMC) administration. The tumor formation rate, survival, gross hematuria, and bladder weight were determined as the outcome variables, and the pathology of the bladders was observed. Instillation of MB49 tumor cells resulted in a tumor formation rates of 100% in all the pretreated groups while 0% in the control group without pretreatment. MMC significantly reduced the bladder weight as compared to PBS. We have successfully established a stable, reproducible, and reliable orthotopic bladder cancer model in mice.
Brumovsky, Pablo R; Seal, Rebecca P; Lundgren, Kerstin H; Seroogy, Kim B; Watanabe, Masahiko; Gebhart, G F
2013-06-01
VGLUTs, which are essential for loading glutamate into synaptic vesicles, are present in various neuronal systems. However, to our knowledge the expression of VGLUTs in neurons innervating the bladder has not yet been analyzed. We studied VGLUT1, VGLUT2 and VGLUT3 in mouse bladder neurons. We analyzed the expression of VGLUT1, VGLUT2 and calcitonin gene-related peptide by immunohistochemistry in the retrograde labeled primary afferent and autonomic neurons of BALB/c mice after injecting fast blue in the bladder wall. To study VGLUT3 we traced the bladder of transgenic mice, in which VGLUT3 is identified by enhanced green fluorescent protein detection. Most bladder dorsal root ganglion neurons expressed VGLUT2. A smaller percentage of neurons also expressed VGLUT1 or VGLUT3. Co-expression with calcitonin gene-related peptide was only observed for VGLUT2. Occasional VGLUT2 immunoreactive neurons were seen in the major pelvic ganglia. Abundant VGLUT2 immunoreactive nerves were detected in the bladder dome and trigone, and the urethra. VGLUT1 immunoreactive nerves were discretely present. We present what are to our knowledge novel data on VGLUT expression in sensory and autonomic neurons innervating the mouse bladder. The frequent association of VGLUT2 and calcitonin gene-related peptide in sensory neurons suggests interactions between glutamatergic and peptidergic neurotransmissions, potentially influencing commonly perceived sensations in the bladder, such as discomfort and pain. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Agis-Torres, Ángel; Recio, Paz; López-Oliva, María Elvira; Martínez, María Pilar; Barahona, María Victoria; Benedito, Sara; Bustamante, Salvador; Jiménez-Cidre, Miguel Ángel; García-Sacristán, Albino; Prieto, Dolores; Fernandes, Vítor S; Hernández, Medardo
2018-03-16
Nitric oxide (NO) and hydrogen sulfide (H 2 S) play a pivotal role in nerve-mediated relaxation of the bladder outflow region. In the bladder neck, a marked phosphodiesterase type 4 (PDE4) expression has also been described and PDE4 inhibitors, as rolipram, produce smooth muscle relaxation. This study investigates the role of PDE4 isoenzyme in bladder neck gaseous inhibitory neurotransmission. We used Western blot and double immunohistochemical staining for the detection of NPP4 (PDE4) and PDE4A and organ baths for isometric force recording to roflumilast and tadalafil, PDE4 and PDE5, respectively, inhibitors in pig and human samples. Endogenous H 2 S production measurement and electrical field stimulation (EFS) were also performed. A rich PDE4 and PDE4A expression was observed mainly limited to nerve fibers of the smooth muscle layer of both species. Moreover, roflumilast produced a much more potent smooth muscle relaxation than that induced by tadalafil. In porcine samples, H 2 S generation was diminished by H 2 S and NO synthase inhibition and augmented by roflumilast. Relaxations elicited by EFS were potentiated by roflumilast. These results suggest that PDE4, mainly PDE4A, is mostly located within nerve fibers of the pig and human bladder neck, where roflumilast produces a powerful smooth muscle relaxation. In pig, the fact that roflumilast increases endogenous H 2 S production and EFS-induced relaxations suggests a modulation of PDE4 on NO- and H 2 S-mediated inhibitory neurotransmission.
Eberli, Daniel; Horst, Maya; Mortezavi, Ashkan; Andersson, Karl-Erik; Gobet, Rita; Sulser, Tullio; Simon, Hans-Uwe; Salemi, Souzan
2018-05-24
To explore whether autophagy plays a role in the remodeling of bladder smooth muscle cells (SMCs) in children with neurogenic lower urinary tract dysfunction (NLUTD), we investigated the effect of autophagy in NLUTD in the paediatric population. Bladder biopsies were taken from children with NLUTD and healthy donors as controls. Samples were labeled with the SMC markers calponin, smoothelin, and the autophagy proteins LC3, ATG5, and Beclin1. The contractile ability of bladder derived SMCs was investigated. ATG5 gene and protein was upregulated in NLUTD muscle tissue compared to normal bladder. NLUTD muscle exhibited a punctated immunostaining pattern for LC3 in a subset of the SMCs, confirming the accumulation of autophagosomes. Pronounced elevation of ATG5 in the SMC in NLUTD tissue was associated with a downregulation of the key contractile proteins smoothelin and calponin. Pharmacological blocking of autophagy completely stopped the cells growth in normal bladder SMCs. Inhibition of autophagy in the NLUTD SMCs, with already elevated levels of ATG5, resulted in a reduction of ATG5 protein expression to the basal level found in normal controls. Our study suggests that autophagy is an important factor affecting the remodeling of SMCs and the alteration of functionality in bladder smooth muscle tissue in the NLUTD. Since autophagy can be influenced by oral medication, this finding might lead to novel strategies preventing the deterioration of NLUTD muscle. © 2018 Wiley Periodicals, Inc.
Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-injured Rat Bladders.
Imamura, Tetsuya; Shimamura, Mitsuru; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Silwal Gautam, Sudha; Ishizuka, Osamu
2018-05-08
The ability to repair damaged urinary bladders through the application of bone marrow-derived cells is in the earliest stages of development. We investigated the application of bone marrow-derived cells to repair radiation-injured bladders. We used a three-dimensional (3D) bioprinting robot system to biofabricate bone marrow-derived cell structures. We then determined if the biofabricated structures could restore the tissues and functions of radiation-injured bladders. The bladders of female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2-Gy once a week for 5 weeks. Adherent and proliferating bone marrow-derived cells harvested from the femurs of male 17-week-old green fluorescence protein-transfected Tg-SD rats were cultured in collagen-coated flasks. Bone marrow-derived cell spheroids were formed in 96-well plates. Three layers of spheroids were assembled by the bioprinter onto a 9x9 microneedle array. The assembled spheroids were perfusion cultured for 7 days, and then the microneedle array was removed. Two weeks after the last radiation treatment, the biofabricated structures were transplanted into an incision on the anterior wall of the bladders (n=10). Control rats received the same surgery but without the biofabricated structures (sham-structure, n=12). At 2 and 4 weeks after surgery, the sham-structure control bladder tissues exhibited disorganized smooth muscle layers, decreased nerve cells, and significant fibrosis with increased presence of fibrosis-marker P4HB-positive cells and hypoxia-marker HIF1α-positive cells. The transplanted structures survived within the recipient tissues, and blood vessels extended within them from the recipient tissues. The bone marrow-derived cells in the structures differentiated into smooth muscle cells and formed smooth muscle clusters. The recipient tissues near the transplanted structures had distinct smooth muscle layers and reconstructed nerve cells, and only minimal fibrosis with decreased presence of P4HB- and HIF1α-positive cells. At 4 weeks after surgery, the sham-structure control rats exhibited significant urinary frequency symptoms with irregular and short voiding intervals, and low micturition volumes. In contrast, the structure-transplanted rats had regular micturition with longer voiding intervals and higher micturition volumes compared to the control rats. Further, the residual volume of the structure-transplanted rats was lower than for the controls. Therefore, transplantation of biofabricated bone marrow-derived cell structures reconstructed functional bladders.
Yu, Weiqun; Sun, Xiaofeng; Robson, Simon C.; Hill, Warren G.
2013-01-01
Bladder dysfunction characterized by abnormal bladder smooth muscle (BSM) contractions is pivotal to the disease process in overactive bladder, urge incontinence, and spinal cord injury. Purinergic signaling comprises one key pathway in modulating BSM contractility, but molecular mechanisms remain unclear. Here we demonstrate, using myography, that activation of P2Y6 by either UDP or a specific agonist (MRS 2693) induced a sustained increase in BSM tone (up to 2 mN) in a concentration-dependent manner. Notably, activation of P2Y6 enhanced ATP-mediated BSM contractile force by up to 45%, indicating synergistic interactions between P2X and P2Y signaling. P2Y6-activated responses were abolished by phospholipase C (PLC) and inositol trisphosphate (IP3) receptor antagonists U73122 and xestospongin C, demonstrating involvement of the PLC/IP3 signal pathway. Mice null for Entpd1, an ectonucleotidase on BSM, demonstrated increased force generation on P2Y6 activation (150%). Thus, in vivo perturbations to purinergic signaling resulted in altered P2Y6 activity and bladder contractility. We conclude that UDP, acting on P2Y6, regulates BSM tone and in doing so selectively maximizes P2X1-mediated contraction forces. This novel neurotransmitter pathway may play an important role in urinary voiding disorders characterized by abnormal bladder motility.—Yu, W., Sun, X., Robson, S. C., Hill, W. G. Extracellular UDP enhances P2X-mediated bladder smooth muscle contractility via P2Y6 activation of the phospholipase C/inositol trisphosphate pathway. PMID:23362118
What are the origins and relevance of spontaneous bladder contractions? ICI-RS 2017.
Drake, Marcus J; Fry, Christopher H; Hashitani, Hikaru; Kirschner-Hermanns, Ruth; Rahnama'i, Mohammad S; Speich, John E; Tomoe, Hikaru; Kanai, Anthony J; McCloskey, Karen D
2018-01-23
Storage phase bladder activity is a counter-intuitive observation of spontaneous contractions. They are potentially an intrinsic feature of the smooth muscle, but interstitial cells in the mucosa and the detrusor itself, as well as other muscular elements in the mucosa may substantially influence them. They are identified in several models explaining lower urinary tract dysfunction. A consensus meeting at the International Consultation on Incontinence Research Society (ICI-RS) 2017 congress considered the origins and relevance of spontaneous bladder contractions by debating which cell type(s) modulate bladder spontaneous activity, whether the methodologies are sufficiently robust, and implications for healthy and abnormal lower urinary tract function. The identified research priorities reflect a wide range of unknown aspects. Cellular contributions to spontaneous contractions in detrusor smooth muscle are still uncertain. Accordingly, insight into the cellular physiology of the bladder wall, particularly smooth muscle cells, interstitial cells, and urothelium, remains important. Upstream influences, such as innervation, endocrine, and paracrine factors, are particularly important. The cellular interactions represent the key understanding to derive the integrative physiology of organ function, notably the nature of signalling between mucosa and detrusor layers. Indeed, it is still not clear to what extent spontaneous contractions generated in isolated preparations mirror their normal and pathological counterparts in the intact bladder. Improved models of how spontaneous contractions influence pressure generation and sensory nerve function are also needed. Deriving approaches to robust evaluation of spontaneous contractions and their influences for experimental and clinical use could yield considerable progress in functional urology. © 2018 Wiley Periodicals, Inc.
Scherr, Douglas S
2014-02-01
Bladder cancer is one of the few cancers that have been linked to carcinogens in the environment and tobacco smoke. Of the carcinogens tested in mouse chemical carcinogenesis models, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) is one that reproducibly causes high-grade, invasive cancers in the urinary bladder, but not in any other tissues. However, the basis for such a high-level tissue-specificity has not been explored. Using mutagenesis in lacI (Big Blue™) mice, we show here that BBN is a potent mutagen and it causes high-level of mutagenesis specifically in the epithelial cells (urothelial) of the urinary bladder. After a 2-6-week treatment of 0.05% BBN in the drinking water, mutagenesis in urothelial cells of male and female mice was about two orders of magnitude greater than the spontaneous mutation background. In contrast, mutagenesis in smooth muscle cells of the urinary bladder was about five times lower than in urothelial tissue. No appreciable increase in mutagenesis was observed in kidney, ureter, liver or forestomach. In lacI (Big Blue™) rats, BBN mutagenesis was also elevated in urothelial cells, albeit not nearly as profoundly as in mice. This provides a potential explanation as to why rats are less prone than mice to the formation of aggressive form of bladder cancer induced by BBN. Our results suggest that the propensity to BBN-triggered mutagenesis of urothelial cells underlies its heightened susceptibility to this carcinogen and that mutagenesis induced by BBN represents a novel model for initiation of bladder carcinogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.
Ion channels of the mammalian urethra
Kyle, Barry D
2014-01-01
The mammalian urethra is a muscular tube responsible for ensuring that urine remains in the urinary bladder until urination. In order to prevent involuntary urine leakage, the urethral musculature must be capable of constricting the urethral lumen to an extent that exceeds bladder intravesicular pressure during the urine-filling phase. The main challenge in anti-incontinence treatments involves selectively-controlling the excitability of the smooth muscles in the lower urinary tract. Almost all strategies to battle urinary incontinence involve targeting the bladder and as a result, this tissue has been the focus for the majority of research and development efforts. There is now increasing recognition of the value of targeting the urethral musculature in the treatment and management of urinary incontinence. Newly-identified and characterized ion channels and pathways in the smooth muscle of the urethra provides a range of potential therapeutic targets for the treatment of urinary incontinence. This review provides a summary of the current state of knowledge of the ion channels discovered in urethral smooth muscle cells that regulate their excitability. PMID:25483582
Zupančič, Daša; Kreft, Mateja Erdani; Romih, Rok
2014-01-01
Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research.
Do neural tube defects lead to structural alterations in the human bladder?
Pazos, Helena M F; Lobo, Márcio Luiz de P; Costa, Waldemar S; Sampaio, Francisco J B; Cardoso, Luis Eduardo M; Favorito, Luciano Alves
2011-05-01
Anencephaly is the most severe neural tube defect in human fetuses. The objective of this paper is to analyze the structure of the bladder in anencephalic human fetuses. We studied 40 bladders of normal human fetuses (20 male and 20 female, aged 14 to 23 WPC) and 12 bladders of anencephalic fetuses (5 male and 7 female, aged 18 to 22 WPC). The bladders were removed and processed by routine histological techniques. Stereological analysis of collagen, elastic system fibers and smooth muscle was performed in sections. Data were expressed as volumetric density (Vv-%). The images were captured with Olympus BX51 microscopy and Olympus DP70 camera. The stereological analysis was done using the software Image Pro and Image J. For biochemical analysis, samples were fixed in acetone, and collagen concentrations were expressed as micrograms of hydroxyproline per mg of dry tissue. Means were statistically compared using the unpaired t-test (p<0.05). We observed a significant increase (p<0.0001) in the Vv of collagen in the bladders of anencephalic fetuses (69.71%) when compared to normal fetuses (52.74%), and a significant decrease (p<0.0001) in the Vv of smooth muscle cells in the bladders of anencephalic fetuses (23.96%) when compared to normal fetuses (38.35%). The biochemical analyses showed a higher concentration of total collagen in the bladders of anencephalic fetuses (37354 µg/mg) when compared to normal fetuses (48117 µg/mg, p<0.02). The structural alterations of the bladder found in this study may suggest the existence of functional alterations in the bladder of anencephalic human fetuses.
Ekman, Mari; Bhattachariya, Anirban; Dahan, Diana; Uvelius, Bengt; Albinsson, Sebastian; Swärd, Karl
2013-01-01
Recent work has uncovered a role of the microRNA (miRNA) miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-κB and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-κB activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-κB and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-κB and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to matrix remodeling and altered passive mechanical properties of the detrusor.
Philyppov, Igor B.; Paduraru, Oksana N.; Gulak, Kseniya L.; Skryma, Roman; Prevarskaya, Natalia; Shuba, Yaroslav M.
2016-01-01
TRPA1 is a Ca2+-permeable cation channel that is activated by painful low temperatures (˂17 °C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors – tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation. PMID:26935999
Philyppov, Igor B; Paduraru, Oksana N; Gulak, Kseniya L; Skryma, Roman; Prevarskaya, Natalia; Shuba, Yaroslav M
2016-01-01
TRPA1 is a Ca(2+)-permeable cation channel that is activated by painful low temperatures (<17°C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors - tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation.
Wang, Qiong; Xiao, Dong-Dong; Yan, Hao; Zhao, Yang; Fu, Shi; Zhou, Juan; Wang, Zhong; Zhou, Zhe; Zhang, Ming; Lu, Mu-Jun
2017-06-24
Due to the multilineage differentiation ability and paracrine role of adipose-derived stem cells (ASCs) for bladder defect repair, various scaffolds have been applied in combination with ASCs to promote bladder regeneration and restore bladder function. However, the low survival rate of ASCs and the difficulty of promoting bladder functional recovery are still unsolved. To explore these problems, we investigated the feasibility of a novel scaffold seeded with ASCs in a rat model of bladder augmentation. A novel autologous myofibroblast (AM)-silk fibroin (SF) scaffold was harvested after subcutaneously prefabricating the bladder acellular matrix grafts (BAMG) and SF by removing the BAMG. The AM-SF scaffolds were then seeded with ASCs (AM-SF-ASCs). Fifty percent supratrigonal cystectomies were performed followed by augmenting the cystectomized defects with AM-SF scaffolds or AM-SF-ASCs. The histological and functional assessments of bladders were performed 2, 4, and 12 weeks after surgery while the ASCs were tracked in vivo. For bladder tissue regeneration, immunofluorescence analysis revealed that AM-SF-ASCs (the experimental group) promoted better morphological regeneration of the urothelium, vessels, bladder smooth muscle, and nerve than AM-SF scaffolds (the control group). Regarding functional restoration, the AM-SF-ASC group exhibited higher bladder compliance and relatively normal micturition pattern compared to the AM-SF group. In addition, a certain number of surviving ASCs could be found in vivo 12 weeks after implantation, and some of them had differentiated into smooth muscle cells. The AM-SF scaffolds with ASCs could rapidly promote bladder morphological regeneration and improved bladder urinary function. In addition, the bag-shaped structure of the AM-SF scaffold can improve the survival of ASCs for at least 12 weeks. This strategy of AM-SF-ASCs has a potential to repair large-scale bladder defects in the clinic in the future.
Guan, Na N; Svennersten, Karl; de Verdier, Petra J; Wiklund, N Peter; Gustafsson, Lars E
2017-02-01
The proximal urethra and urinary bladder trigone play important roles in continence. We have previously shown that PGD 2 is released from guinea pig bladder urothelium/suburothelium and can inhibit detrusor contractile responses. We presently wished to investigate PGD 2 actions in guinea pig out-flow region and the distribution of DP 1 /DP 2 receptors. The effects of PGD 2 on urothelium-intact trigone and proximal urethra contractility were studied in organ bath experiments. Expression of DP 1 /DP 2 receptor proteins was analysed by western blot. Immunohistochemistry was used to identify distribution of DP 1 /DP 2 receptors. PGD 2 in a dose-dependent manner inhibited trigone contractions induced by electrical field stimulation (EFS) and inhibited spontaneous contractions of the proximal urethra. PGD 2 was equally (trigone) or slightly less potent (urethra) compared with PGE 2 . Expression of DP 1 and DP 2 receptors was found in male guinea pig bladder trigone, neck and proximal urethra. In the trigone and proximal urethra, DP 1 receptors were found on the membrane of smooth muscle cells and weak immunoreactivty was observed in the urothelium. DP 2 receptors were distributed more widespread, weakly and evenly in the urothelium and smooth muscles. Inhibitory effects by PGD 2 on motor activity of guinea pig trigone and proximal urethra are consistent with finding DP 1 and DP 2 receptors located in the urothelium and smooth muscle cells of the trigone and proximal urethra, and PGD 2 may therefore be a modulator of the bladder out-flow region, possibly having a function in regulation of micturition and a role in overactive bladder syndrome. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Nishizawa, Koji; Nishiyama, Hiroyuki; Oishi, Shinya; Tanahara, Noriko; Kotani, Hirokazu; Mikami, Yoshiki; Toda, Yoshinobu; Evans, Barry J; Peiper, Stephen C; Saito, Ryoichi; Watanabe, Jun; Fujii, Nobutaka; Ogawa, Osamu
2010-09-01
We previously reported that the expression of CXC chemokine receptor-4 (CXCR4) was upregulated in invasive bladder cancers and that the small peptide T140 was a highly sensitive antagonist for CXCR4. In this study, we identified that CXCR4 expression was induced in high-grade superficial bladder tumors, including carcinoma in situ and invasive bladder tumors. To visualize the bladder cancer cells using urinary sediments from the patients and chemically induced mouse bladder cancer model, a novel fluorescent CXCR4 antagonist TY14003 was developed, that is a T140 derivative. TY14003 could label bladder cancer cell lines expressing CXCR4, whereas negative-control fluorescent peptides did not label them. When labeling urinary sediments from patients with invasive bladder cancer, positive-stained cells were identified in all patients with bladder cancer and positive urine cytology but not in controls. Although white blood cells in urine were also labeled with TY14003, they could be easily discriminated from urothelial cells by their shape and size. Finally, intravesical instillation of TY14003 into mouse bladder, using N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer model, demonstrated that fluorescent signals were detected in the focal areas of bladder of all mice examined at 12 weeks of BBN drinking by confocal microscopy and fluorescent endoscopy. On the contrary, all the normal bladders were found to be negative for TY14003 staining. In conclusion, these results indicate that TY14003 is a promising diagnostic tool to visualize small or flat high-grade superficial bladder cancer.
THE EFFECT OF SMOOTH MUSCLE ON THE INTERCELLULAR SPACES IN TOAD URINARY BLADDER
DiBona, Donald R.; Civan, Mortimer M.
1970-01-01
Phase microscopy of toad urinary bladder has demonstrated that vasopressin can cause an enlargement of the epithelial intercellular spaces under conditions of no net transfer of water or sodium. The suggestion that this phenomenon is linked to the hormone's action as a smooth muscle relaxant has been tested and verified with the use of other agents effecting smooth muscle: atropine and adenine compounds (relaxants), K+ and acetylcholine (contractants). Furthermore, it was possible to reduce the size and number of intercellular spaces, relative to a control, while increasing the rate of osmotic water flow. A method for quantifying these results has been developed and shows that they are, indeed, significant. It is concluded, therefore, that the configuration of intercellular spaces is not a reliable index of water flow across this epithelium and that such a morphologic-physiologic relationship is tenuous in any epithelium supported by a submucosa rich in smooth muscle. PMID:4915450
Urinary bladder organ hypertrophy is partially regulated by Akt1-mediated protein synthesis pathway.
Qiao, Li-Ya; Xia, Chunmei; Shen, Shanwei; Lee, Seong Ho; Ratz, Paul H; Fraser, Matthew O; Miner, Amy; Speich, John E; Lysiak, Jeffrey J; Steers, William D
2018-05-15
The present study aims to investigate the role of Akt in the regulation of urinary bladder organ hypertrophy caused by partial bladder outlet obstruction (pBOO). Male rats were surgically induced for pBOO. Real-time PCR and western blot were used to examine the levels of mRNA and protein. A phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was used to inhibit the activity of endogenous Akt. The urinary bladder developed hypertrophy at 2 weeks of pBOO. The protein but not mRNA levels of type I collagen and α-smooth muscle actin (αSMA) were increased in pBOO bladder when compared to sham control. The phosphorylation (activation) levels of Akt1 (p-Ser 473 ), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E-BP1 were also increased in pBOO bladder. LY294002 treatment reduced the phosphorylation levels of Akt1 and 4E-BP1, and the protein levels of type I collagen and αSMA in pBOO bladder. The mRNA and protein levels of proliferating cell nuclear antigen (PCNA) were increased in pBOO bladder, and PCNA up-regulation occurred in urothelial not muscular layer. LY294002 treatment had no effect on the mRNA and protein levels of PCNA in pBOO bladder. LY294002 treatment partially reduced the bladder weight caused by pBOO. pBOO-induced urinary bladder hypertrophy is attributable to fibrosis, smooth muscle cellular hypertrophy, and urothelium cell hyper-proliferation. Akt1-mediated protein synthesis in pBOO bladder contributes to type I collagen and αSMA but not PCNA up-regulation. Target of Akt1 is necessary but not sufficient in treatment of urinary bladder hypertrophy following pBOO. Copyright © 2018 Elsevier Inc. All rights reserved.
Merrill, Liana
2014-01-01
Individuals with functional lower urinary tract disorders including interstitial cystitis (IC)/bladder pain syndrome (BPS) and overactive bladder (OAB) often report symptom (e.g., urinary frequency) worsening due to stress. One member of the transient receptor potential ion channel vanilloid family, TRPV4, has recently been implicated in urinary bladder dysfunction disorders including OAB and IC/BPS. These studies address the role of TRPV4 in stress-induced bladder dysfunction using an animal model of stress in male rats. To induce stress, rats were exposed to 7 days of repeated variate stress (RVS). Quantitative PCR data demonstrated significant (P ≤ 0.01) increases in TRPV4 transcript levels in urothelium but not detrusor smooth muscle. Western blot analyses of split urinary bladders (i.e., urothelium and detrusor) showed significant (P ≤ 0.01) increases in TRPV4 protein expression levels in urothelial tissues but not detrusor smooth muscle. We previously showed that RVS produces bladder dysfunction characterized by decreased bladder capacity and increased voiding frequency. The functional role of TRPV4 in RVS-induced bladder dysfunction was evaluated using continuous, open outlet intravesical infusion of saline in conjunction with administration of a TRPV4 agonist, GSK1016790A (3 μM), a TRPV4 antagonist, HC067047 (1 μM), or vehicle (0.1% DMSO in saline) in control and RVS-treated rats. Bladder capacity, void volume, and intercontraction interval significantly decreased following intravesical instillation of GSK1016790A in control rats and significantly (P ≤ 0.01) increased following administration of HC067047 in RVS-treated rats. These results demonstrate increased TRPV4 expression in the urothelium following RVS and that TRPV4 blockade ameliorates RVS-induced bladder dysfunction consistent with the role of TRPV4 as a promising target for bladder function disorders. PMID:24965792
GENE EXPRESSION DOSE-RESPONSE IN THE MOUSE BLADDER FOLLOWING EXPOSURE TO ARSENATE IN DRINKING WATER
The association between drinking water exposures to inorganic arsenic and life-threatening tumors in the human is strongest for bladder cancer. Moreover, a working model for the pathogenesis of human bladder cancer has been developed. To investigate the mode of action for inorgan...
Neural Mechanisms Underlying Lower Urinary Tract Dysfunction
Ogawa, Teruyuki; Miyazato, Minoru; Kitta, Takeya; Furuta, Akira; Chancellor, Michael B.; Tyagi, Pradeep
2014-01-01
This article summarizes anatomical, neurophysiological, and pharmacological studies in humans and animals to provide insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract and alterations in these mechanisms in lower urinary tract dysfunction. The functions of the lower urinary tract, to store and periodically release urine, are dependent on the activity of smooth and striated muscles in the bladder, urethra, and external urethral sphincter. During urine storage, the outlet is closed and the bladder smooth muscle is quiescent. When bladder volume reaches the micturition threshold, activation of a micturition center in the dorsolateral pons (the pontine micturition center) induces a bladder contraction and a reciprocal relaxation of the urethra, leading to bladder emptying. During voiding, sacral parasympathetic (pelvic) nerves provide an excitatory input (cholinergic and purinergic) to the bladder and inhibitory input (nitrergic) to the urethra. These peripheral systems are integrated by excitatory and inhibitory regulation at the levels of the spinal cord and the brain. Therefore, injury or diseases of the nervous system, as well as disorders of the peripheral organs, can produce lower urinary tract dysfunction, leading to lower urinary tract symptoms, including both storage and voiding symptoms, and pelvic pain. Neuroplasticity underlying pathological changes in lower urinary tract function is discussed. PMID:24578802
Collagen content in the bladder of men with LUTS undergoing open prostatectomy: A pilot study.
Averbeck, Marcio A; De Lima, Nelson G; Motta, Gabriela A; Beltrao, Lauro F; Abboud Filho, Nury J; Rigotti, Clarice P; Dos Santos, William N; Dos Santos, Steven K J; Da Silva, Luis F B; Rhoden, Ernani L
2018-03-01
To evaluate the collagen content in the bladder wall of men undergoing open prostate surgery. From July 2014 to August 2016, men aged ≥ 50 years, presenting LUTS and undergoing open prostate surgery due to benign prostatic enlargement (BPE) or prostate cancer were prospectively enrolled. Preoperative assessment included validated questionnaires (IPSS and OAB-V8), lower urinary tract ultrasound, and urodynamics. Bladder biopsies were obtained during open prostatectomy for determination of collagen content (sirius red-picric acid stain; polarized light analysis). Collagen to smooth muscle ratio (C/M) in the detrusor was measured and its relationship with preoperative parameters was investigated. The level of significance was P < 0.05. Thirty-eight consecutive patients were included in this pilot study. Mean age was 66.36 ± 6.44 years and mean IPSS was 11.05 ± 8.72 points. Men diagnosed with diabetes mellitus (DM2) were found to have higher collagen content in the bladder wall when compared to non-diabetic patients (17.71 ± 6.82% vs 12.46 ± 5.2%, respectively; P = 0.024). Reduced bladder compliance was also marker for higher collagen content (P = 0.042). Bladder outlet obstruction (BOO) was not a predictor of increased collagen deposition in the bladder wall (P = 0.75). Patients with PVR ≥ 200 mL showed a higher collagen to smooth muscle ratio in the bladder wall (P = 0.036). DM2 and urodynamic parameters, such as increased PVR and reduced bladder compliance, were associated with higher collagen content in the bladder wall of men with LUTS. © 2017 Wiley Periodicals, Inc.
Duan, Liu Jian; Qi, Jun; Kong, Xiang Jie; Huang, Tao; Qian, Xiao Qiang; Xu, Ding; Liang, Jun Hao; Kang, Jian
2015-02-01
Bladder outlet obstruction (BOO) evokes urinary bladder wall remodeling significantly, including the phenotype shift of bladder smooth muscle cells (BSMCs) where transforming growth factor-beta1 (TGF-β1) plays a pivotal role given the emerging function of modulating cellular phenotype. miR-133 plays a role in cardiac and muscle remodeling, however, little is known about its roles in TGF-β1-induced BSMC hypertrophic and fibrotic response. Here, we verified BOO induced bladder wall remodeling and TGF-β1 expression mainly located in bladder endothelium. Furthermore, we uncovered miR-133a/b expression profile in BOO rats, and then explored its regulated effects on BSMCs' phenotypic shift. Our study found that miR-133 became down-regulated during rat bladder remodeling. Next, we sought to examine whether the expression of miR-133 was down-regulated in primary BSMCs in response to TGF-β1 stimulation and whether forced overexpression of miR-133 could regulate profibrotic TGF-β signaling. We found that stimulation of BSMCs with exogenous TGF-β1 of increasing concentrations resulted in a dose-dependent decrease of miR-133a/b levels and transfection with miR-133 mimics attenuated TGF-β1-induced α-smooth muscle actin, extracellular matrix subtypes and fibrotic growth factor expression, whereas it upregulated high molecular weight caldesmon expression compared with the negative control. Also, downregulation of p-Smad3, not p-Smad2 by miR-133 was detected. Additionally, miR-133 overexpression suppressed TGF-β1-induced BSMC hypertrophy and proliferation through influencing cell cycle distribution. Bioinformatics analyses predicted that connective tissue growth factor (CTGF) was the potential target of miR-133, and then binding to the 3'-untranslated region of CTGF was validated by luciferase reporter assay. These results reveal a novel regulator for miR-133 to modulate TGF-β1-induced BSMC phenotypic changes by targeting CTGF through the TGF-β-Smad3 signaling pathway. A novel antifibrotic functional role for miR-133 is presented which may represent a potential target for diagnostic and therapeutic strategies in bladder fibrosis. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodges, G.M.; Carr, K.E.; Hume, S.P.
A broad overview has been compiled of the literature on the effects of radiation on urinary bladder and on selected cell surface markers that may give information on the pathobiological status of the urinary bladder urothelium. Scanning electron microscopy and immunogold labelling have been used in this study which examines the early (6h to 12 day) radiation response of the mouse urinary bladder following whole-body neutron irradiation. Experimentally, after 5 Gy neutron irradiation, changes in the urothelium include surface morphological abnormalities and enhanced concanavalin A surface binding. These changes were most obvious 1 to 5 days post-irradiation, but lessened inmore » their extent from 5 to 12 days after treatment.« less
Blood-urine barrier formation in mouse urinary bladder development.
Jezernik, K; Pipan, N
1993-04-01
Formation of the blood-urine permeability barrier in differentiating mouse transitional urothelium was studied. It was established that the development of superficial cell barrier is a two-phase process: beginning with formation of the tight junctions, followed by formation of fusiform vesicles and asymmetric apical plasma membranes. Fusiform vesicles differentiate during days 15 and 17 of gestation and fuse with the apical plasmalemma. Thus a thick membrane is formed before the excretion of hypertonic urine into the embryonic bladder. Through some degenerative superficial cells slough between fetal day 17 and the day of birth, the bladder epithelium in mice does not lack an effective permeability barrier.
Parajuli, Shankar P.; Zheng, Yun-Min; Levin, Robert; Wang, Yong-Xiao
2016-01-01
ABSTRACT Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions. PMID:27101440
Sadananda, P; Chess-Williams, R; Burcher, E
2008-01-01
Background and purpose: The bladder urothelium is now known to have active properties. Our aim was to investigate the contractile properties of the urinary mucosa in response to the tachykinin neurokinin A (NKA) and carbachol. Experimental approach: Discrete concentration–response curves for carbachol and NKA were obtained in matched strips of porcine detrusor, mucosa and intact bladder, suspended in organ baths. The effects of inhibitors and tachykinin receptor antagonists were studied on NKA-mediated contractions in mucosal strips. Intact sections of bladder and experimental strips were processed for histology and immunohistochemistry. Key results: All types of strips contracted to both carbachol and NKA. Mucosal responses to NKA (pD2 7.2) were higher than those in intact strips and were inhibited by the NK2 receptor antagonist SR48968 (pKB 9.85) but not the NK1 receptor antagonist SR140333, tetrodotoxin or indomethacin. Immunostaining for smooth muscle actin and vimentin occurred under the urothelium and on blood vessels. Desmin immunostaining and histological studies showed only sparse smooth muscle to be present in the mucosal strips. Removal of smooth muscle remnants from mucosal strips did not alter the responses to NKA. Conclusions and implications: This study has shown both functional and histological evidence for contractile properties of the mucosa, distinct from the detrusor. Mucosal contractions to NKA appear to be directly mediated via NK2 receptors. The main cell type mediating mucosal contractions is suggested to be suburothelial myofibroblasts. Mucosal contractions may be important in vivo for matching the luminal surface area to bladder volume. PMID:18264120
COMBINED USE OF α-ADRENERGIC AND MUSCARINIC ANTAGONISTS FOR THE TREATMENT OF VOIDING DYSFUNCTION
RUGGIERI, MICHAEL R.; BRAVERMAN, ALAN S.; PONTARI, MICHEL A.
2012-01-01
Purpose We provide an overview of the medical literature supporting the combined use of muscarinic and α-adrenergic antagonist therapy for the treatment of voiding dysfunction. Materials and Methods The MEDLINE database (1966 to 2004) of the United States National Library of Medicine was searched for pertinent studies. Results Although the mechanism of action of α-adrenergic antagonist therapy for voiding dysfunction has traditionally been assumed to be relaxation of the periurethral, prostatic and bladder neck smooth muscle, substantial evidence supports action at extraprostatic sites involved in micturition, including the bladder dome smooth muscle, peripheral ganglia, spinal cord and brain. Likewise the mechanism of action of anticholinergic therapy has been traditionally assumed to be inhibition of the M3 muscarinic receptor subtypes that mediate normal bladder contractions. However, M2 receptor mediates hypertrophied bladder contractions and there is evidence for an M2 component to the suprasacral control of voiding. Conclusions Based on the physiology of α-adrenergic and muscarinic receptors the inhibition of each one would be expected to be more beneficial than that of either alone because they would work on 2 components of detrusor function. Patients who would likely benefit from this combination therapy are men with lower urinary tract symptoms, women with urgency/frequency syndrome (overactive bladder), patients with uninhibited bladder contractions due to neurogenic bladder, and patients with pelvic pain and voiding symptoms, ie interstitial cystitis and chronic prostatitis/chronic pelvic pain syndrome. PMID:16217275
Pak, K. J.; Ostrom, R. S.; Matsui, M.
2010-01-01
We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg−1) 2–24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC50 value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 µM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M2 function is enhanced following streptozotocin treatment. PMID:20349044
Pak, K J; Ostrom, R S; Matsui, M; Ehlert, F J
2010-05-01
We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg(-1)) 2-24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC(50) value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 microM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M(2) function is enhanced following streptozotocin treatment.
Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L.; Daaka, Yehia; Girón, Jorge A.
2014-01-01
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract. PMID:25036370
Saldaña, Zeus; De la Cruz, Miguel A; Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L; Daaka, Yehia; Girón, Jorge A
2014-01-01
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.
Role of potassium ion channels in detrusor smooth muscle function and dysfunction
Petkov, Georgi V.
2013-01-01
Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K+ channels, including voltage-gated K+ (KV) channels, Ca2+-activated K+ (KCa) channels, inward-rectifying ATP-sensitive K+ (Kir, KATP) channels, and two-pore-domain K+ (K2P) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K+ channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K+ channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K+ channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K+ channels in DSM in health and disease, with special emphasis on current advancements in the field. PMID:22158596
Estimation of bladder wall location in ultrasound images.
Topper, A K; Jernigan, M E
1991-05-01
A method of automatically estimating the location of the bladder wall in ultrasound images is proposed. Obtaining this estimate is intended to be the first stage in the development of an automatic bladder volume calculation system. The first step in the bladder wall estimation scheme involves globally processing the images using standard image processing techniques to highlight the bladder wall. Separate processing sequences are required to highlight the anterior bladder wall and the posterior bladder wall. The sequence to highlight the anterior bladder wall involves Gaussian smoothing and second differencing followed by zero-crossing detection. Median filtering followed by thresholding and gradient detection is used to highlight as much of the rest of the bladder wall as was visible in the original images. Then a 'bladder wall follower'--a line follower with rules based on the characteristics of ultrasound imaging and the anatomy involved--is applied to the processed images to estimate the bladder wall location by following the portions of the bladder wall which are highlighted and filling in the missing segments. The results achieved using this scheme are presented.
Hoogenkamp, Henk R; Pot, Michiel W; Hafmans, Theo G; Tiemessen, Dorien M; Sun, Yi; Oosterwijk, Egbert; Feitz, Wout F; Daamen, Willeke F; van Kuppevelt, Toin H
2016-10-01
The field of regenerative medicine has developed promising techniques to improve current neobladder strategies used for radical cystectomies or congenital anomalies. Scaffolds made from molecularly defined biomaterials are instrumental in the regeneration of tissues, but are generally confined to small flat patches and do not comprise the whole organ. We have developed a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold, mimicking the shape of the whole bladder, and with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized, with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. Human and porcine bladder urothelial and smooth muscle cells were able to attach to the scaffold and maintained their phenotype in vitro. The closed luminal side and the porous outside of the scaffold facilitated the formation of an urothelial lining and infiltration of smooth muscle cells, respectively. The cells aligned according to the provided scaffold template. The technology used is highly adjustable (shape, size, materials) and may be used as a starting point for research to an off-the-shelf medical device suitable for neobladders. In this study, we describe the development of a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold mimicking the shape of the whole bladder with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. The closed luminal surface and the porous exterior of the scaffold facilitated the formation of a urothelial lining and infiltration of smooth muscle cells, respectively. The applied technology is highly adjustable (shape, size, materials) and can be the starting point for research to an off-the-shelf medical device suitable for neobladders. Copyright © 2016. Published by Elsevier Ltd.
Merrill, Liana; Girard, Beatrice M.; May, Victor; Vizzard, Margaret A.
2013-01-01
These studies examined transcriptional and translational plasticity of three transient receptor potential (TRP) channels (TRPA1, TRPV1, TRPV4) with established neuronal and non-neuronal expression and functional roles in the lower urinary tract. Mechanosensor and nociceptor roles in either physiological or pathological lower urinary tract states have been suggested for TRPA1, TRPV1 and TRPV4. We have previously demonstrated neurochemical, organizational and functional plasticity in micturition reflex pathways following induction of urinary bladder inflammation using the antineoplastic agent, cyclophosphamide (CYP). More recently, we have characterized similar plasticity in micturition reflex pathways in a transgenic mouse model with chronic urothelial overexpression (OE) of nerve growth factor (NGF) and in a transgenic mouse model with deletion of vasoactive intestinal polypeptide (VIP). In addition, the micturition reflex undergoes postnatal maturation that may also reflect plasticity in urinary bladder TRP channel expression. Thus, we examined plasticity in urinary bladder TRP channel expression in diverse contexts using a combination of quantitative, real-time PCR and western blotting approaches. We demonstrate transcriptional and translational plasticity of urinary bladder TRPA1, TRPV1 and TRVP4 expression. Although the functional significance of urinary bladder TRP channel plasticity awaits further investigation, these studies demonstrate context-(inflammation, postnatal development, NGF-OE, VIP deletion) and tissue-dependent (urothelium + suburothelium, detrusor) plasticity. PMID:22865090
Shoae-Hassani, Alireza; Sharif, Shiva; Seifalian, Alexander M; Mortazavi-Tabatabaei, Seyed Abdolreza; Rezaie, Sassan; Verdi, Javad
2013-10-01
To investigate manufacturing smooth muscle cells (SMCs) for regenerative bladder reconstruction from differentiation of endometrial stem cells (EnSCs), as the recent discovery of EnSCs from the lining of women's uteri, opens up the possibility of using these cells for tissue engineering applications, such as building up natural tissue to repair prolapsed pelvic floors as well as building urinary bladder wall. Human EnSCs that were positive for cluster of differentiation 146 (CD146), CD105 and CD90 were isolated and cultured in Dulbecco's modified Eagle/F12 medium supplemented with myogenic growth factors. The myogenic factors included: transforming growth factor β, platelet-derived growth factor, hepatocyte growth factor and vascular endothelial growth factor. Differentiated SMCs on bioabsorbable polyethylene-glycol and collagen hydrogels were checked for SMC markers by real-time reverse-transcriptase polymerase chain reaction (RT-PCR), western blot (WB) and immunocytochemistry (ICC) analyses. Histology confirmed the growth of SMCs in the hydrogel matrices. The myogenic growth factors decreased the proliferation rate of EnSCs, but they differentiated the human EnSCs into SMCs more efficiently on hydrogel matrices and expressed specific SMC markers including α-smooth muscle actin, desmin, vinculin and calponin in RT-PCR, WB and ICC experiments. The survival rate of cultures on the hydrogel-coated matrices was significantly higher than uncoated cultures. Human EnSCs were successfully differentiated into SMCs, using hydrogels as scaffold. EnSCs may be used for autologous bladder wall regeneration without any immunological complications in women. Currently work is in progress using bioabsorbable nanocomposite materials as EnSC scaffolds for developing urinary bladder wall tissue. © 2013 The Authors. BJU International © 2013 BJU International.
Convective Water Vapor Energy for Lower Urinary Tract Symptoms/Benign Prostatic Hyperplasia.
DeLay, Kenneth Jackson; McVary, Kevin T
2016-08-01
Benign prostatic hyperplasia (BPH) refers to proliferation of smooth muscle and epithelial cells within the transition zone of the prostate. Half of men over 40 develop histologic BPH. About half of men with BPH develop an enlarged prostate gland, called benign prostatic enlargement; among these, about half develop some degree of bladder outlet obstruction. Bladder outlet obstruction and changes in smooth muscle tone and resistance may result in lower urinary tract symptoms, including storage disturbances (such as daytime urinary urgency, frequency, and nocturia) and voiding disturbances (such as urinary hesitancy, weak urinary stream, straining to void, and prolonged voiding). Copyright © 2016 Elsevier Inc. All rights reserved.
Bladder smooth muscle organ culture preparation maintains the contractile phenotype
Wang, Tanchun; Kendig, Derek M.; Chang, Shaohua; Trappanese, Danielle M.; Chacko, Samuel
2012-01-01
Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes. PMID:22896042
New Amniotic Membrane Based Biocomposite for Future Application in Reconstructive Urology
Tworkiewicz, Jakub; Kowalczyk, Tomasz; van Breda, Shane V.; Tyloch, Dominik; Kloskowski, Tomasz; Bodnar, Magda; Skopinska-Wisniewska, Joanna; Marszałek, Andrzej; Frontczak-Baniewicz, Malgorzata; Kowalewski, Tomasz A.; Drewa, Tomasz
2016-01-01
Objective Due to the capacity of the amniotic membrane (Am) to support re-epithelisation and inhibit scar formation, Am has a potential to become a considerable asset for reconstructive urology i.e., reconstruction of ureters and urethrae. The application of Am in reconstructive urology is limited due to a poor mechanical characteristic. Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance, without affecting its unique bioactivity profile. This study evaluated biocomposite material composed of Am and nanofibers as a graft for urinary bladder augmentation in a rat model. Material and Methods Sandwich-structured biocomposite material was constructed from frozen Am and covered on both sides with two-layered membranes prepared from electrospun poly-(L-lactide-co-E-caprolactone) (PLCL). Wistar rats underwent hemicystectomy and bladder augmentation with the biocomposite material. Results Immunohistohemical analysis (hematoxylin and eosin [H&E], anti-smoothelin and Masson’s trichrome staining [TRI]) revealed effective regeneration of the urothelial and smooth muscle layers. Anti-smoothelin staining confirmed the presence of contractile smooth muscle within a new bladder wall. Sandwich-structured biocomposite graft material was designed to regenerate the urinary bladder wall, fulfilling the requirements for normal bladder tension, contraction, elasticity and compliance. Mechanical evaluation of regenerated bladder wall conducted based on Young’s elastic modulus reflected changes in the histological remodeling of the augmented part of the bladder. The structure of the biocomposite material made it possible to deliver an intact Am to the area for regeneration. An unmodified Am surface supported regeneration of the urinary bladder wall and the PLCL membranes did not disturb the regeneration process. Conclusions Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance without affecting its unique bioactivity profile. PMID:26766636
Hayashi, Tomoko; Crain, Brian; Corr, Maripat; Chan, Michael; Cottam, Howard B; Maj, Roberto; Barberis, Alcide; Leoni, Lorenzo; Carson, Dennis A
2013-01-01
Objective To study the immune response caused by the intravesical administration of the immunomodulator R-837 in various formulations and to estimate its therapeutic potential for bladder cancer. Methods Female C57BL/6 mice were intravesically treated with different formulations of R-837, a Toll-like receptor 7 agonist used for treating genital warts and skin malignancy. The tested formulation mixtures contained different ratios of lactic acid, a thermosensitive poloxamer polymer (Lutrol F127) and 2-(hydroxypropyl)-β-cyclodextrin (HPβCD). Induction of tumor necrosis factor α (TNFα) and keratinocyte-derived chemokine (KC) was analyzed by Luminex microbeads assay. The therapeutic potential of intravesical administration of R-837 was assessed in an orthotopic, syngeneic mouse model of bladder cancer using MB49 cells. Results Intravesical administration of R-837 in lactic acid alone induced systemic and bladder TNFα and KC in a dose-dependent manner. Formulations including poloxamer decreased systemic absorption of R-837 and significantly reduced systemic and local induction of KC. Addition of HPβCD in the poloxamer formulation particularly reversed levels of systemic and local levels of TNFα and KC. Histological examination showed that poloxamer-HPβCD formulation allowed infiltration of mononuclear cells into urothelium and lamina propria. In studies using orthotopic mouse bladder cancer, the tumor loads in R-837-treated mice were significantly lower than those in vehicle-treated or non-treated mice. Conclusion The optimized poloxamer-HPβCD formulation of R-837 shows therapeutic potential for bladder cancer while avoiding adverse side-effects. PMID:20337728
NASA Astrophysics Data System (ADS)
Fradet, Yves; Islam, Nazrul; Boucher, Lucie; Parent-Vaugeois, Carmen; Tardif, Marc
1987-10-01
Three mouse monoclonal antibodies (mAbs), which define a highly restricted antigen, were obtained by simultaneous immunizations with superficial papillary bladder tumor cells and mouse polyclonal serum against normal urothelium. The antigen was detected by the avidin/biotin/peroxidase method in 30/44 superficial bladder tumors (68%) but in only 4/27 infiltrating urothelial cancers (with much less intensity). No normal adult or fetal tissues tested expressed the antigen, including normal urothelium from 40 individuals, 13 of whom had a bladder tumor positive for the antigen. Only 1 of 45 nonbladder tumors showed some reactivity with one of the three mAbs. Serological tests on a large panel of human cancer cell lines and normal cultured cells were negative. The antigen is highly stable and well preserved on paraffin-embedded tissues. Electrophoretic transfer blot experiments with fresh tumor extracts showed that all three mAbs react with a determinant on a component of 300,000 Mr (pI 9.5) and 62,000 Mr (pI 6.5). The antigen shows polymorphic expression at the cellular level on tissue sections and also at a molecular level on immunoblots where the two bands are differentially detected on extracts of a series of tumors but are not visualized on normal urothelium extracts. The characteristics of this antigenic system suggest that it may provide some insights about the biology of bladder cancer. Specific detection of the antigen on 70% of superficial bladder tumors with normal cytology may be useful for their diagnosis and follow-up.
ATP release from bladder urothelium and serosa in a rat model of partial bladder outlet obstruction.
Shiina, Kazuhiro; Hayashida, Ken-Ichiro; Ishikawa, Kazuo; Kawatani, Masahito
2016-01-01
Overactive bladder is one of the major health problem especially in elderly people. Adenosine triphosphate (ATP) is released from urinary bladder cells and acts as a smooth muscle contraction and sensory signal in micturition but little is known about the role of ATP release in the pathophysiology of overactive bladder. To assess the relationship between ATP and overactive bladder, we used a partial bladder outlet obstruction (pBOO) model in rats. The bladder caused several changes by pBOO: An increase in bladder weight, hypertrophy of sub-urothelium and sub-serosal area, and frequent non-voiding bladder contraction during urine storage. Basal ATP release from urothelium and serosa of pBOO rats was significantly higher than that of normal rats. Distentioninduced ATP release from urothelium of normal and pBOO rats had no significant change. However, distention-induced ATP release from serosa of pBOO rats was higher than that of normal. These findings may identify ATP especially released from serosa as one of causes of non-voiding contractions and overactive bladder symptoms.
Layer-dependent role of collagen recruitment during loading of the rat bladder wall.
Cheng, Fangzhou; Birder, Lori A; Kullmann, F Aura; Hornsby, Jack; Watton, Paul N; Watkins, Simon; Thompson, Mark; Robertson, Anne M
2018-04-01
In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance.
Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.
Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio
2012-02-01
Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.
Girard, Beatrice M; Malley, Susan E; Braas, Karen M; May, Victor; Vizzard, Margaret A
2010-11-01
Urothelium-specific overexpression of nerve growth factor (NGF) in the urinary bladder of transgenic mice stimulates neuronal sprouting or proliferation in the urinary bladder, produces urinary bladder hyperreflexia, and results in increased referred somatic hypersensitivity. Additional NGF-mediated changes might contribute to the urinary bladder hyperreflexia and pelvic hypersensitivity observed in these transgenic mice such as upregulation of neuropeptide/receptor systems. Chronic overexpression of NGF in the urothelium was achieved through the use of a highly urothelium-specific, uroplakin II promoter. In the present study, we examined pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), and associated receptor (PAC1, VPAC1, VPAC2) transcripts or protein expression in urothelium and detrusor smooth muscle and lumbosacral dorsal root ganglia in NGF-overexpressing and littermate wildtype mice using real-time quantitative reverse transcription-polymerase chain reaction and immunohistochemical approaches. Results demonstrate upregulation of PAC1 receptor transcript and PAC1-immunoreactivity in urothelium of NGF-OE mice whereas PACAP transcript and PACAP-immunoreactivity were decreased in urothelium of NGF-OE mice. In contrast, VPAC1 receptor transcript was decreased in both urothelium and detrusor smooth muscle of NGF-OE mice. VIP transcript expression and immunostaining was not altered in urinary bladder of NGF-OE mice. Changes in PACAP, VIP, and associated receptor transcripts and protein expression in micturition pathways resemble some, but not all, changes observed after induction of urinary bladder inflammation known to involve NGF production.
Morales-Orcajo, Enrique; Siebert, Tobias; Böl, Markus
2018-05-25
The mechanical properties of the urinary bladder wall are important to understand its filling-voiding cycle in health and disease. However, much remains unknown about its mechanical properties, especially regarding regional heterogeneities and wall microstructure. The present study aimed to assess the regional differences in the mechanical properties and microstructure of the urinary bladder wall. Ninety (n=90) samples of porcine urinary bladder wall (ten samples from nine different locations) were mechanically and histologically analysed. Half of the samples (n=45) were equibiaxially tested within physiological conditions, and the other half, matching the sample location of the mechanical tests, was frozen, cryosectioned, and stained with Picro-Sirius red to differentiate smooth muscle cells, extracellular matrix, and fat. The bladder wall shows a non-linear stress-stretch relationship with hysteresis and softening effects. Regional differences were found in the mechanical response and in the microstructure. The trigone region presents higher peak stresses and thinner muscularis layer compared to the rest of the bladder. Furthermore, the ventral side of the bladder presents anisotropic characteristics, whereas the dorsal side features perfect isotropic behaviour. This response matches the smooth muscle fibre bundle orientation within the tunica muscularis. This layer, comprising approximately 78% of the wall thickness, is composed of two fibre bundle arrangements that are cross-oriented, one with respect to the other, varying the angle between them across the organ. That is, the ventral side presents a 60°/120° cross-orientation structure, while the muscle bundles were oriented perpendicular in the dorsal side. In the present study, we demonstrate that the mechanical properties and the microstructure of the urinary bladder wall are heterogeneous across the organ. The mechanical properties and the microstructure of the urinary bladder wall within nine specific locations matching explicitly the mechanical and structural variations have been examined. On the one hand, the results of this study contribute to the understanding of bladder mechanics and thus to their functional understanding of bladder filling and voiding. On the other hand, they are relevant to the fields of constitutive formulation of bladder tissue, whole bladder mechanics, and bladder-derived scaffolds i.e., tissue-engineering grafts. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Malykhina, Anna P; Lei, Qi; Chang, Shaohua; Pan, Xiao-Qing; Villamor, Antonio N; Smith, Ariana L; Seftel, Allen D
2013-05-15
Lower urinary tract symptoms (LUTS) and erectile dysfunction (ED) are common problems in aging males worldwide. The objective of this work was to evaluate the effects of bladder neck nerve damage induced by partial bladder outlet obstruction (PBOO) on sensory innervation of the corpus cavernosum (CC) and CC smooth muscle (CCSM) using a rat model of PBOO induced by a partial ligation of the bladder neck. Retrograde labeling technique was used to label dorsal root ganglion (DRG) neurons that innervate the urinary bladder and CC. Contractility and relaxation of the CCSM was studied in vitro, and expression of nitric oxide synthase (NOS) was evaluated by Western blotting. Concentration of the sensory neuropeptides substance P (SP) and calcitonin gene-related peptide was measured by ELISA. Partial obstruction of the bladder neck caused a significant hypertrophy of the urinary bladders (2.5-fold increase at 2 wk). Analysis of L6-S2 DRG sections determined that sensory ganglia received input from both the urinary bladder and CC with 5-7% of all neurons double labeled from both organs. The contractile responses of CC muscle strips to KCl and phenylephrine were decreased after PBOO, followed by a reduced relaxation response to nitroprusside. A significant decrease in neuronal NOS expression, but not in endothelial NOS or protein kinase G (PKG-1), was detected in the CCSM of the obstructed animals. Additionally, PBOO caused some impairment to sensory nerves as evidenced by a fivefold downregulation of SP in the CC (P ≤ 0.001). Our results provide evidence that PBOO leads to the impairment of bladder neck afferent innervation followed by a decrease in CCSM relaxation, downregulation of nNOS expression, and reduced content of sensory neuropeptides in the CC smooth muscle. These results suggest that nerve damage in PBOO may contribute to LUTS-ED comorbidity and trigger secondary changes in the contraction/relaxation mechanisms of CCSM.
GENE EXPRESSION CHANGES IN MOUSE BLADDER TISSUE IN RESPONSE TO INORGANIC ARSENIC
Chronic human exposures to high arsenic concentrations are associated with lung, skin, and bladder cancer. Considerable controversy exists concerning arsenic mode of action and low dose extrapolation. This investigation was designed to identify dose-response changes in gene expre...
How does the urothelium affect bladder function in health and disease?
Birder, L.A.; Ruggieri, M.; Takeda, M.; van Koeveringe, G.; Veltkamp, S.A.; Korstanje, C.; Parsons, B.A.; Fry, C.H.
2011-01-01
The urothelium is a multifunctional tissue that not only acts as a barrier between the vesical contents of the lower urinary tract and the underlying tissues but also acts as a sensory organ by transducing physical and chemical stresses to the attendant afferent nervous system and underlying smooth muscle. This review will consider the nature of the stresses that the urothelium can transduce; the transmitters that mediate the transduction process; and how lower urinary pathologies, including overactive bladder syndrome, painful bladder syndrome and bacterial infections, are associated with alterations to this sensory system. In particular, the role of muscarinic receptors and the TRPV channels system will be discussed in this context. The urothelium also influences the contractile state of detrusor smooth muscle, both through modifying its contractility and the extent of spontaneous activity; potential pathways are discussed. The potential role that the urothelium may play in bladder underactivity is introduced, as well as potential biomarkers for the condition that may cross the urothelium to the urine. Finally consideration is given to vesical administration of therapeutic agents that influence urinary tract function and how the properties of the urothelium may determine the effectiveness of this mode of delivery. PMID:22275289
Inorganic arsenic (AsD is a known human bladder carcinogen. The objective of this study was to examine the concentration dependence of the genomic response to ASi in the urinary bladders of mice. C57BL/6J mice were exposed for 1 or 12 weeks to arsenate in drinking water at concen...
Levin, Robert M; Hudson, Alan P
2004-08-01
Bladder dysfunction following partial outlet obstruction is a frequent consequence of benign prostatic hyperplasia and an increasingly common problem given the aging of the general population. Recent studies from this and other groups have begun to elucidate the molecular bases for the well described physiological malfunctions that characterize this clinical entity. We summarized and synthesized that information. Using modern methods of molecular genetics, including real-time polymerase chain reaction, real-time reverse transcriptase-polymerase chain reaction and others, as well as traditional experimental techniques such as electron microscopy we and others examined the transcriptional profile, morphology, etc of bladder smooth muscle mitochondria in experimental models of outlet obstruction. Data from many studies have demonstrated that aberrant gene expression in the mitochondrial and mitochondria related nuclear genetic systems underlies the loss of compliance and other attributes of bladder dysfunction following outlet obstruction. Such aberrant transcriptional characteristics engender loss of function in the electron transport and oxidative phosphorylation systems. Morphological studies of mitochondria in the animal model systems support this conclusion. In large part the loss of function in bladder smooth muscle following outlet obstruction results from the attenuation of mitochondrial energy production. In this article we reviewed and synthesized all available experimental observations relevant to this problem and we suggest future lines of inquiry that should prove fruitful in developing new strategies to treat the condition.
A porcine model of bladder outlet obstruction incorporating radio-telemetered cystometry.
Shaw, Matthew B; Herndon, Claude D; Cain, Mark P; Rink, Richard C; Kaefer, Martin
2007-07-01
To present a novel porcine model of bladder outlet obstruction (BOO) with a standardized bladder outlet resistance and real-time ambulatory radio-telemetered cystometry, as BOO is a common condition with many causes in both adults and children, with significant morbidity and occasional mortality, but attempts to model this condition in many animal models have the fundamental problem of standardising the degree of outlet resistance. BOO was created in nine castrated male pigs by dividing the mid-urethra; outflow was allowed through an implanted bladder drainage catheter containing a resistance valve, allowing urine to flow across the valve only when a set pressure differential was generated across the valve. An implantable radio-telemetered pressure sensor monitored the pressure within the bladder and abdominal cavity, and relayed this information to a remote computer. Four control pigs had an occluded bladder drainage catheter and pressure sensor placed, but were allowed to void normally through the native urethra. Intra-vesical pressure was monitored by telemetry, while the resistance valve was increased weekly, beginning with 2 cmH2O and ultimately reaching 10 cmH2O. The pigs were assessed using conventional cystometry under anaesthesia before death, and samples conserved in formalin for haematoxylin and eosin staining. The pigs had radio-telemetered cystometry for a median of 26 days. All telemetry implants functioned well for the duration of the experiment, but one pig developed a urethral fistula and was excluded from the study. With BOO the bladder mass index (bladder mass/body mass x 10 000) increased from 9.7 to 20 (P = 0.004), with a significant degree of hypertrophy of the detrusor smooth muscle bundles. Obstructed bladders were significantly less compliant than control bladders (8.3 vs 22.1 mL/cmH2O, P = 0.03). Telemetric cystometry showed that there was no statistically significance difference in mean bladder pressure between obstructed and control pigs (4.8 vs 6.7 cmH2O, P = 0.7), but that each void was longer in the pigs with BOO. This new model of BOO provides a method of reliably and precisely defining the bladder outlet resistance; it induces the changes classically seen with BOO, including increased bladder mass, increased smooth muscle bundle size and decreased compliance.
Adam, Rosalyn M; Eaton, Samuel H; Estrada, Carlos; Nimgaonkar, Ashish; Shih, Shu-Ching; Smith, Lois E H; Kohane, Isaac S; Bägli, Darius; Freeman, Michael R
2004-12-15
Application of mechanical stimuli has been shown to alter gene expression in bladder smooth muscle cells (SMC). To date, only a limited number of "stretch-responsive" genes in this cell type have been reported. We employed oligonucleotide arrays to identify stretch-sensitive genes in primary culture human bladder SMC subjected to repetitive mechanical stimulation for 4 h. Differential gene expression between stretched and nonstretched cells was assessed using Significance Analysis of Microarrays (SAM). Expression of 20 out of 11,731 expressed genes ( approximately 0.17%) was altered >2-fold following stretch, with 19 genes induced and one gene (FGF-9) repressed. Using real-time RT-PCR, we tested independently the responsiveness of 15 genes to stretch and to platelet-derived growth factor-BB (PDGF-BB), another hypertrophic stimulus for bladder SMC. In response to both stimuli, expression of 13 genes increased, 1 gene (FGF-9) decreased, and 1 gene was unchanged. Six transcripts (HB-EGF, BMP-2, COX-2, LIF, PAR-2, and FGF-9) were evaluated using an ex vivo rat model of bladder distension. HB-EGF, BMP-2, COX-2, LIF, and PAR-2 increased with bladder stretch ex vivo, whereas FGF-9 decreased, consistent with expression changes observed in vitro. In silico analysis of microarray data using the FIRED algorithm identified c-jun, AP-1, ATF-2, and neurofibromin-1 (NF-1) as potential transcriptional mediators of stretch signals. Furthermore, the promoters of 9 of 13 stretch-responsive genes contained AP-1 binding sites. These observations identify stretch as a highly selective regulator of gene expression in bladder SMC. Moreover, they suggest that mechanical and growth factor signals converge on common transcriptional regulators that include members of the AP-1 family.
Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.
Horst, Maya; Milleret, Vincent; Noetzli, Sarah; Gobet, Rita; Sulser, Tullio; Eberli, Daniel
2017-04-01
Poly(lactic-co-glycolic acid) (PLGA) based biomaterials for soft tissue engineering have inherent disadvantages, such as a relative rigidity and a limited variability in the mechanical properties and degradation rates. In this study, a novel electrospun biomaterial based on degradable polyesterurethane (PEU) (DegraPol ® ) was investigated for potential use for bladder engineering in vitro and in vivo. Hybrid microfibrous PEU and PLGA scaffolds were produced by direct electrospinning of the polymer onto a bladder acellular matrix. The scaffold morphology of the scaffold was analyzed, and the biological performance was tested in vitro and in vivo using a rat cystoplasty model. Anatomical and functional outcomes after implantation were analyzed macroscopically, histologically and by cystometry, respectively. Scanning electron microscopy analysis showed that PEU samples had a lower porosity (p < 0.001) and were slightly thinner (p = 0.009) than the PGLA samples. Proliferation and survival of the seeded smooth muscle cells in vitro were comparable on PEU and PLGA scaffolds. After 8 weeks in vivo, the PEU scaffolds exhibited no shrinkage. However, cystometry of the reconstructed bladders exhibited a slightly greater functional bladder capacity in the PLGA group. Morphometric analyses revealed significantly better tissue healing (p < 0.05) and, in particular, better smooth muscle regeneration, as well as a lower rate of inflammatory responses at 8 weeks in the PEU group. Collectively, the results indicated that PEU-hybrid scaffolds promote bladder tissue formation with excellent tissue integration and a low inflammatory reaction in vivo. PEU is a promising biomaterial, particularly with regard to functional tissue engineering of the bladder and other hollow organs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 658-667, 2017. © 2015 Wiley Periodicals, Inc.
Menthol Inhibits Detrusor Contractility Independently of TRPM8 Activation
Ramos-Filho, Antonio Celso Saragossa; Shah, Ajay; Augusto, Taize Machado; Barbosa, Guilherme Oliveira; Leiria, Luiz Osorio; de Carvalho, Hernandes Faustino; Antunes, Edson; Grant, Andrew Douglas
2014-01-01
Agonists such as icilin and menthol can activate the cool temperature-sensitive ion channel TRPM8. However, biological responses to menthol may occur independently of TRPM8 activation. In the rodent urinary bladder, menthol facilitates the micturition reflex but inhibits muscarinic contractions of the detrusor smooth muscle. The site(s) of TRPM8 expression in the bladder are controversial. In this study we investigated the regulation of bladder contractility in vitro by menthol. Bladder strips from wild type and TRPM8 knockout male mice (25–30 g) were dissected free and mounted in organ baths. Isometric contractions to carbachol (1 nM–30 µM), CaCl2 (1 µM to 100 mM) and electrical field stimulation (EFS; 8, 16, 32 Hz) were measured. Strips from both groups contracted similarly in response to both carbachol and EFS. Menthol (300 µM) or nifedipine (1 µM) inhibited carbachol and EFS-induced contractions in both wild type and TRPM8 knockout bladder strips. Incubation with the sodium channel blocker tetrodotoxin (1 µM), replacement of extracellular sodium with the impermeant cation N-Methyl-D-Glucamine, incubation with a cocktail of potassium channel inhibitors (100 nM charybdotoxin, 1 µM apamin, 10 µM glibenclamide and 1 µM tetraethylammonium) or removal of the urothelium did not affect the inhibitory actions of menthol. Contraction to CaCl2 was markedly inhibited by either menthol or nifedipine. In cultured bladder smooth muscle cells, menthol or nifedipine abrogated the carbachol or KCl-induced increases in [Ca2+]i. Intravesical administration of menthol increased voiding frequency while decreasing peak voiding pressure. We conclude that menthol inhibits muscarinic bladder contractions through blockade of L-type calcium channels, independently of TRPM8 activation. PMID:25375115
[Nitric oxide pathway and female lower urinary tract. Physiological and pathophysiological role].
Gamé, X; Rischmann, P; Arnal, J-F; Malavaud, B
2013-09-01
The aim was to review the literature on nitric oxide and female lower urinary tract. A literature review through the PubMed library until December, 31 2012 was carried out using the following keywords: lower urinary tract, bladder, urethra, nervous central system, innervation, female, women, nitric oxide, phosphodiesterase, bladder outlet obstruction, urinary incontinence, overactive bladder, urinary tract infection. Two nitric oxide synthase isoforms, the neuronal (nNOS) and the endothelial (eNOS), are constitutively expressed in the lower urinary tract. Nevertheless, nNOS is mainly expressed in the bladder neck and the urethra. In the bladder, NO modulates the afferent neurons activity. In pathological condition, inducible NOS expression induces an increase in detrusor contractility and bladder wall thickness and eNOS facilitates Escherichia coli bladder wall invasion inducing recurrent urinary tract infections. In the urethra, NO play a major role in smooth muscle cells relaxation. The NO pathway plays a major role in the female lower urinary tract physiology and physiopathology. While it acts mainly on bladder outlet, in pathological condition, it is involved in bladder dysfunction occurrence. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Kanika, Nirmala; Chang, Jinsook; Tong, Yuehong; Tiplitsky, Scott; Lin, Juan; Yohannes, Elizabeth; Tar, Moses; Chance, Mark; Christ, George J.; Melman, Arnold; Davies, Kelvin
2010-01-01
Objectives To investigate the role that oxidative stress plays in the development of diabetic cystopathy. Materials and methods Comparative gene expression in the bladder of non-diabetic and streptozotocin (STZ)-induced 2-month-old diabetic rats was carried out using microarray analysis. Evidence of oxidative stress was investigated in the bladder by analyzing glutathione S-transferase activity, lipid peroxidation, and carbonylation and nitrosylation of proteins. The activity of protein degradation pathways was assessed using western blot analysis. Results Analysis of global gene expression showed that detrusor smooth muscle tissue of STZ-induced diabetes undergoes significant enrichment in targets involved in the production or regulation of reactive oxygen species (P = 1.27 × 10−10). The microarray analysis was confirmed by showing that markers of oxidative stress were all significantly increased in the diabetic bladder. It was hypothesized that the sequelae to oxidative stress would be increased protein damage and apoptosis. This was confirmed by showing that two key proteins involved in protein degradation (Nedd4 and LC3B) were greatly up-regulated in diabetic bladders compared to controls by 12.2 ± 0.76 and 4.4 ± 1.0-fold, respectively, and the apoptosis inducing protein, BAX, was up-regulated by 6.76 ± 0.76-fold. Conclusions Overall, the findings obtained in the present study add to the growing body of evidence showing that diabetic cystopathy is associated with oxidative damage of smooth muscle cells, and results in protein damage and activation of apoptotic pathways that may contribute to a deterioration in bladder function. PMID:21518418
Li, Yan; Lu, Ming; Alvarez-Lugo, Lery; Chen, Gang; Chai, Toby C
2017-04-01
We studied in vitro and in vivo response of primary mouse bladder urothelial cells (mBUC) and bladder urothelium to lipopolysaccharides (LPS), focusing on granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. Female C57BL/6 mBUC were exposed for 12 hr to differing concentrations of LPS (100 ng/ml to 10 µg/ml). mBUC were also exposed to a single dose of LPS (1 µg/ml) for 3, 6, 12 hr. Neutralizing GM-CSF antibody (0.1 μg/ml) was used block GM-CSF activity in vitro. In vivo experiments were performed, whereby, LPS (1 mg/ml) was instilled intravesically and left to dwell for 30 min followed by harvest of bladder urothelium 3 to 18 hr later. ELISA measured GM-CSF. qPCR quantitated mRNA for GM-CSF, vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α). RT-PCR was used to detect mRNA for GM-CSF, GM-CSFRα, and β in bladder tissues. Immunohistofluorescence and Western blots for GM-CSFRα were performed on bladder tissues. LPS induced a dose-dependent release of GM-CSF by mBUC. Mouse bladder urothelium did not express GM-CSF mRNA at baseline, but expressed GM-CSF mRNA 3 hr after in vivo LPS exposure, with GM-CSF mRNA expression disappearing 18 hr later. GM-CSFRα expression was confirmed in bladder urothelium. GM-CSF neutralizing antibody significantly diminished LPS-induced increases of VEGF and COX-2 mRNA expression. Urothelium and mBUC secreted GM-CSF as an early response to LPS. GM-CSF mediated downstream expression of VEGF and COX-2. Urothelial GM-CSF may function as a signaling mediator for both inflammation and pain transduction. Neurourol. Urodynam. 36:1020-1025, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Melman, Arnold; Zotova, Elena; Kim, Mimi; Arezzo, Joseph; Davies, Kelvin; DiSanto, Michael; Tar, Moses
2009-11-01
To provide sensitive physiological endpoints for the onset and long-term progression of deficits induced by diabetes mellitus (DM) in bladder and erectile function in male rats, and to evaluate parallel changes in urogenital and nerve function induced by hyperglycaemia over a protracted period as a model for chronic deficits in patients with diabetes. The study comprised in 877 male, 3-month-old, Fischer 344 rats; 666 were injected intraperitoneally with 35 mg/kg streptozotocin (STZ) and divided into insulin-treated and untreated diabetic groups. The rats were studied over 8 months and measurements made of both erectile and bladder function, as well as nerve conduction studies over the duration of the study. There was an early (first month) abnormality of both erectile and bladder function that persisted through the 8 months of the study. The erectile dysfunction was manifest as reduced intracavernous pressure/blood pressure ratio, and the bladder dysfunction as a persistent increase in detrusor overactivity with no detrusor decompensation. Insulin treatment prevented or modified the abnormality in each organ. Hyperglycaemia caused a progressive decrease in caudal nerve conduction velocity. The mean digital sensory and tibial motor nerve conduction velocity did not deteriorate over time. Correlation measurements of nerve and organ function were not consistent. The results of this extensive long-term study show early and profound effects of hyperglycaemia on the smooth muscle of the penis and bladder, that were persistent and stable in surviving rats over the 8 months. The physiological changes did not correlate well with neurological measurements of those organs. Significantly, diverse smooth-muscle cellular and subcellular events antedated the measured neurological manifestations of the hyperglycaemia by several months. Although autonomic diabetic neuropathy is a primary life-threatening complication of long-term diabetes in humans, this rat model of STZ-induced diabetes showed that the rapid onset of physiological manifestations was based on many molecular changes in the smooth muscle cells in this model of type 1 DM.
Localization of P2X receptor subtypes 2, 3 and 7 in human urinary bladder.
Svennersten, Karl; Hallén-Grufman, Katarina; de Verdier, Petra J; Wiklund, N Peter; Poljakovic, Mirjana
2015-08-08
Voiding dysfunctions are a common problem that has a severe negative impact on the quality of life. Today there is a need for new drug targets for these conditions. The role of ATP receptors in bladder physiology has been studied for some time, primarily in animal models. The aim of this work is to investigate the localization of the ATP receptors P2X2, P2X3 and P2X7 and their colocalization with vimentin and actin in the human urinary bladder. Immunohistochemical analysis was conducted on full-thickness bladder tissues from fundus and trigonum collected from 15 patients undergoing open radical cystectomy due to chronic cystitis, bladder cancer or locally advanced prostate cancer. Colocalization analyses were performed between the three different P2X subtypes and the structural proteins vimentin and actin. Specimens were examined using epifluorescence microscopy and correlation coefficients were calculated for each costaining as well as the mean distance from the laminin positive basal side of the urothelium to the vimentin positive cells located in the suburothelium. P2X2 was expressed in vimentin positive cells located in the suburothelium. Less distinct labelling of P2X2 was also observed in actin positive smooth muscle cells and in the urothelium. P2X3 was expressed in vimentin positive cells surrounding the smooth muscle, and in vimentin positive cells located in the suburothelium. Weaker P2X3 labelling was seen in the urothelium. P2X7 was expressed in the smooth muscle cells and the urothelium. In the suburothelium, cells double positive for P2X2 and vimentin where located closer to the urothelium while cells double positive for P2X3 and vimentin where located further from the urothelium. The results from this study demonstrate that there is a significant difference in the expression of the purinergic P2X2, P2X3 and P2X7 receptors in the different histological layers of the human urinary bladder.
DeAngelis, Anthony; Kuchel, George A.
2012-01-01
The prevalence of urinary symptoms increases with age and is a significant source of distress, morbidity, and expense in the elderly. Recent evidence suggests that symptoms in the aged may result from sensory dysfunction, rather than abnormalities of detrusor performance. Therefore, we employed a pressure/flow multichannel urethane-anesthetized mouse cystometry model to test the hypothesis that in vivo detrusor performance does not degrade with aging. Secondarily, we sought to evaluate sensory responsiveness to volume using pressure-volume data generated during bladder filling. Cystometric data from 2-, 12-, 22-, and 26-mo-old female C57BL6 mice were compared. All 2- and 12-mo-old mice, 66% of 22-mo-old mice, and 50% of 26-mo-old mice responded to continuous bladder filling with periodic reflex voiding. Abdominal wall contraction with voiding had a minimal contribution to expulsive pressure, whereas compliance pressure was a significant contributor. Maximum bladder pressure, estimated detrusor pressure, detrusor impulse (pressure-time integral), as well as indices of detrusor power and work, did not decrease with aging. Bladder precontraction pressures decreased, compliance increased, and nonvoiding contraction counts did not change with increasing age. Intervoid intervals, per-void volumes, and voiding flow rates increased with age. Calculations approximating wall stress during filling suggested loss of bladder volume sensitivity with increasing age. We conclude that aging is associated with an impaired ability to respond to the challenge of continuous bladder filling with cyclic voiding, yet among responsive animals, voiding detrusor contraction strength does not degrade with aging in this murine model. Furthermore, indirect measures suggest that bladder volume sensitivity is diminished. Thus, changes in homeostatic reserve and peripheral and/or central sensory mechanisms may be important contributors to aging-associated changes in bladder function. PMID:22204955
Effects of increased Kindlin-2 expression in bladder cancer stromal fibroblasts.
Wu, Jitao; Yu, Cuicui; Cai, Li; Lu, Youyi; Jiang, Lei; Liu, Chu; Li, Yongwei; Feng, Fan; Gao, Zhenli; Zhu, Zhe; Yu, Shengqiang; Yuan, Hejia; Cui, Yuanshan
2017-08-01
Kindlin-2 is a focal adhesion protein highly expressed in bladder cancer stromal fibroblasts. We investigated the prognostic significance of Kindlin-2 in bladder cancer stromal fibroblasts and evaluated the effects of Kindlin-2 on the malignant behaviors of tumor cells. Immunohistochemical staining of 203 paraffin-embedded bladder cancer tissues showed that Kindlin-2 expression correlated with advanced stage, high grade, and relapse of bladder cancer. Kaplan-Meier survival analysis demonstrated that patients exhibiting high Kindlin-2 expression had shorter survival times than those with low Kindlin-2 expression ( p < 0.01). Multivariate analysis revealed that high Kindlin-2 expression leads to poor prognosis in bladder cancer. Using cancer-associated fibroblasts (CAFs) isolated from human bladder cancer tissue, we observed that Kindlin-2 knockdown decreased CAFs activation, resulting in decreased expression of α-smooth muscle actin (α-SMA) and the extracellular matrix protein fibronectin. Kindlin-2 suppression also reduced CAF-induced bladder cancer cell migration and invasion. Moreover, we found that Kindlin-2 activates CAFs and promotes the invasiveness of bladder cancer cells by stimulating TGF-β-induced epithelial-mesenchymal transition. These results support targeting Kindlin-2 and the corresponding activated CAFs in bladder cancer therapy.
Aboushwareb, Tamer; Zhou, Ge; Deng, Fang-Ming; Turner, Chanda; Andersson, Karl-Erik; Tar, Moses; Zhao, Weixin; Melman, Arnold; D'Agostino, Ralph; Sun, Tung-Tien; Christ, George J
2009-01-01
The effects of deleting genes encoding uroplakins II (UPII) and III (UPIIIa) on mouse bladder physiology/dysfunction were studied in male and female wild type and knockout (KO) mice. UPII, UPIIIa, and WT mice were catheterized using previously described techniques. Continuous cystometry was conducted in conscious, freely moving animals. Bladder strips were harvested after animal sacrifice and pharmacological studies and EFS were conducted in an organ chamber. Histological studies were also carried on with H&E staining to identify differences among the three mouse types. These studies have revealed numerous alterations, some of which were apparently gender-specific. Nonvoiding contractions were common in both UPII and UPIIIa KO mice, although more severe in the former. In particular, the increased bladder capacity, micturition pressure and demonstrable nonvoiding contractions observed in the male UPII KO's, were reminiscent of an obstruction-like syndrome accompanied by evidence of emerging bladder decompensation, as reflected by an increased residual volume. Pharmacological studies revealed a modest, gender-specific reduction in sensitivity of isolated detrusor strips from UPII KO female mice to carbachol-induced contractions. A similar reduction was observed in UPIIIa KO female mice. Histological investigation showed urothelial hyperplasia in both UPII KO and UPIIIa KO mice, although again, apparently more severe in the former. These results confirm and extend previous work to indicate that urothelial defects due to uroplakin deficiency are associated with significant alterations in bladder function and further highlight the importance of the urothelium to bladder physiology/dysfunction.
Bladder leiomyoma presenting as dyspareunia: Case report and literature review.
Xin, Jun; Lai, Hai-Ping; Lin, Shao-Kun; Zhang, Qing-Quan; Shao, Chu-Xiao; Jin, Lie; Lei, Wen-Hui
2016-07-01
Leiomyoma of the bladder is a rare tumor arising from the submucosa. Most patients with bladder leiomyoma may present with urinary frequency or obstructive urinary symptoms. However, there are a few cases of bladder leiomyoma coexisting with uterine leiomyoma presenting as dyspareunia. We herein report an unusual case of coexisting bladder leiomyoma and uterine leiomyoma presenting as dyspareunia. A 44-year-old Asian female presented to urologist and complained that she had experienced dyspareunia over the preceding several months. A pelvic ultrasonography revealed a mass lesion located in the trigone of urinary bladder. The mass lesion was confirmed on contrast-enhanced computed tomography (CT). The CT scan also revealed a lobulated and enlarged uterus consistent with uterine leiomyoma. Then, the biopsies were then taken with a transurethral resection (TUR) loop and these biopsies showed a benign proliferation of smooth muscle in a connective tissue stroma suggestive of bladder leiomyoma. An open local excision of bladder leiomyoma and hysteromyomectomy were performed successfully. Histological examination confirmed bladder leiomyoma coexisting with uterine leiomyoma. This case highlights a rare presentation of bladder leiomyoma, dyspareunia, as the chief symptom in a patient who had coexisting uterine leiomyoma. Bladder leiomyomas coexisting with uterine leiomyomas are rare and can present with a wide spectrum of complaints including without symptoms, irritative symptoms, obstructive symptoms, or even dyspareunia.
How does the urothelium affect bladder function in health and disease? ICI-RS 2011.
Birder, L A; Ruggieri, M; Takeda, M; van Koeveringe, G; Veltkamp, S; Korstanje, C; Parsons, B; Fry, C H
2012-03-01
The urothelium is a multifunctional tissue that not only acts as a barrier between the vesical contents of the lower urinary tract and the underlying tissues but also acts as a sensory organ by transducing physical and chemical stresses to the attendant afferent nervous system and underlying smooth muscle. This review will consider the nature of the stresses that the urothelium can transduce; the transmitters that mediate the transduction process; and how lower urinary pathologies, including overactive bladder syndrome, painful bladder syndrome and bacterial infections, are associated with alterations to this sensory system. In particular, the role of muscarinic receptors and the TRPV channels system will be discussed in this context. The urothelium also influences the contractile state of detrusor smooth muscle, both through modifying its contractility and the extent of spontaneous activity; potential pathways are discussed. The potential role that the urothelium may play in bladder underactivity is introduced, as well as potential biomarkers for the condition that may cross the urothelium to the urine. Finally, consideration is given to vesical administration of therapeutic agents that influence urinary tract function and how the properties of the urothelium may determine the effectiveness of this mode of delivery. Copyright © 2012 Wiley Periodicals, Inc.
Afferent Nerve Regulation of Bladder Function in Health and Disease
de Groat, William C.; Yoshimura, Naoki
2012-01-01
The afferent innervation of the urinary bladder consists primarily of small myelinated (Aδ) and unmyelinated (C-fiber) axons that respond to chemical and mechanical stimuli. Immunochemical studies indicate that bladder afferent neurons synthesize several putative neurotransmitters, including neuropeptides, glutamic acid, aspartic acid, and nitric oxide. The afferent neurons also express various types of receptors and ion channels, including transient receptor potential channels, purinergic, muscarinic, endothelin, neurotrophic factor, and estrogen receptors. Patch-clamp recordings in dissociated bladder afferent neurons and recordings of bladder afferent nerve activity have revealed that activation of many of these receptors enhances neuronal excitability. Afferent nerves can respond to chemicals present in urine as well as chemicals released in the bladder wall from nerves, smooth muscle, inflammatory cells, and epithelial cells lining the bladder lumen. Pathological conditions alter the chemical and electrical properties of bladder afferent pathways, leading to urinary urgency, increased voiding frequency, nocturia, urinary incontinence, and pain. Neurotrophic factors have been implicated in the pathophysiological mechanisms underlying the sensitization of bladder afferent nerves. Neurotoxins such as capsaicin, resiniferatoxin, and botulinum neurotoxin that target sensory nerves are useful in treating disorders of the lower urinary tract. PMID:19655106
Sex steroid receptors in male human bladder: expression and biological function.
Chavalmane, Aravinda K; Comeglio, Paolo; Morelli, Annamaria; Filippi, Sandra; Fibbi, Benedetta; Vignozzi, Linda; Sarchielli, Erica; Marchetta, Matilde; Failli, Paola; Sandner, Peter; Saad, Farid; Gacci, Mauro; Vannelli, Gabriella B; Maggi, Mario
2010-08-01
In male, lower urinary tract symptoms (LUTS) have been associated, beside benign prostatic hyperplasia, to some unexpected comorbidities (hypogonadism, obesity, metabolic syndrome), which are essentially characterized by an unbalance between circulating androgens/estrogens. Within the bladder, LUTS are linked to RhoA/Rho-kinase (ROCK) pathway overactivity. To investigate the effects of changing sex steroids on bladder smooth muscle. ER α, ER β, GPR30/GPER1 and aromatase mRNA expression was analyzed in male genitourinary tract tissues, and cells isolated from bladder, prostate, and urethra. Estrogen and G1 effect on RhoA/ROCK signaling output like cell migration, gene expression, and cytoskeletal remodeling, and [Ca(2+) ](i) was also studied in hB cells. Contractile studies on bladder strips from castrated male rats supplemented with estradiol and testosterone was also performed. The effects of classical (ER α, ER β) and nonclassical (GPR30/GPER1) estrogen receptor ligands (17 β-estradiol and G1, respectively) and androgens on RhoA/ROCK-.mediated cell functions were studied in hB cells. Contractility studies were also performed in bladder strips from castrated male rats supplemented with testosterone or estradiol. Aromatase and sex steroid receptors, including GPR30, were expressed in human bladder and mediates several biological functions. Both 17 β-estradiol and G1 activated calcium transients and induced RhoA/ROCK signaling (cell migration, cytoskeleton remodeling and smooth muscle gene expression). RhoA/ROCK inhibitors blunted these effects. Estrogen-, but not androgen-supplementation to castrated rats increased sensitivity to the ROCK inhibitor, Y-27632 in isolated bladder strips. In hB cells, testosterone elicited effects similar to estrogen, which were abrogated by blocking its aromatization through letrozole. Our data indicate for the first time that estrogen-more than androgen-receptors up-regulate RhoA/ROCK signaling. Since an altered estrogen/androgen ratio characterizes conditions, such as aging, obesity and metabolic syndrome, often associated to LUTS, we speculate that a relative hyperestrogenism may induce bladder overactivity through the up-regulation of RhoA/ROCK pathway. © 2010 International Society for Sexual Medicine.
Tomechko, Sara E.; Liu, Guiming; Tao, Mingfang; Schlatzer, Daniela; Powell, C. Thomas; Gupta, Sanjay; Chance, Mark R.; Daneshgari, Firouz
2015-01-01
Diabetes mellitus is well known to cause bladder dysfunction; however, the molecular mechanisms governing this process and the effects on individual tissue elements within the bladder are poorly understood, particularly in type 2 diabetes. A shotgun proteomics approach was applied to identify proteins differentially expressed between type 2 diabetic (TallyHo) and control (SWR/J) mice in the bladder smooth muscle and urothelium, separately. We were able to identify 1760 nonredundant proteins from the detrusor smooth muscle and 3169 nonredundant proteins from urothelium. Pathway and network analysis of significantly dysregulated proteins was conducted to investigate the molecular processes associated with diabetes. This pinpointed ERK1/2 signaling as a key regulatory node in the diabetes-induced pathophysiology for both tissue types. The detrusor muscle samples showed diabetes-induced increased tissue remodeling-type events such as Actin Cytoskeleton Signaling and Signaling by Rho Family GTPases. The diabetic urothelium samples exhibited oxidative stress responses, as seen in the suppression of protein expression for key players in the NRF2-Mediated Oxidative Stress Response pathway. These results suggest that diabetes induced elevated inflammatory responses, oxidative stress, and tissue remodeling are involved in the development of tissue specific diabetic bladder dysfunctions. Validation of signaling dysregulation as a function of diabetes was performed using Western blotting. These data illustrated changes in ERK1/2 phosphorylation as a function of diabetes, with significant decreases in diabetes-associated phosphorylation in urothelium, but the opposite effect in detrusor muscle. These data highlight the importance of understanding tissue specific effects of disease process in understanding pathophysiology in complex disease and pave the way for future studies to better understand important molecular targets in reversing bladder dysfunction. PMID:25573746
Tomechko, Sara E; Liu, Guiming; Tao, Mingfang; Schlatzer, Daniela; Powell, C Thomas; Gupta, Sanjay; Chance, Mark R; Daneshgari, Firouz
2015-03-01
Diabetes mellitus is well known to cause bladder dysfunction; however, the molecular mechanisms governing this process and the effects on individual tissue elements within the bladder are poorly understood, particularly in type 2 diabetes. A shotgun proteomics approach was applied to identify proteins differentially expressed between type 2 diabetic (TallyHo) and control (SWR/J) mice in the bladder smooth muscle and urothelium, separately. We were able to identify 1760 nonredundant proteins from the detrusor smooth muscle and 3169 nonredundant proteins from urothelium. Pathway and network analysis of significantly dysregulated proteins was conducted to investigate the molecular processes associated with diabetes. This pinpointed ERK1/2 signaling as a key regulatory node in the diabetes-induced pathophysiology for both tissue types. The detrusor muscle samples showed diabetes-induced increased tissue remodeling-type events such as Actin Cytoskeleton Signaling and Signaling by Rho Family GTPases. The diabetic urothelium samples exhibited oxidative stress responses, as seen in the suppression of protein expression for key players in the NRF2-Mediated Oxidative Stress Response pathway. These results suggest that diabetes induced elevated inflammatory responses, oxidative stress, and tissue remodeling are involved in the development of tissue specific diabetic bladder dysfunctions. Validation of signaling dysregulation as a function of diabetes was performed using Western blotting. These data illustrated changes in ERK1/2 phosphorylation as a function of diabetes, with significant decreases in diabetes-associated phosphorylation in urothelium, but the opposite effect in detrusor muscle. These data highlight the importance of understanding tissue specific effects of disease process in understanding pathophysiology in complex disease and pave the way for future studies to better understand important molecular targets in reversing bladder dysfunction. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Kanika, Nirmala D; Chang, Jinsook; Tong, Yuehong; Tiplitsky, Scott; Lin, Juan; Yohannes, Elizabeth; Tar, Moses; Chance, Mark; Christ, George J; Melman, Arnold; Davies, Kelvin D
2011-05-01
• To investigate the role that oxidative stress plays in the development of diabetic cystopathy. • Comparative gene expression in the bladder of non-diabetic and streptozotocin (STZ)-induced 2-month- old diabetic rats was carried out using microarray analysis. • Evidence of oxidative stress was investigated in the bladder by analyzing glutathione S-transferase activity, lipid peroxidation, and carbonylation and nitrosylation of proteins. • The activity of protein degradation pathways was assessed using Western blot analysis. • Analysis of global gene expression showed that detrusor smooth muscle tissue of STZ-induced diabetes undergoes significant enrichment in targets involved in the production or regulation of reactive oxygen species (P = 1.27 × 10(-10)). The microarray analysis was confirmed by showing that markers of oxidative stress were all significantly increased in the diabetic bladder. • It was hypothesized that the sequelae to oxidative stress would be increased protein damage and apoptosis. • This was confirmed by showing that two key proteins involved in protein degradation (Nedd4 and LC3B) were greatly up-regulated in diabetic bladders compared to controls by 12.2 ± 0.76 and 4.4 ± 1.0-fold, respectively, and the apoptosis inducing protein, BAX, was up-regulated by 6.76 ± 0.76-fold. • Overall, the findings obtained in the present study add to the growing body of evidence showing that diabetic cystopathy is associated with oxidative damage of smooth muscle cells, and results in protein damage and activation of apoptotic pathways that may contribute to a deterioration in bladder function. © 2010 THE AUTHORS; BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.
Giuliani, S; Patacchini, R; Barbanti, G; Turini, D; Rovero, P; Quartara, L; Giachetti, A; Maggi, C A
1993-11-01
The tachykinin (NK2) receptor-mediating contraction of the human isolated bladder to NKA was investigated by studying the affinities of eight structurally different receptor-selective antagonists (linear peptides, cyclic peptides and pseudopeptides, nonpeptide NK2 receptor antagonists). The affinities of the antagonists were compared to those measured for the same ligands at the NK2 receptors previously characterized in the rabbit pulmonary artery and hamster trachea. In the presence of a cocktail of peptidase inhibitors (bestatin captopril and thiorphan, 1 microM each) no significant correlation was found between pA2 values measured in the human bladder vs. those measured in the other two NK2 receptor-bearing preparation. In the presence of the aminopeptidase inhibitor amastatin, however, pA2 values of linear antagonists bearing an N-terminal Asp residue MEN 10,207 and MEN 10,376 were significantly enhanced and these pA2 values were used for analysis; a significant correlation was found between pA2 values measured in the human urinary bladder and rabbit pulmonary artery. The pseudopeptide analog of NKA (4-10), MDL 28,564 which also bears a N-terminal Asp residue behaved as an agonist and its action was enhanced by amastatin. We conclude that the NK2 receptor-mediating contraction of the human urinary bladder smooth muscle is similar to that previously characterized in the rabbit pulmonary artery (NK2A receptor category); in the human bladder smooth muscle an amastatin-sensitive peptidase (possibly aminopeptidase A) limits biological activity of linear peptide derivatives of NKA bearing a N-terminal Asp residue.
McDonnell, Bronagh M; Buchanan, Paul J; Prise, Kevin M; McCloskey, Karen D
2018-01-01
Radiation-induced bladder toxicity is associated with radiation therapy for pelvic malignancies, arising from unavoidable irradiation of neighbouring normal bladder tissue. This study aimed to investigate the acute impact of ionizing radiation on the contractility of bladder strips and identify the radiation-sensitivity of the mucosa vs the detrusor. Guinea-pig bladder strips (intact or mucosa-free) received ex vivo sham or 20Gy irradiation and were studied with in vitro myography, electrical field stimulation and Ca2+-fluorescence imaging. Frequency-dependent, neurogenic contractions in intact strips were reduced by irradiation across the force-frequency graph. The radiation-difference persisted in atropine (1μM); subsequent addition of PPADs (100μM) blocked the radiation effect at higher stimulation frequencies and decreased the force-frequency plot. Conversely, neurogenic contractions in mucosa-free strips were radiation-insensitive. Radiation did not affect agonist-evoked contractions (1μM carbachol, 5mM ATP) in intact or mucosa-free strips. Interestingly, agonist-evoked contractions were larger in irradiated mucosa-free strips vs irradiated intact strips suggesting that radiation may have unmasked an inhibitory mucosal element. Spontaneous activity was larger in control intact vs mucosa-free preparations; this difference was absent in irradiated strips. Spontaneous Ca2+-transients in smooth muscle cells within tissue preparations were reduced by radiation. Radiation affected neurogenic and agonist-evoked bladder contractions and also reduced Ca2+-signalling events in smooth muscle cells when the mucosal layer was present. Radiation eliminated a positive modulatory effect on spontaneous activity by the mucosa layer. Overall, the findings suggest that radiation impairs contractility via mucosal regulatory mechanisms independent of the development of radiation cystitis.
Aboushwareb, Tamer; Zhou, Ge; Deng, Fang-Ming; Turner, Chanda; Andersson, Karl-Erik; Tar, Moses; Zhao, Weixin; Melman, Arnold; D’Agostino, Ralph; Sun, Tung-Tien; Christ, George J.
2014-01-01
Aims The effects of deleting genes encoding uroplakins II (UPII) and III (UPIIIa) on mouse bladder physiology/ dysfunction were studied in male and female wild type and knockout (KO) mice. Methods UPII, UPIIIa, and WT mice were catheterized using previously described techniques. Continuous cystometry was conducted in conscious, freely moving animals. Bladder strips were harvested after animal sacrifice and pharmacological studies and EFS were conducted in an organ chamber. Histological studies were also carried on with H&E staining to identify differences among the three mouse types. Results These studies have revealed numerous alterations, some of which were apparently gender-specific. Nonvoiding contractions were common in both UPII and UPIIIa KO mice, although more severe in the former. In particular, the increased bladder capacity, micturition pressure and demonstrable nonvoiding contractions observed in the male UPII KO’s, were reminiscent of an obstruction-like syndrome accompanied by evidence of emerging bladder decompensation, as reflected by an increased residual volume. Pharmacological studies revealed a modest, gender-specific reduction in sensitivity of isolated detrusor strips from UPII KO female mice to carbachol-induced contractions. A similar reduction was observed in UPIIIa KO female mice. Histological investigation showed urothelial hyperplasia in both UPII KO and UPIIIa KO mice, although again, apparently more severe in the former. Conclusions These results confirm and extend previous work to indicate that urothelial defects due to uroplakin deficiency are associated with significant alterations in bladder function and further highlight the importance of the urothelium to bladder physiology/dysfunction. PMID:19267388
Wang, Tanchun; Kendig, Derek M; Smolock, Elaine M; Moreland, Robert S
2009-12-01
Smooth muscle contraction is regulated by phosphorylation of the myosin light chain (MLC) catalyzed by MLC kinase and dephosphorylation catalyzed by MLC phosphatase. Agonist stimulation of smooth muscle results in the inhibition of MLC phosphatase activity and a net increase in MLC phosphorylation and therefore force. The two pathways believed to be primarily important for inhibition of MLC phosphatase activity are protein kinase C (PKC)-catalyzed CPI-17 phosphorylation and Rho kinase (ROCK)-catalyzed myosin phosphatase-targeting subunit (MYPT1) phosphorylation. The goal of this study was to determine the roles of PKC and ROCK and their downstream effectors in regulating MLC phosphorylation levels and force during the phasic and sustained phases of carbachol-stimulated contraction in intact bladder smooth muscle. These studies were performed in the presence and absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr(38)-CPI-17 and Thr(696)/Thr(850)-MYPT1 were measured at different times during carbachol stimulation using site-specific antibodies. Thr(38)-CPI-17 phosphorylation increased concurrently with carbachol-stimulated force generation. This increase was reduced by inhibition of PKC during the entire contraction but was only reduced by ROCK inhibition during the sustained phase of contraction. MYPT1 showed high basal phosphorylation levels at both sites; however, only Thr(850) phosphorylation increased with carbachol stimulation; the increase was abolished by the inhibition of either ROCK or PKC. Our results suggest that during agonist stimulation, PKC regulates MLC phosphatase activity through phosphorylation of CPI-17. In contrast, ROCK phosphorylates both Thr(850)-MYPT1 and CPI-17, possibly through cross talk with a PKC pathway, but is only significant during the sustained phase of contraction. Last, our results demonstrate that there is a constitutively activate pool of ROCK that phosphorylates MYPT1 in the basal state, which may account for the high resting levels of MLC phosphorylation measured in rabbit bladder smooth muscle.
[Glandular squamous cell carcinoma of the urinary bladder].
Kovylina, M V; Pushkar', D Iu; Zaĭrat'iants, O V; Rasner, P I
2006-01-01
The paper gives a clinical observation of a 52 year-old male with a rare histological urinary bladder tumor primary grandular-squamous-cell carcinoma (pT3N IM0). The tumor is represented by two components large acinic-cell adenocarcinoma and squamous-cell carcinoma with keratinization, which smoothly pass one into another; the tumor has grown through all layers of the urinary bladder wall but it has failed to grow into the peritoneum. A microscopic study has indicated that the urachus is intact. Metastases were found in 3 of 8 lymph nodes: one showed high-grade adenocarcinoma and two others displayed average-grade squamous-cell carcinoma.
Grinding Inside A Toroidal Cavity
NASA Technical Reports Server (NTRS)
Mayer, Walter; Adams, James F.; Burley, Richard K.
1987-01-01
Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.
Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes reactions which convert inorganic arsenic to methylated metabolites. This study determined whether the As3mt null genotype in the mouse modifies cytotoxic and proliferative effects seen in urinary bladders of wild t...
COMPARATIVE GENOTOXIC RESPONSES TO ARSENITE IN GUINEA PIG, MOUSE, RAT AND HUMAN LYMPHOCYTES
Comparative genotoxic responses to arsenite in guinea pig, mouse, rat and human
lymphocytes.
Inorganic arsenic is a known human carcinogen causing skin, lung, and bladder cancer following chronic exposures. Yet, long-term laboratory animal carcinogenicity studies have ...
Liang, Zhou; Xin, Wei; Qiang, Liu; Xiang, Cai; Bang-Hua, Liao; Jin, Yang; De-Yi, Luo; Hong, Li; Kun-Jie, Wang
2017-06-01
Abnormal intravesical pressure results in a series of pathological changes. We investigated the effects of hydrostatic pressure and muscarinic receptors on the release of inflammatory cytokines in rat and human bladder smooth muscle cells (HBSMCs). Animal model of bladder outlet obstruction was induced by urethra ligation. HBSMCs were subjected to elevated hydrostatic pressure and/or acetylcholine (Ach). Macrophage infiltration in the bladder wall was determined by immunohistochemical staining. The expression of inflammatory genes was measured by RT-PCR, ELISA and immunofluorescence. In obstructed bladder, inflammatory genes and macrophage infiltration were remarkably induced. When HBSMCs were subjected to 200-300 cm H 2 O pressure for 2-24 h in vitro, the expressions of IL-6 and RANTES were significantly increased. Hydrostatic pressure promoted the protein levels of phospho-NFκB p65 and phospho-ERK1/2 as well as muscarinic receptors. Moreover, NFκB or ERK1/2 inhibitors suppressed pressure-induced inflammatory genes mRNA. When cells were treated with 1 μM acetylcholine for 6 h, a significant increase in IL-6 mRNA expression was detected. Acetylcholine also enhanced pressure-induced phospho-NFκB p65 and IL-6 protein expression. Additionally, pressure-induced IL-6 was partially suppressed by muscarinic receptors antagonists. Hydrostatic pressure and muscarinic receptors were involved in the secretion of inflammatory cytokines in HBSMCs, indicating a pro-inflammatory effect of the two factors in the pathological process of BOO. © 2016 Wiley Periodicals, Inc.
NAGAI, Yuta; KANEDA, Takeharu; MIYAMOTO, Yasuyuki; NURUKI, Takaomi; KANDA, Hidenori; URAKAWA, Norimoto; SHIMIZU, Kazumasa
2015-01-01
To elucidate the dependence of aerobic energy metabolism and utilization of glucose in contraction of urinary bladder smooth muscle, we investigated the changes in the reduced pyridine nucleotide (PNred) fluorescence, representing glycolysis activity, and determined the phosphocreatine (PCr) and ATP contents of the porcine urinary bladder during contractions induced by high K+ or carbachol (CCh) and with and without hypoxia (achieved by bubbling N2 instead of O2) or in a glucose-free condition. Hyperosmotic addition of 65 mM KCl (H-65K+) and 1 µM CCh induced a phasic contraction followed by a tonic contraction. A glucose-free physiological salt solution (PSS) did not change the subsequent contractile responses to H-65K+ and CCh. However, hypoxia significantly attenuated H-65K+- and CCh-induced contraction. H-65K+ and CCh induced a sustained increase in PNred fluorescence, representing glycolysis activity. Hypoxia enhanced H-65K+- and CCh-induced increases in PNred fluorescence, whereas glucose-free PSS decreased these increases, significantly. In the presence of H-65K+, hypoxia decreased the PCr and ATP contents; however, the glucose-free PSS did not change the PCr contents. In conclusion, we demonstrated that high K+- and CCh-induced contractions depend on aerobic metabolism and that an endogenous substrate may be utilized to maintain muscle contraction in a glucose-free PSS in the porcine urinary bladder. PMID:26369431
Nagai, Yuta; Kaneda, Takeharu; Miyamoto, Yasuyuki; Nuruki, Takaomi; Kanda, Hidenori; Urakawa, Norimoto; Shimizu, Kazumasa
2016-01-01
To elucidate the dependence of aerobic energy metabolism and utilization of glucose in contraction of urinary bladder smooth muscle, we investigated the changes in the reduced pyridine nucleotide (PNred) fluorescence, representing glycolysis activity, and determined the phosphocreatine (PCr) and ATP contents of the porcine urinary bladder during contractions induced by high K(+) or carbachol (CCh) and with and without hypoxia (achieved by bubbling N2 instead of O2) or in a glucose-free condition. Hyperosmotic addition of 65 mM KCl (H-65K(+)) and 1 µM CCh induced a phasic contraction followed by a tonic contraction. A glucose-free physiological salt solution (PSS) did not change the subsequent contractile responses to H-65K(+) and CCh. However, hypoxia significantly attenuated H-65K(+)- and CCh-induced contraction. H-65K(+) and CCh induced a sustained increase in PNred fluorescence, representing glycolysis activity. Hypoxia enhanced H-65K(+)- and CCh-induced increases in PNred fluorescence, whereas glucose-free PSS decreased these increases, significantly. In the presence of H-65K(+), hypoxia decreased the PCr and ATP contents; however, the glucose-free PSS did not change the PCr contents. In conclusion, we demonstrated that high K(+)- and CCh-induced contractions depend on aerobic metabolism and that an endogenous substrate may be utilized to maintain muscle contraction in a glucose-free PSS in the porcine urinary bladder.
An Intermediate in the evolution of superfast sonic muscles
2011-01-01
Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held) and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae) that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1) causing the tendon and bladder to snap back (part 2) generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles. PMID:22126599
Pharmacology of the lower urinary tract
Hennenberg, Martin; Stief, Christian G.; Gratzke, Christian
2014-01-01
Pharmacology of the lower urinary tract provides the basis for medical treatment of lower urinary tract symptoms (LUTS). Therapy of LUTS addresses obstructive symptoms (frequently explained by increased prostate smooth muscle tone and prostate enlargement) in patients with benign prostate hyperplasia (BPH) and storage symptoms in patients with overactive bladder (OAB). Targets for medical treatment include G protein-coupled receptors (α1-adrenoceptors, muscarinic acetylcholine receptors, β3-adrenoceptors) or intracellular enzymes (5α-reductase; phosphodiesterase-5, PDE5). Established therapies of obstructive symptoms aim to induce prostate smooth muscle relaxation by α1-blockers or PDE5 inhibitors, or to reduce prostate growth and volume with 5α-reductase inhibitors. Available options for treatment of OAB comprise anitmuscarinics, β3-adrenoceptor agonists, and botulinum toxin A, which improve storage symptoms by inhibition of bladder smooth muscle contraction. With the recent approval of β3-antagonists, PDE inhibitors, and silodosin for therapy of LUTS, progress from basic research of lower urinary tract pharmacology was translated into new clinical applications. Further targets are in preclinical stages of examination, including modulators of the endocannabinoid system and transient receptor potential (TRP) channels. PMID:24744518
Fairbrother, S E; Smith, J E; Borman, R A; Cox, H M
2011-08-01
Prostaglandin E(2) (PGE(2) ) is an inflammatory mediator implicated in several gastrointestinal pathologies that affect normal intestinal transit. The aim was to establish the contribution of the four EP receptor types (EP(1-4) ), in human colon, that mediate PGE(2) -induced longitudinal smooth muscle contraction. Changes in isometric muscle tension of human colon, mouse colon and mouse ileum were measured in organ baths in response to receptor-specific agonists and antagonists. In addition, lidocaine was used to block neurogenic activity to investigate whether EP receptors were pre- or post-junctional. PGE(2) contracted longitudinal muscle from human and mouse colon and mouse ileum. These contractions were inhibited by the EP(1) receptor antagonist, EP(1) A in human colon, whereas a combination of EP(1) A and the EP(3) antagonist, L798106 inhibited agonist responses in both mouse preparations. The EP(3) agonist, sulprostone also increased muscle tension in both mouse tissues, and these responses were inhibited by lidocaine in the colon but not in the ileum. Although PGE(2) consistently contracted all three muscle preparations, butaprost decreased tension by activating smooth muscle EP(2) receptors in both colonic tissues. Alternatively, in mouse ileum, butaprost responses were lidocaine-sensitive, suggesting that it was activating prejunctional EP(2) receptors on inhibitory motor neurons. Conversely, EP(4) receptors were not functional in all the intestinal muscle preparations tested. PGE(2) -induced contraction of longitudinal smooth muscle is mediated by EP(1) receptors in human colon and by a combination of EP(1) and EP(3) receptors in mouse intestine, whereas EP(2) receptors modulate relaxation in all three preparations. © 2011 Blackwell Publishing Ltd.
Torihashi, Shigeko; Hattori, Takako; Hasegawa, Hirotaka; Kurahashi, Masaaki; Ogaeri, Takunori; Fujimoto, Toyoshi
2009-03-01
Bone morphogenetic protein (BMP) signaling is essential for normal development of the gastrointestinal (GI) tract. BMPs also play multiple roles in vascular smooth muscle cells; however, the BMP signaling in the development of the GI musculature remains to be clarified. We investigated the expression of BMPs and their receptors in mouse embryonic GI tracts by immunohistochemistry and in situ hybridization. We demonstrated that BMP2, BMP receptor Ib and BMP receptor II were expressed in the smooth muscle progenitors from E12 to E13 for the first time. BMP signaling on smooth muscle differentiation was examined by implantation of agarose beads soaked with BMPs in the in vitro developmental model that is gut-like structures from mouse embryonic stem (ES) cells. BMP2 rather than BMP4 beads enhanced smooth muscle differentiation, and increased gut-like structures showing spontaneous contractions and expressing intensive alpha-smooth muscle actin immunoreactivity. This increase was confirmed by up-regulation of SM22 mRNA shown by real-time PCR. By addition of noggin beads or noggin to the medium at BMP2 bead implantation, the ratio of contractive gut-like structures decreased. Implantation of BMP2 beads at EB7 (EB--embryoid bodies) (corresponding to E12 or E13 of mouse embryo) showed the highest effects and up-regulation of transcription factors msx-1 after 24h. This increase was blocked by noggin, and msx-1 decreased to almost the control level after 60 h. BMP2 beads at EB7 increased platelet-derived growth factor-A (PDGF-A) in the differentiating smooth muscle cells. We have recently reported that PDGF-A is expressed in the developing inner circular smooth muscle and is crucial for the longitudinal smooth muscle differentiation. Taken together, BMP signaling was expressed for a short window in the smooth muscle progenitors and the signal, especially BMP2, plays an essential role in smooth muscle differentiation in cooperation with PDGF signaling.
Peterson, Abbey; Erickson, Cuixia Shi; Nelson, Mark T.; Vizzard, Margaret A.
2014-01-01
Social stress may play a role in urinary bladder dysfunction in humans, but the underlying mechanisms are unknown. In the present study, we explored changes in bladder function caused by social stress using mouse models of stress and increasing stress. In the stress paradigm, individual submissive FVB mice were exposed to C57BL/6 aggressor mice directly/indirectly for 1 h/day for 2 or 4 wk. Increased stress was induced by continuous, direct/indirect exposure of FVB mice to aggressor mice for 2 wk. Stressed FVB mice exhibited nonvoiding bladder contractions and a decrease in both micturition interval (increased voiding frequency) and bladder capacity compared with control animals. ELISAs demonstrated a significant increase in histamine protein expression with no change in nerve growth factor protein expression in the urinary bladder compared with controls. Unlike stressed mice, mice exposed to an increased stress paradigm exhibited increased bladder capacities and intermicturition intervals (decreased voiding frequency). Both histamine and nerve growth factor protein expression were significantly increased with increased stress compared with control bladders. The change in bladder function from increased voiding frequency to decreased voiding frequency with increased stress intensity suggests that changes in social stress-induced urinary bladder dysfunction are context and duration dependent. In addition, changes in the bladder inflammatory milieu with social stress may be important contributors to changes in urinary bladder function. PMID:25100077
Computer-aided detection of bladder wall thickening in CT urography (CTU)
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon Z.; Gordon, Marshall N.; Samala, Ravi K.
2018-02-01
We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). Bladder wall thickening is a manifestation of bladder cancer and its detection is more challenging than the detection of bladder masses. We first segmented the inner and outer bladder walls using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential lesions. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify regions of wall thickening candidates. Volume-based features of the wall thickening candidates were analyzed with linear discriminant analysis (LDA) to differentiate bladder wall thickenings from false positives. A data set of 112 patients, 87 with wall thickening and 25 with normal bladders, was collected retrospectively with IRB approval, and split into independent training and test sets. Of the 57 training cases, 44 had bladder wall thickening and 13 were normal. Of the 55 test cases, 43 had wall thickening and 12 were normal. The LDA classifier was trained with the training set and evaluated with the test set. FROC analysis showed that the system achieved sensitivities of 93.2% and 88.4% for the training and test sets, respectively, at 0.5 FPs/case.
The role of the urothelium and ATP in mediating detrusor smooth muscle contractility.
Santoso, Aneira Gracia Hidayat; Sonarno, Ika Ariyani Bte; Arsad, Noor Aishah Bte; Liang, Willmann
2010-11-01
To examine the contractility of urothelium-intact (+UE) and urothelium-denuded (-UE) rat detrusor strips under adenosine triphosphate (ATP) treatment. Purinergic signaling exists in the bladder but both the inhibitory effect of ATP on detrusor contractions and the function of urothelial ATP are not established. Detrusor strips were obtained from bladders of young adult rats. Isometric tension from both transverse and longitudinal contractions was measured using a myograph. The muscarinic agonist carbachol (CCh) was used to induce contractions, which were under the influences of different concentrations of ATP. In both +UE and -UE strips, 1 mM ATP suppressed CCh-induced contractions. In longitudinal contractions, ATP added to the inhibitory effect of urothelium on CCh responses. Removal of the urothelium, but with exogenous ATP added, recovered the CCh responses to the same level as in +UE strips with no added ATP. Transverse contractions were less susceptible to ATP in the presence of urothelium. We showed that the urothelium and ATP suppressed CCh-induced contractions to a similar extent. The findings suggest an inhibitory role of urothelial ATP in mediating detrusor smooth muscle contractility, which may be impaired in diseased bladders. Copyright © 2010 Elsevier Inc. All rights reserved.
New Aspects in the Differential Diagnosis and Therapy of Bladder Pain Syndrome/Interstitial Cystitis
Neuhaus, Jochen; Schwalenberg, Thilo; Horn, Lars-Christian; Alexander, Henry; Stolzenburg, Jens-Uwe
2011-01-01
Diagnosis of bladder pain syndrome/interstitial cystitis (BPS/IC) is presently based on mainly clinical symptoms. BPS/IC can be considered as a worst-case scenario of bladder overactivity of unknown origin, including bladder pain. Usually, patients are partially or completely resistant to anticholinergic therapy, and therapeutical options are especially restricted in case of BPS/IC. Therefore, early detection of patients prone to develop BPS/IC symptoms is essential for successful therapy. We propose extended diagnostics including molecular markers. Differential diagnosis should be based on three diagnostical “columns”: (i) clinical diagnostics, (ii) histopathology, and (iii) molecular diagnostics. Analysis of molecular alterations of receptor expression in detrusor smooth muscle cells and urothelial integrity is necessary to develop patient-tailored therapeutical concepts. Although more research is needed to elucidate the pathomechanisms involved, extended BPS/IC diagnostics could already be integrated into routine patient care, allowing evidence-based pharmacotherapy of patients with idiopathic bladder overactivity and BPS/IC. PMID:22028706
Neuhaus, Jochen; Schwalenberg, Thilo; Horn, Lars-Christian; Alexander, Henry; Stolzenburg, Jens-Uwe
2011-01-01
Diagnosis of bladder pain syndrome/interstitial cystitis (BPS/IC) is presently based on mainly clinical symptoms. BPS/IC can be considered as a worst-case scenario of bladder overactivity of unknown origin, including bladder pain. Usually, patients are partially or completely resistant to anticholinergic therapy, and therapeutical options are especially restricted in case of BPS/IC. Therefore, early detection of patients prone to develop BPS/IC symptoms is essential for successful therapy. We propose extended diagnostics including molecular markers. Differential diagnosis should be based on three diagnostical "columns": (i) clinical diagnostics, (ii) histopathology, and (iii) molecular diagnostics. Analysis of molecular alterations of receptor expression in detrusor smooth muscle cells and urothelial integrity is necessary to develop patient-tailored therapeutical concepts. Although more research is needed to elucidate the pathomechanisms involved, extended BPS/IC diagnostics could already be integrated into routine patient care, allowing evidence-based pharmacotherapy of patients with idiopathic bladder overactivity and BPS/IC.
Cell-Based Therapies in Lower Urinary Tract Disorders.
Gopinath, Chaitanya; Ponsaerts, Peter; Wyndaele, Jean Jacques
2015-01-01
Cell-based therapy for the bladder has its beginnings in the 1990s with the successful isolation and culture of bladder smooth muscle cells. Since then, several attempts have been made to artificially implant native cell types and stem cell-derived cells into damaged bladders in the form of single-cell injectables or as grafts seeded onto artificial extracellular matrix. We critically examined in the literature the types of cells and their probable role as an alternative to non-drug-based, non-bowel-based graft replacement therapy in disorders of the urinary bladder. The limitations and plausible improvements to these novel therapies have also been discussed, keeping in mind an ideal therapy that could suit most bladder abnormalities arising out of varied number of disorders. In conclusion, muscle-derived cell types have consistently proven to be a promising therapy to emerge in the coming decade. However, tissue-engineered constructs have yet to prove their success in preclinical and long-term clinical setting.
Receptors, channels, and signalling in the urothelial sensory system in the bladder
Merrill, Liana; Gonzalez, Eric J.; Girard, Beatrice M.; Vizzard, Margaret A.
2017-01-01
The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation. PMID:26926246
Sadler, Katelyn E; Stratton, Jarred M; DeBerry, Jennifer J; Kolber, Benedict J
2013-01-01
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5°C and isoflurane induction should gradually decrease over the course of 90 minutes.
Sadler, Katelyn E.; Stratton, Jarred M.; DeBerry, Jennifer J.; Kolber, Benedict J.
2013-01-01
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5°C and isoflurane induction should gradually decrease over the course of 90 minutes. PMID:24223980
A Murine Model for Escherichia coli Urinary Tract Infection.
Hannan, Thomas J; Hunstad, David A
2016-01-01
Urinary tract infections (UTI) are among the most common bacterial infections of humans. The mouse provides an excellent and tractable model system for cystitis and pyelonephritis caused by Escherichia coli and other uropathogens. Using a well-established model of experimental cystitis in which the bladders of female mice are infected via transurethral catheterization, the molecular details of the pathogenesis of bacterial cystitis have been substantially illuminated in the last decade. Uropathogenic E. coli attach to bladder epithelium (both in human and mouse) via adhesive type 1 pili, establish a replicative niche within epithelial cell cytoplasm, and form intracellular bacterial communities that are protected from antibiotic effects and immune clearance. The use of different inbred and mutant mouse strains offers the opportunity to study outcomes of infection, including resolution, formation of quiescent intracellular bacterial reservoirs, chronic bacterial cystitis, and recurrent infections. Urine, bladder, and kidney tissues can be analyzed by bacterial culture, histology, immunohistochemistry, immunofluorescent and confocal microscopy, electron microscopy, and flow cytometry, while a broad array of soluble markers (e.g., cytokines) can also be profiled in serum, urine, and tissue homogenates by ELISA, Western blotting, multiplex bead array, and other approaches. This model promises to afford continued opportunity for discovery of pathogenic mechanisms and evaluation of therapeutic and preventive strategies for acute, chronic, and recurrent UTI.
Effects of chlorogenic acid on carbachol-induced contraction of mouse urinary bladder.
Kaneda, Takeharu; Sasaki, Noriyasu; Urakawa, Norimoto; Shimizu, Kazumasa
2018-01-01
Chlorogenic acid (CGA) is a polyphenol found in coffee and medicinal herbs such as Lonicera japonica. In this study, the effect of CGA-induced relaxation on carbachol (CCh)-induced contraction of mouse urinary bladder was investigated. CGA (30-300 μg/ml) inhibited CCh- or U46619-induced contraction in a concentration-dependent manner. SQ22536 (adenylyl cyclase inhibitor) recovered CGA-induced relaxation of CCh-induced contraction; however, ODQ (guanylyl cyclase inhibitor) did not have the same effect. In addition, 3-isobutyl-1-methylxanthine (IBMX) enhanced CGA-induced relaxation; however, forskolin or sodium nitroprusside did not have the same effect. Moreover, Ro 20-1724, a selective phosphodiesterase (PDE) 4 inhibitor, enhanced CGA-induced relaxation, but vardenafil, a selective PDE5 inhibitor, did not have the same effect. In the presence of CCh, CGA increased cyclic adenosine monophosphate (cAMP) level, whereas SQ22536 inhibited the increase of cAMP levels. Moreover, higher cAMP levels were obtained with CGA plus IBMX treatment than the total cAMP levels obtained with separate CGA and IBMX treatments. In conclusion, these results suggest that CGA inhibited CCh-induced contraction of mouse urinary bladder by partly increasing cAMP levels via adenylyl cyclase activation. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Schreiber, Henry L.; Conover, Matt S.; Chou, Wen-Chi; Hibbing, Michael E.; Manson, Abigail L.; Dodson, Karen W.; Hannan, Thomas J.; Roberts, Pacita L.; Stapleton, Ann E.; Hooton, Thomas M.; Livny, Jonathan; Earl, Ashlee M.; Hultgren, Scott J.
2017-01-01
Urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC) strains. In contrast to many enteric E. coli pathogroups, no genetic signature has been identified for UPEC strains. We conducted a high-resolution comparative genomic study using E. coli isolates collected from the urine of women suffering from frequent recurrent UTIs. These isolates were genetically diverse and varied in urovirulence, or the ability to infect the bladder of a mouse model of cystitis. Importantly, we found no set of genes, including previously defined putative urovirulence factors (PUFs), that were predictive of urovirulence. In addition, in some patients, the E. coli strain causing a recurrent UTI had fewer PUFs than the supplanted strain. In competitive experimental infections in mice, the supplanting strain was more efficient at colonizing the mouse bladder than the supplanted strain. Despite the lack of a clear genomic signature for urovirulence, comparative transcriptomic and phenotypic analyses revealed that the expression of key conserved functions during culture, such as motility and sugar metabolism, could be used to predict subsequent mouse bladder colonization. Taken together, our findings suggest that UTI risk and outcome may be determined by complex interactions between host susceptibility and the urovirulence potential of diverse bacterial strains. PMID:28330863
Evcim, Atiye Sinem; Micili, Serap Cilaker; Karaman, Meral; Erbil, Guven; Guneli, Ensari; Gidener, Sedef; Gumustekin, Mukaddes
2015-06-01
This study was designed to determine the role of the small GTPase Rac1 on carbachol-induced contractile activity in detrusor smooth muscle using small inhibitor NSC 23766 in diabetic rats. Rac1 expression in bladder tissue was also evaluated. In the streptozotocin (STZ)-induced diabetic rat model, three study groups were composed of control, diabetic and insulin-treated diabetic subjects. The detrusor muscle strips were suspended in organ baths at the end of 8-12 weeks after STZ injection. Carbachol (CCh) (10(-9) -10(-4) M) concentration-response curves were obtained both in the absence and in the presence of Rac1 inhibitor NSC 23766 (0.1, 1 and 10 μM). Diabetes-related histopathological changes and Rac1 expressions were assessed by haematoxylin and eosin staining and immunohistochemical staining, respectively. CCh caused dose-dependent contractile responses in all the study groups. Rac1 inhibitor NSC 23766 inhibited CCh-induced contractile responses in all groups, but this inhibition seen in both diabetes groups was greater than in the control group. Histological examination revealed an increased bladder wall thickness both in the diabetes and in the insulin-treated diabetes groups compared to the control group. In immunohistochemical staining, expression of Rac1 was observed to be increased in all layers of bladder in both diabetic groups compared to the control group. In the diabetic bladders, increased expression of Rac1 and considerable inhibition of CCh-induced responses in the presence of NSC 23766 compared to those of the control group may indicate a specific role of Rac1 in diabetes-related bladder dysfunction, especially associated with cholinergic mediated detrusor overactivity. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Basic mechanisms of urgency: roles and benefits of pharmacotherapy.
Michel, Martin Christian; Chapple, Christopher R
2009-12-01
Since urgency is key to the overactive bladder syndrome, we have reviewed the mechanisms underlying how bladder filling and urgency are sensed, what causes urgency and how this relates to medical therapy. Review of published literature. As urgency can only be assessed in cognitively intact humans, mechanistic studies of urgency often rely on proxy or surrogate parameters, such as detrusor overactivity, but these may not necessarily be reliable. There is an increasing evidence base to suggest that the sensation of ‘urgency’ differs from the normal physiological urge to void upon bladder filling. While the relative roles of alterations in afferent processes, central nervous processing, efferent mechanisms and in intrinsic bladder smooth muscle function remain unclear, and not necessarily mutually exclusive, several lines of evidence support an important role for the latter. A better understanding of urgency and its causes may help to develop more effective treatments for voiding dysfunction.
Xanthogranulomatous cystitis: a challenging imitator of bladder cancer.
Ekici, Sinan; Dogan Ekici, Isin; Ruacan, Sevket; Midi, Ahmet
2010-06-29
Xanthogranulomatous cystitis is a rare, benign, chronic inflammatory disease of the bladder, mimicking malignancy with unknown etiology. Herein, we report a 57-year-old man who presented with pollakiuria, nocturia, dysuria, left flank pain, and a palpable mass on the right lower abdomen. Computerized tomography demonstrated an obstructing 10-mm stone in the lower third of the left ureter and a 6-cm solid mass on the right at the anterolateral wall of the bladder. The mass presented local perivesical invasion at the anterolateral side. Cystouretroscopy revealed a mass protruding into the bladder cavity with edematous smooth surface. Frozen section analysis of the partial cystectomy specimen could not rule out malignancy. Therefore, radical cystoprostatectomy and ureterolithotomy were performed. Histologically, fibrosis, numerous plasma cells, eosinophils, and, immunohistochemically, CD68-positive epithelioid and foamy macrophages were detected. Localized prostatic adenocarcinoma was also found. The present case of xanthogranulomatous cystitis is the 23rd to be reported in the world literature.
Kruppel-like factor 5 is Required for Formation and Differentiation of the Bladder Urothelium
Bell, Sheila. M.; Zhang, Liqian; Mendell, Angela; Xu, Yan; Haitchi, Hans Michael; Lessard, James L.; Whitsett, Jeffrey A.
2011-01-01
SUMMARY Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The ShhGfpCre transgene was used to delete the Klf5floxed alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra were unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth. PMID:21803035
Van Meel, Tom David; De Wachter, Stefan; Wyndaele, Jean Jacques
2010-03-01
The C-fiber-mediated bladder-cooling reflex and the determination of the current perception thresholds (CPTs) permit to investigate afferent LUT pathways. They have both been proposed to detect and differentiate neurologic bladder dysfunction. This study evaluates, prospectively, the effect of oxybutynin, an antimuscarinic with direct antispasmodic effect on smooth muscle, on repeated ice water test (IWT) and CPTs in patients with a known incomplete neurogenic bladder. Patients with a known incomplete lesion of the bladder innervation, detrusor overactivity during cystometric bladder filling and a continuous positive response to repeated IWT were included. After the initial tests, 30 mg intravesical oxybutynin (1 mg/ml) was instilled and left in the bladder for 15 min. Afterwards CPTs and IWT were re-assessed. After the drug application, the bladder-cooling reflex could not be initiated, even after three instillations, in 16/17 patients. The bladder CPT increased from 29.7 +/- 11.3 to 39.1 +/- 15.7 mA after oxybutynin (P = 0.001). No difference was found in CPT of the left forearm (P = 0.208). Intravesical oxybutynin blocks the bladder-cooling reflex and increases but does not block CPT sensation in the bladder in most patients with incomplete neurogenic lesion and detrusor overactivity. These results help explain the clinical effect of intravesical oxybutynin in neurogenic patients. They also indicate that a pharmacological local influence on C-fiber-related activity can give different clinical effects. (c) 2009 Wiley-Liss, Inc.
Hockey, J S; Wu, C; Fry, C H
2000-09-01
To determine the important cellular site(s) of action of a brief exposure to NaCN (chosen to reduce mitochondrial respiration and hence mimic cellular hypoxia) on the mechanical properties and regulation of intracellular [Ca2+] in human detrusor smooth muscle. Using muscle samples obtained from patients with stable and unstable bladders, to determine whether the unstable bladder is associated with changes in the functional properties of detrusor muscle under these circumstances. Materials and methods Experiments were conducted in vitro on muscle strips or isolated cells. Isometric tension was recorded in muscle strips during electrical stimulation or exposure to agonists. Intracellular [Ca2+] and [H+] were measured by epifluorescence microscopy, and cell autofluorescence measured as an index of mitochondrial function. There were no differences in the responses to electrical stimulation and varying concentrations of carbachol in muscle strips from stable and unstable bladders. NaCN (2 mmol/L) reduced the contraction induced by carbachol (10 micromol/L) by a mean (SD) of 43 (16)% and 56 (15)% in the two groups; the reduction in the unstable was significantly less than in the stable group. NaCN similarly reduced the response to 10 mmol/L caffeine, but had no effect on the KCl-induced contraction. NaCN significantly increased the resting sarcoplasmic [Ca2+] and attenuated the calcium transients evoked by carbachol and caffeine, but again had no effect on the KCl-induced transient. The reduction of the carbachol calcium transient was also less in cells from unstable bladders than in those from stable bladders. There was no effect of NaCN on intracellular pH, except for a brief, transient alkalosis. NaCN reduces both the contraction and Ca-transient to carbachol by reducing Ca2+ accumulation by intracellular stores, because the carbachol- and caffeine-evoked responses were similar. Any effect on transmembrane Ca2+ flux was minimal because there was no effect on KCl-induced responses. The greater resilience of tissue from unstable bladders to acute cellular hypoxia may reflect some adaptation acquired in vivo.
Quinn, Teresa; Collins, Colm; Baird, Alan W
2004-09-01
To investigate the mechanisms of neurokinin A- and substance P-induced contractions of rat urinary bladder smooth muscle, and to compare them with those of the muscarinic agonist carbachol. Rat urinary bladder strips were suspended under 1 g of tension in a physiological buffer at 37 degrees C, gassed with 95% O(2)/5% CO(2). Mechanical activity was recorded isometrically during exposure to neurokinin A and substance P. Both agents produced concentration-dependent contractions of smooth muscle strips which were unaffected by tetrodotoxin (1 micro mol/L), peptidase inhibitors (captopril, thiorphan and bestatin; 1 micro mol/L each) or piroxicam (10 micro mol/L). The rank order of potency of agonists was neurokinin A > substance P > carbachol. Contractile responses to neurokinin A and substance P, like the contractile responses to carbachol, were abolished in a nominally Ca(2+)-free medium and significantly reduced by nifedipine (1 micro mol/L). SKF-96365 (60 micro mol/L), an inhibitor of receptor-mediated Ca(2+) entry, abolished the nifedipine-resistant response to substance P and carbachol, and significantly attenuated the response to neurokinin A. Depleting intracellular Ca(2+) stores with thapsigargin (1 micro mol/L) significantly attenuated neurokinin A-induced contractions but had no effect on substance P- or carbachol- induced contractions. The Rho-kinase inhibitor, Y-27632 (10 micro mol/L), significantly reduced both phasic and tonic components of the contractile responses to neurokinin A, substance P and carbachol. The contractile responses induced by tachykinins in rat urinary bladder smooth muscle strips involve a direct action on smooth muscle and are not modulated by peptidases or prostanoids. Neurokinin A and substance P, like carbachol-induced contractions, depend on extracellular Ca(2+) influx largely through voltage-operated and partly through receptor-operated Ca(2+) channels. Intracellular Ca(2+) release contributes to the contractile response to neurokinin A but appears to have no involvement in substance P- and carbachol-induced contractions. Rho-kinase activation contributes to contractions induced by substance P, neurokinin A and carbachol.
Jensen, Heidi D; Struve, Carsten; Christensen, Søren B; Krogfelt, Karen A
2017-01-01
The antibacterial effect of cranberry juice and the organic acids therein on infection by uropathogenic Escherichia coli was studied in an experimental mouse model of urinary tract infection (UTI). Reduced bacterial counts were found in the bladder ( P < 0.01) of mice drinking fresh cranberry juice. Commercially available cranberry juice cocktail also significantly reduced ( P < 0.01) bacterial populations in the bladder, as did the hydrophilic fraction of cranberry juice ( P < 0.05). Quinic, malic, shikimic, and citric acid, the preponderant organic acids in cranberry juice, were tested in combination and individually. The four organic acids also decreased bacterial levels in the bladder when administered together ( P < 0.001), and so did the combination of malic plus citric acid ( P < 0.01) and malic plus quinic acid ( P < 0.05). The other tested combinations of the organic acids, and the acids administered singly, did not have any effect in the UTI model. Apparently, the antibacterial effect of the organic acids from cranberry juice on UTI can be obtained by administering a combination of malic acid and either citric or quinic acid. This study show for the first time that cranberry juice reduce E. coli colonization of the bladder in an experimental mouse model of urinary tract infection and that the organic acids are active agents.
[Urothelium-dependent modulation of urinary bladder smooth muscle contractions by menthol].
Paduraru, O M; Filippov, I B; Boldyriev, O I; Vladymyrova, I A; Naĭd'onov, V H; Shuba, Ia M
2011-01-01
TRPM8 cold receptor/channel is considered amongst the variety of receptors that support and modulate sensory function of urothelium, although the information regarding this is still quite contradictory. Here we have studied the effects of nonspecific TRPM8 activator menthol on the contractions of the smooth muscle strips of the rat bladder with intact and removed urothelium, and assessed the expression in them of TRPM8 mRNA using semi-quantitative RT-PCR. Menthol (100 microM) decreased the basal tone and the amplitude of spontaneous contractions only in the strips with intact urothelium. Irrespective of the presence of urothelium it similarly inhibited (by approximately 45 %) the contractions evoked by high-potassium depolarization. Contractions induced by muscarinic agonist carbachol (1 microM) were inhibited by menthol much stronger (by approximately 63%) if the urothelium was present than without it (by approximately 12%). Expression of TRPM8 mRNA in urothelium was not detected, whilst in detrusor smooth muscle it was found very low. We conclude that modulation of contractile responses by menthol is most likely explained by its blocking action on voltage-gated calcium channels ofdetrusor smooth muscle cells (SMC) and by menthol-stimulated release from urothelium of some factor(s) with relaxant effects on SMCs. Stimulation of the secretion of these factors from urothelial cells most likely involves menthol-induced, TRPM8-independent mobilization of calcium.
HAMLET treatment delays bladder cancer development.
Mossberg, Ann-Kristin; Hou, Yuchuan; Svensson, Majlis; Holmqvist, Bo; Svanborg, Catharina
2010-04-01
HAMLET is a protein-lipid complex that kills different types of cancer cells. Recently we observed a rapid reduction in human bladder cancer size after intravesical HAMLET treatment. In this study we evaluated the therapeutic effect of HAMLET in the mouse MB49 bladder carcinoma model. Bladder tumors were established by intravesical injection of MB49 cells into poly L-lysine treated bladders of C57BL/6 mice. Treatment groups received repeat intravesical HAMLET instillations and controls received alpha-lactalbumin or phosphate buffer. Effects of HAMLET on tumor size and putative apoptotic effects were analyzed in bladder tissue sections. Whole body imaging was used to study HAMLET distribution in tumor bearing mice compared to healthy bladder tissue. HAMLET caused a dose dependent decrease in MB49 cell viability in vitro. Five intravesical HAMLET instillations significantly decreased tumor size and delayed development in vivo compared to controls. TUNEL staining revealed selective apoptotic effects in tumor areas but not in adjacent healthy bladder tissue. On in vivo imaging Alexa-HAMLET was retained for more than 24 hours in the bladder of tumor bearing mice but not in tumor-free bladders or in tumor bearing mice that received Alexa-alpha-lactalbumin. Results show that HAMLET is active as a tumoricidal agent and suggest that topical HAMLET administration may delay bladder cancer development. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Kitta, Takeya; Kanno, Yukiko; Chiba, Hiroki; Higuchi, Madoka; Ouchi, Mifuka; Togo, Mio; Moriya, Kimihiko; Shinohara, Nobuo
2018-01-01
The functions of the lower urinary tract have been investigated for more than a century. Lower urinary tract symptoms, such as incomplete bladder emptying, weak urine stream, daytime urinary frequency, urgency, urge incontinence and nocturia after partial bladder outlet obstruction, is a frequent cause of benign prostatic hyperplasia in aging men. However, the pathophysiological mechanisms have not been fully elucidated. The use of animal models is absolutely imperative for understanding the pathophysiological processes involved in bladder dysfunction. Surgical induction has been used to study lower urinary tract functions of numerous animal species, such as pig, dog, rabbit, guinea pig, rat and mouse, of both sexes. Several morphological and functional modifications under partial bladder outlet obstruction have not only been observed in the bladder, but also in the central nervous system. Understanding the changes of the lower urinary tract functions induced by partial bladder outlet obstruction would also contribute to appropriate drug development for treating these pathophysiological conditions. In the present review, we discuss techniques for creating partial bladder outlet obstruction, the characteristics of several species, as well as issues of each model, and their translational value. © 2017 The Japanese Urological Association.
Evaluation of [18F]Mefway biodistribution and dosimetry based on whole-body PET imaging of mice.
Constantinescu, Cristian C; Sevrioukov, Evgueni; Garcia, Adriana; Pan, Min-Liang; Mukherjee, Jogeshwar
2013-04-01
[(18)F]Mefway is a novel radiotracer specific to the serotonin 5-HT1A receptor class. In preparation for using this tracer in humans, we have performed whole-body PET studies in mice to evaluate the biodistribution and dosimetry of [(18)F]Mefway. Six mice (three females and three males) received IV injections of [(18)F]Mefway and were scanned for 2 h in an Inveon-dedicated PET scanner. Each animal also received a high-resolution CT scan using an Inveon CT. The CT images were used to draw volume of interest on the following organs: the brain, large intestine, stomach, heart, kidneys, liver, lungs, pancreas, bone, spleen, testes, thymus, gallbladder, uterus, and urinary bladder. All organ time-activity curves without decay correction were normalized to the injected activity. The area under the normalized curves was then used to compute the residence times in each organ. Data were analyzed using PMOD and Matlab software. The absorbed doses in mouse organs were computed using the RAdiation Dose Assessment Resource animal models for dose assessment. The residence times in mouse organs were converted to human values using scale factors based on differences between organ and body weights. OLINDA/EXM 1.1 software was used to compute the absorbed human doses in multiple organs for both female and male phantoms. The highest mouse residence times were found in the liver, urinary bladder, and kidneys. The largest doses in mice were found in the urinary bladder (critical organ), kidney, and liver for both females and males, indicating primary elimination via urinary system. The projected human effective doses were 1.21E - 02 mSv/MBq for the adult female model and 1.13E - 02 mSv/MBq for the adult male model. The estimated human biodistribution of [(18)F]Mefway was similar to that of [(11)C]WAY 100,635, a 5-HT1A tracer for which dosimetry has been evaluated in humans. The elimination of radiotracer was primarily via the kidney and urinary bladder with the urinary bladder being the critical organ. Whole-body mouse imaging can be used as a preclinical tool to provide initial estimates of the absorbed doses of [(18)F]Mefway in humans.
Yin, Lijuan; Bu, Hong; Chen, Min; Yu, Jianqun; Zhuang, Hua; Chen, Jie; Zhang, Hongying
2012-12-31
Perivascular epithelioid cell neoplasms (PEComas) of the urinary bladder are extremely rare and the published cases were comprised predominantly of middle-aged patients. Herein, the authors present the first urinary bladder PEComa occurring in an adolescent. This 16-year-old Chinese girl present with a 3-year history of abdominal discomfort and a solid mass was documented in the urinary bladder by ultrasonography. Two years later, at the age of 18, the patient underwent transurethral resection of the bladder tumor. Microscopically, the tumor was composed of spindled cells mixed with epithelioid cells. Immunohistochemically, the tumor were strongly positive for HMB45, smooth muscle actin, muscle-specific actin, and H-caldesmon. Fluorescence in situ hybridization analysis revealed no evidence of EWSR1 gene rearrangement. The patient had been in a good status without evidence of recurrence 13 months after surgery. Urinary bladder PEComa is an extremely rare neoplasm and seems occur predominantly in middle-aged patients. However, this peculiar lesion can develop in pediatric population and therefore it should be rigorously distinguished from their mimickers. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1870004378817301.
Tu, Duong D; Chung, Yeun Goo; Gil, Eun Seok; Seth, Abhishek; Franck, Debra; Cristofaro, Vivian; Sullivan, Maryrose P; Di Vizio, Dolores; Gomez, Pablo; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R
2013-11-01
Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a porcine model of augmentation cystoplasty. Two bi-layer matrix configurations were fabricated by solvent-casting/salt leaching either alone (Group 1) or in combination with silk film casting (Group 2) to yield porous foams buttressed by heterogeneous surface pore occlusions or homogenous silk films, respectively. Bladder augmentation was performed with each scaffold group (6 × 6 cm(2)) in juvenile Yorkshire swine for 3 m of implantation. Augmented animals exhibited high rates of survival (Group 1: 5/6, 83%; Group 2: 4/4, 100%) and voluntary voiding over the course of the study period. Urodynamic evaluations demonstrated mean increases in bladder capacity over pre-operative levels (Group 1: 277%; Group 2: 153%) which exceeded nonsurgical control gains (144%) encountered due to animal growth.In addition, animals augmented with both matrix configurations displayed increases in bladder compliance over pre-operative levels(Group 1: 357%; Group 2: 338%) similar to growth-related elevations observed in non-surgical controls (354%) [corrected]. Gross tissue evaluations revealed that both matrix configurations supported extensive de novo tissue formation throughout the entire original implantation site which exhibited ultimate tensile strength similar to nonsurgical counterparts. Histological and immunohistochemical analyses showed that both implant groups promoted comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent cytokeratin, uroplakin, and p63 protein expression in both matrix groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Ex vivo organ bath studies demonstrated that regenerated tissues supported by both silk matrices displayed contractile responses to carbachol, α,β-methylene-ATP, KCl, and electrical field stimulation similar to controls. Our data detail the ability of acellular silk scaffolds to support regeneration of innervated, vascularized smooth muscle and urothelial tissues within 3 m with structural, mechanical, and functional properties comparable to native tissue in a porcine model of bladder repair. © 2013 Elsevier Ltd. All rights reserved.
Kirschstein, Timo; Protzel, Chris; Porath, Katrin; Sellmann, Tina; Köhling, Rüdiger; Hakenberg, Oliver W
2014-01-01
Aim: Activation of muscarinic receptors on the detrusor smooth muscle is followed by contraction, which involves both myosin light chain kinase (MLCK) and Rho kinase (ROCK). The aim of this study was to determine the relative contributions of MLCK and ROCK to carbachol-induced contraction of human detrusor smooth muscle in vitro. Methods: Detrusor smooth muscle strips were prepared from the macroscopically unaffected bladder wall of patients underwent cystectomy. The strips were fixed in an organ bath, and carbachol or KCl-induced isometric contractions were measured by force transducers. Results: Addition of carbachol (0.4-4 μmol/L) into the bath induced concentration-dependent contractions of detrusor specimens, which was completely abolished by atropine (1 μmol/L). Pre-incubation of detrusor specimens with either the MLCK inhibitor ML-9 or the ROCK inhibitors HA1100 and Y-27632 (each at 10 μmol/L) significantly blocked carbachol-induced contractions as compared to the time-control experiments. Moreover, MLCK and ROCK inhibition were equally effective in reducing carbachol-induced contractions. The residual carbachol-induced contractions in the presence of both MLCK and ROCK inhibitors were significantly smaller than the contractions obtained when only one enzyme (either MLCK or ROCK) was inhibited, suggesting an additive effect of the two kinases. Interestingly, ROCK-mediated carbachol-induced contractions were positively correlated to the age of patients (r=o.52, P<0.05). Conclusion: Both MLCK and ROCK contribute to carbachol-induced contractions of human detrusor smooth muscle. ROCK inhibitors may be a new pharmacological approach to modulate human bladder hyperactivity. PMID:24122009
Kirschstein, Timo; Protzel, Chris; Porath, Katrin; Sellmann, Tina; Köhling, Rüdiger; Hakenberg, Oliver W
2014-01-01
Activation of muscarinic receptors on the detrusor smooth muscle is followed by contraction, which involves both myosin light chain kinase (MLCK) and Rho kinase (ROCK). The aim of this study was to determine the relative contributions of MLCK and ROCK to carbachol-induced contraction of human detrusor smooth muscle in vitro. Detrusor smooth muscle strips were prepared from the macroscopically unaffected bladder wall of patients underwent cystectomy. The strips were fixed in an organ bath, and carbachol or KCl-induced isometric contractions were measured by force transducers. Addition of carbachol (0.4-4 μmol/L) into the bath induced concentration-dependent contractions of detrusor specimens, which was completely abolished by atropine (1 μmol/L). Pre-incubation of detrusor specimens with either the MLCK inhibitor ML-9 or the ROCK inhibitors HA1100 and Y-27632 (each at 10 μmol/L) significantly blocked carbachol-induced contractions as compared to the time-control experiments. Moreover, MLCK and ROCK inhibition were equally effective in reducing carbachol-induced contractions. The residual carbachol-induced contractions in the presence of both MLCK and ROCK inhibitors were significantly smaller than the contractions obtained when only one enzyme (either MLCK or ROCK) was inhibited, suggesting an additive effect of the two kinases. Interestingly, ROCK-mediated carbachol-induced contractions were positively correlated to the age of patients (r=o.52, P<0.05). Both MLCK and ROCK contribute to carbachol-induced contractions of human detrusor smooth muscle. ROCK inhibitors may be a new pharmacological approach to modulate human bladder hyperactivity.
Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang
2016-08-01
The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.
[Values of the micronucleus test on animal epithelial cells exposed to titanium dioxide].
Iurchenko, V V; Krivtsova, E K; Iuretseva, N A; Tul'skaia, E A; Mamonov, R A; Zholdakova, Z I; Sinitsyna, O O; Mal'tseva, M M; Pankratova, G P; Sycheva, L P
2011-01-01
The genetic safety of titanium dioxide (TD)-containing foods and cosmetic products has been little investigated. The study evaluated the mutagenic activity of TD in the micronucleus test with animal visceral mucosal epithelial cells. Two simethicone-coated anatase samples (mean size 160 and 33.2 nm) were inserted into the mouse stomach in doses of 40-200-1000 mg/kg seven times and applied as an ingredient of 10 and 25% cream (doses 250 and 625 mg/kg, respectively) to the hair-sheared rat skin once for 4 hours. Analysis of cytogenetic disorders (micronuclei, protrusions, and the atypical form of the nucleus) revealed no mutagenic properties of TD on the mucosal epithelium of the mouse and rat intestine, mouse prostomach, and rat uterine bladder. Enhanced mitotic activity was observed in all the study tissues after exposure of both samples to TD given in some or in all (in the rat urinary bladder mucosal epithelium) doses.
Exploring molecular genetics of bladder cancer: lessons learned from mouse models
Ahmad, Imran; Sansom, Owen J.; Leung, Hing Y.
2012-01-01
Urothelial cell carcinoma (UCC) of the bladder is one of the most common malignancies worldwide, causing considerable morbidity and mortality. It is unusual among the epithelial carcinomas because tumorigenesis can occur by two distinct pathways: low-grade, recurring papillary tumours usually contain oncogenic mutations in FGFR3 or HRAS, whereas high-grade, muscle-invasive tumours with metastatic potential generally have defects in the pathways controlled by the tumour suppressors p53 and retinoblastoma (RB). Over the past 20 years, a plethora of genetically engineered mouse (GEM) models of UCC have been developed, containing deletions or mutations of key tumour suppressor genes or oncogenes. In this review, we provide an up-to-date summary of these GEM models, analyse their flaws and weaknesses, discuss how they have advanced our understanding of UCC at the molecular level, and comment on their translational potential. We also highlight recent studies supporting a role for dysregulated Wnt signalling in UCC and the development of mouse models that recapitulate this dysregulation. PMID:22422829
Spontaneously released substance P and bradykinin from isolated guinea-pig bladder.
Saban, R; Franz, J; Bjorling, D E
1997-04-01
To investigate whether the isolated urinary bladder spontaneously releases substance P (SP) or bradykinin (BK), which can act as potent mediators of pain and inflammation of the urinary bladder, and whether peptidase inhibitors enhance peptide release. Urinary bladder segments (2 x 10 x 0.8-1 mm) were isolated from guinea pigs and studied in vitro; tissue contraction was assessed using force-displacement transducers and the release of peptides by specific enzyme immunoassays. In the absence of any exogenous agonists, the inhibition of neutral endopeptidase and angiotensin-converting enzyme by phosphoramidon and captopril, respectively, increased the frequency and magnitude of spontaneous motility of isolated bladder strips. Phosphoramidon increased the net release of SP-like immunoreactivity (SP-LI) and captopril increased the net release of SP-LI and BK-LI, concomitant with contraction. Peptide-LI was recovered primarily from bladder mucosa and to a lesser degree from detrusor smooth muscle. Similarly, peptidase inhibitors primarily affected the bladder mucosa; phosphoramidon induced a fourfold increase in SP-LI and captopril induced a significant increase of SP-LI and BK-LI from the mucosa. Tissues contracted in response to peptidase inhibitors in the presence of atropine and indomethacin, but contraction was reduced significantly by in vitro capsaicin desensitization or removal of bladder mucosa. BK stimulated SP-LI release from mucosa but not detrusor. SP stimulated increased BK-LI release from mucosa and detrusor. These findings indicate the basal release of peptide-like immunoreactivity by isolated bladder and further support the concept that peptidases located in the bladder mucosa are important in terminating the effects of endogenous peptides.
Nelumbo nucifera leaves extracts inhibit mouse airway smooth muscle contraction.
Yang, Xiao; Xue, Lu; Zhao, Qingyang; Cai, Congli; Liu, Qing-Hua; Shen, Jinhua
2017-03-20
Alkaloids extracted from lotus leaves (AELL) can relax vascular smooth muscle. However, whether AELL has a similar relaxant role on airway smooth muscle (ASM) remains unknown. This study aimed to explore the relaxant property of AELL on ASM and the underlying mechanism. Alkaloids were extracted from dried lotus leaves using the high temperature rotary evaporation extraction method. The effects of AELL on mouse ASM tension were studied using force measuring and patch-clamp techniques. It was found that AELL inhibited the high K + or acetylcholine chloride (ACh)-induced precontraction of mouse tracheal rings by 64.8 ± 2.9%, or 48.8 ± 4.7%, respectively. The inhibition was statistically significant and performed in a dose-dependent manner. Furthermore, AELL-induced smooth muscle relaxation was partially mediated by blocking voltage-dependent Ca 2+ channels (VDCC) and non-selective cation channels (NSCC). AELL, which plays a relaxant role in ASM, might be a new complementary treatment to treat abnormal contractions of the trachea and asthma.
Role for pAKT in rat urinary bladder with cyclophosphamide (CYP)-induced cystitis
Arms, Lauren
2011-01-01
AKT phosphorylation following peripheral nerve injury or inflammation may play a role in somatic pain processes and visceral inflammation. To examine such a role in micturition reflexes with bladder inflammation, we induced bladder inflammation in adult female Wistar rats (200–300 g) by injecting cyclophosphamide (CYP) intraperitoneally at acute (150 mg/kg; 4 h), intermediate (150 mg/kg; 48 h), and chronic (75 mg/kg; every third day for 10 days) time points. Western blot analyses of whole urinary bladders showed significant increases (P ≤ 0.01) in phosphorylated (p) AKT at all time points; however, the magnitude of AKT phosphorylation varied with duration of CYP treatment. Immunohistochemical analyses of pAKT immunoreactivity (pAKT-IR) in cryostat bladder sections demonstrated duration-dependent, significant (P ≤ 0.01) increases in pAKT-IR in both the urothelium and detrusor smooth muscle of CYP-inflamed bladders. Additionally, a suburothelial population of pAKT-IR macrophages (CD68-, MAC2-, and F4/80-positive) was present in chronic CYP-treated bladders. The functional role of pAKT in micturition was evaluated using open, conscious cystometry with continuous instillation of saline in conjunction with administration of an inhibitor of AKT phosphorylation, deguelin (1.0 μg/10 μl), or vehicle (1% DMSO in saline) in control (no inflammation) and CYP (48 h)-treated rats. Bladder capacity, void volume, and intercontraction void interval increased significantly (P ≤ 0.05) following intravesical instillation of deguelin in CYP (48 h)-treated rats. These results demonstrate increased AKT phosphorylation in the urinary bladder with urinary bladder inflammation and that blockade of AKT phosphorylation in the urothelium improves overall bladder function. PMID:21632956
Computer-aided detection of bladder masses in CT urography (CTU)
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Samala, Ravi K.
2017-03-01
We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). We have previously developed methods for detection of bladder masses within the contrast-enhanced and the non-contrastenhanced regions of the bladder individually. In this study, we investigated methods for detection of bladder masses within the entire bladder. The bladder was segmented using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential masses. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify lesion candidates in a prescreening step. The candidates were mapped back to the 3D CT volume and segmented using our auto-initialized cascaded level set (AI-CALS) segmentation method. Twenty-seven morphological features were extracted for each candidate. A data set of 57 patients with 71 biopsy-proven bladder lesions was used, which was split into independent training and test sets: 42 training cases with 52 lesions, and 15 test cases with 19 lesions. Using the training set, feature selection was performed and a linear discriminant (LDA) classifier was designed to merge the selected features for classification of bladder lesions and false positives. The trained classifier was evaluated with the test set. FROC analysis showed that the system achieved a sensitivity of 86.5% at 3.3 FPs/case for the training set, and 84.2% at 3.7 FPs/case for the test set.
Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions
Sui, Guiping; Fry, Chris H.; Montgomery, Bruce; Roberts, Max; Wu, Rui
2013-01-01
The urothelium is a newly recognized sensory structure that detects bladder fullness. Pivotal to this sensory role is the release of ATP from the urothelium. However, the routes for urothelial ATP release, its modulation by receptor-mediated pathways, and the autocrine/paracrine role of ATP are poorly understood, especially in native tissue. We examined the action of key neurotransmitters: purinergic and muscarinic agonists on ATP release and its paracrine effect. Guinea pig and human urothelial mucosa were mounted in a perfusion trough; superfusate ATP was measured using a luciferin-luciferase assay, and tissue contractions were recorded with a tension transducer. Intracellular Ca2+ was measured in isolated urothelial cells with fura-2. The P2Y agonist UTP but not the P2X agonist α,β-methylene-ATP generated ATP release. The muscarinic agonist carbachol and the M2-preferential agonist oxotremorine also generated ATP release, which was antagonized by the M2-specific agent methoctramine. Agonist-evoked ATP release was accompanied by mucosal contractions. Urothelial ATP release was differentially mediated by intracellular Ca2+ release, cAMP, exocytosis, or connexins. Urothelium-attached smooth muscle exhibited spontaneous contractions that were augmented by subthreshold concentrations of carbachol, which had little direct effect on smooth muscle. This activity was attenuated by desensitizing P2X receptors on smooth muscle. Urothelial ATP release was increased in aging bladders. Purinergic and muscarinic agents produced similar effects in human urothelial tissue. This is the first demonstration of specific modulation of urothelial ATP release in native tissue by purinergic and muscarinic neurotransmitters via distinct mechanisms. Released ATP produces paracrine effects on underlying tissues. This process is altered during aging and has relevance to human bladder pathologies. PMID:24285497
Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions.
Sui, Guiping; Fry, Chris H; Montgomery, Bruce; Roberts, Max; Wu, Rui; Wu, Changhao
2014-02-01
The urothelium is a newly recognized sensory structure that detects bladder fullness. Pivotal to this sensory role is the release of ATP from the urothelium. However, the routes for urothelial ATP release, its modulation by receptor-mediated pathways, and the autocrine/paracrine role of ATP are poorly understood, especially in native tissue. We examined the action of key neurotransmitters: purinergic and muscarinic agonists on ATP release and its paracrine effect. Guinea pig and human urothelial mucosa were mounted in a perfusion trough; superfusate ATP was measured using a luciferin-luciferase assay, and tissue contractions were recorded with a tension transducer. Intracellular Ca²⁺ was measured in isolated urothelial cells with fura-2. The P2Y agonist UTP but not the P2X agonist α,β-methylene-ATP generated ATP release. The muscarinic agonist carbachol and the M₂-preferential agonist oxotremorine also generated ATP release, which was antagonized by the M₂-specific agent methoctramine. Agonist-evoked ATP release was accompanied by mucosal contractions. Urothelial ATP release was differentially mediated by intracellular Ca²⁺ release, cAMP, exocytosis, or connexins. Urothelium-attached smooth muscle exhibited spontaneous contractions that were augmented by subthreshold concentrations of carbachol, which had little direct effect on smooth muscle. This activity was attenuated by desensitizing P2X receptors on smooth muscle. Urothelial ATP release was increased in aging bladders. Purinergic and muscarinic agents produced similar effects in human urothelial tissue. This is the first demonstration of specific modulation of urothelial ATP release in native tissue by purinergic and muscarinic neurotransmitters via distinct mechanisms. Released ATP produces paracrine effects on underlying tissues. This process is altered during aging and has relevance to human bladder pathologies.
Effects of Dai-kenchu-to on spontaneous activity in the mouse small intestine.
Kito, Yoshihiko; Suzuki, Hikaru
2006-12-01
The effects of Dai-kenchu-to (DKT), a Chinese medicine, on spontaneous activity of mouse small intestine were investigated. Experiments were carried out with tension recording and intracellular recording. DKT contracted mouse longitudinal smooth muscles in a dose dependent manner (0.1-10 mg/ml). Low concentration of DKT (0.1 mg/ml) did not contract the longitudinal muscles of mouse small intestine. DKT (0.1 mg/ml) inhibited contraction elicited by transmural nerve stimulation (TNS). DKT (1 mg/ml) evoked relaxation before contraction. The initial relaxation was abolished by Nomega-nitro-L-arginine (L-NNA). DKT (10 mg/ml)-induced contraction had two components: a transient rapid contraction and a following slow contraction. Atropine inhibited DKT (1 mg/ml)-induced contraction to about 50% of control. In the presence of atropine, tetrodotoxin (TTX) inhibited the contraction elicited by DKT (1 mg/ml) to about 80%. DKT depolarized the membrane and decreased the amplitude of pacemaker potentials recorded from in situ myenteric interstitial cells of Cajal (ICC-MY) with no alteration to the frequency, duration and maximum rates of rise in the presence of nifedipine and TTX. The same results were obtained in slow waves recorded from circular smooth muscle cells. These results indicate that DKT evoked both contraction and relaxation by releasing acetylcholine, nitric oxide and other excitatory neurotransmitters in mouse small intestine. DKT had no effects on pacemaker mechanisms and electrical coupling between ICC-MY and smooth muscle cells in mouse small intestine. The results also suggest that DKT may contract smooth muscles by depolarizing the membrane directly.
Erman, Andreja; Hergouth, Veronika Križan; Blango, Matthew G; Kos, Mojca Kerec; Mulvey, Matthew A; Veranic, Peter
2017-08-01
Uropathogenic Escherichia coli (UPEC), the primary causative agents of urinary tract infections, colonize and invade the epithelial cells of the bladder urothelium. Infection of immature urothelial cells can result in the formation of persistent intracellular reservoirs that are refractory to antibiotic treatments. Previously, we defined a novel therapeutic strategy that used the bladder cell exfoliant chitosan to deplete UPEC reservoirs. However, although a single treatment of chitosan followed by ciprofloxacin administration had a marked effect on reducing UPEC titers within the bladder, this treatment failed to prevent relapsing bacteriuria. We show here that repeated use of chitosan in conjunction with the antibiotic ciprofloxacin completely eradicates UPEC from the urinary tract and prevents the development of relapsing bouts of bacteriuria. In addition, microscopy revealed rapid restoration of bladder integrity following chitosan treatment, indicating that chitosan can be used to effectively combat recalcitrant bladder infections without causing lasting harm to the urothelium. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Saban, Ricardo; Simpson, Cindy; Vadigepalli, Rajanikanth; Memet, Sylvie; Dozmorov, Igor; Saban, Marcia R
2007-01-01
Background Tachykinins (TK), such as substance P, and their neurokinin receptors which are ubiquitously expressed in the human urinary tract, represent an endogenous system regulating bladder inflammatory, immune responses, and visceral hypersensitivity. Increasing evidence correlates alterations in the TK system with urinary tract diseases such as neurogenic bladders, outflow obstruction, idiopathic detrusor instability, and interstitial cystitis. However, despite promising effects in animal models, there seems to be no published clinical study showing that NK-receptor antagonists are an effective treatment of pain in general or urinary tract disorders, such as detrusor overactivity. In order to search for therapeutic targets that could block the tachykinin system, we set forth to determine the regulatory network downstream of NK1 receptor activation. First, NK1R-dependent transcripts were determined and used to query known databases for their respective transcription regulatory elements (TREs). Methods An expression analysis was performed using urinary bladders isolated from sensitized wild type (WT) and NK1R-/- mice that were stimulated with saline, LPS, or antigen to provoke inflammation. Based on cDNA array results, NK1R-dependent genes were selected. PAINT software was used to query TRANSFAC database and to retrieve upstream TREs that were confirmed by electrophoretic mobility shift assays. Results The regulatory network of TREs driving NK1R-dependent genes presented cRel in a central position driving 22% of all genes, followed by AP-1, NF-kappaB, v-Myb, CRE-BP1/c-Jun, USF, Pax-6, Efr-1, Egr-3, and AREB6. A comparison between NK1R-dependent and NK1R-independent genes revealed Nkx-2.5 as a unique discriminator. In the presence of NK1R, Nkx2-5 _01 was significantly correlated with 36 transcripts which included several candidates for mediating bladder development (FGF) and inflammation (PAR-3, IL-1R, IL-6, α-NGF, TSP2). In the absence of NK1R, the matrix Nkx2-5_02 had a predominant participation driving 8 transcripts, which includes those involved in cancer (EYA1, Trail, HSF1, and ELK-1), smooth-to-skeletal muscle trans-differentiation, and Z01, a tight-junction protein, expression. Electrophoretic mobility shift assays confirmed that, in the mouse urinary bladder, activation of NK1R by substance P (SP) induces both NKx-2.5 and NF-kappaB translocations. Conclusion This is the first report describing a role for Nkx2.5 in the urinary tract. As Nkx2.5 is the unique discriminator of NK1R-modulated inflammation, it can be imagined that in the near future, new based therapies selective for controlling Nkx2.5 activity in the urinary tract may be used in the treatment in a number of bladder disorders. PMID:17519035
Jensen, Heidi D.; Struve, Carsten; Christensen, Søren B.; Krogfelt, Karen A.
2017-01-01
The antibacterial effect of cranberry juice and the organic acids therein on infection by uropathogenic Escherichia coli was studied in an experimental mouse model of urinary tract infection (UTI). Reduced bacterial counts were found in the bladder (P < 0.01) of mice drinking fresh cranberry juice. Commercially available cranberry juice cocktail also significantly reduced (P < 0.01) bacterial populations in the bladder, as did the hydrophilic fraction of cranberry juice (P < 0.05). Quinic, malic, shikimic, and citric acid, the preponderant organic acids in cranberry juice, were tested in combination and individually. The four organic acids also decreased bacterial levels in the bladder when administered together (P < 0.001), and so did the combination of malic plus citric acid (P < 0.01) and malic plus quinic acid (P < 0.05). The other tested combinations of the organic acids, and the acids administered singly, did not have any effect in the UTI model. Apparently, the antibacterial effect of the organic acids from cranberry juice on UTI can be obtained by administering a combination of malic acid and either citric or quinic acid. This study show for the first time that cranberry juice reduce E. coli colonization of the bladder in an experimental mouse model of urinary tract infection and that the organic acids are active agents. PMID:28421045
Sukov, William R; Cheville, John C; Amin, Mahul B; Gupta, Ruta; Folpe, Andrew L
2009-02-01
The perivascular epithelioid cell family of tumors (PEComas) includes familiar lesions such as angiomyolipoma, lymphangioleiomyoma, and clear-cell "sugar" tumors of the lung. Less frequently, PEComas arise in various other locations throughout the body including soft tissue, bone, and visceral organs. We report 3 cases of PEComa arising in the urinary bladder in 2 men in their fourth decade, and 1 woman in her third decade. All 3 tumors showed histologic features characteristic of PEComa including spindled and epithelioid cell morphology with variable clear cell change, and all coexpressed melanocytic and smooth muscle associated markers by immunohistochemistry. Follow-up demonstrated an indolent course for 2 patients with no evidence of disease at 10 and 21 months, respectively, and the third case was recently diagnosed. We also provide a review of the 4 previously reported PEComas occurring in the bladder. PEComas of the urinary bladder should be carefully distinguished from a variety of histologically similar, but clinically dissimilar entities.
Patne, Shashikant Chandrakant Urmila; Katiyar, Richa; Chaudhary, Deepshikha; Trivedi, Sameer
2016-01-01
A 38-year-old woman presented with dysuria and fever. Her medical and family histories were unremarkable. CT scan of the abdomen revealed a polypoid mass of 4×2.6×2.2 cm. Her cystoscopy showed a 4×2 cm solid broad-based growth at trigone of the urinary bladder. She underwent transurethral resection of the urinary bladder tumour (TURBT). Histopathology revealed a poorly circumscribed proliferation of spindle cells arranged in a haphazard and fascicular manner along with many traversing blood vessels in a myxoid and hyalinised stroma. Immunohistochemistry was positive for anaplastic lymphoma kinase-1, smooth muscle actin, CD10, cytokeratin and desmin; and negative for CD34 and S-100 protein. Ki-67 proliferative index in the tumour was <1%. The patient was diagnosed as having inflammatory myofibroblastic tumour of the urinary bladder. After TURBT, her fever and urinary symptoms resolved. Her 1-month postoperative period was uneventful. She has been advised regular follow-up. PMID:26880824
Morphological modification of female bladder after prolonged use of soy-based diets.
da Silva Faria, Tatiane; Soares, Lavínia Leal; Medeiros, Jorge L; Boaventura, Gilson T; Sampaio, Francisco J B; da Fonte Ramos, Cristiane
2009-01-20
The aim of this study was to compare the effects of a prolonged use of organic and transgenic soy upon the lipid profile and the collagen/muscle ratio of the detrusor muscle of the bladder. Wistar rats were fed three different diets from weaning until sacrifice (15 months old): control group (CG) casein-based diet; organic soy group (OSG) organic soy-based diet; genetically modified soy group (GMSG) transgenic soy-based diet. There was no difference in the food consumption or in the diet isoflavone components among the groups. Comparing to CG, both OSG and GMSG groups presented a significant (p<0.05) reduction in the body weight, triglycerides, cholesterol and the smooth muscle of the detrusor and a significant (p<0.05) increase of collagen fibers number of the detrusor muscle. These findings call into question that, the prolonged use of soy-based diets can be deleterious to the bladder by altering the collagen/muscle ratio what can cause bladder dysfunctions similar with that occurring during menopause.
Xanthogranulomatous Cystitis: A Challenging Imitator of Bladder Cancer
Ekici, Sinan; Dogan Ekici, Isin; Ruacan, Sevket; Midi, Ahmet
2010-01-01
Xanthogranulomatous cystitis is a rare, benign, chronic inflammatory disease of the bladder, mimicking malignancy with unknown etiology. Herein, we report a 57-year-old man who presented with pollakiuria, nocturia, dysuria, left flank pain, and a palpable mass on the right lower abdomen. Computerized tomography demonstrated an obstructing 10-mm stone in the lower third of the left ureter and a 6-cm solid mass on the right at the anterolateral wall of the bladder. The mass presented local perivesical invasion at the anterolateral side. Cystouretroscopy revealed a mass protruding into the bladder cavity with edematous smooth surface. Frozen section analysis of the partial cystectomy specimen could not rule out malignancy. Therefore, radical cystoprostatectomy and ureterolithotomy were performed. Histologically, fibrosis, numerous plasma cells, eosinophils, and, immunohistochemically, CD68-positive epithelioid and foamy macrophages were detected. Localized prostatic adenocarcinoma was also found. The present case of xanthogranulomatous cystitis is the 23rd to be reported in the world literature. PMID:20602075
Current status of tissue engineering applied to bladder reconstruction in humans.
Gasanz, C; Raventós, C; Morote, J
2018-01-11
Bladder reconstruction is performed to replace or expand the bladder. The intestine is used in standard clinical practice for tissue in this procedure. The complications of bladder reconstruction range from those of intestinal resection to those resulting from the continuous contact of urine with tissue not prepared for this contact. In this article, we describe and classify the various biomaterials and cell cultures used in bladder tissue engineering and reviews the studies performed with humans. We conducted a review of literature published in the PubMed database between 1950 and 2017, following the principles of the PRISM declaration. Numerous in vitro and animal model studies have been conducted, but only 18 experiments have been performed with humans, with a total of 169 patients. The current evidence suggests that an acellular matrix, a synthetic polymer with urothelial and autologous smooth muscle cells attached in vitro or stem cells would be the most practical approach for experimental bladder reconstruction. Bladder replacement or expansion without using intestinal tissue is still a challenge, despite progress in the manufacture of biomaterials and the development of cell therapy. Well-designed studies with large numbers of patients and long follow-up times are needed to establish an effective clinical translation and standardisation of the check-up functional tests. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Ribeiro, Ana S F; Fernandes, Vítor S; Martínez-Sáenz, Ana; Martínez, Pilar; Barahona, María Victoria; Orensanz, Luis M; Blaha, Igor; Serrano-Margüello, Daniel; Bustamante, Salvador; Carballido, Joaquín; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo
2014-04-01
Phosphodiesterase type 5 (PDE5) inhibitors act as effective drugs for the treatment of lower urinary tract symptom (LUTS). There is a poor information, however, about the role of the PDE4 inhibitors on the bladder outflow region contractility. To investigate PDE4 expression and the relaxation induced by the PDE4 inhibitor rolipram versus that induced by the PDE5 blockers sildenafil and vardenafil, in the pig and human bladder neck. Immunohistochemistry for PDE4 expression, myographs for isometric force recordings and fura-2 fluorescence for simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]i ) and tension for rolipram in bladder neck samples were used. PDE4 expression and relaxations to PDE4 and PDE5 inhibitors and simultaneous measurements of [Ca2+]i and tension. PDE4 expression was observed widely distributed in the smooth muscle layer of the pig and human bladder neck. On urothelium-denuded phenylephrine (PhE)-precontracted strips of pig and human, rolipram, sildenafil and vardenafil produced concentration-dependent relaxations with the following order of potency: rolipram> > sildenafil>vardenafil. In pig, the adenylyl cyclase activator forskolin potentiated rolipram-elicited relaxation, whereas protein kinase A (PKA) blockade reduced such effect. On potassium-enriched physiological saline solution (KPSS)-precontracted strips, rolipram evoked a lower relaxation than that obtained on PhE-stimulated preparations. Inhibition of large (BKCa ) and intermediate (IKCa ) conductance Ca2+ -activated K+ channels, neuronal voltage-gated Ca2+ channels, nitric oxide (NO) and hydrogen sulfide (H2 S) synthases reduced rolipram responses. Rolipram inhibited the contractions induced by PhE without reducing the PhE-evoked [Ca2+]i increase. PDE4 is present in the pig and human bladder neck smooth muscle, where rolipram exerts a much more potent relaxation than that elicited by PDE5 inhibitors. In pig, rolipram-induced response is produced through the PKA pathway involving BKCa and IKCa channel activation and [Ca2+]i desensitization-dependent mechanisms, this relaxation also being due to neuronal NO and H2S release. © 2014 International Society for Sexual Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wazir, Romel; Luo, De-Yi; Dai, Yi
2013-08-30
Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%,more » 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.« less
Collins, Clinton; Klausner, Adam P; Herrick, Benjamin; Koo, Harry P; Miner, Amy S; Henderson, Scott C; Ratz, Paul H
2009-01-01
Interstitial cells of Cajal (ICCs) have been identified as pacemaker cells in the upper urinary tract and urethra, but the role of ICCs in the bladder remains to be determined. We tested the hypotheses that ICCs express cyclooxygenase (COX), and that COX products (prostaglandins), are the cause of spontaneous rhythmic contraction (SRC) of isolated strips of rabbit bladder free of urothelium. SRC was abolished by 10 μM indomethacin and ibuprofen (non-selective COX inhibitors). SRC was concentration-dependently inhibited by selective COX-1 (SC-560 and FR-122047) and COX-2 inhibitors (NS-398 and LM-1685), and by SC-51089, a selective antagonist for the PGE-2 receptor (EP) and ICI-192,605 and SQ-29,548, selective antagonists for thromboxane receptors (TP). The partial agonist/antagonist of the PGF-2α receptor (FP), AL-8810, inhibited SRC by ∼50%. Maximum inhibition was ∼90% by SC-51089, ∼80–85% by the COX inhibitors and ∼70% by TP receptor antagonists. In the presence of ibuprofen to abolish SRC, PGE-2, sulprostone, misoprostol, PGF-2α and U-46619 (thromboxane mimetic) caused rhythmic contractions that mimicked SRC. Fluorescence immunohistochemistry coupled with confocal laser scanning microscopy revealed that c-Kit and vimentin co-localized to interstitial cells surrounding detrusor smooth muscle bundles, indicating the presence of extensive ICCs in rabbit bladder. Co-localization of COX-1 and vimentin, and COX-2 and vimentin by ICCs supports the hypothesis that ICCs were the predominant cell type in rabbit bladder expressing both COX isoforms. These data together suggest that ICCs appear to be an important source of prostaglandins that likely play a role in regulation of SRC. Additional studies on prostaglandin-dependent SRC may generate opportunities for the application of novel treatments for disorders leading to overactive bladder. PMID:19243470
2012-01-01
Abstract Perivascular epithelioid cell neoplasms (PEComas) of the urinary bladder are extremely rare and the published cases were comprised predominantly of middle-aged patients. Herein, the authors present the first urinary bladder PEComa occurring in an adolescent. This 16-year-old Chinese girl present with a 3-year history of abdominal discomfort and a solid mass was documented in the urinary bladder by ultrasonography. Two years later, at the age of 18, the patient underwent transurethral resection of the bladder tumor. Microscopically, the tumor was composed of spindled cells mixed with epithelioid cells. Immunohistochemically, the tumor were strongly positive for HMB45, smooth muscle actin, muscle-specific actin, and H-caldesmon. Fluorescence in situ hybridization analysis revealed no evidence of EWSR1 gene rearrangement. The patient had been in a good status without evidence of recurrence 13 months after surgery. Urinary bladder PEComa is an extremely rare neoplasm and seems occur predominantly in middle-aged patients. However, this peculiar lesion can develop in pediatric population and therefore it should be rigorously distinguished from their mimickers. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1870004378817301 PMID:23276164
Monastyrskaya, Katia; Babiychuk, Eduard B; Draeger, Annette; Burkhard, Fiona C
2013-07-01
We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Neuhaus, Jochen; Oberbach, Andreas; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe
2006-05-01
To compare histamine receptor expression in cultured smooth muscle cells from the human detrusor and internal sphincter using receptor-specific agonists. Smooth muscle cells from the bladder dome and internal sphincter were cultured from 5 male patients undergoing cystectomy for bladder cancer therapy. Calcium transients in cells stimulated with carbachol, histamine, histamine receptor 1 (H1R)-specific heptanecarboxamide (HTMT), dimaprit (H2R), and R-(alpha)-methylhistamine (H3R) were measured by calcium imaging. Histamine receptor proteins were detected by Western blot analysis and immunocytochemistry. H1R, H2R, and H3R expression was found in tissue and cultured cells. Carbachol stimulated equal numbers of detrusor and sphincter cells (60% and 51%, respectively). Histamine stimulated significantly more cells than carbachol in detrusor (100%) and sphincter (99.34%) cells. Calcium responses to carbachol in detrusor and sphincter cells were comparable and did not differ from those to histamine in detrusor cells. However, histamine and specific agonists stimulated more sphincter cells than did carbachol (P <0.001), and the calcium increase was greater in sphincter cells than in detrusor cells. Single cell analysis revealed comparable H2R responses in detrusor and sphincter cells, but H1R and H3R-mediated calcium reactions were significantly greater in sphincter cells. Histamine very effectively induces calcium release in smooth muscle cells. In sphincter cells, histamine is even more effective than carbachol regarding the number of reacting cells and the intracellular calcium increase. Some of the variability in the outcome of antihistaminic interstitial cystitis therapies might be caused by the ineffectiveness of the chosen antihistaminic or unintentional weakening of sphincteric function.
Hennenberg, Martin; Tamalunas, Alexander; Wang, Yiming; Keller, Patrick; Schott, Melanie; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Rutz, Beata; Ciotkowska, Anna; Stief, Christian G; Gratzke, Christian
2017-05-15
Male lower urinary tract symptoms (LUTS) due to bladder outlet obstruction are characterized by abnormal smooth muscle contractions in the lower urinary tract. Alpha 1 -adrenoceptor antagonists may induce smooth muscle relaxation in the outflow region and represent the current gold standard of medical treatment. However, results may be unsatisfactory or inadequate. Apart from α 1 -adrenoceptor agonists, smooth muscle contraction in the outflow region may be induced by thromboxane A 2 (TXA 2 ), endothelins, or muscarinic receptor agonists. Here, we studied effects of the thromboxane A 2 receptor (TP receptor) antagonist picotamide on contraction in the human male bladder trigone and prostate. Carbachol, the α 1 -adrenoceptor agonist phenylephrine, the thromboxane A 2 analog U46619, and electric field stimulation (EFS) induced concentration- or frequency-dependent contractions of trigone tissues in an organ bath. Picotamide (300µM) inhibited carbachol-, phenylephrine-, U46619-, and EFS-induced contractions. Endothelins 1-3 induced concentration-dependent contractions of prostate tissues, which were inhibited by picotamide. Analyses using real time polymerase chain reaction and antibodies suggested expression of thromboxane A 2 receptors and synthase in trigone smooth muscle cells. Thromboxane B 2 (the stable metabolite of thromboxane A 2 ) was detectable by enzyme immune assay in trigone samples, with most values ranging between 50 and 150pg/mg trigone protein. Picotamide inhibits contractions induced by different stimuli in the human lower urinary tract, including cholinergic, adrenergic, thromboxane A 2 - and endothelin-induced, and neurogenic contractions in different locations of the outflow region. This distinguishes picotamide from current medical treatments for LUTS, and suggests that picotamide may induce urodynamic effects in vivo. Copyright © 2017. Published by Elsevier B.V.
Intact urothelial barrier function in a mouse model of ketamine-induced voiding dysfunction
Rajandram, Retnagowri; Ong, Teng Aik; Razack, Azad H. A.; MacIver, Bryce; Zeidel, Mark
2016-01-01
Ketamine is a popular choice for young drug abusers. Ketamine abuse causes lower urinary tract symptoms, with the underlying pathophysiology poorly understood. Disruption of urothelial barrier function has been hypothesized to be a major mechanism for ketamine cystitis, yet the direct evidence of impaired urothelial barrier function is still lacking. To address this question, 8-wk-old female C57BL/6J mice were injected intraperitoneally with 30 mg·kg−1·day−1 ketamine for 12 wk to induce ketamine cystitis. A spontaneous voiding spot assay showed that ketamine-treated mice had increased primary voiding spot numbers and smaller primary voiding spot sizes than control mice (P < 0.05), indicating a contracted bladder and bladder overactivity. Consistently, significantly increased voiding frequency was observed in ketamine-treated mice on cystometrograms. These functional experiments indicate that ketamine induces voiding dysfunction in mice. Surprisingly, urothelial permeability in ketamine-treated mice was not changed when measured using an Ussing chamber system with isotopic urea and water. Mouse urothelial structure was also not altered, and intact umbrella cell structure was observed by both transmission and scanning electron microscopy. Furthermore, immunostaining and confocal microscopy confirmed the presence of a well-defined distribution of zonula occuldens-1 in tight junctions and uroplakin in umbrella cells. In conclusion, these data indicate that ketamine injection induces voiding dysfunction in mice but does not necessarily disrupt mouse bladder barrier function. Disruption of urothelial barrier function may not be the major mechanism in ketamine cystitis. PMID:26911853
Girard, Beatrice M.; Malley, Susan; May, Victor; Vizzard, Margaret A.
2016-01-01
We have determined if cyclophosphamide (CYP)-induced cystitis produces additional changes in growth factor/receptors expression in the urinary bladder (urothelium, detrusor) and lumbosacral (L6-S1) dorsal root ganglia (DRG) in a transgenic mouse model with chronic urothelial overexpression of NGF (NGF-OE). Functionally, NGF-OE mice treated with CYP exhibit significant increases in voiding frequency above that observed in control NGF-OE mice (no CYP). Quantitative PCR was used to determine NGF, BDNF, VEGF and receptors (TrkA, TrkB, p75NTR) transcripts expression in tissues from NGF-OE and wildtype (WT) mice with CYP-induced cystitis of varying duration (4 h, 48 h, 8 d). In urothelium of control NGF-OE mice, NGF mRNA was significantly (p ≤ 0.001) increased. Urothelial expression of NGF mRNA in NGF-OE mice treated with CYP (4 h, 48 h, 8 d) was not further increased but maintained with all durations of CYP treatment evaluated. In contrast, CYP-induced cystitis (4 h, 48 h, 8 d) in NGF-OE mice demonstrated significant (p ≤ 0.05) regulation in BDNF, VEGF, TrkA, TrkB and P75NTR mRNA in urothelium and detrusor smooth muscle. Similarly, CYP-induced cystitis (4 h, 48 h, 8 d) in NGF-OE mice resulted in significant (p ≤ 0.05), differential changes in transcript expression for NGF, BDNF and receptors (TrkA, TrkB, p75NTR) in S1 DRG that was dependent on the duration-of CYP-induced cystitis. In general, NGF, BDNF, TrkA and TrkB protein content in the urinary bladder increased in WT and NGF-OE mice with CYP-induced cystitis (4 h). Changes in NGF, TrkA and TrkB expression in the urinary bladder were significantly (p ≤ 0.05) greater in NGF-OE mice with CYP-induced cystitis (4 h) compared to WT mice with cystitis (4 h). However, the magnitude of change between WT and NGF-OE mice was only significantly (p ≤ 0.05) different for TrkB expression in urinary bladder of NGF-OE mice treated with CYP. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity with potential contributions to reflex function of micturition pathways. PMID:27259880
D' Agostino, Gianluigi; Maria Condino, Anna; Calvi, Paolo
2015-07-05
Bladder overactivity (OAB) is a multifactorial bladder disorder that requires therapeutics superior to the current pharmacological treatment with muscarinic antagonists. β3-adrenoceptor (β3-ADR) agonists represent a novel promising approach that differently addresses the parasympathetic pathway, but the clinical efficacy of these drugs has not been fully elucidated to date. Therefore, we aimed to study the pharmacological mechanisms activated by β3-ADR agonists at muscular and neural sites in the isolated human bladder. Detrusor smooth muscle strips obtained from male patients undergoing total cystectomy were labelled with tritiated choline and stimulated with electrical field stimulation (EFS). EFS produced smooth muscle contraction and simultaneous acetylcholine ([(3)H]-ACh) release, which mostly reflects the neural origin of acetylcholine. Isoprenaline (INA), BRL37344 and mirabegron inhibited the EFS-evoked contraction and [(3)H]-ACh release in a concentration-dependent manner, yielding concentration-response curves (CRCs) that were shifted to the right by the selective β3-ADR antagonists L-748,337 and SR59230A. Based on the agonist potency estimates (pEC50) and apparent affinities (pKb) of antagonists evaluated from the CRCs of agonists, our data confirm the occurrence of β3-ADRs at muscle sites. Moreover, our data are consistent with the presence of inhibitory β3-ADRs that are functionally expressed at the neural site. Taken together, these findings elucidate the mechanisms activated by β3-ADR agonists because neural β3-ADRs participate in the inhibition of detrusor motor drive by reducing the amount of acetylcholine involved in the cholinergic pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John; Rovner, Eric S.
2016-01-01
Transient receptor potential melastatin 4 (TRPM4) channels are Ca2+-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder. PMID:26791488
Hopkins, W J; Gendron-Fitzpatrick, A; Balish, E; Uehling, D T
1998-06-01
Recurrent urinary tract infections (UTIs) are a significant clinical problem for many women; however, host susceptibility factors have not been completely defined. The mouse model of induced UTI provides an experimental environment in which to identify specific host characteristics that are important in initial bacterial colonization of the urinary tract and in resolution of an infection. This study examined initial susceptibility, bacterial clearance, and host defense mechanisms during induction and resolution of Escherichia coli UTIs in genetically distinct strains of mice. Of the ten inbred strains tested, six (BALB/c, C3H/HeN, C57BL/6, DBA.1, DBA.2, and AKR) showed progressive resolution of bladder infections over a 14-day period. A constant, low-level bladder infection was observed in SWR and SJL mice. High bladder infection levels persisted over the 14-day study period in C3H/HeJ and C3H/OuJ mice. Kidney infection levels generally correlated with bladder infection levels, especially in C3H/HeJ and C3H/OuJ mice, the two most susceptible strains, in which infections became more severe with time after challenge. The degree of inflammation in bladder and kidneys, as well as antibody-forming cell responses, positively correlated with infection intensity in all strains except C3H/HeJ, which had minimal inflammation despite high infection levels. These results demonstrate two important aspects of host defense against UTI. First, the innate immune response to an infection in the bladder or kidneys consists primarily of local inflammation, which is followed by an adaptive response characterized in part by an antibody response to the infecting bacteria. Second, a UTI will be spontaneously resolved in most cases; however, in mice with specific genetic backgrounds, a UTI can persist for an extended length of time. The latter result strongly suggests that the presence or absence of specific host genes will determine how effectively an E. coli UTI will be resolved.
Nakai, Yasushi; Tanaka, Nobumichi; Fujimoto, Kiyohide
2017-01-01
Intravesical bacillus Calmette-Guerin (BCG) treatment is the most common therapy to prevent progression and recurrence of non-muscle invasive bladder cancer (NMIBC). Although the immunoreaction elicited by BCG treatment is well documented, those induced by intravesical treatment with chemotherapeutic agents are much less known. We investigated the immunological profiles caused by mitomycin C, gemcitabine, adriamycin and docetaxel in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced orthotopic bladder cancer mouse model. Ninety mice bearing orthotopic bladder cancer induced by BBN were randomly divided into six groups and treated with chemotherapeutic agents once a week for four weeks. After last treatment, bladder and serum samples were analyzed for cell surface and immunological markers (CD4, CD8, CD56, CD204, Foxp3, and PD-L1) using immunohistochemistry staining. Serum and urine cytokine levels were evaluated by ELISA. All chemotherapeutic agents presented anti-tumor properties similar to those of BCG. These included changes in immune cells that resulted in fewer M2 macrophages and regulatory T cells around tumors. This result was compatible with those in human samples. Intravesical chemotherapy also induced systemic changes in cytokines, especially urinary interleukin (IL)-17A and granulocyte colony stimulating factor (G-CSF), as well as in the distribution of blood neutrophils, lymphocytes, and monocytes. Our findings suggest that intravesical treatment with mitomycin C and adriamycin suppresses protumoral immunity while enhancing anti-tumor immunity, possibly through the action of specific cytokines. A better understanding of the immunoreaction induced by chemotherapeutic agents can lead to improved outcomes and fewer side effects in intravesical chemotherapy against NMIBC. PMID:28406993
Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L.; Blyth, Robert I. R.; Sham, Tsun-Kong; Dowling, Patricia M.; Thompson, Julie
2013-01-01
A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli. PMID:23877680
Endogenous Cardiac Troponin T Modulates Ca2+-Mediated Smooth Muscle Contraction
Kajioka, Shunichi; Takahashi-Yanaga, Fumi; Shahab, Nouval; Onimaru, Mitsuho; Matsuda, Miho; Takahashi, Ryosuke; Asano, Haruhiko; Morita, Hiromitsu; Morimoto, Sachio; Yonemitsu, Yoshikazu; Hayashi, Maya; Seki, Narihito; Sasaguri, Toshiuyki; Hirata, Masato; Nakayama, Shinsuke; Naito, Seiji
2012-01-01
Mechanisms linked to actin filaments have long been thought to cooperate in smooth muscle contraction, although key molecules were unclear. We show evidence that cardiac troponin T (cTnT) substantially contributes to Ca2+-mediated contraction in a physiological range of cytosolic Ca2+ concentration ([Ca2+]i). cTnT was detected in various smooth muscles of the aorta, trachea, gut and urinary bladder, including in humans. Also, cTnT was distributed along with tropomyosin in smooth muscle cells, suggesting that these proteins are ready to cause smooth muscle contraction. In chemically permeabilised smooth muscle of cTnT+/− mice in which cTnT reduced to ~50%, the Ca2+-force relationship was shifted toward greater [Ca2+]i, indicating a sizeable contribution of cTnT to smooth muscle contraction at [Ca2+]i < 1 μM. Furthermore, addition of supplemental TnI and TnC reconstructed a troponin system to enhance contraction. The results indicated that a Tn/Tn-like system on actin-filaments cooperates together with the thick-filament pathway. PMID:23248744
Evidence of direct smooth muscle relaxant effects of the fibrate gemfibrozil.
Phelps, Laura E; Peuler, Jacob D
2010-01-01
Fibrates are commonly employed to treat abnormal lipid metabolism via their unique ability to stimulate peroxisome proliferator-activated receptor alpha (PPARalpha). Interestingly, they also decrease systemic arterial pressure, despite recent evidence that PPAR alpha may contribute to expression of renin and related hypertension. Yet, mechanisms responsible for their potential antihypertensive activity remain unresolved. Rapid decreases in arterial pressure following bolus intravenous injections of bezafibrate strongly suggest they may relax arterial smooth muscle directly. But since bezafibrate is highly susceptible to photodegradation in aqueous media, it has never been critically tested for this possibility in vitro with isolated arterial smooth muscle preparations. Accordingly, we tested gemfibrozil which is resistant to photodegradation. We examined it over a therapeutically-relevant range (50-400 microM) for both acute and delayed relaxant effects on contractions of the isolated rat tail artery; contractions induced by either depolarizing its smooth muscle cell membranes with high potassium or stimulating its membrane-bound receptors with norepinephrine and arginine-vasopressin. We also examined these same gemfibrozil levels for effects on spontaneously-occurring phasic rhythmic contractile activity, typically not seen in arteries under in vitro conditions but commonly exhibited by smooth muscle of uterus, duodenum and bladder. We found that gemfibrozil significantly relaxed all induced forms of contraction in the rat tail artery, acutely at the higher test levels and after a delay of a few hours at the lower test levels. The highest test level of gemfibrozil (400 microM) also completely abolished spontaneously-occurring contractile activity of the isolated uterus and duodenum and markedly suppressed it in the bladder. This is the first evidence that a fibrate drug can directly relax smooth muscle contractions, either induced by various contractile agents or spontaneously-occurring. These findings are particularly relevant to both the recently renewed concern over the impact of fibrates on hypertension and a new understanding of their gastrointestinal side effects.
Effects of vitamin D analog on bladder function and sensory signaling in animal models of cystitis.
Shapiro, Bennett; Redman, T Lawton; Zvara, Peter
2013-02-01
To measure the effects of nonhypercalcemic vitamin D receptor agonist elocalcitol on bladder function in rats with cyclophosphamide-induced cystitis and on bladder function and sensory nerve activity in a mouse with acetic acid-evoked bladder irritation. Female Wistar rats and male Balb/C mice were gavaged once daily with elocalcitol diluted in miglyol 812 (treatment group) or miglyol alone (control group). On experimental day 12, polyethylene tubing was implanted into the urinary bladder in all the animals. In the mice, a bipolar electrode was positioned under a single postganglionic bladder nerve. At 48 hours after surgery, bladder function was measured in awake, freely moving rats during bladder filling with 0.9% NaCl and both bladder function and sensory nerve activity was measured in awake, restrained mice during continuous intravesical infusion of 0.9% NaCl followed by 0.25% acetic acid. In rats, the treatment group showed a significant increase in bladder capacity and decrease in number of nonvoiding bladder contractions. In mice, the filling pressure during saline infusion was similar in both groups; however, during acetic acid infusion, the average filling pressure was significantly increased (47%) in the control group but not in the elocalcitol treatment group. The firing rate at filling pressure for the treatment group was 3.6-fold and 2.7-fold lower than that in the control group during the saline and acetic acid infusion, respectively. Oral treatment with elocalcitol suppressed signs of detrusor overactivity in both animal models and exerted strong suppressive effect on urinary bladder sensory signaling during filling in mice. Copyright © 2013 Elsevier Inc. All rights reserved.
The role of metabotropic glutamate receptor mGlu5 in control of micturition and bladder nociception.
Hu, Youmin; Dong, Li; Sun, Biying; Guillon, Marlene A; Burbach, Leah R; Nunn, Philip A; Liu, Xingrong; Vilenski, Olga; Ford, Anthony P D W; Zhong, Yu; Rong, Weifang
2009-01-23
In micturition control, the roles of ionotropic glutamate (iGlu) receptors NMDA and AMPA are well established, whereas little is known about the function of metabotropic glutamate (mGlu) receptors. Since antagonists for mGlu5 receptors are efficacious in animal models of inflammatory and neuropathic pain, we examined whether mGlu5 receptors play a role in the voiding reflex and bladder nociception and, if so, via centrally or peripherally localized receptors. The mGlu5 receptor antagonist MPEP dose-dependently increased the micturition threshold (MT) volume in the volume-induced micturition reflex (VIMR) model in anesthetized rats. Following doses of 5.2, 15.5 and 51.7micromol/kg of MPEP (intraduodenal), the MT was increased by 24.7+/-5.0%, 97.2+/-12.5% (P<0.01) and 128.0+/-28.3% (P<0.01) from the baseline, respectively (n=4-5; compared with 0.8+/-9.1% in the vehicle group). Infusing MPEP (0.3, 1mM) directly into the bladder also raised MT. However, the efficacious plasma concentrations of MPEP following intravesical dosing were similar to that after intraduodenal dosing (EC(50) of 0.11 and 0.27microM, respectively, P>0.05). MPEP also dose-dependently attenuated the visceromotor responses (VMR, total number of abdominal EMG spikes during phasic bladder distension) in anesthetized rats. The VMR was decreased to 1332.4+/-353.9 from control of 2886.5+/-692.2 spikes/distension (n=6, P<0.01) following MPEP (10micromol/kg, iv). Utilizing the isolated mouse bladder/pelvic nerve preparation, we found that neither MPEP (up to 3microM) nor MTEP (up to 10microM) affected afferent discharge in response to bladder distension (n=4-6). In contrast, MPEP attenuated the responses of the mesenteric nerves to distension of the mouse jejunum in vitro. These data suggest that mGlu5 receptors play facilitatory roles in the processing of afferent input from the urinary bladder, and that central rather than peripheral mGlu5 receptors appear to be responsible.
Collins, Valerie M; Daly, Donna M; Liaskos, Marina; McKay, Neil G; Sellers, Donna; Chapple, Christopher; Grundy, David
2013-11-01
To investigate the direct effect of onabotulinumtoxinA (OnaBotA) on bladder afferent nerve activity and release of ATP and acetylcholine (ACh) from the urothelium. Bladder afferent nerve activity was recorded using an in vitro mouse preparation enabling simultaneous recordings of afferent nerve firing and intravesical pressure during bladder distension. Intraluminal and extraluminal ATP, ACh, and nitric oxide (NO) release were measured using the luciferin-luciferase and Amplex(®) Red assays (Molecular Probes, Carlsbad, CA, USA), and fluorometric assay kit, respectively. OnaBotA (2U), was applied intraluminally, during bladder distension, and its effect was monitored for 2 h after application. Whole-nerve activity was analysed to classify the single afferent units responding to physiological (low-threshold [LT] afferent <15 mmHg) and supra-physiological (high-threshold [HT] afferent >15 mmHg) distension pressures. Bladder distension evoked reproducible pressure-dependent increases in afferent nerve firing. After exposure to OnaBotA, both LT and HT afferent units were significantly attenuated. OnaBotA also significantly inhibited ATP release from the urothelium and increased NO release. These data indicate that OnaBotA attenuates the bladder afferent nerves involved in micturition and bladder sensation, suggesting that OnaBotA may exert its clinical effects on urinary urgency and the other symptoms of overactive bladder syndrome through its marked effect on afferent nerves. © 2013 The Authors. BJU International © 2013 BJU International.
Alberti, C
2016-01-01
To prevent problematic outcomes of bowel-based bladder reconstructive surgery, such as prosthetic tumors and systemic metabolic complications, research works, to either regenerate and strengthen failing organ or build organ replacement biosubstitute, have been turned, from 90s of the last century, to both regenerative medicine and tissue engineering.Various types of acellular matrices, naturally-derived materials, synthetic polymers have been used for either "unseeded" (cell free) or autologous "cell seeded" tissue engineering scaffolds. Different categories of cell sources - from autologous differentiated urothelial and smooth muscle cells to natural or laboratory procedure-derived stem cells - have been taken into consideration to reach the construction of suitable "cell seeded" templates. Current clinically validated bladder tissue engineering approaches essentially consist of augmentation cystoplasty in patients suffering from poorly compliant neuropathic bladder. No clinical applications of wholly tissue engineered neobladder have been carried out to radical-reconstructive surgical treatment of bladder malignancies or chronic inflammation-due vesical coarctation. Reliable reasons why bladder tissue engineering clinical applications so far remain unusual, particularly imply the risk of graft ischemia, hence its both fibrous contraction and even worse perforation. Therefore, the achievement of graft vascular network (vasculogenesis) could allow, together with the promotion of host surrounding vessel sprouting (angiogenesis), an effective graft blood supply, so avoiding the ischemia-related serious complications.
[Functional anatomy of the male continence mechanism].
Schwalenberg, T; Neuhaus, J; Dartsch, M; Weissenfels, P; Löffler, S; Stolzenburg, J-U
2010-04-01
The basic structures and organs contributing to continence in men are far less well investigated than in women. This concerns anatomical and functional aspects as well. Especially the cooperation of single components and the dynamic anchoring in the pelvic floor require further investigation. An improved anatomical-functional interpretation is needed to generate therapeutic concepts orientated at the physiology of the bladder neck.Therefore, the focus of anatomical investigations should be on the external sphincter which is the main muscle responsible for urethral closure as well as on the connective tissue, smooth muscular and neuronal structures in the pelvis. The smooth muscular structures involved are the internal sphincter, the inner parts of the external sphincter, the urethral longitudinal musculature, and parts of the centrum perinei and of the ventral suspension apparatus which fixes the position of the bladder neck and seems to be vital for continence and initiation of micturition. These new findings imply an integral concept for men as was developed for women. A first step in this regard would be a consistent and updated anatomical nomenclature.
Tsubota, Maho; Okawa, Yasumasa; Irie, Yuhei; Maeda, Mariko; Ozaki, Tomoka; Sekiguchi, Fumiko; Ishikura, Hiroyasu; Kawabata, Atsufumi
2018-05-01
Hydrogen sulfide (H 2 S) formed by cystathionine-γ-lyase (CSE) enhances the activity of Ca v 3.2 T-type Ca 2+ channels, contributing to the bladder pain accompanying hemorrhagic cystitis caused by systemic administration of cyclophosphamide (CPA) in mice. Given clinical and fundamental evidence for the involvement of the substance P/NK 1 receptor systems in bladder pain syndrome (BPS)/interstitial cystitis (IC), we created an intravesical substance P-induced bladder pain model in mice and analyzed the possible involvement of the CSE/Ca v 3.2 pathway. Bladder pain/cystitis was induced by i.p. CPA or intravesical substance P in female mice. Bladder pain was evaluated by counting nociceptive behavior and by detecting referred hyperalgesia in the lower abdomen and hindpaw. The isolated bladder tissue was weighed to estimate bladder swelling and subjected to histological observation and Western blotting. Intravesical substance P caused profound referred hyperalgesia accompanied by little bladder swelling or edema 6-24 h after the administration, in contrast to i.p. CPA-induced nociceptive behavior/referred hyperalgesia with remarkable bladder swelling/edema and urothelial damage. The bladder pain and/or cystitis symptoms caused by substance P or CPA were prevented by the NK 1 receptor antagonist. CSE in the bladder was upregulated by substance P or CPA, and the NK 1 antagonist prevented the CPA-induced CSE upregulation. A CSE inhibitor, a T-type Ca 2+ channel blocker and gene silencing of Ca v 3.2 abolished the intravesical substance P-induced referred hyperalgesia. The intravesical substance P-induced pain in mice is useful as a model for nonulcerative BPS, and involves the activation of the NK 1 receptor/CSE/H 2 S/Ca v 3.2 cascade. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gardiner, Jennifer C; Kirkup, Anthony J; Curry, John; Humphreys, Sian; O'Regan, Paul; Postlethwaite, Michael; Young, Kimberley C; Kitching, Linda; Ethell, Brian T; Winpenny, David; McMurray, Gordon
2014-10-05
Patients with overactive bladder often exhibit abnormal bladder contractions in response to intravesical cold saline (positive ice-water test). The molecular entity involved in cold sensation within the urinary bladder is unknown, but a potential candidate is the ion channel, transient receptor potential (melastatin)-8 (TRPM8). The objective of the present study was to investigate the role of TRPM8 in a bladder-cooling reflex evoked in anaesthetised guinea-pigs that is comparable to the positive ice-water test seen in patients. Guinea-pig TRPM8 was cloned from L6 dorsal root ganglia (DRG) and expressed in HEK293 cells. Functional agonist- and cold-induced Ca2+ influx and electrophysiology assays were performed in these cells, and for comparison in HEK293 cells expressing human TRPM8, using a novel TRPM8 antagonist, the S-enantiomer of 1-phenylethyl 4-(benzyloxy)-3-methoxybenzyl (2-aminoethyl) carbamate hydrochloride (PBMC). Potency data from these assays was used to calculate intravenous infusion protocols for targeted plasma concentrations of PBMC in studies on micturition reflexes evoked by intravesical infusion of menthol or cold saline in anaesthetised guinea-pigs. Tissue expression of TRPM8 in guinea-pig bladder, urethra and in dorsal root ganglia neurones traced from the bladder was also investigated. TRPM8 mRNA and protein were detected in L6 dorsal root ganglia, bladder urothelium and smooth muscle. PBMC antagonised in vitro activation of human and guinea-pig TRPM8 and reversed menthol and cold-induced facilitation of the micturition reflex at plasma concentrations consistent with in vitro potencies. The present data suggest that the bladder-cooling reflex in the guinea-pig involves TRPM8. The potential significance of TRPM8 in bladder disease states deserves future investigation. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel treatment strategies for smooth muscle disorders: Targeting Kv7 potassium channels.
Haick, Jennifer M; Byron, Kenneth L
2016-09-01
Smooth muscle cells provide crucial contractile functions in visceral, vascular, and lung tissues. The contractile state of smooth muscle is largely determined by their electrical excitability, which is in turn influenced by the activity of potassium channels. The activity of potassium channels sustains smooth muscle cell membrane hyperpolarization, reducing cellular excitability and thereby promoting smooth muscle relaxation. Research over the past decade has indicated an important role for Kv7 (KCNQ) voltage-gated potassium channels in the regulation of the excitability of smooth muscle cells. Expression of multiple Kv7 channel subtypes has been demonstrated in smooth muscle cells from viscera (gastrointestinal, bladder, myometrial), from the systemic and pulmonary vasculature, and from the airways of the lung, from multiple species, including humans. A number of clinically used drugs, some of which were developed to target Kv7 channels in other tissues, have been found to exert robust effects on smooth muscle Kv7 channels. Functional studies have indicated that Kv7 channel activators and inhibitors have the ability to relax and contact smooth muscle preparations, respectively, suggesting a wide range of novel applications for the pharmacological tool set. This review summarizes recent findings regarding the physiological functions of Kv7 channels in smooth muscle, and highlights potential therapeutic applications based on pharmacological targeting of smooth muscle Kv7 channels throughout the body. Published by Elsevier Inc.
The cholinergic and purinergic components of detrusor contractility in a whole rabbit bladder model.
Chancellor, M B; Kaplan, S A; Blaivas, J G
1992-09-01
Whole rabbit bladders were suspended in a bath chamber and stimulated with ATP, bethanechol, electrical field stimulation, and bethanechol + ATP. Detrusor pressure and fluid expelled by the bladder were recorded, synchronized, and digitized. Detrusor work and power were calculated with a computer program. Maximum work was 61.4 +/- 28.7, 83.3 +/- 17.0, 85.0 +/- 15.0, 90.8 +/- 13.1 cm. H2O, ml. for ATP, bethanechol, electrical and bethanechol + ATP, respectively. Maximum power generated by ATP was 4.8 +/- 3.0 cm. H2O, ml./sec and was approximately 66% of that generated by bethanechol, and 50% of that generated by electrical stimulation, and bethanechol + ATP. ATP cannot empty the bladder with moderate outlet resistance while bethanechol and electrical stimulation can. Our results suggest that ATP is able to generate detrusor power and achieve work in bladder emptying. However, ATP generated power and work is considerably less than that of electrical stimulation or bethanechol alone. ATP mediated contraction is not inhibited by atropine or tetrodotoxin but is inhibited by P2 purinoceptor desensitization, suggesting a functional role of purine receptors on detrusor smooth muscle. Since ATP generated pressure is more rapid than with bethanechol alone, we support the hypothesis that ATP may be important in the initiation of micturition.
Valeri, Aurora; Capasso, Raffaele; Valoti, Massimo; Pessina, Federica
2012-12-01
To investigate the effect of St John's wort (SJW) and its active constituents hypericin and hyperforin on detrusor smooth muscle contractility and their possible neuroprotective role against ischaemic-like conditions, which could arise during overactive bladder disease. In whole bladders, intrinsic nerves underwent electrical field stimulation (EFS). The effect of drugs on the contractile response and its recovery in reperfusion phase (R) was monitored at different concentrations during 1 or 2 h of anoxia-glucopenia (A-G) and the first 30 min of R. The effects of the drugs were also investigated on rat detrusor muscle strips contracted with carbachol, KCl and electrically. SJW has spasmolytic activity, which increases with increasing concentration and it worsens the damage induced by A-G/R on rat urinary bladder. Hypericin and hyperforin had no effect during ischemic-like conditions but they both exert a dual modulation of rat detrusor strips contraction. At high micromolar concentrations they showed a relaxing effect, but at submicromolar range hypericin increased the plasma membrane depolarisation and hyperforin showed a stimulatory effect on the cholinergic system. The results of our study showed that SJW and its constituents could modulate urinary bladder contractility and even worsen A-G/R injury. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Fernandes, Vítor S.; Xin, Wenkuan
2015-01-01
Hydrogen sulfide (H2S) is a key signaling molecule regulating important physiological processes, including smooth muscle function. However, the mechanisms underlying H2S-induced detrusor smooth muscle (DSM) contractions are not well understood. This study investigates the cellular and tissue mechanisms by which H2S regulates DSM contractility, excitatory neurotransmission, and large-conductance voltage- and Ca2+-activated K+ (BK) channels in freshly isolated guinea pig DSM. We used a multidisciplinary experimental approach including isometric DSM tension recordings, colorimetric ACh measurement, Ca2+ imaging, and patch-clamp electrophysiology. In isolated DSM strips, the novel slow release H2S donor, P-(4-methoxyphenyl)-p-4-morpholinylphosphinodithioic acid morpholine salt (GYY4137), significantly increased the spontaneous phasic and nerve-evoked DSM contractions. The blockade of neuronal voltage-gated Na+ channels or muscarinic ACh receptors with tetrodotoxin or atropine, respectively, reduced the stimulatory effect of GYY4137 on DSM contractility. GYY4137 increased ACh release from bladder nerves, which was inhibited upon blockade of L-type voltage-gated Ca2+ channels with nifedipine. Furthermore, GYY4137 increased the amplitude of the Ca2+ transients and basal Ca2+ levels in isolated DSM strips. GYY4137 reduced the DSM relaxation induced by the BK channel opener, NS11021. In freshly isolated DSM cells, GYY4137 decreased the amplitude and frequency of transient BK currents recorded in a perforated whole cell configuration and reduced the single BK channel open probability measured in excised inside-out patches. GYY4137 inhibited spontaneous transient hyperpolarizations and depolarized the DSM cell membrane potential. Our results reveal the novel findings that H2S increases spontaneous phasic and nerve-evoked DSM contractions by activating ACh release from bladder nerves in combination with a direct inhibition of DSM BK channels. PMID:25948731
Wang, Junpeng; Chen, Yang; Gu, Di; Zhang, Guihao; Chen, Jiawei; Zhao, Jie; Wu, Peng
2017-10-01
Bladder wall fibrosis is a major complication of ketamine-induced cystitis (KC), but the underlying pathogenesis is poorly understood. The aim of the present study was to elucidate the mechanism of ketamine-induced fibrosis in association with epithelial-to-mesenchymal transition (EMT) mediated by transforming growth factor-β1 (TGF-β1). Sprague-Dawley rats were randomly distributed into four groups, which received saline, ketamine, ketamine combined with a TGF-β receptor inhibitor (SB-505124) for 16 wk, or 12 wk of ketamine and 4 wk of abstinence. In addition, the profibrotic effect of ketamine was confirmed in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. The ketamine-treated rats displayed voiding dysfunction and decreased bladder compliance. Bladder fibrosis was accompanied by the appearance of a certain number of cells expressing both epithelial and mesenchymal markers, indicating that epithelial cells might undergo EMT upon ketamine administration. Meanwhile, the expression level of TGF-β1 was significantly upregulated in the urothelium of bladders in ketamine-treated rats. Treatment of SV-HUC-1 cells with ketamine increased the expression of TGF-β1 and EMT-inducing transcription factors, resulting in the downregulation of E-cadherin and upregulation of fibronectin and α-smooth muscle actin. Administration of SB-505124 inhibited EMT and fibrosis both in vitro and vivo. In addition, withdrawal from ketamine did not lead to recovery of bladder urinary function or decreased fibrosis. Taken together, our study shows for the first time that EMT might contribute to bladder fibrosis in KC. TGF-β1 may have an important role in bladder fibrogenesis via an EMT mechanism. Copyright © 2017 the American Physiological Society.
Computer-aided detection of bladder mass within non-contrast-enhanced region of CT Urography (CTU)
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Zhou, Chuan
2016-03-01
We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). We have previously developed methods for detection of bladder masses within the contrast-enhanced region of the bladder. In this study, we investigated methods for detection of bladder masses within the non-contrast enhanced region. The bladder was first segmented using a newly developed deep-learning convolutional neural network in combination with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensityprojection- based method. The non-contrast region was smoothed and a gray level threshold was employed to segment the bladder wall and potential masses. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify lesion candidates as a prescreening step. The lesion candidates were segmented using our autoinitialized cascaded level set (AI-CALS) segmentation method, and 27 morphological features were extracted for each candidate. Stepwise feature selection with simplex optimization and leave-one-case-out resampling were used for training and validation of a false positive (FP) classifier. In each leave-one-case-out cycle, features were selected from the training cases and a linear discriminant analysis (LDA) classifier was designed to merge the selected features into a single score for classification of the left-out test case. A data set of 33 cases with 42 biopsy-proven lesions in the noncontrast enhanced region was collected. During prescreening, the system obtained 83.3% sensitivity at an average of 2.4 FPs/case. After feature extraction and FP reduction by LDA, the system achieved 81.0% sensitivity at 2.0 FPs/case, and 73.8% sensitivity at 1.5 FPs/case.
Outlines on nanotechnologies applied to bladder tissue engineering.
Alberti, C
2012-01-01
Tissue engineering technologies are more and more expanding as consequence of recent developments in the field of biomaterial science and nanotechnology research. An important issue in designing scaffold materials is that of recreating the ECM (extra-cellular matrix) functional features - particularly ECM-derived complex molecule signalling - to mimic its capability of directing cell-growth and neotissue morphogenesis. In this way the nanotechnology may offer intriguing chances, biomaterial nanoscale-based scaffold geometry behaving as nanomechanotransducer complex interacting with different cell nanosize proteins, especially with those of cell surface mechanoreceptors. To fabricate 3D-scaffold complex architectures, endowed with controlled geometry and functional properties, bottom-up approaches, based on molecular self-assembling of small building polymer units, are used, sometimes functionalizing them by incorporation of bioactive peptide sequences such as RDG (arginine - glycine - aspartic acid, a cell-integrin binding domain of fibronectin), whereas the top-down approaches are useful to fabricate micro/nanoscale structures, such as a microvasculature within an existing complex bioarchitecture. Synthetic polymer-based nanofibers, produced by electrospinning process, may be used to create fibrous scaffolds that can facilitate, given their nanostructured geometry and surface roughness, cell adhesion and growth. Also bladder tissue engineering may benefit by nanotechnology advances to achieve a better reliability of the bladder engineered tissue. Particularly, bladder smooth muscle cell adhesion to nanostructured polymeric surfaces is significantly enhanced in comparison with that to conventional biomaterials. Moreover nanostructured surfaces of bladder engineered tissue show a decreased calcium stone production. In a bladder tumor animal model, the dispersion of carbon nanofibers in a polymeric scaffold-based tissue engineered replacement neobladder, appears to inhibit a carcinogenic relapse in bladder prosthetic material. Facing the future, a full success of bladder tissue engineering will mainly depend on the progress of both biomaterial nanotechnologies and stem cell biology research.
Steiner, Clara; Gevaert, Thomas; Ganzer, Roman; De Ridder, Dirk; Neuhaus, Jochen
2018-05-01
Interstitial cells (ICs) are thought to play a functional role in urinary bladder. Animal models are commonly used to elucidate bladder physiology and pathophysiology. However, inter-species comparative studies on ICs are rare. We therefore analyzed ICs and their distribution in the upper lamina propria (ULP), the deeper lamina propria (DLP) and the detrusor muscular layer (DET) of human, guinea pig (GP) and pig. Paraffin slices were examined by immunohistochemistry and 3D confocal immunofluorescence of the mesenchymal intermediate filament vimentin (VIM), alpha-smooth muscle actin (αSMA), platelet-derived growth factor receptor alpha (PDGFRα) and transient receptor potential cation channel A1 (TRPA1). Image stacks were processed for analysis using Huygens software; quantitative analysis was performed with Fiji macros. ICs were identified by immunoreactivity for VIM (excluding blood vessels). In all species ≥ 75% of ULP ICs were VIM + /PDGFRα + and ≥ 90% were VIM + /TRPA1 + . In human and pig ≥ 74% of ULP ICs were VIM + /αSMA + , while in GP the percentage differed significantly with only 37% VIM + /αSMA + ICs. Additionally, over 90% of αSMA + ICs were also TRPA1 + and PDGFRα + in human, GP and pig. In all three species, TRPA1 + and PDGFRα + ICs point to an active role for these cells in bladder physiology, regarding afferent signaling processes and signal modification. We hypothesize that decline in αSMA-positivity in GP reflects adaptation of bladder histology to smaller bladder size. In our experiments, pig bladder proved to be highly comparable to human urinary bladder and seems to provide safer interpretation of experimental findings than GP.
Dong, Xiao; Nakagomi, Hiroshi; Miyamoto, Tatsuya; Ihara, Tatsuya; Kira, Satoru; Sawada, Norifumi; Mitsui, Takahiko; Takeda, Masayuki
2018-03-22
To investigate the localization of phosphodiesterase 5 (PDE5) and the molecular mechanism underlying the effect of the PDE5 inhibitor tadalafil in signal transduction in the bladder urothelium. PDE5 expression in rat bladder tissues and cultured primary rat bladder urothelial cells was evaluated using immunochemistry and western blot assays. Ca 2+ influx in cells exposed to isotonic solution, hypotonic solution, a selective transient receptor potential vanilloid 2 (TRPV2) channel agonist (cannabidiol), a selective TRPV4 channel agonist (GSK1016790A), a TRP cation channel melastatin 7 (TRPM7) channel agonist (PIP2), or a purinergic receptor agonist (ATP) in the presence or absence of 10 µM tadalafil was evaluated using calcium imaging techniques. We also evaluated stretch-induced changes in ATP concentration in the mouse bladder in the presence or absence of 100 µM tadalafil. Immunochemistry and western blot analyses demonstrated that PDE5 is abundantly expressed in the bladder urothelium and in primary rat urothelial cells. Ca 2+ influx induced by hypotonic stimulation, GSK1016790A, or cannabidiol was significantly inhibited by tadalafil, whereas ATP-induced Ca 2+ influx was unaffected by tadalafil. PIP2 did not induce Ca2+ influx. ATP release in tadalafil-pretreated bladders significantly decreased compared to control bladders. Tadalafil attenuates Ca 2+ influx via TRPV4 and TRPV2, and inhibits ATP release in the bladder urothelium. These findings indicate that tadalafil functions as an inhibitor of urothelial signal transduction. © 2018 Wiley Periodicals, Inc.
Strugnell, R A; Underwood, J R; Clarke, F M; Pedersen, J S; Chalmers, P J; Faine, S; Toh, B H
1983-01-01
A monoclonal IgM smooth muscle antibody secreted by a hybrid (MMI-1) of mouse plasmacytoma NS-1 with spleen cells from mouse immunized with Treponema pallidum was detected by indirect immunofluorescence tests on frozen tissue sections and on acetone fixed monolayers of rat and human fibroblasts. The antibody did not react with acetone fixed smears of T. pallidum but reacted with smooth muscle fibres and with striations of skeletal and cardiac muscle. In non-muscle cells, the antibody stained liver in a 'polygonal' pattern, thymus with accentuated staining of the thymic medulla, renal glomeruli and the brush border and peritubular fibrils of renal tubules. In fibroblast monolayers, the antibody stained stress fibres in an interrupted pattern. Immunoblotting with muscle proteins and the antibody showed labelling of a 100K molecule. The cellular distribution of the mouse monoclonal antibody is similar to that obtained with anti-actin antibody suggesting that the corresponding antigen may be an actin binding protein. Images Fig. 3 PMID:6347470
Novel Neurostimulation of Autonomic Pelvic Nerves Overcomes Bladder-Sphincter Dyssynergia
Peh, Wendy Yen Xian; Mogan, Roshini; Thow, Xin Yuan; Chua, Soo Min; Rusly, Astrid; Thakor, Nitish V.; Yen, Shih-Cheng
2018-01-01
The disruption of coordination between smooth muscle contraction in the bladder and the relaxation of the external urethral sphincter (EUS) striated muscle is a common issue in dysfunctional bladders. It is a significant challenge to overcome for neuromodulation approaches to restore bladder control. Bladder-sphincter dyssynergia leads to undesirably high bladder pressures, and poor voiding outcomes, which can pose life-threatening secondary complications. Mixed pelvic nerves are potential peripheral targets for stimulation to treat dysfunctional bladders, but typical electrical stimulation of pelvic nerves activates both the parasympathetic efferent pathway to excite the bladder, as well as the sensory afferent pathway that causes unwanted sphincter contractions. Thus, a novel pelvic nerve stimulation paradigm is required. In anesthetized female rats, we combined a low frequency (10 Hz) stimulation to evoke bladder contraction, and a more proximal 20 kHz stimulation of the pelvic nerve to block afferent activation, in order to produce micturition with reduced bladder-sphincter dyssynergia. Increasing the phase width of low frequency stimulation from 150 to 300 μs alone was able to improve voiding outcome significantly. However, low frequency stimulation of pelvic nerves alone evoked short latency (19.9–20.5 ms) dyssynergic EUS responses, which were abolished with a non-reversible proximal central pelvic nerve cut. We demonstrated that a proximal 20 kHz stimulation of pelvic nerves generated brief onset effects at lower current amplitudes, and was able to either partially or fully block the short latency EUS responses depending on the ratio of the blocking to stimulation current. Our results indicate that ratios >10 increased the efficacy of blocking EUS contractions. Importantly, we also demonstrated for the first time that this combined low and high frequency stimulation approach produced graded control of the bladder, while reversibly blocking afferent signals that elicited dyssynergic EUS contractions, thus improving voiding by 40.5 ± 12.3%. Our findings support advancing pelvic nerves as a suitable neuromodulation target for treating bladder dysfunction, and demonstrate the feasibility of an alternative method to non-reversible nerve transection and sub-optimal intermittent stimulation methods to reduce dyssynergia. PMID:29618971
Saban, Marcia R; O'Donnell, Michael A; Hurst, Robert E; Wu, Xue-Ru; Simpson, Cindy; Dozmorov, Igor; Davis, Carole; Saban, Ricardo
2008-01-01
Background Despite being a mainstay for treating superficial bladder carcinoma and a promising agent for interstitial cystitis, the precise mechanism of Bacillus Calmette-Guerin (BCG) remains poorly understood. It is particularly unclear whether BCG is capable of altering gene expression in the bladder target organ beyond its well-recognized pro-inflammatory effects and how this relates to its therapeutic efficacy. The objective of this study was to determine differentially expressed genes in the mouse bladder following chronic intravesical BCG therapy and to compare the results to non-specific pro inflammatory stimuli (LPS and TNF-α). For this purpose, C57BL/6 female mice received four weekly instillations of BCG, LPS, or TNF-α. Seven days after the last instillation, the urothelium along with the submucosa was removed from detrusor muscle and the RNA was extracted from both layers for cDNA array experiments. Microarray results were normalized by a robust regression analysis and only genes with an expression above a conditional threshold of 0.001 (3SD above background) were selected for analysis. Next, genes presenting a 3-fold ratio in regard to the control group were entered in Ingenuity Pathway Analysis (IPA) for a comparative analysis in order to determine genes specifically regulated by BCG, TNF-α, and LPS. In addition, the transcriptome was precipitated with an antibody against RNA polymerase II and real-time polymerase chain reaction assay (Q-PCR) was used to confirm some of the BCG-specific transcripts. Results Molecular networks of treatment-specific genes generated several hypotheses regarding the mode of action of BCG. BCG-specific genes involved small GTPases and BCG-specific networks overlapped with the following canonical signaling pathways: axonal guidance, B cell receptor, aryl hydrocarbon receptor, IL-6, PPAR, Wnt/β-catenin, and cAMP. In addition, a specific detrusor network expressed a high degree of overlap with the development of the lymphatic system. Interestingly, TNF-α-specific networks overlapped with the following canonical signaling pathways: PPAR, death receptor, and apoptosis. Finally, LPS-specific networks overlapped with the LPS/IL-1 mediated inhibition of RXR. Because NF-kappaB occupied a central position in several networks, we further determined whether this transcription factor was part of the responses to BCG. Electrophoretic mobility shift assays confirmed the participation of NF-kappaB in the mouse bladder responses to BCG. In addition, BCG treatment of a human urothelial cancer cell line (J82) also increased the binding activity of NF-kappaB, as determined by precipitation of the chromatin by a NF-kappaB-p65 antibody and Q-PCR of genes bearing a NF-kappaB consensus sequence. Next, we tested the hypothesis of whether small GTPases such as LRG-47 are involved in the uptake of BCG by the bladder urothelium. Conclusion As expected, BCG treatment induces the transcription of genes belonging to common pro-inflammatory networks. However, BCG also induces unique genes belonging to molecular networks involved in axonal guidance and lymphatic system development within the bladder target organ. In addition, NF-kappaB seems to play a predominant role in the bladder responses to BCG therapy. Finally, in intact urothelium, BCG-GFP internalizes in LRG-47-positive vesicles. These results provide a molecular framework for the further study of the involvement of immune and nervous systems in the bladder responses to BCG therapy. PMID:18267009
Streptozocin-induced diabetic mouse model of urinary tract infection.
Rosen, David A; Hung, Chia-Suei; Kline, Kimberly A; Hultgren, Scott J
2008-09-01
Diabetics have a higher incidence of urinary tract infection (UTI), are infected with a broader range of uropathogens, and more commonly develop serious UTI sequelae than nondiabetics. To better study UTI in the diabetic host, we created and characterized a murine model of diabetic UTI using the pancreatic islet beta-cell toxin streptozocin in C3H/HeN, C3H/HeJ, and C57BL/6 mouse backgrounds. Intraperitoneal injections of streptozocin were used to initiate diabetes in healthy mouse backgrounds, as defined by consecutive blood glucose levels of >250 mg/dl. UTIs caused by uropathogenic Escherichia coli (UTI89), Klebsiella pneumoniae (TOP52 1721), and Enterococcus faecalis (0852) were studied, and diabetic mice were found to be considerably more susceptible to infection. All three uropathogens produced significantly higher bladder and kidney titers than buffer-treated controls. Uropathogens did not have as large an advantage in the Toll-like receptor 4-defective C3H/HeJ diabetic mouse, arguing that the dramatic increase in colonization seen in C3H/HeN diabetic mice may partially be due to diabetic-induced defects in innate immunity. Competition experiments demonstrated that E. coli had a significant advantage over K. pneumoniae in the bladders of healthy mice and less of an advantage in diabetic bladders. In the kidneys, K. pneumoniae outcompeted E. coli in healthy mice but in diabetic mice E. coli outcompeted K. pneumoniae and caused severe pyelonephritis. Diabetic kidneys contained renal tubules laden with communities of E. coli UTI89 bacteria within an extracellular-matrix material. Diabetic mice also had glucosuria, which may enhance bacterial replication in the urinary tract. These data support that this murine diabetic UTI model is consistent with known characteristics of human diabetic UTI and can provide a powerful tool for dissecting this infection in the multifactorial setting of diabetes.
NASA Astrophysics Data System (ADS)
Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee, Audrey K.
2016-02-01
Optical coherence tomography (OCT) and blue light cystoscopy (BLC) have shown significant potential as complementary technologies to traditional white light cystoscopy (WLC) for early bladder cancer detection. Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing new technology designs, the diagnostic potential of systems, and novel image processing algorithms prior to validation in real tissue. Importantly, the phantom should mimic features of healthy and diseased tissue as they appear under WLC, BLC, and OCT, which are sensitive to tissue color and structure, fluorescent contrast, and optical scattering of subsurface layers, respectively. We present a phantom posing the hollow shape of the bladder and fabricated using a combination of 3D-printing and spray-coating with Dragon Skin (DS) (Smooth-On Inc.), a highly elastic polymer to mimic the layered structure of the bladder. Optical scattering of DS was tuned by addition of titanium dioxide, resulting in scattering coefficients sufficient to cover the human bladder range (0.49 to 2.0 mm^-1). Mucosal vasculature and tissue coloration were mimicked with elastic cord and red dye, respectively. Urethral access was provided through a small hole excised from the base of the phantom. Inserted features of bladder pathology included altered tissue color (WLC), fluorescence emission (BLC), and variations in layered structure (OCT). The phantom surface and underlying material were assessed on the basis of elasticity, optical scattering, layer thicknesses, and qualitative image appearance. WLC, BLC, and OCT images of normal and cancerous features in the phantom qualitatively matched corresponding images from human bladders.
2013-01-01
Background Vesico-urethral function may be evaluated in humans and dogs by conventional urodynamic testing (cystometry and urethral pressure profilometry) or by electromyography. These techniques are performed under general anaesthesia in dogs. However, anaesthesia can depress bladder and urethral pressures and inhibit the micturition reflex. The primary objective of this pilot study was to evaluate the use of telemetry for urodynamic investigation in dogs. We also aimed to determine the applicability of telemetry to toxicologic studies by assessing the repeatability of telemetric recordings. Results Conventional diuresis cystometry was performed in six continent adult female Beagle dogs prior to surgical implantation of telemetric and electromyographic devices. In the first phase of the telemetric study, continuous recordings were performed over 8 days and nights. Abdominal, intravesical and detrusor threshold pressures (Pdet th), voided volume (Vv), urethral smooth muscle electrical activity and involuntary detrusor contractions (IDC) were measured during the bladder filling phase and during micturition episodes. Vv recorded during telemetry was significantly lower than bladder volume obtained by diuresis cystometry. Repeatability of telemetric measurements was greater for observations recorded at night. IDC frequency and Pdet th were both lower and Vv was higher at night compared to values recorded during daytime. In the second phase of the telemetric study, phenylpropanolamine, oestriol, bethanechol, oxybutynin or duloxetine were administered orally for 15 days. For each drug, continuous recordings were performed overnight for 12 hours on days 0, 1, 8 and 15. Electromyographic urethral activity was significantly increased 8 days after oestriol or duloxetine administration. No significant changes in bladder function were observed at any time point. Conclusions In dogs, the high repeatability of nocturnal telemetric recordings indicates that this technique could provide more informative results for urologic research. Urethral smooth muscle electrical activity appears to be modified by administration of drugs with urethral tropism. In this pilot telemetric study, bladder function was not affected by oral administration of urological drugs at their recommended clinical dosages. Experimental studies, (pharmacokinetic and pharmacodynamic) and clinical studies are warranted to further define the effects of these drugs on vesico-urethral function in dogs. PMID:24099564
Urinary tract effects of HPSE2 mutations.
Stuart, Helen M; Roberts, Neil A; Hilton, Emma N; McKenzie, Edward A; Daly, Sarah B; Hadfield, Kristen D; Rahal, Jeffery S; Gardiner, Natalie J; Tanley, Simon W; Lewis, Malcolm A; Sites, Emily; Angle, Brad; Alves, Cláudia; Lourenço, Teresa; Rodrigues, Márcia; Calado, Angelina; Amado, Marta; Guerreiro, Nancy; Serras, Inês; Beetz, Christian; Varga, Rita-Eva; Silay, Mesrur Selcuk; Darlow, John M; Dobson, Mark G; Barton, David E; Hunziker, Manuela; Puri, Prem; Feather, Sally A; Goodship, Judith A; Goodship, Timothy H J; Lambert, Heather J; Cordell, Heather J; Saggar, Anand; Kinali, Maria; Lorenz, Christian; Moeller, Kristina; Schaefer, Franz; Bayazit, Aysun K; Weber, Stefanie; Newman, William G; Woolf, Adrian S
2015-04-01
Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 non-neurogenic neurogenic bladder probands and, of 439 families with nonsyndromic vesicoureteric reflux, only one carried a putative pathogenic HPSE2 variant. Homozygous Hpse2 mutant mouse bladders contained urine more often than did wild-type organs, phenocopying human UFS. Pelvic ganglia neural cell bodies contained heparanase 1, heparanase 2, and leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2), which is mutated in certain UFS families. In conclusion, heparanase 2 is an autonomic neural protein implicated in bladder emptying, but HPSE2 variants are uncommon in urinary diseases resembling UFS. Copyright © 2015 by the American Society of Nephrology.
2012-01-01
Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and enhanced VEGF content may be associated with visceral hyperalgesia, abdominal discomfort, and/or pelvic pain. PMID:23249422
Gonzalez, Eric J.; Girard, Beatrice M.
2013-01-01
Numerous proinflammatory cytokines have been implicated in the reorganization of lower urinary tract function following cyclophosphamide (CYP)-induced cystitis. The present study investigated the functional profile of three pleiotropic transforming growth factor-β (TGF-β) isoforms and receptor (TβR) variants in the normal and inflamed (CYP-induced cystitis) rat urinary bladder. Our findings indicate that TGF-β (1, 2, and 3) and TβR (1, 2, and 3) transcript and protein expression were regulated to varying degrees in the urothelium or detrusor smooth muscle following intermediate (48 h; 150 mg/kg ip) or chronic (75 mg/kg ip; once every 3 days for 10 days), but not acute (4 h; 150 mg/kg ip), CYP-induced cystitis. Conscious, open-outlet cystometry was performed to determine whether aberrant TGF-β signaling contributes to urinary bladder dysfunction following intermediate (48 h) CYP-induced cystitis. TβR-1 inhibition with SB505124 (5 μM) significantly (p ≤ 0.001) decreased voiding frequency and increased bladder capacity (2.5-fold), void volume (2.6-fold), and intercontraction intervals (2.5-fold) in CYP-treated (48 h) rats. Taken together, these results provide evidence for 1) the involvement of TGF-β in lower urinary tract neuroplasticity following urinary bladder inflammation, 2) a functional role of TGF-β signaling in the afferent limb of the micturition reflex, and 3) urinary bladder TβR-1 as a viable target to reduce voiding frequency with cystitis. PMID:23926183
VEGF signaling mediates bladder neuroplasticity and inflammation in response to BCG
2011-01-01
Background This work tests the hypothesis that increased levels of vascular endothelial growth factor (VEGF) observed during bladder inflammation modulates nerve plasticity. Methods Chronic inflammation was induced by intravesical instillations of Bacillus Calmette-Guérin (BCG) into the urinary bladder and the density of nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) or pan-neuronal marker PGP9.5 was used to quantify alterations in peripheral nerve plasticity. Some mice were treated with B20, a VEGF neutralizing antibody to reduce the participation of VEGF. Additional mice were treated systemically with antibodies engineered to specifically block the binding of VEGF to NRP1 (anti-NRP1B) and NRP2 (NRP2B), or the binding of semaphorins to NRP1 (anti-NRP1 A) to diminish activity of axon guidance molecules such as neuropilins (NRPs) and semaphorins (SEMAs). To confirm that VEGF is capable of inducing inflammation and neuronal plasticity, another group of mice was instilled with recombinant VEGF165 or VEGF121 into the urinary bladder. Results The major finding of this work was that chronic BCG instillation resulted in inflammation and an overwhelming increase in both PGP9.5 and TRPV1 immunoreactivity, primarily in the sub-urothelium of the urinary bladder. Treatment of mice with anti-VEGF neutralizing antibody (B20) abolished the effect of BCG on inflammation and nerve density. NRP1A and NRP1B antibodies, known to reduce BCG-induced inflammation, failed to block BCG-induced increase in nerve fibers. However, the NRP2B antibody dramatically potentiated the effects of BCG in increasing PGP9.5-, TRPV1-, substance P (SP)-, and calcitonin gene-related peptide (CGRP)-immunoreactivity (IR). Finally, instillation of VEGF121 or VEGF165 into the mouse bladder recapitulated the effects of BCG and resulted in a significant inflammation and increase in nerve density. Conclusions For the first time, evidence is being presented supporting that chronic BCG instillation into the mouse bladder promotes a significant increase in peripheral nerve density that was mimicked by VEGF instillation. Effects of BCG were abolished by pre-treatment with neutralizing VEGF antibody. The present results implicate the VEGF pathway as a key modulator of inflammation and nerve plasticity, introduces a new animal model for investigation of VEGF-induced nerve plasticity, and suggests putative mechanisms underlying this phenomenon. PMID:22059553
Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues
Li, Jia; Chen, Shu; Cleary, Rachel A.; Wang, Ruping; Gannon, Olivia J.; Seto, Edward
2014-01-01
Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction. PMID:24920679
Leonhäuser, Dorothea; Stollenwerk, Katja; Seifarth, Volker; Zraik, Isabella M; Vogt, Michael; Srinivasan, Pramod K; Tolba, Rene H; Grosse, Joachim O
2017-01-04
The repair of urinary bladder tissue is a necessity for tissue loss due to cancer, trauma, or congenital abnormalities. Use of intestinal tissue is still the gold standard in the urological clinic, which leads to new problems and dysfunctions like mucus production, stone formation, and finally malignancies. Therefore, the use of artificial, biologically derived materials is a promising step towards the augmentation of this specialised tissue. The aim of this study was to investigate potential bladder wall repair by two collagen scaffold prototypes, OptiMaix 2D and 3D, naïve and seeded with autologous vesical cells, as potential bladder wall substitute material in a large animal model. Six Göttingen minipigs underwent cystoplastic surgery for tissue biopsy and cell isolation followed by implantation of unseeded scaffolds. Six weeks after the first operation, scaffolds seeded with the tissue cultured autologous urothelial and detrusor smooth muscle cells were implanted into the bladder together with additional unseeded scaffolds for comparison. Cystography and bladder ultrasound were performed to demonstrate structural integrity and as leakage test of the implantation sites. Eighteen, 22, and 32 weeks after the first operation, two minipigs respectively were sacrificed and the urinary tract was examined via different (immunohistochemical) staining procedures and the usage of two-photon laser scanning microscopy. Both collagen scaffold prototypes in vivo had good ingrowth capacity into the bladder wall including a quick lining with urothelial cells. The ingrowth of detrusor muscle tissue, along with the degradation of the scaffolds, could also be observed throughout the study period. We could show that the investigated collagen scaffolds OptiMaix 2D and 3D are a potential material for bladder wall substitution. The material has good biocompatible properties, shows a good cell growth of autologous cells in vitro, and a good integration into the present bladder tissue in vivo.
Bladder cancer mapping in Libya based on standardized morbidity ratio and log-normal model
NASA Astrophysics Data System (ADS)
Alhdiri, Maryam Ahmed; Samat, Nor Azah; Mohamed, Zulkifley
2017-05-01
Disease mapping contains a set of statistical techniques that detail maps of rates based on estimated mortality, morbidity, and prevalence. A traditional approach to measure the relative risk of the disease is called Standardized Morbidity Ratio (SMR). It is the ratio of an observed and expected number of accounts in an area, which has the greatest uncertainty if the disease is rare or if geographical area is small. Therefore, Bayesian models or statistical smoothing based on Log-normal model are introduced which might solve SMR problem. This study estimates the relative risk for bladder cancer incidence in Libya from 2006 to 2007 based on the SMR and log-normal model, which were fitted to data using WinBUGS software. This study starts with a brief review of these models, starting with the SMR method and followed by the log-normal model, which is then applied to bladder cancer incidence in Libya. All results are compared using maps and tables. The study concludes that the log-normal model gives better relative risk estimates compared to the classical method. The log-normal model has can overcome the SMR problem when there is no observed bladder cancer in an area.
Yohannes, Elizabeth; Chang, Jinsook; Christ, George J.; Davies, Kelvin P.; Chance, Mark R.
2008-01-01
Protein expression profiles in rat bladder smooth muscle were compared between animal models of streptozotocin-induced diabetes mellitus (STZ-DM) and age-matched controls at 1 week and 2 months after induction of hyperglycemia with STZ treatment. At each time point, protein samples from four STZ-DM and four age-matched control rat bladder tissues were prepared independently and analyzed together across multiple DIGE gels using a pooled internal standard sample to quantify expression changes with statistical confidence. A total of 100 spots were determined to be significantly changing among the four experimental groups. A subsequent mass spectrometry analysis of the 100 spots identified a total of 56 unique proteins. Of the proteins identified by two-dimensional DIGE/MS, 10 exhibited significant changes 1 week after STZ-induced hyperglycemia, whereas the rest showed differential expression after 2 months. A network analysis of these proteins using MetaCore™ suggested induction of transcriptional factors that are too low to be detected by two-dimensional DIGE and identified an enriched cluster of down-regulated proteins that are involved in cell adhesion, cell shape control, and motility, including vinculin, intermediate filaments, Ppp2r1a, and extracellular matrix proteins. The proteins that were up-regulated include proteins involved in muscle contraction (e.g. Mrlcb and Ly-GDI), in glycolysis (e.g. α-enolase and Taldo1), in mRNA processing (e.g. heterogeneous nuclear ribonucleoprotein A2/B1), in inflammatory response (e.g. S100A9, Annexin 1, and apoA-I), and in chromosome segregation and migration (e.g. Tuba1 and Vil2). Our results suggest that the development of diabetes-related complications in this model involves the down-regulation of structural and extracellular matrix proteins in smooth muscle that are essential for normal muscle contraction and relaxation but also induces proteins that are associated with cell proliferation and inflammation that may account for some of the functional deficits known to occur in diabetic complications of bladder. PMID:18337374
Girard, Beatrice M; Malley, Susan; May, Victor; Vizzard, Margaret A
2016-08-01
We have determined if cyclophosphamide (CYP)-induced cystitis produces additional changes in growth factor/receptors expression in the urinary bladder (urothelium, detrusor) and lumbosacral (L6-S1) dorsal root ganglia (DRG) in a transgenic mouse model with chronic urothelial overexpression of NGF (NGF-OE). Functionally, NGF-OE mice treated with CYP exhibit significant increases in voiding frequency above that observed in control NGF-OE mice (no CYP). Quantitative PCR was used to determine NGF, BDNF, VEGF, and receptors (TrkA, TrkB, p75(NTR)) transcripts expression in tissues from NGF-OE and wild-type (WT) mice with CYP-induced cystitis of varying duration (4 h, 48 h, 8 days). In urothelium of control NGF-OE mice, NGF mRNA was significantly (p ≤ 0.001) increased. Urothelial expression of NGF mRNA in NGF-OE mice treated with CYP (4 h, 48 h, 8 days) was not further increased but maintained with all durations of CYP treatment evaluated. In contrast, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice demonstrated significant (p ≤ 0.05) regulation in BDNF, VEGF, TrkA, TrkB, and P75(NTR) mRNA in urothelium and detrusor smooth muscle. Similarly, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice resulted in significant (p ≤ 0.05), differential changes in transcript expression for NGF, BDNF, and receptors (TrkA, TrkB, p75(NTR)) in S1 DRG that was dependent on the duration-of CYP-induced cystitis. In general, NGF, BDNF, TrkA, and TrkB protein content in the urinary bladder increased in WT and NGF-OE mice with CYP-induced cystitis (4 h). Changes in NGF, TrkA and TrkB expression in the urinary bladder were significantly (p ≤ 0.05) greater in NGF-OE mice with CYP-induced cystitis (4 h) compared to WT mice with cystitis (4 h). However, the magnitude of change between WT and NGF-OE mice was only significantly (p ≤ 0.05) different for TrkB expression in urinary bladder of NGF-OE mice treated with CYP. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity with potential contributions to reflex function of micturition pathways.
Dale, Philippa R; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R; Charlton, Steven J; Pieper, Michael P; Michel, Martin C
2014-01-01
Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder. Muscarinic agonism may attenuate β-adrenoceptor-mediated relaxation more than other contractile stimuli. Chronic treatment with one drug class may regulate expression of the target receptor but also that of the opposing receptor. Prejunctional β2-adrenoceptors can enhance neuronal acetylcholine release. Moreover, at least in the airways, muscarinic receptors and β-adrenoceptors are expressed in different locations, indicating that only a combined modulation of both systems may cause dilatation along the entire bronchial tree. While all of these factors contribute to a rationale for a combination of muscarinic receptor antagonists and β-adrenoceptor agonists, the full value of such combination as compared to monotherapy can only be determined in clinical studies. PMID:24682092
The Role of Nitric Oxide and Hydrogen Sulfide in Urinary Tract Function.
Fernandes, Vítor S; Hernández, Medardo
2016-10-01
This MiniReview focuses on the role played by nitric oxide (NO) and hydrogen sulfide (H 2 S) in physiology of the upper and lower urinary tract. NO and H 2 S, together with carbon monoxide, belong to the group of gaseous autocrine/paracrine messengers or gasotransmitters, which are employed for intra- and intercellular communication in almost all organ systems. Because they are lipid-soluble gases, gaseous transmitters are not constrained by cellular membranes, so that their storage in vesicles for later release is not possible. Gasotransmitter signals are terminated by falling concentrations upon reduction in production that are caused by reacting with cellular components (essentially reactive oxygen species and NO), binding to cellular components or diffusing away. NO and, more recently, H 2 S have been identified as key mediators in neurotransmission of the urinary tract, involved in the regulation of ureteral smooth muscle activity and urinary flow ureteral resistance, as well as by playing a crucial role in the smooth muscle relaxation of bladder outlet region. Urinary bladder function is also dependent on integration of inhibitory mediators, such as NO, released from the urothelium. In the bladder base and distal ureter, the co-localization of neuronal NO synthase with substance P and calcitonin gene-related peptide in sensory nerves as well as the existence of a high nicotinamide adenine dinucleotide phosphate-diaphorase activity in dorsal root ganglion neurons also suggests the involvement of NO as a sensory neurotransmitter. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Williamson, Sean R; Bunde, Paula J; Montironi, Rodolfo; Lopez-Beltran, Antonio; Zhang, Shaobo; Wang, Mingsheng; Maclennan, Gregory T; Cheng, Liang
2013-10-01
Recently, a small subgroup of PEComas has been recognized to harbor rearrangements involving TFE3, a gene also involved in rearrangements in translocation-associated renal cell carcinomas and alveolar soft part sarcomas. The few TFE3 rearrangement-associated PEComas reported have exhibited distinctive pathologic characteristics contrasting to PEComas in general, including predominantly epithelioid nested or alveolar morphology and underexpression of muscle markers by immunohistochemistry. In this study, we report the clinicopathologic, immunohistochemical, and molecular features of a primary urinary bladder PEComa diagnosed by transurethral resection in a 55-year-old woman that clinically mimicked urothelial carcinoma. Light microscopy demonstrated mixed spindle cell and epithelioid morphology with the epithelioid component preferentially associated with blood vessels. Immunohistochemistry revealed positive staining for HMB45, tyrosinase, MiTF, cathepsin K, smooth muscle actin, and TFE3 protein. Fluorescence in situ hybridization for the TFE3 gene revealed a split signal pattern, indicating TFE3 rearrangement. X chromosome inactivation analysis demonstrated a clonal pattern despite the heterogenous appearance of the tumor. Unfortunately, despite surgical resection and sarcoma-directed therapy, the patient died of metastatic disease 12 months after diagnosis. This report adds to the known data regarding urinary bladder PEComas and PEComas with TFE3 rearrangement, indicating that both can pursue an aggressive course. Although the few reported TFE3-rearranged PEComas have predominantly lacked a spindle cell component and expression of smooth muscle actin and MiTF by immunohistochemistry, the findings in this study indicate that these features are sometimes present in TFE3-rearranged PEComas.
Autonomic innervation of the muscles in the wall of the bladder and proximal urethra of male rats.
Watanabe, H; Yamamoto, T Y
1979-01-01
The muscular coat of the body of the rat bladder is innervated almost exclusively by cholinergic endings:adrenergic endings are rare. In the inner longitudinal muscle layer of the proximal urethra, 53% of 310 autonomic nerve endings observed in close relation to the smooth muscle cells were adrenergic and the remaining 47% cholinergic. The middle circular muscle layer of the proximal urethra was innervated predominantly by adrenergic endings: in this layer 86% of the total of 335 endings examined wre regarded as adrenergic. A similar predominantly adrenergic innervation was noted in the outer longitudinal layer of the proximal urethra. A number of striated muscle fibres arose from the outermost striated muscle layer of the proximal urethra and intruded deeply into the outer and middle smooth muscle layers. These intruding striated muscle fibres also received direct autonomic (mostly adrenergic) innervation. The significance of these findings in relation to the physiology of the lower urinary tracts is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:489473
Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina; ...
2015-05-01
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. Here, to understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50- pheV has a mosaic structure and contains genes encoding a numbermore » of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50- pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50 afa and VR50 afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50 afa and VR50 afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50- pheV mutant. In conlusion, our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. Here, to understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50- pheV has a mosaic structure and contains genes encoding a numbermore » of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50- pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50 afa and VR50 afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50 afa and VR50 afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50- pheV mutant. In conlusion, our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.« less
Physiological relevance of LL-37 induced bladder inflammation and mast cells.
Oottamasathien, Siam; Jia, Wanjian; Roundy, Lindsi McCoard; Zhang, Jianxing; Wang, Li; Ye, Xiangyang; Hill, A Cameron; Savage, Justin; Lee, Wong Yong; Hannon, Ann Marie; Milner, Sylvia; Prestwich, Glenn D
2013-10-01
We established the physiological relevance of LL-37 induced bladder inflammation. We hypothesized that 1) human urinary LL-37 is increased in pediatric patients with spina bifida, 2) LL-37 induced inflammation occurs in our mouse model via urothelial binding and is dose dependent and 3) LL-37 induced inflammation involves mast cells. To test our first hypothesis, we obtained urine samples from 56 pediatric patients with spina bifida and 22 normal patients. LL-37 was measured by enzyme-linked immunosorbent assay. Our second hypothesis was tested in C57Bl/6 mice challenged with 7 LL-37 concentrations intravesically for 1 hour. At 24 hours tissues were examined histologically and myeloperoxidase assay was done to quantitate inflammation. In separate experiments fluorescent LL-37 was instilled and tissues were obtained immediately (time = 0) and at 24 hours (time = 24). To test our final hypothesis, we performed immunohistochemistry for mast cell tryptase and evaluated 5 high power fields per bladder to determine the mean number of mast cells per mm(2). Urinary LL-37 was 89-fold higher in patients with spina bifida. Mouse LL-37 dose escalation experiments revealed increased inflammation at higher LL-37 concentrations. Fluorescent LL-37 demonstrated global urothelial binding at time = 0 but was not visible at time = 24. Immunohistochemistry for tryptase revealed mast cell infiltration in all tissue layers. At higher concentrations the LL-37 challenge led to significantly greater mast cell infiltration. Urinary LL-37 was significantly increased in pediatric patients with spina bifida. To our knowledge we report for the first time that LL-37 can elicit profound, dose dependent bladder inflammation involving the urothelium. Finally, inflammation propagation involves mast cells. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Physiological Relevance of LL-37 Induced Bladder Inflammation and Mast Cells
Roundy, Lindsi McCoard; Zhang, Jianxing; Wang, Li; Ye, Xiangyang; Hill, A. Cameron; Savage, Justin; Lee, Wong Yong; Hannon, Ann Marie; Milner, Sylvia; Prestwich, Glenn D.
2014-01-01
Purpose We established the physiological relevance of LL-37 induced bladder inflammation. We hypothesized that 1) human urinary LL-37 is increased in pediatric patients with spina bifida, 2) LL-37 induced inflammation occurs in our mouse model via urothelial binding and is dose dependent and 3) LL-37 induced inflammation involves mast cells. Materials and Methods To test our first hypothesis, we obtained urine samples from 56 pediatric patients with spina bifida and 22 normal patients. LL-37 was measured by enzyme-linked immunosorbent assay. Our second hypothesis was tested in C57Bl/6 mice challenged with 7 LL-37 concentrations intravesically for 1 hour. At 24 hours tissues were examined histologically and myeloperoxidase assay was done to quantitate inflammation. In separate experiments fluorescent LL-37 was instilled and tissues were obtained immediately (time = 0) and at 24 hours (time = 24). To test our final hypothesis, we performed immunohistochemistry for mast cell tryptase and evaluated 5 high power fields per bladder to determine the mean number of mast cells per mm2. Results Urinary LL-37 was 89-fold higher in patients with spina bifida. Mouse LL-37 dose escalation experiments revealed increased inflammation at higher LL-37 concentrations. Fluorescent LL-37 demonstrated global urothelial binding at time = 0 but was not visible at time = 24. Immunohistochemistry for tryptase revealed mast cell infiltration in all tissue layers. At higher concentrations the LL-37 challenge led to significantly greater mast cell infiltration. Conclusions Urinary LL-37 was significantly increased in pediatric patients with spina bifida. To our knowledge we report for the first time that LL-37 can elicit profound, dose dependent bladder inflammation involving the urothelium. Finally, inflammation propagation involves mast cells. PMID:23313203
Beatson, Scott A; Ben Zakour, Nouri L; Totsika, Makrina; Forde, Brian M; Watts, Rebecca E; Mabbett, Amanda N; Szubert, Jan M; Sarkar, Sohinee; Phan, Minh-Duy; Peters, Kate M; Petty, Nicola K; Alikhan, Nabil-Fareed; Sullivan, Mitchell J; Gawthorne, Jayde A; Stanton-Cook, Mitchell; Nhu, Nguyen Thi Khanh; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Hancock, Viktoria; Ussery, David W; Ulett, Glen C; Schembri, Mark A
2015-05-01
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ben Zakour, Nouri L.; Totsika, Makrina; Forde, Brian M.; Watts, Rebecca E.; Mabbett, Amanda N.; Szubert, Jan M.; Sarkar, Sohinee; Phan, Minh-Duy; Peters, Kate M.; Petty, Nicola K.; Alikhan, Nabil-Fareed; Sullivan, Mitchell J.; Gawthorne, Jayde A.; Stanton-Cook, Mitchell; Nhu, Nguyen Thi Khanh; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Hancock, Viktoria; Ussery, David W.; Ulett, Glen C.
2015-01-01
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. PMID:25667270
Girard, Beatrice M.; Tooke, Katharine; Vizzard, Margaret A.
2017-01-01
Complex organization of CNS and PNS pathways is necessary for the coordinated and reciprocal functions of the urinary bladder, urethra and urethral sphincters. Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways and target organs can produce lower urinary tract (LUT) dysfunction. Numerous neuropeptide/receptor systems are expressed in the neural pathways of the LUT and non-neural components of the LUT (e.g., urothelium) also express peptides. One such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder dysfunction and altered somatic sensation. PACAP and associated receptors are expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation, and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency in preclinical animal models and transgenic mouse models that mirror some clinical symptoms of bladder dysfunction. A change in the balance of the expression and resulting function of the PACAP/receptor system in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including symptoms of urinary urgency, increased voiding frequency, and visceral pain. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction. PMID:29255407
Ras mutation cooperates with β-catenin activation to drive bladder tumourigenesis.
Ahmad, I; Patel, R; Liu, Y; Singh, L B; Taketo, M M; Wu, X-R; Leung, H Y; Sansom, O J
2011-03-03
Mutations in the Ras family of proteins (predominantly in H-Ras) occur in approximately 40% of urothelial cell carcinoma (UCC). However, relatively little is known about subsequent mutations/pathway alterations that allow tumour progression. Indeed, expressing mutant H-Ras within the mouse bladder does not lead to tumour formation, unless this is expressed at high levels. The Wnt signalling pathway is deregulated in approximately 25% of UCC, so we examined if this correlated with the activation of MAPK signalling in human UCC and found a significant correlation. To test the functional significance of this association we examined the impact of combining Ras mutation (H-Ras(Q61L) or K-Ras(G12D)) with an activating β-catenin mutation within the mouse bladder using Cre-LoxP technology. Although alone, neither Ras mutation nor β-catenin activation led to UCC (within 12 months), mice carrying both mutations rapidly developed UCC. Mechanistically this was associated with reduced levels of p21 with dependence on the MAPK signalling pathway. Moreover, tumours from these mice were sensitive to MEK inhibition. Importantly, in human UCC there was a negative correlation between levels of p-ERK and p21 suggesting that p21 accumulation may block tumour progression following Ras mutation. Taken together these data definitively show Ras pathway activation strongly cooperates with Wnt signalling to drive UCC in vivo.
Alcón, Soledad; Morales, Sara; Camello, Pedro J; Hemming, Jason M; Jennings, Lee; Mawe, Gary M; Pozo, María J
2001-01-01
The purpose of this study was to determine the effects of sodium nitroprusside (SNP), 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (DETA/NO) and 3-morpholinosydnonimine (SIN-1), NO donors which yield different NO reactive species (NO+, NO. and peroxynitrite, respectively), as well as exogenous peroxynitrite, on gall bladder contractility. Under resting tone conditions, SNP induced a dose-dependent contraction with a maximal effect (10.3 ± 0.7 mN, s.e.m.) at 1 mm. Consistent with these findings, SNP caused a concentration-dependent depolarization of gall bladder smooth muscle. The excitatory effects of SNP were dependent on extracellular calcium entry through L-type Ca2+ channels. Furthermore, the contraction and depolarization were sensitive to tyrosine kinase blockade, and an associated increase in tyrosine phosphorylation was detected in Western blot studies. DETA/NO induced dose-dependent relaxing effects. These relaxations were sensitive to the guanylyl cyclase inhibitor 1H-[1,2,4]oxidiazolo[4,3-a]quinoxaline-1-one (ODQ, 2 μm) but they were not altered by treatment with the potassium channel blockers tetraethylammoniun (TEA, 5 mm) and 4-aminopyridine (4-AP, 5 mm). When tested in a reducing environment (created by 2.5 mm 1,4-dithiothreitol, DTT), SNP caused a relaxation of gall bladder muscle strips. Similarly, the SNP-induced contraction was converted to a relaxation, and associated hyperpolarization, when DTT was added during the steady state of an SNP-induced response. SIN-1 (0.1 mm), which has been shown to release peroxynitrite, induced relaxing effects that were enhanced by superoxide dismutase (SOD, 50 U ml−1). The relaxations induced by either SIN-1 alone or SIN-1 in the presence of SOD were strengthened by catalase (1000 U ml−1) and abolished by ODQ pretreatment. However, exogenous peroxynitrite induced a concentration-dependent contraction, which was dependent on activation of leukotriene (LT) metabolism and extracellular calcium. The peroxynitrite-induced contraction was abolished in the presence of the peroxynitrite scavenger melatonin. These results suggest that SIN-1 behaves as an NO. rather than a peroxynitrite source. We conclude that, depending on the redox state, NO has opposing effects on the motility of the gall bladder, being a relaxing agent when in NO. form and a contracting agent when in NO+ or peroxynitrite redox species form. Knowledge of the contrasting effects of the different redox forms of NO can clarify our understanding of the effects of NO donors on gall bladder and other smooth muscle cell types. PMID:11313447
A four-component model of the action potential in mouse detrusor smooth muscle cell
Brain, Keith L.; Young, John S.; Manchanda, Rohit
2018-01-01
Background and hypothesis Detrusor smooth muscle cells (DSMCs) of the urinary bladder are electrically connected to one another via gap junctions and form a three dimensional syncytium. DSMCs exhibit spontaneous electrical activity, including passive depolarizations and action potentials. The shapes of spontaneous action potentials (sAPs) observed from a single DSM cell can vary widely. The biophysical origins of this variability, and the precise components which contribute to the complex shapes observed are not known. To address these questions, the basic components which constitute the sAPs were investigated. We hypothesized that linear combinations of scaled versions of these basic components can produce sAP shapes observed in the syncytium. Methods and results The basic components were identified as spontaneous evoked junction potentials (sEJP), native AP (nAP), slow after hyperpolarization (sAHP) and very slow after hyperpolarization (vsAHP). The experimental recordings were grouped into two sets: a training data set and a testing data set. A training set was used to estimate the components, and a test set to evaluate the efficiency of the estimated components. We found that a linear combination of the identified components when appropriately amplified and time shifted replicated various AP shapes to a high degree of similarity, as quantified by the root mean square error (RMSE) measure. Conclusions We conclude that the four basic components—sEJP, nAP, sAHP, and vsAHP—identified and isolated in this work are necessary and sufficient to replicate all varieties of the sAPs recorded experimentally in DSMCs. This model has the potential to generate testable hypotheses that can help identify the physiological processes underlying various features of the sAPs. Further, this model also provides a means to classify the sAPs into various shape classes. PMID:29351282
A four-component model of the action potential in mouse detrusor smooth muscle cell.
Padmakumar, Mithun; Brain, Keith L; Young, John S; Manchanda, Rohit
2018-01-01
Detrusor smooth muscle cells (DSMCs) of the urinary bladder are electrically connected to one another via gap junctions and form a three dimensional syncytium. DSMCs exhibit spontaneous electrical activity, including passive depolarizations and action potentials. The shapes of spontaneous action potentials (sAPs) observed from a single DSM cell can vary widely. The biophysical origins of this variability, and the precise components which contribute to the complex shapes observed are not known. To address these questions, the basic components which constitute the sAPs were investigated. We hypothesized that linear combinations of scaled versions of these basic components can produce sAP shapes observed in the syncytium. The basic components were identified as spontaneous evoked junction potentials (sEJP), native AP (nAP), slow after hyperpolarization (sAHP) and very slow after hyperpolarization (vsAHP). The experimental recordings were grouped into two sets: a training data set and a testing data set. A training set was used to estimate the components, and a test set to evaluate the efficiency of the estimated components. We found that a linear combination of the identified components when appropriately amplified and time shifted replicated various AP shapes to a high degree of similarity, as quantified by the root mean square error (RMSE) measure. We conclude that the four basic components-sEJP, nAP, sAHP, and vsAHP-identified and isolated in this work are necessary and sufficient to replicate all varieties of the sAPs recorded experimentally in DSMCs. This model has the potential to generate testable hypotheses that can help identify the physiological processes underlying various features of the sAPs. Further, this model also provides a means to classify the sAPs into various shape classes.
Do we understand any more about bladder interstitial cells?-ICI-RS 2013.
Kanai, Anthony; Fry, Christopher; Hanna-Mitchell, Ann; Birder, Lori; Zabbarova, Irina; Bijos, Dominika; Ikeda, Youko
2014-06-01
To present a brief review on discussions from "Do we understand any more about lower urinary tract interstitial cells?" session at the 2013 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. Discussion focused on bladder interstitial cell (IC) subtypes, their localization and characterization, and communication between themselves, the urothelium, and detrusor smooth muscle. The role of ICs in bladder pathologies and new methods for studying ICs were also addressed. ICs have been studied extensively in the lower urinary tract and have been characterized based on comparisons with ICs of Cajal in the gastro-intestinal tract. In fetal bladders it is believed that ICs drive intrinsic contractions to expel urine through the urachus. These contractions diminish postpartum as bladder innervation develops. Voiding in human neonates occurs when filling triggers a spinal cord reflex that contracts the detrusor; in rodents, maternal stimulation of the perineum triggers voiding. Following spinal cord injury, intrinsic contractions, and spinal micturition reflexes develop, similar to those seen during neonatal development. These enhanced contractions may stimulate nociceptive and mechanosensitive afferents contributing to neurogenic detrusor overactivity and incontinence. The IC-mediated activity is believed to be initiated in the lamina propria by responding to urothelial factors. These IC may act syncytially through gap junction coupling and modulate detrusor activity through unknown mechanisms. There has been a great deal of information discovered regarding bladder ICs, however, many of their (patho)physiological functions and mechanisms are still unclear and necessitates further research. Neurourol. Urodynam. 33:573-576, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Ehrhardt, Annette; Wang, Bin; Yung, Andrew C; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W
2015-01-01
Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly 'layered' with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice.
Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras
Ehrhardt, Annette; Wang, Bin; Yung, Andrew C.; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W.
2015-01-01
Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras -/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly ‘layered’ with age in Mras -/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras -/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras -/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras -/- males were increased, and Mras -/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras -/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice. PMID:26516777
Du, Xiangnan; Lin, Benjamin C; Wang, Qian-Rena; Li, Hao; Ingalla, Ellen; Tien, Janet; Rooney, Isabelle; Ashkenazi, Avi; Penuel, Elicia; Qing, Jing
2014-12-15
The aim of this study was to identify noninvasive pharmacodynamic biomarkers of FGFR3-targeted therapies in bladder cancer to facilitate the clinical development of experimental agent targeting FGFR3. Potential soluble pharmacodynamic biomarkers of FGFR3 were identified using a combination of transcriptional profiling and biochemical analyses in preclinical models. Two matrix metalloproteinases (MMP), MMP-1 and MMP-10, were selected for further studies in human bladder cancer xenograft models treated with a specific anti-FGFR3 monoclonal antibody, R3Mab. Serum and urinary levels of MMP-1 and MMP-10 were determined in healthy donors and patients with bladder cancer. The modulation of MMP-1 and MMP-10 by R3Mab in patients with bladder cancer was further evaluated in a phase I dose-escalation study. MMP-1 and MMP-10 mRNA and protein were downmodulated by FGFR3 shRNA and R3Mab in bladder cancer cell lines. FGFR3 signaling promoted the expression and secretion of MMP-1 and pro-MMP-10 in a MEK-dependent fashion. In bladder cancer xenograft models, R3Mab substantially blocked tumor progression and reduced the protein levels of human MMP-1 and pro-MMP-10 in tumor tissues as well as in mouse serum. Furthermore, both MMP-1 and pro-MMP-10 were elevated in the urine of patients with advanced bladder cancer. In a phase I dose-escalation trial, R3Mab administration resulted in an acute reduction of urinary MMP-1 and pro-MMP-10 levels in patients with bladder cancer. These findings reveal a critical role of FGFR3 in regulating MMP-1 and pro-MMP-10 expression and secretion, and identify urinary MMP-1 and pro-MMP-10 as potential pharmacodynamic biomarkers for R3Mab in patients with bladder cancer. ©2014 American Association for Cancer Research.
Social stress in mice induces voiding dysfunction and bladder wall remodeling
Chang, Andy; Butler, Stephan; Sliwoski, Joanna; Valentino, Rita; Canning, Douglas
2009-01-01
Several studies have anecdotally reported the occurrence of altered urinary voiding patterns in rodents exposed to social stress. A recent study characterized the urodynamic and central changes in a rat model of social defeat. Here, we describe a similar voiding phenotype induced in mice by social stress and in addition we describe potential molecular mechanisms underlying the resulting bladder wall remodeling. The mechanism leading to the altered voiding habits and underlying bladder phenotype may be relevant to the human syndrome of dysfunctional voiding which is thought to have a psychological component. To better characterize and investigate social stress-induced bladder wall hypertrophy, FVB mice (6 wk old) were randomized to either social stress or control manipulation. The stress involved repeated cycles of a 1-h direct exposure to a larger aggressive C57Bl6 breeder mouse followed by a 23-h period of barrier separation over 4 wk. Social stress resulted in altered urinary voiding patterns suggestive of urinary retention and increased bladder mass. In vivo cystometry revealed an increased volume at micturition with no change in the voiding pressure. Examination of these bladders revealed increased nuclear expression of the transcription factors MEF-2 and NFAT, as well as increased expression of the myosin heavy chain B isoform mRNA. BrdU uptake was increased within the urothelium and lamina propria layers in the social stress group. We conclude that social stress induces urinary retention that ultimately leads to shifts in transcription factors, alterations in myosin heavy chain isoform expression, and increases in DNA synthesis that mediate bladder wall remodeling. Social stress-induced bladder dysfunction in rodents may provide insight into the underlying mechanisms and potential treatment of dysfunctional voiding in humans. PMID:19587139
Paonessa, Joseph D.; Ding, Yi; Randall, Kristen L.; Munday, Rex; Argoti, Dayana; Vouros, Paul; Zhang, Yuesheng
2011-01-01
Nrf2 is a major cytoprotective gene and is a key chemopreventive target against cancer and other diseases. Here we show that Nrf2 faces a dilemma in defense against 4-aminobiphenyl (ABP), a major human bladder carcinogen from tobacco smoke and other environmental sources. While Nrf2 protected mouse liver against ABP (which is metabolically activated in liver), the bladder level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), the predominant ABP-DNA adduct formed in bladder cells and tissues, was markedly higher in Nrf2+/+ mice than in Nrf2−/− mice after ABP exposure. Notably, Nrf2 protected bladder cells against ABP in vitro. Mechanistic investigations showed that the dichotomous effects of Nrf2 could be explained at least partly by upregulation of UDP-glucuronosyltransferase (UGT). Nrf2 promoted conjugation of ABP with glucuronic acid in the liver, increasing urinary excretion of the conjugate. While glucuronidation of ABP and its metabolites is a detoxification process, these conjugates, which are excreted in urine, are known to be unstable in acidic urine, leading to delivery of the parent compounds to bladder. Hence, while higher liver UGT activity may protect the liver against ABP it increases bladder exposure to ABP. These findings raise concerns of potential bladder toxicity when Nrf2-activating chemopreventive agents are used in humans exposed to ABP, especially in smokers. We further demonstrate that 5,6-dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) significantly inhibits dG-C8-ABP formation in bladder cells and tissues, but does not appear to significantly modulate ABP-catalyzing UGT in liver. Thus, CPDT exemplifies a counteracting solution to the dilemma posed by Nrf2. PMID:21487034
METABOLSM OF PENTAVALENT AND TRIVALENT DIMETHYLARSENIC ARSENIC IN THE MOUSE
Dimethylarsinic acid (DMA(V)) is a rat bladder carcinogen after chronic exposure in either drinking water or the diet. DMA(V) is also a major urinary metabolite of mammals exposed to inorganic arsenic. In mice, iv and po administration of [14C]-DMA(V) results in rapi...
Lower urinary tract development and disease
Rasouly, Hila Milo; Lu, Weining
2013-01-01
Congenital Anomalies of the Lower Urinary Tract (CALUT) are a family of birth defects of the ureter, the bladder and the urethra. CALUT includes ureteral anomalies such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUV). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, bladder, and urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, bladder and urethra and associated gene mutations are also presented. As we are entering the post-genomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families. PMID:23408557
Becknell, Brian; Mohamed, Ahmad Z; Li, Birong; Wilhide, Michael E; Ingraham, Susan E
2015-01-01
Urinary stasis is a risk factor for recurrent urinary tract infection (UTI). Homozygous mutant Megabladder (Mgb-/-) mice exhibit incomplete bladder emptying as a consequence of congenital detrusor aplasia. We hypothesize that this predisposes Mgb-/- mice to spontaneous and experimental UTI. Mgb-/-, Mgb+/-, and wild-type female mice underwent serial ultrasound and urine cultures at 4, 6, and 8 weeks to detect spontaneous UTI. Urine bacterial isolates were analyzed by Gram stain and speciated. Bladder stones were analyzed by x-ray diffractometry. Bladders and kidneys were subject to histologic analysis. The pathogenicity of coagulase-negative Staphylococcus (CONS) isolated from Mgb-/- urine was tested by transurethral administration to culture-negative Mgb-/- or wild-type animals. The contribution of urinary stasis to CONS susceptibility was evaluated by cutaneous vesicostomy in Mgb-/- mice. Mgb-/- mice develop spontaneous bacteriuria (42%) and struvite bladder stones (31%) by 8 weeks, findings absent in Mgb+/- and wild-type controls. CONS was cultured as a solitary isolate from Mgb-/- bladder stones. Bladders and kidneys from mice with struvite stones exhibit mucosal injury, inflammation, and fibrosis. These pathologic features of cystitis and pyelonephritis are replicated by transurethral inoculation of CONS in culture-negative Mgb-/- females, whereas wild-type animals are less susceptible to CONS colonization and organ injury. Cutaneous vesicostomy prior to CONS inoculation significantly reduces the quantity of CONS recovered from Mgb-/- urine, bladders, and kidneys. CONS is an opportunistic uropathogen in the setting of urinary stasis, leading to enhanced UTI incidence and severity in Mgb-/- mice.
Becknell, Brian; Mohamed, Ahmad Z.; Li, Birong; Wilhide, Michael E.; Ingraham, Susan E.
2015-01-01
Purpose Urinary stasis is a risk factor for recurrent urinary tract infection (UTI). Homozygous mutant Megabladder (Mgb-/-) mice exhibit incomplete bladder emptying as a consequence of congenital detrusor aplasia. We hypothesize that this predisposes Mgb-/- mice to spontaneous and experimental UTI. Methods Mgb-/-, Mgb+/-, and wild-type female mice underwent serial ultrasound and urine cultures at 4, 6, and 8 weeks to detect spontaneous UTI. Urine bacterial isolates were analyzed by Gram stain and speciated. Bladder stones were analyzed by x-ray diffractometry. Bladders and kidneys were subject to histologic analysis. The pathogenicity of coagulase-negative Staphylococcus (CONS) isolated from Mgb-/- urine was tested by transurethral administration to culture-negative Mgb-/- or wild-type animals. The contribution of urinary stasis to CONS susceptibility was evaluated by cutaneous vesicostomy in Mgb-/- mice. Results Mgb-/- mice develop spontaneous bacteriuria (42%) and struvite bladder stones (31%) by 8 weeks, findings absent in Mgb+/- and wild-type controls. CONS was cultured as a solitary isolate from Mgb-/- bladder stones. Bladders and kidneys from mice with struvite stones exhibit mucosal injury, inflammation, and fibrosis. These pathologic features of cystitis and pyelonephritis are replicated by transurethral inoculation of CONS in culture-negative Mgb-/- females, whereas wild-type animals are less susceptible to CONS colonization and organ injury. Cutaneous vesicostomy prior to CONS inoculation significantly reduces the quantity of CONS recovered from Mgb-/- urine, bladders, and kidneys. Conclusions CONS is an opportunistic uropathogen in the setting of urinary stasis, leading to enhanced UTI incidence and severity in Mgb-/- mice. PMID:26401845
Saravanaperumal, Siva Arumugam; Gibbons, Simon J; Malysz, John; Sha, Lei; Linden, David R; Szurszewski, Joseph H; Farrugia, Gianrico
2018-01-01
What is the central question of this study? The aim was to investigate the roles of extracellular chloride in electrical slow waves and resting membrane potential of mouse jejunal smooth muscle by replacing chloride with the impermeant anions gluconate and isethionate. What is the main finding and its importance? The main finding was that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in interstitial cells of Cajal (ICCs) is a major contributor to the shape of electrical slow waves. Furthermore, the data confirm that ICCs set the smooth muscle membrane potential and that altering Cl - homeostasis in ICCs can alter the smooth muscle membrane potential. Intracellular Cl - homeostasis is regulated by anion-permeable channels and transporters and contributes to excitability of many cell types, including smooth muscle and interstitial cells of Cajal (ICCs). Our aims were to investigate the effects on electrical activity in mouse jejunal muscle strips of replacing extracellular Cl - (Cl - o ) with the impermeant anions gluconate and isethionate. On reducing Cl - o , effects were observed on electrical slow waves, with small effects on smooth muscle membrane voltage (E m ). Restoration of Cl - hyperpolarized smooth muscle E m proportional to the change in Cl - o concentration. Replacement of 90% of Cl - o with gluconate reversibly abolished slow waves in five of nine preparations. Slow waves were maintained in isethionate. Gluconate and isethionate substitution had similar concentration-dependent effects on peak amplitude, frequency, width at half peak amplitude, rise time and decay time of residual slow waves. Gluconate reduced free ionized Ca 2+ in Krebs solutions to 0.13 mm. In Krebs solutions containing normal Cl - and 0.13 mm free Ca 2+ , slow wave frequency was lower, width at half peak amplitude was smaller, and decay time was faster. The transient hyperpolarization following restoration of Cl - o was not observed in W/W v mice, which lack pacemaker ICCs in the small intestine. We conclude that in smooth muscle cells, the resting Cl - conductance is low, whereas transmembrane Cl - movement in ICCs plays a major role in generation or propagation of slow waves. Furthermore, these data support a role for ICCs in setting smooth muscle E m and that altering Cl - homeostasis in ICCs can alter smooth muscle E m . © 2017 Mayo Clinic. Experimental Physiology © 2017 The Physiological Society.
Mutations in HPSE2 cause urofacial syndrome.
Daly, Sarah B; Urquhart, Jill E; Hilton, Emma; McKenzie, Edward A; Kammerer, Richard A; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S; Black, Graeme C; Newman, William G
2010-06-11
Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.
Mutations in HPSE2 Cause Urofacial Syndrome
Daly, Sarah B.; Urquhart, Jill E.; Hilton, Emma; McKenzie, Edward A.; Kammerer, Richard A.; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A.; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S.; Black, Graeme C.; Newman, William G.
2010-01-01
Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction. PMID:20560210
Müller, Thiago R; Marcelino, Raquel S; de Souza, Livia P; Teixeira, Carlos R; Mamprim, Maria J
2017-02-01
Objectives The aim of the study was to describe the normal abdominal echoanatomy of the tigrina and to compare it with the abdominal echoanatomy of the domestic cat. Reference intervals for the normal abdominal ultrasonographic anatomy of individual species are important for accurate diagnoses and interpretation of routine health examinations. The hypothesis was that the echoanatomy of the tigrina was similar to that of the domestic cat. Methods Eighteen clinically healthy tigrina were selected for abdominal ultrasound examination, in order to obtain normal parameters of the bladder, spleen, adrenal gland, kidney, gastrointestinal tract, liver and gall bladder, and Doppler parameters of liver and kidney vessels. Results The splenic parenchyma was consistently hyperechoic to the kidneys and liver. The liver, kidneys and spleen had similar echotexture, shape and dimensions when compared with the domestic cat. The gall bladder was lobulated and surrounded by a clearly visualized thin, smooth, regular echogenic wall. The adrenal glands had a bilobulated shape. The urinary bladder had a thin echogenic wall. The Doppler parameters of the portal vein and renal artery were similar to the domestic cat. Conclusions and relevance The results support the hypothesis that the ultrasonographic parameters of the abdominal viscera of the southern tigrina are similar to those of the domestic cat.
The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.
Snow-Lisy, Devon C; Diaz, Edward C; Bury, Matthew I; Fuller, Natalie J; Hannick, Jessica H; Ahmad, Nida; Sharma, Arun K
2015-01-01
Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an alternate means to achieve functional bladder regeneration.
McGarvey, Terry; Wang, Huiyi; Lal, Priti; Puthiyaveettil, Raghunath; Tomaszewski, John; Sepulveda, Jorge; Labelle, Ed; Weiss, Jayne S.; Nickerson, Michael L.; Kruth, Howard S.; Brandt, Wolfgang; Wessjohann, Ludger A.; Malkowicz, S. Bruce
2011-01-01
Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression. PMID:21740188
Blow, Nikolaus; Biswas, Pradipta
2017-01-01
As computers become more and more essential for everyday life, people who cannot use them are missing out on an important tool. The predominant method of interaction with a screen is a mouse, and difficulty in using a mouse can be a huge obstacle for people who would otherwise gain great value from using a computer. If mouse pointing were to be made easier, then a large number of users may be able to begin using a computer efficiently where they may previously have been unable to. The present article aimed to improve pointing speeds for people with arm or hand impairments. The authors investigated different smoothing and prediction models on a stored data set involving 25 people, and the best of these algorithms were chosen. A web-based prototype was developed combining a polynomial smoothing algorithm with a time-weighted gradient target prediction model. The adapted interface gave an average improvement of 13.5% in target selection times in a 10-person study of representative users of the system. A demonstration video of the system is available at https://youtu.be/sAzbrKHivEY.
Wu, Wei; Xu, Yuzhu; He, Xinliang; Lu, Yan; Guo, Yali; Yin, Zhuoran; Xie, Jungang; Zhao, Jianping
2014-12-01
Although it is recognized that IL-33 plays a key role in the onset of asthma, it is currently unclear whether IL-33 acts on any other target cells besides mast cells and Th2 cells in asthma. We investigated that whether airway smooth muscle cells (ASMCs) could contribute to asthma via stimulation with IL-33. To create a mouse model of acute asthma, murine ASMCs were isolated and cultured in vitro with IL-33. The ASMCs were divided into two groups, ASMCs from normal mice and ASMCs from ovalbumin-sensitized mice. The release of mouse KC was analyzed by PCR and ELISA. Immunocytochemical Staining of murine ASMCs for ST2 and IL-1RAcP was performed. IL-33 promoted KC expression, both in terms of mRNA and protien levels, in ASMCs from ovalbumin-sensitized mice. ST2 and IL-1RAcP were expressed in the membrane of ASMCs in ovalbumin-sensitized mice. IL-33 may contribute to the inflammation in the airways by acting on airway smooth muscle cells. IL-33 and ST2 may play important roles in allergic bronchial asthma.
Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.
Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi
2016-10-01
Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of the AR pathway in bladder cancer growth and further suggest that AR antagonists, including enzalutamide, are of therapeutic benefit in AR-positive bladder cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Hristov, Kiril L.; Parajuli, Shankar P.; Provence, Aaron
2016-01-01
In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of −20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability. PMID:27605581
Korğalı, Elif Ünver; Yavuz, Amine; Şimşek, Cemile Ece Çağlar; Güney, Cengiz; Kurtulgan, Hande Küçük; Başer, Burak; Atalar, Mehmet Haydar; Özer, Hatice; Eğilmez, Hatice Reyhan
2018-04-01
Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is characterized by bladder distension without urinary tract obstruction, decreased or absent intestinal peristalsis and microcolon. Although the definitive cause remains unknown, changes in the ACTG2 gene are thought to be responsible for the intestinal and bladder hypoperistalsis. This female newborn with MMIHS had a c.532C>A /p.Arg178Ser heterozygous de novo mutation detected in the ACTG2 gene. Normal immature ganglion cells, normal calretinin punctate positivity, maintence of smooth muscle actin immunoreactivity, and decreased numbers of interstitial cells of Cajal(ICCs) were detected. This previously unreported c.532C>A /p.Arg178Ser heterozygous de novo mutation in the ACTG2 gene may lead to a severe form of MMIHS.
Adenoviral receptor expression of normal bladder and transitional cell carcinoma of the bladder.
Buscarini, Maurizio; Quek, Marcus L; Gilliam-Hegarich, Susan; Kasahara, Nori; Bochner, Bernard
2007-01-01
The insertion of absent or underexpressed genes into cancer cells to alter their malignant phenotype is an important potential application of available gene therapy technology. One of the more common viral vector systems that has been extensively studied for this purpose are the replication-deficient adenoviruses (Ad). Adenoviral infection of cells is mediated through a complex pathway, initiated following viral-cell attachment. Adenoviral-cell attachment occurs following interactions with a 46-kDa transmembrane protein with high affinity for both the Coxsackie and adenovirus, designated the CAR (Coxsackie and adenoviral receptor). Additional important cell-viral interactions that occur involve the alpha(v)-based integrins, specifically alpha(v)beta3 and alpha(v)beta5. The purpose of the present study was to determine the extent of expression and localization of the known Ad receptor proteins (CAR, alpha(v)beta3, and alpha(v)beta5) in normal and cancerous human bladders. Frozen tissue samples of normal bladder and invasive transitional cell cancers of the bladder were evaluated. Tissue blocks containing muscle-invasive transitional cell carcinoma (TCC) were obtained following radical cystectomy, which were performed at our institution. Thirty-two invasive transitional cell bladder tumors were evaluated, each with a matched sample of histologically normal-appearing bladder used as a control. Four additional samples of normal bladder were obtained from patients with no evidence of disease of the bladder and served as further controls. Three additional cases of invasive bladder cancer with no matching normal tissue were also evaluated. Identification of the CAR receptor was performed using the anti-CAR mouse monoclonal antibody designated RmBC. The integrins alpha(v)beta3 and alpha(v)beta5 were identified using the mouse monoclonal antibodies designated LM609 and P1F6 respectively. All slides were evaluated by two of the authors (M.B., B.B.) without knowledge of the clinical and pathological data. Normal bladder: Normal bladder mucosa demonstrated a marked positivity for CAR in 29/35 (82.8%) cases. In contrast, normal transitional epithelial cells were uniformly negative when tested for the integrins alpha(v)beta3 and alpha(v)beta5. Subepithelial tissues, specifically the connective tissue components of the lamina propria and deep muscle wall of the bladder, were positive for alpha(v)beta3 and for alpha(v)beta5 in 61 and 75% of samples, respectively. Endothelial cells associated with the various layers throughout the bladder uniformly expressed both integrins and served as a consistent internal control for both antibodies. An almost identical staining pattern of the endothelium was observed using LM609 and P1F6 in all samples tested. Bladder transitional cell carcinoma: CAR immunoreactivity against TCC cells was uniformly decreased compared to normal transitional cells. Nine tumors exhibited a weak positivity for CAR while the remaining samples were negative. In some cases, the absence of CAR positivity was associated with histological evidence of carcinoma in situ. In 6 cases, it led to the identification of small regions of carcinoma in situ that were not noted on primary pathological evaluation. Peritumoral connective tissue expressed both integrins in the majority of cases, similar to the pattern described above for normal bladder. Transitional cell cancers demonstrated a similar pattern of expression of alpha(v)beta5, in which all tumor cells exhibited minimal or no staining. The success of all viral-mediated gene therapy strategies relies on the ability of the vector to efficiently deliver its genetic material to a target cell population. In the current study, we demonstrate that the bladder epithelial layer consistently expresses high levels of CAR. Deeper layers of the epithelium also express CAR, including the basal layer cells. A decrease in the expression of CAR appears as an early event in bladder carcinogenesis. We observed that both alpha(v)beta3 and alpha(v)beta5 are strongly expressed in muscle cells surrounding the neoplastic cells, as well as within the peritumoral connective tissue. In cases of invasive bladder cancer that have lost CAR expression, an adenoviral vector may still be utilized through the less efficient interactions with the integrins. Bladder tumor tissue may be less susceptible to an adenoviral-mediated gene therapy approach in which a significant percentage of tumor cells require transduction. Adenoviral uptake by tumor or peritumoral cells with subsequent gene transfer could be predicted by the level of CAR and alpha(v)-based integrin expression. This would enhance our ability to identify those patients whose tumors would be more susceptible to Ad-mediated gene delivery as part of an antitumor treatment. 2007 S. Karger AG, Basel
In vivo optical coherence tomography in endoscopic diagnostics of bladder disease
NASA Astrophysics Data System (ADS)
Daniltchenko, Dmitri; Lankenau, Eva; Konig, Frank; Shay, Brian; Huettmann, Gereon; Sachs, Markus D.; Schnorr, Dietmar; Loening, Stefan A.
2004-07-01
Purpose: OCT is a new imaging method which produces a 3 mm wide x 2.5 mm deep 2D picture with a resolution of 15 μm. Materials and Methods: We utilised the Tomograph Sirius 713, developed at the Medical Laser Centre in cooperation with 4-Optics AG, Lubeck, Germany. This apparatus uses a special Super-Luminescence-Diode (SLD) that produces light within the near infrared wavelength, with a central wavelength of 1300 nm and spectral width of 45 nm. The coherence length is reduced to 15 μm. The light is introduced into a fibreglass optic which is a couple of meters long and is easy to handle. To measure the depth of invasion and position of urothelial bladder tumours, the fibreglass optic is attached to a regular endoscope (Wolf, Knittlingen, Germany) via a OCT adapter. That way, in parallel to the regular endoscopic view of the bladder mucosa with or without pathologic findings, an OCT picture of the superficial as well as the deeper muscle layers is visible online. OCT was used to obtaine 275 images from the bladder of 30 patients. Results: OCT of normal bladder mucosa produces an image with a cross section of up to 2.5 mm. It is possible to distinguish transitional epithelium, lamina propria, smooth muscles and capillaries. In cystitis the thickness of the mucosa is constant, but the distinction between the different layers is blurred. In squamous metaplasia there is thickening of the epithelial layer, with preservation of lamination of the lower layers. In transitional cell carcinoma there is a complete loss of the regular layered structure. Thus, the border between tumour and normal bladder tissue can be easily distinguished. Conclusions: This method can provide valuable information on tumour invasion and extension in real time and therefore influence therapeutic strategies
Hipp, Jason D; Davies, Kelvin P; Tar, Moses; Valcic, Mira; Knoll, Abraham; Melman, Arnold; Christ, George J
2007-02-01
To identify early diabetes-related alterations in gene expression in bladder and erectile tissue that would provide novel diagnostic and therapeutic treatment targets to prevent, delay or ameliorate the ensuing bladder and erectile dysfunction. The RG-U34A rat GeneChip (Affymetrix Inc., Sunnyvale, CA, USA) oligonucleotide microarray (containing approximately 8799 genes) was used to evaluate gene expression in corporal and male bladder tissue excised from rats 1 week after confirmation of a diabetic state, but before demonstrable changes in organ function in vivo. A conservative analytical approach was used to detect alterations in gene expression, and gene ontology (GO) classifications were used to identify biological themes/pathways involved in the aetiology of the organ dysfunction. In all, 320 and 313 genes were differentially expressed in bladder and corporal tissue, respectively. GO analysis in bladder tissue showed prominent increases in biological pathways involved in cell proliferation, metabolism, actin cytoskeleton and myosin, as well as decreases in cell motility, and regulation of muscle contraction. GO analysis in corpora showed increases in pathways related to ion channel transport and ion channel activity, while there were decreases in collagen I and actin genes. The changes in gene expression in these initial experiments are consistent with the pathophysiological characteristics of the bladder and erectile dysfunction seen later in the diabetic disease process. Thus, the observed changes in gene expression might be harbingers or biomarkers of impending organ dysfunction, and could provide useful diagnostic and therapeutic targets for a variety of progressive urological diseases/conditions (i.e. lower urinary tract symptoms related to benign prostatic hyperplasia, erectile dysfunction, etc.).
del Canto, M; García-Martínez, L; Fernández-Villa, T; Molina, A J; Campanario, F; García-Sanz, M; López-Abente, G; Honrado, E; Martín-Sánchez, V
2015-01-01
Spain is a country where bladder cancer incidence and mortality rates are some of the highest in the world. The aim of this study is to know the incidence, trends and geographical distribution of bladder cancer in the health area of León. the new cases of bladder cancer (CIE-188) in patients residing in the health area of León and registered in the Hospital Tumor Registry of the Centro Asistencial Universitario in León (Spain) between 1996-2010 were included in this study. Triennial crude incidence and adjusted incidence rates to the worldwide and European population were calculated. Population data of the municipalities of Leon (Spain) were obtained from National Institute of Statistic of Spain (INE, Instituto Nacional de Estadística). Data were disaggregated by sex-groups and five-year age groups. Spatial distribution of smoothed municipal relative risks (RR) of bladder cancer was carried out using a Besag, York and Mollié model. Bayesian model were used to calculate the posterior probability (PP) of RR greater than one. 1.573 cases were included. Incidence rates standardized to European population increased among men from 20,8/100.000 (1996-98) to 33,1/100.000 (2006-2008) and among women these rates increased from 1,9/100.000 to 5,9/100.000 for the same period of time. No relevant differences were found in the municipal distribution of the incidences. bladder cancer incidence rates are high in the European context. Rising trends in incidence in both sexs, particularly in women are observed. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Moltedo, Bruno; Faunes, Fernando; Haussmann, Denise; De Ioannes, Pablo; De Ioannes, Alfredo E; Puente, Javier; Becker, María Inés
2006-12-01
We determined the antitumor properties of a newly available hemocyanin obtained from the Chilean gastropod Concholepas concholepas (Biosonda Corp., Santiago, Chile) in a syngeneic heterotopic mouse bladder carcinoma model. Since keyhole limpet hemocyanin (Pierce, Rockford, Illinois) is used increasingly in biomedicine as a carrier for vaccines and an immunotherapeutic agent for bladder transitional cell carcinoma, there is a growing interest in finding new substances that share its potent immunomodulatory properties. Considering that keyhole limpet hemocyanin and Concholepas concholepas hemocyanin differ significantly, it was not possible to predict a priori the antitumor properties of Concholepas concholepas hemocyanin. C3H/He mice were primed with Concholepas concholepas hemocyanin before subcutaneous implantation of mouse bladder tumor-2 cells. Treatment consisted of a subcutaneous dose of Concholepas concholepas hemocyanin (1 mg or 100 mug) at different intervals after implantation. Keyhole limpet hemocyanin and phosphate buffered saline served as positive and negative controls, respectively. In addition, experiments were designed to determine which elements of the immune response were involved in its adjuvant immunostimulatory effect. Mice treated with Concholepas concholepas hemocyanin showed a significant antitumor effect, as demonstrated by decreased tumor growth and incidence, prolonged survival and lack of toxic effects. These effects were similar to those achieved with keyhole limpet hemocyanin. We found that each hemocyanin increased natural killer cell activity but the effect of Concholepas concholepas hemocyanin was stronger. Analysis of serum from treated mice showed an increased interferon-gamma and low interleukin-4, which correlated with antibody isotypes, confirming that hemocyanins induce a T helper type 1 cytokine profile. To our knowledge our results are the first demonstration of the antitumor effect of a hemocyanin other than keyhole limpet hemocyanin. They suggest that this is an ancient conserved immunogenic mechanism shared by those hemocyanins that is able to enhance T helper type 1 immunity and lead to antitumor activity. Therefore, Concholepas concholepas hemocyanin may be an alternative candidate for providing safe and effective immunotherapy for human superficial bladder cancer.
Tran-Lundmark, Karin; Tran, Phan-Kiet; Paulsson-Berne, Gabrielle; Fridén, Vincent; Soininen, Raija; Tryggvason, Karl; Wight, Thomas N; Kinsella, Michael G; Borén, Jan; Hedin, Ulf
2009-01-01
Heparan sulfate (HS) has been proposed to be anti-atherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (Hspg2Δ3/Δ3). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/Hspg2Δ3/Δ3 mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/Hspg2Δ3/Δ3 smooth muscle cells was reduced. In vivo, at 20 min influx of human 125I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/Hspg2Δ3/Δ3 mice compared to ApoE0 mice. However, at 72 hours accumulation of 125I-LDL was similar in ApoE0/Hspg2Δ3/Δ3 and ApoE0 mice. Immunohistochemistry of lesions from ApoE0/Hspg2Δ3/Δ3 mice showed decreased staining for apoB and increased smooth muscle α-actin content, whereas accumulation of CD68-positive inflammatory cells was unchanged. We conclude that the perlecan HS chains are pro-atherogenic in mice, possibly through increased lipoprotein retention, altered vascular permeability, or other mechanisms. The ability of HS to inhibit smooth muscle cell growth may also influence development as well as instability of lesions. PMID:18596265
Tran-Lundmark, Karin; Tran, Phan-Kiet; Paulsson-Berne, Gabrielle; Fridén, Vincent; Soininen, Raija; Tryggvason, Karl; Wight, Thomas N; Kinsella, Michael G; Borén, Jan; Hedin, Ulf
2008-07-03
Heparan sulfate (HS) has been proposed to be antiatherogenic through inhibition of lipoprotein retention, inflammation, and smooth muscle cell proliferation. Perlecan is the predominant HS proteoglycan in the artery wall. Here, we investigated the role of perlecan HS chains using apoE null (ApoE0) mice that were cross-bred with mice expressing HS-deficient perlecan (Hspg2(Delta3/Delta3)). Morphometry of cross-sections from aortic roots and en face preparations of whole aortas revealed a significant decrease in lesion formation in ApoE0/Hspg2(Delta3/Delta3) mice at both 15 and 33 weeks. In vitro, binding of labeled mouse triglyceride-rich lipoproteins and human LDL to total extracellular matrix, as well as to purified proteoglycans, prepared from ApoE0/Hspg2(Delta3/Delta3) smooth muscle cells was reduced. In vivo, at 20 minutes influx of human (125)I-LDL or mouse triglyceride-rich lipoproteins into the aortic wall was increased in ApoE0/Hspg2(Delta3/Delta3) mice compared to ApoE0 mice. However, at 72 hours accumulation of (125)I-LDL was similar in ApoE0/Hspg2(Delta3/Delta3) and ApoE0 mice. Immunohistochemistry of lesions from ApoE0/Hspg2(Delta3/Delta3) mice showed decreased staining for apoB and increased smooth muscle alpha-actin content, whereas accumulation of CD68-positive inflammatory cells was unchanged. We conclude that the perlecan HS chains are proatherogenic in mice, possibly through increased lipoprotein retention, altered vascular permeability, or other mechanisms. The ability of HS to inhibit smooth muscle cell growth may also influence development as well as instability of lesions.
Abstract:
Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...
Afeli, Serge A Y; Malysz, John; Petkov, Georgi V
2013-01-01
Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction.
Inhibitory mechanism of monensin on high K+-induced contraction in guniea-pig urinary bladder.
Kaneda, Takeharu; Takeuchi, Mayumi; Shimizu, Kazumasa; Urakawa, Norimoto; Nakajyo, Shinjiro; Mochizuki-Kobayashi, Mariko; Ueda, Fukiko; Hondo, Ryo
2006-02-01
In this study, we examined the inhibitory mechanism of monensin on high K+-induced contraction in guinea-pig urinary bladder. The relaxant effect of monensin (0.001 - 10 microM) was more potent than those of NaCN (100 microM - 1 mM) and forskolin (3 - 10 microM). Monensin (0.1 microM), NaCN (300 microM), or forskolin (10 microM) inhibited high K+-induced contraction without decreasing [Ca2+]i level. Monensin and NaCN remarkably decreased creatine phosphate and ATP contents. Monensin and NaCN inhibited high K+-induced increases in flavoprotein fluorescence, which is involved in mitochondrial respiration. Forskolin increased cAMP content but monensin did not. Monensin increased Na+ content at 10 microM but not at 0.1 microM that induced maximum relaxation. In the alpha-toxin-permeabilized muscle, forskolin significantly inhibited the Ca2+-induced contraction, but monensin did not affect it. These results suggest that the relaxation mechanism of monensin in smooth muscle of urinary bladder may be an inhibition of oxidative metabolism.
Hydronephrosis in the Wnt5a-ablated kidney is caused by an abnormal ureter-bladder connection.
Yun, Kangsun; Perantoni, Alan O
The Wnt5a null mouse is a complex developmental model which, among its several posterior-localized axis defects, exhibits multiple kidney phenotypes, including duplex kidney and loss of the medullary zone. We previously reported that ablation of Wnt5a in nascent mesoderm causes duplex kidney formation as a result of aberrant development of the nephric duct and abnormal extension of intermediate mesoderm. However, these mice also display a loss of the medullary region late in gestation. We have now genetically isolated duplex kidney formation from the medullary defect by specifically targeting the progenitors for both the ureteric bud and metanephric mesenchyme. The conditional mutants fail to form a normal renal medulla but no longer exhibit duplex kidney formation. Approximately 1/3 of the mutants develop hydronephrosis in the kidneys either uni- or bilaterally when using Dll1Cre. The abnormal kidney phenotype becomes prominent at E16.5, which approximates the time when urine production begins in the mouse embryonic kidney, and is associated with a dramatic increase in apoptosis only in mutant kidneys with hydronephrosis. Methylene blue dye injection and histologic examination reveal that aberrant cell death likely results from urine toxicity due to an abnormal ureter-bladder connection. This study shows that Wnt5a is not required for development of the renal medulla and that loss of the renal medullary region in the Wnt5a-deleted kidney is caused by an abnormal ureter-bladder connection. Published by Elsevier B.V.
Chatterjee, Paroma; Padmanarayana, Murugesh; Abdullah, Nazish; Holman, Chelsea L.; LaDu, Jane; Tanguay, Robert L.
2015-01-01
Sensory hair cells convert mechanical motion into chemical signals. Otoferlin, a six-C2 domain transmembrane protein linked to deafness in humans, is hypothesized to play a role in exocytosis at hair cell ribbon synapses. To date, however, otoferlin has been studied almost exclusively in mouse models, and no rescue experiments have been reported. Here we describe the phenotype associated with morpholino-induced otoferlin knockdown in zebrafish and report the results of rescue experiments conducted with full-length and truncated forms of otoferlin. We found that expression of otoferlin occurs early in development and is restricted to hair cells and the midbrain. Immunofluorescence microscopy revealed localization to both apical and basolateral regions of hair cells. Knockdown of otoferlin resulted in hearing and balance defects, as well as locomotion deficiencies. Further, otoferlin morphants had uninflated swim bladders. Rescue experiments conducted with mouse otoferlin restored hearing, balance, and inflation of the swim bladder. Remarkably, truncated forms of otoferlin retaining the C-terminal C2F domain also rescued the otoferlin knockdown phenotype, while the individual N-terminal C2A domain did not. We conclude that otoferlin plays an evolutionarily conserved role in vertebrate hearing and that truncated forms of otoferlin can rescue hearing and balance. PMID:25582200
Protease-Activated Receptor 4 Induces Bladder Pain through High Mobility Group Box-1
Kouzoukas, Dimitrios E.; Ma, Fei; Meyer-Siegler, Katherine L.; Westlund, Karin N.; Hunt, David E.; Vera, Pedro L.
2016-01-01
Pain is the significant presenting symptom in Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS). Activation of urothelial protease activated receptor 4 (PAR4) causes pain through release of urothelial macrophage migration inhibitory factor (MIF). High Mobility Group Box-1 (HMGB1), a chromatin-binding protein, mediates bladder pain (but not inflammation) in an experimental model (cyclophosphamide) of cystitis. To determine if PAR4-induced bladder hypersensitivity depends on HMGB1 downstream, we tested whether: 1) bladder PAR4 stimulation affected urothelial HMGB1 release; 2) blocking MIF inhibited urothelial HMGB1 release; and 3) blocking HMGB1 prevented PAR4-induced bladder hypersensitivity. HMGB1 release was examined in immortalized human urothelial cultures (UROtsa) exposed to PAR4-activating peptide (PAR4-AP; 100 μM; 2 hours) or scrambled control peptide. Female C57BL/6 mice, pretreated with a HMGB1 inhibitor (glycyrrhizin: 50 mg/kg; ip) or vehicle, received intravesical PAR4-AP or a control peptide (100 μM; 1 hour) to determine 1) HMGB1 levels at 1 hour in the intravesical fluid (released HMGB1) and urothelium, and 2) abdominal hypersensitivity to von Frey filament stimulation 24 hours later. We also tested mice pretreated with a MIF blocker (ISO-1: 20 mg/kg; ip) to determine whether MIF mediated PAR4-induced urothelial HMGB1 release. PAR4-AP triggered HMGB1 release from human (in vitro) and mice (in vivo) urothelial cells. Intravesical PAR4 activation elicited abdominal hypersensitivity in mice that was prevented by blocking HMGB1. MIF inhibition prevented PAR4-mediated HMGB1 release from mouse urothelium. Urothelial MIF and HGMB1 represent novel targets for therapeutic intervention in bladder pain conditions. PMID:27010488
Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.
Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V
2012-06-01
The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.
Prominent expression of phosphodiesterase 5 in striated muscle of the rat urethra and levator ani.
Lin, Guiting; Huang, Yun-Ching; Wang, Guifang; Lue, Tom F; Lin, Ching-Shwun
2010-08-01
We investigated phosphodiesterase 5 distribution and activity in the urethra. Rat tissues were examined for phosphodiesterase 5 and alpha-smooth muscle actin expression. Urethral phosphodiesterase 5 activity was examined by tissue bath in the presence of sildenafil (Pfizer, New York, New York). Anti-alpha-smooth muscle actin antibody (Abcam) stained all known smooth muscles in all tested tissues and revealed a few smooth muscle fibers in the levator ani muscle. Anti-phosphodiesterase 5 antibody (Abcam) stained smooth muscle in the penis and bladder but not striated leg muscle. However, it stained predominantly striated muscle in the urethra and the levator ani muscle. In the urethra the amount of phosphodiesterase 5 in striated muscle was 6 times that in smooth muscle. In urethral striated muscle phosphodiesterase 5 expression was localized to Z-band striations. Smooth and striated muscle intermingling was clearly visible on the inner and outer rims of the circularly arranged striated muscle layer. Relaxation of precontracted urethral tissues by sodium nitroprusside (Sigma-Aldrich) was enhanced by sildenafil, indicating phosphodiesterase 5 activity, which was primarily located in the striated muscle according to phosphodiesterase 5 staining. Despite its presumed smooth muscle specificity phosphodiesterase 5 was predominantly expressed in the striated muscle of the urethra and in the levator ani muscle. Results are consistent with earlier studies in which these striated muscles were developmentally related to smooth muscle. They also suggest that these striated muscles are possibly regulated by phosphodiesterase 5. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Ritter, K. Elaine; Southard-Smith, E. Michelle
2017-01-01
Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as a candidate for future studies of neurally mediated bladder control. PMID:28111539
Role of fibronectin in intravesical BCG therapy for superficial bladder cancer.
Ratliff, T L; Kavoussi, L R; Catalona, W J
1988-02-01
Intravesical bacillus Calmette-Guerin (BCG) has been demonstrated to be effective both for prophylaxis and treatment of superficial bladder cancer. In order to identify the progression of events that result in BCG-mediated antitumor activity, studies were performed to evaluate the mechanism of binding of BCG within the bladder. Histological and quantitative studies in a mouse model revealed that BCG attached to the bladder wall only in areas of urothelial damage. Preliminary in vitro data showed that BCG attached to surfaces coated with extracellular matrix proteins. Further studies were then performed using purified extracellular matrix proteins to identify the proteins responsible for attachment. BCG were observed to attach to surfaces coated only with purified fibronectin (FN) but not to other purified proteins including laminin, collagen or fibrinogen. The attachment of BCG to purified FN in vitro was dose dependent and was inhibited by anti-FN antibodies. Moreover, BCG attachment in vivo to bladders with damaged urothelial surfaces was inhibited more than 95% by anti-FN antibodies, but binding was not affected by anti-laminin antibodies or preimmune serum. A survey of commercially available BCG vaccines (Pasteur, Tice, Glaxo, Connaught) showed that only Glaxo BCG did not attach to FN-coated surfaces. Glaxo BCG also was shown to express inferior antitumor activity suggesting that the absence of FN binding by Glaxo may have been associated with the absence of antitumor activity of the vaccine.
Do Curved Reaching Movements Emerge from Competing Perceptions? A Reply to van der Wel et al. (2009)
ERIC Educational Resources Information Center
Spivey, Michael J.; Dale, Rick; Knoblich, Guenther; Grosjean, Marc
2010-01-01
Spivey, Grosjean, and Knoblich (2005) reported smoothly curved reaching movements, via computer-mouse tracking, which suggested a continuously evolving flow of distributed lexical activation patterns into motor movement during a phonological competitor task. For example, when instructed to click the "candy," participants' mouse-cursor trajectories…
Reitan, J B
1985-01-01
Cyclophosphamide was given intraperitoneally to groups of eight female mice 48 h after local electron irradiation to the bladder with 0, 10 and 20 Gy respectively. The reactions in the urothelium were monitored by histology, incorporation of tritiated thymidine and flow cytometry. A wave of increased thymidine incorporation combined with an increase in the proportion of diploid S-phase cells was seen in the unirradiated bladders 24 h after the drug treatment, followed by normalization after 1 week. This response was significantly less pronounced in the irradiated animals. In the unirradiated animals a similar wave characterized by an increased proportion of octaploid cells was also seen, but this wave occurred later in the irradiated animals. Severe injury was observed in the rectum of the 20 Gy-irradiated animals. Irradiation prior to drug treatment led to only small effects, but a decreased ability for regenerative DNA synthesis after drug injury seems to persist. This affects both proliferation and the building up of polyploidy.
Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M.; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan
2016-01-01
Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence. PMID:27092883
Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan
2016-05-10
Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette-Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence.
Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G
2013-05-01
Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited down-regulation and mislocalization of α3- and α5-integrins by immunohistochemistry but, surprisingly, had normal morphology, permeability, and transepithelial resistance when compared with Cre-negative littermate controls. β1-cKO mice were incontinent, as judged by random urine leakage on filter paper (4-fold higher spotting, P<0.01; 2.5-fold higher urine area percentage, P<0.05). Urodynamic function assessed by cystometry revealed bladder overfilling with 80% longer intercontractile intervals (P<0.05) and detrusor hyperactivity (3-fold more prevoid contractions, P<0.05), but smooth muscle contractility remained intact. ATP secretion into the lumen was elevated (49 vs. 22 nM, P<0.05), indicating abnormal filling-induced purinergic signaling, and short-circuit currents (measured in Ussing chambers) revealed 2-fold higher stretch-activated ion channel conductances in response to hydrostatic pressure of 1 cmH2O (P<0.05). We conclude that loss of integrin signaling from urothelium results in incontinence and overactive bladder due to abnormal mechanotransduction; more broadly, our findings indicate that urothelium itself directly modulates voiding.
Intranasal Oxytocin for the Treatment of Pain Associated with Interstitial Cystitis
2014-09-01
THIS PAGE U UU 8 19b. TELEPHONE NUMBER (include area code ) Table of Contents...electrical nerve stimulation, changes in diet, cessation in smoking, exercise, bladder training, physical therapy, and surgery . Unfortunately...Matzuk MM, Insel TR (2000) Infant vocalization , adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 37:145–155.
Miniature microwave applicator for murine bladder hyperthermia studies.
Salahi, Sara; Maccarini, Paolo F; Rodrigues, Dario B; Etienne, Wiguins; Landon, Chelsea D; Inman, Brant A; Dewhirst, Mark W; Stauffer, Paul R
2012-01-01
Novel combinations of heat with chemotherapeutic agents are often studied in murine tumour models. Currently, no device exists to selectively heat small tumours at depth in mice. In this project we modelled, built and tested a miniature microwave heat applicator, the physical dimensions of which can be scaled to adjust the volume and depth of heating to focus on the tumour volume. Of particular interest is a device that can selectively heat murine bladder. Using Avizo(®) segmentation software, we created a numerical mouse model based on micro-MRI scan data. The model was imported into HFSS™ (Ansys) simulation software and parametric studies were performed to optimise the dimensions of a water-loaded circular waveguide for selective power deposition inside a 0.15 mL bladder. A working prototype was constructed operating at 2.45 GHz. Heating performance was characterised by mapping fibre-optic temperature sensors along catheters inserted at depths of 0-1 mm (subcutaneous), 2-3 mm (vaginal), and 4-5 mm (rectal) below the abdominal wall, with the mid depth catheter adjacent to the bladder. Core temperature was monitored orally. Thermal measurements confirm the simulations which demonstrate that this applicator can provide local heating at depth in small animals. Measured temperatures in murine pelvis show well-localised bladder heating to 42-43°C while maintaining normothermic skin and core temperatures. Simulation techniques facilitate the design optimisation of microwave antennas for use in pre-clinical applications such as localised tumour heating in small animals. Laboratory measurements demonstrate the effectiveness of a new miniature water-coupled microwave applicator for localised heating of murine bladder.
Generalised smooth-muscle disease with defective muscarinic-receptor function.
Bannister, R; Hoyes, A D
1981-03-28
A patient with widespread smooth-muscle disease presented with chronic intestinal pseudo-obstruction but had in addition defects of the bladder, pupils, sweating, and cardiovascular function. There was no evidence of a primary neural lesion, and minor changes in the muscle did not resemble those of a myopathy. In each organ affected muscarinic cholinergic function was at fault, but instead of supersensitivity to cholinergic drugs, which occurs in postganglionic autonomic neuropathies, there was a lack of response to cholinergic drugs and anticholinesterases. It was therefore concluded that the patient had a new type of defect of muscarinic-receptor function. The cause was unknown, but it may have been an autoimmune disease resembling myasthenia, in which there is a postjunctional defect of muscarinic receptors. In similar cases binding of muscarinic agonists and antagonists should be tested. When antibodies to purified human muscarinic receptors become available different patterns of smooth-muscle defect may be identifiable, enabling the lesion to be defined more precisely.
Yu, Shengqiang; Zhang, Caixia; Lin, Chiu-Chun; Niu, Yuanjie; Lai, Kuo-Pao; Chang, Hong-chiang; Yeh, Shauh-Der; Chang, Chawnshang; Yeh, Shuyuan
2011-04-01
Androgens and the androgen receptor (AR) play critical roles in the prostate development via mesenchymal-epithelial interactions. Smooth muscle cells (SMC), differentiated from mesenchyme, are one of the basic components of the prostate stroma. However, the roles of smooth muscle AR in prostate development are still obscure. We established the smooth muscle selective AR knockout (SM-ARKO) mouse model using the Cre-loxP system, and confirmed the ARKO efficiency at RNA, DNA and protein levels. Then, we observed the prostate morphology changes, and determined the epithelial proliferation, apoptosis, and differentiation. We also knocked down the AR in a prostate smooth muscle cell line (PS-1) to confirm the in vivo findings and to probe the mechanism. The AR was selectively and efficiently knocked out in the anterior prostates of SM-ARKO mouse. The SM-ARKO prostates have defects with loss of infolding structures, and decrease of epithelial proliferation, but with little change of apoptosis and differentiation. The mechanism studies showed that IGF-1 expression level decreased in the SM-ARKO prostates and AR-knockdown PS-1 cells. The decreased IGF-1 expression might contribute to the defective development of SM-ARKO prostates. The AR in SMCs plays important roles in the prostate development via the regulation of IGF-1 signal. Copyright © 2010 Wiley-Liss, Inc.
SU-E-T-314: Dosimetric Effect of Smooth Drilling On Proton Compensators in Prostate Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyhan, M; Yue, N; Zou, J
2015-06-15
Purpose: To evaluate the dosimetric effect of smooth drilling of proton compensators in proton prostate plans when compared to typical plunge drilling settings. Methods: Twelve prostate patients were planned in Eclipse treatment planning system using three different drill settings Smooth, Plunge drill A, and Plunge drill B. The differences between A and B were: spacing X[cm]: 0.4(A), 0.1(B), spacing Y[cm]: 0.35(A), 0.1(B), row offset [cm]: 0.2(A), 0(B). Planning parameters were kept consistent between the different plans, which utilized two opposed lateral beams arrangement. Mean differences absolute dosimetry in OAR constraints are presented. Results: The smooth drilled compensator based plans yieldedmore » equivalent target coverage to the plans generated with drill settings A and B. Overall, the smooth compensators reduced dose to the majority of organs at risk compared to settings A and B. Constraints were reduced for the following OAR: Rectal V75 by 2.12 and 2.48%, V70 by 2.45 and 2.91%, V65 by 2.85 and 3.37%, V50 by 2.3 and 5.1%, Bladder V65 by 4.49 and 3.67%, Penial Bulb mean by 3.7 and 4.2Gy, and the maximum plan dose 5.3 and 7.4Gy for option A vs smooth and option B vs smooth respectively. The femoral head constraint (V50<5%) was met by all plans, but it was not consistently lower for the smooth drilling plan. Conclusion: Smooth drilled compensators provide equivalent target coverage and overall slightly cooler plans to the majority of organs at risk; it also minimizes the potential dosimetric impacts caused by patient positioning uncertainty.« less
Azuma, Yasu-Taka; Samezawa, Nanako; Nishiyama, Kazuhiro; Nakajima, Hidemitsu; Takeuchi, Tadayoshi
2016-01-01
The muscular layer in the GI tract consists of an inner circular muscular layer and an outer longitudinal muscular layer. Acetylcholine (ACh) is the representative neurotransmitter that causes contractions in the gastrointestinal tracts of most animal species. There are many reports of muscarinic receptor-mediated contraction of longitudinal muscles, but few studies discuss circular muscles. The present study detailed the contractile response in the circular smooth muscles of the mouse ileum. We used small muscle strips (0.2 mm × 1 mm) and large muscle strips (4 × 4 mm) isolated from the circular and longitudinal muscle layers of the mouse ileum to compare contraction responses in circular and longitudinal smooth muscles. The time to peak contractile responses to carbamylcholine (CCh) were later in the small muscle strips (0.2 × 1 mm) of circular muscle (5.7 min) than longitudinal muscles (0.4 min). The time to peak contractile responses to CCh in the large muscle strips (4 × 4 mm) were also later in the circular muscle (3.1 min) than the longitudinal muscle (1.4 min). Furthermore, a muscarinic M2 receptor antagonist and gap junction inhibitor significantly delayed the time to peak contraction of the large muscle strips (4 × 4 mm) from the circular muscular layer. Our findings indicate that muscarinic M2 receptors in the circular muscular layer of mouse ileum exert a previously undocumented function in gut motility via the regulation of gap junctions.
Fraga, Martín; Scavone, Paola; Zunino, Pablo
2005-07-01
Probiotics are increasingly being considered as non-pharmaceutical and safe potential alternatives for the treatment and prevention of a variety of pathologies including urinary tract infections. These are the most common infections in medical practice and are frequently treated with antibiotics, which have generated an intense selective pressure over bacterial populations. Proteus mirabilis is a common cause of urinary tract infections in catheterised patients and people with abnormalities of the urinary tract. In this work we isolated, identified and characterised an indigenous Lactobacillus murinus strain (LbO2) from the vaginal tract of a female mouse. In vitro characterisation of LbO2 included acid and bile salts tolerance, growth in urine, adherence to uroepithelial cells and in vitro antimicrobial activity. The selected strain showed interesting properties, suitable for its use as a probiotic. The ability of LbO2 to prevent and even treat ascending P. mirabilis urinary tract infection was assessed using an experimental model in the mouse. Kidney and bladder P. mirabilis counts were significantly lower in mice preventively treated with the probiotic than in non-treated mice. When LbO2 was used for therapeutic treatment, bladder counts of treated mice were significantly lower although no significant differences were detected in P. mirabilis kidney colonisation of treated and non-treated animals. These results are encouraging and prompt further research related to probiotic strains and the basis of their effects for their use in human and animal health.
Leiomyoma of the Seminal Vesicle: A Rare Case
Shaikh, Aftab S.; Bakhshi, Girish D.; Khan, Arshad S.; Jamadar, Nilofar M.; Nirmala, Aravind Kotresh; Raza, Arif Ahmed
2013-01-01
Leiomyomas though common benign tumors of smooth muscle cells are extremely rare in the male genitourinary tract. We present a case of an elderly male who presented with complaints suggestive of urinary bladder outlet obstruction since 1 year. His evaluation showed it due to a tumour arising from the left seminal vesicle. Excision of the tumor was done which was diagnosed on histopathology as leiomyoma. A brief case report and review of literature is being presented. PMID:24765520
Beneficial Effects of Prebiotic Saccharomyces cerevisiae Mannan on Allergic Asthma Mouse Models.
Lew, D Betty; Michael, Christie F; Overbeck, Tracie; Robinson, W Scout; Rohman, Erin L; Lehman, Jeffrey M; Patel, Jennifer K; Eiseman, Brandi; LeMessurier, Kim S; Samarasinghe, Amali E; Gaber, M Waleed
2017-01-01
One of the unmet needs for asthma management is a new therapeutic agent with both anti-inflammatory and anti-smooth muscle (ASM) remodeling effects. The mannose receptor (MR) family plays an important role in allergen uptake and processing of major allergens Der p 1 and Fel d 1. We have previously reported that ASM cells express a mannose receptor (ASM-MR) and that mannan derived from Saccharomyces cerevisiae (SC-MN) inhibits mannosyl-rich lysosomal hydrolase-induced bovine ASM cell proliferation. Using a humanized transgenic mouse strain (huASM-MRC2) expressing the human MRC2 receptor in a SM tissue-specific manner, we have demonstrated that ASM hyperplasia/hypertrophy can occur as early as 15 days after allergen challenge in this mouse model and this phenomenon is preventable with SC-MN treatment. This proof-of-concept study would facilitate future development of a potential asthma therapeutic agent with dual function of anti-inflammatory and anti-smooth muscle remodeling effects.
Clancy, C; Coffey, J C; O'Riordain, M G; Burke, J P
2017-03-14
Urinary retention following inguinal hernia surgery is common and is believed to be associated with adrenergic over-stimulation of the smooth muscle in the bladder neck and prostate. The efficacy of prophylactic alpha-blockade in the prevention of urinary retention following elective inguinal hernia repair in males is unknown. A comprehensive literature search was performed adhering to PRISMA guidelines. Each study was reviewed and data were extracted. Random-effects models were used to combine data. Five randomized studies describing 456 patients were identified. General or spinal anaesthetic were used. Prophylactic alpha-blockade decreases the risk of urinary retention requiring catheterisation following elective unilateral inguinal hernia repair compared to control groups (OR:0.179, 95% CI:0.043-0.747, p:0.018). Rates of urinary retention between treatment and control groups are reduced by 20.6%. No serious complications relating to alpha blockade occurred. Prophylactic alpha-blockade reduces urinary retention following elective inguinal hernia surgery under general or spinal anaesthetic. Urinary retention is common following inguinal hernia surgery. It is believed to be associated with adrenergic over-stimulation of the smooth muscle in the bladder neck and prostate. Prophylactic alpha-blockade reduces the rates of urinary retention by 20.6% in adult males undergoing general or spinal anaesthetic with minimal associated side effects. Copyright © 2017. Published by Elsevier Inc.
Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan
2009-01-01
We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.
Jin, Yang; Xu, Lina; Zhao, Yong; Wang, Muwen; Jin, Xunbo; Zhang, Haiyang
2017-04-01
Defocused low-energy shock wave (DLSW) has been shown effects on activating mesenchymal stromal cells (MSCs) in vitro. In this study, recruitment of endogenous stem cells was firstly examined as an important pathway during the healing process of diabetic bladder dysfunction (DBD) treated by DLSW in vivo. Neonatal rats received intraperitoneal injection of 5-ethynyl-2-deoxyuridine (EdU) and then DBD rat model was created by injecting streptozotocin. Four weeks later, DLSW treatment was performed. Afterward, their tissues were examined by histology. Meanwhile, adipose tissue-derived stem cells (ADSCs) were treated by DLSW in vitro. Results showed DLSW ameliorated voiding function of diabetic rats by recruiting EdU + Stro-1 + CD34 - endogenous stem cells to release abundant nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). Some EdU + cells overlapped with staining of smooth muscle actin. After DLSW treatment, ADSCs showed higher migration ability, higher expression level of stromal cell-derived factor-1 and secreted more NGF and VEGF. In conclusion, DLSW could ameliorate DBD by recruiting endogenous stem cells. Beneficial effects were mediated by secreting NGF and VEGF, resulting into improved innervation and vascularization in bladder.
2017-01-01
Pathogens often inhabit the body asymptomatically, emerging to cause disease in response to unknown triggers. In the bladder, latent intracellular Escherichia coli reservoirs are regarded as likely origins of recurrent urinary tract infection (rUTI), a problem affecting millions of women worldwide. However, clinically plausible triggers that activate these reservoirs are unknown. Clinical studies suggest that the composition of a woman’s vaginal microbiota influences her susceptibility to rUTI, but the mechanisms behind these associations are unclear. Several lines of evidence suggest that the urinary tract is routinely exposed to vaginal bacteria, including Gardnerella vaginalis, a dominant member of the vaginal microbiota in some women. Using a mouse model, we show that bladder exposure to G. vaginalis triggers E. coli egress from latent bladder reservoirs and enhances the potential for life-threatening outcomes of the resulting E. coli rUTI. Transient G. vaginalis exposures were sufficient to cause bladder epithelial apoptosis and exfoliation and interleukin-1-receptor-mediated kidney injury, which persisted after G. vaginalis clearance from the urinary tract. These results support a broader view of UTI pathogenesis in which disease can be driven by short-lived but powerful urinary tract exposures to vaginal bacteria that are themselves not “uropathogenic” in the classic sense. This “covert pathogenesis” paradigm may apply to other latent infections, (e.g., tuberculosis), or for diseases currently defined as noninfectious because routine culture fails to detect microbes of recognized significance. PMID:28358889
Uckert, Stefan; Stief, Christian G; Lietz, Burckhard; Burmester, Martin; Jonas, Udo; Machtens, Stefan A
2002-09-01
Results from basic research implicate a role for bioactive peptides in controlling the mammalian lower urinary tract. Although various peptides are assumed to be involved in the potentiaton or inhibition of cholinergic or purinergic activity in the urinary bladder, there is still much controversy regarding the mode of action and functional significance of such peptides in detrusor smooth muscle. Thus, we evaluated the functional effects of atrial natriuretic peptide (ANP), calcitonin gene related peptide (CGRP), endothelin 1 (ET-1), substance P (SP) and vasoactive intestinal polypeptide (VIP) on isolated strip preparations of human detrusor smooth muscle and determined the presence of those peptides in the human detrusor by means of immunohistochemistry. The effects of peptides on isometric tension of isolated detrusor strip preparations and on tissue levels of cyclic nucleotides cAMP and cGMP were compared to those of adenylyl cyclase activator forskolin (F), nitric oxide donor Na(+)-nitroprusside (SNP) and non-specific phosphodiesterase (PDE) inhibitor papaverine (P). The effects of the compounds on isometric tension of isolated human detrusor smooth muscle were examined using the organ bath technique. To determine time- and dose-dependent effects on cyclic nucleotide levels, bladder strips were exposed to increasing doses of F, SNP, P, ANP, CGRP and VIP, then rapidly frozen in liquid nitrogen and homogenised in the frozen state. cAMP and cGMP were extracted and assayed using specific radioimmunoassays. The presence of peptides was investigated by light microscopy using the Avidin-Biotin-Complex (ABC) method. F, P and VIP most effectively reversed the carbachol-induced tension of isolated human detrusor strips. Relaxing effects of ANP, CGRP and SNP were negligible. In contrast, ET-1 and SP elicited dose-dependent contractions of the tissue. The relaxing effects of F, P and VIP were accompanied by an increase in cAMP and cGMP levels, respectively. Light microscopy revealed positive immunostaining for CGRP, ET 1, VIP and SP in sections of the detrusor muscle coat. Our results suggest a possible importance of ET 1, SP and VIP in regulating detrusor smooth muscle contraction and relaxation. Even if a peptide is not synthesised, stored or released in a smooth muscle tissue and is, therefore, unable to reach its target cells under physiologic conditions, a functional effect on the tissue might be mediated by peptide-binding to specific cell surface receptors.
Noguera-Ortega, Estela; Blanco-Cabra, Núria; Rabanal, Rosa Maria; Sánchez-Chardi, Alejandro; Roldán, Mónica; Guallar-Garrido, Sandra; Torrents, Eduard; Luquin, Marina; Julián, Esther
2016-01-01
The hydrophobic composition of mycobacterial cell walls leads to the formation of clumps when attempting to resuspend mycobacteria in aqueous solutions. Such aggregation may interfere in the mycobacteria-host cells interaction and, consequently, influence their antitumor effect. To improve the immunotherapeutic activity of Mycobacterium brumae, we designed different emulsions and demonstrated their efficacy. The best formulation was initially selected based on homogeneity and stability. Both olive oil (OO)- and mineral oil-in-water emulsions better preserved the mycobacteria viability and provided higher disaggregation rates compared to the others. But, among both emulsions, the OO emulsion increased the mycobacteria capacity to induce cytokines’ production in bladder tumor cell cultures. The OO-mycobacteria emulsion properties: less hydrophobic, lower pH, more neutralized zeta potential, and increased affinity to fibronectin than non-emulsified mycobacteria, indicated favorable conditions for reaching the bladder epithelium in vivo. Finally, intravesical OO-M. brumae-treated mice showed a significantly higher systemic immune response, together with a trend toward increased tumor-bearing mouse survival rates compared to the rest of the treated mice. The physicochemical characteristics and the induction of a robust immune response in vitro and in vivo highlight the potential of the OO emulsion as a good delivery vehicle for the mycobacterial treatment of bladder cancer. PMID:27265565
Successful implantation of physiologically functional bioengineered mouse internal anal sphincter.
Raghavan, Shreya; Miyasaka, Eiichi A; Hashish, Mohamed; Somara, Sita; Gilmont, Robert R; Teitelbaum, Daniel H; Bitar, Khalil N
2010-08-01
We have previously developed bioengineered three-dimensional internal anal sphincter (IAS) rings from circular smooth muscle cells isolated from rabbit and human IAS. We provide proof of concept that bioengineered mouse IAS rings are neovascularized upon implantation into mice of the same strain and maintain concentric smooth muscle alignment, phenotype, and IAS functionality. Rings were bioengineered by using smooth muscle cells from the IAS of C57BL/6J mice. Bioengineered mouse IAS rings were implanted subcutaneously on the dorsum of C57BL/6J mice along with a microosmotic pump delivering fibroblast growth factor-2. The mice remained healthy during the period of implantation, showing no external signs of rejection. Mice were killed 28 days postsurgery and implanted IAS rings were harvested. IAS rings showed muscle attachment, neovascularization, healthy color, and no external signs of infection or inflammation. Assessment of force generation on harvested IAS rings showed the following: 1) spontaneous basal tone was generated in the absence of external stimulation; 2) basal tone was relaxed by vasoactive intestinal peptide, nitric oxide donor, and nifedipine; 3) acetylcholine and phorbol dibutyrate elicited rapid-rising, dose-dependent, sustained contractions repeatedly over 30 min without signs of muscle fatigue; and 4) magnitudes of potassium chloride-induced contractions were 100% of peak maximal agonist-induced contractions. Our preliminary results confirm the proof of concept that bioengineered rings are neovascularized upon implantation. Harvested rings maintain smooth muscle alignment and phenotype. Our physiological studies confirm that implanted rings maintain 1) overall IAS physiology and develop basal tone, 2) integrity of membrane ionic characteristics, and 3) integrity of membrane associated intracellular signaling transduction pathways for contraction and relaxation by responding to cholinergic, nitrergic, and VIP-ergic stimulation. IAS smooth muscle tissue could thus be bioengineered for the purpose of implantation to serve as a potential graft therapy for dysfunctional internal anal sphincter in fecal incontinence.
Expression and Antimicrobial Function of Beta-Defensin 1 in the Lower Urinary Tract
Becknell, Brian; Spencer, John David; Carpenter, Ashley R.; Chen, Xi; Singh, Aspinder; Ploeger, Suzanne; Kline, Jennifer; Ellsworth, Patrick; Li, Birong; Proksch, Ehrhardt; Schwaderer, Andrew L.; Hains, David S.; Justice, Sheryl S.; McHugh, Kirk M.
2013-01-01
Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1 -/-) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1 -/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract. PMID:24204930
Vandeveer, Amanda J.; Fallon, Jonathan K.; Tighe, Robert; Sabzevari, Helen; Schlom, Jeffrey; Greiner, John W.
2016-01-01
Bacillus Calmette-Guerin (BCG) is the standard of care for intravesical therapy for carcinoma in situ and non–muscle invasive, nonmetastatic human urothelial carcinoma. While the responsiveness to this immunotherapeutic is believed to be linked with (i) a high number of somatic mutations and (ii) a large number of tumor-infiltrating lymphocytes, recent findings of the roles that inhibitory immune receptors and their ligands play in tumor evasion may provide insights into the limitations of the effectiveness of BCG and offer new targets for immune-based therapy. In this study, an aggressive, bioluminescent orthotopic bladder cancer model, MB49 tumor cells transfected with luciferase (MB49luc), was used to study the antitumor effects of avelumab, an antibody to PD-L1. MB49luc murine tumor cells form multifocal tumors on the mucosal wall of the bladder reminiscent of non–muscle invasive, nonmetastatic urothelial carcinomas. MB49luc bladder tumors are highly positive for the expression of PD-L1 and avelumab administration induced significant (P<0.05) antitumor effects. These antitumor effects were more dependent on the presence of CD4 than CD8 T cells, as determined by in vivo immune cell depletions. The findings suggest that in this bladder tumor model, interruption of the immune suppressive PD-1/PD-L1 complex releases a local adaptive immune response that, in turn, reduces tumor growth. This bladder tumor model can be used to further identify host antitumor immune mechanisms and evaluate combinations of immune-based therapies for carcinoma in situ and non–muscle invasive, nonmetastatic urothelial carcinoma, to provide the rationale for subsequent clinical studies. PMID:26921031
Vandeveer, Amanda J; Fallon, Jonathan K; Tighe, Robert; Sabzevari, Helen; Schlom, Jeffrey; Greiner, John W
2016-05-01
Bacillus Calmette-Guerin (BCG) is the standard of care for intravesical therapy for carcinoma in situ and non-muscle invasive, nonmetastatic human urothelial carcinoma. Although the responsiveness to this immunotherapeutic is believed to be linked with (i) a high number of somatic mutations and (ii) a large number of tumor-infiltrating lymphocytes, recent findings of the roles that inhibitory immune receptors and their ligands play in tumor evasion may provide insights into the limitations of the effectiveness of BCG and offer new targets for immune-based therapy. In this study, an aggressive, bioluminescent orthotopic bladder cancer model, MB49 tumor cells transfected with luciferase (MB49(luc)), was used to study the antitumor effects of avelumab, an antibody to PD-L1. MB49(luc) murine tumor cells form multifocal tumors on the mucosal wall of the bladder reminiscent of non-muscle invasive, nonmetastatic urothelial carcinomas. MB49(luc) bladder tumors are highly positive for the expression of PD-L1, and avelumab administration induced significant (P < 0.05) antitumor effects. These antitumor effects were more dependent on the presence of CD4 than CD8 T cells, as determined by in vivo immune cell depletions. The findings suggest that in this bladder tumor model, interruption of the immune-suppressive PD-1/PD-L1 complex releases a local adaptive immune response that, in turn, reduces tumor growth. This bladder tumor model can be used to further identify host antitumor immune mechanisms and evaluate combinations of immune-based therapies for carcinoma in situ and non-muscle invasive, nonmetastatic urothelial carcinoma, to provide the rationale for subsequent clinical studies. Cancer Immunol Res; 4(5); 452-62. ©2016 AACR. ©2016 American Association for Cancer Research.
Kadekawa, Katsumi; Majima, Tsuyoshi; Shimizu, Takahiro; Wada, Naoki; de Groat, William C; Kanai, Anthony J; Goto, Momokazu; Yoshiyama, Mitsuharu; Sugaya, Kimio; Yoshimura, Naoki
2017-09-01
We examined bladder and urethral sphincter activity in mice with or without spinal cord injury (SCI) after C-fiber afferent desensitization induced by capsaicin pretreatment and changes in electrophysiological properties of mouse bladder afferent neurons 4 wk after SCI. Female C57BL/6N mice were divided into four groups: 1 ) spinal intact (SI)-control, 2 ) SI-capsaicin pretreatment (Cap), 3 ) SCI-control, and 4 ) SCI-Cap groups. Continuous cystometry and external urethral sphincter (EUS)-electromyogram (EMG) were conducted under an awake condition. In the Cap groups, capsaicin (25, 50, or 100 mg/kg) was injected subcutaneously 4 days before the experiments. In the SI-Cap group, 100 mg/kg capsaicin pretreatment significantly increased bladder capacity and decreased the silent period duration of EUS/EMG compared with the SI-control group. In the SCI-Cap group, 50 and 100 mg/kg capsaicin pretreatment decreased the number of nonvoiding contractions (NVCs) and the duration of reduced EUS activity during voiding, respectively, compared with the SCI-control group. In SCI mice, hexamethonium, a ganglionic blocker, almost completely blocked NVCs, suggesting that they are of neurogenic origin. Patch-clamp recordings in capsaicin-sensitive bladder afferent neurons from SCI mice showed hyperexcitability, which was evidenced by decreased spike thresholds and increased firing rate compared with SI mice. These results indicate that capsaicin-sensitive C-fiber afferent pathways, which become hyperexcitable after SCI, can modulate bladder and urethral sphincter activity in awake SI and SCI mice. Detrusor overactivity as shown by NVCs in SCI mice is significantly but partially dependent on capsaicin-sensitive C-fiber afferents, whereas the EUS relaxation during voiding is enhanced by capsaicin-sensitive C-fiber bladder afferents in SI and SCI mice. Copyright © 2017 the American Physiological Society.
Miniature Microwave Applicator for Murine Bladder Hyperthermia Studies
Salahi, Sara; Maccarini, Paolo F.; Rodrigues, Dario B.; Etienne, Wiguins; Landon, Chelsea D.; Inman, Brant A.; Dewhirst, Mark W.; Stauffer, Paul R.
2012-01-01
Purpose Novel combinations of heat with chemotherapeutic agents are often studied in murine tumor models. Currently, no device exists to selectively heat small tumors at depth in mice. In this project, we modelled, built and tested a miniature microwave heat applicator, the physical dimensions of which can be scaled to adjust the volume and depth of heating to focus on the tumor volume. Of particular interest is a device that can selectively heat murine bladder. Materials and Methods Using Avizo® segmentation software, we created a numerical mouse model based on micro-MRI scan data. The model was imported into HFSS™ simulation software and parametric studies were performed to optimize the dimensions of a water-loaded circular waveguide for selective power deposition inside a 0.15ml bladder. A working prototype was constructed operating at 2.45GHz. Heating performance was characterized by mapping fiber-optic temperature sensors along catheters inserted at depths of 0-1mm (subcutaneous), 2-3mm (vaginal), and 4-5mm (rectal) below the abdominal wall, with the mid-depth catheter adjacent to the bladder. Core temperature was monitored orally. Results Thermal measurements confirm the simulations which demonstrate that this applicator can provide local heating at depth in small animals. Measured temperatures in murine pelvis show well-localized bladder heating to 42-43°C while maintaining normothermic skin and core temperatures. Conclusions Simulation techniques facilitate the design optimization of microwave antennas for use in pre-clinical applications such as localized tumor heating in small animals. Laboratory measurements demonstrate the effectiveness of a new miniature water-coupled microwave applicator for localized heating of murine bladder. PMID:22690856
Specialized mouse embryonic stem cells for studying vascular development.
Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E
2014-01-01
Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.
Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes
NASA Astrophysics Data System (ADS)
Walthers, Christopher M.
Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain, frequency, and duty cycle. Cells grown on protein-conjugated silicone membranes showed a morphological change while undergoing bioreactor stress. Analyzing change in muscle strips undergoing bioreactor stress is an area for future research. The overall goal of this research was to move engineered smooth muscle towards tissues capable of contracting with physiologically relevant strength and frequency. This approach first increased survival of smooth muscle constructs, and then sought to improve contractile ability of smooth muscle cells.
Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D.; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G.
2013-01-01
Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited down-regulation and mislocalization of α3- and α5-integrins by immunohistochemistry but, surprisingly, had normal morphology, permeability, and transepithelial resistance when compared with Cre-negative littermate controls. β1-cKO mice were incontinent, as judged by random urine leakage on filter paper (4-fold higher spotting, P<0.01; 2.5-fold higher urine area percentage, P<0.05). Urodynamic function assessed by cystometry revealed bladder overfilling with 80% longer intercontractile intervals (P<0.05) and detrusor hyperactivity (3-fold more prevoid contractions, P<0.05), but smooth muscle contractility remained intact. ATP secretion into the lumen was elevated (49 vs. 22 nM, P<0.05), indicating abnormal filling-induced purinergic signaling, and short-circuit currents (measured in Ussing chambers) revealed 2-fold higher stretch-activated ion channel conductances in response to hydrostatic pressure of 1 cmH2O (P<0.05). We conclude that loss of integrin signaling from urothelium results in incontinence and overactive bladder due to abnormal mechanotransduction; more broadly, our findings indicate that urothelium itself directly modulates voiding.—Kanasaki, K., Yu, W., von Bodungen, M., Larigakis, J. D., Kanasaki, M., Ayala de la Pena, F., Kalluri, R., Hill, W.G. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype. PMID:23395910
3D Cryo-Imaging: A Very High-Resolution View of the Whole Mouse
Roy, Debashish; Steyer, Grant J.; Gargesha, Madhusudhana; Stone, Meredith E.; Wilson, David L.
2009-01-01
We developed the Case Cryo-imaging system that provides information rich, very high-resolution, color brightfield, and molecular fluorescence images of a whole mouse using a section-and-image block-face imaging technology. The system consists of a mouse-sized, motorized cryo-microtome with special features for imaging, a modified, brightfield/ fluorescence microscope, and a robotic xyz imaging system positioner, all of which is fully automated by a control system. Using the robotic system, we acquired microscopic tiled images at a pixel size of 15.6 µm over the block face of a whole mouse sectioned at 40 µm, with a total data volume of 55 GB. Viewing 2D images at multiple resolutions, we identified small structures such as cardiac vessels, muscle layers, villi of the small intestine, the optic nerve, and layers of the eye. Cryo-imaging was also suitable for imaging embryo mutants in 3D. A mouse, in which enhanced green fluorescent protein was expressed under gamma actin promoter in smooth muscle cells, gave clear 3D views of smooth muscle in the urogenital and gastrointestinal tracts. With cryo-imaging, we could obtain 3D vasculature down to 10 µm, over very large regions of mouse brain. Software is fully automated with fully programmable imaging/sectioning protocols, email notifications, and automatic volume visualization. With a unique combination of field-of-view, depth of field, contrast, and resolution, the Case Cryo-imaging system fills the gap between whole animal in vivo imaging and histology. PMID:19248166
Afeli, Serge A. Y.; Malysz, John; Petkov, Georgi V.
2013-01-01
Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction. PMID:24073284
Malysz, John; Afeli, Serge A. Y.; Provence, Aaron
2013-01-01
Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca2+-activated K+ (BK) channels or L-type voltage-dependent Ca2+ channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (∼50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ∼300 nM intracellular Ca2+ concentration ([Ca2+]), EtOH (0.1–0.3%) affected single BK channels (mean conductance ∼210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ∼10 μM but not ∼2 μM intracellular [Ca2+], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1–1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis. PMID:24153429
Advances in stem cell therapy for the lower urinary tract.
Lin, Ching-Shwun
2010-02-26
Lower urinary tract diseases are emotionally and financially burdensome to the individual and society. Current treatments are ineffective or symptomatic. Conversely, stem cells (SCs) are regenerative and may offer long-term solutions. Among the different types of SCs, bone marrow SCs (BMSCs) and skeletal muscle-derived SCs (SkMSCs) have received the most attention in pre-clinical and clinical trial studies concerning the lower urinary tract. In particular, clinical trials with SkMSCs for stress urinary incontinence have demonstrated impressive efficacy. However, both SkMSCs and BMSCs are difficult to obtain in quantity and therefore neither is optimal for the eventual implementation of SC therapy. On the other hand, adipose tissue-derived SCs (ADSCs) can be easily and abundantly obtained from "discarded" adipose tissue. Moreover, in several head-on comparison studies, ADSCs have demonstrated equal or superior therapeutic potential compared to BMSCs. Therefore, across several different medical disciplines, including urology, ADSC research is gaining wide attention. For the regeneration of bladder tissues, possible differentiation of ADSCs into bladder smooth muscle and epithelial cells has been demonstrated. For the treatment of bladder diseases, specifically hyperlipidemia and associated overactive bladder, ADSCs have also demonstrated efficacy. For the treatment of urethral sphincter dysfunction associated with birth trauma and hormonal deficiency, ADSC therapy was also beneficial. Finally, ADSCs were able to restore erectile function in various types of erectile dysfunction (ED), including those associated with diabetes, hyperlipidemia, and nerve injuries. Thus, ADSCs have demonstrated remarkable therapeutic potentials for the lower urinary tract.
Huang, Peixin; Riordan, Sean M.; Heruth, Daniel P.; Grigoryev, Dmitry N.; Zhang, Li Qin; Ye, Shui Qing
2015-01-01
Aging is the predominant risk factor for cardiovascular diseases and contributes to a considerably more severe outcome in patients with acute myocardial infarction. Resveratrol, a polyphenol found in red wine, is a caloric restriction mimetic with potential anti-aging properties which has emerged as a beneficial nutraceutical for patients with cardiovascular disease. Although resveratrol is widely consumed as a nutritional supplement, its mechanism of action remains to be elucidated fully. Here, we report that resveratrol activates human nicotinamide phosphoribosyltransferase (NAMPT), SIRT4 and telomerase reverse transcriptase (hTERT) in human aortic smooth muscle cells. Similar observations were obtained in resveratrol treated C57BL/6J mouse heart and liver tissues. Resverotrol can also augment telomerase activity in both human pulmonary microvascular endothelial cells and A549 cells. Blocking NAMPT and SIRT4 expression prevents induction of hTERT in human aortic smooth muscle cells while overexpression of NAMPT elevates the telomerase activity induced by resveratrol in A549 cells. Together, these results identify a NAMPT-SIRT4-hTERT axis as a novel mechanism by which resveratrol may affect the anti-aging process in human aortic smooth muscle cells, mouse hearts and other cells. These findings enrich our understanding of the positive effects of resveratrol in human cardiovascular diseases. PMID:25926556
Modafinil inhibits K(Ca)3.1 currents and muscle contraction via a cAMP-dependent mechanism.
Choi, Shinkyu; Kim, Moon Young; Joo, Ka Young; Park, Seonghee; Kim, Ji Aee; Jung, Jae-Chul; Oh, Seikwan; Suh, Suk Hyo
2012-07-01
Modafinil has been used as a psychostimulant for the treatment of narcolepsy. However, its primary mechanism of action remains elusive. Therefore, we examined the effects of modafinil on K(Ca)3.1 channels and vascular smooth muscle contraction. K(Ca)3.1 currents and channel activity were measured using a voltage-clamp technique and inside-out patches in mouse embryonic fibroblast cell line, NIH-3T3 fibroblasts. Intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration was measured, and the phosphorylation of K(Ca)3.1 channel protein was examined using western blotting in NIH-3T3 fibroblasts and/or primary cultured mouse aortic smooth muscle cells (SMCs). Muscle contractions were recorded from mouse aorta and rat pulmonary artery by using a myograph developed in-house. Modafinil was found to inhibit K(Ca)3.1 currents in a concentration-dependent manner, and the half-maximal inhibition (IC(50)) of modafinil for the current inhibition was 6.8 ± 0.7 nM. The protein kinase A (PKA) activator forskolin also inhibited K(Ca)3.1 currents. The inhibitory effects of modafinil and forskolin on K(Ca)3.1 currents were blocked by the PKA inhibitors PKI(14-22) or H-89. In addition, modafinil relaxed blood vessels (mouse aorta and rat pulmonary artery) in a concentration-dependent manner. Modafinil increased cAMP concentrations in NIH-3T3 fibroblasts or primary cultured mouse aortic SMCs and phosphorylated K(Ca)3.1 channel protein in NIH-3T3 fibroblasts. However, open probability and single-channel current amplitudes of K(Ca)3.1 channels were not changed by modafinil. From these results, we conclude that modafinil inhibits K(Ca)3.1 channels and vascular smooth muscle contraction by cAMP-dependent phosphorylation, suggesting that modafinil can be used as a cAMP-dependent K(Ca)3.1 channel blocker and vasodilator. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vitamin D-deficient mice have more invasive urinary tract infection.
Hertting, Olof; Lüthje, Petra; Sullivan, Devin; Aspenström, Pontus; Brauner, Annelie
2017-01-01
Vitamin D deficiency is a common health problem with consequences not limited to bone and calcium hemostasis. Low levels have also been linked to tuberculosis and other respiratory infections as well as autoimmune diseases. We have previously shown that supplementation with vitamin D can induce the antimicrobial peptide cathelicidin during ex vivo infection of human urinary bladder. In rodents, however, cathelicidin expression is not linked to vitamin D and therefore this vitamin D-related effect fighting bacterial invasion is not relevant. To determine if vitamin D had further protective mechanisms during urinary tract infections, we therefore used a mouse model. In vitamin D-deficient mice, we detected more intracellular bacterial communities in the urinary bladder, higher degree of bacterial spread to the upper urinary tract and a skewed cytokine response. Furthermore, we show that the vitamin D receptor was upregulated in the urinary bladder and translocated into the cell nucleus after E. coli infection. This study supports a more general role for vitamin D as a local immune response mediator in the urinary tract.
Early detection of disease program: Evaluation of the cellular immune response
NASA Technical Reports Server (NTRS)
Criswell, B. S.; Knight, V.; Martin, R. R.; Kasel, J. A.
1975-01-01
Surfaces of normal, cultured, and mitogen-stimulated mouse lymphoid cells were examined by scanning electron microscopy (SEM). Lymphocytes with smooth, highly villous and intermediate surfaces were observed in cell suspensions from both spleens and thymuses of normal mice and from spleens of congenitally athymic (nude) mice. Several strain-specific surface features were noted, including the spine-like appearance of microvilli on C57B1/6 lymphocytes. Although thymus cell suspensions contained somewhat more smooth cells than did spleen cell preparations, lymphocyte derivation could not be inferred from SEM examination. Studies of cells stimulated with mitogenic agents for thymus-derived lymphocytes (concanavalin A) or for bone marrow-derived lymphocytes (lipopolysaccharide) suggested that, in the mouse, development of a complex villous surface is a general concomitant of lymphocyte activation and transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokohira, Masanao; Arnold, Lora L.; Pennington, Karen L.
Arsenic (+ 3 oxidation state) methyltransferase (As3mt) catalyzes reactions which convert inorganic arsenic to methylated metabolites. This study determined whether the As3mt null genotype in the mouse modifies cytotoxic and proliferative effects seen in urinary bladders of wild type mice after exposure to inorganic arsenic. Female wild type C57BL/6 mice and As3mt KO mice were divided into 3 groups each (n = 8) with free access to a diet containing 0, 100 or 150 ppm of arsenic as arsenite (As{sup III}). During the first week of As{sup III} exposure, As3mt KO mice exhibited severe and lethal systemic toxicity. At termination,more » urinary bladders of both As3mt KO and wild type mice showed hyperplasia by light microscopy. As expected, arsenic-containing granules were found in the superficial urothelial layer of wild type mice. In As3mt KO mice these granules were present in all layers of the bladder epithelium and were more abundant and larger than in wild type mice. Scanning electron microscopy of the bladder urothelium of As3mt KO mice treated with 100 ppm As{sup III} showed extensive superficial necrosis and hyperplastic changes. In As3mt KO mice, livers showed severe acute inflammatory changes and spleen size and lymphoid areas were decreased compared with wild type mice. Thus, diminished arsenic methylation in As3mt KO mice exacerbates systemic toxicity and the effects of As{sup III} on the bladder epithelium, showing that altered kinetic and dynamic behavior of arsenic can affect its toxicity.« less
Joshi, Bharat H; Leland, Pamela; Lababidi, Samir; Varrichio, Frederick; Puri, Raj K
2014-12-01
Previously, we have demonstrated that interleukin-4 receptor α (IL-4Rα) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4Rα expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran-Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4Rα over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4Rα is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2RγC and IL-13Rα1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4Rα overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4Rα immunostaining (≥ 2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ≤ 0.0001). Similarly, 9% stage I tumors were positive for IL-4Rα (≥ 2+) compared to 84% stage II (P ≤ 0.0001) and 100% stages III-IV tumors (P ≤ 0.0001). IL-13Rα1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2RγC was not expressed. Ten normal bladder specimens demonstrated ≤ 1+ staining for IL-4Rα and IL-13Rα1 and no staining for IL-2RγC. These results demonstrate that IL-4Rα is overexpressed in human bladder cancer, which correlates with advanced grade and stage of the disease. Thus, IL-4Rα may be a bladder tumor-associated protein and a prognostic biomarker. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Cancer Medicine published by John Wiley & Sons Ltd.
Kong, Zi-Qing; Han, Min; Yang, Wen-Le; Zhao, You-Li; Fu, Cai-Yun; Tao, Yan; Chen, Qiang; Wang, Rui
2009-06-01
Rat/mouse hemokinin-1 (r/m HK-1) has been identified as a member of the tachykinin family and its effect in colonic contractile activity remains unknown. We investigated the effects and mechanisms of actions of r/m HK-1 on the mouse colonic contractile activity in vitro by comparing it with that of substance P (SP). R/m HK-1 induced substantial contractions on the circular muscle of mouse colon. The maximal contractile responses to r/m HK-1 varied significantly among proximal-, mid- and distal-colon, suggesting that the action of r/m HK-1 was region-specific in mouse colon. The contractile response induced by r/m HK-1 is primarily via activation of tachykinin NK(1) receptors leading to activation of cholinergic excitatory pathways and with a minor contribution of NK(2) receptors, which may be on the smooth muscle itself. A direct action on colonic smooth muscles may be also involved. In contrast, SP induced biphasic colonic responses (contractile and relaxant responses) on the circular muscle, in which the contractile action of SP was equieffective with r/m HK-1. SP exerted its contractile effect predominantly through neural and muscular tachykinin NK(1) receptors, but unlike r/m HK-1 did not appear to act via NK(2) receptors. The relaxation induced by SP was largely due to release of nitric oxide (NO) produced via an action on neural NK(1) receptors. These results indicate that the receptors and the activation properties involved in r/m HK-1-induced mouse colonic contractile activity are different from those of SP.
Sweeney, Sean K; Luo, Yi; O'Donnell, Michael A; Assouline, Jose
Despite being one of the most common cancers, bladder cancer is largely inefficiently and inaccurately staged and monitored. Current imaging methods detect cancer only when it has reached "visible" size and has significantly disrupted the structure of the organ. By that time, thousands of cells will have proliferated and perhaps metastasized. Repeated biopsies and scans are necessary to determine the effect of therapy on cancer growth. In this report, we describe a novel approach based on multimodal nanoparticle contrast agent technology and its application to a preclinical animal model of bladder cancer. The innovation relies on the engineering core of mesoporous silica with specific scanning contrast properties and surface modification that include fluorescence and magnetic resonance imaging (MRI) contrast. The overall dimensions of the nano-device are preset at 80-180 nm, depending on composition with a pore size of 2 nm. To facilitate and expedite discoveries, we combined a well-known model of bladder cancer and our novel technology. We exposed nanoparticles to MB49 murine bladder cancer cells in vitro and found that 70 % of the cells were labeled by nanoparticles as measured by flow cytometry. The in vivo mouse model for bladder cancer is particularly well suited for T1- and T2-weighted MRI. Under our experimental conditions, we demonstrate that the nanoparticles considerably improve tumor definition in terms of volumetric, intensity and structural characteristics. Important bladder tumor parameters can be ascertained, non-invasively, repetitively, and with great accuracy. Furthermore, since the particles are not biodegradable, repetitive injection is not required. This feature allows follow-up diagnostic evaluations during cancer treatment. Changes in MRI signals show that in situ uptake of free particles has predilection to tumor cells relative to normal bladder epithelium. The particle distribution within the tumors was corroborated by fluorescent microscopy of sections of excised bladders. In addition, MRI imaging revealed fibrous finger-like projections into the tumors where particles insinuated themselves deeply. This morphological characteristic was confirmed by fluorescence microscopy. These findings may present new options for therapeutic intervention. Ultimately, the combination of real-time and repeated MRI evaluation of the tumors enhanced by nanoparticle contrast may have the potential for translation into human clinical studies for tumor staging, therapeutic monitoring, and drug delivery.
CT Urography: Segmentation of Urinary Bladder using CLASS with Local Contour Refinement
Cha, Kenny; Hadjiiski, Lubomir; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Zhou, Chuan
2016-01-01
Purpose We are developing a computerized system for bladder segmentation on CT urography (CTU), as a critical component for computer-aided detection of bladder cancer. Methods The presence of regions filled with intravenous contrast and without contrast presents a challenge for bladder segmentation. Previously, we proposed a Conjoint Level set Analysis and Segmentation System (CLASS). In case the bladder is partially filled with contrast, CLASS segments the non-contrast (NC) region and the contrast-filled (C) region separately and automatically conjoins the NC and C region contours; however, inaccuracies in the NC and C region contours may cause the conjoint contour to exclude portions of the bladder. To alleviate this problem, we implemented a local contour refinement (LCR) method that exploits model-guided refinement (MGR) and energy-driven wavefront propagation (EDWP). MGR propagates the C region contours if the level set propagation in the C region stops prematurely due to substantial non-uniformity of the contrast. EDWP with regularized energies further propagates the conjoint contours to the correct bladder boundary. EDWP uses changes in energies, smoothness criteria of the contour, and previous slice contour to determine when to stop the propagation, following decision rules derived from training. A data set of 173 cases was collected for this study: 81 cases in the training set (42 lesions, 21 wall thickenings, 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, 13 normal bladders). For all cases, 3D hand segmented contours were obtained as reference standard and used for the evaluation of the computerized segmentation accuracy. Results For CLASS with LCR, the average volume intersection ratio, average volume error, absolute average volume error, average minimum distance and Jaccard index were 84.2±11.4%, 8.2±17.4%, 13.0±14.1%, 3.5±1.9 mm, 78.8±11.6%, respectively, for the training set and 78.0±14.7%, 16.4±16.9%, 18.2±15.0%, 3.8±2.3 mm, 73.8±13.4% respectively, for the test set. With CLASS only, the corresponding values were 75.1±13.2%, 18.7±19.5%, 22.5±14.9%, 4.3±2.2 mm, 71.0±12.6%, respectively, for the training set and 67.3±14.3%, 29.3±15.9%, 29.4±15.6%, 4.9±2.6 mm, 65.0±13.3%, respectively, for the test set. The differences between the two methods for all five measures were statistically significant (p<0.001) for both the training and test sets. Conclusions The results demonstrate the potential of CLASS with LCR for segmentation of the bladder. PMID:24801066
Characterization of cultivated murine lacrimal gland epithelial cells
Kobayashi, Shinya; Kawashima, Motoko; Okada, Naoko; Mishima, Kenji; Saito, Ichiro; Ito, Masataka; Shimmura, Shigeto; Tsubota, Kazuo
2012-01-01
Purpose To date, mouse lacrimal gland epithelial cells have been cultured successfully but only in cases involving newborn mouse lacrimal glands. In this work, we attempted to cultivate and characterize adult mouse lacrimal gland epithelial cells. Methods Lacrimal glands were removed from newborn mice (C57B/6) and isolated lacrimal gland epithelial cells were seeded onto tissue culture treated or low adherent culture dishes in Cnt-07 culture medium with or without cholera toxin. Cultivated cells were characterized by immunostaining with pan-cytokeratin, α-smooth muscle actin, and lactoferrin antibodies. Lacrimal gland cells from 7-week-old green fluorescent protein (GFP) and non-GFP (C57B/6) mice were mixed and seeded onto uncoated dishes to assess sphere-forming efficiency. Cells were also seeded onto 3T3 cell feeder layers to assess colony forming efficiency. Results Lacrimal gland epithelial cells were selectively cultured with cholera toxin, and cell type was verified by pan-cytokeratin and α-smooth muscle actin immunostaining. Sphere formation from single cells of adult mice was observed using specific medium and low adherent culture dishes. These cells could also undergo colony formation on 3T3 feeder cells. Conclusions Adult mouse lacrimal gland epithelial cells were successfully cultivated in cholera toxin-containing medium, and were observed to form spheres from single cells. PMID:22665974
Is the learning curve endless? One surgeon's experience with robotic prostatectomy
NASA Astrophysics Data System (ADS)
Patel, Vipul; Thaly, Rahul; Shah, Ketul
2007-02-01
Introduction: After performing 1,000 robotic prostatectomies we reflected back on our experience to determine what defined the learning curve and the essential elements that were the keys to surmounting it. Method: We retrospectively assessed our experience to attempt to define the learning curve(s), key elements of the procedure, technical refinements and changes in technology that facilitated our progress. Result: The initial learning curve to achieve basic competence and the ability to smoothly perform the procedure in less than 4 hours with acceptable outcomes was approximately 25 cases. A second learning curve was present between 75-100 cases as we approached more complicated patients. At 200 cases we were comfortably able to complete the procedure routinely in less than 2.5 hours with no specific step of the procedure hindering our progression. At 500 cases we had the introduction of new instrumentation (4th arm, biopolar Maryland, monopolar scissors) that changed our approach to the bladder neck and neurovascular bundle dissection. The most challenging part of the procedure was the bladder neck dissection. Conclusion: There is no single parameter that can be used to assess or define the learning curve. We used a combination of factors to make our subjective definition this included: operative time, smoothness of technical progression during the case along with clinical outcomes. The further our case experience progressed the more we expected of our outcomes, thus we continually modified our technique and hence embarked upon yet a new learning curve.
Tsuchida, Shuichi; Kagi, Akiko; Koyama, Hidekazu; Tagawa, Masahiro
2007-12-01
Xanthine urolithiasis was found in a 4-year-old spayed female Himalayan cat with a 10-month history of intermittent haematuria and dysuria. Ultrasonographs indicated the existence of several calculi in the bladder that were undetectable by survey radiographic examination. Four bladder stones were removed by cystotomy. The stones were spherical brownish-yellow and their surface was smooth and glossy. Quantitative mineral analysis showed a representative urolith to be composed of more than 95% xanthine. Ultrasonographic examination of the bladder 4.5 months postoperatively indicated the recurrence of urolithiasis. Analysis of purine concentration in urine and blood showed that the cat excreted excessive amounts of xanthine. In order to test the hypothesis that xanthinuria was caused by a homozygote of the inherited mutant allele of a gene responsible for deficiency of enzyme activity in purine degradation pathway, the allele composition of xanthine dehydrogenase (XDH) gene (one of the candidate genes for hereditary xanthinuria) was evaluated. The cat with xanthinuria was a heterozygote of the polymorphism. A single nucleotide polymorphism analysis of the cat XDH gene strongly indicated that the XDH gene of the patient cat was composed of two kinds of alleles and ruled out the hypothesis that the cat inherited the same recessive XDH allele suggesting no activity from a single ancestor.
Wang, Yiming; Gratzke, Christian; Tamalunas, Alexander; Rutz, Beata; Ciotkowska, Anna; Strittmatter, Frank; Herlemann, Annika; Janich, Sophie; Waidelich, Raphaela; Liu, Chunxiao; Stief, Christian G; Hennenberg, Martin
2016-12-01
In benign prostatic hyperplasia, increased prostate smooth muscle tone and prostate volume may contribute alone or together to urethral obstruction and voiding symptoms. Consequently, it is assumed there is a connection between smooth muscle tone and growth in the prostate, but any molecular basis for this is poorly understood. Here, we examined effects of Src family kinase (SFK) inhibitors on prostate contraction and growth of stromal cells. SFK inhibitors, AZM475271 and PP2, were applied to human prostate tissues to assess effects on smooth muscle contraction, and to cultured stromal (WPMY-1) and c-Src-deficient cells to examine effects on proliferation, actin organization and viability. SFKs were detected by real time PCR, western blot and immunofluorescence in human prostate tissues, some being located to smooth muscle cells. AZM475271 (10 μM) and PP2 (10 μM) inhibited SFK in prostate tissues and WPMY-1 cells. Both inhibitors reduced α 1 -adrenoceptor-mediated and neurogenic contraction of prostate strips. This may result from cytoskeletal deorganization, which was observed in response to AZM475271 and PP2 in WPMY-1 cells by staining of actin filaments with phalloidin. This was paralleled by reduced proliferation of wildtype but not of c-Src-deficient cells; cytotoxicity was mainly observed at higher concentrations (>50 μM). In human prostate, smooth muscle tone and growth are both controlled by an SFK-dependent process, which may explain their common role in bladder outlet obstruction. Targeting prostate smooth muscle tone and prostate growth simultaneously by a single compound may, in principal, be possible. © 2016 The British Pharmacological Society.
Wang, Yiming; Tamalunas, Alexander; Rutz, Beata; Ciotkowska, Anna; Strittmatter, Frank; Herlemann, Annika; Janich, Sophie; Waidelich, Raphaela; Liu, Chunxiao; Stief, Christian G; Hennenberg, Martin
2016-01-01
Background and Purpose In benign prostatic hyperplasia, increased prostate smooth muscle tone and prostate volume may contribute alone or together to urethral obstruction and voiding symptoms. Consequently, it is assumed there is a connection between smooth muscle tone and growth in the prostate, but any molecular basis for this is poorly understood. Here, we examined effects of Src family kinase (SFK) inhibitors on prostate contraction and growth of stromal cells. Experimental Approach SFK inhibitors, AZM475271 and PP2, were applied to human prostate tissues to assess effects on smooth muscle contraction, and to cultured stromal (WPMY‐1) and c‐Src‐deficient cells to examine effects on proliferation, actin organization and viability. Key Results SFKs were detected by real time PCR, western blot and immunofluorescence in human prostate tissues, some being located to smooth muscle cells. AZM475271 (10 μM) and PP2 (10 μM) inhibited SFK in prostate tissues and WPMY‐1 cells. Both inhibitors reduced α1‐adrenoceptor‐mediated and neurogenic contraction of prostate strips. This may result from cytoskeletal deorganization, which was observed in response to AZM475271 and PP2 in WPMY‐1 cells by staining of actin filaments with phalloidin. This was paralleled by reduced proliferation of wildtype but not of c‐Src‐deficient cells; cytotoxicity was mainly observed at higher concentrations (>50 μM). Conclusions and Implications In human prostate, smooth muscle tone and growth are both controlled by an SFK‐dependent process, which may explain their common role in bladder outlet obstruction. Targeting prostate smooth muscle tone and prostate growth simultaneously by a single compound may, in principal, be possible. PMID:27638545
Leonhäuser, D; Vogt, M; Tolba, R H; Grosse, J O
2016-02-01
The aging society has a deep impact on patient care in urology. The number of patients in need of partial or whole bladder wall replacement is increasing simultaneously with the number of cancer incidents. Therefore, urological research requires a model of bladder wall replacement in adult and elderly people. Two types of porcine collagen I/III scaffolds were used in vitro for comparison of cell growth of two different pig breeds at different growth stages. Scaffolds were characterised with scanning electron and laser scanning microscopy. Urothelial and detrusor smooth muscle cells were isolated from 15 adult Göttingen minipigs and 15 juvenile German Landrace pigs. Growth behaviour was examined in cell culture and seeded onto the collagen scaffolds via immunohistochemistry, two-photon laser scanning microscopy and a viability assay. The collagen scaffolds showed different structured surfaces which are appropriate for seeding of the two different cell types. Moisturisation of the scaffolds resulted in a change of the structure. Cell growth of German Landrace urothelial cells and smooth muscle cells was significantly higher than cell growth of the Göttingen minipig cells. Seeding of scaffolds with both cell types from both pig races was possible which could be shown by immunohistochemistry and two-photon laser scanning microscopy. Growth behaviour on the scaffolds was significantly increased for the German Landrace compared to Göttingen minipig. Nevertheless, seeding with the adult Göttingen minipig cells resulted in a closed layer on the surface and urothelial cells and smooth muscle cells showed increasing growth until day 14. The results show that these collagen scaffolds are adequate for the seeding with vesical cells. Moreover, they seem appropriate for the use as an in vitro model for the adult or elderly as the cells of the adult Göttingen minipig too, show good growth behaviour. © The Author(s) 2015.
Maheshwari, Pankaj N.; Wagaskar, Vinayak G.; Maheshwari, Reeta P.
2018-01-01
Introduction: Holmium laser enucleation of the prostate (HoLEP) is a recognized option for the surgical management of benign prostatic hyperplasia. While the laser parameters and enucleation techniques have been widely studied, the morcellation techniques still remain under-evaluated. The current study evaluates the two commonly used morcellation devices for their in vivo efficiency and patient safety. Materials and Methods: A total of 222 patients who underwent HoLEP at two medical centres between January 2011 to December 2013 by a single surgeon were included. Of these 222 patients, the Richard Wolf Piranha Morcellation System, Germany (WM), was used on 140 patients, while on the remaining 82, the Lumenis® VersaCut™ Morcellator, Yokneam, Israel (LM), was used. These devices were compared for safety parameters such as the incidence of bladder mucosal injury, deep muscle injury, bladder perforation, and bleeding requiring electrocoagulation. The morcellation efficiency (ME) defined as the ratio of the weight of morcellated tissue in grams to the time required for morcellation in minutes was also compared. Results: The incidence of bladder mucosal injury, deep muscle injury, and bleeding requiring electrocoagulation was statistically significantly lower for the WM than the LM. None of the patients had a full-thickness bladder perforation with either of the morcellators. The ME was higher for the LM. In eight patients, hard, smooth rounded adenomatous nodules could not be morcellated by the WM and had to be crushed by a stone grasping forceps before morcellation. Conclusions: While the LM is a faster morcellator, WM has a better safety profile. PMID:29692508
Ryu, J H; Hwang, J W; Lee, J W; Seo, J H; Park, H P; Oh, A Y; Jeon, Y T; Do, S H
2013-12-01
Catheter-related bladder discomfort (CRBD) secondary to intraoperative catheterization of urinary bladder is one of the most distressing symptoms during recovery from anaesthesia. Butylscopolamine, a peripheral antimuscarinic agent, is effective for relieving the pain, which is because of smooth muscle contraction. The aim of this study was to assess the efficacy and safety profiles of butylscopolamine in treating CRBD after urological surgeries. Adult male patients undergoing urological surgery requiring urinary bladder catheterization intraoperatively were enrolled. Induction and maintenance of anaesthesia were standardized. Patients were randomized into two groups after complaining of CRBD in the post-anaesthesia care unit. The control group (n=29) received normal saline and the butylscopolamine group (n=28) was administered butylscopolamine 20 mg i.v. The severity of CRBD, postoperative pain, and adverse effects were assessed at baseline, 20 min, 1, 2, and 6 h after administration of the study drug. The severity of CRBD observed in the butylscopolamine group was significantly lower than that of the control group at 1, 2, and 6 h after administration of the study drug [59 (12), 50 (16), 40 (21) in the control group vs 41 (22), 32 (25), 23 (18) in the butylscopolamine group, P<0.01]. Rescue analgesics were required less in the butylscopolamine group than in the control group (P=0.001). Adverse events were comparable between the two groups. Butylscopolamine 20 mg administered i.v. after complaining CRBD during recovery reduced both the severity of CRBD and the need for rescue analgesics without adverse effects in patients undergoing urologic surgeries.
Henry Lai, H.; Smith, Christopher P.; Munoz, Alvaro; Boone, Timothy B.; Szigeti, Gyula P.; Somogyi, George T.
2008-01-01
In the present study, the plasticity of the non-adrenergic non-cholinergic (NANC) response was investigated. Isolated rat bladder strips were electrically stimulated and the evoked contractions were isometrically recorded. The NANC part of the contractions were unmasked by applying 500 nM 4-DAMP, a potent muscarinic antagonist. Treatment of the bladder strips with 10 μM carbachol (a cholinergic agonist) increased the muscle tone but did not alter the neurally evoked contractions. However, carbachol decreased: (1) the NANC response from 74.6% to 33.3% of control and (2) the purinergic contractile response to α,β methylene ATP (α,β mATP) (10 μM) from 97.0% to 43.4% (p<0.05). Treatment with the cholinesterase inhibitor eserine (10 μM) also significantly decreased the NANC response to 21.1% (p<0.0001). The purinergic receptor antagonist suramin (100μM) did not affect the neurally evoked contractions, however; subsequent addition of 4-DAMP decreased the contractions to 31%. Activation of the smooth muscle cholinergic receptors (with carbachol or eserine) and purinergic receptors (with α,β mATP) decreased the NANC contractions and the direct contractile response to α,β mATP. When the electrically evoked contractions were facilitated by the L-type Ca2+ channel activator, Bay-K 8644 the subsequent application of 4-DAMP did not unmask inhibited NANC contractions. We conclude that activation of muscarinic receptors by cholinergic agonist, carbachol or by endogenous acetylcholine (ACh) induce a cascade of events that leads to diminished purinergic response and consequently an inhibition of the bladder NANC response. PMID:18755252
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elia, Artemis; Charalambous, Fotini; Georgiades, Pantelis, E-mail: pgeor@ucy.ac.cy
Highlights: Black-Right-Pointing-Pointer Spiral artery (SA) wall remodeling (SAR) is ill-defined and clinically important. Black-Right-Pointing-Pointer SA muscular phenotype prior to and during SAR in mice is underexplored. Black-Right-Pointing-Pointer SA muscular wall consists of contractile and non-contractile components. Black-Right-Pointing-Pointer SA wall non-contractile component may be synthetic smooth muscle. Black-Right-Pointing-Pointer Timing and extent of SA wall contractile component loss is revealed. -- Abstract: During pregnancy the walls of decidual spiral arteries (SAs) undergo clinically important structural modifications crucial for embryo survival/growth and maternal health. However, the mechanisms of SA remodeling (SAR) are poorly understood. Although an important prerequisite to this understanding is knowledgemore » about the phenotype of SA muscular wall prior to and during the beginning of mouse SAR, this remains largely unexplored and was the main aim of this work. Using histological and immunohistochemical techniques, this study shows for the first time that during early mouse gestation, from embryonic day 7.5 (E7.5) to E10.5, the decidual SA muscular coat is not a homogeneous structure, but consists of two concentric layers. The first is a largely one cell-thick sub-endothelial layer of contractile mural cells (positive for {alpha}-smooth muscle actin, calponin and SM22{alpha}) with pericyte characteristics (NG2 positive). The second layer is thicker, and evidence is presented that it may be of the synthetic/proliferative smooth muscle phenotype, based on absence ({alpha}-smooth muscle actin and calponin) or weak (SM22{alpha}) expression of contractile mural cell markers, and presence of synthetic smooth muscle characteristics (expression of non-muscle Myosin heavy chain-IIA and of the cell proliferation marker PCNA). Importantly, immunohistochemistry and morphometrics showed that the contractile mural cell layer although prominent at E7.5-E8.5, becomes drastically reduced by E10.5 and is undetectable by E12.5. In conclusion, this study reveals novel aspects of the decidual SA muscular coat phenotype prior to and during early SAR that may have important implications for understanding the mechanisms of SAR.« less
Small Heat Shock Protein 20 (HspB6) in Cardiac Hypertrophy and Failure
Fan, Guo-Chang; Kranias, Evangelia G.
2010-01-01
Hsp20, referred to as HspB6, is constitutively expressed in various tissues. Specifically, HspB6 is most highly expressed in different types of muscle including vascular, airway, colonic, bladder, and uterine smooth muscle; cardiac muscle; and skeletal muscle. It can be phosphorylated at Ser-16 by both cAMP- and cGMP-dependent protein kinases (PKA/PKG). Recently, Hsp20 and its phosphorylation have been implicated in multiple physiological and pathophysiological processes including smooth muscle relaxation, platelet aggregation, exercise training, myocardial infarction, atherosclerosis, insulin resistance and Alzheimer’s disease. In the heart, key advances have been made in elucidating the significance of Hsp20 in contractile function and cardioprotection over the last decade. This mini-review highlights exciting findings in animal models and human patients, with special emphasis on the potential salutary effects of Hsp20 in heart disease. PMID:20869365
Girard, Beatrice M; Tompkins, John D; Parsons, Rodney L; May, Victor; Vizzard, Margaret A
2012-11-01
We have previously demonstrated nerve growth factor (NGF) regulation of pituitary adenylate cyclase-activating polypeptide (PACAP)/receptors in bladder reflex pathways using a transgenic mouse model of chronic NGF overexpression in the bladder using the urothelial-specific uroplakin II promoter. We have now explored the contribution of target-derived NGF in combination with cyclophosphamide (CYP)-induced cystitis to determine whether additional changes in neuropeptides/receptors are observed in micturition reflex pathways due to the presence of additional inflammatory mediators in the urinary bladder. Quantitative PCR was used to determine PACAP/vasoactive intestinal polypeptide (VIP), substance P, galanin, and receptor transcript expression in the urinary bladder (urothelium, detrusor) in mice with overexpression of NGF in the urothelium (NGF-OE) and wild-type (WT) mice with CYP-induced cystitis (4 h, 48 h, and chronic). With CYP-induced cystitis (4 h), WT and NGF-OE mice exhibited similar changes in galanin transcript expression in the urothelium (30-fold increase) and detrusor (threefold increase). In contrast, PACAP, VIP, and substance P transcripts exhibited differential changes in WT and NGF-OE with CYP-induced cystitis. PAC1, VPAC1, and VPAC2 transcript expression also exhibited differential responses in NGF-OE mice that were tissue (urothelium vs. detrusor) and CYP-induced cystitis duration-dependent. Using conscious cystometry, NGF-OE mice treated with CYP exhibited significant (p ≤ 0.01) increases in voiding frequency above that observed in control NGF-OE mice. In addition, no changes in the electrical properties of the major pelvic ganglia neurons of NGF-OE mice were detected using intracellular recording, suggesting that the urinary bladder phenotype in NGF-OE mice is not influenced by changes in the efferent limb of the micturition reflex. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity and the reflex function of micturition pathways.
Phosphodiesterase inhibitors in clinical urology.
Ückert, Stefan; Kuczyk, Markus A; Oelke, Matthias
2013-05-01
To date, benign diseases of the male and female lower urinary and genital tract, such as erectile dysfunction, bladder overactivity, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and symptoms of female sexual dysfunction (including arousal and orgasmic disorders), can be therapeutically approached by influencing the function of the smooth musculature of the respective tissues. The use of isoenzyme-selective phosphodiesterase (PDE) inhibitors is considered a great opportunity to treat various diseases of the human urogenital tract. PDE inhibitors, in particular the PDE5 (cyclic GMP PDE) inhibitors avanafil, lodenafil, sildenafil, tadalafil, udenafil and vardenafil, are regarded as efficacious, having a fast onset of drug action and an improved effect-to-adverse event ratio, combining a high response rate with the advantage of an on-demand intake. The purpose of this review is to summarize recent as well as potential future indications, namely, erectile dysfunction, Peyronie's disease, overactive bladder, urinary stone disease, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and premature ejaculation, for the use of PDE inhibitors in clinical urology.
NASA Astrophysics Data System (ADS)
Meliker, Jaymie R.; Slotnick, Melissa J.; Avruskin, Gillian A.; Kaufmann, Andrew; Jacquez, Geoffrey M.; Nriagu, Jerome O.
2005-05-01
A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μg/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.
Warner, Fiona J; Shang, Fei; Millard, Richard J; Burcher, Elizabeth
2002-03-08
Neurokinin A (NKA) is potent in contracting the human detrusor muscle. Here, we have investigated whether these contractile responses are influenced by the presence of the mucosa, by the peptidase inhibitor phosphoramidon or by possible modulators, prostaglandins and nitric oxide. Contractile responses to neurokinin A were unaffected by indomethacin or N-omega-nitro-L-arginine, but were significantly reduced in strips containing mucosa. Phosphoramidon, an inhibitor of neutral endopeptidase 24.11 (neprilysin, CD10), was ineffective at 10 microM, but at 100 microM, significant increase in the maximum response was achieved by neurokinin A in detrusor strips with and without mucosa. In immunohistochemical studies, neutral endopeptidase immunoreactivity occurred in peripheral nerve trunks in the detrusor and in a fibrous meshwork in the subepithelial lamina propria. Our data indicate that neutral endopeptidase is present in bladder mucosa and detrusor, and support the concept that this metalloprotease and/or related enzymes are important in regulating the actions of tachykinins.
Contribution of Rho-kinase to membrane excitability of murine colonic smooth muscle.
Bayguinov, O; Dwyer, L; Kim, H; Marklew, A; Sanders, K M; Koh, S D
2011-06-01
The Rho-kinase pathway regulates agonist-induced contractions in several smooth muscles, including the intestine, urinary bladder and uterus, via dynamic changes in the Ca(2+) sensitivity of the contractile apparatus. However, there is evidence that Rho-kinase also modulates other cellular effectors such as ion channels. We examined the regulation of colonic smooth muscle excitability by Rho-kinase using conventional microelectrode recording, isometric force measurements and patch-clamp techniques. The Rho-kinase inhibitors, Y-27632 and H-1152, decreased nerve-evoked on- and off-contractions elicited at a range of frequencies and durations. The Rho-kinase inhibitors decreased the spontaneous contractions and the responses to carbachol and substance P independently of neuronal inputs, suggesting Y-27632 acts directly on smooth muscle. The Rho-kinase inhibitors significantly reduced the depolarization in response to carbachol, an effect that cannot be due to regulation of Ca(2+) sensitization. Patch-clamp experiments showed that Rho-kinase inhibitors reduce GTPγS-activated non-selective cation currents. The Rho-kinase inhibitors decreased contractions evoked by nerve stimulation, carbachol and substance P. These effects were not solely due to inhibition of the Ca(2+) sensitization pathway, as the Rho-kinase inhibitors also inhibited the non-selective cation conductances activated by excitatory transmitters. Thus, Rho-kinase may regulate smooth muscle excitability mechanisms by regulating non-selective cation channels as well as changing the Ca(2+) sensitivity of the contractile apparatus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Vesicoureteral reflux and the extracellular matrix connection
Tokhmafshan, Fatima; Brophy, Patrick D.; Gbadegesin, Rasheed A.
2017-01-01
Primary vesicoureteral reflux (VUR) is a common pediatric condition due to a developmental defect in the ureterovesical junction. The prevalence of VUR among individuals with connective tissue disorders, as well as the importance of the ureter and bladder wall musculature for the anti-reflux mechanism, suggest that defects in the extracellular matrix (ECM) within the ureterovesical junction may result in VUR. This review will discuss the function of the smooth muscle and its supporting ECM microenvironment with respect to VUR, and explore the association of VUR with mutations in ECM-related genes. PMID:27139901
Ex vivo and in vivo topographic studies of bladder by optical coherence tomography (Invited Paper)
NASA Astrophysics Data System (ADS)
Daniltchenko, Dmitri; Sachs, Markus D.; Lankenau, Eva; Koenig, Frank; Burkhardt, Mick; Huettmann, Gereon; Kristiansen, Glen; Schnorr, Dietmar; Al-Shukri, Salman; Loening, Stefan A.
2005-06-01
Conventional imaging modalities like CT or ultrasonography have a spatial resolution of 70-1000 rim. OCT is a new method by which light of a certain wavelength is introduced into a fiberglass optic to measure tissue structures of up to 2.5 mm depth with a spatial resolution of up to 10-15 μm. We utilized the Tomograph Sirius 713, developed at the Medical Laser Centre in cooperation with 4-Optics AG, Lubeck, Germany. This apparatus uses a special Super- Luminescence-Diode (SLD) that produces light within the near infrared wavelength, with a central wavelength of 1300 nm. The coherence length is reduced to 15 μm. The light is introduced into a fiberglass optic which is several meters long and is easy to handle. To measure the depth of invasion and position of urothelial bladder tumors, the fiberglass optic is attached to a regular endoscope (Wolf, Knittlingen, Germany) via an OCT adapter. That way, in parallel to the regular endoscopic view of the bladder mucosa with or without pathologic findings, an OCT picture of the superficial as well as the deeper muscle layers is visible online. OCT was used to obtain 945 images from the bladder in vivo und ex vivo of 65 patients. OCT of normal bladder mucosa allows to image a cross section of up to 2.5 mm. It is possible to distinguish transitional epithelium, lamina propria, smooth muscles and capillaries. In cystitis, the thickness of the mucosa is constant, but the distinction between the different layers is blurred. In squamous metaplasia there is thickening of the epithelial layer, with preservation of lamination of the lower layers. In transitional cell carcinoma there is a complete loss of the regular layered structure. It is easily possible to distinguish the border between tumour and normal bladder tissue. OCT is a new high-resolution imaging procedure. It has the potential to improve the diagnostics of the urothelium and its lesions. In conjunction with a highly sensitive orientating procedure like fluorescence-cystoscopy, intraoperative staging of these changes could be possible in the future.
Zeng, Xingruo; Xu, Zhou; Gu, Jiayan; Huang, Haishan; Gao, Guangxun; Zhang, Xiaoru; Li, Jingxia; Jin, Honglei; Jiang, Guosong; Sun, Hong; Huang, Chuanshu
2016-03-01
Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer. ©2016 American Association for Cancer Research.
Nocchi, Linda; Daly, Donna M; Chapple, Christopher; Grundy, David
2014-06-01
The incidence of bladder conditions such as overactive bladder syndrome and its associated urinary incontinence is highly prevalent in the elderly. However, the mechanisms underlying these disorders are unclear. Studies suggest that the urothelium forms a 'sensory network' with the underlying innervation, alterations in which, could compromise bladder function. As the accumulation of reactive oxygen species can cause functional alterations with age, the aim of this study was to investigate whether oxidative stress alters urothelial sensory signalling and whether the mechanism underlying the effect of oxidative stress on the urothelium plays a role in aging. Five-month-old(young) and 24-month-old (aged) mice were used. H2O2 , used to induce oxidative stress, resulted in an increase in bladder afferent nerve activity and urothelial intracellular calcium in preparations from young mice. These functional changes were concurrent with upregulation of TRPM8 in the urothelium. Moreover, application of a TRPM8 antagonist significantly attenuated the H2O2 -induced calcium responses. Interestingly, an upregulation of TRPM8 was also found in the urothelium from aged mice, where high oxidative stress levels were observed, together with a greater calcium response to the TRPM8 agonist WS12. Furthermore, these calcium responses were attenuated by pretreatment with the antioxidant N-acetyl-cysteine. This study shows that oxidative stress affects urothelial function involving a TRPM8-mediated mechanism and these effects may have important implications for aging. These data provide an insight into the possible mechanisms by which oxidative stress causes physiological alterations in the bladder, which may also occur in other organs susceptible to aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Nocchi, Linda; Daly, Donna M; Chapple, Christopher; Grundy, David
2014-01-01
The incidence of bladder conditions such as overactive bladder syndrome and its associated urinary incontinence is highly prevalent in the elderly. However, the mechanisms underlying these disorders are unclear. Studies suggest that the urothelium forms a ‘sensory network’ with the underlying innervation, alterations in which, could compromise bladder function. As the accumulation of reactive oxygen species can cause functional alterations with age, the aim of this study was to investigate whether oxidative stress alters urothelial sensory signalling and whether the mechanism underlying the effect of oxidative stress on the urothelium plays a role in aging. Five-month-old(young) and 24-month-old (aged) mice were used. H2O2, used to induce oxidative stress, resulted in an increase in bladder afferent nerve activity and urothelial intracellular calcium in preparations from young mice. These functional changes were concurrent with upregulation of TRPM8 in the urothelium. Moreover, application of a TRPM8 antagonist significantly attenuated the H2O2-induced calcium responses. Interestingly, an upregulation of TRPM8 was also found in the urothelium from aged mice, where high oxidative stress levels were observed, together with a greater calcium response to the TRPM8 agonist WS12. Furthermore, these calcium responses were attenuated by pretreatment with the antioxidant N-acetyl-cysteine. This study shows that oxidative stress affects urothelial function involving a TRPM8-mediated mechanism and these effects may have important implications for aging. These data provide an insight into the possible mechanisms by which oxidative stress causes physiological alterations in the bladder, which may also occur in other organs susceptible to aging. PMID:24593692
Zeng, Xingruo; Xu, Zhou; Gu, Jiayan; Huang, Haishan; Gao, Guangxun; Zhang, Xiaoru; Li, Jingxia; Jin, Honglei; Jiang, Guosong; Sun, Hong; Huang, Chuanshu
2016-01-01
Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell cycle G0/G1 arrest as well as down-regulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In current studies, the potential ISO inhibition of bladder tumor formation has been explored in xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anti-cancer activities has been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by direct targeting Sp1 mRNA 3′UTR. Similar to ISO treatment, ectopic expression of miR-137 alone led to G0/G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by over-expression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced the inhibition of Sp1/Cyclin D1 expression, and induction of G0/G1 cell growth arrest and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3′UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0/G1 growth arrest and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anti-cancer activity of ISO in the therapy of human bladder cancer. PMID:26832795
Zielińska, Marta; Jarmuż, Agata; Wasilewski, Andrzej; Cami-Kobeci, Gerta; Husbands, Stephen; Fichna, Jakub
2017-04-01
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional disorder of the gastrointestinal (GI) tract. The major IBS-D symptoms include diarrhea, abdominal pain and discomfort. High density of opioid receptors (ORs) in the GI tract and their participation in the maintenance of GI homeostasis make ORs ligands an attractive option for developing new anti-IBS-D treatments. The aim of this study was to characterize the effect of methyl-orvinol on the GI motility and secretion and in mouse models mimicking symptoms of IBS-D. In vitro, the effects of methyl-orvinol on electrical field stimulated smooth muscle contractility and epithelial ion transport were characterized in the mouse colon. In vivo, the following tests were used to determine methyl-orvinol effect on mouse GI motility: colonic bead expulsion, whole GI transit and fecal pellet output. An antinociceptive action of methyl-orvinol was assessed in the mouse model of visceral pain induced by mustard oil. Methyl-orvinol (10 -10 to 10 -6 M) inhibited colonic smooth muscle contractions in a concentration-dependent manner. This effect was reversed by naloxone (non-selective opioid antagonist) and β-funaltrexamine (selective MOP antagonist). Experiments with a selective KOP receptor agonist, U50488 revealed that methyl-orvinol is a KOP receptor antagonist in the GI tract. Methyl-orvinol enhanced epithelial ion transport. In vivo, methyl-orvinol inhibited colonic bead expulsion and prolonged GI transit. Methyl-orvinol improved hypermotility and reduced abdominal pain in the mouse models mimicking IBS-D symptoms. Methyl-orvinol could become a promising drug candidate in chronic therapy of functional GI diseases such as IBS-D. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Users Guide for Smooth-Prop: A Program for Smoothing Propeller Tip Geometry
2013-10-01
Research and Development Canada – Atlantic Technical Memorandum DRDC Atlantic TM 2013-179 October 2013 c© Her Majesty the Queen in Right of Canada...a window You can magnify any region of the Blade or Plane Intersection windows by clicking and dragging with the left mouse button. A red rectangle...display. Each slider is a long rectangle containing a smaller black box: see Fig. 9. The black box is a handle that can be dragged back and forth
Fang, Huan; Zhu, Lina; Gao, Ning; Zhu, Jingci
2015-01-01
Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI. PMID:26030918
Sun, Bo; Hu, Chen; Fang, Huan; Zhu, Lina; Gao, Ning; Zhu, Jingci
2015-01-01
Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI.
Abbaoui, Besma; Riedl, Kenneth M; Ralston, Robin A; Thomas-Ahner, Jennifer M; Schwartz, Steven J; Clinton, Steven K; Mortazavi, Amir
2013-01-01
Epidemiologic evidence suggests diets rich in cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. Our objectives are to investigate these observations and determine the role of isothiocyanates in primary or secondary bladder cancer prevention. We initially investigate the mechanisms whereby broccoli and broccoli sprout extracts and pure isothiocyanates inhibit normal, non-invasive (RT4) and invasive (J82, UMUC3) human urothelial cell viability. Sulforaphane (IC50= 5.66±1.2μM) and erucin (IC50= 8.79±1.3μM) are found to be the most potent inhibitors and normal cells are least sensitive. This observation is associated with downregulation of survivin, EGFR and HER2/neu, G2/M cell cycle accumulation and apoptosis. In a murine UMUC3 xenograft model, we fed semipurified diets containing 4% broccoli sprouts, or 2% broccoli sprout isothiocyanate extract; or gavaged pure sulforaphane or erucin (each at 295 μmol/kg, similar to dietary exposure); and report tumor weight reduction of 42% (p=0.02), 42% (p=0.04), 33% (p=0.04) and 58% (p<0.0001), respectively. Sulforaphane and erucin metabolites are present in mouse plasma (micromolar range) and tumor tissue, with N-acetyl cysteine conjugates as the most abundant. Interconversion of sulforaphane and erucin metabolites was observed. This work supports development of fully characterized, novel food products for phase I/II human studies targeting bladder cancer prevention. PMID:23038615
Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L
2010-01-01
The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.
Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis
Mo, Lan; Zheng, Xiaoyong; Huang, Hong-Ying; Shapiro, Ellen; Lepor, Herbert; Cordon-Cardo, Carlos; Sun, Tung-Tien; Wu, Xue-Ru
2007-01-01
Although ras is a potent mitogenic oncogene, its tumorigenicity depends on cellular context and cooperative events. Here we show that low-level expression of a constitutively active Ha-ras in mouse urothelium induces simple urothelial hyperplasia that is resistant to progression to full-fledged bladder tumors even in the absence of Ink4a/Arf. In stark contrast, doubling of the gene dosage of the activated Ha-ras triggered early-onset, rapidly growing, and 100% penetrant tumors throughout the urinary tract. Tumor initiation required superseding a rate-limiting step between simple and nodular hyperplasia, the latter of which is marked by the emergence of mesenchymal components and the coactivation of AKT and STAT pathways as well as PTEN inactivation. These results indicate that overactivation of Ha-ras is both necessary and sufficient to induce bladder tumors along a low-grade, noninvasive papillary pathway, and they shed light on the recent findings that ras activation, via point mutation, overexpression, or intensified signaling from FGF receptor 3, occurs in 70%–90% of these tumors in humans. Our results highlight the critical importance of the dosage/strength of Ha-ras activation in dictating its tumorigenicity — a mechanism of oncogene activation not fully appreciated to date. Finally, our results have clinical implications, as inhibiting ras and/or its downstream effectors, such as AKT and STAT3/5, could provide alternative means to treat low-grade, superficial papillary bladder tumors, the most common tumor in the urinary system. PMID:17256055
2009-01-01
Background We hypothesized that food allergy causes a state of non-specific jejunal dysmotility. This was tested in a mouse model. Methods Balb/c mice were epicutaneously sensitized with ovalbumin and challenged with 10 intragastric ovalbumin administrations every second day. Smooth muscle contractility of isolated circular jejunal sections was studied in organ bath with increasing concentrations of carbamylcholine chloride (carbachol). Smooth muscle layer thickness and mast cell protease-1 (MMCP-1) positive cell density were assayed histologically. Serum MMCP-1 and immunoglobulins were quantified by ELISA, and mRNA expressions of IFN-γ, IL-4, IL-6 and TGFβ-1 from jejunal and ileal tissue segments were analyzed with quantitative real-time PCR. Results Ovalbumin-specific serum IgE correlated with jejunal MMCP-1+ cell density. In the allergic mice, higher concentrations of carbachol were required to reach submaximal muscular stimulation, particularly in preparations derived from mice with diarrhoea. Decreased sensitivity to carbachol was associated with increased expression of IL-4 and IL-6 mRNA in jejunum. Smooth muscle layer thickness, as well as mRNA of IFN-γ and TGF-β1 remained unchanged. Conclusion In this mouse model of food allergy, we demonstrated a decreased response to a muscarinic agonist, and increased levels of proinflammatory IL-6 and Th2-related IL-4, but not Th1-related IFN-γ mRNAs in jejunum. IgE levels in serum correlated with the number of jejunal MMCP-1+ cells, and predicted diarrhoea. Overall, these changes may reflect a protective mechanism of the gut in food allergy. PMID:19450258
Cryo-imaging in a toxicological study on mouse fetuses
NASA Astrophysics Data System (ADS)
Roy, Debashish; Gargesha, Madhusudhana; Sloter, Eddie; Watanabe, Michiko; Wilson, David
2010-03-01
We applied the Case cryo-imaging system to detect signals of developmental toxicity in transgenic mouse fetuses resulting from maternal exposure to a developmental environmental toxicant (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). We utilized a fluorescent transgenic mouse model that expresses Green Fluorescent Protein (GFP) exclusively in smooth muscles under the control of the smooth muscle gamma actin (SMGA) promoter (SMGA/EGFP mice kindly provided by J. Lessard, U. Cincinnati). Analysis of cryo-image data volumes, comprising of very high-resolution anatomical brightfield and molecular fluorescence block face images, revealed qualitative and quantitative morphological differences in control versus exposed fetuses. Fetuses randomly chosen from pregnant females euthanized on gestation day (GD) 18 were either manually examined or cryo-imaged. For cryo-imaging, fetuses were embedded, frozen and cryo-sectioned at 20 μm thickness and brightfield color and fluorescent block-face images were acquired with an in-plane resolution of ~15 μm. Automated 3D volume visualization schemes segmented out the black embedding medium and blended fluorescence and brightfield data to produce 3D reconstructions of all fetuses. Comparison of Treatment groups TCDD GD13, TCDD GD14 and control through automated analysis tools highlighted differences not observable by prosectors performing traditional fresh dissection. For example, severe hydronephrosis, suggestive of irreversible kidney damage, was detected by cryoimaging in fetuses exposed to TCDD. Automated quantification of total fluorescence in smooth muscles revealed suppressed fluorescence in TCDD-exposed fetuses. This application demonstrated that cryo-imaging can be utilized as a routine high-throughput screening tool to assess the effects of potential toxins on the developmental biology of small animals.
Inhibition of RhoA/Rho kinase pathway and smooth muscle contraction by hydrogen sulfide.
Nalli, Ancy D; Wang, Hongxia; Bhattacharya, Sayak; Blakeney, Bryan A; Murthy, Karnam S
2017-10-01
Hydrogen sulfide (H 2 S) plays an important role in smooth muscle relaxation. Here, we investigated the expression of enzymes in H 2 S synthesis and the mechanism regulating colonic smooth muscle function by H 2 S. Expression of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), was identified in the colonic smooth muscle of rabbit, mouse, and human. Carbachol (CCh)-induced contraction in rabbit muscle strips and isolated muscle cells was inhibited by l-cysteine (substrate of CSE) and NaHS (an exogenous H 2 S donor) in a concentration-dependent fashion. H 2 S induced S-sulfhydration of RhoA that was associated with inhibition of RhoA activity. CCh-induced Rho kinase activity also was inhibited by l-cysteine and NaHS in a concentration-dependent fashion. Inhibition of CCh-induced contraction by l-cysteine was blocked by the CSE inhibitor, dl-propargylglycine (DL-PPG) in dispersed muscle cells. Inhibition of CCh-induced Rho kinase activity by l-cysteine was blocked by CSE siRNA in cultured cells and DL-PPG in dispersed muscle cells. Stimulation of Rho kinase activity and muscle contraction in response to CCh was also inhibited by l-cysteine or NaHS in colonic muscle cells from mouse and human. Collectively, our studies identified the expression of CSE in colonic smooth muscle and determined that sulfhydration of RhoA by H 2 S leads to inhibition of RhoA and Rho kinase activities and muscle contraction. The mechanism identified may provide novel therapeutic approaches to mitigate gastrointestinal motility disorders. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.
Igawa, Yasuhiko; Takeda, Masayuki; Yamaguchi, Takafumi; Murakami, Masahiro; Viktrup, Lars
2015-01-01
Tadalafil, a phosphodiesterase type 5 (PDE5) inhibitor, is approved worldwide for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH-LUTS). The purpose of this narrative review is to summarize the clinical data on tadalafil 5 mg once-daily, primarily focusing on Asian men with BPH-LUTS, and to update the current understanding of the mechanism of action underlying PDE5 inhibition. Findings from studies have demonstrated that PDE5 is highly expressed in the lower urinary tract and supporting vasculature, and that PDE5 inhibition potentially decreases smooth muscle cell proliferation in the prostate, relaxes smooth muscle in the prostate, bladder neck and supporting vasculature, increases blood perfusion to the lower urinary tract, and modulates bladder afferent nerve activity. A total of 11 larger, 12-week, double-blind, randomized, placebo-controlled studies of tadalafil, including four Asian studies, have been conducted globally, enrolling >3000 men with BPH-LUTS. In addition, two long-term (42- and 52-week) studies enrolled 394 Japanese and 428 North American men, respectively, with BPH-LUTS. Overall, tadalafil 5 mg once-daily resulted in significant improvements in the change from baseline to endpoint in total International Prostate Symptom Scores (IPSS), IPSS storage and voiding subscores, and IPSS quality of life index compared with placebo. Tadalafil was well tolerated and had a favorable safety profile. These findings support tadalafil 5 mg once-daily for treating men, including Asian men, with BPH-LUTS. PMID:26425140
EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis.
Finney, Alexandra C; Funk, Steven D; Green, Jonette M; Yurdagul, Arif; Rana, Mohammad Atif; Pistorius, Rebecca; Henry, Miriam; Yurochko, Andrew; Pattillo, Christopher B; Traylor, James G; Chen, Jin; Woolard, Matthew D; Kevil, Christopher G; Orr, A Wayne
2017-08-08
Atherosclerotic plaque formation results from chronic inflammation and fibroproliferative remodeling in the vascular wall. We previously demonstrated that both human and mouse atherosclerotic plaques show elevated expression of EphA2, a guidance molecule involved in cell-cell interactions and tumorigenesis. Here, we assessed the role of EphA2 in atherosclerosis by deleting EphA2 in a mouse model of atherosclerosis (Apoe - /- ) and by assessing EphA2 function in multiple vascular cell culture models. After 8 to 16 weeks on a Western diet, male and female mice were assessed for atherosclerotic burden in the large vessels, and plasma lipid levels were analyzed. Despite enhanced weight gain and plasma lipid levels compared with Apoe -/- controls, EphA2 -/- Apoe -/- knockout mice show diminished atherosclerotic plaque formation, characterized by reduced proinflammatory gene expression and plaque macrophage content. Although plaque macrophages express EphA2, EphA2 deletion does not affect macrophage phenotype, inflammatory responses, and lipid uptake, and bone marrow chimeras suggest that hematopoietic EphA2 deletion does not affect plaque formation. In contrast, endothelial EphA2 knockdown significantly reduces monocyte firm adhesion under flow. In addition, EphA2 -/- Apoe -/- mice show reduced progression to advanced atherosclerotic plaques with diminished smooth muscle and collagen content. Consistent with this phenotype, EphA2 shows enhanced expression after smooth muscle transition to a synthetic phenotype, and EphA2 depletion reduces smooth muscle proliferation, mitogenic signaling, and extracellular matrix deposition both in atherosclerotic plaques and in vascular smooth muscle cells in culture. Together, these data identify a novel role for EphA2 in atherosclerosis, regulating both plaque inflammation and progression to advanced atherosclerotic lesions. Cell culture studies suggest that endothelial EphA2 contributes to atherosclerotic inflammation by promoting monocyte firm adhesion, whereas smooth muscle EphA2 expression may regulate the progression to advanced atherosclerosis by regulating smooth muscle proliferation and extracellular matrix deposition. © 2017 American Heart Association, Inc.
Gravina, Fernanda S.; van Helden, Dirk F.; Kerr, Karen P.; de Oliveira, Ramatis B.; Jobling, Phillip
2014-01-01
Background/Aims The pacemaker mechanisms activating phasic contractions of vaginal and cervical smooth muscle remain poorly understood. Here, we investigate properties of pacemaking in vaginal and cervical tissues by determining whether: 1) functional pacemaking is dependent on the phase of the estrus cycle or pregnancy; 2) pacemaking involves Ca2+ release from sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) -dependent intracellular Ca2+ stores; and 3) c-Kit and/or vimentin immunoreactive ICs have a role in pacemaking. Methodology/Principal Findings Vaginal and cervical contractions were measured in vitro, as was the distribution of c-Kit and vimentin positive interstitial cells (ICs). Cervical smooth muscle was spontaneously active in estrus and metestrus but quiescent during proestrus and diestrus. Vaginal smooth muscle was normally quiescent but exhibited phasic contractions in the presence of oxytocin or the K+ channel blocker tetraethylammonium (TEA) chloride. Spontaneous contractions in the cervix and TEA-induced phasic contractions in the vagina persisted in the presence of cyclopiazonic acid (CPA), a blocker of the SERCA that refills intracellular SR Ca2+ stores, but were inhibited in low Ca2+ solution or in the presence of nifedipine, an inhibitor of L-type Ca2+channels. ICs were found in small numbers in the mouse cervix but not in the vagina. Conclusions/Significance Cervical smooth muscle strips taken from mice in estrus, metestrus or late pregnancy were generally spontaneously active. Vaginal smooth muscle strips were normally quiescent but could be induced to exhibit phasic contractions independent on phase of the estrus cycle or late pregnancy. Spontaneous cervical or TEA-induced vaginal phasic contractions were not mediated by ICs or intracellular Ca2+ stores. Given that vaginal smooth muscle is normally quiescent then it is likely that increases in hormones such as oxytocin, as might occur through sexual stimulation, enhance the effectiveness of such pacemaking until phasic contractile activity emerges. PMID:25337931
Gravina, Fernanda S; van Helden, Dirk F; Kerr, Karen P; de Oliveira, Ramatis B; Jobling, Phillip
2014-01-01
The pacemaker mechanisms activating phasic contractions of vaginal and cervical smooth muscle remain poorly understood. Here, we investigate properties of pacemaking in vaginal and cervical tissues by determining whether: 1) functional pacemaking is dependent on the phase of the estrus cycle or pregnancy; 2) pacemaking involves Ca2+ release from sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) -dependent intracellular Ca2+ stores; and 3) c-Kit and/or vimentin immunoreactive ICs have a role in pacemaking. Vaginal and cervical contractions were measured in vitro, as was the distribution of c-Kit and vimentin positive interstitial cells (ICs). Cervical smooth muscle was spontaneously active in estrus and metestrus but quiescent during proestrus and diestrus. Vaginal smooth muscle was normally quiescent but exhibited phasic contractions in the presence of oxytocin or the K+ channel blocker tetraethylammonium (TEA) chloride. Spontaneous contractions in the cervix and TEA-induced phasic contractions in the vagina persisted in the presence of cyclopiazonic acid (CPA), a blocker of the SERCA that refills intracellular SR Ca2+ stores, but were inhibited in low Ca2+ solution or in the presence of nifedipine, an inhibitor of L-type Ca2+channels. ICs were found in small numbers in the mouse cervix but not in the vagina. Cervical smooth muscle strips taken from mice in estrus, metestrus or late pregnancy were generally spontaneously active. Vaginal smooth muscle strips were normally quiescent but could be induced to exhibit phasic contractions independent on phase of the estrus cycle or late pregnancy. Spontaneous cervical or TEA-induced vaginal phasic contractions were not mediated by ICs or intracellular Ca2+ stores. Given that vaginal smooth muscle is normally quiescent then it is likely that increases in hormones such as oxytocin, as might occur through sexual stimulation, enhance the effectiveness of such pacemaking until phasic contractile activity emerges.
Cystic urogenital anomalies in ferrets (Mustela putorius furo).
Li, X; Fox, J G; Erdman, S E; Lipman, N S; Murphy, J C
1996-03-01
Single or multiple semispherical to bilobulated fluid-filled cystic structures of variable size were observed on the dorsal aspects of the urinary bladder of four male and two female ferrets (Mustela putorius furo). All ferrets had been neutered. On physical examination, the cysts were palpated as caudal abdominal masses. Three of the six ferrets presented with dysuria, and two ferrets had signs compatible with endocrine dysfunction. Adrenal cortical hyperplasia or neoplasia were observed in all of the five ferrets examined. Sex hormones assayed in one of the six ferrets revealed elevated levels of serum estrodiol. The posterior aspect of the cysts was located on and/or attached to the trigone or neck of the bladder, with variable intraluminal communication with the bladder and/or the urethra. The anterior aspect of the cysts projected dorsally or dorsocranially into the caudal abdomen. The cysts were thin walled and contained urinelike fluid (n = 5) or viscous yellow fluid (n = 1). Histologically, the cyst walls were composed of three layers, epithelium, muscle, and serosa, with fibrovascular stroma between layers. The epithelium consisted of simple to stratified transitional, columnar, or squamous epithelial cells. The muscular layer consisted of intermittent bundles and/or single to double layers of continuous to discontinuous smooth muscle. The serosal layer consisted of loose fibrous stroma covered by flattened mesothelial cells. The cystic anomalies in these ferrets were most likely derived from the urogenital glands/ducts or other remnants.
Isogai, Ayu; Lee, Ken; Mitsui, Retsu; Hashitani, Hikaru
2016-09-01
We investigated the role of TRPV4 channels (TRPV4) in regulating the contractility of detrusor smooth muscle (DSM) and muscularis mucosae (MM) of the urinary bladder. Distribution of TRPV4 in DSM and MM of guinea-pig bladders was examined by fluorescence immunohistochemistry. Changes in the contractility of DSM and MM bundles were measured using isometric tension recording. Intracellular Ca(2+) dynamics were visualized by Cal-520 fluorescent Ca(2+) imaging, while membrane potential changes were recorded using intracellular microelectrode technique. DSM and MM expressed TRPV4 immunoreactivity. GSK1016790A (GSK, 1 nM), a TRPV4 agonist, evoked a sustained contraction in both DSM and MM associated with a cessation of spontaneous phasic contractions in a manner sensitive to HC-067047 (10 μM), a TRPV4 antagonist. Iberiotoxin (100 nM) and paxilline (1 μM), large conductance Ca(2+)-activated K(+) (BK) channel blockers restored the spontaneous contractions in GSK. The sustained contractions in DSM and MM were reduced by nifedipine (10 μM), a blocker of L-type voltage-dependent Ca(2+) channels (LVDCCs) by about 40 % and by nominally Ca(2+)-free solution by some 90 %. GSK (1 nM) abolished spontaneous Ca(2+) transients, increased basal Ca(2+) levels and also prevented spontaneous action potential discharge associated with DSM membrane hyperpolarization. In conclusion, Ca(2+) influx through TRPV4 appears to activate BK channels to suppress spontaneous contractions and thus a functional coupling of TRPV4 with BK channels may act as a self-limiting mechanism for bladder contractility during its storage phase. Despite the membrane hyperpolarization in GSK, Ca(2+) entry mainly through TRPV4 develops the tonic contraction.
Turner, Alex; Subramanian, Ramnath; Thomas, David F M; Hinley, Jennifer; Abbas, Syed Khawar; Stahlschmidt, Jens; Southgate, Jennifer
2011-03-01
Enterocystoplasty is associated with serious complications resulting from the chronic interaction between intestinal epithelium and urine. Composite cystoplasty is proposed as a means of overcoming these complications by substituting intestinal epithelium with tissue-engineered autologous urothelium. To develop a robust surgical procedure for composite cystoplasty and to determine if outcome is improved by transplantation of a differentiated urothelium. Bladder augmentation with in vitro-generated autologous tissues was performed in 11 female Large-White hybrid pigs in a well-equipped biomedical centre with operating facilities. Participants were a team comprising scientists, urologists, a veterinary surgeon, and a histopathologist. Urothelium harvested by open biopsy was expanded in culture and used to develop sheets of nondifferentiated or differentiated urothelium. The sheets were transplanted onto a vascularised, de-epithelialised, seromuscular colonic segment at the time of bladder augmentation. After removal of catheters and balloon at two weeks, voiding behaviour was monitored and animals were sacrificed at 3 months for immunohistology. Eleven pigs underwent augmentation, but four were lost to complications. Voiding behaviour was normal in the remainder. At autopsy, reconstructed bladders were healthy, lined by confluent urothelium, and showed no fibrosis, mucus, calculi, or colonic regrowth. Urothelial morphology was transitional with variable columnar attributes consistent between native and augmented segments. Bladders reconstructed with differentiated cell sheets had fewer lymphocytes infiltrating the lamina propria, indicating more effective urinary barrier function. The study endorses the potential for composite cystoplasty by (1) successfully developing reliable techniques for transplanting urothelium onto a prepared, vascularised, smooth muscle segment and (2) creating a functional urothelium-lined augmentation to overcome the complications of conventional enterocystoplasty. Copyright © 2010 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Turner, Alex; Subramanian, Ramnath; Thomas, David F.M.; Hinley, Jennifer; Abbas, Syed Khawar; Stahlschmidt, Jens; Southgate, Jennifer
2011-01-01
Background Enterocystoplasty is associated with serious complications resulting from the chronic interaction between intestinal epithelium and urine. Composite cystoplasty is proposed as a means of overcoming these complications by substituting intestinal epithelium with tissue-engineered autologous urothelium. Objective To develop a robust surgical procedure for composite cystoplasty and to determine if outcome is improved by transplantation of a differentiated urothelium. Design, setting, and participants Bladder augmentation with in vitro–generated autologous tissues was performed in 11 female Large-White hybrid pigs in a well-equipped biomedical centre with operating facilities. Participants were a team comprising scientists, urologists, a veterinary surgeon, and a histopathologist. Measurements Urothelium harvested by open biopsy was expanded in culture and used to develop sheets of nondifferentiated or differentiated urothelium. The sheets were transplanted onto a vascularised, de-epithelialised, seromuscular colonic segment at the time of bladder augmentation. After removal of catheters and balloon at two weeks, voiding behaviour was monitored and animals were sacrificed at 3 months for immunohistology. Results and limitations Eleven pigs underwent augmentation, but four were lost to complications. Voiding behaviour was normal in the remainder. At autopsy, reconstructed bladders were healthy, lined by confluent urothelium, and showed no fibrosis, mucus, calculi, or colonic regrowth. Urothelial morphology was transitional with variable columnar attributes consistent between native and augmented segments. Bladders reconstructed with differentiated cell sheets had fewer lymphocytes infiltrating the lamina propria, indicating more effective urinary barrier function. Conclusions The study endorses the potential for composite cystoplasty by (1) successfully developing reliable techniques for transplanting urothelium onto a prepared, vascularised, smooth muscle segment and (2) creating a functional urothelium-lined augmentation to overcome the complications of conventional enterocystoplasty. PMID:21195539
Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P
2017-08-01
Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (<2 g) and analyzed by fast Fourier transform (FFT) to identify LARC signal frequencies. Blinded UD tracings were retrospectively reviewed for signs of LARC on the p ves tracing during filling and were analyzed via FFT. Distinct LARC frequencies were identified in 100% of tissue strips (n = 9) obtained with a mean frequency of 1.97 ± 0.47 cycles/min (33 ± 8 mHz). Out of 100 consecutive UD studies reviewed, 35 visually displayed phasic p ves waves. In 12/35 (34%), real p ves signals were present that were independent of abdominal activity. Average UD LARC frequency was 2.34 ± 0.36 cycles/min (39 ± 6 mHz) which was similar to tissue LARC frequencies (p = 0.50). A majority (83%) of the UD cohort with LARC signals also demonstrated detrusor overactivity. During UD, a subset of patients displayed phasic p ves waves with a distinct rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.
Nonmuscle myosin is regulated during smooth muscle contraction.
Yuen, Samantha L; Ogut, Ozgur; Brozovich, Frank V
2009-07-01
The participation of nonmuscle myosin in force maintenance is controversial. Furthermore, its regulation is difficult to examine in a cellular context, as the light chains of smooth muscle and nonmuscle myosin comigrate under native and denaturing electrophoresis techniques. Therefore, the regulatory light chains of smooth muscle myosin (SM-RLC) and nonmuscle myosin (NM-RLC) were purified, and these proteins were resolved by isoelectric focusing. Using this method, intact mouse aortic smooth muscle homogenates demonstrated four distinct RLC isoelectric variants. These spots were identified as phosphorylated NM-RLC (most acidic), nonphosphorylated NM-RLC, phosphorylated SM-RLC, and nonphosphorylated SM-RLC (most basic). During smooth muscle activation, NM-RLC phosphorylation increased. During depolarization, the increase in NM-RLC phosphorylation was unaffected by inhibition of either Rho kinase or PKC. However, inhibition of Rho kinase blocked the angiotensin II-induced increase in NM-RLC phosphorylation. Additionally, force for angiotensin II stimulation of aortic smooth muscle from heterozygous nonmuscle myosin IIB knockout mice was significantly less than that of wild-type littermates, suggesting that, in smooth muscle, activation of nonmuscle myosin is important for force maintenance. The data also demonstrate that, in smooth muscle, the activation of nonmuscle myosin is regulated by Ca(2+)-calmodulin-activated myosin light chain kinase during depolarization and a Rho kinase-dependent pathway during agonist stimulation.
Wang, Ying; Liu, Jiali; Smith, Elizabeth; Zhou, Kang; Liao, Jie; Yang, Guang-Yu; Tan, Ming; Zhan, Xi
2007-03-01
Missing in metastasis (MIM) gene encodes a putative metastasis suppressor. However, the role of MIM in tumorigenesis and metastasis has not yet been established. Western blot analysis using a MIM specific antibody demonstrated that MIM protein is present at varying levels in a variety of normal cells as well as tumor cell lines. Immunohistochemical staining of adult mouse tissues revealed abundant MIM immunoreactivity in uroepithelial cells in the bladder, neuron Purkinje cells in the cerebellum, and megakaryocytes in the bone marrow and spleen in addition. MIM immunoreactivity also was found in human normal bladder transitional epithelial cells. However, the reactivity was not seen in 69 percent of human primary transitional cell carcinoma specimens. Over 51 percent of the tumors at low grade display MIM staining similarly to the normal cells, whereas only 16.7 percent of the tumors at high-grade with poor differentiation show faint or mild staining. Furthermore, full-length MIM protein is highly expressed in SV-HUC-L an immortalized normal transitional epithelial cell line, moderately expressed in T24 and poorly expressed in J82 and TCCSUP transitional cell carcinoma cells. This finding indicates that downegulation of MIM expression may correlate with the transition of tumor cells from distinct epithelium-like morphology to less differentiated carcinomas.
Chala, Bayissa; Choi, Min-Ho; Moon, Kyung Chul; Kim, Hyung Suk; Kwak, Cheol; Hong, Sung-Tae
2017-01-01
Schistosoma haematobium is a biocarcinogen of human urinary bladder (UB). The present study investigated developing UB cancer mouse model by injecting S. haematobium eggs into the bladder wall and introduction of chemical carcinogens. Histopathological findings showed mild hyperplasia to epithelial vacuolar change, and high grade dysplasia. Squamous metaplasia was observed in the S. haematobium eggs+NDMA group at week 12 but not in other groups. Immunohistochemistry revealed significantly high expression of Ki-67 in urothelial epithelial cells of the S. haematobium eggs+BBN group at week 20. The qRT-PCR showed high expression of p53 gene in S. haematobium eggs group at week 4 and S. haematobium eggs+BBN group at week 20. E-cadherin and vimentin showed contrasting expression in S. haematobium eggs+BBN group. Such inverse expression of E-cadherin and vimentin may indicate epithelial mesenchymal transition in the UB tissue. In conclusion, S. haematobium eggs and nitrosamines may transform UB cells into squamous metaplasia and dysplasia in correlation with increased expression of Ki-67. Marked decrease in E-cadherin and increase in p53 and vimentin expressions may support the transformation. The present study introduces a promising modified animal model for UB cancer study using S. haematobium eggs. PMID:28285503
Redundant role of protein kinase C delta and epsilon during mouse embryonic development.
Carracedo, Sergio; Sacher, Frank; Brandes, Gudrun; Braun, Ursula; Leitges, Michael
2014-01-01
Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.
Pfeil, Uwe; Bharathala, Subhashini; Murtaza, Ghulam; Mermer, Petra; Papadakis, Tamara; Boening, Andreas; Kummer, Wolfgang
2016-12-01
Heart valves are highly organized structures determining the direction of blood flow through the heart. Smooth muscle cells within the valve are thought to play an active role during the heart cycle, rather than being just passive flaps. The mature heart valve is composed of extracellular matrix (ECM), various differentiations of valvular interstitial cells (VIC), smooth muscle cells and overlying endothelium. VIC are important for maintaining the structural integrity of the valve, thereby affecting valve function and ECM remodelling. Accumulating evidence suggests an important role of calcitonin receptor-like receptor (CRL) signalling in preventing heart damage under several pathological conditions. Thus we investigate the existence of a putative CRL signalling system in mouse and human heart valves by real-time RT-PCR, laser-assisted microdissection, immunofluorescence and NADPH-diaphorase histochemistry. Mouse and human heart valves expressed mRNAs for the CRL ligands adrenomedullin (AM), adrenomedullin-2 (AM-2) and calcitonin gene-related peptide (CGRP) and for their receptor components, i.e., CRL and receptor-activity-modifying proteins 1-3. Immunofluorescence analysis revealed AM-, AM-2- and CRL-immunolabelling in endothelial cells and VIC, whereas CGRP immunoreactivity was restricted to nerve fibres and some endothelial cells. Nitric oxide synthase activity, as demonstrated by NADPH-diaphorase histochemistry, was shown mainly in valvular endothelial cells in mice, whereas in human aortic valves, VIC and smooth muscle cells were positive. Our results showed the presence of an intrinsic AM/AM-2/CGRP signalling system in murine and human heart valves with distinct cellular localization, suggesting its involvement in the regulation of valve stiffness and ECM production and turnover.
Girard, Beatrice M; Merrill, Liana; Malley, Susan; Vizzard, Margaret A
2013-10-01
Transient receptor potential vanilloid (TRPV) family member 4 (TRPV4) expression has been demonstrated in urothelial cells and dorsal root ganglion (DRG) neurons, and roles in normal micturition reflexes as well as micturition dysfunction have been suggested. TRP channel expression and function is dependent upon target tissue expression of growth factors. These studies expand upon the target tissue dependence of TRPV4 expression in the urinary bladder and lumbosacral DRG using a recently characterized transgenic mouse model with chronic overexpression of nerve growth factor (NGF-OE) in the urothelium. Immunohistochemistry with image analyses, real-time quantitative polymerase chain reaction, and Western blotting were used to determine TRPV4 protein and transcript expression in the urinary bladder (urothelium + suburothelium, detrusor) and lumbosacral DRG from littermate wild-type (WT) and NGF-OE mice. Antibody specificity controls were performed in TRPV4(-/-) mice. TRPV4 transcript and protein expression was significantly (p ≤ 0.001) increased in the urothelium + suburothelium and suburothelial nerve plexus of the urinary bladder and in small- and medium-sized lumbosacral (L1, L2, L6-S1) DRG cells from NGF-OE mice compared to littermate WT mice. NGF-OE mice exhibit significant (p ≤ 0.001) increases in NGF transcript and protein in the urothelium + suburothelium and lumbosacral DRG. These studies demonstrate regulation of TRPV4 expression by NGF in lower urinary tract tissues. Ongoing studies are characterizing the functional roles of TRPV4 expression in the sensory limb (DRG, urothelium) of the micturition reflex.
Girard, Beatrice M.; Merrill, Liana; Malley, Susan; Vizzard, Margaret A.
2013-01-01
Transient receptor potential vanilloid (TRPV) family member 4 (TRPV4) expression has been demonstrated in urothelial cells and dorsal root ganglion (DRG) neurons and roles in normal micturition reflexes as well as micturition dysfunction have been suggested. TRP channel expression and function is dependent upon target tissue expression of growth factors. These studies expand upon the target tissue dependence of TRPV4 expression in the urinary bladder and lumbosacral DRG using a recently characterized transgenic mouse model with chronic overexpression of nerve growth factor (NGF-OE) in the urothelium. Immunohistochemistry with image analyses, real-time quantitative polymerase chain reaction (Q-PCR) and western blotting were used to determine TRPV4 protein and transcript expression in the urinary bladder (urothelium + suburothelium, detrusor) and lumbosacral DRG from littermate wildtype (WT) and NGF-OE mice. Antibody specificity controls were performed in TRPV4-/- mice. TRPV4 transcript and protein expression was significantly (p ≤ 0.001) increased in the urothelium + suburothelium and suburothelial nerve plexus of the urinary bladder and in small- and medium-sized lumbosacral (L1, L2, L6-S1) DRG cells from NGF-OE mice compared to littermate WT mice. NGF-OE mice exhibit significant (p ≤ 0.001) increases in NGF transcript and protein in the urothelium + suburothelium and lumbosacral DRG. These studies demonstrate regulation of TRPV4 expression by NGF in lower urinary tract tissues. Ongoing studies are characterizing the functional roles of TRPV4 expression in the sensory limb (DRG, urothelium) of the micturition reflex. PMID:23690258
Jiang, Haihong; Abel, Peter W; Toews, Myron L; Deng, Caishu; Casale, Thomas B; Xie, Yan; Tu, Yaping
2010-09-01
Phosphoinositide 3-kinase gamma (PI3Kgamma) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kgamma can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kgamma protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kgamma inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 muM. In contrast, inhibitors of PI3Kalpha, PI3Kbeta, or PI3Kdelta, at concentrations 40-fold higher than their reported IC(50) values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kgamma inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kgamma-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca(2+) transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca(2+) oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kgamma directly controls contractility of airways through regulation of Ca(2+) oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kgamma inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness.
Jiang, Haihong; Abel, Peter W.; Toews, Myron L.; Deng, Caishu; Casale, Thomas B.; Xie, Yan
2010-01-01
Phosphoinositide 3-kinase γ (PI3Kγ) has been implicated in the pathogenesis of asthma, but its mechanism has been considered indirect, through release of inflammatory cell mediators. Because airway smooth muscle (ASM) contractile hyper-responsiveness plays a critical role in asthma, the aim of the present study was to determine whether PI3Kγ can directly regulate contractility of ASM. Immunohistochemistry staining indicated expression of PI3Kγ protein in ASM cells of mouse trachea and lung, which was confirmed by Western blot analysis in isolated mouse tracheal ASM cells. PI3Kγ inhibitor II inhibited acetylcholine (ACh)-stimulated airway contraction of cultured precision-cut mouse lung slices in a dose-dependent manner with 75% inhibition at 10 μM. In contrast, inhibitors of PI3Kα, PI3Kβ, or PI3Kδ, at concentrations 40-fold higher than their reported IC50 values for their primary targets, had no effect. It is noteworthy that airways in lung slices pretreated with PI3Kγ inhibitor II still exhibited an ACh-induced initial contraction, but the sustained contraction was significantly reduced. Furthermore, the PI3Kγ-selective inhibitor had a small inhibitory effect on the ACh-stimulated initial Ca2+ transient in ASM cells of mouse lung slices or isolated mouse ASM cells but significantly attenuated the sustained Ca2+ oscillations that are critical for sustained airway contraction. This report is the first to show that PI3Kγ directly controls contractility of airways through regulation of Ca2+ oscillations in ASM cells. Thus, in addition to effects on airway inflammation, PI3Kγ inhibitors may also exert direct effects on the airway contraction that contribute to pathologic airway hyper-responsiveness. PMID:20501633
Accelerated onset of the vesicovesical reflex in postnatal NGF-OE mice and the role of neuropeptides
Girard, Beatrice; Peterson, Abbey; Malley, Susan; Vizzard, Margaret A.
2016-01-01
The mechanisms underlying the postnatal maturation of micturition from a somatovesical to a vesicovesical reflex are not known but may involve neuropeptides in the lower urinary tract. A transgenic mouse model with chronic urothelial overexpression (OE) of NGF exhibited increased voiding frequency, increased number of non-voiding contractions, altered morphology and hyperinnervation of the urinary bladder by peptidergic (e.g., Sub P and CGRP) nerve fibers in the adult. In early postnatal and adult NGF-OE mice we have now examined: (1) micturition onset using filter paper void assays and open-outlet, continuous fill, conscious cystometry; (2) innervation and neurochemical coding of the suburothelial plexus of the urinary bladder using immunohistochemistry and semi-quantitative image analyses; (3) neuropeptide protein and transcript expression in urinary bladder of postnatal and adult NGF-OE mice using Q-PCR and ELISAs and (4) the effects of intravesical instillation of a neurokinin (NK)-1 receptor antagonist on bladder function in postnatal and adult NGF-OE mice using conscious cystometry. Postnatal NGF-OE mice exhibit age-dependent (R2= 0.996–0.998; p ≤ 0.01) increases in Sub and CGRP expression in the urothelium and significantly (p ≤ 0.01) increased peptidergic hyperinnervation of the suburothelial nerve plexus. By as early as P7, NGF-OE mice exhibit a vesicovesical reflex in response to intravesical instillation of saline whereas littermate WT mice require perigenital stimulation to elicit a micturition reflex until P13 when vesicovesical reflexes are first observed. Intravesical instillation of a NK-1 receptor antagonist, netupitant (0.1 μg/ml), significantly (p ≤ 0.01) increased void volume and the interval between micturition events with no effects on bladder pressure (baseline, threshold, peak) in postnatal NGF-OE mice; effects on WT mice were few. NGF-induced pleiotropic effects on neuropeptide (e.g., Sub P) expression in the urinary bladder contribute to the maturation of the micturition reflex and are excitatory to the micturition reflex in postnatal NGF-OE mice. These studies provide insight into the mechanisms that contribute to the postnatal development of the micturition reflex. PMID:27342083
Use of regenerative tissue for urinary diversion.
Sopko, Nikolai A; Kates, Max; Bivalacqua, Trinity J
2015-11-01
There is a large interest in developing tissue engineered urinary diversions (TEUDs) in order to reduce the significant morbidity that results from utilization of the alimentary tract in the urinary system. Preclinical trials have been favorable but durable clinical results have not been realized. The present article will review the pertinent concepts for the clinical development of a successful TEUD. Studies continue to identify novel scaffold materials and cell populations that are combined to generate TEUDs. Scaffold composition range from synthetic material to decelluarized bladder tissue. Cell types vary from fully differentiated adult populations such as smooth muscle cells isolated from the bladder to stem cell populations including mesenchymal stem cells and induced pluripotent stem cells. Each scaffold and cell type has its advantages and disadvantages with no clear superior component having been identified. Recent clinical trials have been disappointing, supporting the need for additional investigation. Successful application of TEUDs requires a complex interplay of scaffold, cells, and host environment. Studies continue to investigate candidate scaffold materials, cell populations, and combinations thereof to determine which will best recapitulate the complex structure of the human genitourinary tract.
NASA Astrophysics Data System (ADS)
Raczkowska, Joanna; Stetsyshyn, Yurij; Awsiuk, Kamil; Lekka, Małgorzata; Marzec, Monika; Harhay, Khrystyna; Ohar, Halyna; Ostapiv, Dmytro; Sharan, Mykola; Yaremchuk, Iryna; Bodnar, Yulia; Budkowski, Andrzej
2017-06-01
The novel temperature-responsive poly(cholesteryl methacylate) (PChMa) coatings derived from renewable sources were synthesized and characterized. Temperature induced changes in wettability were accompanied by surface roughness modifications, traced with AFM. Topographies recorded for temperatures increasing from 5 to 25 °C showed a slight but noticeable increase of calculated root mean square (RMS) roughness by a factor of 1.5, suggesting a horizontal rearrangement in the structure of PChMa coatings. Another structural reordering was observed in the 55-85 °C temperature range. The recorded topography changed noticeably from smooth at 55 °C to very structured and rough at 60 °C and returned eventually to relatively smooth at 85 °C. In addition, temperature transitions of PChMa molecules were revealed by DSC measurements. The biocompatibility of the PChMa-grafted coatings was shown for cultures of granulosa cells and a non malignant bladder cancer cell (HCV29 line) culture.
Bharadwaj, Shantaram; Liu, Guihua; Shi, Yingai; Wu, Rongpei; Yang, Bin; He, Tongchuan; Fan, Yuxin; Lu, Xinyan; Zhou, Xiaobo; Liu, Hong; Atala, Anthony; Rohozinski, Jan; Zhang, Yuanyuan
2013-09-01
We sought to biologically characterize and identify a subpopulation of urine-derived stem cells (USCs) with the capacity for multipotent differentiation. We demonstrated that single USCs can expand to a large population with 60-70 population doublings. Nine of 15 individual USC clones expressed detectable levels of telomerase and have long telomeres. These cells expressed pericyte and mesenchymal stem cell markers. Upon induction with appropriate media in vitro, USCs differentiated into bladder-associated cell types, including functional urothelial and smooth muscle cell lineages. When the differentiated USCs were seeded onto a scaffold and subcutaneously implanted into nude mice, multilayered tissue-like structures formed consisting of urothelium and smooth muscle. Additionally, USCs were able to differentiate into endothelial, osteogenic, chondrogenic, adipogenic, skeletal myogenic, and neurogenic lineages but did not form teratomas during the 1-month study despite telomerase activity. USCs may be useful in cell-based therapies and tissue engineering applications, including urogenital reconstruction. © AlphaMed Press.
Smoothing spline ANOVA frailty model for recurrent event data.
Du, Pang; Jiang, Yihua; Wang, Yuedong
2011-12-01
Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data. © 2011, The International Biometric Society.
Chen, Shulian; Peng, Chuandu; Wei, Xin; Luo, Deyi; Lin, Yifei; Yang, Tongxin; Jin, Xi; Gong, Lina; Li, Hong; Wang, Kunjie
2017-08-01
To investigate the effect of simulated physiological stretch on the expression of extracellular matrix (ECM) proteins and the role of integrin α4/αv, focal adhesion kinase (FAK), extracellular regulated protein kinases 1/2 (ERK1/2) in the stretch-induced ECM protein expression of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to simulated physiological stretch at the range of 5, 10, and 15% elongation. Expression of primary ECM proteins in HBSMCs was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the FAK and ERK1/2 was determined by Western blot with FAK inhibitor and ERK1/2 inhibitor (PD98059). Specificity of integrin α4 and integrin αv was determined with small interfering ribonucleic acid (siRNA) transfection. The expression of collagen I (Col1), collagen III (Col3), and fibronectin (Fn) was increased significantly under the simulated physiological stretch of 10 and 15%. Integrin α4 and αv, FAK, ERK1/2 were activated by 10% simulated physiological stretch compared with the static condition. Pretreatment of ERK1/2 inhibitor, FAK inhibitor, integrin α4 siRNA, or integrin αv siRNA reduced the stretch-induced expression of ECM proteins. And FAK inhibitor decreased the stretch-induced ERK1/2 activity and ECM protein expression. Integrin α4 siRNA or integrin αv siRNA inhibited the stretch-induced activity of FAK. Simulated physiological stretch increases the expression of ECM proteins in HBSMCs, and integrin α4/αv-FAK-ERK1/2 signaling pathway partly modulates the mechano-transducing process.
Takagi, Hiroaki; Hashitani, Hikaru
2016-10-15
The modulation of spontaneous excitability in detrusor smooth muscle (DSM) upon the pharmacological activation of different populations of K(+) channels was investigated. Effects of distinct K(+) channel openers on spontaneous action potentials in DSM of the guinea-pig bladder were examined using intracellular microelectrode techniques. NS1619 (10μM), a large conductance Ca(2+)-activated K(+) (BK) channel opener, transiently increased action potential frequency and then prevented their generation without hyperpolarizing the membrane in a manner sensitive to iberiotoxin (IbTX, 100nM). A higher concentration of NS1619 (30μM) hyperpolarized the membrane and abolished action potential firing. NS309 (10μM) and SKA31 (100μM), small conductance Ca(2+)-activated K(+) (SK) channel openers, dramatically increased the duration of the after-hyperpolarization and then abolished action potential firing in an apamin (100nM)-sensitive manner. Flupirtine (10μM), a Kv7 channel opener, inhibited action potential firing without hyperpolarizing the membrane in a manner sensitive to XE991 (10μM), a Kv7 channel blocker. BRL37344 (10μM), a β3-adrenceptor agonist, or rolipram (10nM), a phosphodiesterase 4 inhibitor, also inhibited action potential firing. A higher concentration of rolipram (100nM) hyperpolarized the DSM and abolished the action potentials. IbTX (100nM) prevented the rolipram-induced blockade of action potentials but not the hyperpolarization. BK and Kv7 channels appear to predominantly contribute to the stabilization of DSM excitability. Spare SK channels could be pharmacologically activated to suppress DSM excitability. BK channels appear to be involved in the cyclic AMP-induced inhibition of action potentials but not the membrane hyperpolarization. Copyright © 2016 Elsevier B.V. All rights reserved.
Ramakrishnan, Swathi; Elbanna, May; Wang, Jianmin; Hu, Qiang; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Gomez, Eduardo Cortes; Sun, Yuchen; Conroy, Jacob; Miles, Kiersten Marie; Malathi, Kullappan; Ramaiah, Sudha; Anbarasu, Anand; Woloszynska-Read, Anna; Johnson, Candace S.; Conroy, Jeffrey; Liu, Song; Morrison, Carl D.; Pili, Roberto
2016-01-01
Purpose Effective systemic therapeutic options are limited for bladder cancer. In this preclinical study we tested whether bladder cancer gene alterations may be predictive of treatment response. Experimental design We performed genomic profiling of two bladder cancer patient derived tumor xenografts (PDX). We optimized the exome sequence analysis method to overcome the mouse genome interference. Results We identified a number of somatic mutations, mostly shared by the primary tumors and PDX. In particular, BLCAb001, which is less responsive to cisplatin than BLCAb002, carried non-sense mutations in several genes associated with cisplatin resistance, including MLH1, BRCA2, and CASP8. Furthermore, RNA-Seq analysis revealed the overexpression of cisplatin resistance associated genes such as SLC7A11, TLE4, and IL1A in BLCAb001. Two different PIK3CA mutations, E542K and E545K, were identified in BLCAb001 and BLCAb002, respectively. Thus, we tested whether the genomic profiling was predictive of response to a dual PI3K/mTOR targeting agent, LY3023414. Despite harboring similar PIK3CA mutations, BLCAb001 and BLCAb002 exhibited differential response, both in vitro and in vivo. Sustained target modulation was observed in the sensitive model BLCAb002 but not in BLCAb001, as well as decreased autophagy. Interestingly, computational modelling of mutant structures and affinity binding to PI3K revealed that E542K mutation was associated with weaker drug binding than E545K. Conclusions Our results suggest that the presence of activating PIK3CA mutations may not necessarily predict in vivo treatment response to PI3K targeted therapies, while specific gene alterations may be predictive for cisplatin response in bladder cancer models and, potentially, in patients as well. PMID:27823983
Polo-like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle*
Li, Jia; Wang, Ruping; Gannon, Olivia J.; Rezey, Alyssa C.; Jiang, Sixin; Gerlach, Brennan D.; Liao, Guoning
2016-01-01
Polo-like kinase 1 (Plk1) is a serine/threonine-protein kinase that has been implicated in mitosis, cytokinesis, and smooth muscle cell proliferation. The role of Plk1 in smooth muscle contraction has not been investigated. Here, stimulation with acetylcholine induced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in smooth muscle. Contractile stimulation also activated Plk1 in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer signal of a Plk1 sensor. Moreover, knockdown of Plk1 in smooth muscle attenuated force development. Smooth muscle conditional knock-out of Plk1 also diminished contraction of mouse tracheal rings. Plk1 knockdown inhibited acetylcholine-induced vimentin phosphorylation at Ser-56 without affecting myosin light chain phosphorylation. Expression of T210A Plk1 inhibited the agonist-induced vimentin phosphorylation at Ser-56 and contraction in smooth muscle. However, myosin light chain phosphorylation was not affected by T210A Plk1. Ste20-like kinase (SLK) is a serine/threonine-protein kinase that has been implicated in spindle orientation and microtubule organization during mitosis. In this study knockdown of SLK inhibited Plk1 phosphorylation at Thr-210 and activation. Finally, asthma is characterized by airway hyperresponsiveness, which largely stems from airway smooth muscle hyperreactivity. Here, smooth muscle conditional knock-out of Plk1 attenuated airway resistance and airway smooth muscle hyperreactivity in a murine model of asthma. Taken together, these findings suggest that Plk1 regulates smooth muscle contraction by modulating vimentin phosphorylation at Ser-56. Plk1 activation is regulated by SLK during contractile activation. Plk1 contributes to the pathogenesis of asthma. PMID:27662907
Establishment and Characterization of UTI and CAUTI in a Mouse Model.
Conover, Matt S; Flores-Mireles, Ana L; Hibbing, Michael E; Dodson, Karen; Hultgren, Scott J
2015-06-23
Urinary tract infections (UTI) are highly prevalent, a significant cause of morbidity and are increasingly resistant to treatment with antibiotics. Females are disproportionately afflicted by UTI: 50% of all women will have a UTI in their lifetime. Additionally, 20-40% of these women who have an initial UTI will suffer a recurrence with some suffering frequent recurrences with serious deterioration in the quality of life, pain and discomfort, disruption of daily activities, increased healthcare costs, and few treatment options other than long-term antibiotic prophylaxis. Uropathogenic Escherichia coli (UPEC) is the primary causative agent of community acquired UTI. Catheter-associated UTI (CAUTI) is the most common hospital acquired infection accounting for a million occurrences in the US annually and dramatic healthcare costs. While UPEC is also the primary cause of CAUTI, other causative agents are of increased significance including Enterococcus faecalis. Here we utilize two well-established mouse models that recapitulate many of the clinical characteristics of these human diseases. For UTI, a C3H/HeN model recapitulates many of the features of UPEC virulence observed in humans including host responses, IBC formation and filamentation. For CAUTI, a model using C57BL/6 mice, which retain catheter bladder implants, has been shown to be susceptible to E. faecalis bladder infection. These representative models are being used to gain striking new insights into the pathogenesis of UTI disease, which is leading to the development of novel therapeutics and management or prevention strategies.
Autophagic activity in the mouse urinary bladder urothelium as a response to starvation.
Erman, Andreja; Resnik, Nataša; Romih, Rok
2013-02-01
The urinary bladder urothelium is subjected to mechanical forces during cycles of distension and contraction, and its superficial cells are constantly flushed by toxic urine. Yet, the urothelium shows a very slow turnover of cells and superficial cells are extremely long lived. Autophagy has a well-known role in tissue homeostasis and serves as a protective mechanism against cellular stress. Therefore, the presence of autophagy as one of possible processes of survival in an unpleasant environment and during long lifetime of superficial cells was examined in mouse urothelium. We detected and evaluated autophagic activity of superficial urothelial cells under normal and stress conditions, caused by short-term starvation of newborn and 24-h-starved adult mice. Immunolabeling and Western blotting of essential effectors of autophagy, LC3 and Beclin 1, showed a weak signal in superficial urothelial cells. On the other hand, ultrastructural analysis, which proved to be the most reliable method in our study, revealed the presence of autophagic vacuoles, some of them containing specific urothelial structures, fusiform vesicles. Quantitative analysis showed increased autophagy in newborn and starved mice in comparison to a low basic level of autophagy in the urothelium of normal mice. Interestingly, some superficial cells of adults and neonates exhibit intense immunoreactions against LC3 and Beclin 1 and the typical ultrastructural characteristics of autophagy-dependent cell death. We conclude that autophagy, despite low basic activity under physiological conditions, plays an important role in urothelial homeostasis and stability under stress.
Smooth muscle fatigue due to repeated urinary bladder neurostimulation: an in vivo study.
Bross, S; Schumacher, S; Scheepe, J R; Seif, C; Jünemann, K P; Alken, P
1999-01-01
The presented study investigates the influence of different pause lengths between two consecutive stimulations of the S3 roots on intravesical pressure during bladder neurostimulation. In eight male foxhounds (aged 7-18 months), laminectomy and placement of a modified Brindley electrode were performed. In four series with different pause lengths between two consecutive stimulations (1, 3, 5, and 15 min), the maximum intravesical pressure was measured during stimulation. The changes in intravesical pressure were registered in these four series, each series with six stimulations. A 15-min interval elapsed before the commencement of each series. In the series with a pause length of 15 min, the consecutive stimulations did not result in significant changes in maximum intravesical pressure. In the 5-min series, a significant decrease in intravesical pressure was not observed after the third stimulation. In the 3-min series, a significant decrease was seen at almost every stimulation (average decrease of 3.8% per stimulation) and in the 1-min series, a significant decrease was also observed at almost every stimulation (average decrease of 5.9% per stimulation). The results of repeated bladder neurostimulation demonstrate that the maximum intravesical pressure is dependent on the pause length between two consecutive stimulations. The detrusor muscle showed reversible and short-lived signs of fatigue. This implies the importance of a minimum 5-min interval between two subsequent stimulations. A pause length <5 min leads to a falsification of the results and thus to lower validity of the investigation.
Klausner, Adam P; Rourke, Keith F; Miner, Amy S; Ratz, Paul H
2009-03-15
In strips of rabbit bladder free of urothelium, the beta-adrenoceptor agonist, isoproterenol, significantly reduced basal detrusor smooth muscle tone and inhibited contractions produced by low concentrations of the muscarinic receptor agonist, carbachol. During a carbachol concentration-response curve, instead of inhibiting, isoproterenol strengthened contractions produced by high carbachol concentrations. Thus, the carbachol concentration-response curve was shifted by isoproterenol from a shallow, graded relationship, to a steep, switch-like relationship. The tyrosine kinase inhibitor, genistein, inhibited carbachol-induced contractions only in the presence of isoproterenol. Contraction produced by a single high carbachol concentration (1 microM) displayed 1 fast and 1 slow peak. In the presence of isoproterenol, the slow peak was not strengthened, but was delayed, and U-0126 (mitogen-activated protein kinase kinase inhibitor) selectively inhibited this delay concomitantly with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation. Isoproterenol reduced ERK phosphorylation only in the absence of carbachol. These data support the concept that, by inhibiting weak contractions, potentiating strong contractions, and producing a more switch-like concentration-response curve, beta-adrenoceptor stimulation enhanced the effectiveness of muscarinic receptor-induced detrusor smooth muscle contraction. Moreover, beta-adrenoceptor stimulation changed the cellular mechanism by which carbachol produced contraction. The potential significance of multi-receptor and multi-cell crosstalk is discussed.
Balkanci, Zeynep Dicle; Pehlivanoğlu, Bilge; Bayrak, Sibel; Karabulut, Ismail; Karaismailoğlu, Serkan; Erdem, Ayşen
2012-11-01
To investigate a possible relation between hypercholesterolemia and detrusor smooth muscle function, we studied the contractile response to potassium challenge, carbachol (CCh), and the components of CCh-induced contractile mechanism in high-cholesterol diet-fed rats. Adult male Sprague-Dawley rats were fed with standard (control group, N = 17) or 4 % cholesterol diet (hypercholesterolemia group (HC), N = 16) for 4 weeks. Spontaneous contractions of detrusor muscle strips and their responses to potassium chloride (KCl) or cumulative dose-contraction curves to CCh were recorded. The effects of muscarinic receptor antagonists (methoctramin and/or 4-diphenylacetoxy-N-methylpiperidine), L-type Ca(+2) channel blocker (nifedipine), and/or rho-kinase inhibitor Y-27632 were investigated. Blood cholesterol level was increased in the HC group with no sign of atherosclerosis. The KCl-induced detrusor smooth muscle contractions were higher in HC, whereas spontaneous and CCh-induced responses were similar in both groups. Preincubation with receptor antagonist for M(3) but not for M(2) attenuated contraction significantly, shifting the dose-response curve to the right. This response was similar in both groups. Among two effector mechanisms of M(3)-mediated detrusor smooth muscle contraction, rho-kinase pathway was not affected by hypercholesterolemia, whereas blockade of L-type Ca(+2) channels potently reduced contractions. The results of this study point out a relation between hypercholesterolemia and contractile mechanism of detrusor smooth muscle likely to change urinary bladder function, via altering L-type Ca(+2) channels. Taken together with escalating incidence of hypercholesterolemia and lower urinary tract symptoms, it is a field which deserves to be investigated further.
Frith, C H; Ayres, P H; Shinohara, Y; West, R
1986-01-01
A total of 75 BALB/cStCrlfC3H/Nctr male weanling mice were administered either 0 or 250 ppm of 4 ethylsulfonylnaphthalene-1-sulfonamide (ENS) in the diet for periods up to 14 days to evaluate the early morphological changes of the transitional epithelium of the urinary bladder with scanning (SEM) and transmission (TEM) electron microscopy. Primary TEM changes included hyperplasia of the epithelium, loosening of the intercellular junctions, autophagic vacuoles and electron dense granules in the mitochondria. Primary SEM changes included sloughing of epithelial cells, irregularity in the size and shape of the transitional epithelial cells and the presence of microvilli. Although pleomorphic microvilli were present after only three days of treatment with ENS, it appears that they are a transient observation in a series of morphological changes. The reversibility or transient nature of the pleomorphic microvilli may indicate that they are an acute toxic response and may not necessarily indicate a preneoplastic change.
Reutter, Heiko; Keppler-Noreuil, Kim; E. Keegan, Catherine; Thiele, Holger; Yamada, Gen; Ludwig, Michael
2016-01-01
The Bladder-Exstrophy-Epispadias Complex (BEEC) represents the severe end of the uro-rectal malformation spectrum, and has a profound impact on continence, and on sexual and renal function. While previous reports of familial occurrence, in-creased recurrence among first-degree relatives, high concordance rates among monozygotic twins, and chromosomal aberra-tions were suggestive of causative genetic factors, the recent identification of copy number variations (CNVs), susceptibility regions and genes through the systematic application of array based analysis, candidate gene and genome-wide association studies (GWAS) provide strong evidence. These findings in human BEEC cohorts are underscored by the recent description of BEEC(-like) murine knock-out models. Here, we discuss the current knowledge of the potential molecular mechanisms, mediating abnormal uro-rectal development leading to the BEEC, demonstrating the importance of ISL1-pathway in human and mouse and propose SLC20A1 and CELSR3 as the first BEEC candidate genes, identified through systematic whole-exome sequencing (WES) in BEEC patients. PMID:27013921
Microdose-induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice
Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-yin; Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Yang, Hongyuan; Airhart, Susan; Turteltaub, Kenneth W.; Cimino, George D.; Tepper, Clifford G.; Drakaki, Alexandra; Chamie, Karim; de Vere White, Ralph; Pan, Chong-xian; Henderson, Paul T.
2017-01-01
We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [14C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry (AMS) in blood and tumor samples collected within 24 hours, and compared to subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [14C]carboplatin or [14C]gemcitabine and the resulting drug-DNA adduct levels were compared to tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. PMID:27903751
Zuscik, M J; Piascik, M T; Perez, D M
1999-12-01
The functionality of a 3422-base pair promoter fragment from the mouse alpha(1B)-adrenergic receptor (alpha(1B)AR) gene was examined. This fragment, cloned from a mouse genomic library, was found to have significant sequence homology to the known human and rat alpha(1B)AR promoters. However, the consensus motif of several key cis-acting elements is not conserved among the rat, human, and mouse genes, suggesting species specificity. Confirming fidelity of the murine promoter, robust in vitro expression of a chloramphenicol acetyltransferase (CAT) reporter was detected in known alpha(1B)AR-expressing BC(3)H1, NB41A3, and DDT(1)MF-2 cells transiently transfected with a promoter-CAT construct. Conversely, minimal CAT expression was detected in known alpha(1B)AR-negative RAT-1 and R3T3 cells. These findings were extended by transfecting the same promoter-CAT construct into various primary cell types. In support of the hypothesis that alpha(1)ARs are differentially expressed in the smooth muscle of the vasculature, primary cultures of superior mesenteric and renal artery vascular smooth muscle cells showed significantly stronger CAT expression than did vascular smooth muscle cells derived from pulmonary, femoral, and iliac arteries. Primary osteoblastic bone-forming cells, which are known to be alpha(1B)AR negative, showed minimal CAT expression. Indicating regulatory function through cis-acting elements, RAT-1, R3T3, NB41A3, BC(3)H1, and DDT(1)MF2 cells transfected with the promoter-CAT construct all showed increased CAT production when challenged with forskolin or hypoxic conditions. Additionally, tissue-specific regulation of the promoter was observed when cells were simultaneously challenged with both forskolin and hypoxia. These results collectively demonstrate that a 3.4-kb PvuII fragment of the murine alpha(1B)AR gene promoter can: 1) drive tissue-specific production of a CAT reporter in both clonal and primary cell lines; and 2) confer tissue-specific regulation of that CAT reporter when induced by challenge with forskolin and/or hypoxic conditions.
MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist.
Cialdai, Cecilia; Tramontana, Manuela; Patacchini, Riccardo; Lecci, Alessandro; Catalani, Claudio; Catalioto, Rose-Marie; Meini, Stefania; Valenti, Claudio; Altamura, Maria; Giuliani, Sandro; Maggi, Carlo Alberto
2006-11-07
The pharmacological profile of MEN15596 or (6-methyl-benzo[b]thiophene-2-carboxylic acid [1-(2-phenyl-1R-{[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl}-ethylcarbamoyl)-cyclopentyl]-amide), a novel potent and selective tachykinin NK2 receptor antagonist endowed with oral activity, is described. At the human recombinant tachykinin NK2 receptor, MEN15596 showed subnanomolar affinity (pKi 10.1) and potently antagonized (pKB 9.1) the neurokinin A-induced intracellular calcium release. MEN15596 selectivity for the tachykinin NK2 receptor was assessed by binding studies at the recombinant tachykinin NK1 (pKi 6.1) and NK3 (pKi 6.4) receptors, and at a number of 34 molecular targets including receptors, transporters and ion channels. In isolated smooth muscle preparations MEN15596 showed a marked species selectivity at the tachykinin NK2 receptor with the highest antagonist potency in guinea-pig colon, human and pig bladder (pKB 9.3, 9.2 and 8.8, respectively) whereas it was three orders of magnitude less potent in the rat and mouse urinary bladder (pKB 6.3 and 5.8, respectively). In agreement with binding experiments, MEN15596 showed low potency in blocking selective NK1 or NK3 receptor agonist-induced contractions of guinea-pig ileum preparations (pA2
Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation.
Cui, Yue; Franciszkiewicz, Katarzyna; Mburu, Yvonne K; Mondot, Stanislas; Le Bourhis, Lionel; Premel, Virginie; Martin, Emmanuel; Kachaner, Alexandra; Duban, Livine; Ingersoll, Molly A; Rabot, Sylvie; Jaubert, Jean; De Villartay, Jean-Pierre; Soudais, Claire; Lantz, Olivier
2015-11-02
Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%-10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4-CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7-). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rβ and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease.
Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation
Cui, Yue; Franciszkiewicz, Katarzyna; Mburu, Yvonne K.; Mondot, Stanislas; Le Bourhis, Lionel; Premel, Virginie; Martin, Emmanuel; Kachaner, Alexandra; Duban, Livine; Ingersoll, Molly A.; Rabot, Sylvie; Jaubert, Jean; De Villartay, Jean-Pierre; Soudais, Claire; Lantz, Olivier
2015-01-01
Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%–10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4–CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7–). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rβ and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease. PMID:26524590
A new species of Triplophysa Rendahl (Cypriniformes, Nemacheilidae) from Sichuan Province, China
YAN, Si-Li; SUN, Zhi-Yu; GUO, Yan-Shu
2015-01-01
Triplophysa yajiangensis sp. nov. is described from the upper and middle reaches of the Yalong River, Yangtze Basin, Ganzi Prefecture, Sichuan Province, China. This new species can be distinguished from other congeneric species by the following characters: body surface smooth and scaleless; lateral line complete; caudal peduncle compressed and tapered slightly; lower jaw shovel-shaped; head shorter than caudal peduncle; dorsal-fin origin anterior to pelvic-fin origin and closer to tip of snout than to caudal-fin base, last unbranched ray hard; pelvic-fin reaches or exceeds anus; posterior chamber of gas bladder absent; intestine spiral type with 3-5 winding coils. PMID:26452694
Herrmann, Edwin; Tiemann, Arne; Eltze, Elke; Bolenz, Christian; Bremer, Christoph; Persigehl, Thorsten; Hertle, Lothar; Wülfing, Christian
2009-10-01
The endothelin axis consists of endothelin-1 (ET-1) and its two receptors, ET(A)- and ET(B)-receptor (ET(A)-R and ET(B)-R). In several tumor entities, the ET(A)-R plays a significant role as a drug target. In our study, we investigated whether inhibition of ET(A)-R with atrasentan leads to an antitumor effect in urinary bladder carcinoma as well. Twenty nude mice with thymic aplasia were subcutaneously administered 2 x 10(6) KU-19-19 bladder cancer cells in the right flank. Starting on the 22nd day after the injection, ten animals were treated with atrasentan (2.5 mg/kg BW intraperitoneally), and another ten animals were treated with placebo. During treatment, absolute tumor growth and relative growth rate over time were determined. After the end of treatment, the mitosis and necrosis rates, microvessel density, and receptor density in the tumor tissue were analyzed by immunohistochemistry. In addition, the expression intensities of ET-1, ET(A)-R, and ET(B)-R were evaluated semiquantitatively and compared between the groups. No significant differences between the active-treatment and placebo groups were detected, either with respect to absolute tumor growth (P = 0.333) or mitosis rate (P = 0.217). In the analysis of the necrosis rate and receptor density for ET(A)-R, a trend toward higher values in the active-treatment group (mean necrosis rate = 63.67%, receptor density: 1.417) than in the placebo group (mean necrosis rate = 46.25%, receptor density: 1.270) was found; however, neither difference was statistically significant (P = 0.08 and 0.219, respectively). ET(A)-R blockade with atrasentan in a bladder cancer xenograft model shows no significant antitumor effect.
Madka, Venkateshwar; Mohammed, Altaf; Li, Qian; Zhang, Yuting; Patlolla, Jagan M R; Biddick, Laura; Lightfoot, Stan; Wu, Xue-Ru; Steele, Vernon; Kopelovich, Levy; Rao, Chinthalapally V
2014-07-01
Epidemiologic and clinical data suggest that use of anti-inflammatory agents is associated with reduced risk for bladder cancer. We determined the chemopreventive efficacy of licofelone, a dual COX-lipoxygenase (LOX) inhibitor, in a transgenic UPII-SV40T mouse model of urothelial transitional cell carcinoma (TCC). After genotyping, six-week-old UPII-SV40T mice (n = 30/group) were fed control (AIN-76A) or experimental diets containing 150 or 300 ppm licofelone for 34 weeks. At 40 weeks of age, all mice were euthanized, and urinary bladders were collected to determine urothelial tumor weights and to evaluate histopathology. Results showed that bladders of the transgenic mice fed control diet weighed 3 to 5-fold more than did those of the wild-type mice due to urothelial tumor growth. However, treatment of transgenic mice with licofelone led to a significant, dose-dependent inhibition of the urothelial tumor growth (by 68.6%-80.2%, P < 0.0001 in males; by 36.9%-55.3%, P < 0.0001 in females) compared with the control group. The licofelone diet led to the development of significantly fewer invasive tumors in these transgenic mice. Urothelial tumor progression to invasive TCC was inhibited in both male (up to 50%; P < 0.01) and female mice (41%-44%; P < 0.003). Urothelial tumors of the licofelone-fed mice showed an increase in apoptosis (p53, p21, Bax, and caspase3) with a decrease in proliferation, inflammation, and angiogenesis markers (proliferating cell nuclear antigen, COX-2, 5-LOX, prostaglandin E synthase 1, FLAP, and VEGF). These results suggest that licofelone can serve as potential chemopreventive for bladder TCC. ©2014 American Association for Cancer Research.
She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B
2016-01-01
Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.
Ziganshin, A U; Ziganshina, L E; Hoyle, C H; Burnstock, G
1995-01-01
1. Several cations (Ba2+, Cd2+, Co2+, Cu2+, Mn2+, Ni2+, Zn2+ and La3+, all as chloride salts, 1-1000 microM) were tested in the guinea-pig urinary bladder for their ability to: (i) modify contractile responses to electrical field stimulation (EFS), ATP, alpha,beta-methylene ATP (alpha,beta-meATP), carbachol (CCh), and KCl; (ii) affect ecto-ATPase activity. 2. Ba2+ (10-1000 microM) concentration-dependently potentiated contractile responses evoked by EFS (4-16 Hz), ATP (100 microM), alpha,beta-meATP (1 microM), CCh (0.5 microM), and KCl (30 mM). Ni2+ at concentrations of 1-100 microM also potentiated contractility of the urinary bladder, but at concentrations tested its effect was not concentration-dependent. Cu2+ at a concentration of 10 microM and Cd2+ at a concentration of 1 microM potentiated responses to all stimuli, except KCl. Ni2+ at a concentration of 1000 microM and Cd2+ at a concentration of 100 microM inhibited contractions evoked by all stimuli, and at a concentration of 1000 microM Cd2+ abolished any contractions. Responses to ATP and alpha,beta-meATP were selectively inhibited by Cu2+, Zn2+ or La3+, each at a concentration of 1 mM. 3. Cu2+, Ni2+, Zn2+ and La3+ (100-1000 microM) concentration-dependently inhibited ecto-ATPase activity in the urinary bladder smooth muscle preparations, while Ba2+ and Mn2+ were without effect, and Cd2+ and Co2+ caused significant inhibition only at a concentration of 1000 microM. 4. There was no correlation between the extent of ecto-ATPase inhibition and the effect on contractile activity of any of the cations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7735690
Bladder contractility is modulated by Kv7 channels in pig detrusor.
Svalø, Julie; Bille, Michala; Parameswaran Theepakaran, Neeraja; Sheykhzade, Majid; Nordling, Jørgen; Bouchelouche, Pierre
2013-09-05
Kv7 channels are involved in smooth muscle relaxation, and accordingly we believe that they constitute potential targets for the treatment of overactive bladder syndrome. We have therefore used myography to examine the function of Kv7 channels in detrusor, i.e. pig bladder, with a view to determining the effects of the following potassium channel activators: ML213 (Kv7.2/Kv7.4 channels) and retigabine (Kv7.2-7.5 channels). Retigabine produced a concentration-dependent relaxation of carbachol- and electric field-induced contractions. The potency was similar in magnitude to that of ML213-induced relaxation, suggesting that Kv7.2 and/or Kv7.4 channels constitute the subtypes that are relevant to bladder contractility. The effects of retigabine and ML213 were attenuated by pre-incubation with 10µM XE991 (Kv7.1-7.5 channel blocker) (P<0.05), which in turn confirmed Kv7 channel selectivity. Subtype-selective effects were further investigated by incubating the detrusor with 10µM chromanol 293B (Kv7.1 channel blocker). Regardless of the experimental protocol, this did not cause a further increase in the evoked contraction. In contrast, the addition of XE991 potentiated the KCl-induced contractions, but not those induced by carbachol or electric field, indicating the presence of a phosphatidyl-inositol-4,5-biphosphate-dependent mechanism amongst the Kv7 channels in detrusor. qRT-PCR studies of the mRNA transcript level of Kv7.3-7.5 channels displayed a higher level of Kv7.4 transcript in detrusor compared to that present in brain cortex and heart tissues. Thus, we have shown that Kv7.4 channels are expressed and functionally active in pig detrusor, and that the use of selective Kv7.4 channel modulators in the treatment of detrusor overactivity seems promising. © 2013 Elsevier B.V. All rights reserved.
Pointright: a system to redirect mouse and keyboard control among multiple machines
Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA
2008-09-30
The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.
An illustrated anatomical ontology of the developing mouse lower urogenital tract
Georgas, Kylie M.; Armstrong, Jane; Keast, Janet R.; Larkins, Christine E.; McHugh, Kirk M.; Southard-Smith, E. Michelle; Cohn, Martin J.; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P.; Wiese, Carrie B.; Brennan, Jane; Davies, Jamie A.; Harding, Simon D.; Baldock, Richard A.; Little, Melissa H.; Vezina, Chad M.; Mendelsohn, Cathy
2015-01-01
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. PMID:25968320
An illustrated anatomical ontology of the developing mouse lower urogenital tract.
Georgas, Kylie M; Armstrong, Jane; Keast, Janet R; Larkins, Christine E; McHugh, Kirk M; Southard-Smith, E Michelle; Cohn, Martin J; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P; Wiese, Carrie B; Brennan, Jane; Davies, Jamie A; Harding, Simon D; Baldock, Richard A; Little, Melissa H; Vezina, Chad M; Mendelsohn, Cathy
2015-05-15
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. © 2015. Published by The Company of Biologists Ltd.
Putting the past behind us: Social stress-induced urinary retention can be overcome.
Weiss, Dana A; Butler, Stephan J; Fesi, Joanna; Long, Christopher J; Valentino, Rita J; Canning, Douglas A; Zderic, Stephen A
2015-08-01
To study the pathophysiology of dysfunctional voiding, we have previously developed a model of stress-induced voiding dysfunction. We have shown that cyclosporine A (CsA), an inhibitor of the Ca(2+)-calmodulin complex, can prevent social stress-induced urinary retention. However, treatment with cyclosporine has not had an effect on the increase in the stress peptide corticotrophin-releasing factor (CRF) in Barrington's nucleus, which is involved in the micturition pathway. We now investigate whether cyclosporine administered after stress can reverse the abnormal voiding phenotype, and whether it has effects on the bladder wall itself, or on the stress response within Barrington's nucleus. Six-week old Swiss-Webster mice were exposed to aggressor males for 1 h a day, followed by 23 h of barrier separation. In a long-term trial, 1 month of stress was followed by single-cage housing for 6 months. In a separate CsA reversal trial, mice either received CsA in drinking water or had plain drinking water during 1 month of single-cage housing during recovery. Bladder contractile function was examined on a Guth myograph. Nuclear translocation of myocyte enhancing factor (MEF)-2 and NFAT (nuclear factor of activated T cells) in the bladder was assessed using electrophoretic mobility shift assays (EMSAs). The expression of CRF was determined in Barrington's nucleus using in situ hybridization. Voiding dysfunction persisted for up to 6 months after stress exposure while mice recovered in single-cage housing. In the CsA reversal trial, voiding patterns improved when they received CsA in water during single-cage housing following stress, whereas those that underwent single-cage housing alone had persistent abnormal voiding (Fig. A). There was no difference between CRF levels in Barrington's nucleus between reversal groups (p = 0.42) (Fig. B), possibly indicating a direct effect on the bladder rather than a persistent stress effect. There were no differences in the contractility of bladder wall muscle. CsA decreased the nuclear translocation of MEF-2 and NFAT induced by stress (Fig. C,D). CsA reverses stress-induced urinary retention, but does not change the stress-induced CRF increase in Barrington's nucleus. Furthermore, bladder smooth muscle contractility is unchanged by CsA; however, there are changes in the levels of the downstream transcription factors MEF-2 and NFAT. We suspect that additional CsA responsive neural changes play a pivotal role in the abnormal voiding phenotype following social stress. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Lab on chip microdevices for cellular mechanotransduction in urothelial cells
NASA Astrophysics Data System (ADS)
Maziz, A.; Guan, N.; Svennersten, K.; Hallén-Grufman, K.; Jager, Edwin W. H.
2016-04-01
Cellular mechanotransduction is crucial for physiological function in the lower urinary tract. The bladder is highly dependent on the ability to sense and process mechanical inputs, illustrated by the regulated filling and voiding of the bladder. However, the mechanisms by which the bladder integrates mechanical inputs, such as intravesicular pressure, and controls the smooth muscles, remain unknown. To date no tools exist that satisfactorily mimic in vitro the dynamic micromechanical events initiated e.g. by an emerging inflammatory process or a growing tumour mass in the urinary tract. More specifically, there is a need for tools to study these events on a single cell level or in a small population of cells. We have developed a micromechanical stimulation chip that can apply physiologically relevant mechanical stimuli to single cells to study mechanosensitive cells in the urinary tract. The chips comprise arrays of microactuators based on the electroactive polymer polypyrrole (PPy). PPy offers unique possibilities and is a good candidate to provide such physiological mechanical stimulation, since it is driven at low voltages, is biocompatible, and can be microfabricated. The PPy microactuators can provide mechanical stimulation at different strains and/or strain rates to single cells or clusters of cells, including controls, all integrated on one single chip, without the need to preprepare the cells. This paper reports initial results on the mechano-response of urothelial cells using the micromechanical stimulation chips. We show that urothelial cells are viable on our microdevices and do respond with intracellular Ca2+ increase when subjected to a micro-mechanical stimulation.
Munoz, Alvaro; Gangitano, David A; Smith, Christopher P; Boone, Timothy B; Somogyi, George T
2010-05-24
The objective of our work was to investigate both the contractile function and the release of ATP and NO from strips of bladder tissue after removal of the urothelium. The method of removal was a gentle swabbing motion rather than a sharp surgical cutting to separate the urothelium from the smooth muscle. The contractile response and ATP and NO release were measured in intact as well as on swabbed preparations. The removal of the urothelial layer was affirmed microscopically. After the swabbing, the smaller contractions were evoked by electrical as well as by chemical stimulation (50 microM carbachol or 50 microM alpha, beta meATP). Electrical stimulation, carbachol and substance P (5 microM) evoked lower release of ATP in the swabbed strips than in intact strips. Although release of NO evoked by electrical stimulation or substance P was not changed, release of NO evoked by carbachol was significantly less in the swabbed preparations. Since swabbing removes only the urothelium, the presence of the suburothelial layer may explain the difference between our findings and those of others who found an increase in contractility. Evoked release of ATP is reduced in swabbed strips, indicating that ATP derives solely from the urothelium. On the other hand, electrical stimulation and substance P evoke identical degrees of NO release in both intact and swabbed preparations, suggesting that NO can be released from the suburothelium. Conversely, carbachol-induced release of NO is lower in swabbed strips, implying that the cholinergic receptors (muscarinic or nicotinic) are located in the upper layer of the urothelium.
Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Do, Minh; Dorschner, Wolfgang; Salomon, Franz-Viktor; Jurina, Konrad; Neuhaus, Jochen
2002-08-01
Because of their superficial anatomical resemblance, the male dog seems to be suitable for studying the physiologic and pathological alterations of the bladder neck of human males. The present study was carried out to compare and contrast the muscular anatomy of the male dog lower urinary tract with that of humans. The complete lower urinary tract, including the surrounding organs (bulb of penis, prostate, rectum and musculature of the pelvic floor) were removed from adult and newborn male dogs and histologically processed using serial section technique. Based on our own histological investigations, three-dimensional (3D)-models of the anatomy of the lower urinary tract were constructed to depict the corresponding structures and the differences between the species. The results of this study confirm that the lower urinary tract of the male dog bears some anatomical resemblance (musculus detrusor vesicae, prostate, prostatic and membranous urethra) to man. As with human males, the two parts of the musculus sphincter urethrae (glaber and transversostriatus) are evident in the canine bladder neck. Nevertheless, considerable differences in formation of individual muscles should be noted. In male dogs, no separate anatomic entity can be identified as vesical or internal sphincter. The individual course of the ventral and lateral longitudinal musculature and of the circularly arranged smooth musculature of the urethra is different to that of humans. Differences in the anatomy of individual muscles of the bladder neck in the male dog and man suggest that physiological interpretations of urethral functions obtained in one species cannot be attributed without qualification to the other.
[Physiology of the urethral sphincteric vesico-prostatic complex].
Carmignani, L; Gadda, F; Dell'Orto, P; Ferruti, M; Grisotto, M; Rocco, F
2001-09-01
We propose a review of the literature about innervation and physiology of the urethral sphincteric complex. Parasympathetic innervation of the pelvic viscera comes from ventral branches of the sacral nerves (S2-S4). The orthosympathetic component derives from superior hypogastric plexus and runs down the hypogastric nerves to form the right and left pelvic plexus together with the parasympathetic component. The pelvic plexus is situated inferolaterally with respect to the rectum and runs on the surface of the levator ani muscle down to the prostatic apex. The pelvic plexus gives innervation to the rectum, the bladder, the prostate and the urethral sphincteric complex. The pelvic muscular floor is innervated by the somatic component (pudendal nerve) derived from the sacral branches (S2-S4). Bladder neck and smooth muscle urethral sphincter innervation is given mostly by the orthosympathetic component. The rhabdosphincter innervation comes from the pudendal nerve and from the pelvic plexus; its role in the continence mechanism is probably to give steady tonic urethral compression. Levator ani muscle takes part in the sphincteric complex with its anteromedial pubococcygeal portion. It plays its role strengthening the sphincteric tone during increase of the abdominal pressure or during active quick stop cessation of the urinary stream.
Multimodal 3D cancer-mimicking optical phantom
Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.
2016-01-01
Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing various aspects of optical systems, including for evaluating new probe designs, characterizing the diagnostic potential of new technologies, and assessing novel image processing algorithms prior to validation in real tissue. We introduce and characterize the use of a new material, Dragon Skin (Smooth-On Inc.), and fabrication technique, air-brushing, for fabrication of a 3D phantom that mimics the appearance of a real organ under multiple imaging modalities. We demonstrate the utility of the material and technique by fabricating the first 3D, hollow bladder phantom with realistic normal and multi-stage pathology features suitable for endoscopic detection using the gold standard imaging technique, white light cystoscopy (WLC), as well as the complementary imaging modalities of optical coherence tomography and blue light cystoscopy, which are aimed at improving the sensitivity and specificity of WLC to bladder cancer detection. The flexibility of the material and technique used for phantom construction allowed for the representation of a wide range of diseased tissue states, ranging from inflammation (benign) to high-grade cancerous lesions. Such phantoms can serve as important tools for trainee education and evaluation of new endoscopic instrumentation. PMID:26977369
Trpm7 Protein Contributes to Intercellular Junction Formation in Mouse Urothelium*
Watanabe, Masaki; Suzuki, Yoshiro; Uchida, Kunitoshi; Miyazaki, Naoyuki; Murata, Kazuyoshi; Matsumoto, Seiji; Kakizaki, Hidehiro; Tominaga, Makoto
2015-01-01
Trpm7 is a divalent cation-permeable channel that has been reported to be involved in magnesium homeostasis as well as cellular adhesion and migration. We generated urothelium-specific Trpm7 knock-out (KO) mice to reveal the function of Trpm7 in vivo. A Trpm7 KO was induced by tamoxifen and was confirmed by genomic PCR and immunohistochemistry. By using patch clamp recordings in primary urothelial cells, we observed that Mg2+-inhibitable cation currents as well as acid-inducible currents were significantly smaller in Trpm7 KO urothelial cells than in cells from control mice. Assessment of voiding behavior indicated a significantly smaller voided volume in Trpm7 KO mice (mean voided volume 0.28 ± 0.08 g in KO mice and 0.36 ± 0.04 g in control mice, p < 0.05, n = 6–8). Histological analysis showed partial but substantial edema in the submucosal layer of Trpm7 KO mice, most likely due to inflammation. The expression of proinflammatory cytokines TNF-α and IL-1β was significantly higher in Trpm7 KO bladders than in controls. In transmission electron microscopic analysis, immature intercellular junctions were observed in Trpm7 KO urothelium but not in control mice. These results suggest that Trpm7 is involved in the formation of intercellular junctions in mouse urothelium. Immature intercellular junctions in Trpm7 knock-out mice might lead to a disruption of barrier function resulting in inflammation and hypersensitive bladder afferent nerves that may affect voiding behavior in vivo. PMID:26504086
Trpm7 Protein Contributes to Intercellular Junction Formation in Mouse Urothelium.
Watanabe, Masaki; Suzuki, Yoshiro; Uchida, Kunitoshi; Miyazaki, Naoyuki; Murata, Kazuyoshi; Matsumoto, Seiji; Kakizaki, Hidehiro; Tominaga, Makoto
2015-12-11
Trpm7 is a divalent cation-permeable channel that has been reported to be involved in magnesium homeostasis as well as cellular adhesion and migration. We generated urothelium-specific Trpm7 knock-out (KO) mice to reveal the function of Trpm7 in vivo. A Trpm7 KO was induced by tamoxifen and was confirmed by genomic PCR and immunohistochemistry. By using patch clamp recordings in primary urothelial cells, we observed that Mg(2+)-inhibitable cation currents as well as acid-inducible currents were significantly smaller in Trpm7 KO urothelial cells than in cells from control mice. Assessment of voiding behavior indicated a significantly smaller voided volume in Trpm7 KO mice (mean voided volume 0.28 ± 0.08 g in KO mice and 0.36 ± 0.04 g in control mice, p < 0.05, n = 6-8). Histological analysis showed partial but substantial edema in the submucosal layer of Trpm7 KO mice, most likely due to inflammation. The expression of proinflammatory cytokines TNF-α and IL-1β was significantly higher in Trpm7 KO bladders than in controls. In transmission electron microscopic analysis, immature intercellular junctions were observed in Trpm7 KO urothelium but not in control mice. These results suggest that Trpm7 is involved in the formation of intercellular junctions in mouse urothelium. Immature intercellular junctions in Trpm7 knock-out mice might lead to a disruption of barrier function resulting in inflammation and hypersensitive bladder afferent nerves that may affect voiding behavior in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhou, Yu; Shaw, Chris; Chen, Tianbao
2015-09-15
Amphibian skin, and particularly that of south/Central American phyllomedusine frogs, is supposed to be "a huge factory and store house of a variety of active peptides". The 40 amino acid amphibian CRF-like peptide, sauvagine, is a prototype member of a unique family of these Phyllomedusa skin peptides. In this study, we describe for the first time the structure of a mature novel peptide from the skin secretion of the South American orange-legged leaf frog, Phyllomedusa hypochondrialis, which belongs to the amphibian CRF/sauvagine family. Partial amino acid sequence from the N-terminal was obtained by automated Edman degradation with the following structure: pGlu-GPPISIDLNMELLRNMIEI-. The biosynthetic precursor of this novel sauvagine peptide, consisted of 85 amino acid residues and was deduced from cDNA library constructed from the same skin secretion. Compared with the standard sauvagine from the frog, Phyllomedusa sauvagei, this novel peptide was found to exert similar contraction effects on isolated guinea-pig colon and rat urinary bladder smooth muscle preparations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse.
Wang, Lingwei; Li, Jie; Zhang, Jian; He, Qi; Weng, Xuanwen; Huang, Yanmei; Guan, Minjie; Qiu, Chen
2017-02-26
Airway hyperresponsiveness (AHR), airway remodeling and inflammation are the fundamental pathological alterations that occur in asthma. Transient receptor potential canonical 3 (TRPC3) has been implicated in diverse functions of airway smooth muscle cells (ASMCs) in asthma. However, the underlying mechanisms remain incompletely understood. We investigated the mRNA and protein expression of TRPC3 in ASMCs from normal and OVA-sensitized mouse. And the effects of inhibition or knockdown of TRPC3 with Ethyl-1- (4- (2,3,3-trichloroacrylamide) phenyl) -5 - (trifluoromethyl) -1H -pyrazole -4-carboxylate (Pyr3) and lentiviral shRNA on OVA-sensitized mouse AHR, airway remodeling, circulating inflammatory cytokines, cell proliferation and migration. We found that TRPC3 mRNA and protein expression levels were significantly increased in ASMCs from OVA-sensitized mouse. Inhibiting TRPC3 with continuous subcutaneous administration of Pyr3 decreased enhanced pause (Penh) of OVA-sensitized mouse. Meanwhile, both Pyr3 and lentiviral shRNA treatment of ASMCs in OVA-sensitized mouse significantly decreased their proliferation and migration. These results suggest that TRPC3 plays a critical role in asthma and represents a promising new target for asthma treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Neuhaus, Jochen; Heinrich, Marco; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe
2009-02-01
Human detrusor smooth muscle cells (hBSMCs) are coupled by connexin 43 (Cx43)-positive gap junctions to form functional syncytia. Gap junctional communication likely is necessary for synchronised detrusor contractions and is supposed to be altered in voiding disturbances. Other authors have shown that the pleiotropic cytokine TGF-beta1 upregulates Cx43 expression in human aortic smooth muscle cells. In this study, we examined the TGF-beta1 effects on Cx43 expression in cultured hBSMCs. hBSMC cultures, established from patients undergoing cystectomy, were treated with recombinant human TGF-beta1. Cx43 expression was then examined by Western blotting, real-time PCR, and immunocytochemistry. Dye-injection experiments were used to study the size of functional syncytia. Dye-coupling experiments revealed stable formation of functional syncytia in passaged cell cultures (P1-P4). Stimulation with TGF-beta1 led to significant reduction of Cx43 immunoreactivity and coupling. Cx43 protein expression was significantly downregulated and Cx43 mRNA was only 30% of the control level. Interestingly, low phosphorylation species of Cx43 were particularly affected. Our experiments demonstrated a significant down regulation of connexin 43 by TGF-beta1 in cultured hBSMCs. These findings support the view that TGF-beta1 is involved in the pathophysiology of urinary bladder dysfunction.
Comparative histology of mouse, rat, and human pelvic ligaments.
Iwanaga, Ritsuko; Orlicky, David J; Arnett, Jameson; Guess, Marsha K; Hurt, K Joseph; Connell, Kathleen A
2016-11-01
The uterosacral (USL) and cardinal ligaments (CL) provide support to the uterus and pelvic organs, and the round ligaments (RL) maintain their position in the pelvis. In women with pelvic organ prolapse (POP), the connective tissue, smooth muscle, vasculature, and innervation of the pelvic support structures are altered. Rodents are commonly used animal models for POP research. However, the pelvic ligaments have not been defined in these animals. In this study, we hypothesized that the gross anatomy and histological composition of pelvic ligaments in rodents and humans are similar. We performed an extensive literature search for anatomical and histological descriptions of the pelvic support ligaments in rodents. We also performed anatomical dissections of the pelvis to define anatomical landmarks in relation to the ligaments. In addition, we identified the histological components of the pelvic ligaments and performed quantitative analysis of the smooth muscle bundles and connective tissue of the USL and RL. The anatomy of the USL, CL, and RL and their anatomical landmarks are similar in mice, rats, and humans. All species contain the same cellular components and have similar histological architecture. However, the cervical portion of the mouse USL and RL contain more smooth muscle and less connective tissue compared with rat and human ligaments. The pelvic support structures of rats and mice are anatomically and histologically similar to those of humans. We propose that both mice and rats are appropriate, cost-effective models for directed studies in POP research.
Ultrasonographic abdominal anatomy of healthy captive caracals (Caracal caracal).
Makungu, Modesta; du Plessis, Wencke M; Barrows, Michelle; Koeppel, Katja N; Groenewald, Hermanus B
2012-09-01
Abdominal ultrasonography was performed in six adult captive caracals (Caracal caracal) to describe the normal abdominal ultrasonographic anatomy. Consistently, the splenic parenchyma was hyperechoic to the liver and kidneys. The relative echogenicity of the right kidney's cortex was inconsistent to the liver. The gall bladder was prominent in five animals and surrounded by a clearly visualized thin, smooth, regular echogenic wall. The wall thickness of the duodenum measured significantly greater compared with that of the jejunum and colon. The duodenum had a significantly thicker mucosal layer compared with that of the stomach. Such knowledge of the normal abdominal ultrasonographic anatomy of individual species is important for accurate diagnosis and interpretation of routine health examinations.
WU, Yu-Yi; SUN, Zhi-Yu; GUO, Yan-Shu
2016-01-01
Triplophysa daochengensis sp. nov. is described from the Daocheng River, a northern tributary of the Jinsha River in Sichuan Province, China. The new species can be distinguished from its congeners by the following characters: body smooth and scales absent; lateral line complete; caudal peduncle compressed, depth unchanging; head length equal to caudal-peduncle length; lower jaw shovel-shaped; dorsal-fin origin anterior to pelvic-fin origin and closer to the tip of the snout than to the caudal-fin base, last unbranched ray hard; pelvic-fin tip not reaching anus; posterior chamber of gas bladder absent; intestine of spiral type with three winding coils. PMID:27686788
Microdose-Induced Drug–DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice
Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; ...
2016-11-30
Here, we report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14C]carboplatin (1% of the therapeutic dose). Carboplatin–DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice weremore » dosed with [ 14C]carboplatin or [ 14C]gemcitabine and the resulting drug–DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug–DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug–DNA adducts as predictive biomarkers.« less
Microdose-Induced Drug–DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong
Here, we report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14C]carboplatin (1% of the therapeutic dose). Carboplatin–DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice weremore » dosed with [ 14C]carboplatin or [ 14C]gemcitabine and the resulting drug–DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug–DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug–DNA adducts as predictive biomarkers.« less
Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice.
Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong; Lin, Tzu-Yin; Malfatti, Michael; Haack, Kurt; Ognibene, Ted; Yang, Hongyuan; Airhart, Susan; Turteltaub, Kenneth W; Cimino, George D; Tepper, Clifford G; Drakaki, Alexandra; Chamie, Karim; de Vere White, Ralph; Pan, Chong-Xian; Henderson, Paul T
2017-02-01
We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [ 14 C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [ 14 C]carboplatin or [ 14 C]gemcitabine and the resulting drug-DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. Mol Cancer Ther; 16(2); 376-87. ©2016 AACR. ©2016 American Association for Cancer Research.
Balemba, Onesmo B.; Stark, Timo D.; Lösch, Sofie; Patterson, Savannah; McMillan, John S.; Mawe, Gary M.; Hofmann, Thomas
2014-01-01
Garcinia buchananii Baker stem bark extract (GBB) is a traditional medication of diarrhea and dysentery in sub-Saharan Africa. It is believed that GBB causes gastrointestinal smooth muscle relaxation. The aim of this study was to determine whether GBB has spasmolytic actions and identify compounds underlying these actions. Calcium (Ca2+) imaging was used to analyze the effect of GBB on Ca2+ flashes and Ca2+ waves in guinea pig gallbladder and distal colon smooth muscle. Intracellular microelectrode recording was used to determine the effect of GBB, six fractions of GBB, M1–5 and M7, and (2R,3S,2”R,3”R)-manniflavanone, a compound isolated from M3 on action potentials in gallbladder smooth muscle. The technique was also used to analyze the effect of GBB, M3, and (2R,3S,2”R,3”R)-manniflavanone on action potentials in the circular muscle of mouse and guinea pig distal colons, and the effect of GBB and (2R,3S,2”R,3”R)-manniflavanone on slow waves in porcine ileum. GBB inhibited Ca2+ flashes and Ca2+ waves. GBB, M3 and (2R,3S,2”R,3”R)-manniflavanone inhibited action potentials. L-type Ca2+ channel activator Bay K 8644 increased the discharge of action potentials in mouse colon but did not trigger or increase action potentials in the presence of GBB and (2R,3S,2”R,3”R)-manniflavanone. GBB and (2R,3S,2”R,3”R)-manniflavanone inhibited action potentials in the presence of Bay K 8644. GBB and (2R,3S,2”R,3”R)-manniflavanone reduced the amplitude but did not alter the frequency of slow waves in the porcine ileum. In conclusion, GBB and (2R,3S,2”R,3”R)-manniflavanone relax smooth muscle by inhibiting L-type Ca2+ channels, thus have potential for use as therapies of gastrointestinal smooth muscle spasms, and arrhythmias. PMID:26081368
Sordat, B; Reiter, L; Cajot, J F
1990-12-02
Gene transfer techniques were utilized to evaluate the role of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI-1) in enhancing or preventing the expression of the invasive malignant phenotype, respectively. Mouse L-cell transfectants expressing human uPA or human PAI-1 as well as mouse B16 transfectants expressing mouse uPA or human PAI-1 were generated. These transfectants were tested using a variety of experimental methods including smooth muscle cell matrix solubilization in vitro, lung colony formation in vivo and co-cultures of antagonist-expressing cells in vitro. Results from these studies provide direct evidence for an enhancing role of uPA in malignant invasion and experimental metastasis and for a modulatory role of PAI-1 in tumor cell-mediated breakdown of extracellular matrices.
Optical coherence elastography for cellular-scale stiffness imaging of mouse aorta
NASA Astrophysics Data System (ADS)
Wijesinghe, Philip; Johansen, Niloufer J.; Curatolo, Andrea; Sampson, David D.; Ganss, Ruth; Kennedy, Brendan F.
2017-04-01
We have developed a high-resolution optical coherence elastography system capable of estimating Young's modulus in tissue volumes with an isotropic resolution of 15 μm over a 1 mm lateral field of view and a 100 μm axial depth of field. We demonstrate our technique on healthy and hypertensive, freshly excised and intact mouse aortas. Our technique has the capacity to delineate the individual mechanics of elastic lamellae and vascular smooth muscle. Further, we observe global and regional vascular stiffening in hypertensive aortas, and note the presence of local micro-mechanical signatures, characteristic of fibrous and lipid-rich regions.
Human Health Effects of Biphenyl: Key Findings and Scientific Issues.
Li, Zheng; Hogan, Karen A; Cai, Christine; Rieth, Susan
2016-06-01
In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) has evaluated the human health hazards of biphenyl exposure. We review key findings and scientific issues regarding expected human health effects of biphenyl. Scientific literature from 1926 through September 2012 was critically evaluated to identify potential human health hazards associated with biphenyl exposure. Key issues related to the carcinogenicity and noncancer health hazards of biphenyl were examined based on evidence from experimental animal bioassays and mechanistic studies. Systematic consideration of experimental animal studies of oral biphenyl exposure took into account the variety of study designs (e.g., study sizes, exposure levels, and exposure durations) to reconcile differing reported results. The available mechanistic and toxicokinetic evidence supports the hypothesis that male rat urinary bladder tumors arise through urinary bladder calculi formation but is insufficient to hypothesize a mode of action for liver tumors in female mice. Biphenyl and its metabolites may induce genetic damage, but a role for genotoxicity in biphenyl-induced carcinogenicity has not been established. The available health effects data for biphenyl provides suggestive evidence for carcinogenicity in humans, based on increased incidences of male rat urinary bladder tumors at high exposure levels and on female mouse liver tumors. Kidney toxicity is also a potential human health hazard of biphenyl exposure. Li Z, Hogan KA, Cai C, Rieth S. 2016. Human health effects of biphenyl: key findings and scientific issues. Environ Health Perspect 124:703-712; http://dx.doi.org/10.1289/ehp.1509730.
Constitutive β-catenin Activation Induces Male-Specific Tumorigenesis in the Bladder Urothelium
Lin, Congxing; Yin, Yan; Stemler, Kristina; Humphrey, Peter; Kibel, Adam S.; Mysorekar, Indira U.; Ma, Liang
2013-01-01
The incidence for bladder urothelial carcinoma (UC), a common malignancy of the urinary tract, is about three times higher in men than in women. Although this gender difference has been primarily attributed to differential exposures, it is likely that underlying biological causes contribute to the gender inequality. In this study, we report a transgenic mouse bladder tumor model upon induction of constitutively activated β-catenin signaling in the adult urothelium. We showed that the histopathology of the tumors observed in our model closely resembled that of the human low grade urothelial carcinoma. Additionally, we provided evidence supporting the KRT5-positive;KRT7-negative basal cells as the putative cells-of-origin for β-catenin-induced luminal tumor. Intriguingly, the tumorigenesis in this model demonstrated a marked difference between opposite sexes; forty percent of males developed macroscopically detectable luminal tumors in twelve weeks, whereas only three percent of females developed tumors. We investigated the mechanisms underlying this sexual dimorphism in pathogenesis and demonstrated that nuclear translocation of the androgen receptor (AR) in the urothelial cells is a critical mechanism contributing to tumor development in male mice. Finally, we performed global gene profiling experiments and defined the molecular signature for the β-catenin-induced tumorigenesis in males. Altogether, we have established a model for investigating sexual dimorphism in UC development, and implicated synergy between β-catenin signaling and androgen/AR signaling in carcinogenesis of the basal urothelial cells. PMID:23928991
Demanche, Annick; Bonlokke, Jakob; Beaulieu, Marie-Josee; Assayag, Evelyne; Cormier, Yvon
2009-01-01
Swine confinement workers are exposed to various contaminants. These agents can cause airway inflammation and bronchoconstriction. This study was undertaken to evaluate if the bronchoconstrictive effects of swine barn air and settled dust are mediated by endotoxin, and if these effects are directly mediated on airway smooth muscles. Mouse tracheas where isolated and mounted isometrically in organ baths. Tracheas, with or without epithelium, were attached to a force transducer and tension was recorded. Concentrated swine building air at 68 EU/ml or settled dust extract at 0.01 g/ml were added for 20 minutes and tracheal smooth muscle contraction was measured. Direct role of LPS was assessed by removing it from air concentrates with an endotoxin affinity resin. Swine barn air and settled dust extract caused contraction of tracheal smooth muscle by 26 and 20%, respectively, of the maximal induced by methacholine. Removal of epithelium did not affect the contractile effects. LPS alone and LPS with peptidoglycans did not induce contraction. However, when endotoxin was removed from swine barn air concentrates, it lost 24% of its contractile effect. Concentrated swine barn air and settled dust have direct effects on airway smooth muscles. This effect is partially due to LPS but a synergy with other components of the environment of swine confinement buildings is required.
YFa and analogs: investigation of opioid receptors in smooth muscle contraction.
Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh
2011-10-28
To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction.
Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan
2013-01-01
Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa-Silva, Bruno; Programa de Pos-graduacao em Neurociencias, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Campus Universitario - Trindade, 88040-900, Florianopolis, S.C.; Coelho da Costa, Meline
The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effectmore » was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.« less
Digimouse: a 3D whole body mouse atlas from CT and cryosection data
Dogdas, Belma; Stout, David; Chatziioannou, Arion F; Leahy, Richard M
2010-01-01
We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html. PMID:17228106
Xin, Wenkuan; Li, Ning; Cheng, Qiuping
2014-01-01
Elevation of intracellular cAMP and activation of protein kinase A (PKA) lead to activation of large conductance voltage- and Ca2+-activated K+ (BK) channels, thus attenuation of detrusor smooth muscle (DSM) contractility. In this study, we investigated the mechanism by which pharmacological inhibition of cAMP-specific phosphodiesterase 4 (PDE4) with rolipram or Ro-20-1724 (C15H22N2O3) suppresses guinea pig DSM excitability and contractility. We used high-speed line-scanning confocal microscopy, ratiometric fluorescence Ca2+ imaging, and perforated whole-cell patch-clamp techniques on freshly isolated DSM cells, along with isometric tension recordings of DSM isolated strips. Rolipram caused an increase in the frequency of Ca2+ sparks and the spontaneous transient BK currents (TBKCs), hyperpolarized the cell membrane potential (MP), and decreased the intracellular Ca2+ levels. Blocking BK channels with paxilline reversed the hyperpolarizing effect of rolipram and depolarized the MP back to the control levels. In the presence of H-89 [N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride], a PKA inhibitor, rolipram did not cause MP hyperpolarization. Rolipram or Ro-20-1724 reduced DSM spontaneous and carbachol-induced phasic contraction amplitude, muscle force, duration, and frequency, and electrical field stimulation-induced contraction amplitude, muscle force, and tone. Paxilline recovered DSM contractility, which was suppressed by pretreatment with PDE4 inhibitors. Rolipram had reduced inhibitory effects on DSM contractility in DSM strips pretreated with paxilline. This study revealed a novel cellular mechanism whereby pharmacological inhibition of PDE4 leads to suppression of guinea pig DSM contractility by increasing the frequency of Ca2+ sparks and the functionally coupled TBKCs, consequently hyperpolarizing DSM cell MP. Collectively, this decreases the global intracellular Ca2+ levels and DSM contractility in a BK channel-dependent manner. PMID:24459245
Asahara, Takashi; Nomoto, Koji; Watanuki, Masaaki; Yokokura, Teruo
2001-01-01
The antimicrobial activity of the intraurethrally administered probiotic Lactobacillus casei strain Shirota against Escherichia coli in a murine urinary tract infection (UTI) model was examined. UTI was induced by intraurethral administration of Escherichia coli strain HU-1 (a clinical isolate from a UTI patient, positive for type 1 and P fimbriae), at a dose of 1 × 106 to 2 × 106 CFU in 20 μl of saline, into a C3H/HeN mouse bladder which had been traumatized with 0.1 N HCl followed immediately by neutralization with 0.1 N NaOH 24 h before the challenge infection. Chronic infection with the pathogen at 106 CFU in the urinary tract (bladder and kidneys) was maintained for more than 3 weeks after the challenge, and the number of polymorphonuclear leukocytes and myeloperoxidase activity in the urine were markedly elevated during the infection period. A single administration of L. casei Shirota at a dose of 108 CFU 24 h before the challenge infection dramatically inhibited E. coli growth and inflammatory responses in the urinary tract. Multiple daily treatments with L. casei Shirota during the postinfection period also showed antimicrobial activity in this UTI model. A heat-killed preparation of L. casei Shirota exerted significant antimicrobial effects not only with a single pretreatment (100 μg/mouse) but also with multiple daily treatments during the postinfection period. The other Lactobacillus strains tested, i.e., L. fermentum ATCC 14931T, L. jensenii ATCC 25258T, L. plantarum ATCC 14917T, and L. reuteri JCM 1112T, had no significant antimicrobial activity. Taken together, these results suggest that the probiotic L. casei strain Shirota is a potent therapeutic agent for UTI. PMID:11353622
Asahara, T; Nomoto, K; Watanuki, M; Yokokura, T
2001-06-01
The antimicrobial activity of the intraurethrally administered probiotic Lactobacillus casei strain Shirota against Escherichia coli in a murine urinary tract infection (UTI) model was examined. UTI was induced by intraurethral administration of Escherichia coli strain HU-1 (a clinical isolate from a UTI patient, positive for type 1 and P fimbriae), at a dose of 1 x 10(6) to 2 x 10(6) CFU in 20 microl of saline, into a C3H/HeN mouse bladder which had been traumatized with 0.1 N HCl followed immediately by neutralization with 0.1 N NaOH 24 h before the challenge infection. Chronic infection with the pathogen at 10(6) CFU in the urinary tract (bladder and kidneys) was maintained for more than 3 weeks after the challenge, and the number of polymorphonuclear leukocytes and myeloperoxidase activity in the urine were markedly elevated during the infection period. A single administration of L. casei Shirota at a dose of 10(8) CFU 24 h before the challenge infection dramatically inhibited E. coli growth and inflammatory responses in the urinary tract. Multiple daily treatments with L. casei Shirota during the postinfection period also showed antimicrobial activity in this UTI model. A heat-killed preparation of L. casei Shirota exerted significant antimicrobial effects not only with a single pretreatment (100 microg/mouse) but also with multiple daily treatments during the postinfection period. The other Lactobacillus strains tested, i.e., L. fermentum ATCC 14931(T), L. jensenii ATCC 25258(T), L. plantarum ATCC 14917(T), and L. reuteri JCM 1112(T), had no significant antimicrobial activity. Taken together, these results suggest that the probiotic L. casei strain Shirota is a potent therapeutic agent for UTI.
Schleifenbaum, Johanna; Kassmann, Mario; Szijártó, István András; Hercule, Hantz C; Tano, Jean-Yves; Weinert, Stefanie; Heidenreich, Matthias; Pathan, Asif R; Anistan, Yoland-Marie; Alenina, Natalia; Rusch, Nancy J; Bader, Michael; Jentsch, Thomas J; Gollasch, Maik
2014-07-07
Vascular wall stretch is the major stimulus for the myogenic response of small arteries to pressure. The molecular mechanisms are elusive, but recent findings suggest that G protein-coupled receptors can elicit a stretch response. To determine whether angiotensin II type 1 receptors (AT1R) in vascular smooth muscle cells exert mechanosensitivity and identify the downstream ion channel mediators of myogenic vasoconstriction. We used mice deficient in AT1R signaling molecules and putative ion channel targets, namely AT1R, angiotensinogen, transient receptor potential channel 6 (TRPC6) channels, or several subtypes of the voltage-gated K+ (Kv7) gene family (KCNQ3, 4, or 5). We identified a mechanosensing mechanism in isolated mesenteric arteries and in the renal circulation that relies on coupling of the AT1R subtype a to a Gq/11 protein as a critical event to accomplish the myogenic response. Arterial mechanoactivation occurs after pharmacological block of AT1R and in the absence of angiotensinogen or TRPC6 channels. Activation of AT1R subtype a by osmotically induced membrane stretch suppresses an XE991-sensitive Kv channel current in patch-clamped vascular smooth muscle cells, and similar concentrations of XE991 enhance mesenteric and renal myogenic tone. Although XE991-sensitive KCNQ3, 4, and 5 channels are expressed in vascular smooth muscle cells, XE991-sensitive K+ current and myogenic contractions persist in arteries deficient in these channels. Our results provide definitive evidence that myogenic responses of mouse mesenteric and renal arteries rely on ligand-independent, mechanoactivation of AT1R subtype a. The AT1R subtype a signal relies on an ion channel distinct from TRPC6 or KCNQ3, 4, or 5 to enact vascular smooth muscle cell activation and elevated vascular resistance. © 2014 American Heart Association, Inc.
Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium.
Yu, Weiqun; Hill, Warren G; Apodaca, Gerard; Zeidel, Mark L
2011-01-01
The urothelium is proposed to be a sensory tissue that responds to mechanical stress by undergoing dynamic membrane trafficking and neurotransmitter release; however, the molecular basis of this function is poorly understood. Transient receptor potential (TRP) channels are ideal candidates to fulfill such a role as they can sense changes in temperature, osmolarity, and mechanical stimuli, and several are reported to be expressed in the bladder epithelium. However, their complete expression profile is unknown and their cellular localization is largely undefined. We analyzed expression of all 33 TRP family members in mouse bladder and urothelium by RT-PCR and found 22 specifically expressed in the urothelium. Of the latter, 10 were chosen for closer investigation based on their known mechanosensory or membrane trafficking functions in other cell types. Western blots confirmed urothelial expression of TRPC1, TRPC4, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, TRPML1, and polycystins 1 and 2 (PKD1 and PKD2) proteins. We further defined the cellular and subcellular localization of all 10 TRP channels. TRPV2 and TRPM4 were prominently localized to the umbrella cell apical membrane, while TRPC4 and TRPV4 were identified on their abluminal surfaces. TRPC1, TRPM7, and TRPML1 were localized to the cytoplasm, while PKD1 and PKD2 were expressed on the apical and basolateral membranes of umbrella cells as well as in the cytoplasm. The cellular location of TRPV1 in the bladder has been debated, but colocalization with neuronal marker calcitonin gene-related peptide indicated clearly that it is present on afferent neurons that extend into the urothelium, but may not be expressed by the urothelium itself. These findings are consistent with the hypothesis that the urothelium acts as a sentinel and by expressing multiple TRP channels it is likely it can detect and presumably respond to a diversity of external stimuli and suggest that it plays an important role in urothelial signal transduction.
Silva, R B M; Sperotto, N D M; Andrade, E L; Pereira, T C B; Leite, C E; de Souza, A H; Bogo, M R; Morrone, F B; Gomez, M V; Campos, M M
2015-01-01
Background and Purpose Spinal voltage-gated calcium channels (VGCCs) are pivotal regulators of painful and inflammatory alterations, representing attractive therapeutic targets. We examined the effects of epidural administration of the P/Q- and N-type VGCC blockers Tx3-3 and Phα1β, respectively, isolated from the spider Phoneutria nigriventer, on symptomatic, inflammatory and functional changes allied to mouse cyclophosphamide (CPA)-induced haemorrhagic cystitis (HC). The effects of P. nigriventer-derived toxins were compared with those displayed by MVIIC and MVIIA, extracted from the cone snail Conus magus. Experimental Approach HC was induced by a single i.p. injection of CPA (300 mg·kg–1). Dose- and time-related effects of spinally administered P/Q and N-type VGCC blockers were assessed on nociceptive behaviour and macroscopic inflammation elicited by CPA. The effects of toxins were also evaluated on cell migration, cytokine production, oxidative stress, functional cystometry alterations and TRPV1, TRPA1 and NK1 receptor mRNA expression. Key Results The spinal blockage of P/Q-type VGCC by Tx3-3 and MVIIC or N-type VGCC by Phα1β attenuated nociceptive and inflammatory events associated with HC, including bladder oxidative stress and cytokine production. CPA produced a slight increase in bladder TRPV1 and TRPA1 mRNA expression, which was reversed by all the toxins tested. Noteworthy, Phα1β strongly prevented bladder neutrophil migration, besides HC-related functional alterations, and its effects were potentiated by co-injecting the selective NK1 receptor antagonist CP-96345. Conclusions and Implications Our results shed new light on the role of spinal P/Q and N-type VGCC in bladder dysfunctions, pointing out Phα1β as a promising alternative for treating complications associated with CPA-induced HC. PMID:25298144
Berndt-Paetz, Mandy; Herbst, Luise; Weimann, Annett; Gonsior, Andreas; Stolzenburg, Jens-Uwe; Neuhaus, Jochen
2018-05-01
Muscarinic acetylcholine receptors (mAChRs) regulate a number of important physiological functions. Alteration of mAChR expression or function has been associated in the etiology of several pathologies including functional bladder disorders (e.g bladder pain syndrome/interstitial cystitis - BPS/IC). In a previous study we found specific mAChR expression patterns associated with BPS/IC, while correlation between protein and gene expression was lacking. Posttranslational regulatory mechanisms, e.g. altered intracellular receptor trafficking, could explain those differences. In addition, alternative G protein (GP) coupling could add to the pathophysiology via modulation of muscarinic signaling. In our proof-of-principle study, we addressed these questions in situ. We established PLA in combination with confocal laserscanning microscopy (CLSM) and 3D object reconstruction for highly specific detection and analysis of muscarinic 3 receptors (M3), G protein (GP) coupling and intracellular trafficking in human detrusor samples. Paraffin sections of formalin-fixed bladder tissue (FFPE) of BPS/IC patients receiving transurethral biopsy were examined by Cy3-PLA for M3 expression, coupling of M3 to GPs (G αq/11 , G αs , G αi ) and interaction of M3 with endocytic regulator proteins. Membranes were labeled with wheat germ agglutinin-Alexa Fluor ® 488, nuclei were stained with DAPI. Object density and co-localization were analyzed in 3D-reconstruction of high resolution confocal z-stacks. Confocal image stack processing resulted in well demarcated objects. Calculated receptor densities correlated significantly with existing confocal expression data, while significantly improved specificity of M3 detection by PLA was verified using bladder tissue samples from transgenic mice. 50-60% of the M3 receptor complexes were plasma membrane associated in human bladder detrusor. Application of PLA for M3 and GPs allowed visualization of M3-GP interactions and revealed individual GP-subtype coupling patterns. Detection of M3 interactions with endocytic trafficking proteins by PLA resulted in object sizes correlating with well-documented vesicle sizes of the endocytosis pathway. PLA enabled highly specific detection of M3 receptor expression, demonstration of M3/GP differential coupling and intracellular M3 trafficking in human detrusor smooth muscle cells. This new approach minimized background fluorescence and antibody cross-reactions resulting from single antibody application, and enhanced specificity due to the use of two primary antibodies. Use of subcellular markers allowed visualization of subcellular receptor location. PLA/CLSM allows analyses of muscarinic "receptor - G protein - promiscuity" and intracellular trafficking even in bladder paraffin sections and may give new insights into the etiology and pathology of BPS/IC. Copyright © 2018 Elsevier GmbH. All rights reserved.
Yuan, Ching; Bothun, Erick D.; Hardten, David R.; Tolar, Jakub; McLoon, Linda K.
2016-01-01
One common complication of mucopolysaccharidosis I-Hurler (MPS1-H) is corneal clouding, which occurs despite current treatments, including bone marrow transplantation. Human corneas were obtained from a 14 year old subject with MPS1-H and visual disability from progressive corneal clouding despite a prior bone marrow transplant at age 2. This was compared to a cornea from a 17 year old donated to our eye bank after his accidental death. The corneas were analyzed microscopically after staining with Alcian blue, antibodies to collagen I, IV, VI, and α-smooth muscle actin. Differences in levels of expression of the indicated molecules were assessed. Corneas from Hurler and control mice were examined similarly to determine potential mechanistic overlap. The MPS1-H subject cornea showed elevations in mucopolysaccharide deposition. The MPS1-H and Hurler mice corneas showed increased and disorganized expression of collagen I and IV relative to the control corneas. The MPS1-H corneas also showed increased and disordered expression of collagen VI. Positive expression of α-smooth muscle actin indicated myofibroblast conversion within the MPS1-H cornea in both the patient and mutant mouse material compared to normal human and control mouse cornea. Increased deposition of collagens and smooth muscle actin correlate with corneal clouding, providing a potential mechanism for corneal clouding despite bone marrow transplantation in MPS1-H patients. It might be possible to prevent or slow the onset of corneal clouding by treating the cornea with drugs known to prevent myofibroblast conversion. PMID:27235795
Hirata, Eiji; Fujiwara, Hisaya; Hayashi, Shogo; Ohtsuka, Aiji; Abe, Shin-Ichi; Murakami, Gen; Kudo, Yoshiki
2011-05-01
The fascia pelvis parietalis (FPP) or endopelvic fascia is a well-known structure, but few studies described the detailed histological architecture, including the composite fiber directions. We hypothesized a gender-specific fiber architecture corresponding to the functional demand. For the first step to examine this hypothesis, we investigated specimens from 27 adult cadavers (10 males and 17 females) and 11 midterm fetuses (five males and six females) using immunohistochemistry and aldehyde-fuchsin staining. The adult female FPP was a solid, thick monolayered structure that was reinforced by abundant elastic fibers running across the striated muscle fibers, but it contained little or no smooth muscles (SM). In contrast, the male FPP was multilayered with abundant SM. In midterm fetuses, SM originated from the inferior part of the bladder and extended inferiorly along the gender-specific courses. Thus, we found a clear intergender difference in FPP architecture. However, the functional significance remained unknown because the basic architecture was common between nulliparous and multiparous women. Rather than for meeting the likely mechanical demands of pregnancy and vaginal delivery, the intergender difference of the FPP seemed to result from differences in the amount and migration course of bladder-derived SM as well as in hormonal background. Copyright © 2010 Wiley-Liss, Inc.
de Scorza, C; Herrera, L; Urdaneta-Morales, S
1996-01-01
The histopathological alterations produced in NMRI strain mice by isolates of Trypanosoma cruzi from Didelphis marsupialis captured near human dwellings in the valley of Caracas, Venezuela are described. The donor opossums showed pseudocysts and amastigotes and trypomastigotes only in the heart muscle, and few areas of discrete inflammations and lysis of some muscle cells. Mice were parasitized in the heart, skeletal muscle, jejunum, colon, liver, lung, urinary bladder, penis, seminal vesicle, prostate, pancreas, and brain. All the isolates produced histiolymphocytic inflammation, severe in cardiac and skeletal muscle, and light in the smooth muscle of the intestine and urinary bladder; certain of the isolates produced destruction of muscle fibers. These findings, together with the morphology and behavior reported in previous papers, suggest that the isolates from this mammal reservoir and from the local vector (Panstrongylus geniculatus) belong to the same type. The possible venereal transmission through the parasitosis of the urogenital system is discussed. The necessity for characterization of strains of the parasite that have been isolated from areas of intense urbanization, where the ecological changes have reduced the number of host species, is emphasized; such studies may help to clarify the extreme heterogeneity of T. cruzi and the parasitoses it induces.
Ge, Lilin; Lyu, Peng; Zhou, Mei; Zhang, Huiling; Wan, Yuantai; Li, Bin; Li, Renjie; Wang, Lei; Chen, Tianbao; Shaw, Chris
2014-01-01
Tryptophyllins are a diverse family of amphibian peptides originally found in extracts of phyllomedusine frog skin by chemical means. Their biological activities remain obscure. Here we describe the isolation and preliminary pharmacological characterization of a novel type 2 tryptophyllin, named AcT-2, from the skin secretion of the red-eyed leaf frog, Agalychnis callidryas. The peptide was initially identified during smooth muscle pharmacological screening of skin secretion HPLC fractions and the unique primary structure--GMRPPWF-NH2--was established by both Edman degradation and electrospray MS/MS fragmentation sequencing. A. cDNA encoding the biosynthetic precursor of AcT-2 was successfully cloned from a skin secretion-derived cDNA library by means of RACE PCR and this contained an open-reading frame consisting of 62 amino acid residues with a single AcT-2 encoding sequence located towards the C-terminus. A synthetic replicate of AcT-2 was found to relax arterial smooth muscle (EC50 = 5.1 nM) and to contract rat urinary bladder smooth muscle (EC50 = 9.3 μ M). The peptide could also inhibit the growth of the microorganisms, Staphylococcus aureus, (MIC = 256 mg/L) Escherichia coli (MIC = 512 mg/L), and Candida albicans (128 mg/L). AcT-2 is thus the first amphibian skin tryptophyllin found to possess both myotropic and antimicrobial activities.
MURC deficiency in smooth muscle attenuates pulmonary hypertension.
Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi
2016-08-22
Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling.
MURC deficiency in smooth muscle attenuates pulmonary hypertension
Nakanishi, Naohiko; Ogata, Takehiro; Naito, Daisuke; Miyagawa, Kotaro; Taniguchi, Takuya; Hamaoka, Tetsuro; Maruyama, Naoki; Kasahara, Takeru; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi
2016-01-01
Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertension (PH) accompanied by reduced ROCK activity in the lung. Conditional knockout mice lacking Murc in smooth muscle also resist hypoxia-induced PH. MURC regulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through Rho/ROCK signalling. Cav1 suppresses RhoA activity in PASMCs, which is reversed by MURC. MURC binds to Cav1 and inhibits the association of Cav1 with the active form of Gα13, resulting in the facilitated association of the active form of Gα13 with p115RhoGEF. These results reveal that MURC has a function in the development of PH through modulating Rho/ROCK signalling. PMID:27546070
Contractile markers distinguish structures of the mouse aqueous drainage tract
Ko, MinHee K.
2013-01-01
Purpose Structures of the aqueous humor drainage tract are contractile, although the tract is not entirely composed of muscle. We characterized the mouse aqueous drainage tract by immunolabeling contractile markers and determined whether profiling these markers within the tract distinguished its key structures of the trabecular meshwork (TM) and ciliary muscle (CM). Methods Enucleated eyes from pigmented C57BL/6 (n=8 mice) and albino BALB/c (n=6 mice) mice were processed for cryo- and formalin-fixed paraffin-embedded sectioning. Immunofluorescence labeling was performed for the following: (a) filamentous actin (using fluorescence-conjugated phalloidin), representing a global contractile marker; (b) α-smooth muscle actin (α-SMA), caldesmon, and calponin, representing classic smooth muscle epitopes; and (c) nonmuscle myosin heavy chain, representing a nonmuscle contractile protein. Tissue labeling was identified by confocal microscopy and analyzed quantitatively. Hematoxylin and eosin staining provided structural orientation. Results A small portion of the TM faced the anterior chamber; the rest extended posteriorly alongside Schlemm’s canal (SC) within the inner sclera. Within the drainage tract, filamentous actin labeling was positive in TM and CM. α-SMA and caldesmon labeling was seen primarily along the CM, which extended from the anterior chamber angle to its posterior termination beyond the SC near the retina. Low intensity, patchy α-SMA and caldesmon labeling was seen in the TM. Myosin heavy chain immunoreactivity was primarily found in the TM and calponin was primarily observed in the CM. C57BL/6 and BALB/c comparison showed that pigment obscured fluorescence in the ciliary body. Conclusions Our strategy of profiling contractile markers distinguished mouse aqueous drainage tract structures that were otherwise indistinguishable by hematoxylin and eosin staining. The mouse TM was seen as an intervening structure between SC, a part of the conventional drainage tract, and CM, a part of the unconventional drainage tract. Our findings provide important insights into the structural and functional organization of the mouse aqueous drainage tract and a basis for exploring the role of contractility in modulating aqueous outflow. PMID:24357924
Lin, Yan; Chen, Tianbao; Zhou, Mei; Wang, Lei; Su, Songkun; Shaw, Chris
2017-07-04
Bombesin-related peptides are a family of peptides whose prototype was discovered in amphibian skin and which exhibit a wide range of biological activities. Since the initial isolation of bombesin from Bombina bombina skin, diverse forms of bombesin-related peptides have been found in the skins across Anura. In this study, a novel bombesin-related peptide of the ranatensin subfamily, named ranatensin-HL, was structurally-characterised from the skin secretion of the broad-folded frog, Hylarana latouchii , through combination of molecular cloning and mass spectrometric methodologies. It is composed of 13 amino acid residues, pGlu-RAGNQWAIGHFM-NH₂, and resembles an N-terminally extended form of Xenopus neuromedin B. Ranatensin-HL and its C-terminal decapeptide (ranatensin-HL-10) were chemically synthesised and subjected to in vitro smooth muscle assays in which they were found to display moderate stimulatory effects on rat urinary bladder and uterus smooth muscles with EC 50 values in the range of 1-10 nM. The prepro-ranatensin-HL was highly homological to a bombesin-like peptide from Rana catesbeiana at both nucleotide and amino acid levels, which might provide a clue for the taxonomic classification of ranid frogs in the future.
Walker, Jennifer N; Flores-Mireles, Ana L; Pinkner, Chloe L; Schreiber, Henry L; Joens, Matthew S; Park, Alyssa M; Potretzke, Aaron M; Bauman, Tyler M; Pinkner, Jerome S; Fitzpatrick, James A J; Desai, Alana; Caparon, Michael G; Hultgren, Scott J
2017-10-10
Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of catheter-associated urinary tract infection (CAUTI), which frequently progresses to more serious invasive infections. We adapted a mouse model of CAUTI to investigate how catheterization increases an individual's susceptibility to MRSA UTI. This analysis revealed that catheterization was required for MRSA to achieve high-level, persistent infection in the bladder. As shown previously, catheter placement induced an inflammatory response resulting in the release of the host protein fibrinogen (Fg), which coated the bladder and implant. Following infection, we showed that MRSA attached to the urothelium and implant in patterns that colocalized with deposited Fg. Furthermore, MRSA exacerbated the host inflammatory response to stimulate the additional release and accumulation of Fg in the urinary tract, which facilitated MRSA colonization. Consistent with this model, analysis of catheters from patients with S. aureus -positive cultures revealed colocalization of Fg, which was deposited on the catheter, with S. aureus Clumping Factors A and B (ClfA and ClfB) have been shown to contribute to MRSA-Fg interactions in other models of disease. We found that mutants in clfA had significantly greater Fg-binding defects than mutants in clfB in several in vitro assays. Paradoxically, only the ClfB - strain was significantly attenuated in the CAUTI model. Together, these data suggest that catheterization alters the urinary tract environment to promote MRSA CAUTI pathogenesis by inducing the release of Fg, which the pathogen enhances to persist in the urinary tract despite the host's robust immune response.
Murphy, Caitlin N.; Mortensen, Martin S.; Krogfelt, Karen A.
2013-01-01
Catheter-associated urinary tract infections are biofilm-mediated infections that cause a significant economic and health burden in nosocomial environments. Using a newly developed murine model of this type of infection, we investigated the role of fimbriae in implant-associated urinary tract infections by the Gram-negative bacterium Klebsiella pneumoniae, which is a proficient biofilm former and a commonly isolated nosocomial pathogen. Studies have shown that type 1 and type 3 fimbriae are involved in attachment and biofilm formation in vitro, and these fimbrial types are suspected to be important virulence factors during infection. To test this hypothesis, the virulence of fimbrial mutants was assessed in independent challenges in which mouse bladders were inoculated with the wild type or a fimbrial mutant and in coinfection studies in which the wild type and fimbrial mutants were inoculated together to assess the results of a direct competition in the urinary tract. Using these experiments, we were able to show that both fimbrial types serve to enhance colonization and persistence. Additionally, a double mutant had an additive colonization defect under some conditions, indicating that both fimbrial types have unique roles in the attachment and persistence in the bladder and on the implant itself. All of these mutants were outcompeted by the wild type in coinfection experiments. Using these methods, we are able to show that type 1 and type 3 fimbriae are important colonization factors in the murine urinary tract when an implanted silicone tube is present. PMID:23753626
Walker, Jennifer N.; Flores-Mireles, Ana L.; Pinkner, Chloe L.; Schreiber, Henry L.; Joens, Matthew S.; Park, Alyssa M.; Potretzke, Aaron M.; Bauman, Tyler M.; Pinkner, Jerome S.; Fitzpatrick, James A. J.; Desai, Alana; Caparon, Michael G.
2017-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of catheter-associated urinary tract infection (CAUTI), which frequently progresses to more serious invasive infections. We adapted a mouse model of CAUTI to investigate how catheterization increases an individual’s susceptibility to MRSA UTI. This analysis revealed that catheterization was required for MRSA to achieve high-level, persistent infection in the bladder. As shown previously, catheter placement induced an inflammatory response resulting in the release of the host protein fibrinogen (Fg), which coated the bladder and implant. Following infection, we showed that MRSA attached to the urothelium and implant in patterns that colocalized with deposited Fg. Furthermore, MRSA exacerbated the host inflammatory response to stimulate the additional release and accumulation of Fg in the urinary tract, which facilitated MRSA colonization. Consistent with this model, analysis of catheters from patients with S. aureus-positive cultures revealed colocalization of Fg, which was deposited on the catheter, with S. aureus. Clumping Factors A and B (ClfA and ClfB) have been shown to contribute to MRSA–Fg interactions in other models of disease. We found that mutants in clfA had significantly greater Fg-binding defects than mutants in clfB in several in vitro assays. Paradoxically, only the ClfB− strain was significantly attenuated in the CAUTI model. Together, these data suggest that catheterization alters the urinary tract environment to promote MRSA CAUTI pathogenesis by inducing the release of Fg, which the pathogen enhances to persist in the urinary tract despite the host’s robust immune response. PMID:28973850
Human Health Effects of Biphenyl: Key Findings and Scientific Issues
Li, Zheng; Hogan, Karen A.; Cai, Christine; Rieth, Susan
2015-01-01
Background: In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) has evaluated the human health hazards of biphenyl exposure. Objectives: We review key findings and scientific issues regarding expected human health effects of biphenyl. Methods: Scientific literature from 1926 through September 2012 was critically evaluated to identify potential human health hazards associated with biphenyl exposure. Key issues related to the carcinogenicity and noncancer health hazards of biphenyl were examined based on evidence from experimental animal bioassays and mechanistic studies. Discussion: Systematic consideration of experimental animal studies of oral biphenyl exposure took into account the variety of study designs (e.g., study sizes, exposure levels, and exposure durations) to reconcile differing reported results. The available mechanistic and toxicokinetic evidence supports the hypothesis that male rat urinary bladder tumors arise through urinary bladder calculi formation but is insufficient to hypothesize a mode of action for liver tumors in female mice. Biphenyl and its metabolites may induce genetic damage, but a role for genotoxicity in biphenyl-induced carcinogenicity has not been established. Conclusions: The available health effects data for biphenyl provides suggestive evidence for carcinogenicity in humans, based on increased incidences of male rat urinary bladder tumors at high exposure levels and on female mouse liver tumors. Kidney toxicity is also a potential human health hazard of biphenyl exposure. Citation: Li Z, Hogan KA, Cai C, Rieth S. 2016. Human health effects of biphenyl: key findings and scientific issues. Environ Health Perspect 124:703–712; http://dx.doi.org/10.1289/ehp.1509730 PMID:26529796
YFa and analogs: Investigation of opioid receptors in smooth muscle contraction
Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh
2011-01-01
AIM: To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. METHODS: The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. RESULTS: YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. CONCLUSION: YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction. PMID:22110284
2018-03-20
Bladder Cancer; Bladder Neoplasm; Bladder Tumors; Cancer of Bladder; Cancer of the Bladder; Malignant Tumor of Urinary Bladder; Neoplasms, Bladder; Urinary Bladder Cancer; Carcinoma in Situ of Bladder; Papillary Carcinoma of Bladder (Diagnosis); BCG-Unresponsive Bladder Cancer
Bhetwal, Bhupal P.; An, Changlong; Baker, Salah A.; Lyon, Kristin L.
2013-01-01
Diabetic gastroparesis is a common complication of diabetes, adversely affecting quality of life with symptoms of abdominal discomfort, nausea, and vomiting. The pathogenesis of this complex disorder is not well understood, involving abnormalities in the extrinsic and enteric nervous systems, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The ob/ob mouse model of obesity and diabetes develops delayed gastric emptying, providing an animal model for investigating how gastric smooth muscle dysfunction contributes to the pathophysiology of diabetic gastroparesis. Although ROCK2, MYPT1, and CPI-17 activities are reduced in intestinal motility disorders, their functioning has not been investigated in diabetic gastroparesis. We hypothesized that reduced expression and phosphorylation of the myosin light chain phosphatase (MLCP) inhibitory proteins MYPT1 and CPI-17 in ob/ob gastric antrum smooth muscles could contribute to the impaired antrum smooth muscle function of diabetic gastroparesis. Spontaneous and carbachol- and high K+-evoked contractions of gastric antrum smooth muscles from 7 to 12 week old male ob/ob mice were reduced compared to age- and strain-matched controls. There were no differences in spontaneous and agonist-evoked intracellular Ca2+ transients and myosin light chain kinase expression. The F-actin:G-actin ratios were similar. Rho kinase 2 (ROCK2) expression was decreased at both ages. Basal and agonist-evoked MYPT1 and myosin light chain 20 phosphorylation, but not CPI-17 phosphorylation, was reduced compared to age-matched controls. These findings suggest that reduced MLCP inhibition due to decreased ROCK2 phosphorylation of MYPT1 in gastric antrum smooth muscles contributes to the antral dysmotility of diabetic gastroparesis. PMID:23576331
Jiang, Haihong; Xie, Yan; Abel, Peter W.; Toews, Myron L.; Townley, Robert G.; Casale, Thomas B.
2012-01-01
We recently reported that phosphoinositide 3-kinase γ (PI3Kγ) directly regulates airway smooth muscle (ASM) contraction by modulating Ca2+ oscillations. Because ASM contraction plays a critical role in airway hyperresponsiveness (AHR) of asthma, the aim of the present study was to determine whether targeting PI3Kγ in ASM cells could suppress AHR in vitro and in vivo. Intranasal administration into mice of interleukin-13 (IL-13; 10 μg per mouse), a key pathophysiologic cytokine in asthma, induced AHR after 48 h, as assessed by invasive tracheostomy. Intranasal administration of a broad-spectrum PI3K inhibitor or a PI3Kγ-specific inhibitor 1 h before AHR assessment attenuated IL-13 effects. Airway responsiveness to bronchoconstrictor agonists was also examined in precision-cut mouse lung slices pretreated without or with IL-13 for 24 h. Acetylcholine and serotonin dose-response curves indicated that IL-13-treated lung slices had a 40 to 50% larger maximal airway constriction compared with controls. Furthermore, acetylcholine induced a larger initial Ca2+ transient and increased Ca2+ oscillations in IL-13-treated primary mouse ASM cells compared with control cells, correlating with increased cell contraction. As expected, PI3Kγ inhibitor treatment attenuated IL-13-augmented airway contractility of lung slices and ASM cell contraction. In both control and IL-13-treated ASM cells, small interfering RNA-mediated knockdown of PI3Kγ by 70% only reduced the initial Ca2+ transient by 20 to 30% but markedly attenuated Ca2+ oscillations and contractility of ASM cells by 50 to 60%. This report is the first to demonstrate that PI3Kγ in ASM cells is important for IL-13-induced AHR and that acute treatment with a PI3Kγ inhibitor can ameliorate AHR in a murine model of asthma. PMID:22543031
The performance of silk scaffolds in a rat model of augmentation cystoplasty.
Seth, Abhishek; Chung, Yeun Goo; Gil, Eun Seok; Tu, Duong; Franck, Debra; Di Vizio, Dolores; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R
2013-07-01
The diverse processing plasticity of silk-based biomaterials offers a versatile platform for understanding the impact of structural and mechanical matrix properties on bladder regenerative processes. Three distinct groups of 3-D matrices were fabricated from aqueous solutions of Bombyx mori silk fibroin either by a gel spinning technique (GS1 and GS2 groups) or a solvent-casting/salt-leaching method in combination with silk film casting (FF group). SEM analyses revealed that GS1 matrices consisted of smooth, compact multi-laminates of parallel-oriented silk fibers while GS2 scaffolds were composed of porous (pore size range, 5-50 μm) lamellar-like sheets buttressed by a dense outer layer. Bi-layer FF scaffolds were comprised of porous foams (pore size, ~400 μm) fused on their external face with a homogenous, nonporous silk film. Silk groups and small intestinal submucosa (SIS) matrices were evaluated in a rat model of augmentation cystoplasty for 10 weeks of implantation and compared to cystotomy controls. Gross tissue evaluations revealed the presence of intra-luminal stones in all experimental groups. The incidence and size of urinary calculi was the highest in animals implanted with gel spun silk matrices and SIS with frequencies ≥57% and stone diameters of 3-4 mm. In contrast, rats augmented with FF scaffolds displayed substantially lower rates (20%) and stone size (2 mm), similar to the levels observed in controls (13%, 2 mm). Histological (hematoxylin and eosin, Masson's trichrome) and immunohistochemical (IHC) analyses showed comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites supported by all matrix groups similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent uroplakin and p63 protein expression in all experimental groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by Fox3-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. In comparison to other biomaterial groups, cystometric analyses at 10 weeks post-op revealed that animals implanted with the FF matrix configuration displayed superior urodynamic characteristics including compliance, functional capacity, as well as spontaneous non voiding contractions consistent with control levels. Our data demonstrate that variations in scaffold processing techniques can influence the in vivo functional performance of silk matrices in bladder reconstructive procedures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kamysz, Elżbieta; Sałaga, Maciej; Sobczak, Marta; Kamysz, Wojciech; Fichna, Jakub
2013-03-01
Opiorphin and sialorphin are two recently discovered endogenous enkephalin-degrading enzyme inhibitors. Our aim was to characterize their effect on the mouse ileum motility and to investigate the role of glutamine in position 1. Opiorphin, sialorphin, and their analogs substituted in position 1 with pyroglutamic acid (pGlu) were synthesized by the solid-phase method using Fmoc chemistry. The effect of peptides on gastrointestinal (GI) motility was characterized using in vitro assays and in mouse model of upper GI transit. Opiorphin and sialorphin, but not their analogs, significantly increased electrical field-stimulated contractions in the mouse ileum in a δ-opioid receptor-dependent manner. Opiorphin, sialorphin, and their analogs did not influence the effect of [Met(5)]enkephalin on smooth muscle contractility in the mouse ileum in vitro. [Met(5)]enkephalin and sialorphin, but not opiorphin injected intravenously (1 mg/kg), significantly inhibited the upper GI transit. The intraperitoneal administration of peptides (3 mg/kg) did not change the mouse upper GI transit. In conclusion, this is the first study investigating the effect of opiorphin and sialorphin on the mouse ileum motility and demonstrating that glutamine in position 1 is crucial for their pharmacological action. Our results may be important for further structure-activity relationship studies on opiorphin and sialorphin and future development of potent clinical therapeutics aiming at the enkephalinergic system. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.
Kim, Ji-Yun; Park, Hye-Jin; Um, Sung Hee; Sohn, Eun-Hwa; Kim, Byung-Oh; Moon, Eun-Yi; Rhee, Dong-Kwon; Pyo, Suhkneung
2012-01-01
Atherosclerosis is a long-term inflammatory disease of the arterial wall. Increased expression of the cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) is associated with increased proliferation of vascular smooth muscle cells (VSMCs), leading to increased neointima or atherosclerotic lesion formation. Therefore, the functional inhibition of adhesion molecules could be a critical therapeutic target of inflammatory disease. In the present study, we investigate the effect of sulforaphane on the expression of VCAM-1 induced by TNF-α in cultured mouse vascular smooth muscle cell lines. Pretreatment of VSMCs for 2h with sulforaphane (1-5μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of VCAM-1. Sulforaphane also suppressed TNF-α-induced production of intracellular reactive oxygen species (ROS) and activation of p38, ERK and JNK. Furthermore, sulforaphane inhibited NK-κB and AP-1 activation induced by TNF-α. Sulforaphane inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα and nuclear translocation of p65 NF-κB and decreased c-Jun and c-Fos protein level. This study suggests that sulforaphane inhibits the adhesive capacity of VSMC and downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the MAPK, NF-κB and AP-1 signaling pathways and intracellular ROS production. Thus, sulforaphane may have beneficial effects to suppress inflammation within the atherosclerotic lesion. Copyright © 2011 Elsevier Inc. All rights reserved.
Kelm, R J; Cogan, J G; Elder, P K; Strauch, A R; Getz, M J
1999-05-14
Transcriptional activity of the mouse vascular smooth muscle alpha-actin gene in fibroblasts is regulated, in part, by a 30-base pair asymmetric polypurine-polypyrimidine tract containing an essential MCAT enhancer motif. The double-stranded form of this sequence serves as a binding site for a transcription enhancer factor 1-related protein while the separated single strands interact with two distinct DNA binding activities termed VACssBF1 and 2 (Cogan, J. G., Sun, S., Stoflet, E. S., Schmidt, L. J., Getz, M. J., and Strauch, A. R. (1995) J. Biol. Chem. 270, 11310-11321; Sun, S., Stoflet, E. S., Cogan, J. G., Strauch, A. R., and Getz, M. J. (1995) Mol. Cell. Biol. 15, 2429-2936). VACssBF2 has been recently cloned and shown to consist of two closely related proteins, Puralpha and Purbeta (Kelm, R. J., Elder, P. K., Strauch, A. R., and Getz, M. J. (1997) J. Biol. Chem. 272, 26727-26733). In this study, we demonstrate that Puralpha and Purbeta interact with each other via highly specific protein-protein interactions and bind to the purine-rich strand of the MCAT enhancer in the form of both homo- and heteromeric complexes. Moreover, both Pur proteins interact with MSY1, a VACssBF1-like protein cloned by virtue of its affinity for the pyrimidine-rich strand of the enhancer. Interactions between Puralpha, Purbeta, and MSY1 do not require the participation of DNA. Combinatorial interactions between these three single-stranded DNA-binding proteins may be important in regulating activity of the smooth muscle alpha-actin MCAT enhancer in fibroblasts.
Cushing, Leah; Costinean, Stefan; Xu, Wei; Jiang, Zhihua; Madden, Lindsey; Kuang, Pingping; Huang, Jingshu; Weisman, Alexandra; Hata, Akiko; Croce, Carlo M; Lü, Jining
2015-05-01
Differentiation of lung vascular smooth muscle cells (vSMCs) is tightly regulated during development or in response to challenges in a vessel specific manner. Aberrant vSMCs specifically associated with distal pulmonary arteries have been implicated in the pathogenesis of respiratory diseases, such as pulmonary arterial hypertension (PAH), a progressive and fatal disease, with no effective treatment. Therefore, it is highly relevant to understand the underlying mechanisms of lung vSMC differentiation. miRNAs are known to play critical roles in vSMC maturation and function of systemic vessels; however, little is known regarding the role of miRNAs in lung vSMCs. Here, we report that miR-29 family members are the most abundant miRNAs in adult mouse lungs. Moreover, high levels of miR-29 expression are selectively associated with vSMCs of distal vessels in both mouse and human lungs. Furthermore, we have shown that disruption of miR-29 in vivo leads to immature/synthetic vSMC phenotype specifically associated with distal lung vasculature, at least partially due to the derepression of KLF4, components of the PDGF pathway and ECM-related genes associated with synthetic phenotype. Moreover, we found that expression of FBXO32 in vSMCs is significantly upregulated in the distal vasculature of miR-29 null lungs. This indicates a potential important role of miR-29 in smooth muscle cell function by regulating FBXO32 and SMC protein degradation. These results are strongly supported by findings of a cell autonomous role of endogenous miR-29 in promoting SMC differentiation in vitro. Together, our findings suggested a vessel specific role of miR-29 in vSMC differentiation and function by targeting several key negative regulators.
Hasaneen, Nadia A; Foda, Hussein D; Said, Sami I
2003-09-01
Both vasoactive intestinal peptide (VIP) and nitric oxide (NO) relax airway smooth muscle and are potential co-transmitters of neurogenic airway relaxation. The availability of neuronal NO synthase (nNOS) knockout mice (nNOS-/-) provides a unique opportunity for evaluating NO. To evaluate the relative importance of NO, especially that generated by nNOS, and VIP as transmitters of the inhibitory nonadrenergic, noncholinergic (NANC) system. In this study, we compared the neurogenic (tetrodotoxin-sensitive) NANC relaxation of tracheal segments from nNOS-/- mice and control wild-type mice (nNOS(+/+)), induced by electrical field stimulation (EFS). We also examined the tracheal contractile response to methacholine and its relaxant response to VIP. EFS (at 60 V for 2 ms, at 10, 15, or 20 Hz) dose-dependently reduced tracheal tension, and the relaxations were consistently smaller (approximately 40%) in trachea from nNOS-/- mice than from control wild-type mice (p < 0.001). VIP (10(- 8) to 10(-6) mol/L) induced concentration-dependent relaxations that were approximately 50% smaller in nNOS-/- tracheas than in control tracheas. Methacholine induced concentration-dependent contractions that were consistently higher in the nNOS-/- tracheas relative to wild-type mice tracheas (p > 0.05). Our data suggest that, in mouse trachea, NO is probably responsible for mediating a large (approximately 60%) component of neurogenic NANC relaxation, and a similar (approximately 50%) component of the relaxant effect of VIP. The results imply that NO contributes significantly to neurogenic relaxation of mouse airway smooth muscle, whether due to neurogenic stimulation or to the neuropeptide VIP.
Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model.
Hibender, Stijntje; Franken, Romy; van Roomen, Cindy; Ter Braake, Anique; van der Made, Ingeborg; Schermer, Edith E; Gunst, Quinn; van den Hoff, Maurice J; Lutgens, Esther; Pinto, Yigal M; Groenink, Maarten; Zwinderman, Aeilko H; Mulder, Barbara J M; de Vries, Carlie J M; de Waard, Vivian
2016-08-01
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene. Patients with MFS are at risk of aortic aneurysm formation and dissection. Usually, blood pressure-lowering drugs are used to reduce aortic events; however, this is not sufficient for most patients. In the aorta of smooth muscle cell-specific sirtuin-1-deficient mice, spontaneous aneurysm formation and senescence are observed. Resveratrol is known to enhance sirtuin-1 activity and to reduce senescence, which prompted us to investigate the effectiveness of resveratrol in inhibition of aortic dilatation in the Fbn1(C1039G/+) MFS mouse model. Aortic senescence strongly correlates with aortic root dilatation rate in MFS mice. However, although resveratrol inhibits aortic dilatation, it only shows a trend toward reduced aortic senescence. Resveratrol enhances nuclear localization of sirtuin-1 in the vessel wall and, in contrast to losartan, does not affect leukocyte infiltration nor activation of SMAD2 and extracellular signal-regulated kinases 1/2 (ERK1/2). Interestingly, specific sirtuin-1 activation (SRT1720) or inhibition (sirtinol) in MFS mice does not affect aortic root dilatation rate, although senescence is changed. Resveratrol reduces aortic elastin breaks and decreases micro-RNA-29b expression coinciding with enhanced antiapoptotic Bcl-2 expression and decreased number of terminal apoptotic cells. In cultured smooth muscle cells, the resveratrol effect on micro-RNA-29b downregulation is endothelial cell and nuclear factor κB-dependent. Resveratrol inhibits aortic root dilatation in MFS mice by promoting elastin integrity and smooth muscle cell survival, involving downregulation of the aneurysm-related micro-RNA-29b in the aorta. On the basis of these data, resveratrol holds promise as a novel intervention strategy for patients with MFS. © 2016 The Authors.
Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model
Hibender, Stijntje; Franken, Romy; van Roomen, Cindy; ter Braake, Anique; van der Made, Ingeborg; Schermer, Edith E.; Gunst, Quinn; van den Hoff, Maurice J.; Lutgens, Esther; Pinto, Yigal M.; Groenink, Maarten; Zwinderman, Aeilko H.; Mulder, Barbara J.M.; de Vries, Carlie J.M.
2016-01-01
Objective— Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene. Patients with MFS are at risk of aortic aneurysm formation and dissection. Usually, blood pressure–lowering drugs are used to reduce aortic events; however, this is not sufficient for most patients. In the aorta of smooth muscle cell–specific sirtuin-1–deficient mice, spontaneous aneurysm formation and senescence are observed. Resveratrol is known to enhance sirtuin-1 activity and to reduce senescence, which prompted us to investigate the effectiveness of resveratrol in inhibition of aortic dilatation in the Fbn1C1039G/+ MFS mouse model. Approach and Results— Aortic senescence strongly correlates with aortic root dilatation rate in MFS mice. However, although resveratrol inhibits aortic dilatation, it only shows a trend toward reduced aortic senescence. Resveratrol enhances nuclear localization of sirtuin-1 in the vessel wall and, in contrast to losartan, does not affect leukocyte infiltration nor activation of SMAD2 and extracellular signal–regulated kinases 1/2 (ERK1/2). Interestingly, specific sirtuin-1 activation (SRT1720) or inhibition (sirtinol) in MFS mice does not affect aortic root dilatation rate, although senescence is changed. Resveratrol reduces aortic elastin breaks and decreases micro-RNA-29b expression coinciding with enhanced antiapoptotic Bcl-2 expression and decreased number of terminal apoptotic cells. In cultured smooth muscle cells, the resveratrol effect on micro-RNA-29b downregulation is endothelial cell and nuclear factor κB-dependent. Conclusions— Resveratrol inhibits aortic root dilatation in MFS mice by promoting elastin integrity and smooth muscle cell survival, involving downregulation of the aneurysm-related micro-RNA-29b in the aorta. On the basis of these data, resveratrol holds promise as a novel intervention strategy for patients with MFS. PMID:27283746
Yamazaki, Tomoko; Li, Wenling; Yang, Ling; Li, Ping; Cao, Haiming; Motegi, Sei-Ichiro; Udey, Mark C; Bernhard, Elise; Nakamura, Takahisa; Mukouyama, Yoh-Suke
2018-01-11
Obesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels. Whole-mount immunostaining of adult mouse ear skin showed that peripheral sensory and sympathetic nerves align with large-diameter blood vessels. Diet-induced obesity (DIO) mice exhibit defective vascular smooth muscle cells (VSMCs) coverage, while there is no significant change in the amount of peripheral nerves. The leptin receptor-deficient db/db mice, a severe obese and type 2 diabetic mouse model, exhibit defective VSMC coverage and a large increase in the amount of smaller-diameter nerve bundles with myelin sheath and unmyelinated nerve fibers. Interestingly, an increase in the amount of myeloid immune cells was observed in the DIO but not db/db mouse skin. These data suggest that our whole-mount imaging method enables us to investigate the neuro-vascular and neuro-immune phenotypes in the animal models of obesity and diabetes.
2017-06-23
Bladder Papillary Urothelial Carcinoma; Stage 0a Bladder Urothelial Carcinoma; Stage 0is Bladder Urothelial Carcinoma; Stage I Bladder Cancer With Carcinoma In Situ; Stage I Bladder Urothelial Carcinoma; Stage II Bladder Urothelial Carcinoma; Stage III Bladder Urothelial Carcinoma; Stage IV Bladder Urothelial Carcinoma
Dalela, Divakar; Gupta, Piyush; Dalela, Disha; Srinivas, A K; Bhaskar, Ved; Govil, Tuhina; Goel, Apul; Sankhwar, Satya Narayan
2016-08-01
To assess the safety and effectiveness of a novel transurethral bougie-guided monorail technique for suprapubic catheterization in females with vesicovaginal fistula. Patients undergoing transvaginal vesicovaginal fistula repair from February 2013 to December 2013 were selected. Suprapubic catheter was placed using this technique and assessment was done in terms of time taken, intraprocedural dislodgement or entanglement of catheter during the procedure, bleeding from the anterior abdominal wall or urethra, or any other intraoperative difficulty. All patients were catheterized smoothly without any intraoperative difficulty, with a mean time of 6 minutes. We describe a new technique of performing suprapubic cystostomy in patients, especially where the bladder cannot be distended. It is safe and easy to perform. Copyright © 2016 Elsevier Inc. All rights reserved.
Wallingford, MC; Chia, J; Leaf, EM; Borgeia, S; Chavkin, NW; Sawangmake, C; Marro, K; Cox, TC; Speer, MY; Giachelli, CM
2016-01-01
Idiopathic basal ganglia calcification is a brain calcification disorder that has been genetically linked to autosomal dominant mutations in the sodium-dependent phosphate co-transporter, SLC20A2. The mechanisms whereby deficiency of Slc20a2 leads to basal ganglion calcification are unknown. In the mouse brain, we found that Slc20a2 was expressed in tissues that produce and/or regulate cerebrospinal fluid, including choroid plexus, ependyma and arteriolar smooth muscle cells. Haploinsufficient Slc20a2 +/− mice developed age-dependent basal ganglia calcification that formed in glymphatic pathway-associated arterioles. Slc20a2 deficiency uncovered phosphate homeostasis dysregulation characterized by abnormally high cerebrospinal fluid phosphate levels and hydrocephalus, in addition to basal ganglia calcification. Slc20a2 siRNA knockdown in smooth muscle cells revealed increased susceptibility to high phosphate-induced calcification. These data suggested that loss of Slc20a2 led to dysregulated phosphate homeostasis and enhanced susceptibility of arteriolar smooth muscle cells to elevated phosphate-induced calcification. Together, dysregulated cerebrospinal fluid phosphate and enhanced smooth muscle cell susceptibility may predispose to glymphatic pathway-associated arteriolar calcification. PMID:26822507
Differentiation of arterioles from venules in mouse histology images using machine learning
NASA Astrophysics Data System (ADS)
Elkerton, J. S.; Xu, Yiwen; Pickering, J. G.; Ward, Aaron D.
2016-03-01
Analysis and morphological comparison of arteriolar and venular networks are essential to our understanding of multiple diseases affecting every organ system. We have developed and evaluated the first fully automatic software system for differentiation of arterioles from venules on high-resolution digital histology images of the mouse hind limb immunostained for smooth muscle α-actin. Classifiers trained on texture and morphologic features by supervised machine learning provided excellent classification accuracy for differentiation of arterioles and venules, achieving an area under the receiver operating characteristic curve of 0.90 and balanced false-positive and false-negative rates. Feature selection was consistent across cross-validation iterations, and a small set of three features was required to achieve the reported performance, suggesting potential generalizability of the system. This system eliminates the need for laborious manual classification of the hundreds of microvessels occurring in a typical sample, and paves the way for high-throughput analysis the arteriolar and venular networks in the mouse.
Neuromuscular control of the glottis in a primitive air-breathing fish, Amia calva.
Davies, P J; Hedrick, M S; Jones, D R
1993-01-01
The neuromuscular control of the glottis, a muscular sphincter that controls air flow to and from the swim bladder, was investigated using in vitro preparations from bowfin (Amia calva). Stimulation of the ramus intestinalis branch of the vagus nerve caused an increase in isometric tension of the glottal musculature, indicating active closure. The glottis could be actively opened only by direct stimulation of muscle bundles lying lateral to the glottis. In 19 of 24 preparations supramaximal nerve stimulation (20 Hz, 10 V) caused a two-phase increase in muscle tension. Immediately after the onset of stimulation there was a rapid increase in muscle tension. After the end of the train of stimuli, the tension decreased and then again increased briefly followed by a slow return to baseline lasting approximately 60 s. The addition of hyoscine reduced maximum tension of the response by 63 +/- 7% and abolished the second slower element of the response to vagal stimulation. The remaining faster response to nerve stimulation was abolished by tubocurarine. Applied acetylcholine or carbachol mimicked the slow response, causing a slow-onset sustained contraction that was abolished by hyoscine. Hence, the musculature showed physiological characteristics of both skeletal and smooth muscle. Histological examination of the glottis confirmed the physiological results: smooth muscle fibers were found lining the pneumatic duct and lumen of the glottis arranged in a circular fashion around the lateral margins of the glottis. Distinct skeletal muscle bundles were found lateral to the smooth muscle and also arranged in parallel with the glottal lumen, forming a skeletal muscle sphincter.(ABSTRACT TRUNCATED AT 250 WORDS)
Bai, Yan; Sanderson, Michael J
2009-06-01
To determine the relative contributions of Ca(2+) signaling and Ca(2+) sensitivity to the contractility of airway smooth muscle cells (SMCs), we compared the contractile responses of mouse and rat airways with the lung slice technique. Airway contraction was measured by monitoring changes in airway lumen area with phase-contrast microscopy, whereas changes in intracellular calcium concentration ([Ca(2+)](i)) of the SMCs were recorded with laser scanning microscopy. In mice and rats, methacholine (MCh) or serotonin induced concentration-dependent airway contraction and Ca(2+) oscillations in the SMCs. However, rat airways demonstrated greater contraction compared with mice, in response to agonist-induced Ca(2+) oscillations of a similar frequency. Because this indicates that rat airway SMCs have a higher Ca(2+) sensitivity compared with mice, we examined Ca(2+) sensitivity with Ca(2+)-permeabilized airway SMCs in which the [Ca(2+)](i) was experimentally controlled. In the absence of agonists, high [Ca(2+)](i) induced a sustained contraction in rat airways but only a transient contraction in mouse airways. This sustained contraction of rat airways was relaxed by Y-23672, a Rho kinase inhibitor, but not affected by GF-109203X, a PKC inhibitor. The subsequent exposure of Ca(2+)-permeabilized airway SMCs, with high [Ca(2+)](i), to MCh elicited a further contraction of rat airways and initiated a sustained contraction of mouse airways, without changing the [Ca(2+)](i) of the SMCs. Collectively, these results indicate that airway SMCs of rats have a substantially higher innate Ca(2+) sensitivity than mice and that this strongly influences the transduction of the frequency of Ca(2+) oscillations into the contractility of airway SMCs.
Role for NK(1) and NK(2) receptors in the motor activity in mouse colon.
Mulè, Flavia; Amato, Antonella; Serio, Rosa
2007-09-10
The present study examined the effects induced by endogenous and exogenous activation of NK(1) and NK(2) receptors on the mechanical activity of mouse proximal colon. Experiments were performed in vitro recording the changes in intraluminal pressure from isolated colonic segments. Electrical field stimulation in the presence of atropine and guanethidine produced a small relaxation, followed by nonadrenergic noncholinergic (NANC) contraction. SR140333, NK(1) receptor antagonist, or SR48968, NK(2) receptor antagonist, significantly reduced the contraction, although SR48968 appeared more efficacious. The co-administration of SR140333 and SR48968 virtually abolished the NANC contraction. [Sar(9), Met(O(2))(11)]-substance P, selective NK(1) receptor agonist, induced a concentration-dependent biphasic effect, contraction followed by reduction of the mechanical spontaneous activity. Both effects were antagonized by SR140333, but not by SR48968. [beta-Ala(8)]-neurokinin A (4-10), selective NK(2) receptor agonist, evoked concentration-dependent contraction, which was antagonized by SR48968, but not by SR140333. The contraction induced by [Sar(9), Met(O(2))(11)]-substance P, but not by [beta-Ala(8)]-neurokinin A (4-10), was reduced by tetrodotoxin or atropine, and increased by N(omega)-nitro-L-arginine methyl ester (L-NAME), inhibitor of nitric oxide synthase. The inhibitory effects induced by [Sar(9), Met(O(2))(11)]-substance P were abolished by tetrodotoxin or L-NAME. The results of the present study suggest that in mouse colon both NK(1) and NK(2) receptors are junctionally activated by endogenous tachykinins to cause an additive response. NK(1) receptors appear to be located on cholinergic and on nitrergic neurons as well as on smooth muscle cells, whereas NK(2) receptors seem to be present exclusively on smooth muscle cells.
Chloride channel function is linked to epithelium-dependent airway relaxation.
Fortner, C N; Lorenz, J N; Paul, R J
2001-02-01
We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.
1984-04-01
bladder 1 muscle, s k e l e t a l 5 bone marrow smear --- 3 nasal t u rb ina tes *ti ~ s u e masses ,- and any o the r t i ssues w i t h...Lymphoma, lymphocytic type .__ - __ __ ___ .____. . _ - --- Fibrosarcoma , me ta s t a t i c - __ .._._- _ __._ - - .- Granulosa-cell Carcinoma... Fibrosarcoma , m e t a s t a t i c . -- RENAL LYMPH NODE -- E ’ L - --.I- t Malignant Lymphoma, mixed type Malignant
Schwartz, Drew J.; Chen, Swaine L.; Hultgren, Scott J.; Seed, Patrick C.
2011-01-01
Urinary tract infections (UTIs) have complex dynamics, with uropathogenic Escherichia coli (UPEC), the major causative agent, capable of colonization from the urethra to the kidneys in both extracellular and intracellular niches while also producing chronic persistent infections and frequent recurrent disease. In mouse and human bladders, UPEC invades the superficial epithelium, and some bacteria enter the cytoplasm to rapidly replicate into intracellular bacterial communities (IBCs) comprised of ∼104 bacteria each. Through IBC formation, UPEC expands in numbers while subverting aspects of the innate immune response. Within 12 h of murine bladder infection, half of the bacteria are intracellular, with 3 to 700 IBCs formed. Using mixed infections with green fluorescent protein (GFP) and wild-type (WT) UPEC, we discovered that each IBC is clonally derived from a single bacterium. Genetically tagged UPEC and a multiplex PCR assay were employed to investigate the distribution of UPEC throughout urinary tract niches over time. In the first 24 h postinfection (hpi), the fraction of tags dramatically decreased in the bladder and kidney, while the number of CFU increased. The percentage of tags detected at 6 hpi correlated to the number of IBCs produced, which closely matched a calculated multinomial distribution based on IBC clonality. The fraction of tags remaining thereafter depended on UTI outcome, which ranged from resolution of infection with or without quiescent intracellular reservoirs (QIRs) to the development of chronic cystitis as defined by persistent bacteriuria. Significantly more tags remained in mice that developed chronic cystitis, arguing that during the acute stages of infection, a higher number of IBCs precedes chronic cystitis than precedes QIR formation. PMID:21807904
Imaging of oxygen gradients in giant umbrella cells: an ex vivo PLIM study.
Zhdanov, A V; Golubeva, A V; Okkelman, I A; Cryan, J F; Papkovsky, D B
2015-10-01
O2 plays a pivotal role in aerobic metabolism and regulation of cell and tissue function. Local differences and fluctuations in tissue O2 levels are well documented; however, the physiological significance of O2 microgradients, particularly at the subcellular level, remains poorly understood. Using the cell-penetrating phosphorescent O2 probe Pt-Glc and confocal fluorescence microscopy, we visualized O2 distribution in individual giant (>100-μm) umbrella cells located superficially in the urinary bladder epithelium. We optimized conditions for in vivo phosphorescent staining of the inner surface of the mouse bladder and subsequent ex vivo analysis of excised live tissue. Imaging experiments revealed significant (≤85 μM) and heterogeneous deoxygenation within respiring umbrella cells, with radial O2 gradients of up to 40 μM across the cell, or ∼0.6 μM/μm. Deeply deoxygenated (5-15 μM O2) regions were seen to correspond to the areas enriched with polarized mitochondria. Pharmacological activation of mitochondrial respiration decreased oxygenation and O2 gradients in umbrella cells, while inhibition with antimycin A dissipated the gradients and caused gradual reoxygenation of the tissue to ambient levels. Detailed three-dimensional maps of O2 distribution potentially can be used for the modeling of intracellular O2-dependent enzymatic reactions and downstream processes, such as hypoxia-inducible factor signaling. Further ex vivo and in vivo studies on intracellular and tissue O2 gradients using confocal imaging can shed light on the molecular mechanisms regulating O2-dependent (patho)physiological processes in the bladder and other tissues. Copyright © 2015 the American Physiological Society.
Use of the holmium:YAG laser in urology.
Johnson, D E; Cromeens, D M; Price, R E
1992-01-01
The tissue effects of a holmium:YAG (Ho:YAG) laser operating at a wavelength of 2.1 mu with a maximum power of 15 watts (W) and 10 different energy-pulse settings was systematically evaluated on kidney, bladder, prostate, ureteral, and vasal tissue in the dog. In addition, various urologic surgical procedures (partial nephrectomy, transurethral laser incision of the prostate, and laser-assisted vasovasostomy) were performed in the dog, and a laparoscopic pelvic lymph node dissection was carried out in a pig. Although the Ho:YAG laser has a strong affinity for water, precise tissue ablation was achieved in both the contact and non-contact mode when used endoscopically in a fluid medium to ablate prostatic and vesical tissue. Using the usual parameters for tissue destruction (blanching without charring), the depth of thermal injury in the bladder and ureter was kept superficial. In performing partial nephrectomies, a 2-fold reduction in the zone of coagulative necrosis was demonstrated compared to the use of the continuous wave Neodymium:YAG laser (Nd:YAG). When used through the laparoscope, the Ho:YAG laser provided precise cutting and, combined with electrocautery, allowed the dissection to proceed quickly and smoothly. Hemostatic control was adequate in all surgical procedures. Although the results of these investigations are preliminary, our initial experience with the Ho:YAG laser has been favorable and warrants further investigations.
Supply, Philip; Marceau, Michael; Mangenot, Sophie; Roche, David; Rouanet, Carine; Khanna, Varun; Majlessi, Laleh; Criscuolo, Alexis; Tap, Julien; Pawlik, Alexandre; Fiette, Laurence; Orgeur, Mickael; Fabre, Michel; Parmentier, Cécile; Frigui, Wafa; Simeone, Roxane; Boritsch, Eva C.; Debrie, Anne-Sophie; Willery, Eve; Walker, Danielle; Quail, Michael A.; Ma, Laurence; Bouchier, Christiane; Salvignol, Grégory; Sayes, Fadel; Cascioferro, Alessandro; Seemann, Torsten; Barbe, Valérie; Locht, Camille; Gutierrez, Maria-Cristina; Leclerc, Claude; Bentley, Stephen; Stinear, Timothy P.; Brisse, Sylvain; Médigue, Claudine; Parkhill, Julian; Cruveiller, Stéphane; Brosch, Roland
2013-01-01
Global spread and genetic monomorphism are hallmarks of Mycobacterium tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii, and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology, are restricted to East-Africa. Here, we sequenced and analyzed the genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4-5x coverage), 454/Roche (13-18x coverage) and/or Illumina DNA sequencing (45-105x coverage). We show that STB are highly recombinogenic and evolutionary early-branching, with larger genome sizes, 25-fold more SNPs, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse-infection experiments revealed that STB are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral, STB-like pool of mycobacteria by gain of persistence and virulence mechanisms and we provide genome-wide insights into the molecular events involved. PMID:23291586
Safety and Tolerability of TAR-200 and Nivolumab in Subjects With Muscle-Invasive Bladder Cancer
2018-05-04
Bladder Cancer TNM Staging Primary Tumor (T) T2; Bladder Cancer TNM Staging Primary Tumor (T) T2A; Bladder Cancer TNM Staging Primary Tumor (T) T2B; Bladder Cancer TNM Staging Primary Tumor (T) T3; Bladder Cancer TNM Staging Primary Tumor (T) T3A; Bladder Cancer TNM Staging Primary Tumor (T) T3B; Bladder Cancer TNM Staging Regional Lymph Node (N) N0; Bladder Cancer TNM Staging Regional Lymph Node (N) N1; Bladder Cancer TNM Staging Distant Metastasis (M) M0
Chen, Swaine L.; Wu, Meng; Henderson, Jeffrey P.; Hooton, Thomas M.; Hibbing, Michael E.; Hultgren, Scott J.; Gordon, Jeffrey I.
2013-01-01
Urinary tract infections (UTIs) are common in women and recurrence is a major clinical problem. Most UTIs are caused by uropathogenic Escherichia coli (UPEC). UPEC are generally thought to migrate from the gut to the bladder to cause UTI. UPEC strains form specialized intracellular bacterial communities (IBCs) in the bladder urothelium as part of a pathogenic mechanism to establish a foothold during acute stages of infection. Evolutionarily, such a specific adaptation to the bladder environment would be predicted to result in decreased fitness in other habitats, such as the gut. To examine this concept, we characterized 45 E. coli strains isolated from the feces and urine of four otherwise healthy women with recurrent UTIs. Multi-locus sequence typing revealed that two of the patients maintained a clonal population in both of these body habitats throughout their recurrent UTIs, whereas the other two manifested a wholesale shift in the dominant UPEC strain colonizing their urinary tract and gut between UTIs. These results were confirmed when we subjected 26 isolates from two patients, one representing the persistent clonal pattern and the other representing the dynamic population shift, to whole genome sequencing. In vivo competition studies conducted in mouse models of bladder and gut colonization, using isolates taken from one of the patients with a wholesale population shift, and a newly developed SNP-based method for quantifying strains, revealed that the strain that dominated in her last UTI episode had increased fitness in both body habitats relative to the one that dominated in the preceding episodes. Furthermore, increased fitness was correlated with differences in the strains’ gene repertoires and their in vitro carbohydrate and amino acid utilization profiles. Thus, UPEC appear capable of persisting in both the gut and urinary tract without a fitness tradeoff. Determination of all of the potential reservoirs for UPEC strains that cause recurrent UTI will require additional longitudinal studies of the type described in this report, with sampling of multiple body habitats during and between episodes. PMID:23658245
Inhibition of TRPC3 downregulates airway hyperresponsiveness, remodeling of OVA-sensitized mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingwei; Li, Jie; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou
Airway hyperresponsiveness (AHR), airway remodeling and inflammation are the fundamental pathological alterations that occur in asthma. Transient receptor potential canonical 3 (TRPC3) has been implicated in diverse functions of airway smooth muscle cells (ASMCs) in asthma. However, the underlying mechanisms remain incompletely understood. We investigated the mRNA and protein expression of TRPC3 in ASMCs from normal and OVA-sensitized mouse. And the effects of inhibition or knockdown of TRPC3 with Ethyl-1- (4- (2,3,3-trichloroacrylamide) phenyl) −5 - (trifluoromethyl) -1H -pyrazole -4-carboxylate (Pyr3) and lentiviral shRNA on OVA-sensitized mouse AHR, airway remodeling, circulating inflammatory cytokines, cell proliferation and migration. We found that TRPC3 mRNAmore » and protein expression levels were significantly increased in ASMCs from OVA-sensitized mouse. Inhibiting TRPC3 with continuous subcutaneous administration of Pyr3 decreased enhanced pause (Penh) of OVA-sensitized mouse. Meanwhile, both Pyr3 and lentiviral shRNA treatment of ASMCs in OVA-sensitized mouse significantly decreased their proliferation and migration. These results suggest that TRPC3 plays a critical role in asthma and represents a promising new target for asthma treatment. - Highlights: • Penh, airway remodeling and the gene expression and protein of TRPC3 are increased in OVA-sensitized mice. • Inhibition of TRPC3 suppresses the OVA-sensitized mice Penh and airway remodeling. • Inhibition of TRPC3 decreases OVA-sensitized mice ASMC proliferation and migration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y
2015-06-15
Purpose: To improve the quality of kV X-ray cone beam CT (CBCT) for use in radiotherapy delivery assessment and re-planning by using penalized likelihood (PL) iterative reconstruction and auto-segmentation accuracy of the resulting CBCTs as an image quality metric. Methods: Present filtered backprojection (FBP) CBCT reconstructions can be improved upon by PL reconstruction with image formation models and appropriate regularization constraints. We use two constraints: 1) image smoothing via an edge preserving filter, and 2) a constraint minimizing the differences between the reconstruction and a registered prior image. Reconstructions of prostate therapy CBCTs were computed with constraint 1 alone andmore » with both constraints. The prior images were planning CTs(pCT) deformable-registered to the FBP reconstructions. Anatomy segmentations were done using atlas-based auto-segmentation (Elekta ADMIRE). Results: We observed small but consistent improvements in the Dice similarity coefficients of PL reconstructions over the FBP results, and additional small improvements with the added prior image constraint. For a CBCT with anatomy very similar in appearance to the pCT, we observed these changes in the Dice metric: +2.9% (prostate), +8.6% (rectum), −1.9% (bladder). For a second CBCT with a very different rectum configuration, we observed +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). For a third case with significant lateral truncation of the field of view, we observed: +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). Adding the prior image constraint raised Dice measures by about 1%. Conclusion: Efficient and practical adaptive radiotherapy requires accurate deformable registration and accurate anatomy delineation. We show here small and consistent patterns of improved contour accuracy using PL iterative reconstruction compared with FBP reconstruction. However, the modest extent of these results and the pattern of differences across CBCT cases suggest that significant further development will be required to make CBCT useful to adaptive radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Don, E-mail: dony@ualberta.c; Parliament, Matthew; Rathee, Satyapal
2010-03-15
Purpose: To quantify daily bladder size and position variations during bladder cancer radiotherapy. Methods and Materials: Ten bladder cancer patients underwent daily cone beam CT (CBCT) imaging of the bladder during radiotherapy. Bladder and planning target volumes (bladder/PTV) from CBCT and planning CT scans were compared with respect to bladder center-of-mass shifts in the x (lateral), y (anterior-posterior), and z (superior-inferior) coordinates, bladder/PTV size, bladder/PTV margin positions, overlapping areas, and mutually exclusive regions. Results: A total of 262 CBCT images were obtained from 10 bladder cancer patients. Bladder center of mass shifted most in the y coordinate (mean, -0.32 cm).more » The anterior bladder wall shifted the most (mean, -0.58 cm). Mean ratios of CBCT-derived bladder and PTV volumes to planning CT-derived counterparts were 0.83 and 0.88. The mean CBCT-derived bladder volume (+- standard deviation [SD]) outside the planning CT counterpart was 29.24 cm{sup 3} (SD, 29.71 cm{sup 3}). The mean planning CT-derived bladder volume outside the CBCT counterpart was 47.74 cm{sup 3} (SD, 21.64 cm{sup 3}). The mean CBCT PTV outside the planning CT-derived PTV was 47.35 cm{sup 3} (SD, 36.51 cm{sup 3}). The mean planning CT-derived PTV outside the CBCT-derived PTV was 93.16 cm{sup 3} (SD, 50.21). The mean CBCT-derived bladder volume outside the planning PTV was 2.41 cm{sup 3} (SD, 3.97 cm{sup 3}). CBCT bladder/ PTV volumes significantly differed from planning CT counterparts (p = 0.047). Conclusions: Significant variations in bladder and PTV volume and position occurred in patients in this trial.« less
Wolf, Heike; Stroobants, Stijn; D'Hooge, Rudi; Hermans-Borgmeyer, Irm; Lüllmann-Rauch, Renate; Dierks, Thomas; Lübke, Torben
2016-01-01
ABSTRACT Fucosidosis is a rare lysosomal storage disorder caused by the inherited deficiency of the lysosomal hydrolase α-L-fucosidase, which leads to an impaired degradation of fucosylated glycoconjugates. Here, we report the generation of a fucosidosis mouse model, in which the gene for lysosomal α-L-fucosidase (Fuca1) was disrupted by gene targeting. Homozygous knockout mice completely lack α-L-fucosidase activity in all tested organs leading to highly elevated amounts of the core-fucosylated glycoasparagine Fuc(α1,6)-GlcNAc(β1-N)-Asn and, to a lesser extent, other fucosylated glycoasparagines, which all were also partially excreted in urine. Lysosomal storage pathology was observed in many visceral organs, such as in the liver, kidney, spleen and bladder, as well as in the central nervous system (CNS). On the cellular level, storage was characterized by membrane-limited cytoplasmic vacuoles primarily containing water-soluble storage material. In the CNS, cellular alterations included enlargement of the lysosomal compartment in various cell types, accumulation of secondary storage material and neuroinflammation, as well as a progressive loss of Purkinje cells combined with astrogliosis leading to psychomotor and memory deficits. Our results demonstrate that this new fucosidosis mouse model resembles the human disease and thus will help to unravel underlying pathological processes. Moreover, this model could be utilized to establish diagnostic and therapeutic strategies for fucosidosis. PMID:27491075
Wu, Shan-Ying; Lan, Sheng-Hui; Cheng, Da-En; Chen, Wei-Kai; Shen, Cheng-Huang; Lee, Ying-Ray; Zuchini, Roberto; Liu, Hsiao-Sheng
2011-12-01
Autophagy plays diverse roles in Ras-related tumorigenesis. H-ras(val12) induces autophagy through multiple signaling pathways including Raf-1/ERK pathway, and various ERK downstream molecules of autophagy have been reported. In this study, Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) is identified as a downstream transducer of the Ras/Raf/ERK signaling pathway to induce autophagy. BNIP3 was upregulated by H-ras(val12) at the transcriptional level to compete with Beclin 1 for binding with Bcl-2. H-ras(val12)-induced autophagy suppresses cell proliferation demonstrated both in vitro and in vivo by expression of ectopic BNIP3, Atg5, or interference RNA of BNIP3 (siBNIP3) and Atg5 (shAtg5) using mouse NIH3T3 and embryo fibroblast cells. H-ras(val12) induces different autophagic responses depending on the duration of Ras overexpression. After a short time (48 hours) of Ras overexpression, autophagy inhibits cell proliferation. In contrast, a longer time (2 weeks) of Ras overexpression, cell proliferation was enhanced by autophagy. Furthermore, overexpression of mutant Ras, BNIP3, and LC3-II was detected in bladder cancer T24 cells and the tumor parts of 75% of bladder cancer specimens indicating a positive correlation between autophagy and tumorigenesis. Taken together, our mouse model demonstrates a balance between BNIP3-mediated autophagy and H-ras(val12)-induced tumor formation and reveals that H-ras(val12) induces autophagy in a BNIP3-dependent manner, and the threshold of autophagy plays a decisive role in H-ras(val12)-induced tumorigenesis. Our findings combined with others' reports suggest a new therapeutic strategy against Ras-related tumorigenesis by negative or positive regulation of autophagic activity, which is determined by the level of autophagy and tumor progression stages.
Stem Cell Therapy in Bladder Dysfunction: Where Are We? And Where Do We Have to Go?
Lee, Sang-Rae; Song, Yun Seob; Lee, Hong Jun
2013-01-01
To date, stem cell therapy for the bladder has been conducted mainly on an experimental basis in the areas of bladder dysfunction. The therapeutic efficacy of stem cells was originally thought to be derived from their ability to differentiate into various cell types. Studies about stem cell therapy for bladder dysfunction have been limited to an experimental basis and have been less focused than bladder regeneration. Bladder dysfunction was listed in MESH as “urinary bladder neck obstruction”, “urinary bladder, overactive”, and “urinary bladder, neurogenic”. Using those keywords, several articles were searched and studied. The bladder dysfunction model includes bladder outlet obstruction, cryoinjured, diabetes, ischemia, and spinal cord injury. Adipose derived stem cells (ADSCs), bone marrow stem cells (BMSCs), and skeletal muscle derived stem cells (SkMSCs) are used for transplantation to treat bladder dysfunction. The main mechanisms of stem cells to reconstitute or restore bladder dysfunction are migration, differentiation, and paracrine effects. The aim of this study is to review the stem cell therapy for bladder dysfunction and to provide the status of stem cell therapy for bladder dysfunction. PMID:24151627
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majewski, Wojciech, E-mail: wmajewski1@poczta.onet.p; Wesolowska, Iwona; Urbanczyk, Hubert
2009-12-01
Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanningmore » during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to <95% of the prescribed dose. The dose distribution in the rectum and intestines was better with a 'partially empty' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm{sup 3} for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm{sup 3} for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with a 'partially empty' than with a 'full' bladder.« less
Suarez-Martinez, Ariana D; Bierschenk, Susanne; Huang, Katie; Kaplan, Dana; Bayer, Carolyn L; Meadows, Stryder M; Sperandio, Markus; Murfee, Walter L
2018-05-18
The development of models that incorporate intact microvascular networks enables the investigation of multicellular dynamics during angiogenesis. Our laboratory introduced the rat mesentery culture model as such a tool, which would be enhanced with mouse tissue. Since mouse mesentery is avascular, an alternative is mouse mesometrium, the connective tissue of uterine horns. The study's objective was to demonstrate that mouse mesometrium contains microvascular networks that can be cultured to investigate multicellular dynamics during angiogenesis. Harvested mesometrium tissues from C57Bl/6 female mice were cultured in media with serum for up to 7 days. PECAM, NG2, αSMA, and LYVE-1 labeling identified endothelial cells, pericytes, smooth muscle cells, and lymphatic endothelial cells, respectively. These cells comprised microvascular networks with arterioles, venules, and capillaries. Compared to day 0, capillary sprouts per vascular length were increased by 3 and 5 days in culture (day 0, 0.08 ± 0.01; day 3, 3.19 ± 0.78; day 5, 2.49 ± 0.05 sprouts/mm; p < 0.05). Time-lapse imaging of cultured tissues from FlkEGFP mice showcases the use of the model for lineage studies. The impact is supported by the identification of endothelial cell jumping from one sprout to another. These results introduce a novel culture model for investigating multicellular dynamics during angiogenesis in real-time ex vivo microvascular networks. © 2018 S. Karger AG, Basel.
Primary haemangiopericytoma in the pelvic cavity of a dog.
Cho, H S; Park, N Y
2006-05-01
A 9-year-old female Yorkshire terrier with lameness of the hind leg was examined at the local animal hospital in Gwangju, Republic of Korea on March, 2004. The radiological findings revealed a mass between the urinary bladder and cervix of the uterus. The encapsulated pelvic mass, measuring 4.0 x 3.0 x 2.5 cm was surgically removed. Grossly, the mass was white and firm and microscopically showed a perivascular whorled pattern of spindle cells. By immunohistochemistry, tumour cells tested positive for vimentin and alpha-smooth muscle actin, and negative for desmin, S-100, lysozyme and cytokeratin. The tumour was diagnosed both histologically and immunohistochemically as a haemangiopericytoma. There were no signs of recurrence within 12 months after surgery. This is the first case report of a haemangiopericytoma in the pelvic cavity of a dog.
Geijsen, Debby E.; Zum Vörde Sive Vörding, Paul J.; Schooneveldt, Gerben; Sijbrands, Jan; Hulshof, Maarten C.; de la Rosette, Jean; de Reijke, Theo M.; Crezee, Hans
2013-01-01
Abstract Background and Purpose: The effectiveness of locoregional hyperthermia combined with intravesical instillation of mitomycin C to reduce the risk of recurrence and progression of intermediate- and high-risk nonmuscle-invasive bladder cancer is currently investigated in clinical trials. Clinically effective locoregional hyperthermia delivery necessitates adequate thermal dosimetry; thus, optimal thermometry methods are needed to monitor accurately the temperature distribution throughout the bladder wall. The aim of the study was to evaluate the technical feasibility of a novel intravesical device (multi-sensor probe) developed to monitor the local bladder wall temperatures during loco-regional C-HT. Materials and Methods: A multisensor thermocouple probe was designed for deployment in the human bladder, using special sensors to cover the bladder wall in different directions. The deployment of the thermocouples against the bladder wall was evaluated with visual, endoscopic, and CT imaging in bladder phantoms, porcine models, and human bladders obtained from obduction for bladder volumes and different deployment sizes of the probe. Finally, porcine bladders were embedded in a phantom and subjected to locoregional heating to compare probe temperatures with additional thermometry inside and outside the bladder wall. Results: The 7.5 cm thermocouple probe yielded optimal bladder wall contact, adapting to different bladder volumes. Temperature monitoring was shown to be accurate and representative for the actual bladder wall temperature. Conclusions: Use of this novel multisensor probe could yield a more accurate monitoring of the bladder wall temperature during locoregional chemohyperthermia. PMID:24112045
Chen, Xiao-Xu; Zhang, Jia-Hua; Pan, Bin-Hua; Ren, Hui-Li; Feng, Xiu-Ling; Wang, Jia-Ling; Xiao, Jun-Hua
2017-10-15
Canonical transient receptor potential channel-3 (TRPC3)-encoded Ca 2+ -permeable nonselective cation channel (NSCC) has been proven to be an important native constitutively active channel in airway smooth muscle cell (ASMC), which plays significant roles in physiological and pathological conditions by controlling Ca 2+ homeostasis in ASMC. Acetylcholine (ACh) is generally accepted as a contractile parasympathetic neurotransmitter in the airway. Recently studies have revealed the pathological role of ACh in airway remodeling, however, the mechanisms remain unclear. Here, we investigated the role of TRPC3 in ACh-induced ASMC proliferation. Primary mouse ASMCs were cultured with or without ACh treatment, then cell viability, TRPC3 expression, NSCC currents and [Ca 2+ ] i changes were examined by MTT assay, cell counting, Western blotting, standard whole-cell patch clamp recording and calcium imaging, respectively. Small interfering RNA (siRNA) technology was used to confirm the contribution of TRPC3 to ACh-induced ASMC proliferation. TRPC3 blocker Gd 3+ , antibody or siRNA largely inhibited ACh-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca 2+ ] i and KCl-induced changes in [Ca 2+ ] i , eventually inhibiting ACh-induced ASMC proliferation. Our data suggested ACh could induce ASMC proliferation, and TRPC3 may be involved in ACh-induced ASMC proliferation that occurs with airway remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.
Higashiyama, Hiroki; Sumitomo, Hiroyuki; Ozawa, Aisa; Igarashi, Hitomi; Tsunekawa, Naoki; Kurohmaru, Masamichi; Kanai, Yoshiakira
2016-02-01
The biliary tract is a well-branched ductal structure that exhibits great variation in morphology among vertebrates. Its function is maintained by complex constructions of blood vessels, nerves, and smooth muscles, the so-called hepatobiliary system. Although the mouse (Mus musculus) has been used as a model organism for humans, the morphology of its hepatobiliary system has not been well documented at the topographical level, mostly because of its small size and complexity. To reconcile this, we conducted whole-mount anatomical descriptions of the murine extrahepatic biliary tracts with related blood vessels, nerves, and smooth muscles using a recently developed transparentizing method, CUBIC. Several major differences from humans were found in mice: (1) among the biliary arteries, the arteria gastrica sinistra accessoria was commonly found, which rarely appears in humans; (2) the sphincter muscle in the choledochoduodenal junction is unseparated from the duodenal muscle; (3) the pancreatic duct opens to the bile duct without any sphincter muscles because of its distance from the duodenum. This state is identical to a human congenital malformation, an anomalous arrangement of pancreaticobiliary ducts. However, other parts of the murine hepatobiliary system (such as the branching patterns of the biliary tract, blood vessels, and nerves) presented the same patterns as humans and other mammals topologically. Thus, the mouse is useful as an experimental model for studying the human hepatobiliary system. © 2015 Wiley Periodicals, Inc.
Smooth muscle cell-specific knockout of androgen receptor: a new model for prostatic disease.
Welsh, Michelle; Moffat, Lindsey; McNeilly, Alan; Brownstein, David; Saunders, Philippa T K; Sharpe, Richard M; Smith, Lee B
2011-09-01
Androgen-driven stromal-epithelial interactions play a key role in normal prostate development and function as well as in the progression of common prostatic diseases such as benign prostatic hyperplasia and prostate cancer. However, exactly how, and via which cell type, androgens mediate their effects in the adult prostate remains unclear. This study investigated the role for smooth muscle (SM) androgen signaling in normal adult prostate homeostasis and function using mice in which androgen receptor was selectively ablated from prostatic SM cells. In adulthood the knockout (KO) mice displayed a 44% reduction in prostate weight and exhibited histological abnormalities such as hyperplasia, inflammation, fibrosis, and reduced expression of epithelial, SM, and stem cell identify markers (e.g. p63 reduced by 27% and Pten by 31%). These changes emerged beyond puberty and were not explained by changes in serum hormones. Furthermore, in response to exogenous estradiol, adult KO mice displayed an 8.5-fold greater increase in prostate weight than controls and developed urinary retention. KO mice also demonstrated a reduced response to castration compared with controls. Together these results demonstrate that prostate SM cells are vital in mediating androgen-driven stromal-epithelial interactions in adult mouse prostates, determining cell identity and function and limiting hormone-dependent epithelial cell proliferation. This novel mouse model provides new insight into the possible role for SM androgen action in prostate disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, JY; Hong, DL
Purpose: To investigate the impact of bladder filling status of the organs at risk (OARs) on dose distribution during intensity modulated radiotherapy (IMRT) for cervical cancer patients. Methods: Twelve cervical cancer patients treated with IMRT were selected for this study. The prescription dose was 45Gy/25 fractions with the 6 MV photon beam. All patients performed two CT scans, one with an empty bladder, the other one with bladder filled. For the registration of two CT scans, the fusion was automatically carried out upon the bony anatomy. The OARs (bladder, rectum, pelvic bone and small intestine) were delineated to planning CTmore » to evaluate the dose distributions. These dose distributions were compared between empty bladder and bladder filling. Results: The bladder volume with empty bladder and bladder filling was 403.2±124.13cc and 101.4±87.5cc, respectively. There were no statistical differences between empty bladder and bladder filling in the mean value of pelvic bone V10Gy, V20Gy, V40Gy; rectum V40Gy and V45Gy. The bladder V40Gy and V45Gy were lower in the bladder filling group than in the empty bladder group (63.7%±5.8% vs 87.5%±7.8%, 45.1%±9.5% vs 62.4%±11.8%, respectively). The V45Gy for small intestine in the bladder filling group was significantly less than the empty bladder group (146.7cc±95.3cc vs 245.7cc±101.8cc). Conclusion: Our study finds that the bladder filling status did not have a significant impact on dose distribution in the rectum and pelvic bone. However, the changes of bladder filling have a large impact on bladder and small intestine doses. A full bladder is strongly recommended during treatment for cervical cancer patients.« less
Alrifai, Mohammed; Marsh, Leigh M; Dicke, Tanja; Kılıç, Ayse; Conrad, Melanie L; Renz, Harald; Garn, Holger
2014-01-01
Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. However, the dynamics of the development of these features and their spontaneous and pharmacological reversibility are still poorly understood. We have therefore investigated the dynamics of airway remodelling and repair in an experimental asthma model and studied how pharmacological intervention affects these processes. Using BALB/c mice, the kinetics of chronic asthma progression and resolution were characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway inflammation and remodelling was assessed by the analysis of bronchoalveolar and peribronichal inflammatory cell infiltrate, goblet cell hyperplasia, collagen deposition and smooth muscle thickening. Chronic allergen exposure resulted in early (goblet cell hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia and collagen deposition were resolved, full resolution of lymphocyte inflammation and smooth muscle thickening was only observed after eight weeks. ICS therapy when started before the full establishment of chronic asthma reduced the development of lung inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect smooth muscle thickening. These effects of ICS on airway remodelling were maintained for a further four weeks even when therapy was discontinued. Utilising a chronic model of experimental asthma we have shown that repeated allergen exposure induces reversible airway remodelling and inflammation in mice. Therapeutic intervention with ICS was partially effective in inhibiting the transition from acute to chronic asthma by reducing airway inflammation and remodelling but was ineffective in preventing smooth muscle hypertrophy.
Phylogeny informs ontogeny: a proposed common theme in the arterial pole of the vertebrate heart
Grimes, Adrian C.; Durán, Ana Carmen; Sans-Coma, Valentín; Hami, Danyal; Santoro, Massimo M.; Torres, Miguel
2014-01-01
SUMMARY In chick and mouse embryogenesis, a population of cells described as the secondary heart field (SHF) adds both myocardium and smooth muscle to the developing cardiac outflow tract (OFT). Following this addition, at approximately HH stage 22 in chick embryos, for example, the SHF can be identified architecturally by an overlapping seam at the arterial pole, where beating myocardium forms a junction with the smooth muscle of the arterial system. Previously, using either immunohistochemistry or nitric oxide indicators such as diaminofluorescein 2-diacetate, we have shown that a similar overlapping architecture also exists in the arterial pole of zebrafish and some shark species. However, although recent work suggests that development of the zebrafish OFT may also proceed by addition of a SHF-like population of cells, the presence of a true SHF in zebrafish and in many other developmental biological models remains an open question. We performed a comprehensive morphological study of the OFT of a wide range of vertebrates. Our data suggest that all vertebrates possess three fundamental OFT components: a proximal myocardial component, a distal smooth muscle component, and a middle component that contains overlapping myocardium and smooth muscle surrounding and supporting the outflow valves. Because the middle OFT component of avians and mammals is derived from the SHF, our observations suggest that a SHF may be an evolutionarily conserved theme in vertebrate embryogenesis. PMID:21040422
Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves
2016-04-15
Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae. Copyright © 2016 Elsevier B.V. All rights reserved.
Normal reference values for bladder wall thickness on CT in a healthy population.
Fananapazir, Ghaneh; Kitich, Aleksandar; Lamba, Ramit; Stewart, Susan L; Corwin, Michael T
2018-02-01
To determine normal bladder wall thickness on CT in patients without bladder disease. Four hundred and nineteen patients presenting for trauma with normal CTs of the abdomen and pelvis were included in our retrospective study. Bladder wall thickness was assessed, and bladder volume was measured using both the ellipsoid formula and an automated technique. Patient age, gender, and body mass index were recorded. Linear regression models were created to account for bladder volume, age, gender, and body mass index, and the multiple correlation coefficient with bladder wall thickness was computed. Bladder volume and bladder wall thickness were log-transformed to achieve approximate normality and homogeneity of variance. Variables that did not contribute substantively to the model were excluded, and a parsimonious model was created and the multiple correlation coefficient was calculated. Expected bladder wall thickness was estimated for different bladder volumes, and 1.96 standard deviation above expected provided the upper limit of normal on the log scale. Age, gender, and bladder volume were associated with bladder wall thickness (p = 0.049, 0.024, and < 0.001, respectively). The linear regression model had an R 2 of 0.52. Age and gender were negligible in contribution to the model, and a parsimonious model using only volume was created for both the ellipsoid and automated volumes (R 2 = 0.52 and 0.51, respectively). Bladder wall thickness correlates with bladder wall volume. The study provides reference bladder wall thicknesses on CT utilizing both the ellipsoid formula and automated bladder volumes.
Munoz, Alvaro; Smith, Christopher P.; Boone, Timothy B.; Somogyi, George T.
2011-01-01
ATP and NO are released from the urothelium in the bladder. Detrusor Overactivity (DO) following spinal cord injury results in higher ATP and lower NO release from the bladder urothelium. Our aim was to study the relationship between ATP and NO release in 1) early diabetic bladders, an overactive bladder model; and 2) in “diuretic” bladders, an underactive bladder model. To induce diabetes mellitus female rats received 65 mg/kg streptozocin (i.v.). To induce chronic diuresis rats were fed with 5% sucrose. At 28 days, in vivo open cystometry was performed. Bladder wash was collected to analyze the amount of ATP and NO released into the bladder lumen. For in vitro analysis of ATP and NO release, a Ussing chamber was utilized and hypoosmotic Krebs was perfused on the urothelial side of the chamber. ATP was analyzed with luminometry or HPLC-fluorometry while NO was measured with a Sievers NO-analyzer. In vivo ATP release was increased in diabetic bladders and unchanged in diuretic bladders. In vitro release from the urothelium followed the same pattern. NO release was unchanged both in vitro and in vivo in overactive bladders whereas it was enhanced in underactive bladders. We found that the ratio of ATP/NO, representing sensory transmission in the bladder, was high in overactive and low in underactive bladder dysfunction. In summary, ATP release has a positive correlation while NO release has a negative correlation with the bladder contraction frequency. The urinary ATP/NO ratio may be a clinically relevant biomarker to characterize the extent of bladder dysfunction. PMID:21145365
Bladder filling variation during conformal radiotherapy for rectal cancer
NASA Astrophysics Data System (ADS)
Sithamparam, S.; Ahmad, R.; Sabarudin, A.; Othman, Z.; Ismail, M.
2017-05-01
Conformal radiotherapy for rectal cancer is associated with small bowel toxicity mainly diarrhea. Treating patients with a full bladder is one of the practical solutions to reduce small bowel toxicity. Previous studies on prostate and cervix cancer patients revealed that maintaining consistent bladder volume throughout radiotherapy treatment is challenging. The aim of this study was to measure bladder volume variation throughout radiotherapy treatment. This study also measured the association between bladder volume changes and diarrhea. Twenty two rectal cancer patients were recruited prospectively. Patients were planned for treatment with full bladder following departmental bladder filling protocol and the planning bladder volume was measured during CT-simulation. During radiotherapy, the bladder volume was measured weekly using cone-beam computed tomography (CBCT) and compared to planning bladder volume. Incidence and severity of diarrhea were recorded during the weekly patient review. There was a negative time trend for bladder volume throughout five weeks treatment. The mean bladder volume decreased 18 % from 123 mL (SD 54 mL) during CT-simulation to 101 mL (SD 71 mL) on the 5th week of radiotherapy, but the decrease is not statistically significant. However, there was a large variation of bladder volume within each patient during treatment. This study showed an association between changes of bladder volume and diarrhea (P = 0.045). In conclusion bladder volume reduced throughout radiotherapy treatment for conformal radiotherapy for rectal cancer and there was a large variation of bladder volume within patients.
... than usual ( oliguria ). You cannot urinate despite a strong urge to do so. Alternative Names Biopsy - bladder Images Bladder catheterization, female Bladder catheterization, male Female urinary tract Male urinary tract Bladder biopsy ...
Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study
Liu, Mitchell; Kristensen, Sarah; Gelowitz, Gerald; Berthelet, Eric
2007-01-01
In the present study, we aimed to evaluate effects of bladder filling on dose–volume distributions for bladder, rectum, planning target volume (PTV), and prostate in radiation therapy of prostate cancer. Patients (n=21) were scanned with a full bladder, and after 1 hour, having been allowed to void, with an empty bladder. Radiotherapy plans were generated using a four‐field box technique and dose of 70 Gy in 35 fractions. First, plans obtained for full‐ and empty‐bladder scans were compared. Second, situations in which a patient was planned on full bladder but was treated on empty bladder, and vice versa, were simulated, assuming that patients were aligned to external tattoos. Doses to the prostate [equivalent uniform dose (EUD)], bladder and rectum [effective dose (Deff)], and normal tissue complication probability (NTCP) were compared. Dose to the small bowel was examined. Mean bladder volume was 354.3 cm3 when full and 118.2 cm3 when empty. Median prostate EUD was 70 Gy for plans based on full‐ and empty‐bladder scans alike. The median rectal Deff was 55.6 Gy for full‐bladder anatomy and 56.8 Gy for empty‐bladder anatomy, and the corresponding bladder Deff was 29.0 Gy and 49.3 Gy respectively. In 1 patient, part of the small bowel (7.5 cm3) received more than 50 Gy with full‐bladder anatomy, and in 6 patients, part (2.5 cm3−30 cm3) received more than 50 Gy with empty‐bladder anatomy. Bladder filling had no significant impact on prostate EUD or rectal Deff. A minimal volume of the small bowel received more than 50 Gy in both groups, which is below dose tolerance. The bladder Deff was higher with empty‐bladder anatomy; however, the predicted complication rates were clinically insignificant. When the multileaf collimator pattern was applied in reverse, substantial underdosing of the planning target volume (PTV) was observed, particularly for patients with prostate shifts in excess of 0.5 cm in any one direction. However, the prostate shifts showed no correlation with bladder filling, and therefore the PTV underdosing also cannot be related to bladder filling. For some patients, bladder dose–volume constraints were not fulfilled in the worst‐case scenario—that is, when a patient planned with full bladder consistently arrived for treatment with an empty bladder. PACS numbers: 87.53.‐j, 87.53.Kn, 87.53.Tf PMID:17592448
Gene expression profile of the fibrotic response in the peritoneal cavity.
Le, S J; Gongora, M; Zhang, B; Grimmond, S; Campbell, G R; Campbell, J H; Rolfe, B E
2010-01-01
The cellular response to materials implanted in the peritoneal cavity has been utilised to produce tissue for grafting to hollow smooth muscle organs (blood vessels, bladder, uterus and vas deferens). To gain insight into the regulatory mechanisms involved in encapsulation of a foreign object, and subsequent differentiation of encapsulating cells, the present study used microarray technology and real-time RT-PCR to identify the temporal changes in gene expression associated with tissue development. Immunohistochemical analysis showed that 3-7 days post-implantation of foreign objects (cubes of boiled egg white) into rats, they were encapsulated by tissue comprised primarily of haemopoietic (CD45(+)) cells, mainly macrophages (CD68(+), CCR1(+)). By day 14, tissue capsule cells no longer expressed CD68, but were positive for myofibroblast markers alpha-smooth muscle (SM) actin and SM22. In accordance with these results, gene expression data showed that early capsule (days 3-7) development was dominated by the expression of monocyte/macrophage-specific genes (CD14, CSF-1, CSF-1R, MCP-1) and pro-inflammatory mediators such as transforming growth factor (TGF-beta). As tissue capsule development progressed (days 14-21), myofibroblast-associated and pro-fibrotic genes (associated with TGF-beta and Wnt/beta-catenin signalling pathways, including Wnt 4, TGFbetaRII, connective tissue growth factor (CTGF), SMADs-1, -2, -4 and collagen-1 subunits) were significantly up-regulated. The up-regulation of genes associated with Cardiovascular and Skeletal and Muscular System Development at later time-points suggests the capacity of cells within the tissue capsule for further differentiation to smooth muscle, and possibly other cell types. The identification of key regulatory pathways and molecules associated with the fibrotic response to implanted materials has important applications not only for optimising tissue engineering strategies, but also to control deleterious fibrotic responses.
Projections of alcohol- and tobacco-related cancer mortality in Central Europe.
Bray, I; Brennan, P; Boffetta, P
2000-07-01
Central European mortality rates for cancer sites related to tobacco and alcohol have increased rapidly in recent decades. From a public health point of view, it is of considerable interest to know whether these past increases in cancer mortality will continue into the future. Cancer mortality rates for the period 1965-1994 in Bulgaria, Czech Republic and Slovakia (analysed together), Hungary, Poland, and Romania were analysed for cancers of the larynx, oral cavity and pharynx, oesophagus, bladder, kidney, and pancreas. Using a Bayesian age-period-cohort approach, we have calculated smoothed observed rates. The effects of period and cohort were extrapolated to estimate mortality projections for 1995-99, 2004-09, and 2005-09. Mortality rates for all sites are projected to increase in most countries. Hungary has the highest projected rates for most sites, and particularly rapid increases are expected for cancers of the oral cavity and pharynx and of the larynx in Hungarian men. The smoothed 1990-94 male mortality rates for these two sites of 16. 32/100,000 and 8.70/100,000, respectively, are projected to reach 35. 17/100,000 for cancer of the oral cavity and pharynx and 14.12/100, 000 for cancer of the larynx by the period 2000-04. For kidney cancer, former Czechoslovakia has the highest observed and projected mortality rates. The smoothed 1990-94 rate of 8.37/100,000 is expected to increase 24% to 10.38/100,000 by 2000-04. Our results indicate that further increases may be expected on top of the already high cancer mortality levels in Central Europe. Policies to reduce alcohol consumption and prevent smoking in younger generations are necessary to reduce mortality as these cohorts age. Copyright 2000 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Alexandra J.; Cormack, Robert A.; Lee, Hang
2008-11-01
Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladdermore » were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm{sup 3} of tissue, volume of bladder receiving {>=}50% of the dose, volume of bladder receiving {>=}70% of the dose, and surface area of bladder receiving {>=}50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving {>=}70% of the dose and the maximal dose received by 2 cm{sup 3} of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.« less
Effects of acute urinary bladder overdistension on bladder response during sacral neurostimulation.
Bross, S; Schumacher, S; Scheepe, J R; Zendler, S; Braun, P M; Alken, P; Jünemann, K
1999-10-01
Urinary retention and micturition disorders after overdistension are clinically well-known complications of subvesical obstruction. We attempted to evaluate whether bladder overdistension influences bladder response and whether overdistension supports detrusor decompensation. Following lumbal laminectomy in 9 male foxhounds, the sacral anterior roots S2 and S3 were placed into a modified Brindley electrode for reproducible and controlled detrusor activation. The bladder was filled in stages of 50 ml from 0 to 700 ml, corresponding to an overdistension. At each volume, the bladder response during sacral anterior root stimulation was registered. After overdistension, the bladder was refilled stepwise from 0 to 300 ml and stimulated. In all dogs, the bladder response was influenced by the intravesical volume. The maximum pressure (mean 69.1 cm H(2)O) was observed at mean volume of 100 ml. During overdistension, a significant reduction in bladder response of more than 80% was seen. After overdistension, a significant reduction in intravesical pressure of 19.0% was observed. In 2 cases, reduction in bladder response was more than 50% after a single overdistension. We conclude that motoric bladder function is influenced during and after overdistension. A single bladder overdistension can support acute and long-lasting detrusor decompensation. In order to protect motoric bladder function, bladder overdistension must be prevented.