Bone Marrow Failure Secondary to Cytokinesis Failure
2015-12-01
SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia (FA) is a human genetic disease characterized by a progressive bone marrow failure and heightened...Fanconi anemia (FA) is the most commonly inherited bone marrow failure syndrome. FA patients develop bone marrow failure during the first decade of...experiments proposed in specific aims 1- 3 (Tasks 1-3). Task 1: To determine whether HSCs from Fanconi anemia mouse models have increased cytokinesis
Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I
2005-01-01
As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069
A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma.
Wang, Michael; Zhang, Liang; Han, Xiaohong; Yang, Jing; Qian, Jianfei; Hong, Sungyoul; Lin, Pei; Shi, Yuankai; Romaguera, Jorge; Kwak, Larry W; Yi, Qing
2008-04-01
To establish a severe combined immunodeficient (SCID)-hu in vivo mouse model of human primary mantle cell lymphoma (MCL) for the study of the biology and novel therapy of human MCL. Primary MCL cells were isolated from spleen, lymph node, bone marrow aspirates, or peripheral blood of six different patients and injected respectively into human bone chips, which had been s.c. implanted in SCID-hu. Circulating human beta(2)-microglobulin in mouse serum was used to monitor the engraftment and growth of patient's MCL cells. H&E staining and immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies were used to confirm the tumor growth and migration. Increasing levels of circulating human beta(2)-microglobulin in mouse serum indicated that the patient's MCL cells were engrafted successfully into human bone chip of SCID-hu mice. The engraftment and growth of patient's MCL cells were dependent on human bone marrow microenvironment. Immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies confirmed that patient's MCL cells were able to not only survive and propagate in the bone marrow microenvironment of the human fetal bone chips, but also similar to the human disease, migrate to lymph nodes, spleen, bone marrow, and gastrointestinal tract of host mice. Treatment of MCL-bearing SCID-hu mice with atiprimod, a novel antitumor compound against the protection of bone marrow stromal cells, induced tumor regression. This is the first human primary MCL animal model that should be useful for the biological and therapeutic research on MCL.
Aikou, Susumu; Aida, Junko; Takubo, Kaiyo; Yamagata, Yukinori; Seto, Yasuyuki; Kaminishi, Michio; Nomura, Sachiyo
2013-09-01
The incidence of esophageal adenocarcinoma has increased in the last 25 years. Columnar metaplasia in Barrett's mucosa is assumed to be a precancerous lesion for esophageal adenocarcinoma. However, the induction process of Barrett's mucosa is still unknown. To analyze the induction of esophageal columnar metaplasia, we established a mouse gastro-esophageal reflux disease (GERD) model with associated development of columnar metaplasia in the esophagus. C57BL/6 mice received side-to-side anastomosis of the esophagogastric junction with the jejunum, and mice were killed 10, 20, and 40 weeks after operation. To analyze the contribution of bone marrow-derived cells to columnar metaplasia in this surgical GERD model, some mice were transplanted with GFP-marked bone marrow after the operation. Seventy-three percent of the mice (16/22) showed thickened mucosa in esophagus and 41% of mice (9/22) developed columnar metaplasia 40 weeks after the operation with a mortality rate of 4%. Bone marrow-derived cells were not detected in columnar metaplastic epithelia. However, scattered epithelial cells in the thickened squamous epithelia in regions of esophagitis did show bone marrow derivation. The results demonstrate that reflux induced by esophago-jejunostomy in mice leads to the development of columnar metaplasia in the esophagus. However, bone marrow-derived cells do not contribute directly to columnar metaplasia in this mouse model. © 2013 Japanese Cancer Association.
CUI, X.; CHEN, J.; ZACHAREK, A.; ROBERTS, C.; SAVANT-BHONSALE, S.; CHOPP, M.
2008-01-01
Neovascularization may contribute to functional recovery after neural injury. Combination treatment of stroke with a nitric oxide donor, DETA-NONOate and bone marrow stromal cells promote functional recovery. However, the mechanisms underlying functional improvement have not been elucidated. In this study, we tested the hypothesis that combination treatment upregulates Angiopoietin1 and its receptor Tie2 in the ischemic brain and bone marrow stromal cells, thereby enhances cerebral neovascularization after stroke. Adult wild type male C57BL/6 mice were intravenously administered PBS, bone marrow stromal cells 5×105, DETA-NONOate 0.4 mg/kg or combination DETA-NONOate with bone marrow stromal cells (n=12/group) after middle cerebral artery occlusion. Combination treatment significantly upregulated Angiopoietin-1/Tie2 and tight junction protein (occludin) expression, and increased the number, diameter and perimeter of blood vessels in the ischemic brain compared with vehicle control (mean ± SE, p<0.05). In vitro, DETA-NONOate significantly increased Angiopoietin-1/Tie2 protein (n=6/group) and Tie2 mRNA (n=3/group) expression in bone marrow stromal cells. DETA-NONOate also significantly increased Angiopoietin-1 protein (n=6/group) and mRNA (n=3/group) expression in mouse brain endothelial cells (p<0.05). Angiopoietin-1 mRNA (n=3/group) was significantly increased in mouse brain endothelial cells treated with DETA-NONOate in combination with bone marrow stromal cells conditioned medium compared with cells treated with bone marrow stromal cells conditioned medium or DETA-NONOate alone. Mouse brain endothelial cell capillary tube-like formation assays (n=6/group) showed that Angiopoietin-1 peptide, the supernatant of bone marrow stromal cells and DETA-NONOate significantly increased capillary tube formation compared to vehicle control. Combination treatment significantly increased capillary tube formation compared with DETA-NONOate treatment alone. Inhibition of Angiopoietin-1 significantly attenuated combination treatment-induced tube formation. Our data indicated that combination treatment of stroke with DETA-NONOate and bone marrow stromal cells promotes neovascularization, which is at least partially mediated by upregulation of the Angiopoietin-1/Tie2 axis. PMID:18691637
[Study of migration and distribution of bone marrow cells transplanted animals with B16 melanoma ].
Poveshchenko, A F; Solovieva, A O; Zubareva, K E; Strunkin, D N; Gricyk, O B; Poveshchenko, O V; Shurlygina, A V; Konenkov, V I
2017-01-01
Purpose. Reveal features migration and distribution of syngeneic bone marrow cells (BMC) and subpopulations (MSC) after transplantation into the recipient carrier B16 melanoma bodies. Methods. We used mouse male and female C57BL/6 mice. Induction of Tumor Growth: B16 melanoma cells implanted subcutaneously into right hind paw of female C57BL/6 mice at a dose of 2.5 x 105 cells / mouse. migration study in vivo distribution and BMC and MSC was performed using genetic markers - Y-chromosome specific sequence line male C57Bl/6 syngeneic intravenous transplantation in females using the polymerase chain reaction (PCR) in real time on Authorized Termal Cycler - Light Cycler 480 II / 96 (Roche). Introduction suspension of unseparated bone marrow cells, mesenchymal stem cells from donor to recipient male mice (syngeneic recipient female C57BL/6), followed by isolation of recipients of organs was performed at regular intervals, then of organ recipients isolated DNA. Results. It was shown that bone marrow cells positive for Y-chromosome in migrate lymphoid (lymph nodes, spleen, bone marrow) or in non-lymphoid organs (liver, heart, brain, skin) syngeneic recipients. In addition to the migration of cells from the bone marrow to other organs, there is a way back migration of cells from the circulation to the bone marrow. B16 melanoma stimulates the migration of transplanted MSCs and BMC in bone marrow. It is found that tumor growth enhanced migration of transplanted bone marrow cells, including populations of MSCs in the bone marrow. In the early stages of tumor formation MSC migration activity higher than the BMC. In the later stages of tumor formation undivided population of bone marrow cells migrate to the intense swelling compared with a population of MSCs. Conclusion. The possibility of using bone marrow MSCs for targeted therapy of tumor diseases, because migration of MSCs in tumor tissue can be used to effectively deliver anticancer drugs.
Hogan, Mary Beth; Piktel, Debra; Hubbs, Ann F; McPherson, Leslie E; Landreth, Kenneth S
2008-12-01
Patient factors that cause long-term airway remodeling are largely unidentified. This suggests that genetic differences may determine which asthmatic patients develop airway remodeling. A murine model with repeated allergen exposure leading to peribronchial fibrosis in complement factor 5 (C5)-deficient A/J mice has been used to study asthma progression. No studies have addressed the systemic effects of allergen sensitization or chronic allergen exposure on bone marrow eosinophilopoiesis in this mouse strain. To investigate bone marrow eosinophil responses during acute sensitization and chronic allergen exposure using genetically distinct mouse strains differing in persistent airway reactivity and remodeling. The C5-sufficient BALB/c and C5-deficient A/J mice were repetitively exposed to intranasal ovalbumin for 12 weeks. Subsequently, the mice were evaluated for airway eosinophilia, mucus-containing goblet cells, and peribronchial fibrosis. Both strains of mice were also acutely sensitized to ovalbumin. Bone marrow eosinophil progenitor cells and mature eosinophils were enumerated. BALB/c and A/J mice have similar bone marrow responses after acute allergen exposure, with elevations in bone marrow eosinophil progenitor cell and eosinophil numbers. After chronic allergen exposure, only C5-deficient A/J mice that developed peribronchial fibrosis exhibited bone marrow eosinophilia. BALB/c mice lacked peribronchial fibrosis and extinguished accelerated eosinophil production after long-term allergen challenge. Chronic airway remodeling after repeated allergen exposure in genetically different mice correlated with differences in long-term bone marrow eosinophilopoiesis. Preventing asthma from progressing to chronic airway remodeling with fibrosis may involve identifying genetically determined influences on bone marrow responses to chronic allergen exposure.
Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.
2014-01-01
Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569
Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment
Naveiras, Olaia; Nardi, Valentina; Wenzel, Pamela L.; Fahey, Frederic; Daley, George Q.
2009-01-01
Osteoblasts and endothelium constitute functional niches that support hematopoietic stem cells (HSC) in mammalian bone marrow (BM) 1,2,3 . Adult BM also contains adipocytes, whose numbers correlate inversely with the hematopoietic activity of the marrow. Fatty infiltration of hematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia 4. To explore whether adipocytes influence hematopoiesis or simply fill marrow space, we compared the hematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. By flow cytometry, colony forming activity, and competitive repopulation assay, HSCs and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 “fatless” mice, which are genetically incapable of forming adipocytes8, and in mice treated with the PPARγ inhibitor Bisphenol-A-DiGlycidyl-Ether (BADGE), which inhibits adipogenesis9, post-irradiation marrow engraftment is accelerated relative to wild type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone marrow microenvironment, and suggest that antagonizingmarrow adipogenesis may enhance hematopoietic recovery in clinical bone marrow transplantation. PMID:19516257
Adeno Associated Viral-mediated intraosseus labeling of bone marrow derived cells for CNS tracking
Selenica, Maj-Linda B.; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B.; Nash, Kevin R.; Morgan, Dave; Gordon, Marcia N.; Lee, Daniel C.
2016-01-01
Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseus impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9–GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body following insult or injury. Alternatively, this method might find utility in delivering therapeutic genes for neuroinflammatory conditions. PMID:26784524
Cui, X; Chen, J; Zacharek, A; Roberts, C; Savant-Bhonsale, S; Chopp, M
2008-09-22
Neovascularization may contribute to functional recovery after neural injury. Combination treatment of stroke with a nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate) and bone marrow stromal cells promotes functional recovery. However, the mechanisms underlying functional improvement have not been elucidated. In this study, we tested the hypothesis that combination treatment upregulates angiopoietin-1 and its receptor Tie2 in the ischemic brain and bone marrow stromal cells, thereby enhancing cerebral neovascularization after stroke. Adult wild type male C57BL/6 mice were i.v. administered PBS, bone marrow stromal cells 5x10(5), DETA-NONOate 0.4 mg/kg or combination DETA-NONOate with bone marrow stromal cells (n=12/group) after middle cerebral artery occlusion. Combination treatment significantly upregulated angiopoietin-1/Tie2 and tight junction protein (occludin) expression, and increased the number, diameter and perimeter of blood vessels in the ischemic brain compared with vehicle control (mean+ or -S.E., P<0.05). In vitro, DETA-NONOate significantly increased angiopoietin-1/Tie2 protein (n=6/group) and Tie2 mRNA (n=3/group) expression in bone marrow stromal cells. DETA-NONOate also significantly increased angiopoietin-1 protein (n=6/group) and mRNA (n=3/group) expression in mouse brain endothelial cells (P<0.05). Angiopoietin-1 mRNA (n=3/group) was significantly increased in mouse brain endothelial cells treated with DETA-NONOate in combination with bone marrow stromal cell-conditioned medium compared with cells treated with bone marrow stromal cell-conditioned medium or DETA-NONOate alone. Mouse brain endothelial cell capillary tube-like formation assays (n=6/group) showed that angiopoietin-1 peptide, the supernatant of bone marrow stromal cells and DETA-NONOate significantly increased capillary tube formation compared with vehicle control. Combination treatment significantly increased capillary tube formation compared with DETA-NONOate treatment alone. Inhibition of angiopoietin-1 significantly attenuated combination treatment-induced tube formation. Our data indicated that combination treatment of stroke with DETA-NONOate and bone marrow stromal cells promotes neovascularization, which is at least partially mediated by upregulation of the angiopoietin-1/Tie2 axis.
Mouse Models in Bone Marrow Transplantation and Adoptive Cellular Therapy
Arber, Caroline; Brenner, Malcolm K.; Reddy, Pavan
2014-01-01
Mouse models of transplantation have been indispensable to the development of bone marrow transplantation (BMT). Their role in the generation of basic science knowledge is invaluable and is subject to discussion below. However, this article focuses on the direct role and relevance of mouse models towards the clinical development and advances in BMT and adoptive T-cell therapy for human diseases. The authors aim to present a thoughtful perspective on the pros and cons of mouse models while noting that despite imperfections these models are obligatory for the development of science-based medicine. PMID:24216170
Bär, Christian; Povedano, Juan Manuel; Serrano, Rosa; Benitez-Buelga, Carlos; Popkes, Miriam; Formentini, Ivan; Bobadilla, Maria; Bosch, Fatima; Blasco, Maria A
2016-04-07
Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomerase Tert gene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- and Tert-deficient mice). We find that a high dose of AAV9-Tert targets the bone marrow compartment, including hematopoietic stem cells. AAV9-Tert treatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres. © 2016 by The American Society of Hematology.
Chattopadhyay, Sukalpa; Chatterjee, Ritam; Law, Sujata
2016-10-01
According to case-control studies, long-term pesticide exposure can cause bone marrow aplasia like hematopoietic degenerative disease leading to impaired hematopoiesis and increased risk of aplastic anemia in human subjects. However, the exact mechanism of pesticide mediated hematotoxicity still remains elusive. In this study, we investigated the role of noncanonical Wnt signaling pathway, a crucial regulator of adult hematopoiesis, in pesticide induced bone marrow aplasia mouse model. Aplasia mouse model was developed following inhalation and dermal exposure of 5% aqueous mixture of common agriculturally used pesticides for 6 h/day for 5 days a week up to 90 days. After that, blood hemogram, marrow smear, cellularity, scanning electron microscopy, extramedullary hematopoiesis and flowcytometric expression analysis of noncanonical Wnt signaling components, such as Wnt 5a, fzd5, NFAT, IFN-γ, intracellular Ca(2+) level were evaluated in the bone marrow hematopoietic stem/progenitor compartment of the control and pesticide induced aplasia groups of animals. Results showed that pesticide exposed mice were anemic with peripheral blood pancytopenia, hypocellular degenerative marrow, and extramedullary hematopoiesis in the spleen. Upon pesticide exposure, Wnt 5a expression was severely downregulated with a decline in intracellular Ca(2+) level. Moreover, downstream of Wnt5a, we observed sharp downregulation of NFATc2 transcription factor expression, the major target of pesticide toxicity and its target molecule IFN-γ. Taken together, our result suggests that deregulation of Wnt5a-Ca(2+) -NFAT signaling axis in the hematopoietic stem/progenitor compartment plays a crucial role behind the pathogenesis of pesticide mediated bone marrow aplasia by limiting primitive hematopoietic stem cells' ability to maintain hematopoietic homeostasis and reconstitution mechanism in vivo during xenobiotic stress leading to ineffective hematopoiesis and evolution of bone marrow aplasia. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1163-1175, 2016. © 2015 Wiley Periodicals, Inc.
Pelletier, Margery G. H.; Szymczak, Klaudia; Barbeau, Anna M.; Prata, Gianna N.; O’Fallon, Kevin S.; Gaines, Peter
2016-01-01
Neutrophils and macrophages differentiate from common myeloid progenitors in the bone marrow, where they undergo nuclear morphologic changes during maturation. During this process, both cell types acquire critical innate immune functions that include phagocytosis of pathogens, and for neutrophils the release of nuclear material called nuclear extracellular traps (NETs). Primary cells used to study these functions are typically purified from mature mouse tissues, but bone marrow-derived ex vivo cultures provide more abundant numbers of progenitors and functionally mature cells. Routine analyses of these cells use conventional microscopy and flow cytometry, which present limitations; microscopy is laborious and subjective, whereas flow cytometry lacks spatial resolution. Here we describe methods to generate enriched populations of neutrophils or macrophages from cryopreserved mouse bone marrow cultured ex vivo, and to use imaging flow cytometry that combines the resolution of microscopy with flow cytometry to analyze cells for morphologic features, phagocytosis, and NETosis. PMID:27663441
Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi
2013-03-01
Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.
Lozano, D; Fernández-de-Castro, L; Portal-Núñez, S; López-Herradón, A; Dapía, S; Gómez-Barrena, E; Esbrit, P
2011-01-01
BACKGROUND AND PURPOSE Current data suggest that parathyroid hormone (PTH)-related peptide (PTHrP) domains other than the N-terminal PTH-like domain contribute to its role as an endogenous bone anabolic factor. PTHrP-107-139 inhibits bone resorption, a fact which has precluded an unequivocal demonstration of its possible anabolic action in vivo. We thus sought to characterize the osteogenic effects of this peptide using a mouse model of diabetic low-turnover osteopaenia. EXPERIMENTAL APPROACH PTHrP-107-139 was administered to streptozotocin-induced diabetic mice, with or without bone marrow ablation, for 13 days. Osteopaenia was confirmed by dual-energy X-ray absorptiometry and microcomputed tomography analysis. Histological analysis was performed on paraffin-embedded bone tissue sections by haematoxylin/eosin and Masson's staining, and tartrate-resistent acid phosphatase immunohistochemistry. Mouse bone marrow stromal cells and osteoblastic MC3T3-E1 cells were cultured in normal and/or high glucose (HG) medium. Osteogenic and adipogenic markers were assessed by real-time PCR, and PTHrP and the PTH1 receptor protein expression by Western blot analysis. KEY RESULTS PTHrP-107-139 reversed the alterations in bone structure and osteoblast function, and also promoted bone healing after marrow ablation without affecting the number of osteoclast-like cells in diabetic mice. This peptide also reversed the high-glucose-induced changes in osteogenic differentiation in both bone marrow stromal cells and the more differentiated MC3T3-E1 cells. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that PTHrP-107-139 promotes bone formation in diabetic mice. This mouse model and in vitro cell cultures allowed us to identify various anabolic effects of this peptide in this scenario. PMID:21175568
Afshar, Solmaz F; Zawaski, Janice A; Inoue, Taeko; Rendon, David A; Zieske, Arthur W; Punia, Jyotinder N; Sabek, Omaima M; Gaber, M Waleed
2017-07-01
The abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery. We used positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and optical imaging to quantify bone marrow activity, vascular response and marrow repopulation in fully and partially irradiated rodent models. We further measured the effects of radiation on serum cytokine levels, hematopoietic cell counts and histology. PET/CT imaging revealed a radiation-induced increase in proliferation in the shielded bone marrow (SBM) compared to exposed bone marrow (EBM) and sham controls. T 2 -weighted MRI showed radiation-induced hemorrhaging in the EBM and unirradiated SBM. In the EBM and SBM groups, we found alterations in serum cytokine and hormone levels and in hematopoietic cell population proportions, and histological evidence of osteoblast activation at the bone marrow interface. Importantly, we generated a BMT mouse model using fluorescent-labeled bone marrow donor cells and performed fluorescent imaging to reveal the migration of bone marrow cells from shielded to radioablated sites. Our study validates the use of multimodality imaging to monitor bone marrow recovery and provides evidence for the abscopal response in promoting bone marrow recovery after irradiation.
Daev, E V; Vyborova, A M; Kazarova, V É; Dukel'skaia, A V
2012-01-01
Evolutionary conservative chemosignal 2,5-dimethylpyrazin that is pheromone in female mice has been shown to increase frequency of mitotic aberrations analyzed with aid of metaphasic and ana-telophasic analysis in bone marrow cells. Replacement of one of methyl radicals in the pheromone molecule by the carboxyl radical reveals specificity of action of the used derivative: the frequency of disturbances revealed only by the ana-telophasic analysis increases, whereas by the metaphasic analysis, no induction of disturbance is detected. In the sperm head abnormality test there is shown a rise of the anomalies by both compounds. Possible mechanisms of specific action of the tested substances on stability of genetic apparatus of the bone marrow dividing cells in the house mouse are discussed.
Singh, Vivek; Jaini, Ritika; Torricelli, André A M; Tuohy, Vincent K; Wilson, Steven E
2013-11-01
GFP-chimeric mice are important tools to study the role of bone marrow-derived cells in eye physiology. A method is described to generate GFP-chimeric mice using whole-body, sub-lethal radiation (600 rad) of wild-type C57BL/6 recipients followed by tail vein injection of bone marrow cells derived from GFP+ (GFP-transgenic C57/BL/6-Tg(UBC-GFP)30 Scha/J) mice. This method yields stable GFP+ chimeras with greater than 95% chimerism (range 95-99%), achieved within one month of bone marrow transfer confirmed by microscopy and fluorescence-assisted cell sorting (FACS) analysis, with lower mortality after irradiation than prior methods. To demonstrate the efficacy of GFP+ bone marrow chimeric mice, the role of circulating GFP+ bone marrow-derived cells in myofibroblast generation after irregular photo-therapeutic keratectomy (PTK) was analyzed. Many SMA+ myofibroblasts that were generated at one month after PTK were derived from GFP+ bone marrow-derived cells. The GFP+ bone marrow chimeric mouse provides an excellent model for studying the role of bone marrow-derived cells in corneal wound healing, glaucoma surgery, optic nerve head pathology and retinal pathophysiology and wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei
2016-02-01
Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Comparison of collagen matrix treatment impregnated with platelet rich plasma vs bone marrow.
Minamimura, Ai; Ichioka, Shigeru; Sano, Hitomi; Sekiya, Naomi
2014-02-01
This study has reported the efficacy of an autologous bone marrow-impregnated collagen matrix experimentally and clinically. Then, it reflected that platelet rich plasma (PRP) was as good a source of growth factors as bone marrow and available in a less invasive procedure. This study aimed to compare the efficacy of a PRP-impregnated collagen matrix with that of a bone marrow-impregnated collagen matrix by quantifying wound size and capillary density using genetically diabetic db/db mice. Bone marrow cells were obtained from femurs of ddy mice. Then, a small amount of collagen matrix was immersed in bone marrow suspension. This is called a bone marrow-impregnated collagen matrix. PRP was obtained from healthy human blood and a small amount of collagen matrix was immersed in PRP. This is called a PRP-impregnated collagen matrix. A bone marrow-impregnated collagen matrix and PRP-impregnated collagen matrix were applied to excisional skin wounds on a genetically healing-impaired mouse (n = 6) and wounds were evaluated 6 days after the procedure. Wounds were divided into two groups: PRP (n = 6), in which a PRP-impregnated collagen matrix was applied; and bone marrow (n = 6), in which collagen immersed in a bone marrow suspension was applied. There was no significant difference between the PRP and bone-marrow groups in the rate of vascular density increase or wound size decrease. The present study suggested that the PRP-impregnated collagen matrix promotes repair processes at least as strongly as the bone marrow-impregnated collagen matrix. Given lower invasiveness, the PRP-impregnated collagen matrix would have advantages in clinical use.
Dong, Yifei; Arif, Arif A.; Poon, Grace F. T.; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline
2016-01-01
Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290
Zhang, Qiu Hua; Wu, Chun Fu; Duan, Lian; Yang, Jing Yu
2008-01-01
Cyclophosphamide (CP), commonly used anti-cancer, induces oxidative stress and is cytotoxic to normal cells. It is very important to choice the protective agent combined CP to reduce the side effects in cancer treatment. Ginsenosides are biological active constituents of Panax ginseng C.A. Meyer that acts as the tonic agent for the cancer patients to reduce the side effects in the clinic application. Because CP is a pro-oxidant agent and induces oxidative stress by the generation of free radicals to decrease the activities of anti-oxidant enzymes, the protective effects of the total saponins from stem and leaf of P. ginseng C.A. Meyer (TSPG) act as an anti-oxidant agent against the decreased anti-oxidant enzymes, the genotoxicity and apoptosis induced by CP was carried out. The alkaline single cell gel electrophoresis was employed to detect DNA damage; flow cytometry assay and AO/EB staining assay were employed to measure cell apoptosis; the enzymatic anti-oxidants (T-SOD, CAT and GPx) and non-enzymatic anti-oxidant (GSH) were measured by the various colorimetric methods. CP induced the significant DNA damage in mouse peripheral lymphocytes in time- and dose-dependent manners, inhibited the activities of T-SOD, GPx and CAT, and decreased the contents of GSH in mouse blood, triggered bone marrow cell apoptosis at 6 and 12h. TSPG significantly reduced CP-induced DNA damages in bone marrow cells and peripheral lymphocyte cells, antagonized CP-induced reduction of T-SOD, GPx, CAT activities and the GSH contents, decreased the bone marrow cell apoptosis induced by CP. TSPG, significantly reduced the genotoxicity of CP in bone marrow cells and peripheral lymphocyte cells, and decreased the apoptotic cell number induced by CP in bone marrow cells. The effects of TSPG on T-SOD, GPx, CAT activities and GSH contents might partially contribute to its protective effects on CP-induced cell toxicities.
Ufimtseva, Elena
2016-01-01
The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells. PMID:27066505
Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A.; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L.; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C.; Vezzoni, Paolo
2009-01-01
Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [α1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.
1991-05-01
Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymicmore » epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maggio-Price, L.; Wolf, N.S.; Priestley, G.V.
1988-09-01
Serial transplantation and competitive repopulation were used to evaluate any loss of self-replicative capacity of bone marrow stem cells in a mouse model with increased and persistent hemopoietic demands. Congenic marrows from old control and from young and old mice with hereditary spherocytic anemia (sphha/sphha) were serially transplanted at 35-day intervals into normal irradiated recipients. Old anemic marrow failed or reverted to recipient karyotype at a mean of 3.5 transplants, and young anemic marrow reverted at a mean of 4.0 transplants, whereas controls did so at a mean of 5.0 transplants. In a competitive assay in which a mixture ofmore » anemic and control marrow was transplanted, the anemic marrow persisted to 10 months following transplantation; anemic marrow repopulation was greater if anemic marrow sex matched with the host. It is possible that lifelong stress of severe anemia decreases stem cell reserve in the anemic sphha/sphha mouse marrow. However, marginal differences in serial transplantation number and the maintenance of anemic marrow in a competition assay would suggest that marrow stem cells, under prolonged stress, are capable of exhibiting good repopulating and self-replicating abilities.« less
Zhuk, A S; Stepchenkova, E I; Dukel'skaia, A V; Daev, E V; Inge-Vechtomov, S G
2011-10-01
The hypothesis on a relationship between the high frequency of mitotic disturbances in bone marrow cells and the change in the activity of the S9 liver fraction containing promutagen-activating enzymes under olfactory stress in the house mouse Mus musculus has been tested. For this purpose, the effect of the pheromone 2,5-dimethylpyrazine on the frequency of mitotic disturbances in mouse bone marrow cells has been measured by the anaphase-telophase assay. The Ames test using Salmonella typhimurium has been employed to compare the capacities of the S9 liver fractions from stressed and intact mice for activating the promutagen 2-aminofluorene. It has been demonstrated that the increased frequency of mitotic disturbances in bone marrow cells induced by the pheromonal stressor in male house mice is accompanied by an increased promutagen-activating capacity of the S9 liver fraction. The model system used in the study allowed the genetic consequences of the exposure to the olfactory stressor to be estimated and the possible mechanisms of genome destabilization to be assumed.
Janssen, William J; Muldrow, Alaina; Kearns, Mark T; Barthel, Lea; Henson, Peter M
2010-05-31
Allogeneic bone marrow transplantation is a common method used to study the contribution of myeloid and lymphoid cell populations in murine models of disease. The method requires lethal doses of radiation to ablate the bone marrow. Unintended consequences of radiation include organ injury and inflammatory cell activation. The goal of our study was to determine the degree to which bone marrow transplantation alters lungs and to develop a system to protect the lungs during radiation. C57BL/6 mice were subjected to total body irradiation with 900cGy and then transplanted with bone marrow from green fluorescent protein (GFP) expressing mice. Resultant chimeras exhibited a significant decline in alveolar macrophage numbers within 72h, modest influx of neutrophils in the lungs at 14days, and repopulation of the lungs by alveolar macrophages of bone marrow origin by 28days. Neutrophil influx and alveolar macrophage turnover were prevented when 1cm thick lead shields were used to protect the lungs during radiation, such that 8weeks after transplantation less than 30% of alveolar macrophages were of donor origin. Lung-shielded mice achieved a high level of bone marrow engraftment with greater than 95% of circulating leukocytes expressing GFP. In addition, their response to intratracheal lipopolysaccharide was similar to non-transplanted mice. We describe a model whereby lead shields protect resident cell populations in the lungs from radiation during bone marrow transplantation but permit full bone marrow engraftment. This system may be applicable to other organ systems in which protection from radiation during bone marrow transplantation is desired.
Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.
2016-01-01
Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913
Lord, B I; Austin, A L; Ellender, M; Haines, J W; Harrison, J D
2001-06-01
To study the temporal change in microdistribution of plutonium-239, americium-241 and uranium-233 in the mouse distal femur and to compare and combine calculated radiation doses with those obtained previously for the femoral shaft. Also, to relate doses to relative risks of osteosarcoma and acute myeloid leukaemia. Computer-based image analysis of neutron-induced and alpha-track autoradiographs of sections of mouse femora was used to quantify the microdistribution of (239)Pu, (241)Am and (233)U from 1 to 448 days after intraperitoneal injection. Localized dose-rates and cumulative doses over this period were calculated for different regions of the marrow spaces in trabecular bone. The results were then combined with previous data for doses to the cortical marrow of the femoral shaft. A morphometric analysis of the distal femur was carried out. Initial deposition on endosteal surfaces and dose-rates near to the trabecular surfaces at 1 day were two to four times greater than corresponding results for cortical bone. Burial was most rapid for (233)U, about twice the rate in cortical bone. As in cortical bone, subsequent uptake into the marrow was seen for (239)Pu and (241)Am but not (233)U. Cumulative doses to 448 days for different regions of trabecular marrow were greater than corresponding values for cortical marrow for each radionuclide. Combined doses reflected the greater overall volume of cortical marrow. Cumulative radiation doses to the 10 microm thick band of marrow adjacent to all endosteal surfaces were in the ratio of approximately 7:3:1 for (239)Pu:(241)Am:(233)U. This ratio is not inconsistent with observed incidences of osteosarcoma induction by the three nuclides. Analysis of doses to different depths of marrow, however, showed that although ratios were probably not significantly different to that for a 10 microm depth, better correlations with osteosarcomagenic risk were obtained with 20-40 microm depths. For acute myeloid leukaemia, the closest relationship between relative risk and doses was obtained by considering only the central 5-10% of marrow, which gave a dose ratio of approximately 12:11:1 for (239)Pu:(241)Am:(233)U respectively.
Stem Cell Mobilizers: Novel Therapeutics for Acute Kidney Injury.
Xu, Yue; Zeng, Song; Zhang, Qiang; Zhang, Zijian; Hu, Xiaopeng
2017-01-01
In the past decade, rapid developments in stem cell studies have occurred. Researchers have confirmed the plasticity of bone marrow stem cells and the repair and regeneration effects of bone marrow hematopoietic stem cells on solid organs. These findings have suggested the possibility of using bone marrow stem cell mobilizers to repair and regenerate injured organs. Recent studies on the effects of granulocyte colony-stimulating factor (G-CSF) and Plerixafor (AMD3100) on mouse acute kidney injury models have confirmed that the use of bone marrow stem cell mobilizers may be an effective therapeutic measure. This paper summarizes studies describing the effects of G-CSF and AMD3100 on various acute kidney injury models over the past 10 years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin
2014-01-01
Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type mice. CXCR6 deficiency inhibited total collagen deposition and suppressed expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, wild type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Transplant of wild type bone marrow into CXCR6−/− recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may play important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis. PMID:24646857
Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin
2014-08-01
Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.
Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia.
Hernandez, Diana R; Artiles, Adriana; Duque, Juan C; Martinez, Laisel; Pinto, Mariana T; Webster, Keith A; Velazquez, Omaida C; Vazquez-Padron, Roberto I; Lassance-Soares, Roberta M
2018-04-01
Arteriogenesis is a process whereby collateral vessels remodel usually in response to increased blood flow and/or wall stress. Remodeling of collaterals can function as a natural bypass to alleviate ischemia during arterial occlusion. Here we used a genetic approach to investigate possible roles of tyrosine receptor c-Kit in arteriogenesis. Mutant mice with loss of c-Kit function (Kit W/W-v ), and controls were subjected to hindlimb ischemia. Blood flow recovery was evaluated pre-, post-, and weekly after ischemia. Foot ischemic damage and function were assessed between days 1 to 14 post-ischemia while collaterals remodeling were measured 28 days post-ischemia. Both groups of mice also were subjected to wild type bone marrow cells transplantation 3 weeks before hindlimb ischemia to evaluate possible contributions of defective bone marrow c-Kit expression on vascular recovery. Kit W/W-v mice displayed impaired blood flow recovery, greater ischemic damage and foot dysfunction after ischemia compared to controls. Kit W/W-v mice also demonstrated impaired collateral remodeling consistent with flow recovery findings. Because arteriogenesis is a biological process that involves bone marrow-derived cells, we investigated which source of c-Kit signaling (bone marrow or vascular) plays a major role in arteriogenesis. Kit W/W-v mice transplanted with bone marrow wild type cells exhibited similar phenotype of impaired blood flow recovery, greater tissue ischemic damage and foot dysfunction as nontransplanted Kit W/W-v mice. This study provides evidence that c-Kit signaling is required during arteriogenesis. Also, it strongly suggests a vascular role for c-Kit signaling because rescue of systemic c-Kit activity by bone marrow transplantation did not augment the functional recovery of Kit W/W-v mouse hindlimbs. Copyright © 2017 Elsevier Inc. All rights reserved.
Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease
Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; da Cunha, Sandro Torrentes; Paula, Luis Felipe; Carvalho, Alysson Roncally; de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli dos Santos
2017-01-01
BACKGROUND Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice. PMID:28767980
Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease.
Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; Cunha, Sandro Torrentes da; Paula, Luis Felipe; Carvalho, Alysson Roncally; Carvalho, Antonio Carlos Campos de; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli Dos Santos
2017-08-01
Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.
Saito, H; Hatake, K; Dvorak, A M; Leiferman, K M; Donnenberg, A D; Arai, N; Ishizaka, K; Ishizaka, T
1988-01-01
Effects of recombinant human interleukins on hematopoiesis were explored by using suspension cultures of mononuclear cells of human umbilical-cord blood and bone marrow. The results showed that interleukin 5 induced the selective differentiation and proliferation of eosinophils. After 3 weeks in culture with interleukin 5, essentially all nonadherent cells in both bone marrow and cord blood cell cultures became eosinophilic myelocytes. Culture of the same cells with interleukin 4 resulted in the selective growth of OKT3+ lymphocytes. However, OKT3+ cells did not develop if the bone marrow cells were depleted of OKT3+/OKT11+ cells prior to the culture, indicating that interleukin 4 induced the proliferation of a subpopulation of resting T cells present in cord blood and bone marrow cell preparations. In suspension cultures of bone marrow cells and cord blood cells grown in the presence of interleukin 3, basophilic, eosinophilic, and neutrophilic myelocytes and macrophages developed within 2 weeks. By 3 weeks, however, the majority of nonadherent cells became eosinophilic myelocytes. In contrast to mouse bone marrow cell cultures, neither interleukin 3 nor a combination of interleukins 3 and 4 induced the differentiation of mast cells in human bone marrow or cord blood cell cultures. Images PMID:3258425
Wang, Jianyong; Chen, Tao
2010-03-01
In our previous study (Wang et al., 2004, Toxicol. Sci. 82: 124-128), we observed that the cII gene mutant frequency (MF) in the bone marrow of Big Blue mice showed significant increase as early as day 1, reached the maximum at day 3 and then decreased to a plateau by day 15 after a single dose of carcinogen N-ethyl-N-nitrosourea (ENU) treatment, which is different from the longer mutation manifestation time and the constancy of MFs after reaching their maximum in some other tissues. To determine the mechanism underlying the quick increase in MF and the peak formation in the mutant manifestation, we examined the mutation frequencies and spectra of the ENU-induced mutants collected from different sampling times in this study. The cII mutants from days 1, 3 and 120 after ENU treatment were randomly selected from different animals. The mutation frequencies were 33, 217, 305 and 144 x 10(-6) for control, days 1, 3, and 120, respectively. The mutation spectra at days 1 and 3 were significantly different from that at day 120. Considering that stem cells are responsible for the ultimate MF plateau (day 120) and transit cells are accountable for the earlier MF induction (days 1 or 3) in mouse bone marrow, we conclude that transit cells are much more sensitive to mutation induction than stem cells in mouse bone marrow, which resulted in the specific mutation manifestation induced by ENU.
Flamant, Stéphane; Lebastard, Maï; Pescher, Pascale; Besmond, Claude; Milon, Geneviève; Marchal, Gilles
2003-10-01
Mononuclear phagocytes are located in every tissue of metazoan organisms. In this extravascular space, they are designated as macrophages and are known to sense and process many signals including the local oxygen tension (PO2), which ranges from 150 mmHg at the lung apices to around 40 mmHg in mixed venous blood and most organs, and to less than 10 mmHg in tissues where long-term and dynamic remodeling processes occur. Most tissue macrophages survive and maintain their differentiated status within an environment bathed by colony-stimulating factor (CSF)-1 through the CSF-1 receptor, encoded by the Csf1r gene. In order to investigate the mRNA expression profile of macrophages as a function of PO2, we developed an in vitro model in which monocyte-derived macrophages were generated from mouse bone marrow progenitor cells grown and maintained under low (36 mmHg) or atmospheric (142 mmHg) PO2, in the presence of L929-conditioned medium (L-CM) as a source of CSF-1. We show that CSF-1-reactive C57BL/6 bone marrow cells displayed an increased cloning efficiency under a PO2 of 36, compared with 142 mmHg. Furthermore, we provide evidence of the overexpression of both CSF-1 receptor protein and mRNA by mouse monocyte-derived macrophages generated from bone marrow under low PO2.
Yamanaka, Nobuko; Wong, Christine J.; Gertsenstein, Marina; Casper, Robert F.; Nagy, Andras; Rogers, Ian M.
2009-01-01
Background Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100% of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cells and that trogocytosis is evident in non-blood cells in chimera mice. PMID:20046883
Ablation of the Sam68 RNA Binding Protein Protects Mice from Age-Related Bone Loss
Richard, Stéphane; Torabi, Nazi; Franco, Gladys Valverde; Tremblay, Guy A; Chen, Taiping; Vogel, Gillian; Morel, Mélanie; Cléroux, Patrick; Forget-Richard, Alexandre; Komarova, Svetlana; Tremblay, Michel L; Li, Wei; Li, Ailian; Gao, Yun Jing; Henderson, Janet E
2005-01-01
The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68−/− mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68−/− mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68−/− mice. Sam68−/− bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68−/− littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68−/− mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68−/− mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice. PMID:16362077
Kaufman, C L; Li, H; Ildstad, S T
1997-03-01
Complete replacement of the immune system via allogeneic bone marrow transplantation is sufficient to prevent diabetes in the nonobese diabetic (NOD) mouse model. In the present study we examined whether mixed allogeneic reconstitution would be sufficient to interrupt the autoimmune process with respect to occurrence of overt diabetes, as well as preexisting autoimmune insulitis. NOD mice were lethally irradiated and reconstituted with a mixture of NOD and B10.BR marrow. A relative resistance to allogeneic bone marrow engraftment was noted in NOD recipients of the mixed bone marrow inoculum, compared with disease-resistant controls. Moreover, unlike disease-resistant controls, all animals that initially repopulated as mixed donor/host chimeras became predominantly allogeneic by 4 mo, suggesting a competitive advantage for long term engraftment for disease-resistant marrow. All but one mouse in the group that engrafted with allogeneic marrow remained free of diabetes for the entire follow-up period (n = 22). Moreover, in all animals examined, virtually all islets were free of insulitis. In contrast, 74% of NOD mice that received similar conditioning and failed to engraft with donor marrow developed acute diabetes and intra-islet insulitis was present in all animals examined. These data suggest that NOD mice exhibit a relative resistance to engraftment compared with disease-resistant recipients. Conversely, animals that initially repopulated as a mixture of syngeneic and donor marrow become converted to virtually all donor by 4 mo. These data provide additional support that a defective stem cell is responsible for autoimmune diabetes in this experimental model.
Walker, Marquis T.; Montell, Craig
2016-01-01
Mucolipidosis IV (MLIV) is a severe lysosomal storage disorder, which results from loss of the TRPML1 channel. MLIV causes multiple impairments in young children, including severe motor deficits. Currently, there is no effective treatment. Using a Drosophila MLIV model, we showed previously that introduction of trpml+ in phagocytic glia rescued the locomotor deficit by removing early dying neurons, thereby preventing amplification of neuronal death from cytotoxicity. Because microglia, which are phagocytic cells in the mammalian brain, are bone marrow derived, and cross the blood–brain barrier, we used a mouse MLIV model to test the efficacy of bone marrow transplantation (BMT). We found that BMT suppressed the reduced myelination and the increased caspase-3 activity due to loss of TRPML1. Using a rotarod test, we demonstrated that early BMT greatly delayed the motor impairment in the mutant mice. These data offer the possibility that BMT might provide the first therapy for MLIV. PMID:27270598
Siclari, Valerie A.; Zhu, Ji; Akiyama, Kentaro; Liu, Fei; Zhang, Xianrong; Chandra, Abhishek; Nah-Cederquist, Hyun-Duck; Shi, Songtao; Qin, Ling
2013-01-01
Long bone is an anatomically complicated tissue with trabecular-rich metaphyses at two ends and cortical-rich diaphysis at the center. The traditional flushing method only isolates mesenchymal progenitor cells from the central region of long bones and these cells are distant from the bone surface. We propose that mesenchymal progenitors residing in endosteal bone marrow that is close to the sites of bone formation, such as trabecular bone and endosteum, behave differently from those in the central bone marrow. In this report, we separately isolated endosteal bone marrow using a unique enzymatic digestion approach and demonstrated that it contained a much higher frequency of mesenchymal progenitors than the central bone marrow. Endosteal mesenchymal progenitors express traditional mesenchymal stem cell markers and are capable of multi-lineage differentiation. However, we found that mesenchymal progenitors isolated from different anatomical regions of the marrow did exhibit important functional differences. Compared to their central marrow counterparts, endosteal mesenchymal progenitors have superior proliferative ability with reduced expression of cell cycle inhibitors. They showed greater immunosuppressive activity in culture and in a mouse model of inflammatory bowel disease. Aging is a major contributing factor for trabecular bone loss. We found that old mice have a dramatically decreased number of endosteal mesenchymal progenitors compared to young mice. Parathyroid hormone (PTH) treatment potently stimulates bone formation. A single PTH injection greatly increased the number of endosteal mesenchymal progenitors, particularly those located at the metaphyseal bone, but had no effect on their central counterparts. In summary, endosteal mesenchymal progenitors are more metabolically active and relevant to physiological bone formation than central mesenchymal progenitors. Hence, they represent a biologically important target for future mesenchymal stem cell studies. PMID:23274348
Yong, Kylie Su Mei; Ng, Justin Han Jia; Her, Zhisheng; Hey, Ying Ying; Tan, Sue Yee; Tan, Wilson Wei Sheng; Irac, Sergio Erdal; Liu, Min; Chan, Xue Ying; Gunawan, Merry; Foo, Randy Jee Hiang; Low, Dolyce Hong Wen; Mendenhall, Ian Hewitt; Chionh, Yok Teng; Dutertre, Charles-Antoine; Chen, Qingfeng; Wang, Lin-Fa
2018-03-16
Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R -/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvets, V.N.
Studies were made of the direction of differentiation and radiosensitivity of CFU (colony-forming units) of bone marrow and spleen for 1 month after single injection of 5 mg hydrocortisone (HC) per mouse. It was found that there was a sharp change in direction of differentiation of CFU from different sources. Bone marrow CFU enhanced erythropoiesis and CFU of the spleen enhanced myelopoiesis, which is not inherent in the same CFU of normal mice. Determination of radiosensitivity of CFU from different sources according to the spleen colony test failed to demonstrate any differences in value of D/sub 0/ and extrapolation number,more » whereas substantial changes in radiosensitivity were demonstrated in the bone marrow colony test. Radiosensitivity of marrow CFU diminished while that of the spleen increased, as compared to the control. It is assumed that these phenomena are due to redistribution of T lymphocytes in response to HC.« less
Protective effects of deferasirox and N-acetyl-L-cysteine on iron overload-injured bone marrow.
Shen, J C; Zhang, Y C; Zhao, M F
2017-10-19
Using an iron overload mouse model, we explored the protective effect of deferasirox (DFX) and N-acetyl-L-cysteine (NAC) on injured bone marrow hematopoietic stem/progenitor cells (HSPC) induced by iron overload. Mice were intraperitoneally injected with 25 mg iron dextran every 3 days for 4 weeks to establish an iron overload (Fe) model. DFX or NAC were co-administered with iron dextran in two groups of mice (Fe+DFX and Fe+NAC), and the function of HSPCs was then examined. Iron overload markedly decreased the number of murine HSPCs in bone marrow. Subsequent colony-forming cell assays showed that iron overload also decreased the colony forming capacity of HSPCs, the effect of which could be reversed by DFX and NAC. The bone marrow hematopoiesis damage caused by iron overload could be alleviated by DFX and NAC.
Modeling Hematopoiesis and Responses to Radiation Countermeasures in a Bone Marrow-on-a-Chip.
Torisawa, Yu-Suke; Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Mammoto, Akiko; Watters, Alexander L; Bahinski, Anthony; Ingber, Donald E
2016-05-01
Studies on hematopoiesis currently rely on animal models because in vitro culture methods do not accurately recapitulate complex bone marrow physiology. We recently described a bone marrow-on-a-chip microfluidic device that enables the culture of living hematopoietic bone marrow and mimics radiation toxicity in vitro. In the present study, we used this microdevice to demonstrate continuous blood cell production in vitro and model bone marrow responses to potential radiation countermeasure drugs. The device maintained mouse hematopoietic stem and progenitor cells in normal proportions for at least 2 weeks in culture. Increases in the number of leukocytes and red blood cells into the microfluidic circulation also could be detected over time, and addition of erythropoietin induced a significant increase in erythrocyte production. Exposure of the bone marrow chip to gamma radiation resulted in reduction of leukocyte production, and treatment of the chips with two potential therapeutics, granulocyte-colony stimulating factor or bactericidal/permeability-increasing protein (BPI), induced significant increases in the number of hematopoietic stem cells and myeloid cells in the fluidic outflow. In contrast, BPI was not found to have any effect when analyzed using static marrow cultures, even though it has been previously shown to accelerate recovery from radiation-induced toxicity in vivo. These findings demonstrate the potential value of the bone marrow-on-a-chip for modeling blood cell production, monitoring responses to hematopoiesis-modulating drugs, and testing radiation countermeasures in vitro.
Higuchi, Masaya; Kawamura, Hiroki; Matsuki, Hideaki; Hara, Toshifumi; Takahashi, Masahiko; Saito, Suguru; Saito, Kousuke; Jiang, Shuying; Naito, Makoto; Kiyonari, Hiroshi; Fujii, Masahiro
2016-12-13
Self-renewal, replication, and differentiation of hematopoietic stem cells (HSCs) are regulated by cytokines produced by niche cells in fetal liver and bone marrow. HSCs must overcome stresses induced by cytokine deprivation during normal development. In this study, we found that ubiquitin-specific peptidase 10 (USP10) is a crucial deubiquitinase for mouse hematopoiesis. All USP10 knockout (KO) mice died within 1 year because of bone marrow failure with pancytopenia. Bone marrow failure in these USP10-KO mice was associated with remarkable reductions of long-term HSCs (LT-HSCs) in bone marrow and fetal liver. Such USP10-KO fetal liver exhibited enhanced apoptosis of hematopoietic stem/progenitor cells (HSPCs) including LT-HSCs but not of lineage-committed progenitor cells. Transplantation of USP10-competent bone marrow cells into USP10-KO mice reconstituted multilineage hematopoiesis. These results suggest that USP10 is an essential deubiquitinase in hematopoiesis and functions by inhibiting apoptosis of HSPCs including LT-HSCs. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Gopalakrishnapillai, Anilkumar; Kolb, E Anders; Dhanan, Priyanka; Mason, Robert W; Napper, Andrew; Barwe, Sonali P
2015-01-01
The bone marrow microenvironment plays an important role in acute lymphoblastic leukemia (ALL) cell proliferation, maintenance, and resistance to chemotherapy. Annexin II (ANX2) is abundantly expressed on bone marrow cells and complexes with p11 to form ANX2/p11-hetero-tetramer (ANX2T). We present evidence that p11 is upregulated in refractory ALL cell lines and patient samples. A small molecule inhibitor that disrupts ANX2/p11 interaction (ANX2T inhibitor), an anti-ANX2 antibody, and knockdown of p11, abrogated ALL cell adhesion to osteoblasts, indicating that ANX2/p11 interaction facilitates binding and retention of ALL cells in the bone marrow. Furthermore, ANX2T inhibitor increased the sensitivity of primary ALL cells co-cultured with osteoblasts to dexamethasone and vincristine induced cell death. Finally, in an orthotopic leukemia xenograft mouse model, the number of ALL cells homing to the bone marrow was reduced by 40-50% in mice injected with anti-ANX2 antibody, anti-p11 antibody or ANX2T inhibitor compared to respective controls. In a long-term engraftment assay, the percentage of ALL cells in mouse blood, bone marrow and spleen was reduced in mice treated with agents that disrupt ANX2/p11 interaction. These data show that disruption of ANX2/p11 interaction results in reduced ALL cell adhesion to osteoblasts, increased ALL cell sensitization to chemotherapy, and suppression of ALL cell homing and engraftment.
The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis.
Fairfield, Heather; Falank, Carolyne; Harris, Elizabeth; Demambro, Victoria; McDonald, Michelle; Pettitt, Jessica A; Mohanty, Sindhu T; Croucher, Peter; Kramer, Ina; Kneissel, Michaela; Rosen, Clifford J; Reagan, Michaela R
2018-02-01
The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications. © 2017 Wiley Periodicals, Inc.
Maridas, David E; Rendina-Ruedy, Elizabeth; Le, Phuong T; Rosen, Clifford J
2018-01-06
Bone marrow stromal cells (BMSCs) constitute a cell population routinely used as a representation of mesenchymal stem cells in vitro. They reside within the bone marrow cavity alongside hematopoietic stem cells (HSCs), which can give rise to red blood cells, immune progenitors, and osteoclasts. Thus, extractions of cell populations from the bone marrow results in a very heterogeneous mix of various cell populations, which can present challenges in experimental design and confound data interpretation. Several isolation and culture techniques have been developed in laboratories in order to obtain more or less homogeneous populations of BMSCs and HSCs invitro. Here, we present two methods for isolation of BMSCs and HSCs from mouse long bones: one method that yields a mixed population of BMSCs and HSCs and one method that attempts to separate the two cell populations based on adherence. Both methods provide cells suitable for osteogenic and adipogenic differentiation experiments as well as functional assays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, H.; Masuhara, K.; Takaoka, K.
1985-01-01
The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hypmore » mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.« less
Takaku, Tomoiku; Malide, Daniela; Chen, Jichun; Calado, Rodrigo T; Kajigaya, Sachiko; Young, Neal S
2010-10-14
In many animals, blood cell production occurs in the bone marrow. Hematopoiesis is complex, requiring self-renewing and pluripotent stem cells, differentiated progenitor and precursor cells, and supportive stroma, adipose tissue, vascular structures, and extracellular matrix. Although imaging is a vital tool in hematology research, the 3-dimensional architecture of the bone marrow tissue in situ remains largely uncharacterized. The major hindrance to imaging the intact marrow is the surrounding bone structures are almost impossible to cut/image through. We have overcome these obstacles and describe a method whereby whole-mounts of bone marrow tissue were immunostained and imaged in 3 dimensions by confocal fluorescence and reflection microscopy. We have successfully mapped by multicolor immunofluorescence the localization pattern of as many as 4 cell features simultaneously over large tiled views and to depths of approximately 150 μm. Three-dimensional images can be assessed qualitatively and quantitatively to appreciate the distribution of cell types and their interrelationships, with minimal perturbations of the tissue. We demonstrate its application to normal mouse and human marrow, to murine models of marrow failure, and to patients with aplastic anemia, myeloid, and lymphoid cell malignancies. The technique should be generally adaptable for basic laboratory investigation and for clinical diagnosis of hematologic diseases.
T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments.
Hawkins, Edwin D; Duarte, Delfim; Akinduro, Olufolake; Khorshed, Reema A; Passaro, Diana; Nowicka, Malgorzata; Straszkowski, Lenny; Scott, Mark K; Rothery, Steve; Ruivo, Nicola; Foster, Katie; Waibel, Michaela; Johnstone, Ricky W; Harrison, Simon J; Westerman, David A; Quach, Hang; Gribben, John; Robinson, Mark D; Purton, Louise E; Bonnet, Dominique; Lo Celso, Cristina
2016-10-27
It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.
Boraschi-Diaz, Iris; Komarova, Svetlana V
2016-01-01
Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics.
Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation.
Taya, Yuki; Ota, Yasunori; Wilkinson, Adam C; Kanazawa, Ayano; Watarai, Hiroshi; Kasai, Masataka; Nakauchi, Hiromitsu; Yamazaki, Satoshi
2016-12-02
A specialized bone marrow microenvironment (niche) regulates hematopoietic stem cell (HSC) self-renewal and commitment. For successful donor-HSC engraftment, the niche must be emptied via myeloablative irradiation or chemotherapy. However, myeloablation can cause severe complications and even mortality. Here we report that the essential amino acid valine is indispensable for the proliferation and maintenance of HSCs. Both mouse and human HSCs failed to proliferate when cultured in valine-depleted conditions. In mice fed a valine-restricted diet, HSC frequency fell dramatically within 1 week. Furthermore, dietary valine restriction emptied the mouse bone marrow niche and afforded donor-HSC engraftment without chemoirradiative myeloablation. These findings indicate a critical role for valine in HSC maintenance and suggest that dietary valine restriction may reduce iatrogenic complications in HSC transplantation. Copyright © 2016, American Association for the Advancement of Science.
Early-onset type 2 diabetes impairs skeletal acquisition in the male TALLYHO/JngJ mouse.
Devlin, M J; Van Vliet, M; Motyl, K; Karim, L; Brooks, D J; Louis, L; Conlon, C; Rosen, C J; Bouxsein, M L
2014-10-01
Type 2 diabetes (T2D) incidence in adolescents is rising and may interfere with peak bone mass acquisition. We tested the effects of early-onset T2D on bone mass, microarchitecture, and strength in the TALLYHO/JngJ mouse, which develops T2D by 8 weeks of age. We assessed metabolism and skeletal acquisition in male TALLYHO/JngJ and SWR/J controls (n = 8-10/group) from 4 weeks to 8 and 17 weeks of age. Tallyho mice were obese; had an approximately 2-fold higher leptin and percentage body fat; and had lower bone mineral density vs SWR at all time points (P < .03 for all). Tallyho had severe deficits in distal femur trabecular bone volume fraction (-54%), trabecular number (-27%), and connectivity density (-82%) (P < .01 for all). Bone formation was higher in Tallyho mice at 8 weeks but lower by 17 weeks of age vs SWR despite similar numbers of osteoblasts. Bone marrow adiposity was 7- to 50-fold higher in Tallyho vs SWR. In vitro, primary bone marrow stromal cell differentiation into osteoblast and adipocyte lineages was similar in SWR and Tallyho, suggesting skeletal deficits were not due to intrinsic defects in Tallyho bone-forming cells. These data suggest the Tallyho mouse might be a useful model to study the skeletal effects of adolescent T2D.
Javanmard, F; Azadbakht, M; Pourmoradi, M
2016-01-01
In this study, the role of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow mesenchymal stem cells were investigated. The cells were cultured in treatment medium containing 100 nM of staurosporine for 4 hours; then the cells were affected by hydrostatic pressure (0, 25,50, 100 mmHg). The percentage of cell viability by trypan blue staining and the percentage of cell death by Hoechst/PI differential staining were assessed. We obtained the total neurite length. Expression of β-tubulin III and GFAP (Glial fibrillary acidic protein) proteins were also analyzed by immunocytochemistry. The percentage of cell viability in treatments decreased relative to the increase in hydrostatic pressure and time (p Keywords: bone marrow mesenchymal stem cell, hydrostatic pressure, immunocytochemistry, neural differentiation, neurite length, cell differentiation.
Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Abadi, Atefeh Jahan
2008-01-01
The preventive effect of hawthorn (Crataegus microphylla) fruit extract was investigated in mouse bone marrow cells against genotoxicity induced by cyclophosphamide. Mice were orally (gavages) pretreated with solutions of hawthorn extract which was prepared at five different doses (25, 50, 100, 200 and 400mg/kg b.w.) for seven consecutive days. Mice were injected intraperitoneally on the seventh day with cyclophosphamide (50mg/kg b.w.) and killed after 24h for the evaluation of micronucleated polychromatic erythrocytes (MnPCEs) and the ratio of PCE/(PCE+NCE) (polychromatic erythrocyte/polychromatic erythrocyte+normochromatic erythrocyte). All of five doses of extract significantly reduced MnPCEs induced by cyclophosphamide (P<0.0001). Hawthorn extract at dose 100mg/kg b.w. reduced MnPCEs 2.5 time and also completely normalized PCE/(PCE+NCE) ratio. Hawthorn extract exhibited concentration-dependent antioxidant activity on 1,1-diphenyl-2-picryl hydrazyl free radical. Hawthorn contains high amounts of phenolic compounds; the HPLC analysis showed that it contained chlorogenic acid, epicatechin and hyperoside. It is obvious that hawthorn, particularly flavonoids constituents with antioxidative activity, reduced the oxidative stress and genotoxicity induced by cyclophosphamide in mouse bone marrow cells. Copyright © 2007 Elsevier B.V. All rights reserved.
Mechanism Underlying Linezolid-induced Thrombocytopenia in a Chronic Kidney Failure Mouse Model
Nishijo, Nao; Tsuji, Yasuhiro; Matsunaga, Kazuhisa; Kutsukake, Masahiko; Okazaki, Fumiyasu; Fukumori, Shiro; Kasai, Hidefumi; Hiraki, Yoichi; Sakamaki, Ippei; Yamamoto, Yoshihiro; Karube, Yoshiharu; To, Hideto
2017-01-01
Objective: To investigate the relationship between renal function and linezolid (LZD)-induced thrombocytopenia and elucidate the underlying mechanism using a chronic renal disease (CRD) mouse model. Materials and Methods: CRD was induced in 5-week-old male Institute of Cancer Research (ICR) mice by 5/6 nephrectomy. After this procedure, LZD (25 and 100 mg/kg) was administered intraperitoneally once every day for 28 days. Platelet counts, white blood cell (WBC) counts, and hematocrit (HCT) levels were measured every 7 days. 2-14C-thymidine (0.185 MBq) was administrated intravenously to LZD-administered mice to evaluate the thymidine uptake ability of bone marrow. Results: Platelet counts were significantly lower in the LZD-administered CRD group than in the LZD-nonadministered groups at 14, 21, and 28 days (P < 0.05); however, these changes were not observed in LZD-administered mice with normal renal function, regardless of the duration of LZD administration. No significant changes were observed in WBC counts or HCT levels in any LZD-administered CRD mouse. Moreover, radioactive levels in bone marrow were not significantly different in each group. Conclusions: These results indicate that LZD-induced decreases in platelet counts were enhanced by renal impairment in vivo, suggesting that LZD-induced thrombocytopenia is not caused by nonimmune-mediated bone marrow suppression. PMID:28405130
Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Mousavi, Seyedeh Maryam; Mahmoudzadeh, Aziz; Akhlaghpoor, Shahram
2007-01-01
The radioprotective effect of hawthorn (Crataegus microphylla) fruit extract against genotoxicity induced by gamma irradiation has been investigated in mouse bone marrow cells. A single intraperitoneal (ip) administration of hawthorn extract at doses of 25, 50, 100 and 200 mg/kg 1h prior to gamma irradiation (2 Gy) reduced the frequencies of micronucleated polychromatic erythrocytes (MnPCEs). All four doses of hawthorn extract significantly reduced the frequencies of MnPCEs and increased the PCE/PCE+NCE ratio (polychromatic erythrocyte/ polychromatic erythrocyte + normochromatic erythrocyte) in mice bone marrow compared with the non drug-treated irradiated control (p < 0.02-0.00001). The maximum reduction in MnPCEs was observed in mice treated with extract at a dose of 200 mg/kg. Administration of amifostine at dose 100 mg/kg and hawthorn at dose 200 mg/kg reduced the frequency of MnPCE almost 4.8 and 5.7 fold; respectively, after being exposed to 2 Gy of gamma rays, compare with the irradiated control group. Crataegus extract exhibited concentration-dependent activity on 1,1-diphenyl 2-picrylhydrazyl free radical showing that Crataegus contained high amounts of phenolic compounds and the HPLC analysis determined that it contained chlorogenic acid, epicatechin and hyperoside. It appeared that hawthorn extract with antioxidant activity reduced the genotoxicity induced by gamma irradiation in bone marrow cells.
INF-γ encoding plasmid administration triggers bone loss and disrupts bone marrow microenvironment.
Agas, Dimitrios; Gusmão Silva, Guilherme; Laus, Fulvio; Marchegiani, Andrea; Capitani, Melania; Vullo, Cecilia; Catone, Giuseppe; Lacava, Giovanna; Concetti, Antonio; Marchetti, Luigi; Sabbieti, Maria Giovanna
2017-02-01
IFN-γ is a pleotropic cytokine produced in the bone microenvironment. Although IFN-γ is known to play a critical role on bone remodeling, its function is not fully elucidated. Consistently, outcomes on the effects of IFN-γ recombinant protein on bone loss are contradictory among reports. In our work we explored, for the first time, the role of IFN-γ encoding plasmid (pIFN-γ) in a mouse model of osteopenia induced by ovariectomy and in the sham-operated counterpart to estimate its effects in skeletal homeostasis. Ovariectomy produced a dramatic decrease of bone mineral density (BMD). pINF-γ injected mice showed a pathologic bone and bone marrow phenotype; the disrupted cortical and trabecular bone microarchitecture was accompanied by an increased release of pro-inflammatory cytokine by bone marrow cells. Moreover, mesenchymal stem cells' (MSCs) commitment to osteoblast was found impaired, as evidenced by the decline of osterix-positive (Osx + ) cells within the mid-diaphyseal area of femurs. For instance, a reduction and redistribution of CXCL12 cells have been found, in accordance with bone marrow morphological alterations. As similar effects were observed both in sham-operated and in ovariectomized mice, our studies proved that an increased IFN-γ synthesis in bone marrow might be sufficient to induce inflammatory and catabolic responses even in the absence of pathologic predisposing substrates. In addition, the obtained data might raise questions about pIFN-γ's safety when it is used as vaccine adjuvant. © 2017 Society for Endocrinology.
SONG, NINGXIA; GAO, LEI; QIU, HUIYING; HUANG, CHONGMEI; CHENG, HUI; ZHOU, HONG; LV, SHUQING; CHEN, LI; WANG, JIANMIN
2015-01-01
The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft-versus-host disease (aGVHD). However, the role of MSCs in graft-versus-leukemia remains to be determined. In the present study, we co-cultured C57BL/6 mouse bone marrow (BM)-derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit-8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)-10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies. PMID:25901937
Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin
2015-07-01
The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.
Masia, Ricard; Krause, Daniela S; Yellen, Gary
2015-02-01
Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner. Copyright © 2015 the American Physiological Society.
Sun, Li; Zhu, Ling-Ling; Lu, Ping; Yuen, Tony; Li, Jianhua; Ma, Risheng; Baliram, Ramkumarie; Moonga, Surinder S.; Liu, Peng; Zallone, Alberta; New, Maria I.; Davies, Terry F.; Zaidi, Mone
2013-01-01
Clinical data showing correlations between low thyroid-stimulating hormone (TSH) levels and high bone turnover markers, low bone mineral density, and an increased risk of osteoporosis-related fractures are buttressed by mouse genetic and pharmacological studies identifying a direct action of TSH on the skeleton. Here we show that the skeletal actions of TSH deficiency are mediated, in part, through TNFα. Compound mouse mutants generated by genetically deleting the Tnfα gene on a Tshr−/− (homozygote) or Tshr+/− (heterozygote) background resulted in full rescue of the osteoporosis, low bone formation, and hyperresorption that accompany TSH deficiency. Studies using ex vivo bone marrow cell cultures showed that TSH inhibits and stimulates TNFα production from macrophages and osteoblasts, respectively. TNFα, in turn, stimulates osteoclastogenesis but also enhances the production in bone marrow of a variant TSHβ. This locally produced TSH suppresses osteoclast formation in a negative feedback loop. We speculate that TNFα elevations due to low TSH signaling in human hyperthyroidism contribute to the bone loss that has traditionally been attributed solely to high thyroid hormone levels. PMID:23716650
An, Wei; Mohapatra, Bhopal C.; Zutshi, Neha; Bielecki, Timothy A.; Goez, Benjamin T.; Luan, Haitao; Iseka, Fany; Mushtaq, Insha; Storck, Matthew D.; Band, Vimla; Band, Hamid
2016-01-01
CBL and CBL-B ubiquitin ligases play key roles in hematopoietic stem cell homeostasis and their aberrations are linked to leukemogenesis. Mutations of CBL, often genetically-inherited, are particularly common in Juvenile Myelomonocytic Leukemia (JMML), a disease that manifests early in children. JMML is fatal unless corrected by bone marrow transplant, which is effective in only half of the recipients, stressing the need for animal models that recapitulate the key clinical features of this disease. However, mouse models established so far only develop hematological malignancy in adult animals. Here, using VAV1-Cre-induced conditional CBL/CBL-B double knockout (DKO) in mice, we established an animal model that exhibits a neonatal myeloproliferative disease (MPD). VAV1-Cre induced DKO mice developed a strong hematological phenotype at postnatal day 10, including severe leukocytosis and hepatomegaly, bone marrow cell hypersensitivity to cytokines including GM-CSF, and rapidly-progressive disease and invariable lethality. Interestingly, leukemic stem cells were most highly enriched in neonatal liver rather than bone marrow, which, along with the spleen and thymus, were hypo-cellular. Nonetheless, transplantation assays showed that both DKO bone marrow and liver cells can initiate leukemic disease in the recipient mice with seeding of both spleen and bone marrow. Together, our results support the usefulness of the new hematopoietic-specific CBL/CBL-B double KO animal model to study JMML-related pathogenesis and to further understand the function of CBL family proteins in regulating fetal and neonatal hematopoiesis. To our knowledge, this is the first mouse model that exhibits neonatal MPD in infancy, by day 10 of postnatal life. PMID:27449297
Shaikh, Ambreen; Anand, Sandhya; Kapoor, Sona; Ganguly, Ranita; Bhartiya, Deepa
2017-04-01
Very small embryonic-like stem cells (VSELs) have been reported in various adult tissues, express pluripotent and primordial germ cells (PGCs) specific markers, are mobilized under stress/disease conditions, give rise to tissue committed progenitors and thus help regenerate and maintain homeostasis. The aim of the present study was to evaluate in vitro differentiation potential of VSELs using a quantitative approach. VSELs were collected from mouse bone marrow after 4 days of 5-fluorouracil (5-FU, 150 mg/Kg) treatment, further enriched by size based filtration and cultured on a feeder support in the presence of specific differentiation media. Cultured VSELs were found to differentiate into all three embryonic germ cell lineages, germ and hematopoietic cells after 14 days in culture. This was confirmed by studying Nestin, PDX-1, NKX2.5, DAZL, CD45 and other markers expression by various approaches. Very small, CD45 negative cells collected and enriched from GFP positive 5-FU treated mice bone marrow transitioned into CD45 positive cells in vitro thus demonstrating that VSELs can give rise to hematopoietic stem cells (HSCs). We envision that VSELs may be responsible for plasticity and ability of bone marrow cells to give rise to non-hematopoietic tissue progenitors of all 3 germ layers. Moreover the ability of VSELs to differentiate into germ cells as well as all the three lineages provides further evidence to support their pluripotent state and confirms developmental link between bone marrow VSELs and PGCs. The property of quiescence, no risk of teratoma formation and autologus source, make pluripotent VSELs a potential candidate to facilitate endogenous regeneration compared to cell replacement strategy envisioned using embryonic and induced pluripotent stem cells.
Kirabo, Annet; Park, Sung O.; Wamsley, Heather L.; Gali, Meghanath; Baskin, Rebekah; Reinhard, Mary K.; Zhao, Zhizhuang J.; Bisht, Kirpal S.; Keserű, György M.; Cogle, Christopher R.; Sayeski, Peter P.
2013-01-01
Philadelphia chromosome–negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are disorders characterized by abnormal hematopoiesis. Among these myeloproliferative neoplasms, myelofibrosis has the most unfavorable prognosis. Furthermore, currently available therapies for myelofibrosis have little to no efficacy in the bone marrow and hence, are palliative. We recently developed a Janus kinase 2 (Jak2) small molecule inhibitor called G6 and found that it exhibits marked efficacy in a xenograft model of Jak2-V617F–mediated hyperplasia and a transgenic mouse model of Jak2-V617F–mediated polycythemia vera/essential thrombocytosis. However, its efficacy in Jak2-mediated myelofibrosis has not previously been examined. Here, we hypothesized that G6 would be efficacious in Jak2-V617F–mediated myelofibrosis. To test this, mice expressing the human Jak2-V617F cDNA under the control of the vav promoter were administered G6 or vehicle control solution, and efficacy was determined by measuring parameters within the peripheral blood, liver, spleen, and bone marrow. We found that G6 significantly reduced extramedullary hematopoiesis in the liver and splenomegaly. In the bone marrow, G6 significantly reduced pathogenic Jak/STAT signaling by 53%, megakaryocytic hyperplasia by 70%, and the Jak2 mutant burden by 68%. Furthermore, G6 significantly improved the myeloid to erythroid ratio and significantly reversed the myelofibrosis. Collectively, these results indicate that G6 is efficacious in Jak2-V617F–mediated myelofibrosis, and given its bone marrow efficacy, it may alter the natural history of this disease. PMID:22796437
Heidari, A H; Shabestani Monfared, A; Mozdarani, H; Mahmoudzadeh, A; Razzaghdoust, A
2017-12-01
We intend to study the inhibitory effect of sulfur compound in Ramsar hot spring mineral on tumor-genesis ability of high natural background radiation. The radioprotective effect of sulfur compounds was previously shown on radiation-induced chromosomal aberration, micronuclei in mouse bone marrow cells and human peripheral lymphocyte. Ramsar is known for having the highest level of natural background radiation on Earth. This study was performed to show the radioprotective effect of sulfur-containing Ramsar mineral water on mouse bone marrow cells. Mice were fed three types of water (drinking water, Ramsar radioactive water containing sulfur and Ramsar radioactive water whose sulfur was removed). Ten days after feeding, mice were irradiated by gamma rays (0, 2 and 4 Gy). 48 and 72 hours after irradiating, mice were killed and femurs were removed. Frequency of micronuclei was determined in bone marrow erythrocytes. A significant reduction was shown in the rate of micronuclei polychromatic erythrocyte in sulfur-containing hot spring water compared to sulfur-free water in hot spring mineral water. Gamma irradiation induced significant increases in micronuclei polychromatic erythrocyte (MNPCE) and decreases in polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte ratio (PCEs/PCEs+NCEs) (P < 0.001) in sulfur-containing hot spring water compared to sulfur-free hot spring mineral water. Also, apparently there was a significant difference between drinking water and sulfur-containing hot spring water in micronuclei polychromatic erythrocyte and polychromatic erythrocyte/polychromatic erythrocyte+ normochromatic erythrocyte ratio. The results indicate that sulfur-containing mineral water could result in a significant reduction in radiation-induced micronuclei representing the radioprotective effect of sulfur compounds.
Gleitz, Hélène Fe; Kramann, Rafael; Schneider, Rebekka K
2018-06-01
Bone marrow fibrosis is the continuous replacement of blood-forming cells in the bone marrow with excessive scar tissue, leading to failure of the body to produce blood cells and ultimately to death. Myofibroblasts are fibrosis-driving cells and are well characterized in solid organ fibrosis, but their role and cellular origin in bone marrow fibrosis have remained obscure. Recent work has demonstrated that Gli1 + and leptin receptor + mesenchymal stromal cells are progenitors of fibrosis-causing myofibroblasts in the bone marrow. Genetic ablation or pharmacological inhibition of Gli1 + mesenchymal stromal cells ameliorated fibrosis in mouse models of myelofibrosis. Conditional deletion of the platelet-derived growth factor (PDGF) receptor-α (PDGFRA) gene (Pdgfra) and inhibition of PDGFRA by imatinib in leptin receptor + stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. Understanding the cellular and molecular mechanisms in the haematopoietic stem cell niche that govern the mesenchymal stromal cell-to-myofibroblast transition and myofibroblast expansion will be critical to understand the pathogenesis of bone marrow fibrosis in both malignant and non-malignant conditions, and will guide the development of novel therapeutics. In this review, we summarize recent discoveries of mesenchymal stromal cells as part of the haematopoietic niche and as myofibroblast precursors, and discuss potential therapeutic strategies in the specific targeting of fibrotic transformation in bone marrow fibrosis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Pan, Xuan; Jones, Morgan; Jiang, Jie; Zaprazna, Kristina; Yu, Duonan; Pear, Warren; Maillard, Ivan; Atchison, Michael L.
2012-01-01
Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs. PMID:22292011
Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T
1999-09-01
It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.
Regulation of osteoclastogenesis by gap junction communication.
Matemba, Stephen F; Lie, Anita; Ransjö, Maria
2006-10-01
Receptor activator of NF-kappaB ligand (RANKL) is crucial in osteoclastogenesis but signaling events involved in osteoclast differentiation are far from complete and other signals may play a role in osteoclastogenesis. A more direct pathway for cellular crosstalk is provided by gap junction intercellular channel, which allows adjacent cells to exchange second messengers, ions, and cellular metabolites. Here we have investigated the role of gap junction communication in osteoclastogenesis in mouse bone marrow cultures. Immunoreactive sites for the gap junction protein connexin 43 (Cx43) were detected in the marrow stromal cells and in mature osteoclasts. Carbenoxolone (CBX) functionally blocked gap junction communication as demonstrated by a scrape loading Lucifer Yellow dye transfer technique. CBX caused a dose-dependent inhibition (significant > or = 90 microM) of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells formed in 7- to 8-day marrow cultures stimulated by parathyroid hormone (PTH; 10 nM) or forskolin (FSK; 1 microM). Furthermore, CBX (100 microM) significantly inhibited prostaglandin E2 (PGE2; 10 microM) and 1,25(OH)2-vitamin D3 stimulated osteoclast differentiation in the mouse bone marrow cultures. Consequently, quantitative real-time polymerase chain reaction (PCR) analysis demonstrated that CBX downregulated the expression of osteoclast phenotypic markers, but without having any significant effects on RANK, RANKL, and osteoprotegerin (OPG) mRNA expression. However, the results demonstrated that CBX significantly inhibits RANKL-stimulated (100 ng/ml) osteoclastogenesis in the mouse bone marrow cultures. Taken together, our results suggests that gap junctional diffusion of messenger molecules interacts with signaling pathways downstream RANKL in osteoclast differentiation. Further studies are required to define the precise mechanisms and molecular targets involved. Copyright 2006 Wiley-Liss, Inc.
Inoue, Yuji; Iriyama, Aya; Ueno, Shuji; Takahashi, Hidenori; Kondo, Mineo; Tamaki, Yasuhiro; Araie, Makoto; Yanagi, Yasuo
2007-08-01
Because there is no effective treatment for this retinal degeneration, potential application of cell-based therapy has attracted considerable attention. Several investigations support that bone marrow mesenchymal stem cells (MSCs) can be used for a broad spectrum of indications. Bone marrow MSCs exert their therapeutic effect in part by secreting trophic factors to promote cell survival. The current study investigates whether bone marrow MSCs secrete factor(s) to promote photoreceptor cell survival and whether subretinal transplantation of bone marrow MSCs promotes photoreceptor survival in a retinal degeneration model using Royal College of Surgeons (RCS) rats. In vitro, using mouse retinal cell culture, it was demonstrated that the conditioned medium of the MSCs delays photoreceptor cell apoptosis, suggesting that the secreted factor(s) from the MSCs promote photoreceptor cell survival. In vivo, the MSCs were injected into the subretinal space of the RCS rats and histological analysis, real-time RT-PCR and electrophysiological analysis demonstrated that the subretinal transplantation of MSCs delays retinal degeneration and preserves retinal function in the RCS rats. These results suggest that MSC is a useful cell source for cell-replacement therapy for some forms of retinal degeneration.
Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P. Leif; Camaschella, Clara; Campanella, Alessandro
2015-01-01
Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. PMID:25715406
Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P Leif; Camaschella, Clara; Campanella, Alessandro
2015-06-01
Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. Copyright© Ferrata Storti Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, R.D.; Bond, V.P.
1963-01-14
Immunological competence of immunized mouse bone marrow, spleen, lymph node, and thymus cells was demonstrated when specific recall tetanus antitoxin responses were elicited after transfer of these cells to isologous irradiated mice or rats. Lesser amounts of antibody were obtained as the genetic strain distance was increased between the relation of donor and host in the parental to F/sub 1/ and in the homologous combination within the same species. It was not possible in the heterologous situation to elicit significant amounts of antibody from rat bone marrow and other lymphoid cells following their transplantation into irradiated mice. Minimal but notmore » significant antibody responses were elicited from cells obtained from immunized rat spleen and thymus tissue. In a few experiments, it was possible to elicit antibody formation from a buffy coat suspension of circulating white cells following their transfer to irradiated recipients. Isologous nonimmunized bone marrow did not stimulate or hasten recovery of the ability to eiicit secondary antibody responses in previously immunized irradiated mice. The capacity to elicit primary antibody responses to tetanus toxoid was depressed in parental-bone-marrow-protected F/sub 1/ mice when these chimeras exhibited varying degrees of secondary disease. The depression of primary antibody responses in irradiated F/sub 1/ mice given parental bone marrow provides evidence for a donor mediated immunological depression of antibody synthesis by host-lymphoid tissues. (auth)« less
Sumner, Dale R; Virdi, Amarjit S
2012-01-01
An exogenous supply of growth factors and bioreplaceable scaffolds may help bone regeneration. The aim of this study was to examine the effects of TGF-β1 and VEGF-A transgenes on the osteogenic potential of bone marrow stromal cells. Rat bone marrow stromal cells were transfected with plasmids encoding mouse TGF-β1 and/or VEGF-A complementary DNAs and cultured for up to 28 days. Furthermore, collagen scaffolds carrying combinations of the plasmids-transfected cells were implanted subcutaneously in rats. The transgenes increased alkaline phosphatase activity, enhanced mineralized nodule formation, and elevated osteogenic gene expressions in vitro. In vivo, messenger RNA expression of osteogenic genes such as BMPs and Runx2 elevated higher by the transgenes. The data indicate that exogenous TGF-β1 and VEGF-A acted synergistically and could induce osteoblastic differentiation of bone marrow stromal cells in both cell culture and an animal model. The results may provide valuable information to optimize protocols for transgene-and-cell-based tissue engineering. PMID:22962632
An Animal Model of Chronic Aplastic Bone Marrow Failure Following Pesticide Exposure in Mice
Chatterjee, Sumanta; Chaklader, Malay; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaudhuri, Samaresh; Law, Sujata
2010-01-01
The wide use of pesticides for agriculture, domestic and industrial purposes and evaluation of their subsequent effect is of major concern for public health. Human exposure to these contaminants especially bone marrow with its rapidly renewing cell population is one of the most sensitive tissues to these toxic agents represents a risk for the immune system leading to the onset of different pathologies. In this experimental protocol we have developed a mouse model of pesticide(s) induced hypoplastic/aplastic marrow failure to study quantitative changes in the bone marrow hematopoietic stem cell (BMHSC) population through flowcytometric analysis, defects in the stromal microenvironment through short term adherent cell colony (STACC) forming assay and immune functional capacity of the bone marrow derived cells through cell mediated immune (CMI) parameter study. A time course dependent analysis for consecutive 90 days were performed to monitor the associated changes in the marrow’s physiology after 30th, 60th and 90th days of chronic pesticide exposure. The peripheral blood showed maximum lowering of the blood cell count after 90 days which actually reflected the bone marrow scenario. Severe depression of BMHSC population, immune profile of the bone marrow derived cells and reduction of adherent cell colonies pointed towards an essentially empty and hypoplastic marrow condition that resembled the disease aplastic anemia. The changes were accompanied by splenomegaly and splenic erythroid hyperplasia. In conclusion, this animal model allowed us a better understanding of clinico-biological findings of the disease aplastic anemia following toxic exposure to the pesticide(s) used for agricultural and industrial purposes. PMID:24855541
Cigarette Smoke Inhibits Recruitment of Bone-Marrow-Derived Stem cells to The Uterus
Zhou, Yuping; Gan, Ye; Taylor, Hugh S.
2011-01-01
Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues. PMID:20955787
Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow.
Falla, N; Van Vlasselaer; Bierkens, J; Borremans, B; Schoeters, G; Van Gorp, U
1993-12-15
In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.
Effects of Testosterone on Erythropoiesis in a Female Mouse Model of Anemia of Inflammation
Schmidt, Paul J.; Fleming, Mark D.; Bhasin, Shalender
2016-01-01
The anemia of inflammation is a common problem in inflammatory and autoimmune diseases. We characterized a mouse model of anemia of chronic inflammation induced by repeated injections of low doses of heat-killed Brucella abortus (HKBA), and determined the effects of T administration on erythropoiesis in this model. Female C57BL/6NCrl mice were injected weekly with HKBA for 10 wk. Weekly injections of T or vehicle oil were started 4 wk later. Control mice were injected with saline and vehicle oil in parallel. HKBA-injected mice had significantly lower hemoglobin, hematocrit, mean corpuscular volume, reticulocyte hemoglobin, transferrin saturation (TSAT), and tissue nonheme iron in liver and spleen, enlarged spleen, and up-regulated hepatic expression of inflammatory markers, serum amyloid A1, and TNFα, but down-regulated IL-6, bone morphogenic protein 6, and hepcidin compared with saline controls. HKBA also reduced serum hepcidin and increased serum erythropoietin. Bone marrow erythroid precursors were substantially reduced in HKBA-injected mice. Cotreatment with T increased the percentage of late-stage erythroid precursors in the bone marrow relative to HKBA-injected and saline controls and reversed HKBA-induced suppression of hemoglobin and hematocrit. T also normalized serum erythropoietin, TSAT, and reticulocyte hemoglobin without correcting the expression of the hepatic inflammation markers. Conclusions are that low-dose HKBA induces moderate anemia characterized by chronic inflammation, decreased iron stores, and suppression of erythroid precursors in the bone marrow. T administration reverses HKBA-induced anemia by stimulating erythropoiesis, which is associated with a shift toward accelerated maturation of erythroid precursors in the bone marrow. PMID:27074351
Bropirimine inhibits osteoclast differentiation through production of interferon-β
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro
Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presencemore » of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.« less
Doñate, Carmen; Ody, Christiane; McKee, Thomas; Ruault-Jungblut, Sylvie; Fischer, Nicolas; Ropraz, Patricia; Imhof, Beat A; Matthes, Thomas
2013-01-15
Junctional adhesion molecule C (JAM-C) is expressed by vascular endothelium and human but not mouse B lymphocytes. The level of JAM-C expression defines B-cell differentiation stages and allows the classification of marginal zone-derived (JAM-C-positive) and germinal center-derived (JAM-C-negative) B-cell lymphomas. In the present study, we investigated the role of JAM-C in homing of human B cells, using a xenogeneic nonobese diabetic/severe combined immunodeficient mouse model. Treatment with anti-JAM-C antibodies in short-term experiments reduced migration of normal and malignant JAM-C-expressing B cells to bone marrow, lymph nodes, and spleen. Blocking homing to the spleen is remarkable, as most other antiadhesion antibodies reduce homing of B cells only to bone marrow and lymph nodes. Long-term administration of anti-JAM-C antibodies prevented engraftment of JAM-Cpos lymphoma cells in bone marrow, spleen, and lymph nodes of mice. Plasmon resonance studies identified JAM-B as the major ligand for JAM-C, whereas homotypic JAM-C interactions remained at background levels. Accordingly, anti-JAM-C antibodies blocked adhesion of JAM-C-expressing B cells to their ligand JAM-B, and immunofluorescence analysis showed the expression of JAM-B on murine and human lymphatic endothelial cells. Targeting JAM-C could thus constitute a new therapeutic strategy to prevent lymphoma cells from reaching supportive microenvironments not only in the bone marrow and lymph nodes but also in the spleen.
Bone marrow adipocytes promote the regeneration of stem cells and hematopoiesis by secreting SCF
Zhou, Bo O.; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J.; Naveiras, Olaia; Morrison, Sean J.
2017-01-01
Endothelial cells and Leptin Receptor+ (LepR+) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including Stem Cell Factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER+ progenitors, which represent ~5% of LepR+ cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited hematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR+ cells, but not endothelial, hematopoietic, or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 ‘fatless” mice exhibited delayed hematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes hematopoietic regeneration. PMID:28714970
Watt, James; Schlezinger, Jennifer J.
2015-01-01
Environmental obesogens are a newly recognized category of endocrine disrupting chemicals that have been implicated in contributing to the rising rates of obesity in the United States. While obesity is typically regarded as an increase in visceral fat, adipocyte accumulation in the bone has been linked to increased fracture risk, lower bone density, and osteoporosis. Exposure to environmental toxicants that activate peroxisome proliferator activated receptor γ (PPARγ), a critical regulator of the balance of differentiation between adipogenesis and osteogenesis, may contribute to the increasing prevalence of osteoporosis. However, induction of adipogenesis and suppression of osteogenesis are separable activities of PPARγ, and ligands may selectively alter these activities. It currently is unknown whether suppression of osteogenesis is a common toxic endpoint of environmental PPARγ ligands. Using a primary mouse bone marrow culture model, we tested the hypothesis that environmental toxicants acting as PPARγ agonists divert the differentiation pathway of bone marrow-derived multipotent mesenchymal stromal cells towards adipogenesis and away from osteogenesis. The toxicants tested included the organotins tributyltin and triphenyltin, a ubiquitous phthalate metabolite (mono-(2-ethylhexyl) phthalate, MEHP), and two brominated flame retardants (tetrabromobisphenol-a, TBBPA, and mono-(2-ethylhexyl) tetrabromophthalate, METBP). All of the compounds activated PPARγ1 and 2. All compounds increased adipogenesis (lipid accumulation, Fabp4 expression) and suppressed osteogenesis (alkaline phosphatase activity, Osx expression) in mouse primary bone marrow cultures, but with different potencies and efficacies. Despite structural dissimilarities, there was a strong negative correlation between efficacies to induce adipogenesis and suppress osteogenesis, with the organotins being distinct in their exceptional ability to suppress osteogenesis. As human exposure to a mixture of toxicants is likely, albeit at low doses, the fact that multiple toxicants are capable of suppressing bone formation supports the hypothesis that environmental PPARγ ligands represent an emerging threat to human bone health. PMID:25777084
Scheven, B A; Wassenaar, A M; Kawilarang-de Haas, E W; Nijweide, P J
1987-07-01
Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.
The effects of pilocarpine nitrate upon the mitotic index of mouse bone marrow cells.
Prabhu, M P; Hegde, M J
1991-11-01
Aneuploidies are the most common chromosomal causes for spontaneous abortions and constitute a major part of genetic disorders among the neonates. Aneuploidy producing agents (aneugens) pose serious genetic hazards to the human population. Therefore, testing for aneuploidy induction should be part of the requirement in drug safety guidelines. The aneugenic potential of pilocarpine nitrate, an alkaloid drug used as an ophthalmic solution was screened by chromosome analysis studies in the bone marrow cells of mice. Using the technique developed by Miller and Adler (1989) we evaluated changes in the mitotic index (MI), induction of chromatid contraction and spreading (C-mitoses) and decrease of anaphase frequencies as indicators of the aneuploidy inducing potency of the drug. Concentrations of pilocarpine nitrate of 4, 8 and 12 mg/kg body weight were administered intraperitoneally to mice. Colchicine-treated and water-treated animals formed the positive and negative controls. The data obtained in the cytogenetic analysis of both dose-response and time-response studies showed a significant induction of C-mitotic effects in the mouse bone marrow. The positive results indicated that the drug is a potential aneugen and should be further evaluated.
Gudi, R; Sandhu, S S; Athwal, R S
1990-10-01
An in vivo micronucleus assay using mouse bone marrow for identifying the ability of chemicals to induce aneuploidy and/or chromosome breaks is described. Micronucleus formation in bone-marrow erythrocytes of mice is commonly used as an index for evaluating the clastogenicity of environmental agents. However, micronuclei may also originate from intact lagging chromosomes resulting from the effect of aneuploidy-inducing agents. We have used immunofluorescent staining using anti-kinetochore antibodies to classify micronuclei for the presence or absence of kinetochores. Micronuclei positive for kinetochores are assumed to contain intact chromosomes and result from induced aneuploidy; while those negative for kinetochores contain acentric chromosomal fragments and originate from clastogenic events. The assay was evaluated using X-irradiation (a known clastogen) and vincristine sulfate (an aneuploidy-inducing agent). A dose-related response for the induction of micronuclei was observed for both agents. Micronuclei induced by X-irradiation were negative for kinetochores while the majority of the micronuclei resulting from vincristine treatment contained kinetochores. Thus, the micronucleus assay in combination with immunofluorescent staining for kinetochores may provide a useful method to simultaneously assess the ability of chemicals to induce aneuploidy and/or chromosome breaks.
Hematopoietic progenitors express neural genes
Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David
2003-01-01
Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211
Li, H; Chen, C; Yao, H; Li, X; Yang, N; Qiao, J; Xu, K; Zeng, L
2016-10-01
Bone marrow micro-environment changes during hematopoietic stem cell transplantation (HSCT) with subsequent alteration of genes expression. Quantitative polymerase chain reaction (q-PCR) is a reliable and reproducible technique for the analysis of gene expression. To obtain more accurate results, it is essential to find a reference during HSCT. However, which gene is suitable during HSCT remains unclear. This study aimed to identify suitable reference genes for mRNA studies in bone marrow after HSCT. C57BL/6 mice were treated with either total body irradiation (group T) or busulfan/cyclophosphamide (BU/CY) (group B) followed by infusion of bone marrow cells. Normal mice without treatments were served as a control. All samples (group T + group B + control) were defined as group G. On days 7, 14, and 21 after transplantation, transcription levels of 7 candidate genes, ACTB, B2M, GAPDH, HMBS, HPRT, SDHA, and YWHAZ, in bone marrow cells were measured by use of real-time quantitative PCR. The expression stability of these 7 candidate reference genes were analyzed by 2 statistical software programs, GeNorm and NormFinder. Our results showed that ACTB displayed the highest expression in group G, with lowest expression of PSDHA in group T and HPRT in groups B and G. Analysis of expression stability by use of GeNorm or NormFinder demonstrated that expression of B2M in bone marrow were much more stable during HSCT, compared with other candidate genes including commonly used reference genes GAPDH and ACTB. ACTB could be used as a suitable reference gene for mRNA studies in bone marrow after HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.
Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud
2018-01-01
Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.
Bălan, Mirela; Kiefer, Friedemann
2015-01-01
Creating a model for intravital visualization of femoral bone marrow, a major site of hematopoiesis in adult mammalian organisms, poses a serious challenge, in that it needs to overcome bone opacity and the inaccessibility of marrow. Furthermore, meaningful analysis of bone marrow developmental and differentiation processes requires the repetitive observation of the same site over long periods of time, which we refer to as chronic imaging. To surmount these issues, we developed a chronic intravital imaging model that allows the observation of split femurs, ectopically transplanted into a dorsal skinfold chamber of a host mouse. Repeated, long term observations are facilitated by multiphoton microscopy, an imaging technique that combines superior imaging capacity at greater tissue depth with low phototoxicity. The transplanted, ectopic femur was stabilized by its sterile environment and rapidly connected to the host vasculature, allowing further development and observation of extended processes. After optimizing transplant age and grafting procedure, we observed the development of new woven bone and maturation of secondary ossification centers in the transplanted femurs, preceded by the sprouting of a sinusoidal-like vascular network, which was almost entirely composed of femoral endothelial cells. After two weeks, the transplant was still populated with stromal and haematopoietic cells belonging both to donor and host. Over this time frame, the transplant partially retained myeloid progenitor cells with single and multi-lineage differentiation capacity. In summary, our model allowed repeated intravital imaging of bone marrow angiogenesis and hematopoiesis. It represents a promising starting point for the development of improved chronic optical imaging models for femoral bone marrow. PMID:28243515
Zhang, Jinchao; Liu, Cuilian; Sun, Jing; Liu, Dandan; Wang, Peng
2010-01-01
The effects of water extract of Cajanus cajan (Linn.) Millsp. (Leguminosae) leaves (WECML) on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells (BMSCs) and the adipocytic trans-differentiation of mouse primary osteoblasts (OBs) were studied. The results indicated that WECML promoted the proliferation of BMSCs and OBs at most concentrations. WECML promoted the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentrations of 0.1, 1, and 10 microg/mL, but inhibited the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentration of 0.01 microg/mL. WECML inhibited the adipogenic differentiation of BMSCs and adipocytic trans-differentiation of OBs at concentrations of 0.001, 0.1, 1, 10, and 100 microg/mL, but had no effects at concentration of 0.01 microg/mL. The results suggest that WECML has protective effects on bone and these protective effects may be mediated by decreasing adipocytic cell formation from BMSCs, which may promote the proliferation, differentiation, and mineralization function of OBs. The defined active ingredients in the WECML and the active mechanism need to be further studied.
Chatterjee, Ritam; Law, Sujata
2018-01-01
Aplastic anemia or bone marrow failure often develops as an effect of chemotherapeutic drug application for the treatment of various pathophysiological conditions including cancer. The long-term bone marrow injury affects the basic hematopoietic population including hematopoietic stem/progenitor cells (HSPCs). The present study aimed in unearthing the underlying mechanisms of chemotherapeutics mediated bone marrow aplasia with special focus on altered redox status and associated effects on hematopoietic microenvironment and epigenetic status of hematopoietic cells. The study involves the development of busulfan and cyclophosphamide mediated mouse model for aplastic anemia, characterization of the disease with blood and marrow analysis, cytochemical examinations of bone marrow, flowcytometric analysis of hematopoietic population and microenvironmental components, determination of ROS generation, apoptosis profiling, expressional studies of Notch-1 signaling cascade molecules, investigation of epigenetic modifications including global CpG methylation of DNA, phosphorylation of histone-3 with their effects on bone marrow kinetics and expressional analysis of the anti-oxidative molecules viz; SOD-2 and Sdf-1. Severe hematopoietic catastrophic condition was observed during aplastic anemia which involved peripheral blood pancytopenia, marrow hypocellularity and decreased hematopoietic stem/progenitor population. Generation of ROS was found to play a central role in the cellular devastation in aplastic marrow which on one hand can be correlated with the destruction of hematopoiesis supportive niche components and alteration of vital Notch-1 signaling and on other hand was found to be associated with the epigenetic chromatin modifications viz; global DNA CpG hypo-methylation, histone-3 phosphorylation promoting cellular apoptosis. Decline of anti-oxidant components viz; Sdf-1 and SOD-2 hinted towards the irreversible nature of the oxidative damage during marrow aplasia. Collectively, the findings hinted towards the mechanistic correlation among ROS generation, microenvironmental impairment and epigenetic alterations that led to hematopoietic catastrophe under aplastic stress. The findings may potentiate successful therapeutic strategy development for the dreadful condition concerned. Copyright © 2017 Elsevier GmbH. All rights reserved.
Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.
Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M
2010-03-01
beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.
Jin, Gu; Wang, Fang-Fang; Li, Tao; Jia, Dong-Dong; Shen, Yong; Xu, Hai-Chao
2018-04-26
BACKGROUND Neogambogic acid (NGA) is used in traditional Chinese medicine. The aim of this study was to investigate the effects of NGA on gene signaling pathways involved in osteoclastogenesis in mouse bone marrow-derived monocyte/macrophages (BMMs) and on bone resorption in vitro. MATERIAL AND METHODS Primary mouse BMMs were cultured with increasing concentrations of NGA. Real-time polymerase chain reaction was used to study the expression of mRNAs corresponding to gene products specific to receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, including tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), cathepsin K (CTSK), and nuclear factor of activated T cells c1 (NFATc1). A cell counting kit-8 assay was used to evaluate cell proliferation. Western blotting and confocal immunofluorescence microscopy were used to investigate the signaling pathways. A bone resorption model was used to quantify bone resorption. RESULTS An NGA dose of ≤0.4 μg/ml had no significant effect on the proliferation of mouse BMMs in vitro (P>0.05); concentrations of between 0.1-0.4 μg/ml significantly inhibited RANKL-induced osteoclastogenesis (P<0.01) in a dose-dependent manner. Compared with the control group, NGA significantly reduced RANKL-induced bone resorption in vitro (P <0.01), and downregulated the expression of osteoclast-related mRNAs of TRAP, CTR, CTSK, and NFATc1. NGA suppressed the activation of JNK but not the p38 signaling pathway and significantly reduced NF-κB p65 phosphorylation and the nuclear transport of NF-κB molecules, which inhibited NFATc1 expression. CONCLUSIONS NGA suppressed RANKL-induced osteoclastogenesis by inhibiting the JNK and NF-κB pathways in mouse BMMs in vitro and reduced osteoclastic bone resorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazur, P.
1976-01-01
Cooling velocity is one of the major factors that determines whether viable cells can be frozen to temperatures that permit indefinite storage. Cooling either too slowly or too rapidly tends to be damaging. Optimum cooling rates are reported for mouse marrow stem cells, yeast, and human red cells.
Inoue, S; Osmond, D G
2001-11-01
Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the exceptionally large quantity of CSPG may represent a reservoir of CD44 receptor for use in hemopoiesis. Copyright 2001 Wiley-Liss, Inc.
Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells
Ezeh, Peace C.; Xu, Huan; Lauer, Fredine T.; Liu, Ke Jian; Hudson, Laurie G.; Burchiel, Scott W.
2016-01-01
Our previously published data show that As+3 in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As+3 metabolite, monomethylarsonous acid (MMA+3), was responsible for the observed pre-B cell toxicity caused by As+3. Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA+3 inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As+3 occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA+3, and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA+3 at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA+3. Since 2E8 cells lack the enzymes responsible for the conversion of As+3 to MMA+3 in vitro, the results of these studies suggest that As+3 induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA+3 which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells. PMID:26518055
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prieto, A.M.; Santos, A.G.; Csipak, A.R.
Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, ormore » 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract—3.9, 7.5, or 15.0 mg/kg body weight (BW)—or with casearin X—0.3, 0.25, or 1.2 mg/kg BW—after which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ► We assessed DNA protection of C. sylvestris ethanolic extract. ► We assessed DNA protection of casearin X. ► We used Tradescantia pallida micronucleus test as screening. ► We used comet assay and micronucleus test in mice. ► The compounds protected DNA against sugar cane burning pollutants.« less
Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice.
Wang, Wensheng; Wang, Hua; Zhou, Xichao; Li, Xing; Sun, Wen; Dellinger, Michael; Boyce, Brendan F; Xing, Lianping
2017-05-01
Gorham-Stout disease (GSD) is a rare bone disorder characterized by aggressive osteolysis associated with lymphatic vessel invasion within bone marrow cavities. The etiology of GSD is not known, and there is no effective therapy or animal model for the disease. Here, we investigated if lymphatic endothelial cells (LECs) affect osteoclasts (OCs) to cause a GSD osteolytic phenotype in mice. We examined the effect of a mouse LEC line on osteoclastogenesis in co-cultures. LECs significantly increased receptor activator of NF-κB ligand (RANKL)-mediated OC formation and bone resorption. LECs expressed high levels of macrophage colony-stimulating factor (M-CSF), but not RANKL, interleukin-6 (IL-6), and tumor necrosis factor (TNF). LEC-mediated OC formation and bone resorption were blocked by an M-CSF neutralizing antibody or Ki20227, an inhibitor of the M-CSF receptor, c-Fms. We injected LECs into the tibias of wild-type (WT) mice and observed massive osteolysis on X-ray and micro-CT scans. Histology showed that LEC-injected tibias had significant trabecular and cortical bone loss and increased OC numbers. M-CSF protein levels were significantly higher in serum and bone marrow plasma of mice given intra-tibial LEC injections. Immunofluorescence staining showed extensive replacement of bone and marrow by podoplanin+ LECs. Treatment of LEC-injected mice with Ki20227 significantly decreased tibial bone destruction. In addition, lymphatic vessels in a GSD bone sample were stained positively for M-CSF. Thus, LECs cause bone destruction in vivo in mice by secreting M-CSF, which promotes OC formation and activation. Blocking M-CSF signaling may represent a new therapeutic approach for treatment of patients with GSD. Furthermore, tibial injection of LECs is a useful mouse model to study GSD. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Hematopoiesis is severely altered in mice with an induced osteoblast deficiency.
Visnjic, Dora; Kalajzic, Zana; Rowe, David W; Katavic, Vedran; Lorenzo, Joseph; Aguila, Hector L
2004-05-01
We previously reported a transgenic mouse model expressing herpesvirus thymidine kinase (TK) gene under the control of a 2.3-kilobase fragment of the rat collagen alpha1 type I promoter (Col2.3 Delta TK). This construct confers lineage-specific expression in developing osteoblasts, allowing the conditional ablation of osteoblast lineage after treatment with ganciclovir (GCV). After GCV treatment these mice have profound alterations on bone formation leading to a progressive bone loss. In addition, treated animals also lose bone marrow cellularity. In this report we characterized hematopoietic parameters in GCV-treated Col2.3 Delta TK mice, and we show that after treatment transgenic animals lose lymphoid, erythroid, and myeloid progenitors in the bone marrow, followed by decreases in the number of hematopoietic stem cells (HSCs). Together with the decrease in bone marrow hematopoiesis, active extramedullary hematopoiesis was observed in the spleen and liver, as measured by an increase in peripheral HSCs and active primary in vitro hematopoiesis. After withdrawal of GCV, osteoblasts reappeared in the bone compartment together with a recovery of medullary and decrease in extramedullary hematopoiesis. These observations directly demonstrate the role of osteoblasts in hematopoiesis and provide a model to study the interactions between the mesenchymal and hematopoietic compartments in the marrow.
Chino, Takenao; Tamai, Katsuto; Yamazaki, Takehiko; Otsuru, Satoru; Kikuchi, Yasushi; Nimura, Keisuke; Endo, Masayuki; Nagai, Miki; Uitto, Jouni; Kitajima, Yasuo; Kaneda, Yasufumi
2008-01-01
Recent studies have shown that skin injury recruits bone marrow-derived fibroblasts (BMDFs) to the site of injury to accelerate tissue repair. However, whether uninjured skin can recruit BMDFs to maintain skin homeostasis remains uncertain. Here, we investigated the appearance of BMDFs in normal mouse skin after embryonic bone marrow cell transplantation (E-BMT) with green fluorescent protein-transgenic bone marrow cells (GFP-BMCs) via the vitelline vein, which traverses the uterine wall and is connected to the fetal circulation. At 12 weeks of age, mice treated with E-BMT were observed to have successful engraftment of GFP-BMCs in hematopoietic tissues accompanied by induction of immune tolerance against GFP. We then investigated BMDFs in the skin of the same mice without prior injury and found that a significant number of BMDFs, which generate matrix proteins both in vitro and in vivo, were recruited and maintained after birth. Next, we performed E-BMT in a dystrophic epidermolysis bullosa mouse model (col7a1−/−) lacking type VII collagen in the cutaneous basement membrane zone. E-BMT significantly ameliorated the severity of the dystrophic epidermolysis bullosa phenotype in neonatal mice. Type VII collagen was deposited primarily in the follicular basement membrane zone in the vicinity of the BMDFs. Thus, gene therapy using E-BMT into the fetal circulation may offer a potential treatment option to ameliorate genetic skin diseases that are characterized by fibroblast dysfunction through the introduction of immune-tolerated BMDFs. PMID:18688022
Yuan, Ching; Bothun, Erick D.; Hardten, David R.; Tolar, Jakub; McLoon, Linda K.
2016-01-01
One common complication of mucopolysaccharidosis I-Hurler (MPS1-H) is corneal clouding, which occurs despite current treatments, including bone marrow transplantation. Human corneas were obtained from a 14 year old subject with MPS1-H and visual disability from progressive corneal clouding despite a prior bone marrow transplant at age 2. This was compared to a cornea from a 17 year old donated to our eye bank after his accidental death. The corneas were analyzed microscopically after staining with Alcian blue, antibodies to collagen I, IV, VI, and α-smooth muscle actin. Differences in levels of expression of the indicated molecules were assessed. Corneas from Hurler and control mice were examined similarly to determine potential mechanistic overlap. The MPS1-H subject cornea showed elevations in mucopolysaccharide deposition. The MPS1-H and Hurler mice corneas showed increased and disorganized expression of collagen I and IV relative to the control corneas. The MPS1-H corneas also showed increased and disordered expression of collagen VI. Positive expression of α-smooth muscle actin indicated myofibroblast conversion within the MPS1-H cornea in both the patient and mutant mouse material compared to normal human and control mouse cornea. Increased deposition of collagens and smooth muscle actin correlate with corneal clouding, providing a potential mechanism for corneal clouding despite bone marrow transplantation in MPS1-H patients. It might be possible to prevent or slow the onset of corneal clouding by treating the cornea with drugs known to prevent myofibroblast conversion. PMID:27235795
Evaluation of in vitro macrophage differentiation during space flight
NASA Astrophysics Data System (ADS)
Ortega, M. Teresa; Lu, Nanyan; Chapes, Stephen K.
2012-05-01
We differentiated mouse bone marrow cells in the presence of recombinant macrophage colony stimulating (rM-CSF) factor for 14 days during the flight of space shuttle Space Transportation System (STS)-126. We tested the hypothesis that the receptor expression for M-CSF, c-Fms was reduced. We used flow cytometry to assess molecules on cells that were preserved during flight to define the differentiation state of the developing bone marrow macrophages; including CD11b, CD31, CD44, Ly6C, Ly6G, F4/80, Mac2, c-Fos as well as c-Fms. In addition, RNA was preserved during the flight and was used to perform a gene microarray. We found that there were significant differences in the number of macrophages that developed in space compared to controls maintained on Earth. We found that there were significant changes in the distribution of cells that expressed CD11b, CD31, F4/80, Mac2, Ly6C and c-Fos. However, there were no changes in c-Fms expression and no consistent pattern of advanced or retarded differentiation during space flight. We also found a pattern of transcript levels that would be consistent with a relatively normal differentiation outcome but increased proliferation by the bone marrow macrophages that were assayed after 14 days of space flight. There also was a surprising pattern of space flight influence on genes of the coagulation pathway. These data confirm that a space flight can have an impact on the in vitro development of macrophages from mouse bone marrow cells.
Evaluation of in vitro macrophage differentiation during space flight.
Ortega, M Teresa; Lu, Nanyan; Chapes, Stephen K
2012-05-15
We differentiated mouse bone marrow cells in the presence of recombinant macrophage colony stimulating (rM-CSF) factor for 14 days during the flight of space shuttle Space Transportation System (STS)-126. We tested the hypothesis that the receptor expression for M-CSF, c-Fms was reduced. We used flow cytometry to assess molecules on cells that were preserved during flight to define the differentiation state of the developing bone marrow macrophages; including CD11b, CD31, CD44, Ly6C, Ly6G, F4/80, Mac2, c-Fos as well as c-Fms. In addition, RNA was preserved during the flight and was used to perform a gene microarray. We found that there were significant differences in the number of macrophages that developed in space compared to controls maintained on Earth. We found that there were significant changes in the distribution of cells that expressed CD11b, CD31, F4/80, Mac2, Ly6C and c-Fos. However, there were no changes in c-Fms expression and no consistent pattern of advanced or retarded differentiation during space flight. We also found a pattern of transcript levels that would be consistent with a relatively normal differentiation outcome but increased proliferation by the bone marrow macrophages that were assayed after 14 days of space flight. There also was a surprising pattern of space flight influence on genes of the coagulation pathway. These data confirm that a space flight can have an impact on the in vitro development of macrophages from mouse bone marrow cells.
Peng, Yuanlin; Brown, Natalie; Finnon, Rosemary; Warner, Christy L; Liu, Xianan; Genik, Paula C; Callan, Matthew A; Ray, F Andrew; Borak, Thomas B; Badie, Christophe; Bouffler, Simon D; Ullrich, Robert L; Bedford, Joel S; Weil, Michael M
2009-04-01
Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.
Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.
Govey, Peter M; Zhang, Yue; Donahue, Henry J
2016-01-01
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.
Dosimetric evaluation of nanotargeted (188)Re-liposome with the MIRDOSE3 and OLINDA/EXM programs.
Chang, Chih-Hsien; Chang, Ya-Jen; Lee, Te-Wei; Ting, Gann; Chang, Kwo-Ping
2012-06-01
The OLINDA/EXM computer code was created as a replacement for the widely used MIRDOSE3 code for radiation dosimetry in nuclear medicine. A dosimetric analysis with these codes was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) in colon carcinoma-bearing mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine ((188)Re-BMEDA) and (188)Re-liposome were obtained for estimation of absorbed doses in normal organs. Radiation dose estimates for normal tissues were calculated using the MIRDOSE3 and OLINDA/EXM programs for a colon carcinoma solid tumor mouse model. Mean absorbed doses derived from(188)Re-BMEDA and (188)Re-liposome in normal tissues were generally similar as calculated by MIRDOSE3 and OLINDA/EXM programs. One notable exception to this was red marrow, wherein MIRDOSE3 resulted in higher absorbed doses than OLINDA/EXM (1.53- and 1.60-fold for (188)Re-BMEDA and (188)Re-liposome, respectively). MIRDOSE3 and OLINDA have very similar residence times and organ doses. Bone marrow doses were estimated by designating cortical bone rather than bone marrow as a source organ. The bone marrow doses calculated by MIRDOSE3 are higher than those by OLINDA. If the bone marrow is designated as a source organ, the doses estimated by MIRDOSE3 and OLINDA programs will be very similar.
Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells
Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie
2014-01-01
In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487
Following damage, the majority of bone marrow-derived airway cells express an epithelial marker.
MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R
2006-12-19
Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0-1.6% with whole marrow and 0.6-1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR. The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo.
Following damage, the majority of bone marrow-derived airway cells express an epithelial marker
MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R
2006-01-01
Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any cytokeratin mRNA in SP or bone marrow samples by RT-PCR. Conclusion The appearance of bone marrow derived cells in the tracheal epithelium is enriched by detergent-induced tissue damage and the majority of these cells express an epithelial marker. The cytokeratin positive donor derived cells in the tracheal epithelium are not present in the injected donor cells and must have acquired this novel phenotype in vivo. PMID:17177981
Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice
Govey, Peter M.; Zhang, Yue; Donahue, Henry J.
2016-01-01
Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104
Kumar, Sanjay; Ponnazhagan, Selvarangan
2012-04-01
Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing. Copyright © 2012 Elsevier Inc. All rights reserved.
Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF.
Zhou, Bo O; Yu, Hua; Yue, Rui; Zhao, Zhiyu; Rios, Jonathan J; Naveiras, Olaia; Morrison, Sean J
2017-08-01
Endothelial cells and leptin receptor + (LepR + ) stromal cells are critical sources of haematopoietic stem cell (HSC) niche factors, including stem cell factor (SCF), in bone marrow. After irradiation or chemotherapy, these cells are depleted while adipocytes become abundant. We discovered that bone marrow adipocytes synthesize SCF. They arise from Adipoq-Cre/ER + progenitors, which represent ∼5% of LepR + cells, and proliferate after irradiation. Scf deletion using Adipoq-Cre/ER inhibited haematopoietic regeneration after irradiation or 5-fluorouracil treatment, depleting HSCs and reducing mouse survival. Scf from LepR + cells, but not endothelial, haematopoietic or osteoblastic cells, also promoted regeneration. In non-irradiated mice, Scf deletion using Adipoq-Cre/ER did not affect HSC frequency in long bones, which have few adipocytes, but depleted HSCs in tail vertebrae, which have abundant adipocytes. A-ZIP/F1 'fatless' mice exhibited delayed haematopoietic regeneration in long bones but not in tail vertebrae, where adipocytes inhibited vascularization. Adipocytes are a niche component that promotes haematopoietic regeneration.
Heckl, Dirk; Wicke, Daniel C; Brugman, Martijn H; Meyer, Johann; Schambach, Axel; Büsche, Guntram; Ballmaier, Matthias; Baum, Christopher; Modlich, Ute
2011-04-07
Thpo/Mpl signaling plays an important role in the maintenance of hematopoietic stem cells (HSCs) in addition to its role in megakaryopoiesis. Patients with inactivating mutations in Mpl develop thrombocytopenia and aplastic anemia because of progressive loss of HSCs. Yet, it is unknown whether this loss of HSCs is an irreversible process. In this study, we used the Mpl knockout (Mpl(-/-)) mouse model and expressed Mpl from newly developed lentiviral vectors specifically in the physiologic Mpl target populations, namely, HSCs and megakaryocytes. After validating lineage-specific expression in vivo using lentiviral eGFP reporter vectors, we performed bone marrow transplantation of transduced Mpl(-/-) bone marrow cells into Mpl(-/-) mice. We show that restoration of Mpl expression from transcriptionally targeted vectors prevents lethal adverse reactions of ectopic Mpl expression, replenishes the HSC pool, restores stem cell properties, and corrects platelet production. In some mice, megakaryocyte counts were atypically high, accompanied by bone neo-formation and marrow fibrosis. Gene-corrected Mpl(-/-) cells had increased long-term repopulating potential, with a marked increase in lineage(-)Sca1(+)cKit(+) cells and early progenitor populations in reconstituted mice. Transcriptome analysis of lineage(-)Sca1(+)cKit(+) cells in Mpl-corrected mice showed functional adjustment of genes involved in HSC self-renewal.
Kalash, Ronny; Epperly, Michael W; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S
2013-11-01
A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P = 0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation.
Kalash, Ronny; Epperly, Michael W.; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M.; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S.
2014-01-01
A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P =0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation. PMID:24125487
Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells
Bowser, Matthew; Herberg, Samuel; Arounleut, Phonepasong; Shi, Xingming; Fulzele, Sadanand; Hill, William D.; Isales, Carlos M.; Hamrick, Mark W.
2013-01-01
The activin A-myostatin-follistatin system is thought to play an important role in the regulation of muscle and bone mass throughout growth, development, and aging; however, the effects of these ligands on progenitor cell proliferation and differentiation in muscle and bone are not well understood. In addition, age-associated changes in the relative expression of these factors in musculoskeletal tissues have not been described. We therefore examined changes in protein levels of activin A, follistatin, and myostatin (GDF-8) in both muscle and bone with age in C57BL6 mice using ELISA. We then investigated the effects of activin A, myostatin and follistatin on the proliferation and differentiation of primary myoblasts and mouse bone marrow stromal cells (BMSCs) in vitro. Myostatin levels and the myostatin:follistatin ratio increased with age in the primarily slow-twitch mouse soleus muscle, whereas the pattern was reversed with age in the fast-twitch extensor digitorum longus muscle. Myostatin levels and the myostatin: follistatin ratio increased significantly (+75%) in mouse bone marrow with age, as did activin A levels (+17%). Follistatin increased the proliferation of primary myoblasts from both young and aged mice, whereas myostatin increased proliferation of younger myoblasts but decreased proliferation of older myoblasts. Myostatin reduced proliferation of both young and aged BMSCs in a dose-dependent fashion, and activin A increased mineralization in both young and aged BMSCs. Together these data suggest that aging in mice is accompanied by changes in the expression of activin A and myostatin, as well as changes in the response of bone and muscle progenitor cells to these factors. Myostatin appears to play a particularly important role in the impaired proliferative capacity of muscle and bone progenitor cells from aged mice. PMID:23178301
Coronado-Cerda, Erika Evangelina; Franco-Molina, Moisés Armides; Mendoza-Gamboa, Edgar; Prado-García, Heriberto; Rivera-Morales, Lydia Guadalupe; Zapata-Benavides, Pablo; Rodríguez-Salazar, María del Carmen; Caballero-Hernandez, Diana; Tamez-Guerra, Reyes Silvestre; Rodríguez-Padilla, Cristina
2016-01-01
Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients. PMID:27191003
Phenotypic research on senile osteoporosis caused by SIRT6 deficiency
Zhang, De-Mao; Cui, Di-Xin; Xu, Ruo-Shi; Zhou, Ya-Chuan; Zheng, Li-Wei; Liu, Peng; Zhou, Xue-Dong
2016-01-01
Osteoporosis is a serious public bone metabolic disease. However, the mechanisms underlying bone loss combined with ageing, which is known as senile osteoporosis, remains unknown. Here we show the detailed phenotype of this disease caused by SIRT6 knock out (KO) in mice. To the best of our knowledge, this is the first study to reveal that SIRT6 is expressed in both bone marrow stroma cells and bone-related cells in both mouse and human models, which suggests that SIRT6 is an important regulator in bone metabolism. SIRT6-KO mice exhibit a significant decrease in body weight and remarkable dwarfism. The skeleton of the SIRT6-KO mouse is deficient in cartilage and mineralized bone tissue. Moreover, the osteocalcin concentration in blood is lower, which suggests that bone mass is markedly lost. Besides, the tartrate-resistant acid phosphatase 5b (TRAP5b) concentration is much higher, which suggests that bone resorption is overactive. Both trabecular and cortical bones exhibit severe osteopenia, and the bone mineral density is decreased. Moreover, double-labelling analysis shows that bone formation is much slower. To determine whether SIRT6 directly regulates bone metabolism, we cultured primary bone marrow stromal cells for osteogenesis and osteoclastogenesis separately to avoid indirect interference in vivo responses such as inflammation. Taken together, these results show that SIRT6 can directly regulate osteoblast proliferation and differentiation, resulting in attenuation in mineralization. Furthermore, SIRT6 can directly regulate osteoclast differentiation and results in a higher number of small osteoclasts, which may be related to overactive bone resorption. PMID:27357320
Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo
2016-11-01
The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue response near the implant surface in a bone marrow microenvironment, and it also shows great potential in making transgenic animal resource applicable to biomaterial studies, so that the design of novel biomaterials could be better guided.
2013-03-01
tissue have been optimized • Optimization of flow cytometry-based analyses to characterize co- incident expression of multiple MSC-related markers on a...CA). Mouse anti-human vimentin (clone LN-6) was purchased from Sigma-Aldrich (St. Louis, MO). Goat anti-mouse Alexa Fluor 488, Roswell Park
Klomps, Lawrence V; Zomorodi, Naseem; Kim, H Mike
2017-12-01
Rotator cuff muscle fatty degeneration after a chronic tendon tear is an irreversible pathologic change associated with poor clinical outcomes of tendon repair, and its exact pathogenesis remains unknown. We sought to investigate the role of transplanted bone marrow cells in the development of fatty degeneration, specifically in adipocyte accumulation, using a mouse model. Fourteen mice were divided into 2 bone marrow chimeric animal groups: bone marrow transplantation (BMT) group and reverse BMT group. For the BMT group, C57BL/6J wild-type mice underwent whole body irradiation followed by BMT into the retro-orbital sinus from green fluorescent protein (GFP)-transgenic donor mice. For the reverse BMT group, GFP-transgenic mice received BMT from C57BL/6J wild-type donor mice after irradiation. The supraspinatus tendon, infraspinatus tendon, and suprascapular nerve were surgically transected 3 weeks after transplantation. The rotator cuff muscles were harvested 13 weeks after transplantation for histologic analysis and GFP immunohistochemistry. On histologic examination, both groups showed substantial fatty degeneration, fibrosis, and atrophy of the cuff muscles. The BMT group showed no noticeable GFP immunostaining, whereas the reverse BMT group showed significantly stronger GFP staining in most adipocytes (P < .001). However, both groups also showed that a small number of adipocytes originated from transplanted bone marrow cells. A small number of myocytes showed a large cytoplasmic lipid vacuole resembling adipocytes. This study's findings suggest that most adipocytes in fatty degeneration of the rotator cuff muscles originate from sources other than bone marrow-derived stem cells, and there may be more than 1 source for the adipocytes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo
2016-01-01
The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Labelle, Philippe; Hahn, Nina E; Fraser, Jenelle K; Kendall, Lonnie V; Ziman, Melanie; James, Edward; Shastri, Nilabh; Griffey, Stephen M
2009-04-01
An outbreak of mousepox in a research institution was caused by Ectromelia-contaminated mouse serum that had been used for bone marrow cell culture and the cells subsequently injected into the footpads of mice. The disease initially was diagnosed by identification of gross and microscopic lesions typical for Ectromelia infection, including foci of necrosis in the liver and spleen and eosinophilic intracytoplasmic inclusion bodies in the skin. The source of infection was determined by PCR analysis to be serum obtained from a commercial vendor. To determine whether viral growth in tissue culture was required to induce viral infection, 36 mice (BALB/cJ, C57BL/6J) were experimentally exposed intraperitoneally, intradermally (footpad), or intranasally to contaminated serum or bone marrow cell cultures using the contaminated serum in the culture medium. Mice were euthanized when clinical signs developed or after 12 wk. Necropsy, PCR of spleen, and serum ELISA were performed on all mice. Mice injected with cell cultures and their cage contacts developed mousepox, antibodies to Ectromelia, and lesions, whereas mice injected with serum without cells did not. Mouse antibody production, a tool commonly used to screen biologic materials for viral contamination, failed to detect active Ectromelia contamination in mouse serum.
1992-01-01
Antigen-presenting, major histocompatibility complex (MHC) class II- rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II- negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent "stroma." At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon reculture, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colony-stimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since > 5 x 10(6) dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type. PMID:1460426
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, H.; Iwaguchi, T.; Kataoka, T.
1987-12-01
The antitumor activity of Meth A-hyperimmunized BALB/c mouse spleen cells (Meth A-Im-SPL) was assayed by the Winn test in H-2 incompatible bone marrow chimeras in closed colony CD-1 (nu/nu), inbred DDD/1(nu/nu) (H-2s), or inbred BALB/c(nu/nu) (H-2d) mice as recipients. We found that Meth A-Im-SPL suppressed Meth A growth in the chimera nude mice which were reconstituted with bone marrow cells of the H-2d haplotype (i.e., BALB/c, DBA/2 and B10.D2), but not in the chimeras which were reconstituted with bone marrow cells of the H-2a, H-2b, or H-2k haplotype (i.e., B10.A, B10, and B10.BR). These results suggested that H-2 restriction occurredmore » between Meth A-Im-SPL and bone marrow or bone marrow-derived cells in tumor neutralization. Furthermore, Meth A-Im-SPL did not suppress Meth 1 tumors (antigenically distinct from Meth A tumors) in the presence or absence of mitomycin C-treated Meth A in a Winn assay. These results suggested that there is tumor specificity in the effector phase as well as in the induction phase. The phenotype of the effectors in the Meth A-Im-SPL was Thy-1.2+ and L3T4+, because Meth A-Im-SPL lost their antitumor activity with pretreatment with anti-Thy-1.2 monoclonal antibody (mAb) and complement or anti-L3T4 mAb and complement, but not with anti-Lyt-2.2 mAb and complement or complement alone. Positively purified L3T4+ T cells from Meth A-Im-SPL (Meth A-Im-L3T4), obtained by the panning method, suppressed the tumor growth in the chimera nude mice which were reconstituted with bone marrow cells of B10.KEA2 mice (that were I-A region-identical with Meth A-Im-L3T4 cells but not others in H-2) as well as B10.D2 cells (that were fully identical with Meth A-Im-L3T4 cells in H-2). We conclude that Meth A-Im-SPL (L3T4+) neutralized the tumors in collaboration with I-A region-identical host bone marrow or bone marrow-derived cells, and the neutralization was not accompanied by the bystander effect.« less
Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells.
Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy
2010-10-01
The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30-35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect.
Shi, Lin-Bo; Xu, Hua-Ping; Wu, Yu-Jie; Li, Xin; Gao, Jin-Yan; Chen, Hong-Bing
2018-06-01
Low levels of endosulfan are known to stimulate mast cells to release allergic mediators, while imidacloprid can inhibit IgE-mediated mast cell degranulation. However, little information about the effects of both pesticides together on mast cell degranulation is available. To measure the effects, IgE-activated mouse bone marrow-derived mast cells (BMMCs) were treated with imidacloprid and endosulfan, individually, and simultaneously at equi-molar concentrations in tenfold steps ranging from 10 -4 to 10 -11 M, followed by measuring several allergy-related parameters expressed in BMMCs: the mediator production and influx of Ca 2+ , the phosphorylation content of NF-κB in the FcεRI signaling pathway. Then, the effects of the mixtures on IgE-induced passive systemic anaphylaxis (PSA) of BALB/c was detectded. This study clearly showed that the application of equi-molar mixtures of both pesticides with 10 -4 -10 -5 M significantly inhibited the IgE-mediated mouse bone marrow-derived mast cells degranulation in vitro and 10 -4 M of them decreased IgE-mediated PSA in vivo, as the application of imidacloprid at the same concentration alone did. Morever endosulfan alone had no remarkable stimulatory effects on any of the factors measured. In conclusion, simultaneous application of equi-molar concentrations of both pesticides generally showed highly similar responses compared to the responses to imidacloprid alone, suggesting that the effects of the mixture could be solely attributed to the effects of imidacloprid. Copyright © 2018 Elsevier Inc. All rights reserved.
Reduced adiposity in ob/ob mice following total body irradiation and bone marrow transplantation.
Ablamunits, Vitaly; Weisberg, Stuart P; Lemieux, Jacob E; Combs, Terry P; Klebanov, Simon
2007-06-01
The objective of this study was to assess long-term metabolic consequences of total body irradiation (TBI) and bone marrow transplantation. Severe obesity develops due to both hypertrophy and hyperplasia of adipocytes. We hypothesized that TBI would arrest adipose tissue growth and would affect insulin resistance (IR). We exposed 2-month-old female ob/ob mice to 8 Grays of TBI followed by bone marrow transplantation and tested the animals for body weight (BW) gain, body composition, blood glucose, and insulin sensitivity. Two months after TBI, irradiated mice stopped gaining BW, whereas non-treated mice continued to grow. At the age of 9.5 months, body mass of irradiated mice was 60.6 +/- 1.4 grams, which was only 61% of that in non-treated ob/ob controls (99.4 +/- 1.6 grams). Body composition measurements by DXA showed that decreased BW was primarily due to an impaired fat accumulation. This could not result from the production of leptin by bone marrow-derived adipocyte progenitors because inhibition of the obese phenotype was identical in recipients of both B6 and ob/ob bone marrow. Inability of the irradiated mice to accumulate fat was associated with hepatomegaly, lower levels of monocyte chemoattractant protein-1 expression in adipose tissue, and increased IR. Our data argue in favor of the hypothesis that inability of adipose tissue to expand may increase IR. This mouse model may be valuable for studies of late-onset radiation-induced IR in humans.
Hanusch, Alex Lucas; de Oliveira, Guilherme Roberto; de Sabóia-Morais, Simone Maria Teixeira; Machado, Rafael Cosme; dos Anjos, Murilo Machado; Chen Chen, Lee
2015-01-01
Neolignans are secondary metabolites found in various groups of Angiosperms. They belong to a class of natural compounds with great diversity of chemical structures and pharmacological activities. These compounds are formed by linking two phenylpropanoid units. Several compounds that have ability to prevent genetic damage have been isolated from plants, and can be used to prevent or delay the development of tumor cells. Genetic toxicology evaluation is widely used in risk assessment of new drugs in preclinical screening tests. In this study, we evaluated the genotoxicity and cytotoxicity of the neolignan analogue 2-(4-nitrophenoxy)-1-phenylethanone (4NF) and its protective effect against DNA damage using the mouse bone marrow micronucleus test and the comet assay in mouse peripheral blood. Our results showed that this neolignan analogue had no genotoxic activity and was able to reduce induced damage both in mouse bone marrow and peripheral blood. Although the neolignan analogue 4NF was cytotoxic, it reduced cyclophosphamide-induced cytotoxicity. In conclusion, it showed no genotoxic action, but exhibited cytotoxic, antigenotoxic, and anticytotoxic activities. PMID:26554835
de Vries, E G E; Vellenga, E; Kluin-Nelemans, J C; Mulder, N H
2004-09-01
Forty years ago, van Putten described in the European Journal of Cancer (see this issue) quantitative studies on the optimal storage techniques of mouse and monkey bone marrow suspensions. Survival of the animals after irradiation following injection with stored bone marrow cell suspensions was the endpoint. He observed some species differences, but based on the data obtained considered a careful trial of the glycerol-polyvinylpyrrolide (PVP) combination for storage of marrow in man was indicated. In spite of this, dimethyl sulphoxide has become the 'standard' cryopreservant for human marrow stem cells. Over the last 40 years, there has been a tremendous increase in knowledge about haematopoietic stem cells and their use in the clinic. Haematopoietic stem cells are now known to travel between the bone marrow and peripheral blood and are the best-characterised adult stem cells. These cells are currently widely used for transplantations in the clinic and are obtained from a wide variety of sources. These include the bone marrow, peripheral blood, cord blood, autologous as well as allogeneic stem cells from related or unrelated donors. Increasingly, data has become available that adult haematopoietic stem cells can generate differentiated cells belonging to other cell types, a process called "developmental plasticity". Thus, they may contribute to non-haematopoietic tissue repair in multiple organ systems. This has created a whole new potential therapeutic armamentarium for the application of haematopoietic stem cells outside of the area of malignancies and haematopoietic disorders.
Manipulation of immune system via immortal bone marrow stem cells.
Ruedl, Christiane; Khameneh, Hanif Javanmard; Karjalainen, Klaus
2008-09-01
Extensive amplification of hematopoietic stem cells (HSCs) and their multipotent primitive progenitors (MPPs) in culture would greatly benefit not only clinical transplantation but also provide a potential tool to manipulate all cellular lineages derived from these cells for gene therapy and experimental purposes. Here, we demonstrate that mouse bone marrow cultures containing cells engineered to over-express NUP98-HOXB4 fusion protein support self-renewal of physiologically normal HSC and MPP for several weeks leading practically to their unlimited expansion. This allows time consuming and cumulative in vitro experimental manipulations without sacrificing their ability to differentiate in vivo or in vitro to any hematopoietic lineage.
Chatterjee, Sumanta; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaklader, Malay; Chaudhuri, Samaresh; Law, Sujata
2010-01-01
Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases. PMID:21048851
Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter
2015-02-01
Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter
2014-01-01
Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously has been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. PMID:25464947
Li, Feng; Wang, Xujun; Niyibizi, Christopher
2010-01-01
Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757
Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo
2016-01-01
Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893
Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation
Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro
2017-01-01
Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3-E1 osteoblastic cells and osteoclast-like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST-1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that mangiferin significantly increased the mRNA level of runt-related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate-resistant acid phosphatase-positive multinuclear cells. RT-PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast-associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3-E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes. PMID:28627701
Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro
2017-08-01
Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3‑E1 osteoblastic cells and osteoclast‑like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST‑1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription‑polymerase chain reaction (RT‑PCR) demonstrated that mangiferin significantly increased the mRNA level of runt‑related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate‑resistant acid phosphatase‑positive multinuclear cells. RT‑PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast‑associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3‑E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes.
Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells.
Ezeh, Peace C; Xu, Huan; Lauer, Fredine T; Liu, Ke Jian; Hudson, Laurie G; Burchiel, Scott W
2016-02-01
Our previously published data show that As(+3) in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As(+3) metabolite, monomethylarsonous acid (MMA(+3)), was responsible for the observed pre-B cell toxicity caused by As(+3). Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA(+3) inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As(+3) occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA(+3), and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA(+3) at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA(+3). Since 2E8 cells lack the enzymes responsible for the conversion of As(+3) to MMA(+3) in vitro, the results of these studies suggest that As(+3) induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA(+3) which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zheng, Junke; Lu, Zhigang; Kocabas, Fatih; Böttcher, Ralph T.; Costell, Mercedes; Kang, Xunlei; Liu, Xiaoye; DeBerardinis, Ralph J.; Wang, Qianming; Chen, Guo-Qiang
2014-01-01
How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we demonstrated that the deletion of the cytoskeleton-modulating protein profilin 1 (pfn1) in hematopoietic stem cell (HSCs) led to bone marrow failure, loss of quiescence, and mobilization and apoptosis of HSCs in vivo. A switch from glycolysis to mitochondrial respiration with increased reactive oxygen species (ROS) level was also observed in HSCs on pfn1 deletion. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that the metabolism is mechanistically linked to the cell cycle quiescence of stem cells. The actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Our study provided evidence that pfn1 at least partially acts through the axis of pfn1/Gα13/EGR1 to regulate stem cell retention and metabolism in the bone marrow. PMID:24385538
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Ryota, E-mail: hryota@juntendo.ac.jp; Katoh, Youichi, E-mail: katoyo@juntendo-urayasu.jp; Nakamura, Kyoko
2012-07-13
Highlights: Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances adipocyte accumulation in the presence of adipogenic inducers. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances both proliferation and adipocyte differentiation in BMSCs. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub o} in BMSCs. Black-Right-Pointing-Pointer An intracellular Ca{sup 2+} chelator suppresses the enhancement in adipocyte accumulation. Black-Right-Pointing-Pointer Controlling [Ca{sup 2+}]{sub o} may govern the balance of adipocyte and osteoblast development. -- Abstract: The bone marrow stroma contains osteoblasts and adipocytes that have a common precursor: the pluripotent mesenchymal stem cell found in bone marrow stromal cells (BMSCs). Local bone marrow Ca{sup 2+}more » levels can reach high concentrations due to bone resorption, which is one of the notable features of the bone marrow stroma. Here, we describe the effects of high [Ca{sup 2+}]{sub o} on the accumulation of adipocytes in the bone marrow stroma. Using primary mouse BMSCs, we evaluated the level of adipocyte accumulation by measuring Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. High [Ca{sup 2+}]{sub o} enhanced the accumulation of adipocytes following treatment with both insulin and dexamethasone together but not in the absence of this treatment. This enhanced accumulation was the result of both the accelerated proliferation of BMSCs and their differentiation into adipocytes. Using the fura-2 method, we also showed that high [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i}. An intracellular Ca{sup 2+} chelator suppressed the enhancement in adipocyte accumulation due to increased [Ca{sup 2+}]{sub o} in BMSCs. These data suggest a new role for extracellular Ca{sup 2+} in the bone marrow stroma: increased [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i} levels, which in turn enhances the accumulation of adipocytes under certain conditions.« less
C/EBPβ promotes BCR–ABL-mediated myeloid expansion and leukemic stem cell exhaustion
Hayashi, Y; Hirai, H; Kamio, N; Yao, H; Yoshioka, S; Miura, Y; Ashihara, E; Fujiyama, Y; Tenen, DG; Maekawa, T
2015-01-01
The BCR–ABL fusion oncoprotein accelerates differentiation and proliferation of myeloid cells during the chronic phase of chronic myeloid leukemia (CP-CML). Here, the role of CCAAT/enhancer binding protein β (C/EBPβ), a regulator for ‘emergency granulopoiesis,’ in the pathogenesis of CP-CML was examined. C/EBPβ expression was upregulated in Lineage− CD34+ CD38− hematopoietic stem cells (HSCs) and myeloid progenitors isolated from bone marrow of patients with CP-CML. In EML cells, a mouse HSC line, BCR–ABL upregulated C/EBPβ, at least in part, through the activation of STAT5. Myeloid differentiation and proliferation induced by BCR–ABL was significantly impaired in C/EBPβ-deficient bone marrow cells in vitro. Mice that were transplanted with BCR–ABL-transduced C/EBPβ knockout bone marrow cells survived longer than mice that received BCR–ABL-transduced wild-type (WT) bone marrow cells. Significantly higher levels of leukemic stem cells were maintained in BCR–ABL-transduced C/EBPβ-deficient cells than in BCR–ABL-transduced WT cells. These results suggest that C/EBPβ is involved in BCR–ABL-mediated myeloid expansion. Further elucidation of the molecular mechanisms underlying the C/EBPβ-mediated stem cell loss might reveal a novel therapeutic strategy for eradication of CML stem cells. PMID:22948537
Siracusa, L D; Chapman, V M; Bennett, K L; Hastie, N D; Pietras, D F; Rossant, J
1983-02-01
Mammalian chimaeras have proved useful for investigating early steps in embryonic development. However, a complete clonal analysis of cell lineages has been limited by the lack of a marker which is ubiquitous and can distinguish parental cell types in situ. We have developed a cell marker system which fulfils these criteria. Chimaeric mice were successfully produced from two mouse species which possess sufficient genetic differences to allow unequivocal identification of parental cell types. DNA-DNA in situ hybridization with cloned, species-specific sequences was performed to distinguish the parental cell types. We have identified a cloned, Mus musculus satellite DNA sequence which shows hybridization differences between Mus musculus and Mus caroli DNA. This clone was used a a probe in in situ hybridizations to bone marrow chromosomes from Mus musculus, Mus caroli, and an interspecific F1 hybrid. The clone could qualitatively distinguish Mus musculus from Mus caroli chromosomes after in situ hybridization, even when they were derived from the same F1 hybrid cell. Quantitation of this hybridization to interphase nuclei from bone marrow spreads indicates that the probe can successfully distinguish Mus musculus from Mus caroli cells and can determine the percentage contribution of Mus musculus in mixtures of bone marrow cells of these species and in chimaeric bone marrow cell preparations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grawe, J.; Amneus, H.; Zetterberg, G.
1993-01-01
The frequencies and DNA distributions of micronuclei in polychromatic erythrocytes from the bone marrow and peripheral blood of mice after four different treatments were determined by flow cytometry. Polychromatic erthrocytes were detected using the fluorescent RNA stain thiazole orange, while micronuclei were detected with the DNA stain Hoechst 33342. The treatments were X-irradiation (1 Gy), cyclophosphamide (30 mg/kg), vincristine sulfphate (0.08 mg/kg), and cochicine (1 mg/kg). All treatments showed increased frequencies of micronucleated polychromatic erythrocytes at 30h after treatment in the bone marrow (colchicine 50h) and at 50h in the peripheral blood. The clostogenic agents X-irradiation and cyclophosphamide and themore » spindle poisons vincristine sulphate and cochicine could be grouped according to the fluorescent characteristics of the induced micronuclei as well as the relative frequency of small (0.5-2% if the diploid G1 DNA content) and large (2-10%) micronuclei. In the peripheral blood the relative frequency of large micronuclei was lower than in the bone marrow, indicating that they were partly eliminated before entrance into the peripheral circulation. The nature of presumed micronuclei was verified by sorting. The potential of this approach to give information on the mechanism of induction of micronuclei is discussed.« less
Ishizaka, Ryo; Hayashi, Yuki; Iohara, Koichiro; Sugiyama, Masahiko; Murakami, Masashi; Yamamoto, Tsubasa; Fukuta, Osamu; Nakashima, Misako
2013-03-01
Mesenchymal stem cells (MSCs) have been used for cell therapy in various experimental disease models. However, the regenerative potential of MSCs from different tissue sources and the influence of the tissue niche have not been investigated. In this study, we compared the regenerative potential of dental pulp, bone marrow and adipose tissue-derived CD31(-) side population (SP) cells isolated from an individual porcine source. Pulp CD31(-) SP cells expressed the highest levels of angiogenic/neurotrophic factors and had the highest migration activity. Conditioned medium from pulp CD31(-) SP cells produced potent anti-apoptotic activity and neurite outgrowth, compared to those from bone marrow and adipose CD31(-) SP cells. Transplantation of pulp CD31(-) SP cells in a mouse hindlimb ischemia model produced higher blood flow and capillary density than transplantation of bone marrow and adipose CD31(-) SP cells. Motor function recovery and infarct size reduction were greater with pulp CD31(-) SP cells. Pulp CD31(-) SP cells induced maximal angiogenesis, neurogenesis and pulp regeneration in ectopic transplantation models compared to other tissue sources. These results demonstrate that pulp stem cells have higher angiogenic, neurogenic and regenerative potential and may therefore be superior to bone marrow and adipose stem cells for cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Berhane, Hebist; Epperly, Michael W.; Goff, Julie; Kalash, Ronny; Cao, Shaonan; Franicola, Darcy; Zhang, Xichen; Shields, Donna; Houghton, Frank; Wang, Hong; Wipf, Peter; Parmar, Kalindi; Greenberger, Joel S.
2014-01-01
FancD2 plays a central role in the human Fanconi anemia DNA damage response (DDR) pathway. Fancd2−/− mice exhibit many features of human Fanconi anemia including cellular DNA repair defects. Whether the DNA repair defect in Fancd2−/− mice results in radiologic changes in all cell lineages is unknown. We measured stress of hematopoiesis in long-term marrow cultures and radiosensitivity in clonogenic survival curves, as well as comet tail intensity, total antioxidant stores and radiation-induced gene expression in hematopoietic progenitor compared to bone marrow stromal cell lines. We further evaluated radioprotection by a mitochondrial-targeted antioxidant GS-nitroxide, JP4-039. Hematopoiesis longevity in Fancd2−/− mouse long-term marrow cultures was diminished and bone marrow stromal cell lines were radiosensitive compared to Fancd2+/+ stromal cells (Fancd2−/− D0 = 1.4 ± 0.1 Gy, ñ = 5.0 ± 0.6 vs. Fancd2+/+ D0 = 1.6 ± 0.1 Gy, ñ = 6.7 ± 1.6), P = 0.0124 for D0 and P = 0.0023 for ñ, respectively). In contrast, Fancd2−/− IL-3-dependent hematopoietic progenitor cells were radioresistant (D0 = 1.71 ± 0.04 Gy and ñ = 5.07 ± 0.52) compared to Fancd2+/+ (D0 = 1.39 ± 0.09 Gy and ñ = 2.31 ± 0.85, P = 0.001 for D0). CFU-GM from freshly explanted Fancd2−/− marrow was also radioresistant. Consistent with radiosensitivity, irradiated Fancd2−/− stromal cells had higher DNA damage by comet tail intensity assay compared to Fancd2+/+ cells (P < 0.0001), slower DNA damage recovery, lower baseline total antioxidant capacity, enhanced radiation-induced depletion of antioxidants, and increased CDKN1A-p21 gene transcripts and protein. Consistent with radioresistance, Fancd2−/− IL-3-dependent hematopoietic cells had higher baseline and post irradiation total antioxidant capacity. While, there was no detectable alteration of radiation-induced cell cycle arrest with Fancd2−/− stromal cells, hematopoietic progenitor cells showed reduced G2/M cell cycle arrest. The absence of the mouse Fancd2 gene product confers radiosensitivity to bone marrow stromal but not hematopoietic progenitor cells. PMID:24397476
Endochondral ossification is required for haematopoietic stem-cell niche formation.
Chan, Charles K F; Chen, Ching-Cheng; Luppen, Cynthia A; Kim, Jae-Beom; DeBoer, Anthony T; Wei, Kevin; Helms, Jill A; Kuo, Calvin J; Kraft, Daniel L; Weissman, Irving L
2009-01-22
Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation. With this assay, we identified a population of progenitor cells with surface markers CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1.1(-) (CD105(+)Thy1(-)) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1(+) (CD105(+)Thy1(+)) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105(+)Thy1(-) progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.
Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells
Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy
2010-01-01
The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30–35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect. PMID:23961094
Yamashita, Fumiaki; Komoto, Ikumi; Oka, Hiroaki; Kuwata, Keizo; Takeuchi, Mayuko; Nakagawa, Fumio; Yoshisue, Kunihiro; Chiba, Masato
2015-08-01
Trifluridine (TFT) is an antitumor component of a novel nucleoside antitumor agent, TAS-102, which consists of TFT and tipiracil hydrochloride (thymidine phosphorylase inhibitor). Incorporation of TFT into DNA is a probable mechanism of antitumor activity and hematological toxicity. The objective of this study was to examine the TFT incorporation into tumor- and white blood cell-DNA, and to elucidate the mechanism of TFT-related effect and toxicity. TFT effect on the colony formation of mouse bone marrow cells was also investigated. Pharmacokinetics of TFT was determined in nude mice after single oral administration of TAS-102, while the antitumor activity and body weight change were evaluated in the tumor-bearing nude mice after multiple oral administrations for 2 weeks. TFT concentrations in the blood- and tumor-DNA were determined by LC/MS/MS. The colony formation was evaluated by CFU-GM assay. TFT systemic exposure in plasma increased dose-dependently. The tumor growth rate and body weight gain decreased dose-dependently, but TFT concentrations in the DNA of tumor tissues and white blood cells increased dose-dependently. TFT inhibited colony formation of bone marrow cells in a concentration-dependent manner. A significant relationship between systemic exposure of TFT and pharmacological effects including the antitumor activity and body weight change was well explained by the TFT incorporation into DNA. TFT inhibited proliferations of mouse bone marrow cells and human colorectal carcinoma cells implanted to nude mice dose-dependently. The highest tolerable TFT exposure provides the highest antitumor activity, and the hematological toxicity may serve as a potential surrogate indicator of TAS-102 efficacy.
Yu, Fang; Shi, Ying; Wang, Junfeng; Li, Juan; Fan, Daping; Ai, Walden
2013-01-01
Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which was accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development. PMID:23737434
Morari, Joseane; Anhe, Gabriel F; Nascimento, Lucas F; de Moura, Rodrigo F; Razolli, Daniela; Solon, Carina; Guadagnini, Dioze; Souza, Gabriela; Mattos, Alexandre H; Tobar, Natalia; Ramos, Celso D; Pascoal, Vinicius D; Saad, Mario J; Lopes-Cendes, Iscia; Moraes, Juliana C; Velloso, Licio A
2014-11-01
Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Infectivity of five different types of macrophages by Leishmania infantum.
Maia, C; Rolão, N; Nunes, M; Gonçalves, L; Campino, L
2007-08-01
Leishmania are intracellular parasites that multiply as the amastigote form in the macrophages of their vertebrate hosts. Since vaccines against leishmaniases are still under development, the control of these diseases relies on prompt diagnosis and chemotherapy in infected humans as well as in dogs, which are the main reservoir of Leishmania infantum, in Mediterranean countries. To establish the macrophage type to be used as an in vitro model for antileishmanial chemotherapeutic studies, we analysed the susceptibility of human peripheral blood derived macrophages, macrophages derived from mouse bone marrow, mouse peritoneal macrophages and macrophages differentiated from cell lines U-937 and DH82 to infection by two L. infantum strains, one obtained from a human leishmanial infection and other from a canine infection. Both strains displayed comparable behaviour in their capacity of infecting the different macrophage types. Human peripheral blood macrophages and DH82 cells were less infectable by both strains. U-937, mouse peritoneal macrophages and mouse bone marrow derived macrophages are the most active cells to phagocytose the parasites. However, U-937 cell line appears to be the most useful as Leishmania infection model providing an unlimited source of homogeneous host cells with reproducibility of the results, is less time consuming, less expensive and tolerate high doses of first line drugs for human and canine visceral leishmaniasis treatment.
Roberts, Edward W.; Deonarine, Andrew; Jones, James O.; Denton, Alice E.; Feig, Christine; Lyons, Scott K.; Espeli, Marion; Kraman, Matthew; McKenna, Brendan; Wells, Richard J.B.; Zhao, Qi; Caballero, Otavia L.; Larder, Rachel; Coll, Anthony P.; O’Rahilly, Stephen; Brindle, Kevin M.; Teichmann, Sarah A.; Tuveson, David A.
2013-01-01
Fibroblast activation protein-α (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP+ cells, we find that they reside in most tissues of the adult mouse. FAP+ cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP+ cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP+ stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia. PMID:23712428
A composite mouse model of aplastic anemia complicated with iron overload
Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong
2018-01-01
Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits. PMID:29434729
A composite mouse model of aplastic anemia complicated with iron overload.
Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong
2018-02-01
Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.
Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition
Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.
2014-01-01
Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576
Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.
Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M
2014-01-01
Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.
BONE MARROW MESENCHYMAL STEM CELLS ARE PROGENITORS IN VITRO FOR INNER EAR HAIR CELLS
Jeon, Sang-Jun; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.
2011-01-01
Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating differentiation to inner ear sensory cells. Some of the cells displayed F-actin positive protrusions in the morphology characteristic of hair cell stereociliary bundles. Hair cell markers were also induced by culture of mouse MSC-derived cells in contact with embryonic chick inner ear cells, and this induction was not due to a cell fusion event, because the chick hair cells could be identified with a chick-specific antibody and chick and mouse antigens were never found in the same cell. PMID:17113786
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mogi, Makio, E-mail: makio@dpc.aichi-gakuin.ac.jp; Kondo, Ayami
Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor regulates bone mass by inhibiting osteoclastic bone resorption. mTOR, which is the mammalian target of rapamycin, is a kinase and central regulator of cell growth, proliferation, and survival. By using Rapamycin, we studied whether mTOR pathway is associated with OPG protein production in the mouse bone marrow-derived stromal cell line ST2. Rapamycin markedly increased the level of soluble OPG in ST2 cells. This antibiotic treatment resulted in the suppression of phosphorylation of mTOR. Rapamycin had no effects on the proliferation, differentiation, or apoptosis of the cells. Treatment with bone morphogenetic protein-4, which can induce OPG proteinmore » in ST2 cells, also resulted in a decrease in the density of the phospho-mTOR-band, suggesting that the suppression of the phospho-mTOR pathway is necessary for OPG production in ST2 cells. Thus, suitable suppression of mTOR phosphorylation is a necessary requirement for OPG production in bone marrow stromal cells.« less
Tominari, Tsukasa; Ichimaru, Ryota; Yoshinouchi, Shosei; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Inada, Masaki; Miyaura, Chisato
2017-12-01
(-)-Epigallocatechin-3- O -gallate (EGCG), present in green tea, exhibits antioxidant and antiallergy effects. EGCG3″Me, a 3- O -methylated derivative of EGCG, has been reported to show similar biological functions; the inhibitory activity of EGCG3″Me in a mouse allergy model was more potent than that of EGCG, probably due to the efficiency of absorption from the intestine. However, the functional potency of these EGCGs is controversial in each disease model. We previously observed that EGCG suppressed inflammatory bone resorption and prevented alveolar bone loss in a mouse model of periodontosis. In this study, we examined the role of EGCG3″Me in bone resorption using a mouse model of periodontitis. Lipopolysaccharide (LPS)-induced osteoclast formation was suppressed by adding EGCG3″Me to cocultures of osteoblasts and bone marrow cells, and LPS-induced bone resorption was also inhibited by EGCG3″Me in calvarial organ cultures. EGCG3″Me acted on osteoblasts and suppressed prostaglandin E (PGE) production, which is critical for inflammatory bone resorption, by inhibiting the expression of COX-2 and mPGES-1, key enzymes for PGE synthesis. In osteoclast precursor macrophages, EGCG3″Me suppressed RANKL-dependent differentiation into mature osteoclasts. In a mouse model of periodontitis, LPS-induced bone resorption was suppressed by EGCG3″Me in organ culture of mouse alveolar bone, and the alveolar bone loss was further attenuated by the treatment of EGCG3″Me in the lower gingiva in vivo . EGCG3″Me may be a potential natural compound for the protection of inflammatory bone loss in periodontitis.
Campbell, J Preston; Karolak, Matthew R; Ma, Yun; Perrien, Daniel S; Masood-Campbell, S Kathryn; Penner, Niki L; Munoz, Steve A; Zijlstra, Andries; Yang, Xiangli; Sterling, Julie A; Elefteriou, Florent
2012-07-01
Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress) or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the "vicious cycle" of bone destruction induced by these cells.
Atrazine, simazine, and cyanazine are widely used preemergence and postemergence triazine herbicides that have made their way into the potable water supply of many agricultural communities. There are several contradictory studies in the literature. Our previous in vitro studies...
EVIDENCE FOR THE CHROMOSOMAL REPLICONS AS UNITS OF SISTER CHROMATID EXCHANGES
Current hypotheses of sister chromatid exchange (SCE) formation postulate that sites of SCE induction are associated with active replicons or replicon clusters. We have applied the FCC-SCD technique to in vivo studies of mouse bone marrow cells that have been treated with cycloph...
Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration
Wang, Yan; Zhou, Lili; Li, Chen; Xie, Han; Lu, Yuwang; Wu, Ying; Liu, Hongwei
2015-01-01
Periodontitis, a disease leads to the formation of periodontal defect, can result in tooth loss if left untreated. The therapies to repair/regenerate periodontal tissues have attracted lots of attention these years. Bone marrow-derived cells (BMDCs), a group of cells containing heterogeneous stem/progenitor cells, are capable of homing to injured tissues and participating in tissue repair/regeneration. The amplification of autologous BMDCs’ potential in homing for self-repair/regeneration, therefore, might be considered as an alternative therapy except for traditional cell transplantation. However, the knowledge of the BMDCs’ homing and participation in periodontal repair/regeneration is still known little. For the purpose of directly observing BMDCs’ involvement in periodontal repair, chimeric mouse models were established to make their bone marrow cells reconstituted with cells expressing green enhanced fluorescence protein (EGFP) in this study. One month after bone marrow transplantation, periodontal defects were made on the mesial side of bilateral maxillary first molars in chimeric mice. The green fluorescence protein-positive (GFP+) BMDCS in periodontal defect regions were examined by bioluminescent imaging and immunofluorescence staining. GFP+ BMDCs were found to aggregate in the periodontal defect regions and emerge in newly-formed bones or fibers. Some of them also co-expressed markers of fibroblasts, osteoblasts or vascular endothelial cells. These results indicated that BMDCs might contribute to the formation of new fibers, bones and blood vessels during periodontal repair. In conclusion, we speculated that autologous BMDCs were capable of negotiating into the surgical sites created by periodontal operation and participating in tissue repair. PMID:26722424
Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.
Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam
2016-07-01
Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. Copyright © 2016 Elsevier GmbH. All rights reserved.
Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G
2009-11-01
Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.
Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Tianwu; Han Dao; Liu Yang
2010-05-15
Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bonemore » sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the mineral bone as photon energy increases. The SAF values calculated in this study can also be used to determine the absorbed dose to the skeletal system of rats. The S-factors generated here will be useful in preclinical targeted radiotherapy experiments.« less
Lo Celso, Cristina; Lin, Charles P; Scadden, David T
2011-01-01
In vivo imaging of transplanted hematopoietic stem and progenitor cells (HSPCs) was developed to investigate the relationship between HSPCs and components of their microenvironment in the bone marrow. In particular, it allows a direct observation of the behavior of hematopoietic cells during the first few days after transplantation, when the critical events in homing and early engraftment are occurring. By directly imaging these events in living animals, this method permits a detailed assessment of functions previously evaluated by crude assessments of cell counts (homing) or after prolonged periods (engraftment). This protocol offers a new means of investigating the role of cell-intrinsic and cell-extrinsic molecular regulators of hematopoiesis during the early stages of transplantation, and it is the first to allow the study of cell-cell interactions within the bone marrow in three dimensions and in real time. In this paper, we describe how to isolate, label and inject HSPCs, as well as how to perform calvarium intravital microscopy and analyze the resulting images. A typical experiment can be performed and analyzed in ~1 week. PMID:21212779
Chai, Xiao; Li, Deguan; Cao, Xiaoli; Zhang, Yuchen; Mu, Juan; Lu, Wenyi; Xiao, Xia; Li, Chengcheng; Meng, Juanxia; Chen, Jie; Li, Qing; Wang, Jishi; Meng, Aimin; Zhao, Mingfeng
2015-01-01
Iron overload, caused by hereditary hemochromatosis or repeated blood transfusions in some diseases, such as beta thalassemia, bone marrow failure and myelodysplastic syndrome, can significantly induce injured bone marrow (BM) function as well as parenchyma organ dysfunctions. However, the effect of iron overload and its mechanism remain elusive. In this study, we investigated the effects of iron overload on the hematopoietic stem and progenitor cells (HSPCs) from a mouse model. Our results showed that iron overload markedly decreased the ratio and clonogenic function of murine HSPCs by the elevation of reactive oxygen species (ROS). This finding is supported by the results of NAC or DFX treatment, which reduced ROS level by inhibiting NOX4 and p38MAPK and improved the long-term and multi-lineage engrafment of iron overload HSCs after transplantation. Therefore, all of these data demonstrate that iron overload injures the hematopoiesis of BM by enhancing ROS through NOX4 and p38MAPK. This will be helpful for the treatment of iron overload in patients with hematopoietic dysfunction. PMID:25970748
Effects of Iron Overload on the Bone Marrow Microenvironment in Mice
Zhao, Mingfeng; Li, Deguan; Chai, Xiao; Cao, Xiaoli; Meng, Juanxia; Chen, Jie; Xiao, Xia; Li, Qing; Mu, Juan; Shen, Jichun; Meng, Aimin
2015-01-01
Objective Using a mouse model, Iron Overload (IO) induced bone marrow microenvironment injury was investigated, focusing on the involvement of reactive oxygen species (ROS). Methods Mice were intraperitoneally injected with iron dextran (12.5, 25, or 50mg) every three days for two, four, and six week durations. Deferasirox(DFX)125mg/ml and N-acetyl-L-cysteine (NAC) 40mM were co-administered. Then, bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated and assessed for proliferation and differentiation ability, as well as related gene changes. Immunohistochemical analysis assessed the expression of haematopoietic chemokines. Supporting functions of BM-MSCs were studied by co-culture system. Results In IO condition (25mg/ml for 4 weeks), BM-MSCs exhibited proliferation deficiencies and unbalanced osteogenic/adipogenic differentiation. The IO BM-MSCs showed a longer double time (2.07±0.14 days) than control (1.03±0.07 days) (P<0.05). The immunohistochemical analysis demonstrated that chemokine stromal cell-derived factor-1, stem cell factor -1, and vascular endothelial growth factor-1 expression were decreased. The co-cultured system demonstrated that bone marrow mononuclear cells (BMMNCs) co-cultured with IO BM-MSCs had decreased colony forming unit (CFU) count (p<0.01), which indicates IO could lead to decreased hematopoietic supporting functions of BM-MSCs. This effect was associated with elevated phosphatidylinositol 3 kinase (PI3K) and reduced of Forkhead box protein O3 (FOXO3) mRNA expression, which could induce the generation of ROS. Results also demonstrated that NAC or DFX treatment could partially attenuate cell injury and inhibit signaling pathway striggered by IO. Conclusion These results demonstrated that IO can impair the bone marrow microenvironment, including the quantity and quality of BM-MSCs. PMID:25774923
Song, Hyuk-Hwan; Chae, Hee-Sung; Oh, Sei-Ryang; Lee, Hyeong-Kyu; Chin, Young-Won
2012-01-01
In this study, the anti-inflammatory and anti-allergic effects of the chloroform-soluble extract of Agaricus blazei in mouse bone marrow-derived mast cells (BMMCs) were investigated. The chloroform-soluble extract inhibited IL-6 production in PMA plus A23187-stimulated BMMCs, and down-regulated the phosphorylation of Akt. In addition, this extract demonstrated inhibition of the degranulation of β-hexosaminidase and the production of IL-6, prostaglandin D(2) and leukotriene C(4) in PMA plus A23187-induced BMMCs. In conclusion, the chloroform-soluble extract of Agaricus blazei exerted anti-inflammatory and anti-allergic activities mediated by influencing IL-6, prostaglandin D(2), leukotriene C(4), and the phosphorylation of Akt.
Improved soft-agar colony assay in a fluid processing apparatus.
Forsman, A D; Herpich, A R; Chapes, S K
1999-01-01
The standard method for quantitating bone marrow precursor cells has been to count the number of colony-forming units that form in semisolid (0.3%) agar. Recently we adapted this assay for use in hardware, the Fluid Processing Apparatus, that is flown in standard payload lockers of the space shuttle. When mouse or rat macrophage colony-forming units were measured with this hardware in ground-based assays, we found significantly more colony growth than that seen in standard plate assays. The improved growth correlates with increased agar thickness but also appears to be due to properties inherent to the Fluid Processing Apparatus. This paper describes an improved method for determining bone marrow macrophage precursor numbers in semisolid agar.
Bhatta, Anil; Sangani, Rajnikumar; Kolhe, Ravindra; Toque, Haroldo A.; Cain, Michael; Wong, Abby; Howie, Nicole; Shinde, Rahul; Elsalanty, Mohammed; Yao, Lin; Chutkan, Norman; Hunter, Monty; Caldwell, Ruth B.; Isales, Carlos; Caldwell, R. William; Fulzele, Sadanand
2016-01-01
A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of L-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of L-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases. PMID:26704078
Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang
2016-02-17
Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong
2012-12-01
Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.
Global deletion of tetraspanin CD82 attenuates bone growth and enhances bone marrow adipogenesis.
Bergsma, Alexis; Ganguly, Sourik S; Dick, Daniel; Williams, Bart O; Miranti, Cindy K
2018-05-18
CD82 is a widely expressed member of the tetraspanin family of transmembrane proteins known to control cell signaling, adhesion, and migration. Tetraspanin CD82 is induced over 9-fold during osteoclast differentiation in vitro; however, its role in bone homeostasis is unknown. A globally deleted CD82 mouse model was used to assess the bone phenotype. Based on microCT and 4-point bending tests, CD82-deficient bones are smaller in diameter and weaker, but display no changes in bone density. Histomorphometry shows a decrease in size, erosion perimeter, and number of osteoclasts in situ, with a corresponding increase in trabecular surface area, specifically in male mice. Male-specific alterations are observed in trabecular structure by microCT and in vitro differentiated osteoclasts are morphologically abnormal. Histomorphometry did not reveal a significant reduction in osteoblast number; however, dynamic labeling reveals a significant decrease in bone growth. Consistent with defects in OB function, OB differentiation and mineralization are defective in vitro, whereas adipogenesis is enhanced. There is a corresponding increase in bone marrow adipocytes in situ. Thus, combined defects in both osteoclasts and osteoblasts can account for the observed bone phenotypes, and suggests a role for CD82 in both bone mesenchyme and myeloid cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Samsonraj, Rebekah; Paradise, Christopher R; Dudakovic, Amel; Sen, Buer; Nair, Asha A; Dietz, Allan B; Deyle, David R; Cool, Simon M; Rubin, Janet; van Wijnen, Andre
2018-06-08
Differentiation of mesenchymal stromal/stem cells (MSCs) involves a series of molecular signals and gene transcription events required for attaining cell lineage commitment. Modulation of the actin cytoskeleton using cytochalasin D (CytoD) drives osteogenesis at early time points in bone marrow-derived MSCs, and also initiates a robust osteogenic differentiation program in adipose-derived MSCs. To understand the molecular basis for these pronounced effects on osteogenic differentiation, we investigated global changes in gene expression in CytoD-treated murine and human MSCs by high-resolution RNA-sequencing (RNA-seq) analysis. A three-way bioinformatic comparison between human adipose-derived, human bone marrow-derived and mouse bone marrow-derived MSCs revealed significant upregulation of genes linked to extracellular matrix organization, cell adhesion and bone metabolism. As anticipated, the activation of these differentiation related genes is accompanied by a downregulation of nuclear and cell cycle-related genes presumably reflecting cytostatic effects of CytoD. We also identified eight novel CytoD activated genes - VGLL4, ARHGAP24, KLHL24, RCBTB2, BDH2, SCARF2, ACAD10, HEPH - which are commonly upregulated across the two species and tissue sources of our MSC samples. We selected the Hippo-pathway related VGLL4 gene, which encodes the transcriptional co-factor Vestigial-like 4, for further study because this pathway is linked to osteogenesis. VGLL4 siRNA depletion reduces mineralization of adipose-derived MSCs during CytoD-induced osteogenic differentiation. Together, our RNA-seq analyses suggest that while the stimulatory effects of CytoD on osteogenesis are pleiotropic and depend on the biological state of the cell type, a small group of genes including VGLL4 may contribute to MSC commitment towards the bone lineage.
Liu, Yao; Kou, Xiaoxing; Chen, Chider; Yu, Wenjing; Su, Yingying; Kim, Yong; Shi, Songtao; Liu, Yi
2016-08-01
Chronic consumption of excessive alcohol results in reduced bone mass, impaired bone structure, and increased risk of bone fracture. However, the mechanisms underlying alcohol-induced osteoporosis are not fully understood. Here, we show that high dose chronic alcohol consumption reduces osteogenic differentiation and enhances adipogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), leading to osteopenia in a mouse model. Mechanistically, impaired osteo/adipogenic lineage differentiation of BMMSCs is due to activation of a phosphatidylinositide 3-kinase/AKT/mammalian target of rapamycin (mTOR) signaling cascade, resulting in downregulation of runt-related transcription factor 2 and upregulation of peroxisome proliferator-activated receptor gamma via activation of p70 ribosomal protein S6 kinase. Blockage of the mTOR pathway by rapamycin treatment ameliorates alcohol-induced osteopenia by rescuing impaired osteo/adipogenic lineage differentiation of BMMSCs. In this study, we identify a previously unknown mechanism by which alcohol impairs BMMSC lineage differentiation and reveal a potential rapamycin-based drug therapy for alcohol-induced osteoporosis. Stem Cells 2016;34:2157-2168. © 2016 AlphaMed Press.
Matsumoto, Shigeru; Tominari, Tsukasa; Matsumoto, Chiho; Yoshinouchi, Shosei; Ichimaru, Ryota; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki
2018-01-20
Polymethoxyflavonoids (PMFs) are a family of the natural compounds that mainly compise nobiletin, tangeretin, heptamethoxyflavone (HMF), and tetramethoxyflavone (TMF) in citrus fruits. PMFs have shown various biological functions, including anti-oxidative effects. We previously showed that nobiletin, tangeretin, and HMF all inhibited interleukin (IL)-1-mediated osteoclast differentiation via the inhibition of prostaglandin E2 synthesis. In this study, we created an original mixture of PMFs (nobiletin, tangeretin, HMF, and TMF) and examined whether or not PMFs exhibit co-operative inhibitory effects on osteoclastogenesis and bone resorption. In a coculture of bone marrow cells and osteoblasts, PMFs dose-dependently inhibited IL-1-induced osteoclast differentiation and bone resorption. The optimum concentration of PMFs was lower than that of nobiletin alone in the suppression of osteoclast differentiation, suggesting that the potency of PMFs was stronger than that of nobiletin in vitro. The oral administration of PMFs recovered the femoral bone loss induced by estrogen deficiency in ovariectomized mice. We further tested the effects of PMFs on lipopolysaccharide-induced bone resorption in mouse alveolar bone. In an ex vivo experimental model for periodontitis, PMFs significantly suppressed the bone-resorbing activity in organ cultures of mouse alveolar bone. These results indicate that a mixture of purified nobiletin, tangeretin, HMF, and TMF exhibits a co-operative inhibitory effect for the protection against bone loss in a mouse model of bone disease, suggesting that PMFs may be potential candidates for the prevention of bone resorption diseases, such as osteoporosis and periodontitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Hiroaki; Akiyama, Haruhiko; Nakamura, Takashi
We identified a cDNA encoding mouse Tenascin-W (TN-W) upregulated by bone morphogenetic protein (Bmp)2 in ATDC5 osteo-chondroprogenitors. In adult mice, TN-W was markedly expressed in bone. In mouse embryos, during endochondral bone formation TN-W was localized in perichondrium/periosteum, but not in trabecular and cortical bones. During bone fracture repair, cells in the newly formed perichondrium/periosteum surrounding the cartilaginous callus expressed TN-W. Furthermore, TN-W was detectable in perichondrium/periosteum of Runx2-null and Osterix-null embryos, indicating that TN-W is expressed in preosteoblasts. In CFU-F and -O cells, TN-W had no effect on initiation of osteogenesis of bone marrow cells, and in MC3T3-E1 osteoblasticmore » cells TN-W inhibited cell proliferation and Col1a1 expression. In addition, TN-W suppressed canonical Wnt signaling which stimulates osteoblastic differentiation. Our results indicate that TN-W is a novel marker of preosteoblasts in early stage of osteogenesis, and that TN-W inhibits cell proliferation and differentiation of preosteoblasts mediated by canonical Wnt signaling.« less
Matsuda, Saeka; Shoumura, Masahito; Osuga, Naoto; Tsujigiwa, Hidetsugu; Nakano, Keisuke; Okafuji, Norimasa; Ochiai, Takanaga; Hasegawa, Hiromasa; Kawakami, Toshiyuki
2016-01-01
Perforation of floor of the dental pulp is often encountered during root canal treatment in routine clinical practice of dental caries. If perforation were large, granulation tissue would grow to form periodontal polyp. Granulation tissue consists of proliferating cells however their origin is not clear. It was shown that the cells in granulation tissue are mainly from migration of undifferentiated mesenchymal cells of the bone marrow. Hence, this study utilized GFP bone marrow transplantation mouse model. The floor of the pulp chamber in maxillary first molar was perforated using ½ dental round bur. Morphological assessment was carried out by micro CT and microscopy and GFP cell mechanism was further assessed by immunohistochemistry using double fluorescent staining with GFP-S100A4; GFP-Runx2 and GFP-CD31. Results of micro CT revealed alveolar bone resorption and widening of periodontal ligament. Histopathological examination showed proliferation of fibroblasts with some round cells and blood vessels in the granulation tissue. At 2 weeks, the outermost layer of the granulation tissue was lined by squamous cells with distinct intercellular bridges. At 4 weeks, the granulation tissue became larger than the perforation and the outermost layer was lined by relatively typical stratified squamous epithelium. Double immunofluorescent staining of GFP and Runx2 revealed that both proteins were expressed in spindle-shaped cells. Double immunofluorescent staining of GFP and CD31 revealed that both proteins were expressed in vascular endothelial cells in morphologically distinct vessels. The results suggest that fibroblasts, periodontal ligament fibroblasts and blood vessels in granulation tissue were derived from transplanted-bone marrow cells. Thus, essential growth of granulation tissue in periodontal polyp was caused by the migration of undifferentiated mesenchymal cells derived from bone marrow, which differentiated into fibroblasts and later on differentiated into other cells in response to injury.
Fancb deficiency impairs hematopoietic stem cell function
Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Meetei, Amom Ruhikanta; Andreassen, Paul R.; Namekawa, Satoshi H.; Pang, Qishen
2015-01-01
Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, variable congenital malformations and a predisposition to malignancies. FANCB (also known as FAAP95), is the only X-linked FA gene discovered thus far. In the present study, we investigated hematopoiesis in adult Fancb deficient (Fancb−/y) mice and found that Fancb−/y mice have decreased hematopoietic stem cell (HSC) quiescence accompanied by reduced progenitor activity in vitro and reduced repopulating capacity in vivo. Like other FA mouse models previously reported, the hematopoietic system of Fancb−/y mice is hypersensitive to DNA cross-linking agent mitomycin C (MMC), which induces bone marrow failure in Fancb−/y mice. Furthermore, Fancb−/y BM exhibits slower recovery kinetics and less tolerance to myelotoxic stress induced by 5-fluorouracil than wild-type littermates. RNA-seq analysis reveals altered expression of genes involved in HSC function and cell cycle regulation in Fancb−/y HSC and progenitor cells. Thus, this Fancb−/y mouse model provides a novel approach for studying the critical role of the FA pathway not only in germ cell development but also in the maintenance of HSC function. PMID:26658157
Miwa, Hiroyuki; Era, Takumi
2018-01-29
Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α ( Pdgfra ) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1 ) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions. © 2018. Published by The Company of Biologists Ltd.
Lentiviral gene transduction of mouse and human hematopoietic stem cells.
van Til, Niek P; Wagemaker, Gerard
2014-01-01
Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.-J.; Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan; Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan
2005-11-15
Purpose: Caffeic acid phenethyl ester (CAPE), a component of propolis, was reported capable of depleting glutathione (GSH). We subsequently examined the radiosensitizing effect of CAPE and its toxicity. Methods and Materials: The effects of CAPE on GSH level, GSH metabolism enzyme activities, NF-{kappa}B activity, and radiosensitivity in mouse CT26 colorectal adenocarcinoma cells were determined. BALB/c mouse with CT26 cells implantation was used as a syngeneic in vivo model for evaluation of treatment and toxicity end points. Results: CAPE entered CT26 cells rapidly and depleted intracellular GSH in CT26 cells, but not in bone marrow cells. Pretreatment with nontoxic doses ofmore » CAPE significantly enhanced cell killing by ionizing radiation (IR) with sensitizer enhancement ratios up to 2.2. Pretreatment of CT26 cells with N-acetyl-L-cysteine reversed the GSH depletion activity and partially blocked the radiosensitizing effect of CAPE. CAPE treatment in CT26 cells increased glutathione peroxidase, decreased glutathione reductase, and did not affect glutathione S-transferase or {gamma}-glutamyl transpeptidase activity. Radiation activated NF-{kappa}B was reversed by CAPE pretreatment. In vivo study revealed that pretreatment with CAPE before IR resulted in greater inhibition of tumor growth and prolongation of survival in comparison with IR alone. Pretreatment with CAPE neither affected body weights nor produced hepatic, renal, or hematopoietic toxicity. Conclusions: CAPE sensitizes CT26 colorectal adenocarcinoma to IR, which may be via depleting GSH and inhibiting NF-{kappa}B activity, without toxicity to bone marrow, liver, and kidney.« less
Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana
2012-01-01
The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735
Luo, Wen-Hui; Yang, Ya-Wun
2016-04-01
The aim of this study was to investigate the induction of antigen-specific T cell activation and cell cycle modulation by a poly-DL-lactide/glycolide (PLGA) nanoparticle (NP)-primed CD11b(+)Gr-1(high) subset isolated from mouse bone marrow. PLGA NPs containing the ovalbumin (OVA) antigen were prepared using the double emulsion and solvent evaporation method, and protein release rate and cell viability were determined. The Lin2(¯)CD11b(+)Gr-1(high)Ly6c(low) (Gr-1(high)) subset was sorted from the bone marrow of C57BL/6 J mice by fluorescence-activated cell sorting (FACS) and co-cultured with OT-I CD8(+) splenic T cells. Proliferation of OT-I CD8(+) T cells was monitored, and cell cycles were determined by 5-bromo-2'-deoxyuridine (BrdU) labeling. Treatment of Gr-1(high) cells with PLGA/OVA NPs upregulated expression of the SIINFEKL-H2K(b) complex in the context of MHC I. Co-cultures of OT-I CD8(+) T cells with the PLGA/OVA NP-primed Gr-1(high) cells induced the proliferation of T cells in vitro and modulated cell division and morphology. Treatment of Gr-1(high) cells with PLGA/OVA NPs also induced cell apoptosis and necrosis. This study demonstrated the function of PLGA/OVA NPs in the activation of OT-I CD8(+) T cells and the capability of cross-presentation via the Gr-1(high) polymorphonuclear subset from mouse bone marrow.
Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.
2013-01-01
Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158
Chen, Kevin G; Johnson, Kory R; McKay, Ronald D G; Robey, Pamela G
2018-01-01
Lineage commitment and differentiation of skeletal stem cells/bone marrow stromal cells (SSCs/BMSCs, often called bone marrow-derived "mesenchymal stem/stromal" cells) offer an important opportunity to study skeletal and hematopoietic diseases, and for tissue engineering and regenerative medicine. Currently, many studies in this field have relied on cell lineage tracing methods in mouse models, which have provided a significant advancement in our knowledge of skeletal and hematopoietic stem-cell niches in bone marrow (BM). However, there is a lack of agreement in numerous fundamental areas, including origins of various BM stem-cell niches, cell identities, and their physiological roles in the BM. In order to resolve these issues, we propose a new hypothesis of "paralogous" stem-cell niches (PSNs); that is, progressively altered parallel niches within an individual species throughout the life span of the organism. A putative PSN code seems to be plausible based on analysis of transcriptional signatures in two representative genes that encode Nes-GFP and leptin receptors, which are frequently used to monitor SSC lineage development in BM. Furthermore, we suggest a dynamic paralogous BM niche (PBMN) model that elucidates the coupling and uncoupling mechanisms between BM stem-cell niches and their zones of active regeneration during different developmental stages. Elucidation of these PBMNs would enable us to resolve the existing controversies, thus paving the way to achieving precision regenerative medicine and pharmaceutical applications based on these BM cell resources. Stem Cells 2018;36:11-21. © 2017 AlphaMed Press.
p53-Based Strategy for Protection of Bone Marrow From Y-90 Ibritumomab Tiuxetan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Hang, E-mail: suh3@uthscsa.edu; Ganapathy, Suthakar; Li, Xiaolei
Purpose: The main drawbacks of radioimmunotherapy have been severe hematological toxicity and potential development of myelodysplastic syndrome and secondary leukemia. Activation of p53 follows a major pathway by which normal tissues respond to DNA-damaging agents, such as chemotherapy and radiation therapy, that result in injuries and pathological consequences. This pathway is separate from the tumor suppressor pathway of p53. We have previously reported that use of low-dose arsenic (LDA) temporarily and reversibly suppresses p53 activation, thereby ameliorating normal tissue toxicity from exposure to 5-fluorouracil and X rays. We have also demonstrated that LDA-mediated protection requires functional p53 and thus ismore » selective to normal tissues, as essentially every cancer cell has dysfunctional p53. Here we tested the protective efficacy of LDA for bone marrow tissue against radioimmunotherapy through animal experiments. Methods and Materials: Mice were subjected to LDA pretreatment for 3 days, followed by treatment with Y-90 ibritumomab tiuxetan. Both dose course (10, 25, 50, 100, and 200 μCi) and time course (6, 24, and 72 hours and 1 and 2 weeks) experiments were performed. The response of bone marrow cells to LDA was determined by examining the expression of NFκB, Glut1, and Glut3. Staining with hematoxylin and eosin, γ-H2AX, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to examine morphology, DNA damage response, and apoptotic cell populations. Results: Elevated levels of NFκB, Glut1, and Glut3 were observed in bone marrow cells after LDA treatment. Bone marrow damage levels induced by Y-90 ibritumomab tiuxetan were greatly reduced by LDA pretreatment. Consistent with this observation, significantly less DNA damage and fewer apoptotic cells were accumulated after Y-90 ibritumomab tiuxetan treatment in LDA-pretreated mice. Furthermore, in the mouse xenograft model implanted with human Karpas-422 lymphoma cells, LDA pretreatment did not have any detectable effect on either tumor growth or Y-90 ibritumomab tiuxetan (200 μCi)-induced tumor suppression. Conclusions: LDA pretreatment protected bone marrow without compromising tumor control caused by Y-90 ibritumomab tiuxetan.« less
NASA Technical Reports Server (NTRS)
Lawless, Brother Desales
1990-01-01
Previous research indicated that mouse bone marrow cells could be grown in conditions of simulated microgravity. This environment was created in rotating bioreactor vessels. On three attempts mouse cells were grown successfully in the vessels. The cells reached a stage where the concentrations were doubling daily. Phenotypic analysis using a panel of monoclonal antibodies indicated that the cell were hematopoietic pluripotent stem cells. One unsuccessful attempt was made to reestablish the immune system in immunocompromised mice using these cells. Since last summer, several unsuccessful attempts were made to duplicate these results. It was determined by electron microscopy that the cells successfully grown in 1989 contained virus particles. It was suggested that these virally parasitized cells had been immortalized. The work of this summer is a continuation of efforts to grow mouse bone marrow in these vessels. A number of variations of the protocol were introduced. Certified pathogen free mice were used in the repeat experiments. In some attempts the medium of last summer was used; in others Dexture Culture Medium containing Iscove's Medium supplemented with 20 percent horse serum and 10-6 M hydrocortisone. Efforts this summer were directed solely to repeating the work of last summer. Plans were made for investigations if stem cells were isolated. Immortalization of the undifferentiated stem cell would be attempted by transfection with an oncogenic vector. Selective differentiation would be induced in the stem cell line by growing it with known growth factors and immune response modulators. Interest is in identifying any surface antigens unique to stem cells that would help in their characterization. Another goal was to search for markers on stem cells that would distinguish them from stem cells committed to a particular lineage. If the undifferentiated hematopoietic stem cell was obtained, the pathways that would terminally convert it to myeloid, lyphoid, erythroid, or other cell lines would be studied. Transfection with a known gene would be attempted and then conversion to a terminally identifiable cell.
Yan, Yaping; Wang, Junfeng; Duan, Yanchao; Li, Shanshan; Yan, Li; Wang, Hong; Chen, Bingbing; Sang, Xiongbo; Ji, Weizhi
2018-01-01
Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma). Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs) have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP). The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells) were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the paracrine effects of MSCs may play an important role in the improvement of liver fibrosis. PMID:29456886
Notsu, Eiji; Sonoda, Yuji; Sasaki, Kazunobu
2007-06-01
Adult bone marrow consists of two different compartments, a vascular compartment of sinusoid and a hematopoietic compartment consisting of stromal cells and hematopoietic cells. In the hematopoietic compartment, stromal cells play an important role in the formation of the microenvironment for hematopoiesis. To clarify the relationship between hematopoietic cells and stromal cells, particularly reticular cells and macrophages, we examined the femur bone marrow of ICR mouse fetuses and neonates using F4/80 immunostaining and three-dimensional reconstruction under light and electron microscopy. In the fetal femurs, the marrow cavity formed early from 15 days of gestation, and it showed a marked increase in volume thereafter. On the basis of the appearance of hematopoietic cells, marrow development could be classified into two stages, a pre-hematopoietic stage from 15 days of gestation to two days of age, and a beginning stage of hematopoiesis thereafter. The pre-hematopoietic bone marrow contains not only stromal reticular cells but also macrophages, and both types of stromal cells were strongly positive to F4/80 monoclonal antibody. These F4/80-positive reticular cells had a triangular cell profile with long and slender cytoplasmic processes. Reticular cells often contained large lysosomes of not only dying neutrophils but also erythroblast nuclei. A few erythroblasts accumulated around the processes, and the number of erythroblasts around reticular cells increased with bone marrow development. On the other hand, macrophages were located either close to sinusoids or in sinusoid lumen, and a close relationship to hematopoietic cells was hardly noticeable. At the beginning stage of hematopoiesis, F4/80-positive reticular cells extended their long and slender cytoplasmic processes, and the number and length of the processes appeared markedly increased. The three-dimensional cell surface of the F4/80-positive reticular cells became very complex. Numerous erythroblasts accumulated around the processes, and erythroblastic islands could gradually be recognized after four days of age. In the erythroblastic islands, central reticular cells were F4/80-positive and contained numerous large phagosomes originating from the expelled nuclei of erythroblasts. Although macrophages contained large phagosomes, the relationship between macrophages and hematopoietic cells could not clearly be elucidated even at the beginning stage of hematopoiesis. At the onset of bone marrow hematopoiesis, the hematopoietic compartment contained two kinds of F4/80-positive phagocytes, i.e., reticular cells and macrophages. In marrow erythroblastic islands, not macrophages but F4/80-positive reticular cells were located at the center of each island.
What Is a Bone Marrow Transplant?
... Print this page My Cart What is a bone marrow transplant? A bone marrow transplant is a ... blood.” – Edmund Waller, MD, PHD What is a bone marrow transplant? A bone marrow transplant is a ...
The Nell-1 Growth Factor Stimulates Bone Formation by Purified Human Perivascular Cells
Zhang, Xinli; Péault, Bruno; Chen, Weiwei; Li, Weiming; Corselli, Mirko; James, Aaron W.; Lee, Min; Siu, Ronald K.; Shen, Pang; Zheng, Zhong; Shen, Jia; Kwak, Jinny; Zara, Janette N.; Chen, Feng; Zhang, Hong; Yin, Zack; Wu, Ben; Ting, Kang
2011-01-01
The search for novel sources of stem cells other than bone marrow mesenchymal stem cells (MSCs) for bone regeneration and repair has been a critical endeavor. We previously established an effective protocol to homogeneously purify human pericytes from multiple fetal and adult tissues, including adipose, bone marrow, skeletal muscle, and pancreas, and identified pericytes as a primitive origin of human MSCs. In the present study, we further characterized the osteogenic potential of purified human pericytes combined with a novel osteoinductive growth factor, Nell-1. Purified pericytes grown on either standard culture ware or human cancellous bone chip (hCBC) scaffolds exhibited robust osteogenic differentiation in vitro. Using a nude mouse muscle pouch model, pericytes formed significant new bone in vivo as compared to scaffold alone (hCBC). Moreover, Nell-1 significantly increased pericyte osteogenic differentiation, both in vitro and in vivo. Interestingly, Nell-1 significantly induced pericyte proliferation and was observed to have pro-angiogenic effects, both in vitro and in vivo. These studies suggest that pericytes are a potential new cell source for future efforts in skeletal regenerative medicine, and that Nell-1 is a candidate growth factor able to induce pericyte osteogenic differentiation. PMID:21615216
The effects of simulated hypogravity on murine bone marrow cells
NASA Technical Reports Server (NTRS)
Lawless, Desales
1989-01-01
Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.
Rando, Amaya; Pastor, Diego; Viso-León, Mari Carmen; Martínez, Anna; Manzano, Raquel; Navarro, Xavier; Osta, Rosario; Martínez, Salvador
2018-04-06
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive muscle weakness, paralysis and death. There is no effective treatment for ALS and stem cell therapy has arisen as a potential therapeutic approach. SOD1 mutant mice were used to study the potential neurotrophic effect of bone marrow cells grafted into quadriceps femoris muscle. Bone marrow intramuscular transplants resulted in increased longevity with improved motor function and decreased motoneuron degeneration in the spinal cord. Moreover, the increment of the glial-derived neurotrophic factor and neurotrophin 4 observed in the grafted muscles suggests that this partial neuroprotective effect is mediated by neurotrophic factor release at the neuromuscular junction level. Finally, certain neurodegeneration and muscle disease-specific markers, which are altered in the SOD1 G93A mutant mouse and may serve as molecular biomarkers for the early detection of ALS in patients, have been studied with encouraging results. This work demonstrates that stem cell transplantation in the muscle prolonged the lifespan, increased motoneuron survival and slowed disease progression, which was also assessed by genetic expression analysis.
Population control of resident and immigrant microglia by mitosis and apoptosis.
Wirenfeldt, Martin; Dissing-Olesen, Lasse; Anne Babcock, Alicia; Nielsen, Marianne; Meldgaard, Michael; Zimmer, Jens; Azcoitia, Iñigo; Leslie, Robert Graham Quinton; Dagnaes-Hansen, Frederik; Finsen, Bente
2007-08-01
Microglial population expansion occurs in response to neural damage via processes that involve mitosis and immigration of bone marrow-derived cells. However, little is known of the mechanisms that regulate clearance of reactive microglia, when microgliosis diminishes days to weeks later. We have investigated the mechanisms of microglial population control in a well-defined model of reactive microgliosis in the mouse dentate gyrus after perforant pathway axonal lesion. Unbiased stereological methods and flow cytometry demonstrate significant lesion-induced increases in microglial numbers. Reactive microglia often occurred in clusters, some having recently incorporated bromodeoxyuridine, showing that proliferation had occurred. Annexin V labeling and staining for activated caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling showed that apoptotic mechanisms participate in dissolution of the microglial response. Using bone marrow chimeric mice, we found that the lesion-induced proliferative capacity of resident microglia superseded that of immigrant microglia, whereas lesion-induced kinetics of apoptosis were comparable. Microglial numbers and responses were severely reduced in bone marrow chimeric mice. These results broaden our understanding of the microglial response to neural damage by demonstrating that simultaneously occurring mitosis and apoptosis regulate expansion and reduction of both resident and immigrant microglial cell populations.
Bustos, Martha L; Mura, Marco; Marcus, Paula; Hwang, David; Ludkovski, Olga; Wong, Amy P; Waddell, Thomas K
2013-01-01
We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP+ cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP+ cells is beneficial after ablation of lung CCSP+ cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP+ or CCSP− BMC. Compared with mice administered CCSP− cells, mice treated with CCSP+ cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP+ cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP+ BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP+ BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised. PMID:23609017
Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Hu, Huijin; Ye, Baodong; Zhou, Yuhong
2018-01-01
Iron overload is commonly observed during the course of aplastic anemia (AA), which is believed to aggravate hematopoiesis, cause multiple organ dysfunction, lead to disease progression, and impair quality of life. Deferasirox (DFX) and deferoxamine (DFO) are among the most common iron chelation agents available in the clinical setting. The aim of this study was to investigate if the combination therapy with DFX and DFO is superior in hematopoietic recovery and iron chelation. Briefly, we developed a composite mouse model with AA and iron overload that was consequently treated with DFX, DFO, or with a combination of both agents. The changes in peripheral hemogram, marrow apoptosis, and its related protein expressions were compared during the process of iron chelation, while the iron depositions in liver and bone marrow and its regulator were also detected. The obtained results showed that compared to DFX, DFO has a better effect in protecting the bone marrow from apoptosis-induced failure. The combination of DFO and DFX accelerated the chelation of iron, while their efficiency on further hemogram improvement appeared limited. To sum up, our data suggest that single treatment with DFO may be a better choice for improving the hematopoiesis during the gradual chelation treatment irrespective of the convenience of oral DFX, while the combination treatment should be considered for urgent reduction of the iron burden.
Ability of circulating human hematopoietic lineage negative cells to support hematopoiesis.
Peris, Pilar; Roforth, Matthew M; Nicks, Kristy M; Fraser, Daniel; Fujita, Koji; Jilka, Robert L; Khosla, Sundeep; McGregor, Ulrike
2015-01-01
Hematopoietic stem cell (HSC) self-renewal is regulated by osteoblast and/or endothelial cells within the hematopoietic niche. However, the true identity of the supporting cells and the nature of the secreted factors remain uncertain. We developed a novel mouse model and analyzed whether circulating human peripheral hematopoietic lineage negative/AP+ (lin-/AP+) cells support hematopoiesis in vivo. Thus, immunocompromised (Rag) mice expressing thymidine kinase (Tk) under the control of the 3.6Col1α1 promoter (Tk-Rag) were treated with ganciclovir, resulting in osteoblast progenitor cell ablation and subsequent loss of hematopoiesis (evaluated by measuring mouse Ter119+ erythroid cells). Following hematopoietic cell depletion, human bone marrow-derived marrow stromal cells (MSCs) or lin-/AP+ cells were infused into Tk-Rag mice and compared with saline infusions. Ganciclovir significantly reduced (7.4-fold) Ter119+ cells in the bone marrow of Tk-Rag mice compared to saline injections. Infusion of either MSCs or lin-/AP+ cells into ganciclovir-treated mice resulted in a 3.3-fold and 2.7-fold increase (P < 0.01), respectively, in Ter119+ cells compared to mice receiving saline. Relative to lin-/AP- cells, lin-/AP+ cells expressed high levels of mesenchymal, endothelial, and hematopoiesis supporting genes. Thus, human peripheral blood lin-/AP+ cells represent a novel cell type capable of supporting hematopoiesis in a manner comparable to MSCs. © 2014 Wiley Periodicals, Inc.
Propagating Humanized BLT Mice for the Study of Human Immunology and Immunotherapy.
Smith, Drake J; Lin, Levina J; Moon, Heesung; Pham, Alexander T; Wang, Xi; Liu, Siyuan; Ji, Sunjong; Rezek, Valerie; Shimizu, Saki; Ruiz, Marlene; Lam, Jennifer; Janzen, Deanna M; Memarzadeh, Sanaz; Kohn, Donald B; Zack, Jerome A; Kitchen, Scott G; An, Dong Sung; Yang, Lili
2016-12-15
The humanized bone marrow-liver-thymus (BLT) mouse model harbors a nearly complete human immune system, therefore providing a powerful tool to study human immunology and immunotherapy. However, its application is greatly limited by the restricted supply of human CD34 + hematopoietic stem cells and fetal thymus tissues that are needed to generate these mice. The restriction is especially significant for the study of human immune systems with special genetic traits, such as certain human leukocyte antigen (HLA) haplotypes or monogene deficiencies. To circumvent this critical limitation, we have developed a method to quickly propagate established BLT mice. Through secondary transfer of bone marrow cells and human thymus implants from BLT mice into NSG (NOD/SCID/IL-2Rγ -/- ) recipient mice, we were able to expand one primary BLT mouse into a colony of 4-5 proBLT (propagated BLT) mice in 6-8 weeks. These proBLT mice reconstituted human immune cells, including T cells, at levels comparable to those of their primary BLT donor mouse. They also faithfully inherited the human immune cell genetic traits from their donor BLT mouse, such as the HLA-A2 haplotype that is of special interest for studying HLA-A2-restricted human T cell immunotherapies. Moreover, an EGFP reporter gene engineered into the human immune system was stably passed from BLT to proBLT mice, making proBLT mice suitable for studying human immune cell gene therapy. This method provides an opportunity to overcome a critical hurdle to utilizing the BLT humanized mouse model and enables its more widespread use as a valuable preclinical research tool.
Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia
2017-01-01
The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960
Effects of alkylphenols on bone metabolism in vivo and in vitro.
Hagiwara, Hiromi; Sugizaki, Toshinori; Tsukamoto, Yu; Senoh, Emi; Goto, Tadashi; Ishihara, Yoko
2008-09-01
Alkylphenols are endocrine disruptors that show estrogen-like effects in various wildlife species. However, little information is available about the action of these chemicals on bone metabolism. We investigated the effects of alkylphenols, such as nonylphenol (NP) and octylphenol (OP), on the formation of bone using several culture systems for osteoclasts and osteoblasts, as well as in vivo experiments. NP and OP dose-dependently inhibited the formation of tartrate-resistant acid phosphatase-positive multinucleated cells (osteoclasts) in cocultures of mouse spleen cells or mouse bone marrow cells with ST2 cells. However, beta-estradiol at 10(-9)M to 10(-6)M did not affect this process. In contrast, neither compound affected the proliferation and differentiation of rat calvarial osteoblast-like cells (ROB cells). When NP or OP (0.1mg/kg body weight) was administered subcutaneously to pregnant mice at 10 days, 12 days and 14 days post-coitus, fetuses at 17.5 days post-coitus showed stimulation of sternebrae bone calcification. Our findings suggest that alkylphenols have critical effects on the formation of bone by non-estrogenic effects.
Establishment and characterization of mouse bone marrow-derived mast cell hybridomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawahara, Takeshi, E-mail: tkawafb@shinshu-u.ac.jp
2012-11-01
Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesismore » and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.« less
Reactivation of Breast Cancer Micrometastases by Senescent Bone Marrow Stroma
2012-07-01
diluted to different dilutions with MEM containing 15% FBS/Penn/Strep, 0.28 mM L-Ascorbic Acid 2-Phosphate and 10 mM β- Glycerophosphate and 1 ml was added...MEM containing 15% FBS/Penn/Strep, 0.28 mM L-Ascorbic Acid 2-Phosphate and 10 mM β- Glycerophosphate . Mouse osteoclasts produced numerous, measurable
Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis
Li, Xinle; Yang, Jing; Liu, Daquan; Li, Jie; Niu, Kaijun; Feng, Shiqing; Yokota, Hiroki; Zhang, Ping
2016-01-01
Osteoarthritis (OA) is a whole joint disorder that involves cartilage degradation and periarticular bone response. Changes of cartilage and subchondral bone are associated with development and activity of osteoclasts from subchondral bone. Knee loading promotes bone formation, but its effects on OA have not been well investigated. Here, we hypothesized that knee loading regulates subchondral bone remodeling by suppressing osteoclast development, and prevents degradation of cartilage through crosstalk of bone-cartilage in osteoarthritic mice. Surgery-induced mouse model of OA was used. Two weeks application of daily dynamic knee loading significantly reduced OARSI scores and CC/TAC (calcified cartilage to total articular cartilage), but increased SBP (subchondral bone plate) and B.Ar/T.Ar (trabecular bone area to total tissue area). Bone resorption of osteoclasts from subchondral bone and the differentiation of osteoclasts from bone marrow-derived cells were completely suppressed by knee loading. The osteoclast activity was positively correlated with OARSI scores and negatively correlated with SBP and B.Ar/T.Ar. Furthermore, knee loading exerted protective effects by suppressing osteoclastogenesis through Wnt signaling. Overall, osteoclast lineage is the hyper responsiveness of knee loading in osteoarthritic mice. Mechanical stimulation prevents OA-induced cartilage degeneration through crosstalk with subchondral bone. Knee loading might be a new potential therapy for osteoarthritis patients. PMID:27087498
Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...
Kobayashi, Kanichiro; Takahashi, Naoyuki; Jimi, Eijiro; Udagawa, Nobuyuki; Takami, Masamichi; Kotake, Shigeru; Nakagawa, Nobuaki; Kinosaki, Masahiko; Yamaguchi, Kyoji; Shima, Nobuyuki; Yasuda, Hisataka; Morinaga, Tomonori; Higashio, Kanji; Martin, T. John; Suda, Tatsuo
2000-01-01
Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF–dependent bone marrow macrophages (M-BMMφ) appeared within 3 d. Tartrate-resistant acid phosphatase–positive osteoclasts were also formed when M-BMMφ were further cultured for 3 d with mouse tumor necrosis factor α (TNF-α) in the presence of M-CSF. Osteoclast formation induced by TNF-α was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti–RANK (ODF/RANKL receptor) antibody. Experiments using M-BMMφ prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-α. Osteoclasts induced by TNF-α formed resorption pits on dentine slices only in the presence of IL-1α. These results demonstrate that TNF-α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL–RANK system. TNF-α together with IL-1α may play an important role in bone resorption of inflammatory bone diseases. PMID:10637272
Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle
2014-11-01
To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.
2010-01-01
Introduction Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment. Methods We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease. Results We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss. Conclusions Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention. PMID:20649960
Mohanty, Sindhu T; Kottam, Lucksy; Gambardella, Alessandra; Nicklin, Martin J; Coulton, Les; Hughes, David; Wilson, Anthony G; Croucher, Peter I; Bellantuono, Ilaria
2010-01-01
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment. We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease. We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss. Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention.
Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T
2014-05-09
Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.
Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass
Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M.; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J.; Bradshaw, Heather B.; Bab, Itai; Mechoulam, Raphael
2010-01-01
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive. PMID:20876113
Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass.
Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J; Bradshaw, Heather B; Bab, Itai; Mechoulam, Raphael
2010-10-12
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive.
Angelini, Daniel J; Su, Qingning; Kolosova, Irina A; Fan, Chunling; Skinner, John T; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J; Johns, Roger A
2010-06-22
Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo. We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP)(+) transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm) capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+) BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+) cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+) and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs). The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner. These results demonstrate HIMF-dependent recruitment of BMD mesenchymal-like cells to the remodeling pulmonary vasculature.
Kirabo, Annet; Park, Sung O; Majumder, Anurima; Gali, Meghanath; Reinhard, Mary K; Wamsley, Heather L; Zhao, Zhizhuang Joe; Cogle, Christopher R; Bisht, Kirpal S; Keserü, György M; Sayeski, Peter P
2011-01-01
We recently developed a Janus kinase 2 (Jak2) small-molecule inhibitor called G6 and found that it inhibits Jak2-V617F-mediated pathologic cell growth in vitro, ex vivo, and in vivo. However, its ability to inhibit Jak2-V617F-mediated myeloproliferative neoplasia, with particular emphasis in the bone marrow, has not previously been examined. Here, we investigated the efficacy of G6 in a transgenic mouse model of Jak2-V617F-mediated myeloproliferative neoplasia. We found that G6 provided therapeutic benefit to the peripheral blood as determined by elimination of leukocytosis, thrombocytosis, and erythrocytosis. G6 normalized the pathologically high plasma concentrations of interleukin 6 (IL-6). In the liver, G6 eliminated Jak2-V617F-driven extramedullary hematopoiesis. With respect to the spleen, G6 significantly reduced both the splenomegaly and megakaryocytic hyperplasia. In the critically important bone marrow, G6 normalized the pathologically high levels of phospho-Jak2 and phospho-signal transducer and activator of transcription 5 (STAT5). It significantly reduced the megakaryocytic hyperplasia in the marrow and completely normalized the M/E ratio. Most importantly, G6 selectively reduced the mutant Jak2 burden by 67%on average, with virtual elimination of mutant Jak2 cells in one third of all treated mice. Lastly, clonogenic assays using marrow stem cells from the myeloproliferative neoplasm mice revealed a time-dependent elimination of the clonogenic growth potential of these cells by G6. Collectively, these data indicate that G6 exhibits exceptional efficacy in the peripheral blood, liver, spleen, and, most importantly, in the bone marrow, thereby raising the possibility that this compound may alter the natural history of Jak2-V617F-mediated myeloproliferative neoplasia. PMID:22131881
Sun, Bin; Ma, Wei; Su, Fang; Wang, Yi; Liu, Jiaqiang; Wang, Dongshen; Liu, Hongchen
2011-09-01
Type I collagen was added to the composite chitosan solution in a ratio of 1:2 to build a physical cross-linked self-forming chitosan/collagen/β-GP hydrogel. Osteogenic properties of this novel injectable hydrogel were evaluated. Gelation time was about 8 min which offered enough time for handling a mixture containing cells and the subsequent injection. Scanning electronic microscopy (SEM) observations indicated good spreading of bone marrow mesenchymal stem cells (BMSCs) in this hydrogel scaffold. Mineral nodules were found in the dog-BMSCs inoculated hydrogel by SEM after 28 days. After subcutaneous injection into nude mouse dorsum for 4 weeks, partial bone formation was observed in the chitosan/collagen/β-GP hydrogel loaded with pre-osteodifferentiated dog-BMSCs, which indicated that chitosan/collagen/β-GP hydrogel composite could induce osteodifferentiation in BMSCs without exposure to a continual supply of external osteogenic factors. In conclusion, the novel chitosan/collagen/β-GP hydrogel composite should prove useful as a bone regeneration scaffold.
Aboul-Ela, Ezzat I
2002-04-26
The protective effect of calcium given orally by gavage with two doses (40 and 80mg/kg body weight) was evaluated against clastogenecity induced by lead acetate with two concentrations (200 and 400mg/kg diet) on bone marrow and spermatocyte cells of mice in vivo. The parameter screened was percentage of chromosomal aberrations with and without gaps and sperm abnormalities. Statistical analyses indicated the protection efficacy of calcium with the high dose rather than the other in both types of mouse cells. The observation from the laboratory tests, dealing that lead acetate can be considered as an environmental genotoxic material. We recommended that it must be administered of calcium (as calcium chloride) as a protective agent to reduce the genotoxic effect of lead in the somatic and germ cells.
Saw palmetto extract induces nuclear heterogeneity in mice.
Trinachartvanit, Wachareeporn; Francis, Bettina M; Rayburn, A Lane
2009-01-01
Saw palmetto (SW), a phytotherapeutic compound used in the treatment of prostate disease, was examined for potential nuclear effects. SW extract was incorporated into a complete casein-based semisynthetic rodent chow at 0%, 0.1% and 1% SW. SW was fed to mice for 6 weeks, after which the mice received a single i/p injection of either the known genotoxic agent methyl methanesulfonate (MMS) in saline or just saline. Forty-eight hours after injection, blood and bone marrow were collected for flow cytometric analysis. A significant effect of MMS was observed in both male and female mice with respect to: an increase in nuclear heterogeneity in bone marrow cells as measured by the coefficient of variation of the G1 peak in a flow histogram (6.32 versus 4.8 in male mice, 7.0 versus 4.9 in female mice) and an increase in the number of micronucleated blood cells (3.4% versus 0.56% male mice, 3.1% versus 0.6 in female mice) indicating a positive genotoxic response. SW also appears to increase the heterogeneity of bone marrow nuclei in a dose dependent manner (0-5.1%, 0.1-5.5% and 1-5.7% in male mice, 0-5.7%, 0.1-6.0% and 1-6.2% in female mice) without a concomitant increase in blood cell micronuclei. These results indicate that SW is not genotoxic with respect to physical DNA damage and that the changes observed in the bone marrow are due to chromatin conformation modifications in the nuclei of in vivo treated mouse cells. Copyright © 2008 Elsevier B.V. All rights reserved.
Vulic, Ante; Panoskaltsis-Mortari, Angela; McDyer, John F.; Luznik, Leo
2016-01-01
Background Despite broad and intense conventional immunosuppression, long-term survival after lung transplantation lags behind that for other solid organ transplants, primarily because of allograft rejection. Therefore, new strategies to promote lung allograft acceptance are urgently needed. The purpose of the present study was to induce allograft tolerance with a protocol compatible with deceased donor organ utilization. Methods Using the MHC-mismatched mouse orthotopic lung transplant model, we investigated a conditioning regimen consisting of pretransplant T cell depletion, low dose total body irradiation and posttransplant (donor) bone marrow and splenocyte infusion followed by posttransplantation cyclophosphamide (PTTT-PTB/PTCy). Results Our results show that C57BL/6 recipients of BALB/c lung allografts undergoing this complete short-duration nonmyeloablative conditioning regimen had durable lung allograft acceptance. Mice that lacked 1 or more components of this regimen exhibited significant graft loss. Mechanistically, animals with lung allograft acceptance had established higher levels of donor chimerism, lymphocyte responses which were attenuated to donor antigens but maintained to third-party antigens, and clonal deletion of donor-reactive host Vβ T cells. Frequencies of Foxp3+ T regulatory cells were comparable in both surviving and rejected allografts implying that their perturbation was not a dominant cell-regulatory mechanism. Donor chimerism was indispensable for sustained tolerance, as evidenced by acute rejection of allografts in established chimeric recipients of PTTT-PTB/PTCy following a chimerism-ablating secondary recipient lymphocyte infusion. Conclusion Together, these data provide proof-of-concept for establishing lung allograft tolerance with tandem donor bone marrow transplantation (BMT) using a short-duration nonmyeloablative conditioning regimen and PTCy. PMID:27861294
Jung, Seok Yun; Choi, Jin Hwa; Kwon, Sang-Mo; Masuda, Haruchika; Asahara, Takayuki; Lee, You-Mie
2012-05-01
Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti-inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood-derived AC133+ cells that produce functional EPC progenies. Decursin dose-dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle-shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin-2, angiopoietin receptor Tie-2, Flk-1 (vascular endothelial growth factor receptor-2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose-dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor-induced mobilization of circulating EPCs (CD34 + /VEGFR-2+ cells) from bone marrow and early incorporation of Dil-Ac-LDL-labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild-type- or bone-marrow-transplanted mice. Accordingly, decursin attenuated EPC-derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. Copyright © 2012 Wiley Periodicals, Inc.
Abo-Zeid, Mona A M; Abdel-Samie, Negm S; Farghaly, Ayman A; Hassan, Emad M
2018-02-01
Cajanus cajan (L.) is a Pigeon pea cultivated in tropical and subtropical areas. It contains many bioactive components. The present study aimed to assess the antimutagenic efficacy of a flavonoid fraction of Cajanus cajan (FFCC) to reduce cytotoxicity and genotoxicity induced by cyclophosphamide (CP). We assessed genotoxic and cytotoxic effects using chromosome aberration, in mouse bone-marrow cells and spermatocytes, cell viability and DNA damage, in mouse bone-marrow cells. Animals received FFCC at concentrations 50,100 and 200 mg/kg b wt by oral gavage, and injected simultaneously with CP (20 mg/kg b wt) for 24 h. The results revealed that FFCC was safe and its effect was normal compared to control group. Moreover, we observed significant inhibition of CP-induced chromosome abnormalities in both, somatic and germ, cells (p ≪ 0.05) after concurrent administration of different concentrations of FFCC and CP. FFCC reduced chromosome aberrations by 14.29%, 25.21% and 28.57% in somatic cells, and 25.35%, 35.21% and 49.29% in germ cells after simultaneous treatment with CP respectively. Additionally, FFCC improved the cell viability of bone-marrow cells in a concentration-dependent manner when administered concurrently with CP. Similarly, FFCC diminished DNA damage (p ≪ 0.05) in CP-treated animals. The inhibitory index of tail DNA (%) reached 90.6% at the highest concentration of FFCC when administered simultaneously with CP. In conclusion, the flavonoid extract improved cell viability and protected animal cells from the cytotoxic and genotoxic effects exhibited by CP. Cajanus cajan flavonoids might contain the antioxidant bioactivity that effectively lessened chromosome aberrations and DNA damage induced by mutagenic agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Jinsong; Van Valckenborgh, Els; Menu, Eline; De Bruyne, Elke; Vanderkerken, Karin
2012-01-01
Multiple myeloma (MM) is the second most common hematological malignancy and is characterized by the clonal expansion of plasma cells in the bone marrow. Recently, hypoxia has received increased interest in the context of MM, in both basic and translational research. In this review, we describe the discovery of the hypoxic niche in MM and how it can be targeted therapeutically. We also discuss mouse models that closely mimic human MM, highlighting those that allow preclinical research into new therapies that exploit the hypoxic niche in MM. PMID:23115205
Monfoulet, Laurent; Malaval, Luc; Aubin, Jane E; Rittling, Susan R; Gadeau, Alain P; Fricain, Jean-Christophe; Chassande, Olivier
2010-02-01
Bone healing is a complex multi-step process, which depends on the position and size of the lesion, and on the mechanical stability of the wounded area. To address more specifically the mechanisms involved in cortical bone healing, we created drill-hole defects in the cortex of mouse femur, a lesion that triggers intramembranous repair, and compared the roles of bone sialoprotein (BSP) and osteopontin (OPN), two proteins of the extracellular matrix, in the repair process. Bone regeneration was analyzed by ex vivo microcomputerized X-ray tomography and histomorphometry of bones of BSP-deficient, OPN-deficient and wild-type mice. In all mouse strains, the cortical gap was bridged with woven bone within 2 weeks and no mineralized tissue was observed in the marrow. Within 3 weeks, lamellar cortical bone filled the gap. The amount and degree of mineralization of the woven bone was not affected by OPN deficiency, but cortical bone healing was delayed in BSP-deficient mice due to delayed mineralization. Gene expression studies showed a higher amount of BSP transcripts in the repair bone of OPN-deficient mice, suggesting a possible compensation of OPN function by BSP in OPN-null mice. Our data suggest that BSP, but not OPN, plays a role in primary bone formation and mineralization of newly formed bone during the process of cortical bone healing. (c) 2009 Elsevier Inc. All rights reserved.
Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat.
Singh, Lakshman; Tyagi, Sonia; Myers, Damian; Duque, Gustavo
2018-04-01
Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.
NASA Astrophysics Data System (ADS)
Safitri, Yunita Diyah; Widyarti, Sri; Rifa'i, Muhaimin
2017-05-01
People who have unbalanced lifestyles and habits such as consuming high fat and sugar foods, as well as the lack of physical activity, have an increased risk of obesity and related metabolic diseases. The condition of obesity occurs due to an excess of nutrients which leads to low-grade inflammation. Inflammation induced by obesity causes unstable bone marrow homeostasis which is associated with proliferation and differentiation of Hematopoietic Stem Cells (HSCs). This study aimed to observe the erythroid progenitor (TER-119) and complement regulator (CD59) on bone marrow cells in mouse models fed a high fat-fructose diet (HFFD). This research was conducted by modeling obese mice using high fat and fructose food for 20 weeks, and then treating them with elicited soybean extract (ESE) for four weeks with several doses: low dose (78 mg/kgBB), moderate dose (104 mg/kgBB) and high dose (130 mg/kgBB). Cell TER119+CD59+ expression decreased in the HFFD group compared to the normal group. In the low, moderate and high dose group, TER119+CD59+ expression significantly increased compared to the HFFD group. These results demonstrate that soybean elicited extract can improve the hematopoietic system by increasing TER119+CD59+ expression in a high fat and fructose diet mouse model.
Chatterjee, Ritam; Chattopadhyay, Sukalpa; Law, Sujata
2016-11-01
Aplastic anemia, the paradigm of bone marrow failure, is characterized by pancytopenic peripheral blood and hypoplastic bone marrow. Among various etiologies, inappropriate use of DNA alkylating drugs like cyclophosphamide and busulfan often causes the manifestation of the dreadful disease. Cell cycle impairment in marrow hematopoietic stem/progenitor compartment together with cellular apoptosis has been recognized as culpable factors behind aplastic pathophysiologies. However, the intricate molecular mechanisms remain unrevealed till date. In the present study, we have dealt with the mechanistic intervention of the disease by peripheral blood hemogram, bone marrow histopathology, cytopathology, hematopoietic kinetic study, scanning electron microscopy, DNA damage assessment and flowcytometric analysis of cellular proliferation and apoptosis in hematopoietic stem/progenitor cell (HSPC) rich marrow compartment using busulfan and cyclophosphamidemediated mouse model. To unveil the molecular mechanisms behind aplastic pathophysiology, we further investigated the role of some crucial mitotic and apoptotic regulators like Protein kinase-B (PKB), Gsk-3β, Cyclin-D1, PP2A, Cdc25c, Plk-1, Aurora kinase-A, Chk-1 regarding the hematopoietic catastrophe. Our observations revealed that the alteration of PKB-GSK-3β axis, Plk-1, and Aurora kinase-A expressions in HSPC compartment due to DNA damage response was associated with the proliferative impairment and apoptosis during aplastic anemia. The study established the correlation between the accumulation of DNA damage and alteration of the mentioned molecules in aplastic HSPCs that lead to the hematopoietic catastrophe. We anticipate that our findings will be beneficial for developing better therapeutic strategies for the dreadful disease concerned.
Moriyama, Kenji; Hanai, Atsuko; Mekada, Kazuyuki; Yoshiki, Atsushi; Ogiwara, Katsueki; Kimura, Atsushi; Takahashi, Takayuki
2011-08-20
The endopeptidase encoded by Phex (phosphate-regulating gene with homologies to endopeptidases linked to the X chromosome) is critical for regulation of bone matrix mineralization and phosphate homeostasis. PHEX has been identified from analyses of human X-linked hypophosphatemic rickets and Hyp mutant mouse models. We here demonstrated a newly established dwarfism-like Kbus/Idr mouse line to be a novel Hyp model. Histopathological and X-ray examination with cross experiments were performed to characterize Kbus/Idr. RT-PCR-based and exon-directed PCR screening performed to identify the presence of genetic alteration. Biochemical assays were also performed to evaluate activity of alkaline phosphatase. Kbus/Idr, characterized by bone mineralization defects, was found to be inherited in an X chromosome-linked dominant manner. RT-PCR experiments showed that a novel mutation spanning exon 16 and 18 causing hypophosphatemic rickets. Alkaline phosphatase activity, as an osteoblast marker, demonstrated raised levels in the bone marrow of Kbus/Idr independent of the age. Kbus mice should serve as a useful research tool exploring molecular mechanisms underlying aberrant Phex-associated pathophysiological phenomena.
New Diagnostic and Therapeutic Approaches to Eradicating Recurrent Breast Cancer
2015-09-01
of metastatic disease when they are first diagnosed, yet many patients later return to the clinic with cancer that has spread throughout the body. It...treated before they experience disease relapse. 15. SUBJECT TERMS Breast cancer, metastasis, dissemination, recurrence, therapeutic resistance, systemic...instigation, microenvironment, bone marrow cells, canine , mouse models 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF
Administration of ethylnitrosourea (ENU) (20, 25, 40, 50, and 60 mg/kg body weight) or methylnitrosourea (MNU) (25, 40, 50, 60, 75, and 80 mg/kg body weight) to male CD-1 mice 2 hours after subcutaneous implantation of 5-bromo-2'-deoxyurdine (BrdUrd) pellet (55 mg) resulted in a ...
2008-06-25
Hunched Back Unusual Body Secretions - Nasal Discharge - Lacrimation - Salivation - Bloody Stool - Dianhea Abnormal Behavior - Convulsions...WetGroin - Hunched Back Unusual Body Secretions - Nasal Discharge - Lacrimation - Salivation - Bloody Stool - Diarrhea Abnormal Behavior...Ataxia - Piloerection - WetGrain - Hunched Back Unusual Body Secretions - Nasal Discharge - Lacrimation - Salivation - Bloody Stool
Reactivation of Breast Cancer Micrometastases by Senescent Bone Marrow Stroma
2011-07-01
Strep, 0.28 mM L-Ascorbic Acid 2-Phosphate and 10 mM β- Glycerophosphate and 1 ml was added on to each Disc placed in a 24 well dish and incubated at... Glycerophosphate . Mouse osteoclasts produced numerous, measurable lacunae at a high efficiency while MC3T3 E1 (Preosteoblasts) and MCF-7 did not produce
Al-Quran, Samer Z.; Yang, Lijun; Magill, James M.; Braylan, Raul C.; Douglas-Nikitin, Vonda K.
2012-01-01
Summary Assessment of bone marrow involvement by malignant plasma cells is an important element in the diagnosis and follow-up of patients with multiple myeloma and other plasma cell dyscrasias. Microscope-based differential counts of bone marrow aspirates are used as the primary method to evaluate bone marrow plasma cell percentages. However, multiple myeloma is often a focal process, a fact that impacts the accuracy and reliability of the results of bone marrow plasma cell percentages obtained by differential counts of bone marrow aspirate smears. Moreover, the interobserver and intraobserver reproducibility of counting bone marrow plasma cells microscopically has not been adequately tested. CD138 allows excellent assessment of plasma cell numbers and distribution in bone marrow biopsies. We compared estimates of plasma cell percentages in bone marrow aspirates and in hematoxylin-eosin– and CD138-stained bone marrow biopsy sections (CD138 sections) in 79 bone marrows from patients with multiple myeloma. There was a notable discrepancy in bone marrow plasma cell percentages using the different methods of observation. In particular, there was a relatively poor concordance of plasma cell percentage estimation between aspirate smears and CD138 sections. Estimates of plasma cell percentage using CD138 sections demonstrated the highest interobserver concordance. This observation was supported by computer-assisted image analysis. In addition, CD138 expression highlighted patterns of plasma cell infiltration indicative of neoplasia even in the absence of plasmacytosis. We conclude that examination of CD138 sections should be considered for routine use in the estimation of plasma cell load in the bone marrow. PMID:17714757
Wittig, Christine; Laschke, Matthias W.; Scheuer, Claudia; Menger, Michael D.
2013-01-01
Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×103 cells. To create bone marrow cell-enriched pseudoislets 2×103 islet cells were co-cultured with 2×103 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation. PMID:23875013
Takahashi, Masayuki; Tsujimura, Noriyuki; Otsuka, Kensuke; Yoshino, Tomoko; Mori, Tetsushi; Matsunaga, Tadashi; Nakasono, Satoshi
2012-04-01
Recently, humanized animals whereby a part of the animal is biologically engineered using human genes or cells have been utilized to overcome interspecific differences. Herein, we analyzed the detail of the differentiation states of various human leukocyte subpopulations in humanized mouse and evaluated comprehensively the similarity of the leukocyte lineage between humanized mice and humans. Humanized mice were established by transplanting human CD34(+) cord blood cells into irradiated severely immunodeficient NOD/Shi-scid/IL2Rγ(null) (NOG) mice, and the phenotypes of human cells contained in bone marrow, thymus, spleen and peripheral blood from the mice were analyzed at monthly intervals until 4 months after cell transplantation. The analysis revealed that transplanted human hematopoietic stem cells via the caudal vein homed and engrafted themselves successfully at the mouse bone marrow. Subsequently, the differentiated leukocytes migrated to the various tissues. Almost all of the leukocytes within the thymus were human cells. Furthermore, analysis of the differentiation states of human leukocytes in various tissues and organs indicated that it is highly likely that the human-like leukocyte lineage can be developed in mice. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Jin, Meihua; Lu, Yue; Yang, Ju Hye; Jo, Tae Hyung; Park, Young In; Lee, Chong-Kil; Park, Sang-Jo; Son, Kun Ho; Chang, Hyeun Wook
2011-09-01
6-Hydroxy-2,7-dimethoxy-1,4-phenanthraquinone (PAQ) isolated from the tuberous roots of Yam (Dioscorea batatas) inhibited cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) dependent prostaglandin D(2) (PGD(2)) generation in mouse bone marrow-derived mast cells in a concentration-dependent manner with IC(50) values of 0.08 μM and 0.27 μM, respectively. In the Western blotting with specific anti-COX-2 antibodies, the decrease of the quantity of PGD(2) was accompanied by a decrease in the COX-2 protein level. But PAQ did not affect COX-1 protein level. In addition, this compound inhibited 5-lipoxygenase (5-LOX) dependent production of leukotriene C(4) in a dose-dependent manner, with an IC(50) of 0.032 μM. These results demonstrate that PAQ has a dual COX-2/5-LOX inhibitory activity. This compound also inhibited the degranulation reaction in a dose-dependent manner with an IC(50) of 2.7 μM. Thus, these results suggest that PAQ may be useful in regulating mast cell-mediated inflammatory diseases.
Green, Danielle E.; Rubin, Clinton T.
2014-01-01
The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941
MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity
Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.
2016-01-01
Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977
Blood and Bone Marrow Donation
... who's waiting for a stem cell transplant. Risks Bone marrow donation The most serious risk associated with ... or her health insurance. What you can expect Bone marrow donation Collecting stem cells from bone marrow ...
In vitro and in vivo evidence for orphan nuclear receptor RORα function in bone metabolism
Meyer, Thomas; Kneissel, Michaela; Mariani, Jean; Fournier, Brigitte
2000-01-01
Bone is a major target site for steroid hormone action. Steroid hormones like cortisol, vitamin D, and estradiol are responsible for principal events associated with bone formation and resorption. Over the past decade, new members of the nuclear hormone gene family have been identified that lack known ligands. These orphan receptors can be used to uncover signaling molecules that regulate yet unidentified physiological networks. In the present study the function of retinoic acid receptor-related orphan receptor (ROR) α in bone metabolism has been examined. We showed that RORα and RORγ, but not RORβ, are expressed in mesenchymal stem cells derived from bone marrow. Interestingly, for RORα we observed an increased messenger signal expression between control cells and cells undergoing osteogenic differentiation. Furthermore, the direct activation of mouse bone sialoprotein by RORα, typically 7-fold, has been shown. In contrast, transient overexpression of RORα overrides the activation of the osteocalcin promoter by 1α,25-dihydroxyvitamin D3. In addition, we have investigated bone mass parameters and bone geometry in the mouse mutant staggerer (sg/sg), a mouse strain that carries a deletion within the RORα gene. Homozygote mutants have thin long bones compared with the heterozygote animals and wild-type littermates. More interestingly, the bones of the sg/sg animals are osteopenic as indicated by the comparison of bone mineral contents of sg/sg animals to the heterozygote and wild-type animals. We conclude that these in vitro and in vivo results suggest a function for RORα in bone biology. RORα most likely acts by direct modulation of a bone matrix component. PMID:10900268
Yoshida, Hiroshi; Yamada, Hajime; Nogami, Wataru; Dohi, Keiji; Kurino-Yamada, Tomomi; Sugiyama, Koji; Takahashi, Koji; Gahara, Yoshinari; Kitaura, Motoji; Hasegawa, Minoru; Oshima, Itsuki; Kuwabara, Kenji
2018-03-01
Lusutrombopag (S-888711), an oral small-molecule thrombopoietin receptor (TPOR) agonist, has gained first approval as a drug to treat thrombocytopenia of chronic liver disease in patients undergoing elective invasive procedures in Japan. Preclinical studies were performed to evaluate its efficacy against megakaryopoiesis and thrombopoiesis. To investigate the proliferative activity and efficacy of megakaryocytic colony formation via human TPOR, lusutrombopag was applied to cultured human c-Mpl-expressing Ba/F3 (Ba/F3-hMpl) cells and human bone marrow-derived CD34-positive cells, respectively. Lusutrombopag caused a robust increase in Ba/F3-hMpl cells by activating pathways in a manner similar to that of thrombopoietin and induced colony-forming units-megakaryocyte and polyploid megakaryocytes in human CD34-positive cells. Because lusutrombopag has high species specificity for human TPOR, there was no suitable experimental animal model for drug evaluation, except for immunodeficient mouse-based xenograft models. Therefore, a novel genetically modified knock-in mouse, TPOR-Ki/Shi, was developed by replacing mouse Mpl with human-mouse chimera Mpl. In TPOR-Ki/Shi mice, lusutrombopag significantly increased circulating platelets in a dose-dependent manner during 21-day repeated oral administration. Histopathological study of the TPOR-Ki/Shi mice on day 22 also revealed a significant increase in megakaryocytes in the bone marrow. These results indicate that lusutrombopag acts on human TPOR to upregulate differentiation and proliferation of megakaryocytic cells, leading to platelet production. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Meeting report of the 2016 bone marrow adiposity meeting.
van der Eerden, Bram; van Wijnen, André
2017-10-02
There is considerable interest in the physiology and pathology, as well as the cellular and molecular biology, of bone marrow adipose tissue (BMAT). Because bone marrow adiposity is linked not only to systemic energy metabolism, but also to both bone marrow and musculoskeletal disorders, this biologic compartment has become of major interest to investigators from diverse disciplines. Bone marrow adiposity represents a virtual multi-tissue endocrine organ, which encompasses cells from multiple developmental lineages (e.g., mesenchymal, myeloid, lymphoid) and occupies all the non-osseous and non-cartilaginous space within long bones. A number of research groups are now focusing on bone marrow adiposity to understand a range of clinical afflictions associated with bone marrow disorders and to consider mechanisms-based strategies for future therapies.
Rahmouni, Alain; Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Belhadj, Karim; Gaulard, Philippe; Bouanane, Mohamed; Golli, Mondher; Kobeiter, Hicham
2003-12-01
To evaluate gadolinium enhancement of bone marrow in patients with lymphoproliferative diseases and diffuse bone marrow involvement. Dynamic contrast material-enhanced magnetic resonance (MR) imaging of the thoracolumbar spine was performed in 42 patients with histologically proved diffuse bone marrow involvement and newly diagnosed myeloma (n = 31), non-Hodgkin lymphoma (n = 8), or Hodgkin disease (n = 3). The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from enhancement time curves (ETCs). A three-grade system for scoring bone marrow involvement was based on the percentage of neoplastic cells in bone marrow samples. Quantitative ETC values for the 42 patients were compared with ETC values for healthy subjects and with grades of bone marrow involvement by using mean t test comparisons. Receiver operating characteristic (ROC) analysis was conducted by comparing Emax values between patients with and those without bone marrow involvement. Baseline and follow-up MR imaging findings were compared in nine patients. Significant differences in Emax (P <.001), slope (P <.001), and washout (P =.005) were found between subjects with normal bone marrow and patients with diffuse bone marrow involvement. ROC analysis results showed Emax values to have a diagnostic accuracy of 99%. Emax, slope, and washout values increased with increasing bone marrow involvement grade. The mean Emax increased from 339% to 737%. Contrast enhancement decreased after treatment in all six patients who responded to treatment but not in two of three patients who did not respond to treatment. Dynamic contrast-enhanced MR images can demonstrate increased bone marrow enhancement in patients with lymphoproliferative diseases and marrow involvement.
Iwaniec, Urszula T; Turner, Russell T
2013-03-01
A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kit(W/W-v)) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to the development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kit(W/W-v) mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kit(W/W-v) mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kit(W/W-v) mice. However, ovx in WT and kit(W/W-v) mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. Copyright © 2012 Elsevier Inc. All rights reserved.
Bone Marrow Test: MedlinePlus Lab Test Information
... this page: https://medlineplus.gov/labtests/bonemarrowtest.html Bone Marrow Test To use the sharing features on this page, please enable JavaScript. What Are Bone Marrow Tests? Bone marrow is a soft, spongy ...
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Iwaniec, U.; Wu, H.
2011-01-01
PURPOSE: We obtained bone tissue to evaluate the collateral effects of experiments designed to investigate molecular mechanisms of radio-adaptation in a mouse model. Radio-adaptation describes a process by which the prior exposure to low dose radiation can protect against the toxic effect of a subsequent high dose exposure. In the radio-adaptation experiments, C57Bl/6 mice were exposed to either a Sham or a priming Low Dose (5 cGy) of Cs-137 gamma rays before being exposed to either a Sham or High Dose (6 Gy) 24 hours later. ANALYSIS: Bone tissue were obtained from two experiments where mice were sacrificed at 3 days (n=3/group, 12 total) and at 14 days (n=6/group, 24 total) following high dose exposure. Tissues were analyzed to 1) evaluate a radio-adaptive response in bone tissue and 2) describe cellular and microstructural effects for two skeletal sites with different rates of bone turnover. One tibia and one lumbar vertebrae (LV2), collected at the 3-day time-point, were analyzed by bone histomorphometry and micro-CT to evaluate the cellular response and any evidence of microarchitectural impact. Likewise, tibia and LV2, collected at the 14-day time-point, were analyzed by micro-CT alone to evaluate resulting changes to bone structure and microarchitecture. The data were analyzed by 2-way ANOVA to evaluate the effects of the priming low dose radiation, of the high dose radiation, and of any interaction between the priming low and high doses of radiation. Bone histomorphometry was performed in the cancellous bone (aka trabecular bone) compartments of the proximal tibial metaphysis and of LV2. RESULTS: Cellular Response @ 3 Days The priming Low Dose radiation decreased osteoblast-covered bone perimeter in the proximal tibia and the total cell density in the bone marrow in the LV2. High Dose radiation, regardless of prior exposure to priming dose, dramatically reduced total cell density in bone marrow of both the long bone and vertebra. However, in the proximal tibia, High Dose radiation increased the osteoclast-covered bone perimeters, the density of adipocytes in bone marrow, and the area of bone marrow occupied by fat cells -- while in the LV2, adipocytes were rare and not stimulated by High Dose radiation. In an unexpected response, High Dose radiation dramatically increased (10-fold) osteoblast-covered bone perimeter in the LV2.
Chu, Ling; Jiang, Yuehua; Hao, Hong; Xia, Yong; Xu, Jian; Liu, Zehao; Verfaillie, Catherine M; Zweier, Jay L; Liu, Zhenguo
2008-09-04
This study was designed to investigate the role of nitric oxide (NO) in bone marrow stem cells and their differentiation into endothelial cells in vitro. Adult mouse bone marrow multipotent progenitor cells (MAPCs) were used as the source of stem cells. Oct-4 expression (both mRNA and protein) was significantly increased by up to 68.0% in MAPCs when incubated with NO donors DETA-NONOate or sodium nitroprusside (SNP) in a concentration-dependant manner (n=3, P<0.05). However, the cell proliferation was dramatically decreased by over 3-folds when treated with DETA-NONOate or SNP for 48 h (n=3, P<0.05). When MAPCs were exposed to DETA-NONOate (100 microM) for the first 48 h during differentiation, the expression (both mRNA and protein) of vWF was significantly increased at day 14 in the differentiating cells. The effects of DETA-NONOate or SNP on cell proliferation, Oct-4 expression and endothelial differentiation of MAPCs were not affected by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or cGMP analog 8-Br-cGMP. These data indicate that NO may regulate both the pluripotency and differentiation of MAPCs via a cGMP-independent mechanism.
NASA Technical Reports Server (NTRS)
Pecaut, Michael J.; Nelson, Gregory A.; Peters, Luanne L.; Kostenuik, Paul J.; Bateman, Ted A.; Morony, Sean; Stodieck, Louis S.; Lacey, David L.; Simske, Steven J.; Gridley, Daila S.
2003-01-01
There are several aspects of the spaceflight environment that may lead to changes in immunity: mission-related psychological stress, radiation, and changes in gravity. On December 5, 2001, the space shuttle Endeavor launched for a 12-day mission to examine these effects on C57BL/6 mice for the first time. On their return, assays were performed on the spleen, blood, and bone marrow. In response to flight, there were no significant differences in the general circulating leukocyte proportions. In contrast, there was an increase in splenic lymphocyte percentages, with a corresponding decrease in granulocytes. There was an overall shift in splenic lymphocytes away from T cells toward B cells, and a decrease in the CD4-to-CD8 ratios due to a decrease in T helpers. In contrast, there were proportional increases in bone marrow T cells, with decreases in B cells. Although the blast percentage and count were decreased in flight mice, the CD34(+) population was increased. The data were more consistent with a shift in bone marrow populations rather than a response to changes in the periphery. Many of the results are similar to those using other models. Clearly, spaceflight can influence immune parameters ranging from hematopoiesis to mature leukocyte mechanisms.
Schwarte, Sebastian; Bremer, Michael; Fruehauf, Joerg; Sorge, Yanina; Skubich, Susanne; Hoffmann, Matthias W
2007-09-01
Effects of radiation sources used for total body irradiation (TBI) on Graft-versus-Host Disease (GvHD) induction were examined. In a T cell receptor (TCR) transgenic mouse model, single fraction TBI was performed with different radiation devices ((60)Cobalt; (137)Cesium; 6 MV linear accelerator), dose rates (0.85; 1.5; 2.9; 5 Gy/min) and total doses before allogeneic bone marrow transplantation (BMT). Recipients were observed for 120 days. Different tissues were examined histologically. Acute GvHD was induced by a dose rate of 0.85 Gy/min ((60)Cobalt) and a total dose of 9 Gy and injection of 5 x 10(5) lymph node cells plus 5 x 10(6) bone marrow cells. Similar results were obtained using 6 MV linear accelerator- (linac-) photons with a dose rate of 1.5 Gy/min and 0.85 Gy/min, a total dose of 9.5 Gy and injection of same cell numbers. TBI with (137)Cesium (dose rate: 2.5 Gy/min) did not lead reproducibly to lethal acute GvHD. Experimental TBI in murine models may induce different immunological responses, depending on total energy, total single dose and dose rate. GvHD might also be induced by TBI with low dose rates.
Hisha, Hiroko; Kohdera, Urara; Hirayama, Masahiro; Yamada, Haruki; Iguchi-Uehira, Tomoko; Fan, Tian-Xue; Cui, Yun-Ze; Yang, Guo-Xiang; Li, Yongan; Sugiura, Kikuya; Inaba, Muneo; Kobayashi, Yohnosuke; Ikehara, Susumu
2002-01-01
Juzen-taiho-to (a Japanese herbal medicine) has been traditionally administered to patients with anemia, neutropenia, or wasting syndrome. We previously attempted to isolate and purify the hemopoiesis-stimulatory components in Juzen-taiho-to extracts using an in vitro hemopoietic stem cell (HSC) assay method in which mouse HSCs can proliferate on a stromal cell line (MS-5). We have found that fatty acids (particularly oleic acid and linolenic acid) actively promote the proliferation of HSCs, and that the effect is mediated by stromal cells, rather than by any direct action on the HSCs. In the present study, we show, using human normal bone marrow cells (BMCs) and umbilical cord blood cells, that similar stimulatory effects are due to the presence of oleic acid and linolenic acid, which stimulate the proliferation of HSCs in stroma-based culture systems. Furthermore, a marked stimulatory effect was noted on BMCs from patients with Shwachman syndrome, which shows pancreatic and bone marrow dysfunctions. We also show the data on hemopoietic recovery after the administration of Juzen-taiho-to to a patient with Shwachman syndrome. These findings suggest that decreased fatty acid levels in the blood, caused by exocrine pancreatic insufficiency, induce bone marrow dysfunction in Shwachman syndrome.
Xing, Junchao; Jin, Huiyong; Hou, Tianyong; Chang, Zhengqi; Luo, Fei; Wang, Pinpin; Li, Zhiqiang; Xie, Zhao; Xu, Jianzhong
2014-12-01
To understand the cellular mechanism underlying bone defect healing in the context of tissue engineering, a reliable, reproducible, and standardized load-bearing large segmental bone defect model in small animals is indispensable. The aim of this study was to establish and evaluate a bilateral femoral defect model in mice. Donor mouse bone marrow mesenchymal stem cells (mBMSCs) were obtained from six mice (FVB/N) and incorporated into partially demineralized bone matrix scaffolds to construct tissue-engineered bones. In total, 36 GFP(+) mice were used for modeling. Titanium fixation plates with locking steel wires were attached to the femurs for stabilization, and 2-mm-long segmental bone defects were created in the bilateral femoral midshafts. The defects in the left and right femurs were transplanted with tissue-engineered bones and control scaffolds, respectively. The healing process was monitored by x-ray radiography, microcomputed tomography, and histology. The capacity of the transplanted mBMSCs to recruit host CD31(+) cells was investigated by immunofluorescence and real-time polymerase chain reaction. Postoperatively, no complication was observed, except that two mice died of unknown causes. Stable fixation of femurs and implants with full load bearing was achieved in all animals. The process of bone defect repair was significantly accelerated due to the introduction of mBMSCs. Moreover, the transplanted mBMSCs attracted more host CD31(+) endothelial progenitors into the grafts. The present study established a feasible, reproducible, and clinically relevant bilateral femoral large segmental bone defect mouse model. This model is potentially suitable for basic research in the field of bone tissue engineering. Copyright © 2014 Elsevier Inc. All rights reserved.
Boregowda, Siddaraju; Krishnappa, Veena; Chambers, Jeremy; LoGrasso, Phillip V.; Lai, Wen-Tzu; Ortiz, Luis A.; Phinney, Donald G.
2013-01-01
Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that emerge from bone marrow cultures following long-term (months) expansion in atmospheric oxygen. Herein, we demonstrate that exposure to atmospheric oxygen rapidly induced p53, TOP2A and BAX expression and mitochondrial ROS generation in primary mouse MSCs resulting in oxidative stress, reduced cell viability and inhibition of cell proliferation. Alternatively, procurement and culture in 5% oxygen supported more prolific expansion of the CD45−ve/CD44+ve cell fraction in marrow, produced increased MSC yields following immuno-depletion, and supported sustained MSC growth resulting in a 2300-fold increase in cumulative cell yield by 4th passage. MSCs cultured in 5% oxygen also exhibited enhanced tri-lineage differentiation. The oxygen-induced stress response was dependent upon p53 since siRNA mediated knockdown of p53 in wild type cells or exposure of p53−/− MSCs to atmospheric oxygen failed to induce ROS generation, reduce viability, or arrest cell growth. These data indicate that long-term culture expansion of mouse MSCs in atmospheric oxygen selects for clones with absent or impaired p53 function, which allows cells to escape oxygen-induced growth inhibition. In contrast, expansion in 5% oxygen generates large numbers of primary mouse MSCs that retain sensitivity to atmospheric oxygen, and therefore a functional p53 protein, even after long-term expansion in vitro. PMID:22367737
Mukhopadhyay, Keya De; Bandyopadhyay, Abhik; Chang, Ting-Tung A; Elkahloun, Abdel G; Cornell, John E; Yang, Junhua; Goins, Beth A; Yeh, I-Tien; Sun, Lu-Zhe
2011-01-01
The origin and the contribution of breast tumor heterogeneity to its progression are not clear. We investigated the effect of a growing orthotopic tumor formed by an aggressive estrogen receptor (ER)-negative breast cancer cell line on the metastatic potential of a less aggressive ER-positive breast cancer cell line for the elucidation of how the presence of heterogeneous cancer cells might affect each other's metastatic behavior. ER positive ZR-75-1/GFP/puro cells, resistant to puromycin and non-tumorigenic/non-metastatic without exogenous estrogen supplementation, were injected intracardiacally into mice bearing growing orthotopic tumors, formed by ER negative MDA-MB-231/GFP/Neo cells resistant to G418. A variant cell line B6, containing both estrogen-dependent and -independent cells, were isolated from GFP expressing cells in the bone marrow and re-inoculated in nude mice to generate an estrogen-independent cell line B6TC. The presence of ER negative orthotopic tumors resulted in bone metastasis of ZR-75-1 without estrogen supplementation. The newly established B6TC cell line was tumorigenic without estrogen supplementation and resistant to both puromycin and G418 suggesting its origin from the fusion of MDA-MB-231/GFP/Neo and ZR-75-1/GFP/puro in the mouse bone marrow. Compared to parental cells, B6TC cells were more metastatic to lung and bone after intracardiac inoculation. More significantly, B6TC mice also developed brain metastasis, which was not observed in the MDA-MB-231/GFP/Neo cell-inoculated mice. Low expression of ERα and CD24, and high expression of EMT-related markers such as Vimentin, CXCR4, and Integrin-β1 along with high CD44 and ALDH expression indicated stem cell-like characteristics of B6TC. Gene microarray analysis demonstrated a significantly different gene expression profile of B6TC in comparison to those of parental cell lines. Spontaneous generation of the novel hybrid cell line B6TC, in a metastatic site with stem cell-like properties and propensity to metastasize to brain, suggest that cell fusion can contribute to tumor heterogeneity.
Evaluation of the genotoxicity of Orthosiphon stamineus aqueous extract.
Muhammad, H; Gomes-Carneiro, M R; Poça, K S; De-Oliveira, A C A X; Afzan, A; Sulaiman, S A; Ismail, Z; Paumgartten, F J R
2011-01-27
Orthosiphon stamineus, Benth, also known as Misai Kucing in Malaysia and Java tea in Indonesia, is traditionally used in Southeastern Asia to treat kidney dysfunctions, diabetes, gout and several other illnesses. Recent studies of Orthosiphon stamineus pharmacological profile have revealed antioxidant properties and other potentially useful biological activities thereby lending some scientific support to its use in folk medicine. So far the genotoxicity of Orthosiphon stamineus extracts has not been evaluated. In this study the genotoxic potential of Orthosiphon stamineus aqueous extract was investigated by the Salmonella/microsome mutation assay and the mouse bone marrow micronucleus test. Chemical composition of Orthosiphon stamineus aqueous extract was analyzed by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD). The Salmonella/microsome assay (TA97a, TA98, TA100 and TA1535; plate incorporation method) was performed in the presence or in the absence of extrinsic metabolic activation (S9 mixture). In the mouse micronucleus assay, Orthosiphon stamineus extract was administered by gavage (0, 500, 2000 and 4000 mg/kg body weight/day for 3 days) to male and female Swiss Webster mice (N=6 per dose per sex) and bone marrow cells were harvested 24 h after the last dose. Ethoxy-resorufin-O-dealkylase (EROD) and benzyloxy-resorufin-O-dealkylase (BROD) activities were determined in mouse liver microsomes. The chemical analysis revealed that the Orthosiphon stamineus extract contained flavonoids (sinensetin, eupatorin), caffeic acid, and rosmarinic acid (44.00±1.879 μg/mg), the latter seemed to be one of its major constituent. Tested at doses up to 5000 μg/plate, the Orthosiphon stamineus extract was not toxic to Salmonella tester strains and did not increase the number of revertant colonies over the background incidence. In the mouse bone marrow assay, the extract did not alter the polychromatic:normochromatic erythrocytes (PCE:NCE) ratio, nor did it increase the incidence of micronucleated polychromatic erythrocytes (MNPEs). No overt toxicity and no change of CYP1A (EROD) and 2B9/10 (BROD) activities were noted. Based on the aforementioned findings, it is concluded that the use of Orthosiphon stamineus in the traditional medicine poses no genotoxic risk. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Meeting report of the 2016 bone marrow adiposity meeting
van der Eerden, Bram; van Wijnen, André
2017-01-01
Abstract There is considerable interest in the physiology and pathology, as well as the cellular and molecular biology, of bone marrow adipose tissue (BMAT). Because bone marrow adiposity is linked not only to systemic energy metabolism, but also to both bone marrow and musculoskeletal disorders, this biologic compartment has become of major interest to investigators from diverse disciplines. Bone marrow adiposity represents a virtual multi-tissue endocrine organ, which encompasses cells from multiple developmental lineages (e.g., mesenchymal, myeloid, lymphoid) and occupies all the non-osseous and non-cartilaginous space within long bones. A number of research groups are now focusing on bone marrow adiposity to understand a range of clinical afflictions associated with bone marrow disorders and to consider mechanisms-based strategies for future therapies. PMID:28410005
NASA Astrophysics Data System (ADS)
Dant, James T.; Richardson, Richard B.; Nie, Linda H.
2013-05-01
Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient radiopharmaceutical for the treatment of bone metastases than 153Sm and 89Sr, if the diffusion of 219Rn to the bone marrow is insignificant.
Apo2L/TRAIL Inhibits Tumor Growth and Bone Destruction in a Murine Model of Multiple Myeloma
Labrinidis, Agatha; Diamond, Peter; Martin, Sally; Hay, Shelley; Liapis, Vasilios; Zinonos, Irene; Sims, Natalie A.; Atkins, Gerald J.; Vincent, Cristina; Ponomarev, Vladimir; Findlay, David M.; Zannettino, Andrew C.W.; Evdokiou, Andreas
2017-01-01
Purpose Multiple myeloma is an incurable disease, for which the development of new therapeutic approaches is required. Here, we report on the efficacy of recombinant soluble Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to inhibit tumor progression and bone destruction in a xenogeneic model of human multiple myeloma. Experimental Design We established a mouse model of myeloma, in which Apo2L/TRAIL-sensitive RPMI-8226 or KMS-11 cells, tagged with a triple reporter gene construct (NES-HSV-TK/GFP/Luc), were transplanted directly into the tibial marrow cavity of nude mice. Tumor burden was monitored progressively by bioluminescence imaging and the development of myeloma-induced osteolysis was measured using high resolution in vivo micro-computed tomography. Results Tumor burden increased progressively in the tibial marrow cavity of mice transplanted with Apo2L/TRAIL-sensitive RPMI-8226 or KMS-11 cells associated with extensive osteolysis directly in the area of cancer cell transplantation. Treatment of mice with recombinant soluble Apo2L/TRAIL reduced myeloma burden in the bone marrow cavity and significantly protected against myeloma-induced osteolysis. The protective effects of Apo2L/TRAIL treatment on bone were mediated by the direct apoptotic actions of Apo2L/TRAIL on myeloma cells within the bone microenvironment. Conclusions This is the first in vivo study that investigates the efficacy of recombinant Apo2L/TRAIL on myeloma burden within the bone microenvironment and associated myeloma-induced bone destruction. Our findings that recombinant soluble Apo2L/TRAIL reduces myeloma burden within the bone microenvironment and protects the bone from myeloma-induced bone destruction argue against an inhibitory role of osteoprotegerin in Apo2L/TRAIL-induced apoptosis in vivo and highlight the need to clinically evaluate Apo2L/TRAIL in patients with multiple myeloma. PMID:19276263
Aspiration and Biopsy: Bone Marrow
... Print What It Is Bone marrow aspirations and biopsies are performed to examine bone marrow, the spongy liquid part of the bone where blood cells are ... you might also feel the pressure of the biopsy needle pushing in. Some ... sharp cramp as the liquid bone marrow is withdrawn for the aspiration or ...
A method to detect transfected chloramphenicol acetyltransferase gene expression in intact animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, R.; Jastreboff, M.M.; Chiu, Chang Fang
1988-01-01
A rapid procedure is described for assaying chloramphenicol acetyltransferase enzyme activity in intact animals following transfection of the RSV CAT plasmid into mouse bone marrow cells by electroporation. The reconstituted mice were injected with ({sup 14}C)chloramphenicol and ethyl acetate extracts of 24-h urine samples were analyzed by TLC autoradiography for the excretion of {sup 14}C-labeled metabolites. CAT expression in vivo can be detected by the presence of acetylated {sup 14}C-labeled metabolites in the urine within 1 week after bone marrow transplantation and, under the conditions described, these metabolites can be detected for at least 3 months. CAT expression in intactmore » mice as monitored by the urine assay correlates with the CAT expression in the hematopoietic tissues assayed in vitro. This method offers a quick mode of screening for introduced CAT gene expression in vivo without sacrificing the mice.« less
Acquired immunologic tolerance: with particular reference to transplantation
Starzl, Thomas E.
2009-01-01
The first unequivocally successful bone marrow cell transplantation in humans was recorded in 1968 by the University of Minnesota team of Robert A. Good (Gatti et al. Lancet 2: 1366–1369, 1968). This achievement was a direct extension of mouse models of acquired immunologic tolerance that were established 15 years earlier. In contrast, organ (i.e. kidney) transplantation was accomplished precociously in humans (in 1959) before demonstrating its feasibility in any experimental model and in the absence of a defensible immunologic rationale. Due to the striking differences between the outcomes with the two kinds of procedure, the mechanisms of organ engraftment were long thought to differ from the leukocyte chimerism-associated ones of bone marrow transplantation. This and other concepts of alloengraftment and acquired tolerance have changed over time. Current concepts and their clinical implications can be understood and discussed best from the perspective provided by the life and times of Bob Good. PMID:17917005
Quantitative MRI and spectroscopy of bone marrow
Ruschke, Stefan; Dieckmeyer, Michael; Diefenbach, Maximilian; Franz, Daniela; Gersing, Alexandra S.; Krug, Roland; Baum, Thomas
2017-01-01
Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353. PMID:28570033
Kim, Jung Sun; Gang, Ga Won; Lee, Se Ryun; Sung, Hwa Jung; Park, Young; Kim, Dae Sik; Choi, Chul Won; Kim, Byung Soo
2015-10-01
Developing a parameter to predict bone marrow invasion by non-Hodgkin's lymphoma is an important unmet medical need for treatment decisions. This study aimed to confirm the validity of the hypothesis that bone marrow plasma vascular endothelial growth factor level might be correlated with the risk of bone marrow involvement and the prognosis of patients with diffuse large B-cell non-Hodgkin's lymphoma. Forty-nine diffuse large B-cell lymphoma patients treated with rituximab, cyclophosphamide, daunorubicin, vincristine and prednisolone regimen were enrolled. Vascular endothelial growth factor level was measured with enzyme-linked immunosorbent assay. The validity of bone marrow plasma vascular endothelial growth factor level and bone marrow vascular endothelial growth factor level per platelet count for predicting treatment response and survival after initial rituximab, cyclophosphamide, daunorubicin, vincristine and prednisolone combined chemotherapy was assessed. Bone marrow plasma vascular endothelial growth factor level per platelet count was significantly associated with old age (≥ 65 years), poor performance score (≥ 2), high International prognosis index (≥ 3) and bone marrow invasion. The patients with high bone marrow plasma vascular endothelial growth factor level per platelet count (≥ 3.01) showed a significantly lower complete response rate than the others. On Kaplan-Meier survival curves, the patients with high bone marrow plasma vascular endothelial growth factor levels (≥ 655 pg/ml) or high bone marrow plasma vascular endothelial growth factor level per platelet count (≥ 3.01) demonstrated a significantly shorter overall survival and progression-free survival than the others. In the patients without bone marrow involvement, bone marrow plasma vascular endothelial growth factor level per platelet count had a significant relationship with overall survival and progression-free survival. Multivariate analysis revealed that the patients without BM invasion showing high level of bone marrow plasma vascular endothelial growth factor per platelet count had significantly shorter progression-free survival and overall survival. Bone marrow plasma vascular endothelial growth factor level per platelet count might be associated with bone marrow invasion by diffuse large B-cell lymphoma and is correlated with clinical outcomes after treatment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Du, Erxia; McAllister, Patrick; Venna, Venugopal Reddy; Xiao, Liping
2017-04-01
Ketamine has been used safely in clinics for decades for analgesia and anesthesia. It is increasingly popular in clinical practice due to its new uses and importance for emergency procedures. It is known that ketamine is sequestered in the bone marrow and the major receptors for ketamine, noncompetitive N-methyl-d-aspartate receptors (NMDARs), are expressed in osteoclasts (OCs) and osteoblasts. However, the impact of ketamine on OCs or osteoblasts is unknown. In this study, we investigated the effects of ketamine on osteoclastogenesis and regulation of NMDARs expression in vitro. Bone marrows (BMs) or bone marrow macrophages (BMMs) were cultured in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) with or without ketamine for up to 6 days. OC formation peaked at day 5. On day 5 of culture, ketamine inhibited OC formation from both BM and BMM cultures at clinically relevant concentrations (3-200 µM). Ketamine inhibited RANKL-induced expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) in BMM cultures. Inhibition of ketamine on RANKL-induced osteoclastogenesis is associated with down-regulation of NMDARs. In addition, ketamine significantly inhibited the M-CSF induced migration of BMMs, inhibited cell fusion and significantly increased mature OC apoptosis. We conclude that clinically relevant concentrations of ketamine inhibit OC formation in both BM and BMM cultures in vitro through inhibiting migration and fusion process and enhancing mature OC apoptosis. It is likely that ketamine regulates osteoclastogenesis, at least in part, via its effects on NMDAR expression. J. Cell. Biochem. 118: 914-923, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wouters, Kristiaan; Deleye, Yann; Hannou, Sarah A; Vanhoutte, Jonathan; Maréchal, Xavier; Coisne, Augustin; Tagzirt, Madjid; Derudas, Bruno; Bouchaert, Emmanuel; Duhem, Christian; Vallez, Emmanuelle; Schalkwijk, Casper G; Pattou, François; Montaigne, David; Staels, Bart; Paumelle, Réjane
2017-01-01
The genomic CDKN2A/B locus, encoding p16INK4a among others, is linked to an increased risk for cardiovascular disease and type 2 diabetes. Obesity is a risk factor for both cardiovascular disease and type 2 diabetes. p16INK4a is a cell cycle regulator and tumour suppressor. Whether it plays a role in adipose tissue formation is unknown. p16INK4a knock-down in 3T3/L1 preadipocytes or p16INK4a deficiency in mouse embryonic fibroblasts enhanced adipogenesis, suggesting a role for p16INK4a in adipose tissue formation. p16INK4a-deficient mice developed more epicardial adipose tissue in response to the adipogenic peroxisome proliferator activated receptor gamma agonist rosiglitazone. Additionally, adipose tissue around the aorta from p16INK4a-deficient mice displayed enhanced rosiglitazone-induced gene expression of adipogenic markers and stem cell antigen, a marker of bone marrow-derived precursor cells. Mice transplanted with p16INK4a-deficient bone marrow had more epicardial adipose tissue compared to controls when fed a high-fat diet. In humans, p16INK4a gene expression was enriched in epicardial adipose tissue compared to other adipose tissue depots. Moreover, epicardial adipose tissue from obese humans displayed increased expression of stem cell antigen compared to lean controls, supporting a bone marrow origin of epicardial adipose tissue. These results show that p16INK4a modulates epicardial adipose tissue development, providing a potential mechanistic link between the genetic association of the CDKN2A/B locus and cardiovascular disease risk. PMID:28868898
Zarria-Romero, Jacquelyne; Osorio, Ana; Pino, José; Shiga, Betty; Vivas-Ruiz, Dan
2017-01-01
To evaluate the effect of ZnO, TiO2 and SiO2 nanoparticles on cell viability and expression of the interleukin 7, interleukin 3, and granulocyte-macrophage colony stimulating factor (GM-CSF) genes in Mus musculus. Red bone marrow was extracted from five Balb/c mice for the analysis of cell viability using the MTT test. The mice were divided into two groups of five each: one group was inoculated intraperitoneally with 0.5, 1.0, 2.5, 5.0, and 10 mg/kg of ZnO and SiO2 nanoparticles, respectively, and the other group was inoculated with 5.0, 10.0, 15.0, 20.0, and 25 mg/kg of TiO2 nanoparticles, respectively. Thirty hours later, RNA was extracted from the red bone marrow of the mice in both groups for gene expression analysis using quantitative PCR and RT-PCR. ZnO and SiO2 nanoparticles reduced cell viability in a dose-dependent manner by 37% and 26%, respectively, starting at a dose of 1 mg/kg. TiO2 nanoparticles at 5 mg/kg and 10 mg/kg reduced the gene expression of interleukins 7 and 3 by 55.3% and 70.2%, respectively, and SiO2 nanoparticles caused the greatest decrease (91%) in the expression of GM-CSF. ZnO nanoparticles reduced the expression of GM-CSF starting at doses of 20 mg/kg and 25 mg/kg. ZnO, SiO2 and TiO2 nanoparticles affect cell viability and gene expression in the mouse bone marrow.
Henry-Bonami, Rachel A; Williams, Jonathan M; Rachakonda, Amita B; Karamali, Mariam; Kendall, Peggy L; Thomas, James W
2013-06-15
Effective central tolerance is required to control the large extent of autoreactivity normally present in the developing B cell repertoire. Insulin-reactive B cells are required for type 1 diabetes in the NOD mouse, because engineered mice lacking this population are protected from disease. The Cg-Tg(Igh-6/Igh-V125)2Jwt/JwtJ (VH125Tg) model is used to define this population, which is found with increased frequency in the periphery of NOD mice versus nonautoimmune C57BL/6 VH125Tg mice; however, the ontogeny of this disparity is unknown. To better understand the origins of these pernicious B cells, anti-insulin B cells were tracked during development in the polyclonal repertoire of VH125Tg mice. An increased proportion of insulin-binding B cells is apparent in NOD mice at the earliest point of Ag commitment in the bone marrow. Two predominant L chains were identified in B cells that bind heterologous insulin. Interestingly, Vκ4-57-1 polymorphisms that confer a CDR3 Pro-Pro motif enhance self-reactivity in VH125Tg/NOD mice. Despite binding circulating autoantigen in vivo, anti-insulin B cells transition from the parenchyma to the sinusoids in the bone marrow of NOD mice and enter the periphery unimpeded. Anti-insulin B cells expand at the site of autoimmune attack in the pancreas and correlate with increased numbers of IFN-γ-producing cells in the repertoire. These data identify the failure to cull autoreactive B cells in the bone marrow as the primary source of anti-insulin B cells in NOD mice and suggest that dysregulation of central tolerance permits their escape into the periphery to promote disease.
Chinnasamy, N; Fairbairn, L J; Laher, J; Willington, M A; Rafferty, J A
1998-08-07
The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.
Han, Qianqian; Yang, Pishan; Wu, Yuwei; Meng, Shu; Sui, Lei; Zhang, Lan; Yu, Liming; Tang, Yin; Jiang, Hua; Xuan, Dongying; Kaplan, David L; Kim, Sung Hoon; Tu, Qisheng; Chen, Jake
2015-08-01
Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds.
Hisatomi, Toshio; Sonoda, Koh‐hei; Ishikawa, Fumihiko; Qiao, Hong; Nakamura, Takahiro; Fukata, Mitsuhiro; Nakazawa, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi‐Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W
2007-01-01
Aims To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Methods Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild‐type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. Results GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. Conclusion We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU. PMID:17035278
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: The purpose of this study was to compare a radiation therapy treatment planning that would spare active bone marrow and whole pelvic bone marrow using 18F FLT PET/CT image. Methods: We have developed an IMRT planning methodology to incorporate functional PET imaging using 18F FLT/CT scans. Plans were generated for two cervical cancer patients, where pelvicactive bone marrow region was incorporated as avoidance regions based on the range: SUV>2., another region was whole pelvic bone marrow. Dose objectives were set to reduce the volume of active bone marrow and whole bone marraw. The volumes of received 10 (V10) andmore » 20 (V20) Gy for active bone marrow were evaluated. Results: Active bone marrow regions identified by 18F FLT with an SUV>2 represented an average of 48.0% of the total osseous pelvis for the two cases studied. Improved dose volume histograms for identified bone marrow SUV volumes and decreases in V10(average 18%), and V20(average 14%) were achieved without clinically significant changes to PTV or OAR doses. Conclusion: Incorporation of 18F FLT/CT PET in IMRT planning provides a methodology to reduce radiation dose to active bone marrow without compromising PTV or OAR dose objectives in cervical cancer.« less
Pino, Ana María; Ríos, Susana; Astudillo, Pablo; Fernández, Mireya; Figueroa, Paula; Seitz, Germán; Rodríguez, J Pablo
2010-03-01
Osteoporosis is characterized by low bone mass, microarchitectural deterioration of bone tissue leading to increased bone fragility, and a resulting susceptibility to fractures. Distinctive environmental bone marrow conditions appear to support the development and maintenance of the unbalance between bone resorption and bone formation; these complex bone marrow circumstances would be reflected in the fluid surrounding bone marrow cells. The content of regulatory molecules in the extracellular fluid from the human bone marrow is practically unknown. Since the content of cytokines such as adiponectin, leptin, osteoprogeterin (OPG), soluble receptor activator of nuclear factor kappaB ligand (s-RANKL), tumor necrosis factor alpha, and interleukin 6 (IL-6) may elicit conditions promoting or sustaining osteoporosis, in this work we compared the concentrations of the above-mentioned cytokines and also the level of the soluble receptors for both IL-6 and leptin in the extracellular fluid from the bone marrow of nonosteoporotic and osteoporotic human donors. A supernatant fluid (bone marrow supernatant fluid [BMSF]) was obtained after spinning the aspirated bone marrow samples; donors were classified as nonosteoporotic or osteoporotic after dual-energy X-ray absorptiometry (DXA) measuring. Specific commercially available kits were used for all measurements. The cytokines' concentration in BMSF showed differently among nonosteoporotic and osteoporotic women; this last group was characterized by higher content of proinflammatory and adipogenic cytokines. Also, osteoporotic BMSF differentiated by decreased leptin bioavailability, suggesting that insufficient leptin action may distinguish the osteoporotic bone marrow. Copyright 2010 American Society for Bone and Mineral Research.
Shibata, Yoshimi; Gabbard, Jon; Yamashita, Makiko; Tsuji, Shoutaro; Smith, Mike; Nishiyama, Akihito; Henriksen, Ruth Ann; Myrvik, Quentin N
2006-09-01
Previous studies have shown that prostaglandin E(2) (PGE(2)) release by splenic F4/80(+) cyclooxygenase (COX)-2(+) macrophages (MØ) isolated from mice, treated with mycobacterial components, plays a major role in the regulation of immune responses. However, splenic MØ, isolated from untreated mice and treated in vitro with lipopolysaccharide and interferon-gamma, express COX-1 and COX-2 within 1 day but release only minimal amounts of PGE(2) following elicitation with calcium ionophore A23187. For further characterization of in vivo requirements for development of PGE(2)-releasing MØ (PGE(2)-MØ), C57Bl/6 [wild-type (WT)], and interleukin (IL)-10-deficient (IL-10(-/-)) mice were treated intraperitoneally with heat-killed Mycobacterium bovis bacillus Calmette-Guerin (HK-BCG). One day following injection, COX-2 was induced in splenic MØ of both mouse strains. However, PGE(2) biosynthesis by these MØ was not increased. Thus, expression of COX-2 is not sufficient to induce PGE(2) production in vivo or in vitro. In sharp contrast, 14 days after HK-BCG treatment, PGE(2) release by COX-2(+) splenic MØ increased as much as sevenfold, and a greater increase was seen in IL-10(-/-) cells than in WT cells. To further determine whether the 14-day splenic PGE(2)-MØ could be derived from bone marrow precursors, we established a chimera in which bone marrow cells were transfused from green fluorescent protein (GFP)-transgenic donors to WT mice. Donors and recipients were treated with HK-BCG simultaneously, and marrow transfusion was performed on Days 1 and 2. On Day 14 after BCG treatment, a significant number of spleen cells coexpressed COX-2 and GFP, indicating that bone marrow-derived COX-2(+) MØ may be responsible for the increased PGE(2) production.
Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro.
Torisawa, Yu-suke; Spina, Catherine S; Mammoto, Tadanori; Mammoto, Akiko; Weaver, James C; Tat, Tracy; Collins, James J; Ingber, Donald E
2014-06-01
Current in vitro hematopoiesis models fail to demonstrate the cellular diversity and complex functions of living bone marrow; hence, most translational studies relevant to the hematologic system are conducted in live animals. Here we describe a method for fabricating 'bone marrow-on-a-chip' that permits culture of living marrow with a functional hematopoietic niche in vitro by first engineering new bone in vivo, removing it whole and perfusing it with culture medium in a microfluidic device. The engineered bone marrow (eBM) retains hematopoietic stem and progenitor cells in normal in vivo-like proportions for at least 1 week in culture. eBM models organ-level marrow toxicity responses and protective effects of radiation countermeasure drugs, whereas conventional bone marrow culture methods do not. This biomimetic microdevice offers a new approach for analysis of drug responses and toxicities in bone marrow as well as for study of hematopoiesis and hematologic diseases in vitro.
Emodin enhances osteogenesis and inhibits adipogenesis
2014-01-01
Background It has been suggested that the formation of osteoblasts in bone marrow is closely associated with adipogenesis, and the balance between osteogenesis and adipogenesis differentiation of MSCs (mesenchymal stem cells) is disrupted in osteoporosis. In order to improve the treatment of osteoporosis, available agents with roles of regulating the balance is highly desirable. Emodin is a natural anthraquinone derivative extracted from Chinese herbs, which have been used to treat bone diseases for thousands of years. However, the underlying molecular mechanisms of emodin in modulating osteogenesis and adipogenesis remain poorly understood. Methods The molecular mechanisms of emodin on the processes of osteogenesis and adipogenesis in ovariectomized mouse and BMSCs (bone marrow mesenchymal stem cells) have been studied. We have analyzed the effects of emodin in vivo and in vitro. Female ICR mice were assigned to three groups: sham group, ovariectomy group, emodin group. Efficacy was evaluated by H&E, immunohistochemical assay and Micro-CT. In vitro, we analyze the effect of emodin—at concentrations between 0.1 μM and 10 μM-on the processes of inducing osteogenesis and inhibiting adipogenesis in BMSCs by ALP, Oil red O staining, real time RT-PCR and western blot. Results As our experiment shows that emodin could increase the number of osteoblast, BMD (bone mineral density), BV/TV (trabecular bone volume fraction), Tb.N (trabecular number) and Conn.D (connectivity density) of OVX (ovariectomized) mice and decrease the bone marrow fat tissue and adipocytes. The genes and proteins expression of osteogenesis markers, such as Runx2, osterix, collagen type I, osteocalcin, or ALP were up-regulated. While, the genes and proteins involved in adipogenesis, PPARγ, C/EBPα and ap2 were down-regulated. Conclusion It proves that emodin inhibits adipocyte differentiation and enhances osteoblast differentiation from BMSCs. PMID:24565373
ATP6V1H regulates the growth and differentiation of bone marrow stromal cells.
Li, Lin; Yang, Shaoqing; Zhang, Yanli; Ji, Dongrui; Jin, Zuolin; Duan, Xiaohong
2018-05-18
ATP6V1H encodes subunit H of vacuolar ATPase (V-ATPase) and may regulate osteoclastic function. The deficiency of ATP6V1H caused bone loss in human, mouse and zebrafish. In this report, we identified the mechanisms by which ATP6V1H regulates proliferation and differentiation of bone marrow stromal cells (BMSCs). We found that ATP6V1H was expressed in BMSCs, andAtp6v1h +/- BMSCs exhibited the lower proliferation rate, cell cycle arrest and reduced osteogenic differentiation capacity, as well as the increased adipogenic potentials. Histologic analysis confirmed less bone formation and more fatty degeneration in Atp6v1h +/- mice in the different age groups. Q-PCR analysis revealed that loss of ATP6V1H function downregulated the mRNA level of TGF-β1 receptor, and its binding molecule, subunit β of adaptor protein complex 2 (AP-2), suggesting ATP6V1H regulates the proliferation and differentiation of BMSCs by interacting with TGF-β receptor I and AP-2 complex. Copyright © 2018. Published by Elsevier Inc.
Nishikawa, Keizo; Nakashima, Tomoki; Takeda, Shu; Isogai, Masashi; Hamada, Michito; Kimura, Ayako; Kodama, Tatsuhiko; Yamaguchi, Akira; Owen, Michael J.; Takahashi, Satoru; Takayanagi, Hiroshi
2010-01-01
Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf–/– mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf+/– mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases. PMID:20877012
Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George
2010-01-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body. PMID:19430219
Caracappa, Peter F; Chao, T C Ephraim; Xu, X George
2009-06-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body.
Aguila, Hector L.; Mun, Se Hwan; Kalinowski, Judith; Adams, Douglas J.; Lorenzo, Joseph A.; Lee, Sun-Kyeong
2012-01-01
Interleukin-7 is a critical cytokine for lymphoid development and a direct inhibitor of in vitro osteoclastogenesis in murine bone marrow cultures. To explore the role of IL-7 in bone, we generated transgenic mouse lines bearing the 2.3 Kb rat collagen 1A1 promoter driving the expression of human IL-7 specifically in osteoblasts. In addition we crossed these mice with IL-7 deficient mice to determine if the alterations in lymphopoiesis, bone mass and osteoclast formation observed in the IL-7 KO mice could be rescued by osteoblast-specific overexpression of IL-7. Here we show that mice overexpressing human IL-7 in the osteoblast lineage demonstrated increased trabecular bone volume in vivo by µCT and decreased osteoclast formation in vitro. Furthermore, targeted overexpression of IL-7 in osteoblasts rescued the osteopenic bone phenotype and B cell development of IL-7 KO mice but did not have an effect on T lymphopoiesis, which occurs in the periphery. The bone phenotypes in IL-7 KO mice and targeted IL-7 overexpressing mouse models were observed only in females. These results likely reflect both a direct inhibitory effects of IL-7 on osteoclastogenesis in vivo and gender specific differences in responses to IL-7. PMID:22258693
MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages.
Li, Zhouyang; Wu, Yinfang; Chen, Hai-Pin; Zhu, Chen; Dong, Lingling; Wang, Yong; Liu, Huiwen; Xu, Xuchen; Zhou, Jiesen; Wu, Yanping; Li, Wen; Ying, Songmin; Shen, Huahao; Chen, Zhi-Hua
2018-04-15
Increasing toxicological and epidemiological studies have demonstrated that ambient particulate matter (PM) could cause adverse health effects including inflammation in the lung. Alveolar macrophages represent a major type of innate immune responses to foreign substances. However, the detailed mechanisms of inflammatory responses induced by PM exposure in macrophages are still unclear. We observed that coarse PM treatment rapidly activated mechanistic target of rapamycin (MTOR) in mouse alveolar macrophages in vivo, and in cultured mouse bone marrow-derived macrophages, mouse peritoneal macrophages, and RAW264.7 cells. Pharmacological inhibition or genetic knockdown of MTOR in bone marrow-derived macrophages leads to an amplified cytokine production upon PM exposure, and mice with specific knockdown of MTOR or ras homolog enriched in brain in myeloid cells exhibit significantly aggregated airway inflammation. Mechanistically, PM activated MTOR through modulation of ERK, AKT serine/threonine kinase 1, and tuberous sclerosis complex signals, whereas MTOR deficiency further enhanced the PM-induced necroptosis and activation of subsequent NF κ light-chain-enhancer of activated B cells (NFKB) signaling. Inhibition of necroptosis or NFKB pathways significantly ameliorated PM-induced inflammatory response in MTOR-deficient macrophages. The present study thus demonstrates that MTOR serves as an early adaptive signal that suppresses the PM-induced necroptosis, NFKB activation, and inflammatory response in lung macrophages, and suggests that activation of MTOR or inhibition of necroptosis in macrophages may represent novel therapeutic strategies for PM-related airway disorders. Copyright © 2018 by The American Association of Immunologists, Inc.
Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S
2016-01-01
Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer.
Pievani, Alice; Azario, Isabella; Antolini, Laura; Shimada, Tsutomu; Patel, Pravin; Remoli, Cristina; Rambaldi, Benedetta; Valsecchi, Maria Grazia; Riminucci, Mara; Biondi, Andrea; Tomatsu, Shunji; Serafini, Marta
2015-03-05
Neonatal bone marrow transplantation (BMT) could offer a novel therapeutic opportunity for genetic disorders by providing sustainable levels of the missing protein at birth, thus preventing tissue damage. We tested this concept in mucopolysaccharidosis type I (MPS IH; Hurler syndrome), a lysosomal storage disorder caused by deficiency of α-l-iduronidase. MPS IH is characterized by a broad spectrum of clinical manifestations, including severe progressive skeletal abnormalities. Although BMT increases the life span of patients with MPS IH, musculoskeletal manifestations are only minimally responsive if the timing of BMT delays, suggesting already irreversible bone damage. In this study, we tested the hypothesis that transplanting normal BM into newborn MPS I mice soon after birth can prevent skeletal dysplasia. We observed that neonatal BMT was effective at restoring α-l-iduronidase activity and clearing elevated glycosaminoglycans in blood and multiple organs. At 37 weeks of age, we observed an almost complete normalization of all bone tissue parameters, using radiographic, microcomputed tomography, biochemical, and histological analyses. Overall, the magnitude of improvements correlated with the extent of hematopoietic engraftment. We conclude that BMT at a very early stage in life markedly reduces signs and symptoms of MPS I before they appear. © 2015 by The American Society of Hematology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schepelmann, K.
1990-01-01
During postnatal development of the pigeon, a large portion of the skeleton becomes pneumatized, displacing the hemopoietic bone marrow. The consequences of pneumatization on distribution and quantity of bone marrow as well as the availability of other sites for hemopoiesis have been investigated. Hemopoietic marrow of differently aged pigeons divided into five groups from 1 week posthatching (p.h.) up to 6 months p.h. was labeled with Fe-59 and examined by serial whole-body sections. Autoradiography and morphometry as well as scintillation counts of single bones and organs were also carried out. No sign of a reactivation of embryonic sites of erythropoiesismore » was found. Bone marrow weight and its proportion of whole-body weight increased during the first 4 weeks p.h. from 0.54% to 2.44% and decreased in the following months to about 1.0%. The developing bone marrow showed a progressive distribution during the first months of life, eventually being distributed proportionally over the entire skeleton, except for the skull. At the age of 6 months p.h. bone marrow had been displaced, its volume decreasing in correlation to increasing pneumaticity and conversion to fatty marrow. This generates the characteristic pattern of bone marrow distribution in adult pigeons, which shows hemopoietic bone marrow in ulna, radius, femur, tibiotarsus, scapula, furcula, and the caudal vertebrae.« less
Laser processing of polymer constructs from poly(3-hydroxybutyrate).
Volova, T G; Tarasevich, A A; Golubev, A I; Boyandin, A N; Shumilova, A A; Nikolaeva, E D; Shishatskaya, E I
2015-01-01
CO2 laser radiation was used to process poly(3-hydroxybutyrate) constructs - films and 3D pressed plates. Laser processing increased the biocompatibility of unperforated films treated with moderate uniform radiation, as estimated by the number and degree of adhesion of NIH 3T3 mouse fibroblast cells. The biocompatibility of perforated films modified in the pulsed mode did not change significantly. At the same time, pulsed laser processing of the 3D plates produced perforated scaffolds with improved mechanical properties and high biocompatibility with bone marrow-derived multipotent, mesenchymal stem cells, which show great promise for bone regeneration.
The Application of Bone Marrow Transplantation to the Treatment of Genetic Diseases
NASA Astrophysics Data System (ADS)
Parkman, Robertson
1986-06-01
Genetic diseases can be treated by transplantation of either normal allogeneic bone marrow or, potentially, autologous bone marrow into which the normal gene has been inserted in vitro (gene therapy). Histocompatible allogeneic bone marrow transplantation is used for the treatment of genetic diseases whose clinical expression is restricted to lymphoid or hematopoietic cells. The therapeutic role of bone marrow transplantation in the treatment of generalized genetic diseases, especially those affecting the central nervous system, is under investigation. The response of a generalized genetic disease to allogeneic bone marrow transplantation may be predicted by experiments in vitro. Gene therapy can be used only when the gene responsible for the disease has been characterized. Success of gene therapy for a specific genetic disease may be predicted by its clinical response to allogeneic bone marrow transplantation.
Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E
2013-04-01
Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.
Figeac, Florence; Andersen, Ditte C; Nipper Nielsen, Casper A; Ditzel, Nicholas; Sheikh, Søren P; Skjødt, Karsten; Kassem, Moustapha; Jensen, Charlotte H; Abdallah, Basem M
2018-05-01
Soluble delta-like 1 homolog (DLK1) is a circulating protein that belongs to the Notch/Serrate/delta family, which regulates many differentiation processes including osteogenesis and adipogenesis. We have previously demonstrated an inhibitory effect of DLK1 on bone mass via stimulation of bone resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E deficiency-associated bone loss in mice. Thus, we generated mouse monoclonal anti-mouse DLK1 antibodies (MAb DLK1) that enabled us to reduce and also quantitate the levels of bioavailable serum DLK1 in vivo. Ovariectomized (ovx) mice were injected intraperitoneally twice weekly with MAb DLK1 over a period of one month. DEXA-, microCT scanning, and bone histomorphometric analyses were performed. Compared to controls, MAb DLK1 treated ovx mice were protected against ovx-induced bone loss, as revealed by significantly increased total bone mass (BMD) due to increased trabecular bone volume fraction (BV/TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss. Copyright © 2018 Elsevier Inc. All rights reserved.
Lau, Annette; Belanger, Christine Lea; Winn, Louise M
2009-05-31
Benzene, a ubiquitous pollutant, has been identified as a human leukemogen and early exposure to environmental carcinogens such as benzene has been linked to childhood leukemia. It is known that genotoxic agents can increase the frequency of DNA double-strand breaks (DSBs), which can initiate DNA recombinational repair mechanisms. In this study we investigated the induction of micronuclei, the formation of gamma-H2A.X as a marker of DNA DSBs, and the induction of somatic DNA recombination events in hematopoietic tissue from pKZ1 transgenic mice exposed acutely or in utero to benzene. Adult male C57Bl/6N mice were treated with a single i.p. injection of benzene, and timed-pregnant females pKZ1 were treated with daily i.p. injections of 200 mg/kg or 400 mg/kg benzene through gestational days 7-15. Acute exposure to 400 mg/kg benzene resulted in a statistically significant increase in the percentage of micronucleated cells in adult male bone marrow cells and in fetal liver and post-natal day 9 bone marrow cells of mice exposed in utero. Immunoblotting techniques did not detect benzene-induced increases in the formation of gamma-H2A.X in bone marrow cells of adult male mice and in maternal bone marrow, fetal liver, and post-natal bone marrow cells after specific time-point exposures. Finally, no recombination events were detected in adult pKZ1 mouse tissue; however, in post-natal day 9 pups in utero exposure to 400 mg/kg of benzene caused a trend towards increasing recombination frequency although this did not reach statistical significance. These results demonstrate that in utero exposure increases the frequency of micronuclei and DNA recombination events in hematopoietic tissue of fetal and post-natal mice and may be an initiating event in the etiology of childhood leukemias. Further investigations into different types of DNA damage and repair pathways are warranted to fully elucidate the role of genotoxic mechanisms in the etiology of benzene-induced childhood leukemias.
Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...
Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...
Madhu, Vedavathi; Li, Ching-Ju; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun
2014-01-01
Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.
Ma, Zhong-ping; Liao, Jia-cheng; Zhao, Chang; Cai, Dao-zhang
2015-08-01
Osteoporosis (OP) often increases the risk of bone fracture and other complications and is a major clinical problem. Previous studies have found that high blood pressure is associated with bone formation abnormalities, resulting in increased calcium loss. We have investigated the effect of the antihypertensive drug benidipine on bone marrow stromal cell (BMSC) differentiation into osteoblasts and bone formation under osteoporotic conditions. We used a combination of in vitro and in vivo approaches to test the hypothesis that benidipine promotes murine BMSC differentiation into osteoblasts. Alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (RUNX2), β-catenin, and low-density lipoprotein receptor-related protein 5 (LRP5) protein expression was evaluated in primary femoral BMSCs from C57/BL6 mice cultured under osteogenic conditions for 2 weeks to examine the effects of benidipine. An ovariectomized (OVX) mouse model was used to investigate the effect of benidipine treatment for 3 months in vivo. We found that ALP, OCN, and RUNX2 expression was up-regulated and WNT/β-catenin signaling was enhanced in vitro and in vivo. In OVX mice that were intragastrically administered benidipine, bone parameters (trabecular thickness, bone mineral density, and trabecular number) in the distal femoral metaphysis were significantly increased compared with control OVX mice. Consistently, benidipine promoted BMSC differentiation into osteoblasts and protected against bone loss in OVX mice. Therefore, benidipine might be a suitable candidate for the treatment of patients with postmenopausal osteoporosis and hypertension.
Yamaguchi, Masayoshi
2016-10-01
Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss with aging is induced by decreasing in osteoblastic bone formation and increasing in osteoclastic bone resorption, thereby leading to osteoporosis. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public heath problem. Pharmacologic and nutritional factors may play a role in the prevention and treatment of bone loss with aging. p-Hydroxycinnamic acid (HCA), which stimulates bone mineralization in mouse bone tissues in vitro, has been found to be present in the leafstalk of wasabi (Wasabi japonica MATSUM) among various food and plants. Other phenolic acids including cinnamic acid, ferulic acid, caffeic acid and 3,4-dimethoxycinnamic acid did not have osteogenic effects. HCA was demonstrated to stimulate osteoblastic bone formation and suppresses osteoclastic bone resorption in vitro by antagonizing activation of the nuclear factor kappa B. Oral administration of HCA was found to exhibit restorative effects on bone loss induced by ovariectomy and diabetic states, supporting a role in the treatment of osteoporosis. Moreover, HCA was demonstrated to prevent the suppressed osteoblastic mineralization and the enhanced osteoclastogenesis in mouse bone marrow cells cocultured with bone metastatic MDA-MB-231 human breast cancer cells in vitro. The botanical molecule HCA, as a new osteogenic agent, is suggested to play a role in the treatment of cancer bone metastases. This review will discuss an advanced recent finding that HCA may be a useful agent to treat bone metabolic disorder.
Delta-Tocotrienol: Radiation Protection and Effects on Signal Transduction Pathways
2011-06-15
Delta- Tocotrienol : Radiation Protection and Effects on Signal Transduction Pathways Venkataraman Srinivasan, PhD Mang Xiao, MD Principal...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Delta- Tocotrienol : Radiation Protection And Effects On...Mechanisms? 17 Survival of γ-irradiated mouse bone marrow and primary human hematopoietic CD34+ cells was significantly enhanced by Delta- tocotrienol (DT3
Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages.
Toma, Claudia; Okura, Nobuhiko; Takayama, Chitoshi; Suzuki, Toshihiko
2011-11-01
Leptospira interrogans is a spirochaete responsible for a zoonotic disease known as leptospirosis. Leptospires are able to penetrate the abraded skin and mucous membranes and rapidly disseminate to target organs such as the liver, lungs and kidneys. How this pathogen escape from innate immune cells and spread to target organs remains poorly understood. In this paper, the intracellular trafficking undertaken by non-pathogenic Leptospira biflexa and pathogenic L. interrogans in mouse bone marrow-derived macrophages was compared. The delayed in the clearance of L. interrogans was observed. Furthermore, the acquisition of lysosomal markers by L. interrogans-containing phagosomes lagged behind that of L. biflexa-containing phagosomes, and although bone marrow-derived macrophages could degrade L. biflexa as well as L. interrogans, a population of L. interrogans was able to survive and replicate. Intact leptospires were found within vacuoles at 24 h post infection, suggesting that bacterial replication occurs within a membrane-bound compartment. In contrast, L. biflexa were completely degraded at 24 h post infection. Furthermore, L. interrogans but not L. biflexa, were released to the extracellular milieu. These results suggest that pathogenic leptospires are able to survive, replicate and exit from mouse macrophages, enabling their eventual spread to target organs. © 2011 Blackwell Publishing Ltd.
The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid
Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan
2017-01-01
The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions. PMID:28165036
In vivo postirradiation protection by a vitamin E analog, alpha-TMG.
Satyamitra, Merriline; Uma Devi, P; Murase, Hironobu; Kagiya, V T
2003-12-01
The water-soluble vitamin E derivative alpha-TMG is an excellent radical scavenger. A dose of 600 mg/kg TMG significantly reduced radiation clastogenicity in mouse bone marrow when administered after irradiation. The present study was aimed at investigating the radioprotective effect of postirradiation treatment with alpha-TMG against a range of whole-body lethal (8.5-12 Gy) and sublethal (1-5 Gy) doses of radiation in adult Swiss albino mice. Protection against lethal irradiation was evaluated from 30-day mouse survival and against sublethal doses was assessed from micronuclei and chromosomal aberrations in the bone marrow 24 h after irradiation. An intraperitoneal injection of 600 mg/kg TMG within 10 min of lethal irradiation increased survival, giving a dose modification factor (DMF) of 1.09. TMG at doses of 400 mg/kg and 600 mg/kg significantly reduced the percentage of aberrant metaphases, the different types of aberrations, and the number of micronucleated erythrocytes. DMFs of 1.22 and 1.48 for percentage aberrant metaphases and 1.6 and 1.98 for micronuclei were obtained for 400 mg/kg and 600 mg/kg TMG, respectively. No drug toxicity was observed at these doses. The effectiveness of TMG when administered postirradiation suggests its possible utility for protection against unplanned radiation exposures.
Daev, E V; Dukel'skaia, A V; Kazarova, V E; Fil'kina, Ia A
2007-01-01
Frequency of cytogenetic disturbances was estimated in mitotically dividing bone marrow cells of CBA strain female mice after the 24-h long action of pheromone 2,5-dimethylpyrazine (2,5-DMP). The stage of the estrous cycle of each animal was taken into account at the moment of the end of the pheromone action. The analysis was performed using the anatelophase method that allows evaluating frequencies of various types of disturbances--bridges, fragments, delayed chromosomes. The spontaneous level of the mitotic disturbances revealed by the anatelophase method in animals of the control group amounts to 5.4 %. Action of pheromone 2,5-dimethylpyrasine induced the mitosis disturbances detected in the dividing bone marrow cells at the anaphase-telophase stage in the females at the di- + postestrus stage. The corresponding frequency of disturbances after the pheromone action was equal to 9.2%. In the female in estrus, the mitotic disturbance level amounted 6.7%, which did not differ statistically significantly from control. It is suggested that differences in the female mouse hormonal state at different estrous cycle stages affect sensitivity to olfactory signals. Mechanisms of the revealed effect and significance of the differences in sensitivity to pheromone for reproductive processes are discussed.
Role of bone marrow transplantation for correcting hemophilia A in mice
Follenzi, Antonia; Raut, Sanj; Merlin, Simone; Sarkar, Rita
2012-01-01
To better understand cellular basis of hemophilia, cell types capable of producing FVIII need to be identified. We determined whether bone marrow (BM)–derived cells would produce cells capable of synthesizing and releasing FVIII by transplanting healthy mouse BM into hemophilia A mice. To track donor-derived cells, we used genetic reporters. Use of multiple coagulation assays demonstrated whether FVIII produced by discrete cell populations would correct hemophilia A. We found that animals receiving healthy BM cells survived bleeding challenge with correction of hemophilia, although donor BM-derived hepatocytes or endothelial cells were extremely rare, and these cells did not account for therapeutic benefits. By contrast, donor BM-derived mononuclear and mesenchymal stromal cells were more abundant and expressed FVIII mRNA as well as FVIII protein. Moreover, injection of healthy mouse Kupffer cells (liver macrophage/mononuclear cells), which predominantly originate from BM, or of healthy BM-derived mesenchymal stromal cells, protected hemophilia A mice from bleeding challenge with appearance of FVIII in blood. Therefore, BM transplantation corrected hemophilia A through donor-derived mononuclear cells and mesenchymal stromal cells. These insights into FVIII synthesis and production in alternative cell types will advance studies of pathophysiological mechanisms and therapeutic development in hemophilia A. PMID:22368271
Arza, Elvira; Alvarez-Barrientos, Alberto; Fabregat, Isabel; Garcia-Bravo, Maria; Meza, Nestor W.; Segovia, Jose C.
2012-01-01
The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation. PMID:22457803
[Hypoplastic acute promyelocytic leukemia with continuous hypocellular bone marrow after remission].
Nakamura, Toshiki; Makiyama, Junya; Matsuura, Ayumi; Kurohama, Hirokazu; Kitanosono, Hideaki; Ito, Masahiro; Yoshida, Shinichiro; Miyazaki, Yasushi
2018-01-01
An 87-year old female presented with unsteady gait and occasional subcutaneous hematomas. Blood examination findings revealed pancytopenia and mild coagulopathy. Both the histopathological evaluation of bone marrow smears and bone marrow biopsy revealed a hypocellular bone marrow. However, APL cells were observed and PML-RARA fusion gene was detected. On the basis of these findings, the patient was diagnosed with hypoplastic acute promyelocytic leukemia. She received ATRA treatment and achieved complete remission (CR) 29 days from the commencement of therapy. After the first CR, she received two courses of ATO as a consolidation therapy. Following the latter treatments, she maintained CR, but a hypoplastic bone marrow was still observed. Hypoplastic AML is defined as AML with a low bone marrow cellularity. It is clinically important to distinguish it from aplastic anemia and hypoplastic MDS. It has been suggested that both cytogenetic and morphological diagnosis are imperative to the differential diagnosis of hypocellular bone marrow.
Li, Guanqun; Liu, Xujun; Du, Qian; Gao, Mei; An, Jing
2015-08-01
The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field. © 2015 by the Society for Experimental Biology and Medicine.
Baker, Amelia H; Watt, James; Huang, Cassie K; Gerstenfeld, Louis C; Schlezinger, Jennifer J
2015-06-15
Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor γ (PPARγ), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPARγ ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPARγ's role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPARγ and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPARγ (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPARγ antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that TBT activates multiple nuclear receptor pathways in BM-MSCs, activation of RXR is sufficient to suppress osteogenesis, and TBT suppresses osteogenesis largely through its direct interaction with RXR.
Zhang, Qing; Miller, Christopher; Bible, Jesse; Li, Jiliang; Xu, Xiaoqing; Mehta, Nozer; Gilligan, James; Vignery, Agnès; Scholz, Jodi A Carlson
2012-01-01
Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH). Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH or vehicle for four weeks. Both femurs from each rat were analyzed by X-ray and pQCT, then analyzed either by microCT, histology or biomechanical testing. Marrow ablation alone induced transient bone formation of low abundance that persisted over four weeks, while marrow ablation followed by PTH induced bone formation of high abundance that also persisted over four weeks. Our data confirms that the osteo-inducive effect of marrow ablation and the additive effect of marrow ablation, followed by PTH, occurs in aged rats. Our observations open new avenues of investigations in the field of tissue regeneration. Local marrow ablation, in conjunction with an anabolic agent, might provide a new platform for rapid site-directed bone growth in areas of high bone loss, such as in the hip and wrist, which are subject to fracture. PMID:24710549
Use of various diagnostic methods in a patient with Gaucher disease type I.
Farahati, J; Trenn, G; John-Mikolajewski, V; Zander, C; Pastores, G M; Sciuk, J; Reiners, C
1996-08-01
A series of plain radiographs, bone scans, bone marrow scans, and MRIs is reported in a patient with Gaucher disease type I, in whom two episodes of acute bone crisis developed during a 6-year period of follow-up. Acute bone crisis and global indolent bone marrow displacement could both be assessed by bone marrow scintigraphy, whereas MRI could better clarify the corti-comedullary alteration after bone infarction. Thus, MRI and bone marrow scintigraphy could be used as complementary imaging methods in the management of patients with Gaucher disease.
USDA-ARS?s Scientific Manuscript database
A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...
Su, Nan; Sun, Qidi; Li, Can; Lu, Xiumin; Qi, Huabing; Chen, Siyu; Yang, Jing; Du, Xiaolan; Zhao, Ling; He, Qifen; Jin, Min; Shen, Yue; Chen, Di; Chen, Lin
2010-01-01
Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3G369C/+ mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3G369C/+ cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3G369C/+ BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3G369C/+ mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH. PMID:20053668
Gou, Shanmiao; Liu, Tao; Li, Xiangsheng; Cui, Jing; Wan, Chidan; Wang, Chunyou
2012-01-01
Bone marrow-derived mesenchymal stem cells (bMSCs) contribute to tissue repair and regeneration. Cell fusion between somatic cells and bMSCs to form hybrid cells may have an important role in tissue repair through the subsequent reprogramming of the somatic cell nucleus. Few studies have assessed the mesenchymal characteristics of fusion-induced hybrid cells and their survival mechanisms. In this study, we investigated the effect of cell fusion on the biological characteristics of pancreatic ductal cells (PDCs) and on the survival mechanism of hybrid cells. To this end, we generated mouse-mouse hybrid cells in vitro by polyethylene glycol-mediated fusion of primary mouse bMSCs with primary mouse PDCs. Hybrid cells showed an enhanced capacity for proliferation and self-renewal compared with PDCs. No PDC had the capacity for anchorage-independent growth or invasion into Matrigel, but some hybrid cells were able to form colonies in soft agar and invade Matrigel. Expression of the tumor suppressor protein p53, which initiates apoptosis, was detected in hybrid cells but not in PDCs or bMSCs. However, the p53 deacetylase, sirtuin 1 (SIRT1), was also detected in hybrid cells, and the level of acetylated p53, the active form, was low. The addition of nicotinamide (Nam) inhibited the deacetylation activity of SIRT1 on p53 and induced cell apoptosis in hybrid cells. This study demonstrated that PDCs could obtain high proliferation rates, self-renewal capabilities, and mesenchymal characteristics by fusion with bMSCs. SIRT1 expression in the hybrid cells attenuated their apoptosis. Copyright © 2012 S. Karger AG, Basel.
Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos
2015-03-13
Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.
The dynamics of adult haematopoiesis in the bone and bone marrow environment.
Ho, Miriel S H; Medcalf, Robert L; Livesey, Stephen A; Traianedes, Kathy
2015-08-01
This review explores the dynamic relationship between bone and bone marrow in the genesis and regulation of adult haematopoiesis and will provide an overview of the haematopoietic hierarchical system. This will include the haematopoietic stem cell (HSC) and its niches, as well as discuss emerging evidence of the reciprocal interplay between bone and bone marrow, and support of the pleiotropic role played by bone cells in the regulation of HSC proliferation, differentiation and function. In addition, this review will present demineralized bone matrix as a unique acellular matrix platform that permits the generation of ectopic de novo bone and bone marrow and provides a means of investigating the temporal sequence of bone and bone marrow regeneration. It is anticipated that the utilization of this matrix-based approach will help researchers in gaining deeper insights into the major events leading to adult haematopoiesis in the bone marrow. Furthermore, this model may potentially offer new avenues to manipulate the HSC niche and hence influence the functional output of the haematopoietic system. © 2015 John Wiley & Sons Ltd.
Das, Anusuya; Segar, Claire E.; Chu, Yihsuan; Wang, Tiffany W.; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C.; Cui, Quanjun; Botchwey, Edward A.
2015-01-01
Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. PMID:26125501
Persistent injury-associated anemia: the role of the bone marrow microenvironment.
Millar, Jessica K; Kannan, Kolenkode B; Loftus, Tyler J; Alamo, Ines G; Plazas, Jessica; Efron, Philip A; Mohr, Alicia M
2017-06-15
The regulation of erythropoiesis involves hematopoietic progenitor cells, bone marrow stroma, and the microenvironment. Following severe injury, a hypercatecholamine state develops that is associated with increased mobilization of hematopoietic progenitor cells to peripheral blood and decreased growth of bone marrow erythroid progenitor cells that manifests clinically as a persistent injury-associated anemia. Changes within the bone marrow microenvironment influence the development of erythroid progenitor cells. Therefore, we sought to determine the effects of lung contusion, hemorrhagic shock, and chronic stress on the hematopoietic cytokine response. Bone marrow was obtained from male Sprague-Dawley rats (n = 6/group) killed 7 d after lung contusion followed by hemorrhagic shock (LCHS) or LCHS followed by daily chronic restraint stress (LCHS/CS). End point polymerase chain reaction was performed for interleukin-1β, interleukin-10, stem cell factor, transforming growth factor-β, high-mobility group box-1 (HMGB-1), and B-cell lymphoma-extra large. Seven days following LCHS and LCHS/CS, bone marrow expression of prohematopoietic cytokines (interleukin-1β, interleukin-10, stem cell factor, and transforming growth factor-β) was significantly decreased, and bone marrow expression of HMGB-1 was significantly increased. B-cell lymphoma-extra large bone marrow expression was not affected by LCHS or LCHS/CS (naïve: 44 ± 12, LCHS: 44 ± 12, LCHS/CS: 37 ± 1, all P > 0.05). The bone marrow microenvironment was significantly altered following severe trauma in a rodent model. Prohematopoietic cytokines were downregulated, and the proinflammatory cytokine HMGB-1 had increased bone marrow expression. Modulation of the bone marrow microenvironment may represent a therapeutic strategy following severe trauma to alleviate persistent injury-associated anemia. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, M.A.; Gelinas, R.E.; Miller
1989-04-01
Murine bone marrow was infected with a high-titer retrovirus vector containing the human {beta}-globin and neomycin phosphotransferase genes. Anemic W/W/sup v/ mice were transplanted with infected marrow which in some cases had been exposed to the selective agent G418. Human {beta}-globin expression was monitored in transplanted animals by using a monoclonal antibody specific for human {beta}-globin polypeptide, and hematopoietic reconstitution was monitored by using donor and recipient mice which differed in hemoglobin type. In some experiments all transplanted mice expressed the human {beta}-globin polypeptide for over 4 months, and up to 50% of peripheral erythrocytes contained detectable levels of polypeptide.more » DNA analysis of transplanted animals revealed that virtually every myeloid cell contained a provirus. Integration site analysis and reconstitution of secondary marrow recipients suggested that every mouse was reconstituted with at least one infected stem cell which had extensive repopulation capability. The ability to consistently transfer an active {beta}-globin gene into mouse hematopoietic cells improves the feasibility of using these techniques for somatic cell gene therapy in humans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C; Renmin Hospital of Wuhan University, Wuhan, Hubei Province; Wang, B
Purpose: Radio-dynamic therapy (RDT) is a potentially effective modality for local and systemic cancer treatment. Using RDT, the administration of a radio-sensitizer enhances the biological effect of high-energy photons. Although the sensitizer uptake ratio of tumor to normal tissue is normally high, one cannot simply neglect its effect on critical structures. In this study, we aim to explore planning strategies to improve bone marrow sparing without compromising the plan quality for RDT treatment of pelvic cancers. Methods: Ten cervical and ten prostate cancer patients who previously received radiotherapy at our institution were selected for this study. For each patient, ninemore » plans were created using the Varian Eclipse treatmentplanning-system (TPS) with 3D-CRT, IMRT, and VMAT delivery techniques containing various gantry angle combinations and optimization parameters (dose constraints to the bone marrow). To evaluate the plans for bone marrow sparing, the dose-volume parameters V5, V10, V15, V20, V30, and V40 for bone marrow were examined. Effective doseenhancement factors for the sensitizer were used to weigh the dose-volume histograms for various tissues from individual fractions. Results: The planning strategies had different impacts on bone marrow sparing for the cervical and prostate cases. For the cervical cases, provided the bone marrow constraints were properly set during optimization, the dose to bone marrow sparing was found to be comparable between different IMRT and VMAT plans regardless of the gantry angle selection. For the prostate cases, however, careful selection of gantry angles could dramatically improve the bone marrow sparing, although the dose distribution in bone marrow was clinically acceptable for all prostate plans that we created. Conclusion: For intensity-modulated RDT planning for cervical cancer, planners should set bone marrow constraints properly to avoid any adverse damage, while for prostate cancer one can carefully select gantry angles to improve bone marrow sparing when necessary.« less
Rahyussalim, Ahmad Jabir; Kurniawati, Tri; Rukmana, Andriansjah
2016-01-01
There was a concern on Mycobacterium tuberculosis spreading to the bone marrow, when it was applied on tuberculous spine infection. This research aimed to study the probability of using autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis. As many as nine patients with tuberculous spondylitis were used as samples. During the procedure, the vertebral lesion material and iliac bone marrow aspirates were obtained for acid fast staining, bacteria culture, and PCR (polymerase chain reaction) tests for Mycobacterium tuberculosis at the Clinical Microbiology Laboratory of Faculty of Medicine Universitas Indonesia. This research showed that there was a relationship between diagnostic confirmation of tuberculous spondylitis based on the PCR test and bacterial culture on the solid vertebral lesion material with the PCR test and bacterial culture from the bone marrow aspirates. If the diagnostic confirmation concluded positive results, then there was a higher probability that there would be a positive result for the bone marrow aspirates, so that it was not recommended to use autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis unless the PCR and culture examination of the bone marrow showed a negative result.
Marachelian, Araz; Villablanca, Judith G; Liu, Cathy W; Liu, Betty; Goodarzian, Fariba; Lai, Hollie A; Shimada, Hiroyuki; Tran, Hung C; Parra, Jaime A; Gallego, Richard; Bedrossian, Nora; Young, Sabrina; Czarnecki, Scarlett; Kennedy, Rebekah; Weiss, Brian D; Goldsmith, Kelly; Granger, Meaghan; Matthay, Katherine K; Groshen, Susan; Asgharzadeh, Shahab; Sposto, Richard; Seeger, Robert C
2017-09-15
Purpose: We determined whether quantifying neuroblastoma-associated mRNAs (NB-mRNAs) in bone marrow and blood improves assessment of disease and prediction of disease progression in patients with relapsed/refractory neuroblastoma. Experimental Design: mRNA for CHGA, DCX, DDC, PHOX2B, and TH was quantified in bone marrow and blood from 101 patients concurrently with clinical disease evaluations. Correlation between NB-mRNA (delta cycle threshold, Δ C t , for the geometric mean of genes from the TaqMan Low Density Array NB5 assay) and morphologically defined tumor cell percentage in bone marrow, 123 I-meta-iodobenzylguanidine (MIBG) Curie score, and CT/MRI-defined tumor longest diameter was determined. Time-dependent covariate Cox regression was used to analyze the relationship between Δ C t and progression-free survival (PFS). Results: NB-mRNA was detectable in 83% of bone marrow (185/223) and 63% (89/142) of blood specimens, and their Δ C t values were correlated (Spearman r = 0.67, P < 0.0001), although bone marrow C t was 7.9 ± 0.5 C t stronger than blood C t When bone marrow morphology, MIBG, or CT/MRI were positive, NB-mRNA was detected in 99% (99/100), 88% (100/113), and 81% (82/101) of bone marrow samples. When all three were negative, NB-mRNA was detected in 55% (11/20) of bone marrow samples. Bone marrow NB-mRNA correlated with bone marrow morphology or MIBG positivity ( P < 0.0001 and P = 0.007). Bone marrow and blood Δ C t values correlated with PFS ( P < 0.001; P = 0.001) even when bone marrow was morphologically negative ( P = 0.001; P = 0.014). Multivariate analysis showed that bone marrow and blood Δ C t values were associated with PFS independently of clinical disease and MYCN gene status ( P < 0.001; P = 0.055). Conclusions: This five-gene NB5 assay for NB-mRNA improves definition of disease status and correlates independently with PFS in relapsed/refractory neuroblastoma. Clin Cancer Res; 23(18); 5374-83. ©2017 AACR . ©2017 American Association for Cancer Research.
DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.
Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas
2015-12-01
The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.
Belle, Mônica B B; Leffa, Daniela D; Mazzorana, Daliane; De Andrade, Vanessa M
2013-01-01
Contrast media (CM) are frequently used in diagnostic radiology and in radiotherapy as a diagnostic tool and in treatment planning. Previous studies have demonstrated that these compounds induce chromosomal aberrations. This study evaluates the mutagenic effects induced by the contrast medium Urografina® 292 (meglumine amidotrizoate and sodium-ionic dimmer) in bone marrow cells (BMC) of mice in vivo. Micronuclei assay was performed in BMC of CF-1 mice injected with CM 1.5 and 3.0 mL/kg intravenous doses and 1.0, 2.0, 3.0 mL/kg intraperitoneal doses. The animals were beheaded 24 h after treatment by cervical dislocation, and femur BMC from each animal were used in the micronucleus test. The group treated with the highest intravenous injection of Urografina® 292 (3.0 mL/kg) presented an increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs) in relation at the control group (P<0.05). The results obtained after intraperitoneal administration of CM showed that all doses (1.0 mL/kg, 2.0 mL/kg and 3.0 mL/kg) increased the frequency of MNPCEs, being significantly different from the negative control (P< 0.01). The present results suggest that iodinated contrast media Urografina® 292 may cause a significant increase of cytogenetic damage in bone marrow cells of mice.
Macrophage-selective toxicity as a mechanism of hydroquinone-induced myelotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.J.
1989-01-01
This research has focused upon the role of the bone marrow stroma in the etiology of benzene hematotoxicity. Treatment with the metabolite hydroquinone results in a reduced capacity of the stroma to support myelopoiesis. The goal of this research was to examine stromal cell selective toxicity following hydroquinone treatment. Populations of macrophages and a fibroblastoid cell line (LTF) or primary fibroblasts were developed from mouse bone marrow. Following treatment of with hydroquinone, treated or control fibroblastoid cells were reconstituted with control or treated macrophages, respectively, and the cultures were assayed for their ability to support myelopoiesis. To examine mechanisms ofmore » selective toxicity, macrophage and LTF cultures were incubated with 14C-hydroquinone and bioactivation was examined. After 24 hours, macrophages had 16-fold higher levels of bound {sup 14}C than LTF cells. Peroxide-dependent bioactivation in cell homogenates revealed that peroxide could support formation of covalent-binding species in macrophage homogenates but not in LTF homogenates. It was determined that macrophages, but not LTF cells, contained detectable levels of peroxidase activity which was consistent with the postulate that increased binding was due to peroxidase-mediated bioactivation of hydroquinone. Accordingly, purified myeloperoxidase incubated with {sup 14}C-hydroquinone, resulted in bioactivation to a covalent-binding species. This study provided evidence supporting selective bioactivation as a mechanism of selective toxicity of hydroquinone to bone marrow stromal macrophages.« less
Bone marrow transplant - discharge
Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - discharge; ...
A patient with familial bone marrow failure and an inversion of chromosome 8.
Buchbinder, David Kyle; Zadeh, Touran; Nugent, Diane
2011-12-01
Familial bone marrow failure has been associated with a variety of chromosomal aberrations. Chromosome 8 abnormalities have been described in association with neoplastic and hematologic disorders; however, to our knowledge, inversion of the long arm of chromosome 8 has not been described in the context of familial bone marrow failure. We describe a 9-year-old female with familial bone marrow failure and an inversion of chromosome 8 [inv (8) (q22, q24.3)]. Given the importance of considering the genetic determinants of familial bone marrow failure, the potential role of chromosome 8 abnormalities in the development of marrow failure is discussed.
Is fatty acid composition of human bone marrow significant to bone health?
Pino, Ana María; Rodríguez, J Pablo
2017-12-16
The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.
Bone and fat connection in aging bone.
Duque, Gustavo
2008-07-01
The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.
Tomco, Marek; Petrovova, Eva; Giretova, Maria; Almasiova, Viera; Holovska, Katarina; Cigankova, Viera; Jenca, Andrej; Jencova, Janka; Jenca, Andrej; Boldizar, Martin; Balazs, Kosa; Medvecky, Lubomir
2017-09-01
Bone tissue engineering combines biomaterials with biologically active factors and cells to hold promise for reconstructing craniofacial defects. In this study the biological activity of biphasic hydroxyapatite ceramics (HA; a bone substitute that is a mixture of hydroxyapatite and β-tricalcium phosphate in fixed ratios) was characterized (1) in vitro by assessing the growth of MC3T3 mouse osteoblast lineage cells, (2) in ovo by using the chick chorioallantoic membrane (CAM) assay and (3) in an in vivo pig animal model. Biocompatibility, bioactivity, bone formation and biomaterial degradation were detected microscopically and by radiology and histology. HA ceramics alone demonstrated great biocompatibility on the CAM as well as bioactivity by increased proliferation and alkaline phosphatase secretion of mouse osteoblasts. The in vivo implantation of HA ceramics with bone marrow mesenchymal stem cells (MMSCs) showed de novo intramembranous bone healing of critical-size bone defects in the right lateral side of pig mandibular bodies after 3 and 9 weeks post-implantation. Compared with the HA ceramics without MMSCs, the progress of bone formation was slower with less-developed features. This article highlights the clinical use of microporous biphasic HA ceramics despite the unusually shaped elongated micropores with a high length/width aspect ratio (up to 20) and absence of preferable macropores (>100 µm) in bone regenerative medicine.
Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lane, Nancy E; Yao, Wei
2015-01-01
The effect of progesterone on bone remains elusive. We previously reported that global progesterone receptor (PR) knockout mice displayed high bone mass phenotype, suggesting that PR influences bone growth and modeling. Recently, Mx1+ cells were characterized to be mesenchymal stem cell-like pluripotent Cells. The aim of this study was to evaluate whether the PR in Mx1+ cells regulates osteogenesis. Using the Mx1-Cre;mT/mG reporter mouse model, we found that the calvarial cells exhibited minimal background Mx1-Cre activity prior to Cre activation by IFNα treatment as compared to the bone marrow stromal cells. IFNα treatment significantly activated Mx1-Cre in the calvarial cells. When the PR gene was deleted in the Mx1-Cre;PR-flox calvarial cells in vitro, significantly higher levels of expression of osteoblast maturation marker genes (RUNX2, Osteocalcin, and Dmp1) and osteogenic potential were detected. The PR-deficient calvariae exhibited greater bone volume, especially in the males. Although Mx1-Cre activity could be induced on the bone surface in vivo, the Mx1+ cells did not differentiate into osteocytes in long bones. Bone volumes at the distal femurs and the bone turnover marker serum Osteocalcin were similar between the Mx1-Cre;PR-flox mutant mice and the corresponding wild types in both sexes. In conclusion, our data demonstrates that blocking progesterone signaling via PRs in calvarial Mx1+ cells promoted osteoblast differentiation in the calvaria. Mx1+ was expressed by heterogeneous cells in bone marrow and did not differentiate into osteocyte during long bone development in vivo. Selectively inactivating the PR gene in Mx1+ cells affected the membrane bone formation but did not affect peripheral skeletal homeostasis.
Cocaine-contaminated allogeneic bone marrow transplantation.
Keung, Y K; Morgan, D; Cobos, E
2001-01-01
Should a person with history of drug addiction be categorically denied as a bone marrow donor? The answer to the question is controversial. We report a case of allogeneic bone marrow transplantation for refractory acute myeloid leukemia preceded by essential thrombocythemia. The donor used cocaine and marijuana the night before the bone marrow harvest. Copyright 2001 S. Karger AG, Basel
Park, Il-Hyung; Micic, Ivan Dragoljub; Jeon, In-Ho
2008-02-01
The treatment of unicameral bone cyst varies from percutaneous needle biopsy, aspiration and local injection of steroid, autologous bone marrow, or demineralized bone matrix to curettage and open bone-grafting. The purpose of this study was to compare the results of open chip allogeneic bone graft versus percutaneous injection of demineralized bone powder with autogenous bone marrow in management of calcaneal cysts. Twenty-three calcaneal unicameral cysts in 20 patients were treated. Lyophilized irradiated chip allogeneic bone (CAB) and autogenous bone marrow were used for treatment of 13 cysts in 11 patients, and 10 cysts in 9 patients were treated with percutaneous injection of irradiated allogeneic demineralized bone powder (DBP) and autogenous bone marrow. There were 11 males and 9 female patients with mean age of 17 years. The patients were followed for an average of 49.4 months. Complete healing was achieved in 9 cysts treated with chip allogeneic bone and in 5 cysts treated with powdered bone. Four cysts treated with CAB and 3 cysts treated with DBP healed with a defect. Two cysts treated with powdered bone and autogenous bone marrow were classified as persistent. No infections or pathological fractures were observed during the followup period. Percutaneous injection of a mixture of allogeneic bone powder with autogenous bone marrow is a minimal invasive method and could be an effective alternative in the treatment of unicameral calcaneal bone cysts. The postoperative morbidity was low, the hospital stay was brief, and patient's comfort for unrestricted activity was enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, T.; Waki, N.; Asai, H.
The spleen colony-forming assay does not represent the number of hematopoietic stem cells with extensive self-maintaining capacity because five to 50 spleen colony-forming units (CFU-S) are necessary to rescue a genetically anemic (WB X C57BL/6)F1-W/Wv(WBB6F1-W/Wv) mouse. We investigated which is more important for the reconstitution of erythropoiesis, the transplantation of multiple CFU-S or that of a single stem cell with extensive self-maintaining potential. The electrophoretic pattern of hemoglobin was used as a marker of reconstitution and that of phosphoglycerate kinase (PGK), an X chromosome-linked enzyme, as a tool for estimating the number of stem cells. For this purpose, we developedmore » the C57BL/6 congeneic strain with the Pgk-1a gene. Bone marrow cells were harvested after injection of 5-fluorouracil from C57BL/6-Pgk-1b/Pgk-1a female mice in which each stem cell had either A-type PGK or B-type PGK due to the random inactivation of one or two X chromosomes. When a relatively small number of bone marrow cells (ie, 10(3) or 3 X 10(3) were injected into 200-rad-irradiated WBB6F1-W/Wv mice, the hemoglobin pattern changed from the recipient type (Hbbd/Hbbs) to the donor type (Hbbs/Hbbs) in seven of 150 mice for at least 8 weeks. Erythrocytes of all these WBB6F1-W/Wv mice showed either A-type PGK alone or B-type PGK alone during the time of reconstitution, which suggests that a single stem cell with extensive self-maintaining potential may sustain the whole erythropoiesis of a mouse for at least 8 weeks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishino, Ruri; Minami, Kaori; Tanaka, Satowa
2013-10-11
Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient formore » the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.« less
Russell, Heidi V; Golding, Laurie A; Suell, Mary Nell; Nuchtern, Jed G; Strother, Douglas R
2005-12-01
Bone marrow aspirations and biopsies are standard staging procedures for neuroblastoma because the tumor frequently metastasizes to the bone marrow. The presence of bone marrow metastases indicates stage 4 or 4S neuroblastoma by International Neuroblastoma Staging System (INSS) criteria; these stages are also associated with other metastatic sites of disease. We questioned whether bone marrow studies changed the staging or treatment of children with localized, completely resected tumors if there was no other evidence of metastatic spread. If stage of disease rarely changed with bone marrow results, it might be possible to avoid this procedure in a subset of patients with neuroblastoma. The staging studies of patients with INSS stage 1 (n = 29), 4 (n = 60), and 4S (n = 13) neuroblastoma from two institutions were reviewed. There were no patients upstaged from stage 1 to 4 or 4S by bone marrow metastases alone. Fifty-nine of 60 stage 4 patients had other sites of metastases on imaging studies, the remaining patient had an unresectable primary tumor and marrow disease. All subjects with stage 4S disease had liver metastases. Bone marrow studies did not contribute data that changed the stage of patients who had surgically resectable tumors and no evidence of metastatic spread on imaging studies. When present, metastatic spread to the marrow was associated with advanced local tumors or other sites of metastatic disease. Given the relatively small size of our study population, further studies are warranted that investigate the utility of bone marrow studies for patients who otherwise have INSS stage 1 neuroblastoma. 2005 Wiley-Liss, Inc.
Bueno, Clara; Roldan, Mar; Anguita, Eduardo; Romero-Moya, Damia; Martín-Antonio, Beatriz; Rosu-Myles, Michael; del Cañizo, Consuelo; Campos, Francisco; García, Regina; Gómez-Casares, Maite; Fuster, Jose Luis; Jurado, Manuel; Delgado, Mario; Menendez, Pablo
2014-07-01
Aplastic anemia is a life-threatening bone marrow failure disorder characterized by peripheral pancytopenia and marrow hypoplasia. The majority of cases of aplastic anemia remain idiopathic, although hematopoietic stem cell deficiency and impaired immune responses are hallmarks underlying the bone marrow failure in this condition. Mesenchymal stem/stromal cells constitute an essential component of the bone marrow hematopoietic microenvironment because of their immunomodulatory properties and their ability to support hematopoiesis, and they have been involved in the pathogenesis of several hematologic malignancies. We investigated whether bone marrow mesenchymal stem cells contribute, directly or indirectly, to the pathogenesis of aplastic anemia. We found that mesenchymal stem cell cultures can be established from the bone marrow of aplastic anemia patients and display the same phenotype and differentiation potential as their counterparts from normal bone marrow. Mesenchymal stem cells from aplastic anemia patients support the in vitro homeostasis and the in vivo repopulating function of CD34(+) cells, and maintain their immunosuppressive and anti-inflammatory properties. These data demonstrate that bone marrow mesenchymal stem cells from patients with aplastic anemia do not have impaired functional and immunological properties, suggesting that they do not contribute to the pathogenesis of the disease. Copyright© Ferrata Storti Foundation.
Han, Qianqian; Yang, Pishan; Wu, Yuwei; Meng, Shu; Sui, Lei; Zhang, Lan; Yu, Liming; Tang, Yin; Jiang, Hua; Xuan, Dongying; Kaplan, David L.; Kim, Sung Hoon
2015-01-01
Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds. PMID:25923143
Suva, Larry J.; Hartman, Eric; Dilley, Joshua D.; Russell, Susan; Akel, Nisreen S.; Skinner, Robert A.; Hogue, William R.; Budde, Ulrich; Varughese, Kottayil I.; Kanaji, Taisuke; Ware, Jerry
2008-01-01
The platelet glycoprotein Ib-IX receptor binds surface-bound von Willebrand factor and supports platelet adhesion to damaged vascular surfaces. A limited number of mutations within the glycoprotein Ib-IX complex have been described that permit a structurally altered receptor to interact with soluble von Willebrand factor, and this is the molecular basis of platelet-type von Willebrand disease. We have developed and characterized a mouse model of platelet-type von Willebrand disease (G233V) and have confirmed a platelet phenotype mimicking the human disorder. The mice have a dramatic increase in splenic megakaryocytes and splenomegaly. Recent studies have demonstrated that hematopoetic cells can influence the differentiation of osteogenic cells. Thus, we examined the skeletal phenotype of mice expressing the G233V variant complex. At 6 months of age, G233V mice exhibit a high bone mass phenotype with an approximate doubling of trabecular bone volume in both the tibia and femur. Serum measures of bone resorption were significantly decreased in G233V animals. With decreased bone resorption, cortical thickness was increased, medullary area decreased, and consequently, the mechanical strength of the femur was significantly increased. Using ex vivo bone marrow cultures, osteoclast-specific staining in the G233V mutant marrow was diminished, whereas osteoblastogenesis was unaffected. These studies provide new insights into the relationship between the regulation of megakaryocytopoiesis and bone mass. PMID:18187573
Copper-64 Labeled Liposomes for Imaging Bone Marrow
Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore
2016-01-01
Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056
Xu, Min; Chisholm, Karen M; Fan, Guang; Stevens, Anne M; Rutledge, Joe C
2017-01-01
In our recent case report, the finding of lupus erythematosus (LE) cells in a bone marrow aspirate led to the diagnosis of systemic lupus erythematosus (SLE) and appropriate treatment, although the patient was not clinically suspected to have SLE. To determine whether LE cells are present in the bone marrow aspirates of SLE patients, but overlooked in routine bone marrow morphology review, bone marrow aspirates from 30 pediatric patients (15 with SLE and 15 with other diagnoses) evaluated by rheumatologists were reviewed. LE cells were found in the bone marrow aspirates of only 1 SLE patient and none in non-SLE patients. However, hematoxylin bodies were identified in 53% (8/15) of SLE patients. Neither hematoxylin bodies nor LE cells were found in the aspirates from patients with other disorders. Three additional pediatric patients identified prospectively were found to have hematoxylin bodies in the bone marrow aspirates. Although the diagnosis was not initially suspected, 2 of the 3 patients were subsequently diagnosed with SLE. All patients with hematoxylin bodies and SLE had antinuclear antibody titers ≥1:640 with a homogeneous staining pattern. In addition, bone marrow aspirates of 9 adult patients were reviewed, and neither LE cells nor hematoxylin bodies were identified. In summary, hematoxylin bodies were present in the bone marrow aspirates of many pediatric SLE patients, while LE cells were rare. The finding of hematoxylin bodies in pediatric bone marrow aspirates is a helpful and specific diagnostic clue that may lead to the diagnosis of SLE when other clinical features are nonspecific.
Bone marrow analysis of immune cells and apoptosis in patients with systemic lupus erythematosus.
Park, J W; Moon, S Y; Lee, J H; Park, J K; Lee, D S; Jung, K C; Song, Y W; Lee, E B
2014-09-01
To examine the immune cell profile in the bone marrow of systemic lupus erythematosus (SLE) patients and to assess its clinical relevance. Sixteen bone marrow samples from 14 SLE patients were compared with seven healthy control samples. The numbers of immune cells and apoptotic cells in the bone marrow were examined by immunohistochemistry. The association between immune cell subsets and clinical features was investigated. CD4+ T cells, macrophages and plasma cells were more common in the bone marrow of SLE patients than in healthy controls (p=0.001, p=0.004 and p<0.001, respectively). Greater numbers of CD4+ T cells and macrophages were associated with high-grade bone marrow damage. The percentage of apoptotic cells in bone marrow of SLE patients was significantly higher than that in controls (p<0.001) and was positively correlated with the number of plasmacytoid dendritic cells (p=0.013). Increased number of plasma cells along with high interleukin-6 expression was correlated with anti-double stranded DNA antibody levels and the SLE disease activity index (p=0.031 and 0.013, respectively). Bone marrow from SLE patients showed a distinct immune cell profile and increased apoptosis. This, coupled with a correlation with disease activity, suggests that the bone marrow may play a critical role in the pathogenesis of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye
2013-01-01
An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.
Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye
2013-01-01
Introduction. An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods. PMID:23606951
Marrow donor registry and cord blood bank in Taiwan.
Lee, Tsung Dao
2002-08-01
Unrelated Bone marrow transplant was initiated thirty years ago. Though there are over millions of donors registered with the bone marrow registries worldwide, Asian patients rarely find a match with all these donors. Tzu Chi Marrow Donor Registry was established to meet this need. It has become the largest Asian marrow donor registry in the world. With the introduction of high technology to test the HLA of the donors and recipients, the success rate of bone marrow transplant is greatly improved among Asian countries. 50% of blood disease Asian patients who cannot find a bone marrow matched donor will be complemented by the establishment of cord blood banks in Taiwan.
Pambrun, Emilie; Mengelle, Catherine; Fillola, Geneviève; Laharrague, Patrick; Esposito, Laure; Cardeau-Desangles, Isabelle; Del Bello, Arnaud; Izopet, Jacques; Rostaing, Lionel; Kamar, Nassim
2014-01-01
The human polyomavirus BK (BKV) is associated with severe complications, such as ureteric stenosis and polyomavirus-associated nephropathy (PVAN), which often occur in kidney-transplant patients. However, it is unknown if BKV can replicate within bone marrow. The aim of this study was to search for BKV replication within the bone marrow of kidney-transplant patients presenting with a hematological disorder. Seventy-two kidney-transplant patients underwent bone-marrow aspiration for cytopenia. At least one virus was detected in the bone marrow of 25/72 patients (35%), that is, parvovirus B19 alone (n = 8), parvovirus plus Epstein-Barr virus (EBV) (n = 3), cytomegalovirus (n = 4), EBV (n = 2), BKV alone (n = 7), and BKV plus EBV (n = 1). Three of the eight patients who had BKV replication within the bone marrow had no detectable BKV replication in the blood. Neutropenia was observed in all patients with BKV replication in the bone marrow, and blockade of granulocyte maturation was observed. Hematological disorders disappeared in all patients after doses of immunosuppressants were reduced. In conclusion, an association between BKV replication in bone marrow and hematological disorders, especially neutropenia, was observed. Further studies are needed to confirm these findings. PMID:24868448
Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate.
Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T; Bi, Ruiye; Maridas, David; DeMambro, Victoria; Figueroa, Carolina A; Kir, Serkan; Zhou, Xuedong; Mannstadt, Michael; Baron, Roland; Bronson, Roderick T; Horowitz, Mark C; Wu, Joy Y; Bilezikian, John P; Dempster, David W; Rosen, Clifford J; Lanske, Beate
2017-03-07
Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.
Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A
2015-09-01
Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bone Marrow Adipose Tissue and Skeletal Health.
Muruganandan, Shanmugam; Govindarajan, Rajgopal; Sinal, Christopher J
2018-05-31
To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling. Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health. Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.
2011-04-01
Differentiation of mouse embryonic stem cells Immunology: - Flow cytometry - Proliferation Assays - Chromium Release Assays - B...of metastatic cells in close proximation to hepatocytes in the liver. Additionally, re-expression of E-cadherin was observed in the membrane of the...profile CD44+/CD24low/ESA+ using fluorescence- activated cell sorting (FACS) [4]. Subcutaneous injection of low numbers of the sorted cell
Morimoto, Yoshitaka; Hoshino, Hironobu; Sakurai, Takashi; Terakawa, Susumu; Nagano, Akira
2009-04-01
Quantitative evaluation of the ability of bone resorption activity in live osteoclast-like cells (OCLs) has not yet been reported on. In this study, we observed the sequential morphological change of OCLs and measured the resorbing calcium phosphate (CP) area made by OCLs alone and with the addition of elcatonin utilizing incubator facilitated video-enhanced microscopy. OCLs, which were obtained from a coculture of ddy-mouse osteoblastic cells and bone marrow cells, were cultured on CP-coated quartz cover slips. The CP-free area increased constantly in the OCLs alone, whereas it did not increase after the addition of elcatonin. This study showed that analysis of the resorbed areas under the OCL body using this method enables the sequential quantitative evaluation of the bone resorption activity and the effect of several therapeutic agents on bone resorption in vitro.
Wynn, Robert F; Hart, Claire A; Corradi-Perini, Carla; O'Neill, Liam; Evans, Caroline A; Wraith, J Ed; Fairbairn, Leslie J; Bellantuono, Ilaria
2004-11-01
Homing of bone marrow stromal cells (MSCs) to bone and bone marrow after transplantation, important for the correction of conditions such as metabolic storage disorders, can occur but with poor efficiency. Substantial improvements in engraftment will be required in order to derive a clinical benefit from MSC transplantation. Chemokines are the most important factors controlling cellular migration. Stromal-derived factor-1 (SDF-1) has been shown to be critical in promoting the migration of cells to the bone marrow, via its specific receptor CXCR4. The aim of our study was to investigate CXCR4 expression on MSCs and its role in mediating migration to bone marrow. We show that CXCR4, although present at the surface of a small subset of MSCs, is important for mediating specific migration of these cells to bone marrow.
Autologous bone marrow purging with LAK cells.
Giuliodori, L; Moretti, L; Stramigioli, S; Luchetti, F; Annibali, G M; Baldi, A
1993-12-01
In this study we will demonstrate that LAK cells, in vitro, can lyse hematologic neoplastic cells with a minor toxicity of the staminal autologous marrow cells. In fact, after bone marrow and LAK co-culture at a ratio of 1/1 for 8 hours, the inhibition on the GEMM colonies resulted to be 20% less compared to the untreated marrow. These data made LAK an inviting agent for marrow purging in autologous bone marrow transplantation.
GVHD; Bone marrow transplant - graft-versus-host disease; Stem cell transplant - graft-versus-host disease; Allogeneic transplant - ... GVHD may occur after a bone marrow, or stem cell, transplant in which someone receives bone marrow ...
Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko
2015-07-01
The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Type I interferon regulates pDC maturation and Ly49Q expression.
Toma-Hirano, Makiko; Namiki, Sahori; Miyatake, Shoichiro; Arai, Ken-Ichi; Kamogawa-Schifter, Yumiko
2007-10-01
Ly49Q is expressed on peripheral mouse plasmacytoid dendritic cells (pDC). Immature Ly49Q-negative pDC precursors acquire Ly49Q in the bone marrow and then migrate into the periphery. While searching for molecules that regulate pDC maturation, we found that type I interferon (IFN) inhibited Ly49Q acquisition in vitro. Infections that induce type I IFN production by cells other than pDC (a condition mimicked by poly(I:C) injection in vivo) increase the prevalence of Ly49Q(-) pDC in the bone marrow and peripheral lymphoid organs in wild-type but not IFN-alpha/beta receptor knockout BALB/c mice. Moreover, in vivo exposure to type I IFN causes some Ly49Q(-), but not Ly49Q(+), pDC to convert to conventional DC, defined as B220(-) CD11c(+) CD11b(+) cells. These data suggest that type I IFN regulates pDC development and affects their distribution in the body.
Tulpule, Asmin; Lensch, M William; Miller, Justine D; Austin, Karyn; D'Andrea, Alan; Schlaeger, Thorsten M; Shimamura, Akiko; Daley, George Q
2010-04-29
Fanconi anemia (FA) is a genetically heterogeneous, autosomal recessive disorder characterized by pediatric bone marrow failure and congenital anomalies. The effect of FA gene deficiency on hematopoietic development in utero remains poorly described as mouse models of FA do not develop hematopoietic failure and such studies cannot be performed on patients. We have created a human-specific in vitro system to study early hematopoietic development in FA using a lentiviral RNA interference (RNAi) strategy in human embryonic stem cells (hESCs). We show that knockdown of FANCA and FANCD2 in hESCs leads to a reduction in hematopoietic fates and progenitor numbers that can be rescued by FA gene complementation. Our data indicate that hematopoiesis is impaired in FA from the earliest stages of development, suggesting that deficiencies in embryonic hematopoiesis may underlie the progression to bone marrow failure in FA. This work illustrates how hESCs can provide unique insights into human development and further our understanding of genetic disease.
Ahmadbeigi, Naser; Vasei, Mohammad; Gheisari, Yousof; Mortazavi, Yousef; Azadmanesh, Kayhan; Omidkhoda, Azadeh; Janzamin, Ehsan; Nardi, Nance Beyer
2013-01-01
Although the unique role of hematopoietic stem cell (HSC) niche in hematopoiesis has long been recognized, unsuccessful isolation of intact niche units limited their in vitro study, manipulation, and therapeutic application. Here, we isolated cell complexes based on size fractionation from mouse bone marrow (BM), characterized the derived cells, and transplanted them to irradiated mice. These cell complexes were the origin of both BM mesenchymal stem cells and various hematopoietic lineages when kept in appropriate culture conditions. They also had the potential of recruiting circulating HSC. Intraperitoneal transplantation of these structures into irradiated mice not only showed long-lasting hematopoietic multilineage reconstitution, but also could recover the stromal cells of BM. In conclusion, this study for the first time provides evidences on the feasibility and efficacy of transplantation of HSC in association with their native specialized microenvironment. As the molecular cross-talk between HSC and niche is crucial for their proper function, the proposed method could be considered as a novel hematopoietic transplantation strategy. PMID:23879861
Dimethyl Sulfoxide (DMSO) Produces Widespread Apoptosis in the Developing Central Nervous System
Hanslick, Jennifer L.; Lau, Karen; Noguchi, Kevin K.; Olney, John W.; Zorumski, Charles F.; Mennerick, Steven; Farber, Nuri B.
2009-01-01
Dimethyl sulfoxide (DMSO) is a solvent that is routinely used as a cryopreservative in allogous bone marrow and organ transplantion. We exposed C57Bl/6 mice of varying postnatal ages (P0–P30) to DMSO in order to study whether DMSO could produce apoptotic degeneration in the developing CNS. DMSO produced widespread apoptosis in the developing mouse brain at all ages tested. Damage was greatest at P7. Significant elevations above the background rate of apoptosis occurred at the lowest dose tested, 0.3 ml/kg. In an in vitro rat hippocampal culture preparation, DMSO produced neuronal loss at concentrations of 0.5% and 1.0%. The ability of DMSO to damage neurons in dissociated cultures indicates that the toxicity likely results from a direct cellular effect. Because children, who undergo bone marrow transplantation, are routinely exposed to DMSO at doses higher than 0.3 ml/kg, there is concern that DMSO might be producing similar damage in human children. PMID:19100327
A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.
Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin
2014-06-01
The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timper, Katharina; Seboek, Dalma; Eberhardt, Michael
2006-03-24
Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cellsmore » were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.« less
Excessive amounts of mu heavy chain block B-cell development.
Zhu, Lingqiao; Chang, Cheong-Hee; Dunnick, Wesley
2011-09-01
Antigen-independent B-cell development occurs in several stages that depend on the expression of Ig heavy and light chain. We identified a line of mice that lacked mature B cells in the spleen. This mouse line carried approximately 11 copies of a transgene of the murine heavy chain constant region locus, and B-lineage cells expressed excessive amounts of the intracellular μ heavy chain. B-cell development failed in the bone marrow at the pro/pre B-cell transition, and examination of other lines with various copy numbers of the same transgene suggested that deficiencies in B-cell development increased with increased transgene copy number. Expression of a transgenic (Tg) light chain along with the Tg μ heavy chain led to minimal rescue of B-cell development in the bone marrow and B cells in the spleen. There are several potential mechanisms for the death of pro/pre B cells as a consequence of excess heavy chain expression.
Tsutsumimoto, Takahiro; Williams, Paul; Yoneda, Toshiyuki
2014-01-01
Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB. PMID:26909300
Fukuishi, Nobuyuki; Igawa, Yuusuke; Kunimi, Tomoyo; Hamano, Hirofumi; Toyota, Masao; Takahashi, Hironobu; Kenmoku, Hiromichi; Yagi, Yasuyuki; Matsui, Nobuaki; Akagi, Masaaki
2013-01-01
While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC), and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC). Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy. PMID:23573287
Khan, Kainat; Singh, Akanksha; Mittal, Monika; Sharan, Kunal; Singh, Nidhi; Dixit, Preety; Sanyal, Sabyasachi; Maurya, Rakesh; Chattopadhyay, Naibedya
2012-12-01
[6]-Gingerol, a major constituent of ginger, is considered to have several health beneficial effects. The effect of 6-gingerol on bone cells and skeleton of mice was investigated. The effects of 6-gingerol on mouse bone marrow macrophages and osteoblasts were studied. 6-Gingerol-stimulated osteoclast differentiation of bone marrow macrophages but had no effect on osteoblasts. Capsazepine, an inhibitor of TRPV1 (transient receptor potential vanilloid 1) channel, attenuated the pro-osteoclastogenic effect of 6-gingerol or capsaicin (an agonist of TRPV1). Similar to capsaicin, 6-gingerol stimulated Ca(2) + influx in osteoclasts. The effect of daily feeding of 6-gingerol for 5 wk on the skeleton of adult female Balb/cByJ mice was investigated. Mice treated with capsaicin and ovariectomized (OVx) mice served as controls for osteopenia. 6-Gingerol caused increase in trabecular osteoclast number, microarchitectural erosion at all trabecular sites and loss of vertebral stiffness, and these effects were comparable to capsaicin or OVx group. Osteoclast-specific serum and gene markers of 6-gingerol-treated mice were higher than the OVx group. Bone formation was unaffected by 6-gingerol. Daily feeding of 6-gingerol to skeletally mature female mice caused trabecular osteopenia, and the mechanism appeared to be activation of osteoclast formation via the TRPV1 channel. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unicameral bone cysts treated by injection of bone marrow or methylprednisolone.
Chang, C H; Stanton, R P; Glutting, J
2002-04-01
In 79 consecutive patients with unicameral bone cysts we compared the results of aspiration and injection of bone marrow with those of aspiration and injection of steroid. All were treated by the same protocol. The only difference was the substance injected into the cysts. The mean radiological follow-up to detect activity in the cyst was 44 months (12 to 108). Of the 79 patients, 14 received a total of 27 injections of bone marrow and 65 a total of 99 injections of steroid. Repeated injections were required in 57% of patients after bone marrow had been used and in 49% after steroid. No complications were noted in either group. In this series no advantage could be shown for the use of autogenous injection of bone marrow compared with injection of steroid in the management of unicameral bone cysts.
MedlinePlus Videos and Cool Tools
... These cells develop into two groups in the bone marrow. From the bone marrow, one group of lymphocytes migrates to a ... or B cells, mature and develop within the bone marrow itself. In that process, they achieve the ...
[Bone marrow stromal damage mediated by immune response activity].
Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H
1994-01-01
The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louwagie, A. C.; Verwilghen, R. L.
1973-07-01
Mice were exposed to 850 or 975 rad of whole-body radiation; three hr later mice were given normal human bone marrow, infectious mononucleosis bone marrow, or cells from malignant blood diseases. The surviving mice were killed at day 9 and the spleen nodules were counted. Some mice were also given antihuman antilymphocytic serum (ALS). In mice exposed to 975 rad, the highest survival was observed in mice grafted with infectious mononucleosis bone marrow, while none of the animals grafted with cells from malignant blood diseases survived 9 days. In mice exposed to 850 rad, grafting of normal or infectious mononucleosismore » bone marrow markedly decreased the survival. Endogenous spleen colonies were induced in all animals grafted with normal or infectious mononucleosis bone marrow. (HLW)« less
Zhang, Michael Y.; Keel, Siobán B.; Walsh, Tom; Lee, Ming K.; Gulsuner, Suleyman; Watts, Amanda C.; Pritchard, Colin C.; Salipante, Stephen J.; Jeng, Michael R.; Hofmann, Inga; Williams, David A.; Fleming, Mark D.; Abkowitz, Janis L.; King, Mary-Claire; Shimamura, Akiko
2015-01-01
Accurate and timely diagnosis of inherited bone marrow failure and inherited myelodysplastic syndromes is essential to guide clinical management. Distinguishing inherited from acquired bone marrow failure/myelodysplastic syndrome poses a significant clinical challenge. At present, diagnostic genetic testing for inherited bone marrow failure/myelodysplastic syndrome is performed gene-by-gene, guided by clinical and laboratory evaluation. We hypothesized that standard clinically-directed genetic testing misses patients with cryptic or atypical presentations of inherited bone marrow failure/myelodysplastic syndrome. In order to screen simultaneously for mutations of all classes in bone marrow failure/myelodysplastic syndrome genes, we developed and validated a panel of 85 genes for targeted capture and multiplexed massively parallel sequencing. In patients with clinical diagnoses of Fanconi anemia, genomic analysis resolved subtype assignment, including those of patients with inconclusive complementation test results. Eight out of 71 patients with idiopathic bone marrow failure or myelodysplastic syndrome were found to harbor damaging germline mutations in GATA2, RUNX1, DKC1, or LIG4. All 8 of these patients lacked classical clinical stigmata or laboratory findings of these syndromes and only 4 had a family history suggestive of inherited disease. These results reflect the extensive genetic heterogeneity and phenotypic complexity of bone marrow failure/myelodysplastic syndrome phenotypes. This study supports the integration of broad unbiased genetic screening into the diagnostic workup of children and young adults with bone marrow failure and myelodysplastic syndromes. PMID:25239263
Riccardi, A; Ucci, G; Luoni, R; Castello, A; Coci, A; Magrini, U; Ascari, E
1990-01-01
Between January 1987 and October 1989, 561 consecutive untreated patients with monoclonal gammopathy of undetermined clinical importance (MGUS) (n = 295) or with multiple myeloma (n = 266) were evaluated in a multicentre trial. Both bone marrow biopsy and aspiration (performed at different anatomical sites) were required at presentation. Bone marrow biopsy data indicated that changes in bone marrow composition from MGUS to early multiple myeloma and to advanced multiple myeloma followed a precise pattern, including an increased percentage of bone marrow plasma cells (BMPC%), a shift from plasmocytic to plasmoblastic cytology, an increase in bone marrow cellularity and fibrosis, a change in bone marrow infiltration (becoming diffuse rather than interstitial), a decrease in residual haemopoiesis and an increase in osteoclasts. In multiple myeloma the BMPC% of biopsy specimens and aspirate were closely related, although in 5% of cases the difference between the two values was greater than 20%. Some histological features were remarkably associated with each other. For example, BMPC% was higher in cases with plasmoblastic cytology, heavy fibrosis, or reduced residual haemopoiesis. Anaemia was the clinical characteristic most influenced by bone marrow histology. The BMPC% was the only histological variable which affected the greatest number of clinical and laboratory characteristics, including, besides haemoglobin concentration, erythrocyte sedimentation rate, radiographic skeletal bone disease, and serum concentrations of monoclonal component, calcium, beta 2-microglobulin and thymidine kinase activity. These data indicate that comparative bone marrow histology in monoclonal gammopathies has clinical importance. Images PMID:2199532
Microarray profiling of diaphyseal bone of rats suffering from hypervitaminosis A.
Lind, Thomas; Hu, Lijuan; Lind, P Monica; Sugars, Rachael; Andersson, Göran; Jacobson, Annica; Melhus, Håkan
2012-03-01
Vitamin A is the only known compound that produces spontaneous fractures in rats. In an effort to resolve the molecular mechanism behind this effect, we fed young male rats high doses of vitamin A and performed microarray analysis of diaphyseal bone with and without marrow after 1 week, i.e., just before the first fractures appeared. Of the differentially expressed genes in cortical bone, including marrow, 98% were upregulated. In contrast, hypervitaminotic cortical bone without marrow showed reduced expression of 37% of differentially expressed genes. Gene ontology (GO) analysis revealed that only samples containing bone marrow were associated with a GO term, which principally represented extracellular matrix. This is consistent with the histological findings of increased endosteal/marrow osteoblast number. Fourteen genes, including Cyp26b1, which is known to be upregulated by vitamin A, were selected and verified by real-time PCR. In addition, immunohistochemical staining of bone sections confirmed that the bone-specific molecule osteoadherin was upregulated. Further analysis of the major gene-expression changes revealed apparent augmented Wnt signaling in the sample containing bone marrow but reduced Wnt signaling in cortical bone. Moreover, induced expression of hypoxia-associated genes was found only in samples containing bone marrow. Together, these results highlight the importance of compartment-specific analysis of bone and corroborate previous observations of compartment-specific effects of vitamin A, with reduced activity in cortical bone but increased activity in the endosteal/marrow compartment. We specifically identify potential key osteoblast-, Wnt signaling-, and hypoxia-associated genes in the processes leading to spontaneous fractures.
ERIC Educational Resources Information Center
Kaster, Elizabeth C.; Rogers, Charles R.; Jeon, Kwon Chan; Rosen, Brittany
2014-01-01
Introduction: For those with certain blood or bone cancers, bone marrow donation can mean the difference between life and death. The National Marrow Donor Program® (NMDP) operates the largest bone marrow registry of potential donors; however, at times when potential matches are identified, many donors opt not to donate. The purpose of this study…
Pabst, Reinhard
2018-05-22
In immunology and anatomy textbooks the bone marrow is described as a typical "primary lymphoid organ" producing lymphoid cells independent of antigens. The hematopoietic bone marrow is largely age-dependent organ with great anatomical and functional differences among various species. There are estimates that about 12% of all lymphoid cells in the human body are found in the bone marrow at any given time (2% in the peripheral blood). Enormous numbers of T lymphocytes migrate to the bone marrow and partly return later to the blood. Many of these lymphocytes are memory CD4 + and CD8 + T cells. A few days after immunization a wave of plasma cells and their precursors migrate to the bone marrow where they lose their migratory response to CXCL-12 and CXCL9. There is a relative enrichment of CD19 + B cells in the bone marrow outnumbering those in the blood and secondary lymphoid organs. This is not due to local production. The proliferation and migration kinetics of these lymphoid cells in the bone marrow have to be studied in more detail as this is of major clinical relevance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Krappe, Sebastian; Benz, Michaela; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian
2015-03-01
The morphological analysis of bone marrow smears is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually with the use of bright field microscope. This is a time consuming, partly subjective and tedious process. Furthermore, repeated examinations of a slide yield intra- and inter-observer variances. For this reason an automation of morphological bone marrow analysis is pursued. This analysis comprises several steps: image acquisition and smear detection, cell localization and segmentation, feature extraction and cell classification. The automated classification of bone marrow cells is depending on the automated cell segmentation and the choice of adequate features extracted from different parts of the cell. In this work we focus on the evaluation of support vector machines (SVMs) and random forests (RFs) for the differentiation of bone marrow cells in 16 different classes, including immature and abnormal cell classes. Data sets of different segmentation quality are used to test the two approaches. Automated solutions for the morphological analysis for bone marrow smears could use such a classifier to pre-classify bone marrow cells and thereby shortening the examination duration.
Bone marrow involvement is rare in superficial gastric mucosa-associated lymphoid tissue lymphoma.
Park, Jae Yong; Kim, Sang Gyun; Kim, Joo Sung; Jung, Hyun Chae
2016-01-01
The initial staging work-up of gastric mucosa-associated lymphoid tissue (MALT) lymphoma includes bone marrow examination. Since gastric MALT lymphoma is mostly detected in early stages with the national cancer screening programme in Korea, bone marrow is rarely involved. To investigate the incidence of bone marrow involvement in gastric MALT lymphomas and the role of bone marrow examination for an initial staging work-up. Patients diagnosed with gastric MALT lymphoma at Seoul National University Hospital from January 2005 to July 2014 were enrolled. Clinical databases of the patients were retrospectively reviewed. Out of 105 patients, 91 (86.7%) were classified as stage IE1. Among these patients, 78 patients with Helicobacter pylori infection underwent eradication therapy, and complete remission was achieved in 74 cases (94.9%). Twelve out of 13 patients (92.3%) without H. pylori infection underwent radiotherapy or surgery and all achieved complete remission. Bone marrow involvement was proven in only one patient (1.0%). Bone marrow involvement was rare in patients with only superficial gastric MALT lymphoma without extragastric invasion. Further studies are warranted to identify the risk factors of bone marrow involvement in gastric MALT lymphoma. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H
2015-11-01
During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosse, C.; Cole, S.B.; Appleton, C.
1978-04-01
The relative importance of the bone marrow and spleen in the production of B lymphocytes was investigated in guinea pigs by the combined use of (/sup 3/H)TdR radioautography and fluorescent microscopy after the staining of B cells by FITC-F (ab')/sub 2/-goat-anti-guinea pig Ig. Large and small lymphoid cells possess sIg in the marrow and spleen but B cell turnover in the marrow exceeds that in the spleen. That newly generated bone marrow B cells are not derived from an extramyeloid bursa equivalent was demonstrated by the absence of (/sup 3/H)TdR labeled B cells in tibial marrow 72 hr after (/supmore » 3/H)TdR was administered systemically, while the circulation to the hind limbs was occluded. Pulse and chase studies with (/sup 3/H)TdR showed that large marrow B cells are derived from sIg-negative, proliferating precursors resident in the bone marrow and not from the enlargement of activated small B lymphocytes. The acquisition of (/sup 3/H)TdR by splenic B cells lagged behind that observed in the marrow. Three days after topical labeling of tibial and femoral bone marrow with (/sup 3/H)TdR, a substantial proportion of splenic B cells were replaced by cells that had seeded there from the labeled marrow. The studies unequivocally identify the bone marrow as the organ of primary importance in B cell generation, and indicate that in the guinea pig rapidly renewed B lymphocytes of the spleen are replaced by lymphocytes recently generated in bone marrow. The rate of replacement of B lymphocytes in the lymph node by cells newly generated in the bone marrow takes place at a slower tempo than in the spleen.« less
Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai
2015-05-01
Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p < 0.05), and was the highest in bone marrow-derived mesenchymal stem cells and platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best in group A. Both bone marrow-derived mesenchymal stem cells and platelet-rich fibrin are capable of improving the repair of dog alveolar cleft, and the mixture of them is more potent than each one of them used singly for enhancing new bone regeneration.
Verma, Poonam; Bansal, Himanshu; Agrawal, Anupama; Leon, Jerry; Sundell, I Birgitta; Koka, Prasad S
Human mesenchymal stem cells from bone marrow (hMSCs) have broad therapeutic potential. These cells can be are readily isolated from bone marrow by their property to adhere to tissue culture treated culture wares. However, the proliferation rates and other properties of the cells gradually change during expansion. This study aims to validate the protocol of isolation and differentiation of hMSCs from bone marrow for therapeutic applications. Sixty ml of bone marrow was extracted from 5 patients and MSCs were isolated. These were characterized by Flow Cytometry, CFU assay and were differentiated into bone, fat cells and neurocytes. The cells were having healthy morphology. These were positive for the markers CD105, CD90 and CD73 and negative for CD45, CD34 and HLA-DR. The cells could differentiate into fat, bone and neural cells. MSCs from the bone marrow were isolated and differentiated. These cells were morphologically healthy and passed CFU assay. The cells exhibited differentiation potential into bone, fat and neural tissue. These cells can be used in therapeutic applications.
Improved bone marrow stromal cell adhesion on micropatterned titanium surfaces.
Iskandar, Maria E; Cipriano, Aaron F; Lock, Jaclyn; Gott, Shannon C; Rao, Masaru P; Liu, Huinan
2012-01-01
Implant longevity is desired for all bone replacements and fixatives. Titanium (Ti) implants fail due to lack of juxtaposed bone formation, resulting in implant loosening. Implant surface modifications have shown to affect the interactions between the implant and bone. In clinical applications, it is crucial to improve osseointegration and implant fixation at the implant and bone interface. Moreover, bone marrow derived cells play a significant role for implant and tissue integration. Therefore, the objective of this study is to investigate how surface micropatterning on Ti influences its interactions with bone marrow derived cells containing mesenchymal and hematopoietic stem cells. Bone marrow derived mesenchymal stem cells (BMSC) have the capability of differentiating into osteoblasts that contribute to bone growth, and therefore implant/bone integration. Hematopoietic stem cell derivatives are precursor cells that contribute to inflammatory response. By using all three cells naturally contained within bone marrow, we mimic the physiological environment to which an implant is exposed. Primary rat bone marrow derived cells were seeded onto Ti with surfaces composed of arrays of grooves of equal width and spacing ranging from 0.5 to 50 µm, fabricated using a novel plasma-based dry etching technique. Results demonstrated enhanced total cell adhesion on smaller micrometer-scale Ti patterns compared with larger micrometer-scale Ti patterns, after 24-hr culture. Further studies are needed to determine bone marrow derived cell proliferation and osteogenic differentiation potential on micropatterned Ti, and eventually nanopatterned Ti.
Bone-marrow transplant - series (image)
Bone-marrow transplants are performed for: deficiencies in red blood cells (aplastic anemia) and white blood cells (leukemia or ... Bone-marrow transplants prolong the life of patients who might otherwise die. As with all major organ transplants, however, ...
[Effect of intravenous treatment with OK-432 on the bone marrow in patients with lung cancer].
Fujii, M; Ishikawa, M; Toki, H
1984-03-01
We studied effects of OK-432 on the bone marrow and peripheral blood cells of lung cancer patients. The nuclear cell count of bone marrow increased in 5 to 7 patients upon intravenous treatment with OK-432 compared with 3 of 6 patients who were intramuscularly treated with OK-432. Serial neutrophil counts of bone marrow increased in all 7 patients treated intravenously compared with 3 of 6 patients treated intramuscularly. The mean nuclear cell count or the serial neutrophil count of bone marrow in intravenously treated patients was significantly higher than the pretreatment values (p less than 0.001). In the peripheral blood picture, the difference in white blood cells or neutrophils before and after intravenous treatment was also statistically significant (p less than 0.01). There was no change in the erythrocytic series count of bone marrow and the hemoglobin count. Our results support the superiority of intravenous OK-432 treatment over intramuscular treatment in the growth-accelerating effect on bone marrow cells, especially regarding the neutrophil series.
Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects
Eichler, Hermann; Orth, Patrick
2017-01-01
Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects. Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes and osteoblasts, and form a repair tissue over time. The additional application of a bone marrow aspirate (BMA) to the procedure of marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of chondrogenesis and a source of growth factors stimulating cartilage repair. Moreover, the BMA clot provides a three-dimensional environment, possibly further supporting chondrogenesis and protecting the subchondral bone from structural alterations. The purpose of this review is to bridge the gap in our understanding between the basic science knowledge on MSCs and BMA and the clinical and technical aspects of marrow stimulation-based cartilage repair by examining available data on the role and mechanisms of MSCs and BMA in osteochondral repair. Implications of findings from both translational and clinical studies using BMA concentrate-enhanced marrow stimulation are discussed. PMID:28607559
Di Iorgi, Natascia; Rosol, Michael; Mittelman, Steven D.; Gilsanz, Vicente
2008-01-01
Background: Studies in the elderly suggest a reciprocal relation between increased marrow adiposity and bone loss, supporting basic research data indicating that osteoblasts and adipocytes share a common progenitor cell. However, whether this relation represents a preferential differentiation of stromal cells from osteoblasts to adipocytes or whether a passive accumulation of fat as bone is lost and marrow space increases with aging is unknown. To address this question and avoid the confounding effect of bone loss, we examined teenagers and young adults. Methods: Using computed tomography, we obtained measurements of bone density and cross-sectional area of the lumbar vertebral bodies and cortical bone area, cross-sectional area, marrow canal area, and fat density in the marrow of the femurs in 255 sexually mature subjects (126 females, 129 males; 15–24.9 yr of age). Additionally, values for total body fat were obtained with dual-energy x-ray absorptiometry. Results: Regardless of gender, reciprocal relations were found between fat density and measures of vertebral bone density and femoral cortical bone area (r = 0.19–0.39; all P values ≤ .03). In contrast, there was no relation between marrow canal area and cortical bone area in the femurs, neither between fat density and the cross-sectional dimensions of the bones. We also found no relation between anthropometric or dual-energy x-ray absorptiometry fat values and measures for marrow fat density. Conclusions: Our results indicate an inverse relation between bone marrow adiposity and the amount of bone in the axial and appendicular skeleton and support the notion of a common progenitor cell capable of mutually exclusive differentiation into the cell lineages responsible for bone and fat formation. PMID:18381577
Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice
Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q.; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui
2014-01-01
Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. PMID:24780611
Pulmonary Embolization of Fat and Bone Marrow in Cynomolgus Macaques (Macaca fascicularis)
Fong, Derek L.; Murnane, Robert D.; Hotchkiss, Charlotte E.; Green, Damian J.; Hukkanen, Renee R.
2011-01-01
Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma. PMID:21819686
Pulmonary embolization of fat and bone marrow in cynomolgus Macaques (Macaca fascicularis).
Fong, Derek L; Murnane, Robert D; Hotchkiss, Charlotte E; Green, Damian J; Hukkanen, Renee R
2011-02-01
Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma.
The emerging role of bone marrow adipose tissue in bone health and dysfunction.
Ambrosi, Thomas H; Schulz, Tim J
2017-12-01
Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.
Erythropoiesis and erythropoietin in hypo- and hyperthyroidism.
Das, K C; Mukherjee, M; Sarkar, T K; Dash, R J; Rastogi, G K
1975-02-01
Qualitative and quantitative studies of erythropoiesis in 23 patients with hypothyroidism and 21 patients with hyperthryoidism included routine hematologic evaluation, bone marrow morphology, status of serum iron, B12 and folate red blood cell mass and plasma volume by radioisotope methods, erythrokinetics and radiobioassay of plasma erythropoietin. A majority of patients with the hypothyroid state had significant reduction in red blood cell mas per kg of body weight. The presence of anemia in many of these patients was not evident from hemoglobin and hematocrit values due to concomitant reduction of plasma volume. The erythrokinetic data in hypothyroid patients provided evidence of significant decline of the erythropoietic activity of the bone marrow. Erythroid cells in the marrow were depleted and also showed reduced proliferative activity as indicated by lower 3H-thymidine labeling index. Plasma erythropoietin levels were reduced, often being immeasurable by the polycythemic mouse bioassay technique. These changes in erythropoiesis in the hypothyroid state appear to be a part of physiological adjustment to the reduced oxygen requirement of the tissues due to diminished basal metabolic rate. Similar investigations revealed mild erythrocytosis in a significant proportion of patients with hyperthyroidism. Failure of erythrocytosis to occur in other patients of this group was associated with impaired erythropoiesis due to a deficiency of hemopoietic nutrients such as iron, vitamin B12 and folate. The mean plasma erythropoietin level of these patients was significantly elevated; in 4 patients the levels were in the upper normal range whereas in the rest, the values were above the normal range. The bone marrow showed erythyroid hyperplasia in all patients with hyperthyroidism. The mean 3H-thymidine labeling index of the erythroblasts was also significantly higher than normal in hyperthyroidism; in 8 patients the index was within the normal range whereas in the remaining 13 it was above the normal range. Erythrokinetic studies also provided evidences of increased erythropoietic activity in the bone marrow. It is postulated that thyroid hormones stimulate erythropoiesis, sometimes leading to erythrocytosis provided there is no deficiency of hemopoietic nutrients. Stimulation of erythropoiesis by thryoid hormones appears to be mediated through erythropoietin.
Percutaneous osteoplasty with a bone marrow nail for fractures of long bones: experimental study.
Nakata, Kouhei; Kawai, Nobuyuki; Sato, Morio; Cao, Guang; Sahara, Shinya; Tanihata, Hirohiko; Takasaka, Isao; Minamiguchi, Hiroyuki; Nakai, Tomoki
2010-09-01
To develop percutaneous osteoplasty with the use of a bone marrow nail for fixation of long-bone fractures, and to evaluate its feasibility and safety in vivo and in vitro. Six long bones in three healthy swine were used in the in vivo study. Acrylic cement was injected through an 11-gauge bone biopsy needle and a catheter into a covered metallic stent placed within the long bone, creating a bone marrow nail. In the in vitro study, we determined the bending, tug, and compression strengths of the acrylic cement nails 9 cm long and 8 mm in diameter (N = 10). The bending strength of the artificially fractured bones (N = 6) restored with the bone marrow nail and cement augmentation was then compared with that of normal long bones (N = 6). Percutaneous osteoplasty with a bone marrow nail was successfully achieved within 1 hour for all swine. After osteoplasty, all swine regained the ability to run until they were euthanized. Blood tests and pathologic findings showed no adverse effects. The mean bending, tug, and compression strengths of the nail were 91.4 N/mm(2) (range, 75.0-114.1 N/mm(2)), 20.9 N/mm(2) (range, 6.6-30.4 N/mm(2)), and 103.0 N/mm(2) (range, 96.3-110.0 N/mm(2)), respectively. The bending strength ratio of artificially fractured bones restored with bone marrow nail and cement augmentation to normal long bone was 0.32. Percutaneous osteoplasty with use of a bone marrow nail and cement augmentation appears to have potential in treating fractures of non-weight-bearing long bones. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.
Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases
Hardaway, Aimalie L.; Herroon, Mackenzie K.; Rajagurubandara, Erandi
2014-01-01
Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease. PMID:24398857
Gil-Sanchis, Claudia; Cervelló, Irene; Khurana, Satish; Faus, Amparo; Verfaillie, Catherine; Simón, Carlos
2015-06-01
To study the involvement of seven types of bone marrow-derived cells (BMDCs) in the endometrial regeneration in mice after total body irradiation. Prospective experimental animal study. University research laboratories. β-Actin-green fluorescent protein (GFP) transgenic C57BL/6-Tg (CAG-EGFP) and C57BL/6J female mice. The BMDCs were isolated from CAG-EGFP mice: unfractionated bone marrow cells, hematopoietic progenitor cells, endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). In addition three murine GFP(+) cell lines were used: mouse Oct4 negative BMDC multipotent adult progenitor cells (mOct4(-)BM-MAPCs), BMDC hypoblast-like stem cells (mOct4(+) BM-HypoSCs), and MSCs. All cell types were injected through the tail vein of 9 Gy-irradiated C57BL/6J female mice. Flow cytometry, cell culture, bone marrow transplantation assays, histologic evaluation, immunohistochemistry, proliferation, apoptosis, and statistical analysis. After 12 weeks, histologic analysis revealed that uteri of mice with mOct4(-)BM-MAPCs and MSC line were significantly smaller than uteri of mice with uncultured BMDCs or mOct4(+) BM-HypoSCs. The percentage of engrafted GFP(+) cells ranged from 0.13%-4.78%. Expression of Ki-67 was lower in all uteri from BMDCs treated mice than in the control, whereas TUNEL(+) cells were increased in the EPCs and mOct4(+)BM-HypoSCs groups. Low number of some BMDCs can be found in regenerating endometrium, including stromal, endotelial, and epithelial compartments. Freshly isolated MSCs and EPCs together with mOct4(+) BM-HypoSCs induced the greatest degree of regeneration, whereas culture isolated MSCs and mOct4(-)BM-MAPCs transplantation may have an inhibitory effect on endometrial regeneration. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
The Analysis of the Adverse Reaction of Traditional Chinese Medicine Tumor Bone Marrow Suppression
NASA Astrophysics Data System (ADS)
Wei, Zhenzhen; Fang, Xiaoyan; Miao, Mingsan
2018-01-01
With the rapid increase of cancer patients, chemotherapy is the main method for the clinical treatment of cancer, but also in the treatment of the adverse reactions--bone marrow suppression is often a serious infection caused by patients after chemotherapy and the important cause of mortality. Chinese medicine has obvious advantages in the prevention and treatment of bone marrow depression after chemotherapy. According to tumor bone marrow suppression after chemotherapy of etiology and pathogenesis of traditional Chinese medicine and China national knowledge internet nearly 10 years of traditional Chinese medicine in the prevention and control of the status of clinical and laboratory research of tumor bone marrow suppression, the author analyzed and summarized its characteristics, so as to provide the basis for treating bone marrow suppression of drug research and development, and promote small adverse reactions of the development and utilization of natural medicine and its preparations.
High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians
NASA Astrophysics Data System (ADS)
McNamara, Maria E.; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique
2006-08-01
Bone marrow in ca. 10 Ma frogs and salamanders from the Miocene of Libros, Spain, represents the first fossilized example of this extremely decay-prone tissue. The bone marrow, preserved in three dimensions as an organic residue, retains the original texture and red and yellow color of hematopoietic and fatty marrow, respectively; moldic osteoclasts and vascular structures are also present. We attribute exceptional preservation of the fossilized bone marrow to cryptic preservation: the bones of the amphibians formed protective microenvironments, and inhibited microbial infiltration. Specimens in which bone marrow is preserved vary in their completeness and articulation and in the extent to which the body outline is preserved as a thin film of organically preserved bacteria. Cryptic preservation of these labile tissues is thus to a large extent independent of, and cannot be predicted by, the taphonomic history of the remainder of the specimen.
Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis.
Deshpande, Sagar S; Gallagher, Kathleen K; Donneys, Alexis; Nelson, Noah S; Guys, Nicholas P; Felice, Peter A; Page, Erin E; Sun, Hongli; Krebsbach, Paul H; Buchman, Steven R
2015-03-01
Radiotherapy is known to be detrimental to bone and soft-tissue repair. Bone marrow stromal cells have been shown to enhance bone regeneration during distraction osteogenesis following radiation therapy. The authors posit that transplanted bone marrow stromal cells will significantly augment the mandibular vascularity devastated by radiation therapy. Nineteen male Lewis rats were split randomly into three groups: distraction osteogenesis only (n = 5), radiation therapy plus distraction osteogenesis (n = 7), and radiation therapy plus distraction osteogenesis with intraoperative placement of 2 million bone marrow stromal cells (n = 7). A mandibular osteotomy was performed, and an external fixator device was installed. From postoperative days 4 through 12, rats underwent a gradual 5.1-mm distraction followed by a 28-day consolidation period. On postoperative day 40, Microfil was perfused into the vasculature and imaging commenced. Vascular radiomorphometric values were calculated for regions of interest. An analysis of variance with post hoc Tukey or Games-Howell tests was used, dependent on data homogeneity. Stereologic analysis indicated significant remediation in vasculature in the bone marrow stromal cell group compared with the radiation therapy/distraction osteogenesis group. Each of five metrics idicated significant improvements from radiation therapy/distraction osteogenesis to the bone marrow stromal cell group, with no difference between the bone marrow stromal cell group and the distraction osteogenesis group. Bone marrow stromal cells used together with distraction osteogenesis can rejuvenate radiation-impaired vasculogenesis in the mandible, reversing radiation therapy-induced isotropy and creating a robust vascular network. Bone marrow stromal cells may offer clinicians an alternative reconstructive modality that could improve the lifestyle of patients with hypovascular bone.
Question of bone marrow stromal fibroblast traffic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, M.A.; Lamela, R.A.; Patt, H.M.
Bone marrow stromal fibroblasts (CFU-F) normally do not exchange bone marrow sites in vivo. Restitution of the CFU-F after radiation damage is primarily recovery by the local fibroblasts from potentially lethal damage. Migration of stromal fibroblasts from shielded sites to an irradiated site makes a minimal contribution, if any, to CFU-F recovery. Determination of the relative contribution of donor stromal cells in bone marrow transplants by karyotyping the proliferating bone marrow stromal cells in vitro may not reflect the relative distribution of fibroblasts in the marrow. If there is residual damage to the host stromal fibroblasts from treatment before transplantation,more » these cells may not be able to proliferate in vitro. Therefore, an occasional transplanted fibroblast may contribute most of the metaphase figures scored for karyotype.« less
A Literature Review on the Mechanism of Action of Sulphur and Nitrogen Mustard
1989-07-01
for years is also poeqible (Aasted et al, 1987; Colardyn et al, 1986). Severely poisoned individuals exhibit bone marrow depression and may die from...MMS does not produce the enhanced depression of DNA synthesis in sensitive cells, compared to resistant cells, produced by sulphur mustard and...Compound MATD 1 Protection (mg/mouse) index 2 WR-3689 15 159 WR-2721 15 44 Aminoethylcysteine 80 27 N- acetylcysteine 8 26 Glutathione 60 22 Cysteine 8
Xie, Minghao; Qin, Huabo; Luo, Qianxin; He, Xiaosheng; He, Xiaowen; Lan, Ping; Lian, Lei
2017-01-01
Mesenchymal stromal cells (MSCs) have been used in the treatment of Crohn's disease (CD) because of the immunomodulatory ability. The aim of this study was to investigate the therapeutic effect of adipose-derived MSCs (AD-MSCs) and to compare the therapeutic effect of AD-MSCs with that of bone marrow MSCs (BM-MSCs) in a murine model of CD. Murine colitis model of CD was created by trinitrobenzene sulfonic acid (TNBS). Twelve hours after treatment with TNBS, the mouse model was injected with MSCs intraperitoneally. Real-time polymerase chain reaction and immunohistochemistry staining were used to measure the expression levels of inflammatory cytokines in colonic tissues to investigate the therapeutic effect of AD-MSCs. The ten-day survival was recorded after infusion of MSCs. Intraperitoneal injection of MSCs alleviated the clinical and histopathologic severity of intestinal inflammation, and improved the survival of the TNBS-induced mouse model of CD. AD-MSCs could effectively increase the expression of interleukin-10 and reduce the secretion of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-12, and vascular endothelial growth factor. The mucosal injury was repaired by AD-MSCs. These effects were comparable between AD-MSCs and BM-MSCs. The therapeutic effect appears similar between AD-MSCs and BM-MSCs in treating CD. AD-MSCs may be a potential alternative of cell-based therapy for CD.
D'Souza, Anthony D; Parish, Ian A; Krause, Diane S; Kaech, Susan M; Shadel, Gerald S
2013-01-01
The disease ataxia-telangiectasia (A-T) has no cure and few treatment options. It is caused by mutations in the ATM kinase, which functions in the DNA-damage response and redox sensing. In addition to severe cerebellar degeneration, A-T pathology includes cancer predisposition, sterility, immune system dysfunction, and bone marrow abnormalities. These latter phenotypes are recapitulated in the ATM null (ATM−/−) mouse model of the disease. Since oxidative stress and mitochondrial dysfunction are implicated in A-T, we determined whether reducing mitochondrial reactive oxygen species (ROS) via overexpression of catalase targeted to mitochondria (mCAT) alleviates A-T–related pathology in ATM−/− mice. We found that mCAT has many beneficial effects in this context, including reduced propensity to develop thymic lymphoma, improved bone marrow hematopoiesis and macrophage differentiation in vitro, and partial rescue of memory T-cell developmental defects. Our results suggest that positive effects observed on cancer development may be linked to mCAT reducing mitochondrial ROS, lactate production, and TORC1 signaling in transforming double-positive cells, whereas beneficial effects in memory T cells appear to be TORC1-independent. Altogether, this study provides proof-of-principle that reducing mitochondrial ROS production per se may be therapeutic for the disease, which may have advantages compared with more general antioxidant strategies. PMID:23011031
Duran-Struuck, Raimon; Hartigan, Adam; Clouthier, Shawn G; Dyson, Melissa C; Lowler, Kathi; Gatza, Erin; Tawara, Isao; Toubai, Tomomi; Weisiger, Elisabeth; Hugunin, Kelly; Reddy, Pavan; Wilkinson, John E
2008-01-01
Background The mouse is an important and widely utilized animal model for bone marrow transplant (BMT) translational studies. Here, we document the course of an unexpected increase in mortality of congenic mice that underwent BMT. Methods Thirty five BMTs were analyzed for survival differences utilizing the Log Rank test. Affected animals were evaluated by physical examination, necropsy, histopathology, serology for antibodies to infectious disease, and bacterial cultures. Results Severe bacteremia was identified as the main cause of death. Gastrointestinal (GI) damage was observed in histopathology. The bacteremia was most likely caused by the translocation of bacteria from the GI tract and immunosuppression caused by the myeloablative irradiation. Variability in groups of animals affected was caused by increased levels of gamma and X-ray radiation and the differing sensitivity of the two nearly genetically identical mouse strains used in the studies. Conclusion Our retrospective analysis of thirty five murine BMTs performed in three different laboratories, identified C57BL/6NCr (Ly5.1) as being more radiation sensitive than B6.Cg-Ptprca/NCr (Ly5.2). This is the first report documenting a measurable difference in radiation sensitivity and its effects between an inbred strain of mice and its congenic counterpart eventually succumbing to sepsis after BMT. PMID:18307812
Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R
2014-10-09
The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.
Mauriello, Alessandro; Giacobbi, Erica; Saggini, Andrea; Isgrò, Antonella; Facchetti, Simone; Anemona, Lucia
2017-04-01
Bone marrow histological features of sickle cell anaemia (SCA) patients during early stages and in the asymptomatic phase of the disease appear an interesting area of study, representing early-stage consequences of SCA with a close relation to its pathophysiology. Unfortunately, this field of research has never been specifically addressed before. Bone marrow biopsies from 26 consecutive Black African SCA patients (M:F=1.6:1; age 2-17 years), free of clinical signs of chronic bone marrow damage, with no recent history of symptomatic vaso-occlusive episodes, and waiting for haematopoietic stem cell transplantation (HSCT), underwent morphological, immunohistochemical and electron microscopy evaluation. Additional comparison with three bone marrow specimens from post-HSCT SCA patients and 10 bone marrow specimens from AS healthy carriers was performed. Bone marrow of SCA patients was normocellular or slighly hypercellular in all cases. Erythroid hyperplasia was a common feature. Myeloid lineage was slightly decreased with normal to slightly diminished neutrophilic granulocytes; CD68 positive monocytic-macrophagic cells appeared slightly increased, with a predominant CD163 positive M2/M(Hb) phenotype. A positive correlation was found between haemoglobin values and number of bone marrow erythroid cells (R 2 =0.15, p=0.05). Intravascular and interstitial clusters of erythroid sickle cells were found in bone marrow of pre-HSCT homozygous SS SCA patients, as well as heterozygous AS healthy carriers, and the single post-HSCT patient matched to an AS health carrier donor. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.
Haga, Hiroaki; Yan, Irene K; Borrelli, David A; Matsuda, Akiko; Parasramka, Mansi; Shukla, Neha; Lee, David D; Patel, Tushar
2017-06-01
Hepatic ischemia/reperfusion injury (IRI) and associated inflammation contributes to liver dysfunction and complications after liver surgery and transplantation. Mesenchymal stem cells (MSCs) have been reported to reduce hepatic IRI because of their reparative immunomodulatory effects in injured tissues. Recent studies have highlighted beneficial effects of extracellular vesicles from mesenchymal stem cells (MSC-EV) on tissue injury. The effects of systemically administered mouse bone marrow-derived MSC-EV were evaluated in an experimental murine model of hepatic IRI induced by cross-clamping the hepatic artery and portal vein for 90 minutes followed by reperfusion for periods of up to 6 hours. Compared with controls, intravenous administration of MSC-EV 30 minutes prior to IRI dramatically reduced the extent of tissue necrosis, decreased caspase 3-positive and apoptotic cells, and reduced serum aminotransferase levels. MSC-EV increased hepatic messenger RNA (mRNA) expression of NACHT, LRR, and PYD domains-containing protein 12, and the chemokine (C-X-C motif) ligand 1, and reduced mRNA expression of several inflammatory cytokines such as interleukin 6 during IRI. MSC-EV increased cell viability and suppressed both oxidative injury and nuclear factor kappa B activity in murine hepatocytes in vitro. In conclusion, the administration of extracellular vesicles derived from bone marrow-derived MSCs may ameliorate hepatic IRI by reducing hepatic injury through modulation of the inflammatory response.Liver Transplantation 23 791-803 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.
Li, Hongbo; Wang, Lin; Pang, Yan; Jiang, Zujun; Liu, Zenghui; Xiao, Haowen; Chen, Haijia; Ge, Xiaohu; Lan, Hai; Xiao, Yang
2017-02-14
The standard treatment for aplastic anemia (AA) in young patients is a matched sibling hematopoietic stem cell transplant. Transfusion of a chronic AA patient with allogeneic bone marrow-derived mesenchymal stromal cells (BMMSCs) is currently being developed as a cell-based therapy, and the safety and efficacy of such transfusions are being continuously improved. Nevertheless, the mechanisms by which BMMSCs exert their therapeutic effects remain to be elucidated. In this study, mesenchymal stromal cells (MSCs) obtained from bone marrow donors were concentrated and intravenously injected into 15 chronic AA patients who had been refractory to prior immunosuppressive therapy. We showed that BMMSCs modulate the levels of Th1, Th2, Th17 and Treg cells, as well as their related cytokines in chronic AA patients. Furthermore, the percentages of Th1 and Th17 cells among the H-MSCs decreased significantly, while the percentage Treg cells increased. The Notch/RBP-J/FOXP3/RORγt pathway was involved in modulating the Treg/Th17 balance after MSCs were transfused in vitro. Additionally, the role played by transfused MSCs in regulating the Treg/Th17 balance via the Notch/RBP-J/FOXP3/RORγt pathway was further confirmed in an AA mouse model. In summary, in humans with chronic AA, BMMSCs regulate the Treg/Th17 balance by affecting the Notch/RBP-J/FOXP3/RORγt pathway.
Gheisari, Yousof; Azadmanesh, Kayhan; Ahmadbeigi, Naser; Nassiri, Seyed Mahdi; Golestaneh, Azadeh Fahim; Naderi, Mahmood; Vasei, Mohammad; Arefian, Ehsan; Mirab-Samiee, Siamak; Shafiee, Abbas; Soleimani, Masoud; Zeinali, Sirous
2012-11-01
The therapeutic potential of bone marrow mesenchymal stem cells (MSCs) in kidney failure has been examined in some studies. However, recent findings indicate that after transplantation, these cells home to kidneys at very low levels. Interaction of stromal derived factor-1 (SDF-1) with its receptor, CXCR4, is of pivotal importance in migration and homing. Recently, CXCR7 has also been recognized as another SDF-1 receptor that interacts with CXCR4 and modulates its functions. In this study, CXCR4 and CXCR7 were separately and simultaneously overexpressed in BALB/c bone marrow MSCs by using a lentiviral vector system and the homing and renoprotective potentials of these cells were evaluated in a mouse model of cisplatin-induced acute kidney injury. Using flow cytometry, immunohistochemistry, and real-time PCR methods for detection of GFP-labeled MSCs, we found that although considerably entrapped in lungs, native MSCs home very rarely to kidneys and bone marrow and this rate cannot be significantly affected by CXCR4 and/or CXCR7 upregulation. Transplantation of neither native nor genetically engineered MSCs ameliorated kidney failure. We concluded that overexpression of CXCR4 and CXCR7 receptors in murine MSCs cannot improve the homing and therapeutic potentials of these cells and it can be due to severe chromosomal abnormalities that these cells bear during ex vivo expansion.
Cell Therapy for Prophylactic Tolerance in Immunoglobulin E-mediated Allergy.
Baranyi, Ulrike; Farkas, Andreas M; Hock, Karin; Mahr, Benedikt; Linhart, Birgit; Gattringer, Martina; Focke-Tejkl, Margit; Petersen, Arnd; Wrba, Fritz; Rülicke, Thomas; Valenta, Rudolf; Wekerle, Thomas
2016-05-01
Therapeutic strategies for the prophylaxis of IgE-mediated allergy remain an unmet medical need. Cell therapy is an emerging approach with high potential for preventing and treating immunological diseases. We aimed to develop a cell-based therapy inducing permanent allergen-specific immunological tolerance for preventing IgE-mediated allergy. Wild-type mice were treated with allergen-expressing bone marrow cells under a short course of tolerogenic immunosuppression (mTOR inhibition and costimulation blockade). Bone marrow was retrieved from a novel transgenic mouse ubiquitously expressing the major grass pollen allergen Phl p 5 as a membrane-anchored protein (BALB/c-Tg[Phlp5-GFP], here mPhl p 5). After transplantation recipients were IgE-sensitized at multiple time points with Phl p 5 and control allergen. Mice treated with mPhl p 5 bone marrow did not develop Phl p 5-specific IgE (or other isotypes) despite repeated administration of the allergen, while mounting and maintaining a strong humoral response towards the control allergen. Notably, Phl p 5-specific T cell responses and allergic airway inflammation were also completely prevented. Interestingly allergen-specific B cell tolerance was maintained independent of Treg functions indicating deletional tolerance as underlying mechanism. This proof-of-concept study demonstrates that allergen-specific immunological tolerance preventing occurrence of allergy can be established through a cell-based therapy employing allergen-expressing leukocytes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okano, Junko, E-mail: jokano@belle.shiga-med.ac.jp; Kojima, Hideto; Katagi, Miwako
Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP{supmore » +}) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP{sup +} cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin.« less
Yilmaz, Ömer H.; Kiel, Mark J.; Morrison, Sean J.
2006-01-01
Recent advances have increased the purity of hematopoietic stem cells (HSCs) isolated from young mouse bone marrow. However, little attention has been paid to the purity of HSCs from other contexts. Although Thy-1lowSca-1+Lineage-c-kit+ cells from young bone marrow are highly enriched for HSCs (1 in 5 cells gives long-term multilineage reconstitution after transplantation into irradiated mice), the same population from old, reconstituted, or cytokine-mobilized mice engrafts much less efficiently (1 in 78 to 1 in 185 cells gives long-term multilineage reconstitution). To test whether we could increase the purity of HSCs isolated from these contexts, we examined the SLAM family markers CD150 and CD48. All detectable HSCs from old, reconstituted, and cyclophosphamide/G-CSF-mobilized mice were CD150+CD48-, just as in normal young bone marrow. Thy-1lowSca-1+Lineage-c-kit+ cells from old, reconstituted, or mobilized mice included mainly CD48+ and/or CD150- cells that lacked reconstituting ability. CD150+CD48-Sca-1+Lineage-c-kit+ cells from old, reconstituted, or mobilized mice were much more highly enriched for HSCs, with 1 in 3 to 1 in 7 cells giving long-term multilineage reconstitution. SLAM family receptor expression is conserved among HSCs from diverse contexts, and HSCs from old, reconstituted, and mobilized mice engraft relatively efficiently after transplantation when contaminating cells are eliminated. PMID:16219798
Yilmaz, Omer H; Kiel, Mark J; Morrison, Sean J
2006-02-01
Recent advances have increased the purity of hematopoietic stem cells (HSCs) isolated from young mouse bone marrow. However, little attention has been paid to the purity of HSCs from other contexts. Although Thy-1 low Sca-1+ Lineage- c-kit+ cells from young bone marrow are highly enriched for HSCs (1 in 5 cells gives long-term multilineage reconstitution after transplantation into irradiated mice), the same population from old, reconstituted, or cytokine-mobilized mice engrafts much less efficiently (1 in 78 to 1 in 185 cells gives long-term multilineage reconstitution). To test whether we could increase the purity of HSCs isolated from these contexts, we examined the SLAM family markers CD150 and CD48. All detectable HSCs from old, reconstituted, and cyclophosphamide/G-CSF-mobilized mice were CD150+ CD48-, just as in normal young bone marrow. Thy-1 low Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice included mainly CD48+ and/or CD150- cells that lacked reconstituting ability. CD150+ CD48- Sca-1+ Lineage- c-kit+ cells from old, reconstituted, or mobilized mice were much more highly enriched for HSCs, with 1 in 3 to 1 in 7 cells giving long-term multilineage reconstitution. SLAM family receptor expression is conserved among HSCs from diverse contexts, and HSCs from old, reconstituted, and mobilized mice engraft relatively efficiently after transplantation when contaminating cells are eliminated.
Dusp3 deletion in mice promotes experimental lung tumour metastasis in a macrophage dependent manner
Vandereyken, Maud; Jacques, Sophie; Van Overmeire, Eva; Amand, Mathieu; Rocks, Natacha; Delierneux, Céline; Singh, Pratibha; Singh, Maneesh; Ghuysen, Camille; Wathieu, Caroline; Zurashvili, Tinatin; Sounni, Nor Eddine; Moutschen, Michel; Gilles, Christine; Oury, Cécile; Cataldo, Didier; Van Ginderachter, Jo A.
2017-01-01
Vaccinia-H1 Related (VHR) dual-specificity phosphatase, or DUSP3, plays an important role in cell cycle regulation and its expression is altered in several human cancers. In mouse model, DUSP3 deletion prevents neo-angiogenesis and b-FGF-induced microvessel outgrowth. Considering the importance of angiogenesis in metastasis formation, our study aimed to investigate the role of DUSP3 in tumour cell dissemination. Using a Lewis Lung carcinoma (LLC) experimental metastasis model, we observed that DUSP3-/- mice developed larger lung metastases than littermate controls. DUSP3-/- bone marrow transfer to lethally irradiated DUSP3+/+ mice was sufficient to transfer the phenotype to DUSP3+/+ mice, indicating that hematopoietic cells compartment was involved in the increased tumour cell dissemination to lung tissues. Interestingly, we found a higher percentage of tumour-promoting Ly6Cint macrophages in DUSP3-/- LLC-bearing lung homogenates that was at least partially due to a better recruitment of these cells. This was confirmed by 1) the presence of higher number of the Ly6Bhi macrophages in DUSP3-/- lung homogenates and by 2) the better migration of DUSP3-/- bone marrow sorted monocytes, peritoneal macrophages and bone marrow derived macrophages (BMDMs), compared to DUSP3+/+ monocytes, macrophages and BMDMs, in response to LLC-conditioned medium. Our study demonstrates that DUSP3 phosphatase plays a key role in metastatic growth through a mechanism involving the recruitment of macrophages towards LLC-bearing lungs. PMID:29020102
McCabe, Amanda; Smith, Julianne N P; Costello, Angelica; Maloney, Jackson; Katikaneni, Divya; MacNamara, Katherine C
2018-05-17
Severe aplastic anemia results from profound hematopoietic stem cell loss. T cells and interferon gamma have long been associated with severe aplastic anemia, yet the underlying mechanisms driving hematopoietic stem cell loss remain unknown. Using a mouse model of severe aplastic anemia, we demonstrate that interferon gamma-dependent hematopoietic stem cell loss required macrophages. Interferon gamma was necessary for bone marrow macrophage persistence, despite loss of other myeloid cells and hematopoietic stem cells. Depleting macrophages or abrogating interferon gamma signaling specifically in macrophages did not impair T cell activation or interferon gamma production in the bone marrow but rescued hematopoietic stem cells and reduced mortality. Thus, macrophages are not required for induction of interferon gamma in severe aplastic anemia and rather act as sensors of interferon gamma. Macrophage depletion rescued thrombocytopenia, increased bone marrow megakaryocytes, preserved platelet-primed stem cells, and increased the platelet-repopulating capacity of transplanted hematopoietic stem cells. In addition to the hematopoietic effects, severe aplastic anemia induced loss of non-hematopoietic stromal populations, including podoplanin-positive stromal cells. However, a subset of podoplanin-positive macrophages was increased during disease, and blockade of podoplanin in mice was sufficient to rescue disease. Our data further our understanding of disease pathogenesis demonstrating a novel role for macrophages as sensors of interferon gamma, thus illustrating an important role for the microenvironment in pathogenesis of severe aplastic anemia. Copyright © 2018, Ferrata Storti Foundation.
The Acute Gastrointestinal Syndrome in High-Dose Irradiated Mice
Booth, Catherine; Tudor, Gregory; Tudor, Julie; Katz, Barry P; MacVittie, Thomas
2012-01-01
The most detailed reports of the response of the gastrointestinal system to high dose acute radiation have focused mainly on understanding the histopathology. However, to enable medical countermeasure assessment under the animal rule criteria, it is necessary to have a robust model in which the relationship between radiation dose and intestinal radiation syndrome incidence, timing and severity are established and correlated with histopathology. Although many mortality studies have been published, they have used a variety of mouse strains, ages, radiation sources and husbandry conditions, all of which influence the dose response. Further, it is clear that the level of bone marrow irradiation and supportive care can influence endpoints. In order to create robust baseline data we have generated dose response data in adult male mice, maintained under identical conditions, and exposed to either total or partial-body irradiation. Partial-body irradiation includes both extensive (40%) and minimal (5%) bone marrow sparing models, the latter designed to correlate with an established primate model and allow assessment of effects of any medical countermeasure on all three major radiation syndromes (intestinal, bone marrow and lung) in the surviving mice. Lethal dose (LD30, LD50 and LD70) data are described in the various models, along with the impact of enteric flora and response to supportive care. Correlation with diarrhea severity and histopathology are also described. This data can be used to aid the design of good laboratory practice (GLP) compliant Animal Rule studies that are reflective of the conditions following accidental radiation exposure. PMID:23091876
Granulocyte-mobilized bone marrow.
Arcese, William; De Angelis, Gottardo; Cerretti, Raffaella
2012-11-01
In the last few years, mobilized peripheral blood has overcome bone marrow as a graft source, but, despite the evidence of a more rapid engraftment, the incidence of chronic graft-versus-host disease is significantly higher with, consequently, more transplant-related mortality on the long follow-up. Overall, the posttransplant outcome of mobilized peripheral blood recipients is similar to that of patients who are bone marrow grafted. More recently, the use of bone marrow after granulocyte colony-stimulating factor (G-CSF) donor priming has been introduced in the transplant practice. Herein, we review biological acquisitions and clinical results on the use of G-CSF-primed bone marrow as a source of hematopoietic stem cells (HSC) for allogeneic stem cell transplantation. G-CSF the increases the HSC compartment and exerts an intense immunoregulatory effect on marrow T-cells resulting in the shift from Th1 to Th2 phenotype with higher production of anti-inflammatory cytokines. The potential advantages of these biological effects have been translated in the clinical practice by using G-CSF primed unmanipulated bone marrow in the setting of transplant from human leukocyte antigen (HLA)-haploidentical donor with highly encouraging results. For patients lacking an HLA-identical sibling, the transplant of G-CSF primed unmanipulated bone marrow from a haploidentical donor combined with an intense in-vivo immunosuppression is a valid alternative achieving results that are well comparable with those reported for umbilical cord blood, HLA-matched unrelated peripheral blood/bone marrow or T-cell-depleted haploidentical transplant.
Wang, Enbo; Zhao, Qun; Zhang, Lijun
2006-09-01
To evaluate the therapeutic results of percutaneous injection of autogenous bone marrow for simple bone cyst and to analyze the prognostic factors of the treatment. From March 2000 to June 2005, 31 patients with simple bone cysts were treated by percutaneous injection of autogenous bone marrow. Of 31 patients, there were 18 males and 13 females, aged 5 years and 7 months to 15 years. The locations were proximal humerus in 18 cases, proximal femur in 7 cases and other sites in 6 cases. Two cases were treated with repeated injections. The operative process included percutaneous aspiration of fluid in the bone cysts and injection of autogenous bone marrow aspirated from posterior superior iliac spine. The mean volume of marrow injected was 40 ml (30-70 ml). No complications were noted during treatment. Thirty patients were followed for an average of 2.2 years (1-5 years) with 2 cases out of follow-up. After one injection of bone marrow, 9 cysts (29.0%) were healed up completely, 7 cysts (22.6%) basically healed up, 13 cysts (41.9%) healed up partially and 2 (6.5%) had no response. The satisfactory and effective rates were 67.7% and 93.5% respectively. There was significant difference between active stage group and resting stage group(P<0.05). There were no statistically significant difference in therapeutic results between groups of different ages, lesion sites or bone marrow hyperplasia(P>0.05). Percutaneous injection of autogenous bone marrow is a safe and effective method to treat simple bone cyst, but repeated injections is necessary for some patients. The therapeutic results are better in cysts at resting stage than those at active stage.
Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.
2016-01-01
OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477
Irons, R D
1981-01-01
A detailed description of flow cytofluorometric DNA cell cycle analysis is presented. A number of studies by the author and other investigators are reviewed in which a method is developed for the analysis of cell cycle phase in bone marrow of experimental animals. Bone marrow cell cycle analysis is a sensitive indicator of changes in bone marrow proliferative activity occurring early in chemically-induced myelotoxicity. Cell cycle analysis, used together with other hematologic methods, has revealed benzene-induced toxicity in proliferating bone marrow cells to be cycle specific, appearing to affect a population in late S phase which then accumulate in G2/M. PMID:7016521
Gluckman, R J; Rosner, F; Guarneri, J J
1989-02-01
Diagnostic bone marrow aspiration, biopsy, and culture are useful procedures in the evaluation of patients with suspected or proven acquired immunodeficiency syndrome (AIDS) who are febrile. In as many as one fourth of these patients, the information provided by the bone marrow examination may establish a diagnosis of a disseminated opportunistic infection when other studies are not informative. We have also discovered a previously unreported association between thrombocytopenia and the presence of bone marrow granulomas in our patients with AIDS and suggest that thrombocytopenia may be a clue to enable the clinician to predict a positive bone marrow result more accurately. The explanation for this apparent association remains to be elucidated.
NASA Astrophysics Data System (ADS)
Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian
2016-03-01
The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.
Tanabe, Y; Dan, K; Kuriya, S; Nomura, T
1989-10-01
The effects of recombinant human interferon (IFN) alpha-2b and gamma on the bone marrow megakaryocyte progenitors (CFU-Meg) were compared between eight patients in the chronic phase of Ph1-positive chronic myelocytic leukemia (CML) and five hematologically normal patients. CFU-Meg was assayed in plasma clot culture added with phytohemagglutinin-stimulated leukocyte-conditioned medium as a source of colony stimulating activity. The average count of CFU-Meg colonies formed from the bone marrow of CML patients was 5.5 times that of normal controls. Spontaneous CFU-Meg colonies were grown in seven of eight CML patients, but in none of five controls. Colony formation by CFU-Meg in CML as well as normal bone marrow was suppressed by the two preparations of IFN in a dose dependent fashion. Their suppressive influence on colonies from CFU-Meg was comparable between CML and normal bone marrow at lower concentrations, but was less marked for CML than normal bone marrow at higher concentrations. The formation of CFU-Meg colonies from CML bone marrow was more severely suppressed by IFN-gamma than IFN-alpha-2b. Depletion of either T lymphocytes or adherent cells from the CML bone marrow cells diminished the suppressive effects of IFN-gamma, but had no influence on the effects of IFN-alpha-2b.
Gao, Liang; Orth, Patrick; Müller-Brandt, Kathrin; Goebel, Lars K. H.; Cucchiarini, Magali; Madry, Henning
2017-01-01
Microfracture of cartilage defects may induce alterations of the subchondral bone in the mid- and long-term, yet very little is known about their onset. Possibly, these changes may be avoided by an enhanced microfracture technique with additional application of bone marrow aspirate. In this study, full-thickness chondral defects in the knee joints of minipigs were either treated with (1) debridement down to the subchondral bone plate alone, (2) debridement with microfracture, or (3) microfracture with additional application of bone marrow aspirate. At 4 weeks after microfracture, the loss of subchondral bone below the defects largely exceeded the original microfracture holes. Of note, a significant increase of osteoclast density was identified in defects treated with microfracture alone compared with debridement only. Both changes were significantly counteracted by the adjunct treatment with bone marrow. Debridement and microfracture without or with bone marrow were equivalent regarding the early cartilage repair. These data suggest that microfracture induced a substantial early resorption of the subchondral bone and also highlight the potential value of bone marrow aspirate as an adjunct to counteract these alterations. Clinical studies are warranted to further elucidate early events of osteochondral repair and the effect of enhanced microfracture techniques. PMID:28345610
Can bone marrow differentiate into renal cells?
Imai, Enyu; Ito, Takahito
2002-10-01
A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.
THAM, CHING S.; CHAKRAVARTHI, SRIKUMAR; HALEAGRAHARA, NAGARAJA; DE ALWIS, RANJIT
2013-01-01
Lead causes damage to the body by inducing oxidative stress. The sites of damage include the bone marrow, where marrow hypoplasia and osteosclerosis may be observed. Leaves of Carica papaya, which have antioxidant and haemopoietic properties, were tested against the effect of lead acetate in experimental rats. The rats were divided into 8 groups; control, lead acetate only, Carica papaya (50 mg and 200 mg), post-treatment with Carica papaya (50 mg and 200 mg) following lead acetate administration and pre-treatment with Carica papaya (50 mg and 200 mg) followed by lead acetate administration. The substances were administered for 14 days. The effects were evaluated by measuring protein carbonyl content (PCC) and glutathione content (GC) in the bone marrow. Histological changes in the bone marrow were also observed. The results showed that Carica papaya induced a significant reduction in the PCC activity and significantly increased the GC in the bone marrow. Carica papaya also improved the histology of the bone marrow compared with that of the lead acetate-treated group. In summary, Carica papaya was effective against the oxidative damage caused by lead acetate in the bone marrow and had a stimulatory effect on haemopoiesis. PMID:23403524
Tham, Ching S; Chakravarthi, Srikumar; Haleagrahara, Nagaraja; DE Alwis, Ranjit
2013-02-01
Lead causes damage to the body by inducing oxidative stress. The sites of damage include the bone marrow, where marrow hypoplasia and osteosclerosis may be observed. Leaves of Carica papaya, which have antioxidant and haemopoietic properties, were tested against the effect of lead acetate in experimental rats. The rats were divided into 8 groups; control, lead acetate only, Carica papaya (50 mg and 200 mg), post-treatment with Carica papaya (50 mg and 200 mg) following lead acetate administration and pre-treatment with Carica papaya (50 mg and 200 mg) followed by lead acetate administration. The substances were administered for 14 days. The effects were evaluated by measuring protein carbonyl content (PCC) and glutathione content (GC) in the bone marrow. Histological changes in the bone marrow were also observed. The results showed that Carica papaya induced a significant reduction in the PCC activity and significantly increased the GC in the bone marrow. Carica papaya also improved the histology of the bone marrow compared with that of the lead acetate-treated group. In summary, Carica papaya was effective against the oxidative damage caused by lead acetate in the bone marrow and had a stimulatory effect on haemopoiesis.
Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.
Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung
2016-03-05
Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption. Copyright © 2016 Elsevier B.V. All rights reserved.
Kong, Fanxuan; Shi, Xuefeng; Xiao, Fengjun; Yang, Yuefeng; Zhang, Xiaoyan; Wang, Li-Sheng; Wu, Chu-Tse; Wang, Hua
2018-02-01
Investigations based on mesenchymal stem cells (MSCs) for osteoporosis have attracted attention recently. MSCs can be derived from various tissues, such as bone marrow, adipose, umbilical cord, placenta, and dental pulp. Among these, dental pulp-derived MSCs (DPSCs) and hepatocyte growth factor (HGF)-modified DPSCs (DPSCs-HGF) highly express osteogenic-related genes and have stronger osteogenic differentiation capacities. DPSCs have more benefits in treating osteoporosis. The purpose of this study was to investigate the roles of HGF gene-modified DPSCs in bone regeneration using a mouse model of ovariectomy (OVX)-induced bone loss. The HGF and luciferase genes were transferred into human DPSCs using recombinant adenovirus. These transduced cells were assayed for distribution or bone regeneration assay by transplantation into an OVX-induced osteoporosis model. By using bioluminogenic imaging, it was determined that some DPSCs could survive for >1 month in vivo. The DPSCs were mainly distributed to the lung in the early stage and to the liver in the late stage of OVX osteoporosis after administration, but they were scarcely distributed to the bone. The homing efficiency of DPSCs is higher when administrated in the early stage of a mouse OVX model. Micro-computed tomography indicated that DPSCs-Null or DPSCs-HGF transplantation significantly reduces OVX-induced bone loss in the trabecular bone of the distal femur metaphysis, and DPSCs-HGF show a stronger capacity to reduce bone loss. The data suggest that systemic infusion of DPSCs-HGF is a potential therapeutic approach for OVX-induced bone loss, which might be mediated by paracrine mechanisms.
NF-κB RelB Negatively Regulates Osteoblast Differentiation and Bone Formation
Yao, Zhenqiang; Li, Yanyun; Yin, Xiaoxiang; Dong, Yufeng; Xing, Lianping; Boyce, Brendan F.
2013-01-01
RelA-mediated NF-κB canonical signaling promotes mesenchymal progenitor cell (MPC) proliferation, but inhibits differentiation of mature osteoblasts (OBs) and thus negatively regulates bone formation. Previous studies suggest that NF-κB RelB may also negatively regulate bone formation through non-canonical signaling, but they involved a complex knockout mouse model and the molecular mechanisms involved were not investigated. Here, we report that RelB−/− mice develop age-related increased trabecular bone mass associated with increased bone formation. RelB−/− bone marrow stromal cells expanded faster in vitro and have enhanced OB differentiation associated with increased expression of the osteoblastogenic transcription factor, Runx2. In addition, RelB directly targeted the Runx2 promoter to inhibit its activation. Importantly, RelB−/− bone-derived MPCs formed bone more rapidly than wild-type cells after they were injected into a murine tibial bone defect model. Our findings indicate that RelB negatively regulates bone mass as mice age and limits bone formation in healing bone defects, suggesting that inhibition of RelB could reduce age-related bone loss and enhance bone repair. PMID:24115294
Isolated juvenile xanthogranuloma in the bone marrow: report of a case and review of the literature.
Kesserwan, Chimen; Boué, Daniel R; Kahwash, Samir B
2007-01-01
We report a case of juvenile xanthogranuloma limited to involvement of the bone marrow in a 6-week-old male infant. Evaluation of the bone marrow was a part of the workup for peripheral blood cytopenia. Examination showed hypercellular marrow with paratrabecular clusters of lipidized histiocytes positive for CD68, CD4, and factor XIII(a) and negative for S100 and CD1a. Clinical and radiological workup showed no associated skin lesions or osseous or visceral involvement. The patient was started on chemotherapy with clinical improvement and gradual decreased bone marrow involvement. The child is alive and well at 16 months of age. This case represents, to the best of our knowledge, the 1st documented case of juvenile xanthogranuloma with isolated bone marrow involvement sparing skin and viscera.
Burchill, Susan A; Beiske, Klaus; Shimada, Hiroyuki; Ambros, Peter F; Seeger, Robert; Tytgat, Godelieve A M; Brock, Penelope R; Haber, Michelle; Park, Julie R; Berthold, Frank
2017-04-01
The current study was conducted to expedite international standardized reporting of bone marrow disease in children with neuroblastoma and to improve equivalence of care. A multidisciplinary International Neuroblastoma Response Criteria Bone Marrow Working Group was convened by the US National Cancer Institute in January 2012 with representation from Europe, North America, and Australia. Practical transferable recommendations to standardize the reporting of bone marrow disease were developed. To the authors' knowledge, the current study is the first to comprehensively present consensus criteria for the collection, analysis, and reporting of the percentage area of bone marrow parenchyma occupied by tumor cells in trephine-biopsies. The quantitative analysis of neuroblastoma content in bone marrow aspirates by immunocytology and reverse transcriptase-quantitative polymerase chain reaction are revised. The inclusion of paired-like homeobox 2b (PHOX2B) for immunohistochemistry and reverse transcriptase-quantitative polymerase chain reaction is recommended. Recommendations for recording bone marrow response are provided. The authors endorse the quantitative assessment of neuroblastoma cell content in bilateral core needle biopsies-trephines and aspirates in all children with neuroblastoma, with the exception of infants, in whom the evaluation of aspirates alone is advised. It is interesting to note that 5% disease is accepted as an internationally achievable level for disease assessment. The quantitative assessment of neuroblastoma cells is recommended to provide data from which evidence-based numerical criteria for the reporting of bone marrow response can be realized. This is particularly important in the minimal disease setting and when neuroblastoma detection in bone marrow is intermittent, where clinical impact has yet to be validated. The wide adoption of these harmonized criteria will enhance the ability to compare outcomes from different trials and facilitate collaborative trial design. Cancer 2017;123:1095-1105. © 2016 American Cancer Society. © 2016 American Cancer Society.
Trópia de Abreu, Raquel; Carvalho, Maria das Graças; Carneiro, Cláudia Martins; Giunchetti, Rodolfo Cordeiro; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Coura-Vital, Wendel; Corrêa-Oliveira, Rodrigo; Reis, Alexandre Barbosa
2011-05-10
The bone marrow is considered to be an important storage of parasites in Leishmania-infected dogs, although little is known about cellular genesis in this organ during canine visceral leishmaniasis (CVL). The aim of the present study was to evaluate changes in erythropoiesis and leucopoiesis in bone marrow aspirates from dogs naturally infected with Leishmania chagasi and presenting different clinical statuses and bone marrow parasite densities. The evolution of CVL from asymptomatic to symptomatic status was accompanied by increasing parasite density in the bone marrow. The impact of bone marrow parasite density on cellularity was similar in dogs at different clinical stages, with animals in the high parasite density group. Erythroid and eosinophilic hypoplasia, proliferation of neutrophilic precursor cells and significant increases in lymphocytes and plasma cell numbers were the major alterations observed. Differential bone marrow cell counts revealed increases in the myeloid:erythroid ratio associated to increased numbers of granulopoietic cells in the different clinical groups compared with non-infected dogs. Analysis of the data obtained indicated that the assessment of bone marrow constitutes an additional and useful tool by which to elaborate a prognosis for CVL.
Trópia de Abreu, Raquel; Carvalho, Maria das Graças; Carneiro, Cláudia Martins; Giunchetti, Rodolfo Cordeiro; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Coura-Vital, Wendel; Corrêa-Oliveira, Rodrigo; Reis, Alexandre Barbosa
2011-01-01
Background The bone marrow is considered to be an important storage of parasites in Leishmania-infected dogs, although little is known about cellular genesis in this organ during canine visceral leishmaniasis (CVL). Methodology/Principal Findings The aim of the present study was to evaluate changes in erythropoiesis and leucopoiesis in bone marrow aspirates from dogs naturally infected with Leishmania chagasi and presenting different clinical statuses and bone marrow parasite densities. The evolution of CVL from asymptomatic to symptomatic status was accompanied by increasing parasite density in the bone marrow. The impact of bone marrow parasite density on cellularity was similar in dogs at different clinical stages, with animals in the high parasite density group. Erythroid and eosinophilic hypoplasia, proliferation of neutrophilic precursor cells and significant increases in lymphocytes and plasma cell numbers were the major alterations observed. Differential bone marrow cell counts revealed increases in the myeloid:erythroid ratio associated to increased numbers of granulopoietic cells in the different clinical groups compared with non-infected dogs. Conclusions Analysis of the data obtained indicated that the assessment of bone marrow constitutes an additional and useful tool by which to elaborate a prognosis for CVL. PMID:21572995
Eltoukhy, Hussam S; Sinha, Garima; Moore, Caitlyn; Gergues, Marina; Rameshwar, Pranela
2018-05-31
The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François
2017-01-01
Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow. PMID:28683107
Aboul-Ela, Ezzat I
2002-04-26
The protective effect of Nigella sativa seed extract and its main constituents thymoquinone (TQ) was studied on mouse cells infected with schistosomiasis. Bone marrow cells in the in vivo experiments and spleen cells in the in vitro one were used to evaluate the potentially protective effect of these natural compounds on the induction of chromosomal aberrations. Karyotyping of the mice cells illustrated that the main abnormalities were gaps, fragments and deletions especially in chromosomes 2, 6 and some in chromosomes 13 and 14. Both N. sativa extract and TQ were considered as protective agents against the chromosomal aberrations induced as a result of schistosomiasis.
2017-07-01
AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve...of Decellularized Nerve Allograft with 5a. CONTRACT NUMBER Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve 5b. GRANT NUMBER W81XWH...commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with autologous bone marrow
IMMUNOLOGIC MEMORY CELLS OF BONE MARROW ORIGIN
Miller, Harold C.; Cudkowicz, Gustavo
1972-01-01
Individual immunocompetent precursor cells of (C57BL/10 x C3H)F1 mouse marrow generate, on transplantation, three to five times more antibody-forming cells localized in recipient spleens during secondary than during primary immune responses. The increased burst size is immunologically specific since antigens of horse and chicken erythrocytes and of Salmonella typhimurium do not cause this effect in marrow cells responsive to sheep red blood cells. Both sensitized and nonsensitized precursors require the helper function of thymus-derived cells and antigen for the final steps of differentiation and maturation. The burst size of primed precursor cells is the same after cooperative interactions with virgin or educated helper cells of thymic origin. The greater potential of these marrow precursors may be attributable to self-replication and migration before differentiation into antibody-forming descendants. In fact, the progeny cells of primed precursor units are distributed among a multiplicity of foci, whereas those of nonimmune precursors are clustered into one focus. The described properties of specifically primed marrow precursors are those underlying immunologic memory. It remains to be established whether memory cells are induced or selected by antigens and whether the thymus plays a role in this process. PMID:4553850
A novel Phex mutation in a new mouse model of hypophosphatemic rickets.
Owen, Celeste; Chen, Frieda; Flenniken, Ann M; Osborne, Lucy R; Ichikawa, Shoji; Adamson, S Lee; Rossant, Janet; Aubin, Jane E
2012-07-01
X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies. Copyright © 2012 Wiley Periodicals, Inc.
MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation.
Li, Chang-Jun; Cheng, Peng; Liang, Meng-Ke; Chen, Yu-Si; Lu, Qiong; Wang, Jin-Yu; Xia, Zhu-Ying; Zhou, Hou-De; Cao, Xu; Xie, Hui; Liao, Er-Yuan; Luo, Xiang-Hang
2015-04-01
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.
Batista, Marco Antonio; Leivas, Tomaz Puga; Rodrigues, Consuelo Junqueira; Arenas, Géssica Cantadori Funes; Belitardo, Donizeti Rodrigues; Guarniero, Roberto
2011-01-01
OBJECTIVE: To perform a comparative analysis of the effects of platelet-rich plasma and centrifuged bone marrow aspirate on the induction of bone healing in rabbits. METHOD: Twenty adult, male New Zealand rabbits were randomly separated into two equal groups, and surgery was performed to create a bone defect (a cortical orifice 3.3 mm in diameter) in the proximal metaphysis of each rabbit's right tibia. In the first group, platelet-rich plasma was implanted in combination with β-tricalcium phosphate (platelet-rich plasma group), and in the second group, centrifuged bone marrow in combination with β-tricalcium phosphate (centrifuged bone marrow group) was implanted. After a period of four weeks, the animals were euthanized, and the tibias were evaluated using digital radiography, computed tomography, and histomorphometry. RESULTS: Seven samples from each group were evaluated. The radiographic evaluation confirmed the absence of fractures in the postoperative limb and identified whether bone consolidation had occurred. The tomographic evaluation revealed a greater amount of consolidation and the formation of a greater cortical bone thickness in the platelet-rich plasma group. The histomorphometry revealed a greater bone density in the platelet-rich plasma group compared with the centrifuged bone marrow group. CONCLUSION: After four weeks, the platelet-rich plasma promoted a greater amount of bone consolidation than the bone marrow aspirate concentrate. PMID:22012052
NASA Astrophysics Data System (ADS)
Rainarli, E.; E Dewi, K.
2017-04-01
The research conducted by Fister & Panetta shown an optimal control model of bone marrow cells against Cell Cycle Specific chemotherapy drugs. The model used was a bilinear system model. Fister & Panetta research has proved existence, uniqueness, and characteristics of optimal control (the chemotherapy effect). However, by using this model, the amount of bone marrow at the final time could achieve less than 50 percent from the amount of bone marrow before given treatment. This could harm patients because the lack of bone marrow cells made the number of leukocytes declining and patients will experience leukemia. This research would examine the optimal control of a bilinear system that applied to fixed final state. It will be used to determine the length of optimal time in administering chemotherapy and kept bone marrow cells on the allowed level at the same time. Before simulation conducted, this paper shows that the system could be controlled by using a theory of Lie Algebra. Afterward, it shows the characteristics of optimal control. Based on the simulation, it indicates that strong chemotherapy drug given in a short time frame is the most optimal condition to keep bone marrow cells spine on the allowed level but still could put playing an effective treatment. It gives preference of the weight of treatment for keeping bone marrow cells. The result of chemotherapy’s effect (u) is not able to reach the maximum value. On the other words, it needs to make adjustments of medicine’s dosage to satisfy the final treatment condition e.g. the number of bone marrow cells should be at the allowed level.
Gamma Radiation Induces Micronucleated Reticulocytes in 3-D Bone Marrow Bioreactors in Vitro
Sun, Hongliang; Dertinger, Stephen D.; Hyrien, Ollivier; David Wu, J. H.; Chen, Yuhchyau
2009-01-01
Radiation injury to the bone marrow is potentially lethal due to the potent DNA-damaging effects on cells of the hematopoietic system, including bone marrow stem cell, progenitor, and the precursor cell populations. Investigation of radiation genotoxic effects on bone marrow progenitor/precursor cells has been challenged by the lack of optimal in vitro surrogate organ culture systems, and the overall difficulty to sustain lineage-specific proliferation and differentiation of hematopoiesis in vitro. We report the investigation of radiation genotoxic effects in bone marrow cultures of C57Bl/6 mice established in 3-D bioreactors, which sustain long-term bone marrow cultures. For these studies, genotoxicity is measured by the induction of micronucleated reticulocytes (MN-RET). The kinetics and dose-response relationship of MN-RET induction in response to gamma-radiation of bioreactor-maintained bone marrow cultures are presented. Our data showed that 3-D long-term bone marrow cultures had sustained erythropoiesis capable of generating reticulocytes up to 8 weeks. The peak time-interval of viable cell output and percentage of reticulocytes increased steadily and reached the initial peak between the 14th to 21st days after inoculations. This was followed by a rebound or staying relatively constant until week 8. The percentage of MN-RET reached the maximum between 24 and 32 hours post 1 Gy gamma-ray. There was a near linear MN-RET induction by gamma radiation from 0 Gy to 1.0 Gy, followed by an attenuated increase to 1.5 – 2.0 Gy. The MN-RET response showed a downtrend beyond 2 Gy. Our data suggest that bone marrow culture in the 3-D bioreactor may be a useful organ culture system for the investigation of radiation genotoxic effect in vitro. PMID:19786117
Selective Shielding of Bone Marrow: An Approach to Protecting Humans from External Gamma Radiation.
Waterman, Gideon; Kase, Kenneth; Orion, Itzhak; Broisman, Andrey; Milstein, Oren
2017-09-01
The current feasibility of protecting emergency responders through bone marrow selective shielding is highlighted in the recent OECD/NEA report on severe accident management. Until recently, there was no effective personal protection from externally penetrating gamma radiation. In Chernobyl, first-responders wore makeshift lead sheeting, whereas in Fukushima protective equipment from gamma radiation was not available. Older protective solutions that use thin layers of shielding over large body surfaces are ineffective for energetic gamma radiation. Acute exposures may result in Acute Radiation Syndrome where the survival-limiting factor up to 10 Gy uniform, homogeneous exposure is irreversible bone marrow damage. Protracted, lower exposures may result in malignancies of which bone marrow is especially susceptible, being compounded by leukemia's short latency time. This highlights the importance of shielding bone marrow for preventing both deterministic and stochastic effects. Due to the extraordinary regenerative potential of hematopoietic stem cells, to effectively prevent the deterministic effects of bone marrow exposure, it is sufficient to protect only a small fraction of this tissue. This biological principle allows for a new class of equipment providing unprecedented attenuation of radiation to select marrow-rich regions, deferring the hematopoietic sub-syndrome of Acute Radiation Syndrome to much higher doses. As approximately half of the body's active bone marrow resides within the pelvis region, shielding this area holds great promise for preventing the deterministic effects of bone marrow exposure and concomitantly reducing stochastic effects. The efficacy of a device that selectively shields this region and other radiosensitive organs in the abdominal area is shown here.
Missing Cells: Pathophysiology, Diagnosis, and Management of (Pan)Cytopenia in Childhood
Erlacher, Miriam; Strahm, Brigitte
2015-01-01
Peripheral blood cytopenia in children can be due to a variety of acquired or inherited diseases. Genetic disorders affecting a single hematopoietic lineage are frequently characterized by typical bone marrow findings, such as lack of progenitors or maturation arrest in congenital neutropenia or a lack of megakaryocytes in congenital amegakaryocytic thrombocytopenia, whereas antibody-mediated diseases such as autoimmune neutropenia are associated with a rather unremarkable bone marrow morphology. By contrast, pancytopenia is frequently associated with a hypocellular bone marrow, and the differential diagnosis includes acquired aplastic anemia, myelodysplastic syndrome, inherited bone marrow failure syndromes such as Fanconi anemia and dyskeratosis congenita, and a variety of immunological disorders including hemophagocytic lymphohistiocytosis. Thorough bone marrow analysis is of special importance for the diagnostic work-up of most patients. Cellularity, cellular composition, and dysplastic signs are the cornerstones of the differential diagnosis. Pancytopenia in the presence of a normo- or hypercellular marrow with dysplastic changes may indicate myelodysplastic syndrome. More challenging for the hematologist is the evaluation of the hypocellular bone marrow. Although aplastic anemia and hypocellular refractory cytopenia of childhood (RCC) can reliably be differentiated on a morphological level, the overlapping pathophysiology remains a significant challenge for the choice of the therapeutic strategy. Furthermore, inherited bone marrow failure syndromes are usually associated with the morphological picture of RCC, and the recognition of these entities is essential as they often present a multisystem disease requiring different diagnostic and therapeutic approaches. This paper gives an overview over the different disease entities presenting with (pan)cytopenia, their pathophysiology, characteristic bone marrow findings, and therapeutic approaches. PMID:26217651
Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng
2014-08-15
Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.
Gluckman, R. J.; Rosner, F.; Guarneri, J. J.
1989-01-01
Diagnostic bone marrow aspiration, biopsy, and culture are useful procedures in the evaluation of patients with suspected or proven acquired immunodeficiency syndrome (AIDS) who are febrile. In as many as one fourth of these patients, the information provided by the bone marrow examination may establish a diagnosis of a disseminated opportunistic infection when other studies are not informative. We have also discovered a previously unreported association between thrombocytopenia and the presence of bone marrow granulomas in our patients with AIDS and suggest that thrombocytopenia may be a clue to enable the clinician to predict a positive bone marrow result more accurately. The explanation for this apparent association remains to be elucidated. PMID:2733050
Gianakos, Arianna L; Yasui, Youichi; Fraser, Ethan J; Ross, Keir A; Prado, Marcelo P; Fortier, Lisa A; Kennedy, John G
2016-10-01
To evaluate morphological alterations, microarchitectural disturbances, and the extent of bone marrow access to the subchondral bone marrow compartment using micro-computed tomography analysis in different bone marrow stimulation (BMS) techniques. Nine zones in a 3 × 3 grid pattern were assigned to 5 cadaveric talar dome articular surfaces. A 1.00-mm microfracture awl (s.MFX), a 2.00-mm standard microfracture awl (l.MFX), or a 1.25-mm Kirschner wire (K-wire) drill hole was used to penetrate the subchondral bone in each grid zone. Subchondral bone holes and adjacent tissue areas were assessed by micro-computed tomography to analyze adjacent bone area destruction and communicating channels to the bone marrow. Grades 1 to 3 were assigned, where 1 = minimal compression/sclerosis; 2 = moderate compression/sclerosis; 3 = severe compression/sclerosis. Bone volume/total tissue volume, bone surface area/bone volume, trabecular thickness, and trabecular number were calculated in the region of interest. Visual assessment revealed that the s.MFX had significantly more grade 1 holes (P < .001) and that the l.MFX had significantly more poor/grade 3 holes (P = .002). Bone marrow channel assessment showed a statistically significant increase in the number of channels in the s.MFX when compared with both K-wire and l.MFX holes (P < .001). Bone volume fraction for the s.MFX was significantly less than that of the l.MFX (P = .029). BMS techniques using instruments with larger diameters resulted in increased trabecular compaction and sclerosis in areas adjacent to the defect. K-wire and l.MFX techniques resulted in less open communicating bone marrow channels, denoting a reduction in bone marrow access. The results of this study indicate that BMS using larger diameter devices results in greater microarchitecture disturbances. The current study suggests that the choice of a BMS technique should be carefully considered as the results indicate that smaller diameter hole sizes may diminish the amount of microarchitectural disturbances in the subchondral bone. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peña, Jaime A.; Damm, Timo; Bastgen, Jan
Purpose: Accurate noninvasive assessment of vertebral bone marrow fat fraction is important for diagnostic assessment of a variety of disorders and therapies known to affect marrow composition. Moreover, it provides a means to correct fat-induced bias of single energy quantitative computed tomography (QCT) based bone mineral density (BMD) measurements. The authors developed new segmentation and calibration methods to obtain quantitative surrogate measures of marrow-fat density in the axial skeleton. Methods: The authors developed and tested two high resolution-QCT (HR-QCT) based methods which permit segmentation of bone voids in between trabeculae hypothesizing that they are representative of bone marrow space. Themore » methods permit calculation of marrow content in units of mineral equivalent marrow density (MeMD). The first method is based on global thresholding and peeling (GTP) to define a volume of interest away from the transition between trabecular bone and marrow. The second method, morphological filtering (MF), uses spherical elements of different radii (0.1–1.2 mm) and automatically places them in between trabeculae to identify regions with large trabecular interspace, the bone-void space. To determine their performance, data were compared ex vivo to high-resolution peripheral CT (HR-pQCT) images as the gold-standard. The performance of the methods was tested on a set of excised human vertebrae with intact bone marrow tissue representative of an elderly population with low BMD. Results: 86% (GTP) and 87% (MF) of the voxels identified as true marrow space on HR-pQCT images were correctly identified on HR-QCT images and thus these volumes of interest can be considered to be representative of true marrow space. Within this volume, MeMD was estimated with residual errors of 4.8 mg/cm{sup 3} corresponding to accuracy errors in fat fraction on the order of 5% both for GTP and MF methods. Conclusions: The GTP and MF methods on HR-QCT images permit noninvasive localization and densitometric assessment of marrow fat with residual accuracy errors sufficient to study disorders and therapies known to affect bone marrow composition. Additionally, the methods can be used to correct BMD for fat induced bias. Application and testing in vivo and in longitudinal studies are warranted to determine the clinical performance and value of these methods.« less
Radionuclide imaging of bone marrow disorders
Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo
2010-01-01
Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed. PMID:20625724
Lacetera, Nicola; Macis, Mario; Stith, Sarah S
2014-01-01
Many U.S. states have passed legislation providing leave to organ and bone marrow donors and/or tax benefits for live and deceased organ and bone marrow donations and to employers of donors. We exploit cross-state variation in the timing of such legislation to analyze its impact on organ donations by living and deceased persons, on measures of the quality of the transplants, and on the number of bone marrow donations. We find that these provisions do not have a significant impact on the quantity of organs donated. The leave laws, however, do have a positive impact on bone marrow donations, and the effect increases with the size of the population of beneficiaries and with the generosity of the legislative provisions. Our results suggest that this legislation works for moderately invasive procedures such as bone marrow donation, but these incentives may be too low for organ donation, which is riskier and more burdensome. Copyright © 2013 Elsevier B.V. All rights reserved.
Tolerance to MHC class II disparate allografts through genetic modification of bone marrow
Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn
2012-01-01
Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118
CELLS INVOLVED IN THE IMMUNE RESPONSE
Abdou, Nabih I.; Richter, Maxwell
1969-01-01
Rabbits were made immunologically tolerant to either human serum albumin or bovine gamma globulin by the neonatal administration of antigen. At 10 wk of age, they were challenged with the tolerogenic antigen and found to be non-responsive. However, these tolerant rabbits could respond with humoral antibody formation directed toward the tolerogenic antigen if they were treated with normal, allogeneic bone marrow or bone marrow obtained from a rabbit made tolerant toward a different antigen. They were incapable of responding if they were given bone marrow obtained from a rabbit previously made tolerant to the tolerogenic antigen. Irradiated rabbits were unable to respond if treated with tolerant bone marrow, but could respond well if given normal bone marrow. Since it has previously been demonstrated that the antibody-forming cell, in an irradiated recipient of allogeneic bone marrow, is of recipient and not donor origin, the data presented strongly indicate that the unresponsive cell in the immunologically tolerant rabbit is the antigen-reactive cell. PMID:4183777
The Changing Sensory and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur.
Chartier, Stephane R; Mitchell, Stefanie A T; Majuta, Lisa A; Mantyh, Patrick W
2018-02-10
Although bone is continually being remodeled and ultimately declines with aging, little is known whether similar changes occur in the sensory and sympathetic nerve fibers that innervate bone. Here, immunohistochemistry and confocal microscopy were used to examine changes in the sensory and sympathetic nerve fibers that innervate the young (10 days post-partum), adult (3 months) and aging (24 months) C57Bl/6 mouse femur. In all three ages examined, the periosteum was the most densely innervated bone compartment. With aging, the total number of sensory and sympathetic nerve fibers clearly declines as the cambium layer of the periosteum dramatically thins. Yet even in the aging femur, there remains a dense sensory and sympathetic innervation of the periosteum. In cortical bone, sensory and sympathetic nerve fibers are largely confined to vascularized Haversian canals and while there is no significant decline in the density of sensory fibers, there was a 75% reduction in sympathetic nerve fibers in the aging vs. adult cortical bone. In contrast, in the bone marrow the overall density/unit area of both sensory and sympathetic nerve fibers appeared to remain largely unchanged across the lifespan. The preferential preservation of sensory nerve fibers suggests that even as bone itself undergoes a marked decline with age, the nociceptors that detect injury and signal skeletal pain remain relatively intact. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R
2014-07-01
Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. Copyright© Ferrata Storti Foundation.
Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.
2014-01-01
Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816
Activation of Myeloid-Derived Suppressor Cells in Bone Marrow
2013-12-01
tumormodelwas utilized to establish the causal relationship between PTHrP and CD11bþGr1þ cells. Ace-1 prostate cancer cells produce predominantly osteoblas...2012;19:243–54. 20. Park SI, Kim SJ, McCauley LK, Gallick GE. Pre-clinical mouse models of human prostate cancer and their utility in drug discovery...microenvironment. Clin Cancer Res 2010; 16:924–35. 33. Huang YF, Harrison JR, Lorenzo JA, Kream BE. Parathyroid hor- mone induces interleukin-6
Hu, Yongjun; Song, Feifeng; Jiang, Huidi; Nuñez, Gabriel; Smith, David E
2018-05-21
There is increasing evidence that proton-coupled oligopeptide transporters (POTs) can transport bacterially derived chemotactic peptides and therefore reside at the critical interface of innate immune responses and regulation. However, there is substantial contention regarding how these bacterial peptides access the cytosol to exert their effects and which POTs are involved in facilitating this process. Thus, the current study proposed to determine the (sub)cellular expression and functional activity of POTs in macrophages derived from mouse bone marrow and to evaluate the effect of specific POT deletion on the production of inflammatory cytokines in wild-type, Pept2 knockout and Pht1 knockout mice. We found that PEPT2 and PHT1 were highly expressed and functionally active in mouse macrophages, but PEPT1 was absent. The fluorescent imaging of muramyl dipeptide-rhodamine clearly demonstrated that PEPT2 was expressed on the plasma membrane of macrophages, whereas PHT1 was expressed on endosomal membranes. Moreover, both transporters could significantly influence the effect of bacterially derived peptide ligands on cytokine stimulation, as shown by the reduced responses in Pept2 knockout and Pht1 knockout mice as compared with wild-type animals. Taken as a whole, our results point to PEPT2 (at plasma membranes) and PHT1 (at endosomal membranes) working in concert to optimize the uptake of bacterial ligands into the cytosol of macrophages, thereby enhancing the production of proinflammatory cytokines. This new paradigm offers significant insight into potential drug development strategies along with transporter-targeted therapies for endocrine, inflammatory, and autoimmune diseases. Copyright © 2018 by The American Association of Immunologists, Inc.
Satyamitra, Merriline; Kumar, Vidya P.; Biswas, Shukla; Cary, Lynnette; Dickson, Leonora; Venkataraman, Srinivasan; Ghosh, Sanchita P.
2017-01-01
Filgrastim (Neupogen®, granulocyte-colony stimulating factor) is among the few countermeasures recommended for management of patients in the event of lethal total-body irradiation. Despite the plethora of studies using filgrastim as a radiation countermeasure, relatively little is known about the optimal dose schedule of filgrastim to mitigate radiation lethality. We evaluated the efficacy of filgrastim in improving 30-day survival of CD2F1 mice irradiated with a lethal dose (LD70/30) in the AFRRI cobalt-60 facility. We tested different schedules of 1, 3, 5,10 or 16 once-daily injections of filgrastim initiated one day after irradiation. Time optimization studies with filgrastim treatment were also performed, beginning 6–48 h postirradiation. Maximum survival was observed with 3 daily doses of 0.17 mg/kg filgrastim. Survival efficacy of the 3-day treatment was compared against the conventional 16-day filgrastim treatment after irradiation in four mouse strains with varying radiation sensitivities: C3H/HeN, C57BL/6, B6C3F1 and CD2F1. Blood indices, bone marrow histopathology and colony forming unit assays were also evaluated. Filgrastim significantly increased 30-day survival (P < 0.001) with a 3-day treatment compared to 16-day treatment. Filgrastim did not prevent cytopenia nadirs, but facilitated faster recovery of white blood cells, neutrophils, red blood cells, platelets, lymphocytes and hematocrits in all four strains. Accelerated hematopoietic recovery was also reflected in faster bone marrow reconstitution and significant increase in hematopoietic progenitors (P < 0.001) in all four mouse strains. These data indicate that prompt and abbreviated filgrastim treatment has potential benefit for triage in the event of a radiological incident for treating acute hematopoietic syndrome. PMID:28362168
Cáceres-Cortés, J R; Cantú-Garza, F A; Mendoza-Mata, M T; Chavez-González, M A; Ramos-Mandujano, G; Zambrano-Ramírez, I R
2001-12-01
Identification of organic compounds from plants is of clinical significance because of the effect that they might have in patients with haematopoietic disorders. We studied the effect of the plant extract Justicia spicigera (Acanthaceae) in different haematopoietic cells: human leukaemic cell lines, umbilical cord blood cells, and mouse bone marrow cells. By examining colony formation and performing the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay it was shown that the plant extract of Justicia spicigera contains cytotoxic factors for leukaemic cells and has no proliferative activity on normal haematopoietic progenitor cells. Our results show that this plant extract induces apoptosis in the human leukaemia cell line TF-1, but not in the bcl-2 transfectant cell line TB-1. Similar results were obtained using a haemopoietic cell line 32D and 32DBcl2. The cultures of umbilical cord blood cells and mouse bone marrow that contain granulocyte-macrophage colony-stimulating factor (GM-CSF) do not proliferate or become terminally differentiated in the presence of the infusion of Justicia spicigera. GM-CSF that acts by abrogating programmed cell death is not sufficient to inhibit the apoptotic stimulus in TF-1 and 32D cells. Moreover mouse fibroblasts (3T3) and two cervical carcinoma cell lines CALO and INBL, undergo apoptosis in the presence of different concentrations of an infusion from the plant. Our data show that there is a strong correlation between the cytotoxic effect and cell proliferation. Together, these results indicate that the plant infusion of Justicia spicigera does not contain any haematopoietic activity, induces apoptosis inhibited by bcl-2 and is linked to cell proliferation. Copyright 2001 John Wiley & Sons, Ltd.
Islam, Anwarul
2018-06-01
The optimal clinical evaluation of the bone marrow requires an examination of air-dried and well-stained films of the aspirated tissue along with a histopathological evaluation of adequately processed and properly stained core biopsy specimens. A bone marrow evaluation can be essential in establishing a diagnosis, determining the efficacy of treatment in haematological disorders and to monitor haematological status of patients following bone marrow/stem cell transplantation. It is also an essential component of the staging process for newly diagnosed malignancies. Currently available bone marrow aspiration needles are quite satisfactory and if properly used provide good-quality specimens for morphological evaluation. However, if a bone marrow core biopsy is concerned, several needles are currently in use but not all of them provide good-quality biopsy specimens for histological evaluation or are user friendly. We have compared the recently introduced Moeller Medical single use bone marrow core biopsy needle with the Jamshidi needle with marrow acquisition cradle (CareFusion), J-needle (Cardinal Health) and OnControl device (Vidacare). It is concluded that the Moeller Medical needle system has definite advantages over others and is recommended for routine use. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Sachpekidis, Christos; Mai, Elias K; Goldschmidt, Hartmut; Hillengass, Jens; Hose, Dirk; Pan, Leyun; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2015-06-01
The value of F-FDG PET in the diagnostic approach of multiple myeloma (MM) remains incompletely elicited. Little is known about the kinetics of F-FDG in the bone marrow and extramedullary sites in MM. This study aimed to evaluate quantitative data on kinetics and distribution patterns of F-FDG in MM patients with regard to pelvic bone marrow plasma cell infiltration. The study included 40 patients with primary MM. Dynamic PET/CT scanning of the lower lumbar spine and pelvis was performed after the administration of F-FDG. Whole-body PET/CT studies were performed. Sites of focal increased tracer uptake were considered as highly suggestive of myelomatous involvement after taking into account the patient history and CT findings. Bone marrow of the os ilium without pathologic tracer accumulation served as reference. The evaluation of dynamic PET/CT studies was based in addition to the conventional visual (qualitative) assessment, on semiquantitative (SUV) calculations, as well as on absolute quantitative estimations after application of a 2-tissue compartment model and a noncompartmental approach. F-FDG quantitative information and corresponding distribution patterns were correlated with pelvic bone marrow plasma cell infiltration. Fifty-two myelomatous lesions were detected in the pelvis. All parameters in suspected MM lesions ranged in significantly higher levels than in reference tissue (P < 0.01). Correlative analyses revealed that bone marrow plasma cell infiltration rate correlated significantly with SUVaverage, SUVmax, and the parameters K1, influx, and fractal dimension of F-FDG in reference bone marrow (P < 0.01). In addition, whole-body static PET/CT imaging demonstrated 4 patterns of tracer uptake; these are as follows: negative, focal, diffuse, and mixed (focal/diffuse) tracer uptake. Patients with a mixed pattern of radiotracer uptake had the highest mean plasma cell infiltration rate in their bone marrow, whereas those with negative PET/CT scans demonstrated the lowest bone marrow plasma cell infiltration. In total, 265 focal myeloma-indicative F-FDG-avid lesions were detected, 129 of which correlated with low-dose CT osteolytic findings. No significant correlation between the number of focal lesions detected in PET/CT and bone marrow infiltration was detected. The F-FDG kinetic parameters K1, influx, and fractal dimension as well as SUVaverage from reference tissue correlated significantly with bone marrow malignant plasma cell infiltration rate. Patients with negative PET/CT demonstrated the lowest bone marrow infiltration by malignant plasma cells, whereas those with a mixed pattern of tracer uptake had the highest infiltration.
Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.
Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan
2016-07-01
Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in beagle dogs with experimental periodontal defects resulted in significantly enhanced periodontal regeneration characterized by formation of new bone, periodontal ligament and cementum, compared with the untreated defects, as evidenced by histological and micro-computed tomography examinations. The prepared collagen-hydroxyapatite scaffolds possess favorable bio-compatibility. The bone marrow stem cells - collagen-hydroxyapatite and collagen-hydroxyapatite scaffold - induced periodontal regeneration, with no aberrant events complicating the regenerative process. Further research is necessary to improve the bone marrow stem cells behavior in collagen-hydroxyapatite scaffolds after implantation. © The Author(s) 2016.
Hidaka, Saburo; Okamoto, Yoshizo; Uchiyama, Satoshi; Nakatsuma, Akira; Hashimoto, Ken; Ohnishi, S. Tsuyoshi; Yamaguchi, Masayoshi
2006-01-01
Royal jelly (RJ) has been used worldwide for many years as medical products, health foods and cosmetics. Since RJ contains testosterone and has steroid hormone-type activities, we hypothesized that it may have beneficial effects on osteoporosis. We used both an ovariectomized rat model and a tissue culture model. Rats were divided into eight groups as follows: sham-operated (Sham), ovariectomized (OVX), OVX given 0.5% (w/w) raw RJ, OVX given 2.0% (w/w) RJ, OVX given 0.5% (w/w) protease-treated RJ (pRJ), OVX given 2.0% (w/w) pRJ, OVX given 17β-estradiol and OVX given its vehicle, respectively. The Ovariectomy decreased tibial bone mineral density (BMD) by 24%. Administration of 17β-estradiol to OVX rats recovered the tibial BMD decrease by 100%. Administration of 2.0% (w/w) RJ and 0.5–2.0% (w/w) pRJ to OVX rats recovered it by 85% or more. These results indicate that both RJ and pRJ are almost as effective as 17β-estradiol in preventing the development of bone loss induced by ovariectomy in rats. In tissue culture models, both RJ and pRJ increased calcium contents in femoral-diaphyseal and femoral-metaphyseal tissue cultures obtained from normal male rats. However, in a mouse marrow culture model, they neither inhibited the parathyroid hormone (PTH)-induced calcium loss nor affected the formation of osteoclast-like cells induced by PTH in mouse marrow culture system. Therefore, our results suggest that both RJ and pRJ may prevent osteoporosis by enhancing intestinal calcium absorption, but not by directly antagonizing the action of PTH. PMID:16951718
Acute Exposure to High Dose γ-Radiation Results in Transient Activation of Bone Lining Cells
Turner, Russell T.; Iwaniec, Urszula T.; Wong, Carmen P.; Lindenmaier, Laurence B.; Wagner, Lindsay A.; Branscum, Adam J.; Menn, Scott A.; Taylor, James; Zhang, Ye; Wu, Honglu; Sibonga, Jean D.
2014-01-01
The present studies investigated the cellular mechanisms for the detrimental effects of high dose whole body γ-irradiation on bone. In addition, radioadaptation and bone marrow transplantation were assessed as interventions to mitigate the skeletal complications of irradiation. Increased trabecular thickness and separation and reduced fractional cancellous bone volume, connectivity density, and trabecular number were detected in proximal tibia and lumbar vertebra 14 days following γ-irradiation with 6 Gy. To establish the cellular mechanism for the architectural changes, vertebrae were analyzed by histomorphometry 1, 3, and 14 days following irradiation. Marrow cell density decreased within 1 day (67% reduction, p<0.0001), reached a minimum value after 3 days (86% reduction, p<0.0001), and partially rebounded by 14 days (30% reduction, p=0.0025) following irradiation. In contrast, osteoblast-lined bone perimeter was increased by 290% (1 day, p=0.04), 1230% (3 days, p<0.0001), and 530% (14 days, p=0.003), respectively. There was a strong association between radiation-induced marrow cell death and activation of bone lining cells to express the osteoblast phenotype (Pearson correlation −0.85, p<0.0001). An increase (p=0.004) in osteoclast-lined bone perimeter was also detected with irradiation. A priming dose of γ-radiation (0.5 mGy), previously shown to reduce mortality, had minimal effect on the cellular responses to radiation and did not prevent detrimental changes in bone architecture. Bone marrow transplantation normalized marrow cell density, bone turnover, and most indices of bone architecture following irradiation. In summary, radiation-induced death of marrow cells is associated with 1) a transient increase in bone formation due, at least in part, to activation of bone lining cells, and 2) an increase in bone resorption due to increased osteoclast perimeter. Bone marrow transplantation is effective in mitigating the detrimental effects of acute exposure to high dose whole body γ-radiation on bone turnover. PMID:23954507
Zapata, Claudia P; Cuglievan, Branko; Zapata, Catalina M; Olavarrieta, Raquel; Raskin, Scott; Desai, Kavita; De Angulo, Guillermo
2018-02-01
Accurate staging is essential in the prognosis and management of pediatric malignancies. Current protocols require screening for marrow infiltration with bone marrow biopsy (BMB) as the gold standard. Positron emission tomography-computed tomography (PET-CT) is commonly used to complete the staging process and can also be used to evaluate marrow infiltration. To compare PET-CT and BMB in the initial evaluation of bone marrow infiltration in pediatric cancers. We retrospectively reviewed new cases of EWS, rhabdomyosarcoma, neuroblastoma, and lymphoma diagnosed between January 2009 and October 2014. Each case had undergone both PET-CT and BMB within 4 weeks without treatment in the interval between screening modalities. We reviewed 69 cases. Bone marrow infiltration was demonstrated in 34 cases by PET-CT and in 18 cases by BMB. The sensitivity and negative predictive value of PET-CT were both 100%. Interestingly, the cases in which infiltration was not detected on BMB had an abnormal marrow signal on PET-CT focal or distant to iliac crest. PET-CT has a high sensitivity when assessing marrow infiltration in pediatric malignancies. Advances in radiologic modalities may obviate the use of invasive, painful, and costly procedures like BMB. Furthermore, biopsy results are limited by insufficient tissue or the degree of marrow infiltration (diffuse vs. focal disease). PET-CT can improve the precision of biopsy when used as a guiding tool. This study proposes the use of PET-CT as first-line screening for bone marrow infiltration to improve the accuracy of staging in new diagnoses. © 2017 Wiley Periodicals, Inc.
Hu, Xue; Li, Li; Yu, Xinyi; Zhang, Ruyi; Yan, Shujuan; Zeng, Zongyue; Shu, Yi; Zhao, Chen; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; An, Liping; Huang, Shifeng; Ji, Xiaojuan; Gong, Cheng; Yuan, Chengfu; Zhang, Linghuan; Liu, Wei; Huang, Bo; Feng, Yixiao; Zhang, Bo; Haydon, Rex C; Luu, Hue H; Reid, Russell R; Lee, Michael J; Wolf, Jennifer Moriatis; Yu, Zebo; He, Tong-Chuan
2017-12-19
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo . Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine.
Isolation and clonal characterization of hematopoietic and liver stem cells.
Nakauchi, Hiromitsu
2004-11-01
Prospective isolation of stem cells is essential to understanding the mechanisms that control their proliferation and differentiation. Using 9 monoclonal antibodies and fluorescence-activated cell sorting (FACS), we have succeeded in prospectively identifying hematopoietic stem cells (HSCs) in adult mouse bone marrow. Mouse HSCs were exclusively enriched in CD34 negative, c-Kit Sca-1 Lineage Marker (CD34 KSL) cells representing 0.004% of bone marrow (BM) mononuclear cells. When single CD34-KSL cells were transplanted individually into a lethally irradiated mouse, 25% of the recipient mice survived and showed long-term reconstitution of the BM, providing evidence for multipotency and a self-renewal capacity of HSCs. Using a similar approach, we also prospectively identified hepatic stem cells with multilineage differentiation potential and self-renewal capability in the c-Met CD49f c-Kit CD45 Ter119 fraction of cells isolated from day 13.5 fetal mouse liver. On cell transplantation, these cells differentiated into hepatocytes and cholangiocytes. As an alternative to the antibody based stem cell isolation, Hoechst33342 staining is useful. To understand the mechanism responsible for SP phenotype, we performed an expression cloning and identified bcrp-1/ABCG2 gene, a member of ATP binding-cassette (ABC) transporter family. Bcrp-1 is almost exclusively expressed in CD34 KSL cells among blood cells; however their expression in other tissue specific stem cells remains to be studied. With the use of FACS and monoclonal antibodies, hematopoietic and liver stem cells were prospectively isolated and characterized. HSCs could also be purified by Hoechst 33342 staining. By expression cloning, we identify bcrp-1/ABCG2 transporter as a molecule responsible for SP phenotype. Elucidation of the physiological role of bcrp-1/ABCG2 in HSCs may provide us with clues to understand the molecular mechanisms of stem cell self-renewal and differentiation.
Hu, Xue; Li, Li; Yu, Xinyi; Zhang, Ruyi; Yan, Shujuan; Zeng, Zongyue; Shu, Yi; Zhao, Chen; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; An, Liping; Huang, Shifeng; Ji, Xiaojuan; Gong, Cheng; Yuan, Chengfu; Zhang, Linghuan; Liu, Wei; Huang, Bo; Feng, Yixiao; Zhang, Bo; Haydon, Rex C.; Luu, Hue H.; Reid, Russell R.; Lee, Michael J.; Wolf, Jennifer Moriatis; Yu, Zebo; He, Tong-Chuan
2017-01-01
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo. Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine. PMID:29340096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahdjoudj, S.; Kaabeche, K.; Holy, X.
2005-02-01
The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less
40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...
40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...
78 FR 76507 - Revised Medical Criteria for Evaluating Cancer (Malignant Neoplastic Diseases)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
... blast (immature) cells in the peripheral blood or bone marrow is 10 percent or greater. We propose this... evaluate cancer treatment by bone marrow or stem cell transplantation, including transplantation using stem... evaluate cancers treated with bone marrow or stem cell transplantation, including transplantation using...
40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...
40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...
40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urman, M.; O'Sullivan, R.A.; Nugent, R.A.
This case concerns a patient with intracranial extramedullary hematopoiesis (EH) suspected on a CT scan and subsequently confirmed with In-111 chloride and Tc-99m SC bone marrow scans. The bone marrow scans also provided additional information by demonstrating other sites of EH in the paravertebral tissues and bone marrow expansion into the distal extremities.
Intrasinusoidal pattern of bone marrow infiltration by hepatosplenic T-cell lymphoma.
Butler, Liesl Ann; Juneja, Surender
2018-04-01
Hepatosplenic T-cell lymphoma is a rare, aggressive form of extranodal lymphoma, which frequently involves the bone marrow. An intrasinusoidal pattern of infiltration is characteristic of the disease and is often best appreciated on immunohistochemical staining. Bone marrow biopsy can be a useful diagnostic tool.
X-Ray Crystal Structure of Bone Marrow Kinase in the X Chromosome: A Tec Family Kinase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muckelbauer, Jodi; Sack, John S.; Ahmed, Nazia
Bone marrow kinase in the X chromosome, a member of the Tec family of tyrosine kinases, plays a role in both monocyte/macrophage trafficking as well as cytokine secretion. Although the structures of Tec family kinases Bruton's tyrosine kinase and IL-2-inducible T-cell kinase are known, the crystal structures of other Tec family kinases have remained elusive. We report the X-ray crystal structures of bone marrow kinase in the X chromosome in complex with dasatinib at 2.4 {angstrom} resolution and PP2 at 1.9 {angstrom} resolution. The bone marrow kinase in the X chromosome structures reveal a typical kinase protein fold; with well-orderedmore » protein conformation that includes an open/extended activation loop and a stabilized DFG-motif rendering the kinase in an inactive conformation. Dasatinib and PP2 bind to bone marrow kinase in the X chromosome in the ATP binding pocket and display similar binding modes to that observed in other Tec and Src protein kinases. The bone marrow kinase in the X chromosome structures identify conformational elements of the DFG-motif that could potentially be utilized to design potent and/or selective bone marrow kinase in the X chromosome inhibitors.« less
MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation
Li, Chang-Jun; Cheng, Peng; Liang, Meng-Ke; Chen, Yu-Si; Lu, Qiong; Wang, Jin-Yu; Xia, Zhu-Ying; Zhou, Hou-De; Cao, Xu; Xie, Hui; Liao, Er-Yuan; Luo, Xiang-Hang
2015-01-01
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra–bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss. PMID:25751060
Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector
2012-01-01
Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930
Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J.; Seitz, Germán; Rodríguez, J. Pablo
2016-01-01
Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65 to 80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. PMID:27416518
Bone marrow monosomy 7: hematologic and clinical manifestations in childhood and adolescence.
Hutter, J J; Hecht, F; Kaiser-McCaw, B; Hays, T; Baranko, P; Cohen, J; Durie, B
1984-01-01
The hematologic manifestations and clinical course are described for six children and adolescents with bone marrow monosomy 7. One child with secondary acute myelogenous leukemia had monosomy 7 plus a marker chromosome; the remaining patients had marrow monosomy 7 as the only karyotypic abnormality. The hematologic abnormalities were diverse, but the majority of patients had a smoldering preleukemic or myeloproliferative phase. Leukemic blasts were either undifferentiated or demonstrated evidence of myeloid differentiation. All patients responded poorly to antileukemic therapy. Bone marrow monosomy 7 was observed in one patient with severe marrow hypoplasia. Antileukemic therapy in another patient with greater than 30 per cent marrow blasts was associated with the development of a bone marrow myeloproliferative disorder with persistence of the monosomy 7 karyotype. We speculate that monosomy 7 may be a specific marker for a pluripotent hematopoietic stem cell abnormality that is associated with either blastic leukemia or a myeloproliferative disorder.
Bone marrow invasion in multiple myeloma and metastatic disease.
Vilanova, J C; Luna, A
2016-04-01
Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice.
Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui; Chen, Jake
2014-06-15
Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. Copyright © 2014 the American Physiological Society.
2014-01-01
Compromised bone-regenerating capability following a long bone fracture is often the result of reduced host bone marrow (BM) progenitor cell numbers and efficacy. Without surgical intervention, these malunions result in mobility restrictions, deformities, and disability. The clinical application of BM-derived mesenchymal stem cells (MSCs) is a feasible, minimally invasive therapeutic option to treat non-union fractures. This review focuses on novel, newly identified cell surface markers in both the mouse and human enabling the isolation and purification of osteogenic progenitor cells as well as their direct and indirect contributions to fracture repair upon administration. Furthermore, clinical success to date is summarized with commentary on autologous versus allogeneic cell sources and the methodology of cell administration. Given our clinical success to date in combination with recent advances in the identification, isolation, and mechanism of action of MSCs, there is a significant opportunity to develop improved technologies for defining therapeutic MSCs and potential to critically inform future clinical strategies for MSC-based bone regeneration. PMID:25099622
Yang, Xiu-Wei
2008-06-01
To study the acute toxicity and mutagenic risk of the water extracts (ERWE) and 70% ethanol extracts (EREE) from the nearly ripe fruit of Evodia rutaecarpa, and provide experimental basis for safety evaluation of ones. The ERWE and EREE were prepared from the nearly ripe fruit of E. rutaecarpa by reflux extraction with H2O and 70% ethanol aqueous solution for three times, respectively. According to the terms from "technical standards for test & toxicological assessment of health food" issued by Healthy Ministry of PRC, acute toxicity, and Ames, mouse marrow cell micronucleus and mouse sperm aberration test were performed. Acute toxicity test of ERWE and EREE in mice was studied by the method of Horn to give the median lethal dose (LD50). Forty healthy Kunming strain male and female mice were used and their body weights ranged from 17-22 g. All of them were distributed randomly to 4 different dose groups which each had 10 mice. The ERWE or EREE was administered at the doses of 1.00, 2.15, 4.64 and 10.00 g x kg(-1), respectively, via intragastrical route. The number of animals poisoned and died in each group were noted daily for 7 consecutive days. The Ames test was carried out using the Salmonella typhimurium strain TA97, TA98, TA100 and TA102. In the sperm abnormalities test, 25 healthy adult male Kunming strain mice with a body weights ranged from 25-35 g were distributed randomly to 5 different groups (1 positive control, 1 negative control and 3 treated groups) which each had 5 mice. A single dose of 60 g x kg(-1) of cyclophosphamide was intragastrically administered to mice in a positive control group, and the mice in the negative control group were administered with the same volume of distilled water. In the treated groups, the ERWE or EREE was intragastrically administered at the doses of 1.25, 250 and 5.00 g x kg(-1), respectively, via the same route with the positive control group. The administration was carried out once daily for 5 consecutive days. The sperm suspension was prepared from caudal epididymis of male mice at 35th day after treatment with different doses of the extract. The suspension was stained with Eosin-Y and air-dried smears were prepared. One thousand sperms per animal were analysed for abnormal shapes and the rates of sperm aberration was calculated. In the mouse bone marrow micronucleus assay, 50 healthy adult male and female Kunming mice, weighing 25 to 30 g, were randomly assigned to five groups (1 positive control, 1 negative control and 3 treated groups) which each had 10 mice, five males and five females. The mice were intragastrically administered twice at intervals of 24 h with the ERWE or EREE at doses of 1.25, 2.50 and 5.00 g x kg(-1) in the positive control group. A single dose of 60 g x kg(-1) of cyclophosphamide in a positive control group and the same volume of distilled water in a negative control groups were intragastrically administered, respectively. Mouse bone marrow was obtained from 10 animals for each group at 6 h after the last dose administration. Smears were stained with Giemsa and analysed for the presence of mouse bone marrow micronucleus from 1 000 cells. The oral acute toxicity study in mice revealed that the LD50 of the both ERWE and EREE was more than 10.0 g x kg(-1). The mice with both the poisoned sign or died had not been observed after intragastrical administration of ERWE or EREE at the doses of 1.00, 2.15, 4.64 and 10.00 g x kg(-1). The results of genotoxicity tests were all negative, including Ames, mouse marrow cell micronucleus and mouse sperm aberration test. In the all assay in vivo, the mice showed a normally progressive increase in body weight from the start to the end of the experiment. The oral LD50 of the ERWE and EREE in mice was more than 10.0 g x kg(-1) belonging to non-toxicity on the acute toxicity rating criteria. The both ERWE and EREE showed no genotoxicity in the experimental condition.
Pressure and shear stress in trabecular bone marrow during whole bone loading.
Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L
2015-09-18
Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajon, D. A.; Shah, A. P.; Watchman, C. J.; Brindle, J. M.; Bolch, W. E.
2003-06-01
Recent advances in physical models of skeletal dosimetry utilize high-resolution NMR microscopy images of trabecular bone. These images are coupled to radiation transport codes to assess energy deposition within active bone marrow irradiated by bone- or marrow-incorporated radionuclides. Recent studies have demonstrated that the rectangular shape of image voxels is responsible for cross-region (bone-to-marrow) absorbed fraction errors of up to 50% for very low-energy electrons (<50 keV). In this study, a new hyperboloid adaptation of the marching cube (MC) image-visualization algorithm is implemented within 3D digital images of trabecular bone to better define the bone-marrow interface, and thus reduce voxel effects in the assessment of cross-region absorbed fractions. To test the method, a mathematical sample of trabecular bone was constructed, composed of a random distribution of spherical marrow cavities, and subsequently coupled to the EGSnrc radiation code to generate reference values for the energy deposition in marrow or bone. Next, digital images of the bone model were constructed over a range of simulated image resolutions, and coupled to EGSnrc using the hyperboloid MC (HMC) algorithm. For the radionuclides 33P, 117mSn, 131I and 153Sm, values of S(marrow←bone) estimated using voxel models of trabecular bone were shown to have relative errors of 10%, 9%, <1% and <1% at a voxel size of 150 µm. At a voxel size of 60 µm, these errors were 6%, 5%, <1% and <1%, respectively. When the HMC model was applied during particle transport, the relative errors on S(marrow←bone) for these same radionuclides were reduced to 7%, 6%, <1% and <1% at a voxel size of 150 µm, and to 2%, 2%, <1% and <1% at a voxel size of 60 µm. The technique was also applied to a real NMR image of human trabecular bone with a similar demonstration of reductions in dosimetry errors.
SBDS Protein Expression Patterns in the Bone Marrow
Wong, Trisha E.; Calicchio, Monica L.; Fleming, Mark D.; Shimamura, Akiko; Harris, Marian H.
2010-01-01
Shwachman Diamond Syndrome (SDS) is an inherited bone marrow failure syndrome caused by biallelic SBDS gene mutations. Here we examined SBDS protein levels in human bone marrow. SBDS protein expression was high in neutrophil progenitors, megakaryocytes, plasma cells and osteoblasts. In contrast, SBDS protein levels were low in all hematopoietic cell lineages from patients harboring the common SBDS mutations. We conclude that SBDS protein levels vary widely between specific marrow lineages. Uniformly low SBDS protein expression levels distinguish the majority of SDS patients from controls or other marrow failure syndromes. PMID:20658628
Rhodes, E G; Ball, J; Franklin, I M
1986-01-01
Bone marrow was cultured in vitro for colonies of granulocytes and macrophages five months after a patient had recovered from amodiaquine induced agranulocytosis. The addition of amodiaquine, chloroquine, and sulfadoxine to the culture was followed by a dose dependent inhibition of colony growth in the patient's marrow but not in normal control bone marrow. Colony growth was, however, unaffected by proguanil, pyrimethamine, and quinine. These findings show that in vitro marrow culture may have important predictive value in some cases of drug induced agranulocytosis. PMID:3082409
2013-01-01
Introduction The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Results Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating the inflammatory response, mechanisms that do not involve engraftment or trans-differentiation of the cells. These observations may have important implications for the design of future cell therapies for ARDS. PMID:23497755
RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.
Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G
2014-10-01
Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET
Peinado, Héctor; Alečković, Maša; Lavotshkin, Simon; Matei, Irina; Costa-Silva, Bruno; Moreno-Bueno, Gema; Hergueta-Redondo, Marta; Williams, Caitlin; García-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Hoffman, Caitlin; Badal, Karen; Garcia, Benjamin A.; Callahan, Margaret K.; Yuan, Jianda; Martins, Vilma R.; Skog, Johan; Kaplan, Rosandra N.; Brady, Mary S.; Wolchok, Jedd D.; Chapman, Paul B.; Kang, Yibin; Bromberg, Jacqueline; Lyden, David
2013-01-01
Tumor-derived exosomes are emerging mediators of tumorigenesis with tissue-specific addresses and messages. We explored the function of melanoma-derived exosomes in the formation of primary tumor and metastases in mouse and human subjects. Exosomes from highly metastatic melanoma increased the metastatic behavior of primary tumors by permanently “educating” bone marrow (BM) progenitors via the MET receptor. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites, and reprogrammed BM progenitors towards a c-Kit+Tie2+Met+ pro-vasculogenic phenotype. Reducing Met expression in exosomes diminished the pro-metastatic behavior of BM cells. Importantly, MET expression was elevated in circulating CD45−C-KITlow/+TIE2+ BM progenitors from metastatic melanoma subjects. RAB1a, RAB5b, RAB7, and RAB27a were highly expressed in melanoma cells and Rab27a RNA interference decreased exosome production, preventing BM education, tumor growth and metastasis. Finally, we identified an exosome-specific “melanoma signature” with prognostic and therapeutic potential, comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. PMID:22635005
A perisinusoidal niche for extramedullary haematopoiesis in the spleen.
Inra, Christopher N; Zhou, Bo O; Acar, Melih; Murphy, Malea M; Richardson, James; Zhao, Zhiyu; Morrison, Sean J
2015-11-26
Haematopoietic stresses mobilize haematopoietic stem cells (HSCs) from the bone marrow to the spleen and induce extramedullary haematopoiesis (EMH). However, the cellular nature of the EMH niche is unknown. Here we assessed the sources of the key niche factors, SCF (also known as KITL) and CXCL12, in the mouse spleen after EMH induction by myeloablation, blood loss, or pregnancy. In each case, Scf was expressed by endothelial cells and Tcf21(+) stromal cells, primarily around sinusoids in the red pulp, while Cxcl12 was expressed by a subset of Tcf21(+) stromal cells. EMH induction markedly expanded the Scf-expressing endothelial cells and stromal cells by inducing proliferation. Most splenic HSCs were adjacent to Tcf21(+) stromal cells in red pulp. Conditional deletion of Scf from spleen endothelial cells, or of Scf or Cxcl12 from Tcf21+ stromal cells, severely reduced spleen EMH and reduced blood cell counts without affecting bone marrow haematopoiesis. Endothelial cells and Tcf21(+) stromal cells thus create a perisinusoidal EMH niche in the spleen, which is necessary for the physiological response to diverse haematopoietic stresses.
Hematopoietic Effects of Paeoniflorin and Albiflorin on Radiotherapy-Induced Myelosuppression Mice
Zhu, Yingli; Wang, Linyuan; Yang, Zhihui; Wang, Jingxia; Li, Wei; Zhou, Jianyu; Zhang, Jianjun
2016-01-01
Paeonia lactiflora root (baishao in Chinese) is a commonly used herb in traditional Chinese medicine (TCM). Paeoniflorin (PF) and albiflorin (AF) are two major active constituents of P. lactiflora. In this paper, we aimed to investigate the hematopoietic effects of PF and AF on myelosuppression mice induced by radiotherapy and to explore the underlying mechanism. The finding indicated that PF and AF significantly increased the numbers of white blood cells (WBC) and reversed the atrophy of thymus. Furthermore, PF and AF increased the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) and reduced the levels of tumor necrosis factor-α (TNF-α) in serum and increased the level of colony-stimulating factor (G-CSF) in plasma. Lastly, PF and AF not only enhanced the mRNA levels of GM-CSF and G-CSF in the spleens, but also increased the protein levels of G-CSF and GM-CSF in bone marrow. Our results suggest that PF and AF may promote the recovery of bone marrow hemopoietic function in a myelosuppressed mouse model. PMID:27313650
Bagley, Kenneth C; Abdelwahab, Sayed F; Tuskan, Robert G; Lewis, George K
2005-01-01
Pasteurella multocida toxin (PMT) is a potent mitogen for fibroblasts and osteoblastic cells. PMT activates phospholipase C-beta through G(q)alpha, and the activation of this pathway is responsible for its mitogenic activity. Here, we investigated the effects of PMT on human monocyte-derived dendritic cells (MDDC) in vitro and show a novel activity for PMT. In this regard, PMT activates MDDC to mature in a dose-dependent manner through the activation of phospholipase C and subsequent mobilization of calcium. This activation was accompanied by enhanced stimulation of naive alloreactive T cells and dominant inhibition of interleukin-12 production in the presence of saturating concentrations of lipopolysaccharide. Surprisingly, although PMT mimics the activating effects of cholera toxin on human MDDC and mouse bone marrow-derived dendritic cells, we found that PMT is not a mucosal adjuvant and that it suppresses the adjuvant effects of cholera toxin in mice. Together, these results indicate discordant effects for PMT in vitro compared to those in vivo.
A review of the genotoxicity of trimethylolpropane triacrylate (TMPTA).
Kirkland, David; Fowler, Paul
2018-04-01
Trimethylolpropane triacrylate (TMPTA) is a trifunctional acrylate monomer which polymerizes rapidly when exposed to sources of free radicals. It is widely used as a reactive diluent and polymer building block in the formulation of overprint varnishes, inks and a variety of wood, plastic and metal coatings. TMPTA has been tested in a range of in vitro and in vivo genotoxicity tests. There is no clear evidence of induction of gene mutations by TMPTA in bacteria or mammalian cells in vitro, but there is evidence of clastogenicity from induction of small colony tk mutants in the mouse lymphoma assay, and also induction of micronuclei and chromosomal aberrations. However, TMPTA was negative in bone marrow or blood micronucleus tests in vivo following oral or repeated dermal application, and did not induce comets in bone marrow or liver of mice following intravenous administration, which would have achieved plasma (and therefore tissue) concentrations estimated to exceed those inducing clastogenic effects in vitro. It is concluded that TMPTA is not genotoxic in vivo. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.