Science.gov

Sample records for mouse bone marrow

  1. Tracking Mouse Bone Marrow Monocytes In Vivo

    PubMed Central

    Hamon, Pauline; Rodero, Mathieu Paul; Combadière, Christophe; Boissonnas, Alexandre

    2015-01-01

    Real time multiphoton imaging provides a great opportunity to study cell trafficking and cell-to-cell interactions in their physiological 3-dimensionnal environment. Biological activities of immune cells mainly rely on their motility capacities. Blood monocytes have short half-life in the bloodstream; they originate in the bone marrow and are constitutively released from it. In inflammatory condition, this process is enhanced, leading to blood monocytosis and subsequent infiltration of the peripheral inflammatory tissues. Identifying the biomechanical events controlling monocyte trafficking from the bone marrow towards the vascular network is an important step to understand monocyte physiopathological relevance. We performed in vivo time-lapse imaging by two-photon microscopy of the skull bone marrow of the Csf1r-Gal4VP16/UAS-ECFP (MacBlue) mouse. The MacBlue mouse expresses the fluorescent reporters enhanced cyan fluorescent protein (ECFP) under the control of a myeloid specific promoter 1, in combination with vascular network labelling. We describe how this approach enables the tracking of individual medullar monocytes in real time to further quantify the migratory behaviour within the bone marrow parenchyma and the vasculature, as well as cell-to-cell interactions. This approach provides novel insights into the biology of the bone marrow monocyte subsets and allows to further address how these cells can be influenced in specific pathological conditions. PMID:25867540

  2. Mouse Models of Bone Marrow Transplantation

    PubMed Central

    Reddy, Pavan; Negrin, Robert; Hill, Geoffrey R.

    2010-01-01

    Over the last 50 years, mouse models of bone marrow transplantation have provided the critical links between graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) pathophysiology and clinical practice. The initial insight from mouse models that GVHD and GVL were T cell dependent has long been confirmed clinically. More recent translations from mouse models have included the important role of inflammatory cytokines in GVHD. Newly developed concepts relating to the ability of antigen presenting cell (APC) and T cell subsets to mediate GVHD now promise significant clinical advances. The ability to use knockout and transgenic approaches to dissect mechanisms of GVHD and GVL mean that mouse systems will continue as the predominant preclinical platform. The basic transplant approach in these models, coupled with modern “real-time” immunologic imaging of GVHD and GVL is discussed. PMID:18162233

  3. Genotoxicity of ibuprofen in mouse bone marrow cells in vivo.

    PubMed

    Tripathi, Rina; Pancholi, Shyam S; Tripathi, Pankaj

    2012-10-01

    Genotoxicity of ibuprofen was evaluated by employing the mouse in vivo chromosomal aberration (CA) test. Ibuprofen administered orally at doses of 10, 20, 40, and 60 mg/kg body weight to mice resulted in mitotic depression and induction of CAs. A dose-related decrease in mitotic index (MI) and an increase in the frequencies of chromosomal aberrations per cell (CAs/cell) were recorded in bone marrow cells. However, a statistically significant reduction in MI and an increase in CAs/cell were found for both the higher doses. The results obtained indicate that ibuprofen is capable of inducing dose-dependent genotoxicity in bone marrow cells of mice.

  4. Mouse Models in Bone Marrow Transplantation and Adoptive Cellular Therapy

    PubMed Central

    Arber, Caroline; Brenner, Malcolm K.; Reddy, Pavan

    2014-01-01

    Mouse models of transplantation have been indispensable to the development of bone marrow transplantation (BMT). Their role in the generation of basic science knowledge is invaluable and is subject to discussion below. However, this article focuses on the direct role and relevance of mouse models towards the clinical development and advances in BMT and adoptive T-cell therapy for human diseases. The authors aim to present a thoughtful perspective on the pros and cons of mouse models while noting that despite imperfections these models are obligatory for the development of science-based medicine. PMID:24216170

  5. Differentiation of lymphocytes in the mouse bone marrow

    PubMed Central

    Stocker, J. W.; Osmond, D. G.; Nossal, G. J. V.

    1974-01-01

    The response of mouse spleen cells to the T cell-independent antigen dinitrophenylated polymer of flagellin (DNP—POL), has been studied using an adoptive transfer system, and compared with the response of bone marrow cells. Spleen cells showed a complex cell dose—response relationship, with a markedly discontinuous curve, for assays performed before day 9 after transfer and antigen challenge. This discontinuity could be explained by a delay in attainment of the peak response for lower cell inocula. The curve became linear on a log—log scale when spleens were harvested on days 9 and 10 post-transfer. Bone marrow cells gave a lower response than would be expected from their lymphocyte content. This response increased progressively with a delay before antigen challenge in the irradiated recipient or in tissue culture prior to cell transfer, suggesting a functional maturation in this cell population, whereas the performance of spleen cells fell off under similar circumstances. The findings were consistent with, but could not prove, the hypothesis that the immediate precursors of anti-DNP antibody-forming cells in bone marrow were high surface immunoglobulin density small lymphocytes that had arisen locally from precursors lacking detectable surface immunoglobulin, by a non-mitotic maturation. PMID:4279889

  6. Mouse bone marrow cytogenetic damage produced by residues of tequila.

    PubMed

    Madrigal-Bujaidar, E; Rojas, A; Ramos, A; Rosas, E; Díaz Barriga-Arceo, S

    1990-06-01

    Five concentrations (50-860 mg/kg) of residues obtained after distillation and lyophilization of commercial tequila were injected into mice for evaluation of chromosome aberrations, sister-chromatid exchanges, and proliferation kinetics in mouse bone marrow cells. Appropriate positive and negative controls were included. Our results showed significant dose-related increases of chromosomal aberrations starting at 50 mg/kg and for sister-chromatid exchanges at 430 mg/kg. Cellular proliferation kinetics showed no alterations. With these data we demonstrated that the residues of tequila are genotoxic in vivo.

  7. Bone marrow aspiration

    MedlinePlus

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  8. Regulation of vitamin C transporter in the type 1 diabetic mouse bone and bone marrow.

    PubMed

    Sangani, Rajnikumar; Naime, Mohammad; Zakhary, Ibrahim; Ahmad, Saif; Chutkan, Norman; Zhu, Andy; Ha, Yonju; Hamrick, Mark; Isales, Carlos; Elsalanty, Mohammed; Smith, Sylvia; Liou, Gregory I; Fulzele, Sadanand

    2013-12-01

    A number of studies have revealed that Type I diabetes (T1D) is associated with bone loss and an increased risk of fractures. T1D induces oxidative stress in various tissues and organs. Vitamin C plays an important role in the attenuation of oxidative stress; however, little is known about the effect of T1D induced oxidative stress on the regulation of vitamin C transporter in bone and bone marrow cells. To investigate this, T1D was induced in mice by multiple low dose injections of streptozotocin. We have demonstrated that endogenous antioxidants, glutathione peroxidase (GPx) and superoxide dismutase (SOD) are down-regulated in the bone and bone marrow of T1D. The vitamin C transporter isoform SVCT2, the only known transporter expressed in bone and bone marrow stromal cells (BMSCs), is negatively regulated in the bone and bone marrow of T1D. The μCT imaging of the bone showed significantly lower bone quality in the 8 week T1D mouse. The in-vitro study in BMSCS showed that the knockdown of SVCT2 transporter decreases ascorbic acid (AA) uptake, and increases oxidative stress. The significant reversing effect of antioxidant vitamin C is only possible in control cells, not in knockdown cells. This study suggested that T1D induces oxidative stress and decreases SVCT2 expression in the bone and bone marrow environment. Furthermore, this study confirms that T1D increases bone resorption, decreases bone formation and changes the microstructure of bones. This study has provided evidence that the regulation of the SVCT2 transporter plays an important role not only in T1D osteoporosis but also in other oxidative stress-related musculoskeletal complications.

  9. In vivo longitudinal visualization of bone marrow engraftment process in mouse calvarium bone marrow with two-photon microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Viet Hoan; Lee, Seunghun; Kim, Ki Hean; Lee, Seungwon; Lee, Seung-Woo

    2017-02-01

    Bone marrow transplantation became the standard choice for treatment of many leukemias, tumors and metabolic diseases. Understanding the dynamic behavior of bone marrow niches, especially in case of bone marrow transplantation is critical to improve the efficiency of the treatment. Intravital microscopy was demonstrated to be a powerful tool to study physiological structure of bone marrow niche. However, current method of intravital microscopy has difficulty in longitudinal monitoring the same bone marrow niche site due to the invasion of the prior-imaging surgery. In this study, we introduce a method to improve the bone marrow niche imaging process and enable the longitudinal imaging of murine calvarium bone marrow. Mouse model for calvarium bone marrow imaging was made by attaching cover glass window to the calvarium bone. Longitudinal imaging of whole bone marrow engraftment process was carried out to demonstrate the advantage of our mouse model. Qualitative and quantitative analysis were also executed on the image data. The result provided a dynamic and full visualization of the bone marrow engraftment process. The study was expected to provide helpful tool for bone marrow studies and useful information for bone marrow transplantation in future.

  10. [Distribution of compact bone mesenchymal stem cells in lung tissue and bone marrow of mouse].

    PubMed

    Wang, Rui-Ping; Wu, Ren-Na; Guo, Yu-Qing; Zhang, Bin; Chen, Hu

    2014-02-01

    This study was aimed to investigate the distribution of compact bone mesenchymal stem cells(MSC) marked with lentiviral plasmid pGC FU-RFP-LV in lung tissue and bone marrow of mouse. The MSC were infected by lentivirus with infection efficiency 78%, the infected MSC were injected into BALB/c mice via tail veins in concentration of 1×10(6) /mouse. The mice were randomly divided into 4 group according to 4 time points as 1, 2, 5 and 7 days. The lung tissue and bone marrow were taken and made of frozen sections and smears respectively in order to observed the distributions of MSC. The results indicated that the lentiviral infected MSC displayed phenotypes and biological characteristics which conformed to MSC by immunophenotyping analysis and induction differentiation detection. After the MSC were infected with optimal viral titer MOI = 50, the cell growth no significantly changed; the fluorescent microscopy revealed that the distributions of MSC in bone marrow on day 1, 2, 5 and 7 were 0.50 ± 0.20, 0.67 ± 0.23, 0.53 ± 0.14, 0.33 ± 0.16; those in lung tissue were 0.55 ± 0.15, 0.47 ± 0.13, 0.29 ± 0.13, 0.26 ± 0.08. It is concluded that the distribution of MSC in lung tissue reaches a peak on day 1, while distribution of MSC in bone marrow reaches a peak on day 2. The distribution of mouse MSC relates with RFP gene expression and implantation of MSC in lung tissue and bone marrow.

  11. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  12. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; ...

  13. Cytogenetic effects of pesticides. II. Induction of micronuclei in mouse bone marrow by the insecticide gardona.

    PubMed

    Amer, S M; Fahmy, M A

    1983-01-01

    The induction of micronuclei in mouse bone marrow by the organophosphorus insecticide gardona (also known as tetrachlorvinphos) was tested. 3 routes of administration were used for the pure insecticide: intraperitoneal, oral and dermal. The different routes of treatment with gardona caused toxicity of marrow indicated as significant increases in the percentage of polychromatic erythrocytes over that of the control. Intraperitoneal and oral treatments induced a statistically significant percentage of micronucleated PE.

  14. Thyroid hormone acting via TRβ induces expression of browning genes in mouse bone marrow adipose tissue.

    PubMed

    Lindsey, Richard C; Mohan, Subburaman

    2017-04-01

    Mutant hypothyroid mouse models have recently shown that thyroid hormone is critical for skeletal development during an important prepubertal growth period. Additionally, thyroid hormone negatively regulates total body fat, consistent with the well-established effects of thyroid hormone on energy and fat metabolism. Since bone marrow mesenchymal stromal cells differentiate into both adipocytes and osteoblasts and a relationship between bone marrow adipogenesis and osteogenesis has been predicted, we hypothesized thyroid hormone deficiency during the postnatal growth period increases marrow adiposity in mice. Marrow adiposity in TH-deficient (Tshr (-/-)) mice treated with T3/T4, TH receptor β-specific agonist GC-1, or vehicle control was evaluated via dual-energy X-ray absorptiometry and osmium micro-computed tomography. To further examine the mechanism for thyroid hormone regulation of marrow adiposity, we used real-time RT-PCR to measure the effects of thyroid hormone on adipocyte differentiation markers in primary mouse bone marrow mesenchymal stromal cells and two mouse cell lines in vitro and in Tshr (-/-) mice in vivo. Marrow adiposity increased >20% (P < 0.01) in Tshr (-/-) mice at 3 weeks of age, and treatment with T3/T4 when serum thyroid hormone normally increases (day 5-14) rescued this phenotype. Furthermore, GC-1 rescued this phenotype equally well, suggesting this thyroid hormone effect is in part mediated via TRβ signaling. Treatment of bone marrow mesenchymal stromal or ST2 cells with T3 or GC-1 significantly increased expression of several brown/beige fat markers. Moreover, injection of T3/T4 increased browning-specific markers in white fat of Tshr (-/-) mice. These data suggest that thyroid hormone regulation of marrow adiposity is mediated at least in part via activation of TRβ signaling.

  15. Bone marrow culture

    MedlinePlus

    ... are very rare. Alternative Names Culture - bone marrow Images Bone marrow aspiration References Chernecky CC, Berger BJ. Bone marrow aspiration analysis-specimen (biopsy, bone marrow iron stain, iron stain, ...

  16. Activity of the human carcinogen MeCCNU in the mouse bone marrow micronucleus assay

    SciTech Connect

    Tinwell, H.; Ashby, J. )

    1991-01-01

    The nitrosourea mustard MeCCNU is the most recent organic chemical to be classified as a human carcinogen by IARC. MeCCNU gave a strong positive response when tested in the mouse bone marrow micronucleus assay. Activity was evident using either ip injection or oral gavage of the test chemical. These results further support the correlation between human carcinogens and their genotoxicity.

  17. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  18. Bone marrow aspiration (image)

    MedlinePlus

    ... amount of bone marrow is removed during a bone marrow aspiration. The procedure is uncomfortable, but can be tolerated by both children and adults. The marrow can be studied to determine ... metabolic products are stored in certain bone marrow cells.

  19. Bone Marrow Transplantation Confers Modest Benefits in Mouse Models of Huntington’s Disease

    PubMed Central

    Kwan, Wanda; Magnusson, Anna; Chou, Austin; Adame, Anthony; Carson, Monica J.; Kohsaka, Shinichi; Masliah, Eliezer; Möller, Thomas; Ransohoff, Richard; Tabrizi, Sarah J.; Björkqvist, Maria; Muchowski, Paul J.

    2013-01-01

    Huntington’s disease (HD) is caused by an expanded polyglutamine tract in the protein huntingtin (htt). Although HD has historically been viewed as a brain-specific disease, htt is expressed ubiquitously, and recent studies indicate that mutant htt might cause changes to the immune system that could contribute to pathogenesis. Monocytes from HD patients and mouse models are hyperactive in response to stimulation, and increased levels of inflammatory cytokines and chemokines are found in pre-manifest patients that correlate with pathogenesis. In this study, wild-type (WT) bone marrow cells were transplanted into two lethally irradiated transgenic mouse models of HD that ubiquitously express full-length htt (YAC128 and BACHD mice). Bone marrow transplantation partially attenuated hypokinetic and motor deficits in HD mice. Increased levels of synapses in the cortex were found in HD mice that received bone marrow transplants. Importantly, serum levels of interleukin-6, interleukin-10, CXC chemokine ligand 1, and interferon-γ were significantly higher in HD than WT mice but were normalized in mice that received a bone marrow transplant. These results suggest that immune cell dysfunction might be an important modifier of pathogenesis in HD. PMID:22219276

  20. Genetic Toxicity Evaluation of Iodotrifluoromethane (CFsub3I). Volume 2. Results of In Vivo Mouse Bone Marrow Erythrocyte Micronucleus Testing

    DTIC Science & Technology

    1995-01-01

    the mouse micronucleus test which measures the clastogenic (chromosomes breaking) action of chemicals by the induction of micronuclei in bone marrow...preliminary toxicity information obtained by ManTech, a mouse bone marrow micronucleus test of CF 3I was conducted using 2.6, 5.0, and 7.5% CF 3I...the mice sacrificed 24 hours after the third exposure. Erythrocytes from mice exposed to the test material, and to the negative and positive controls

  1. URB expression in human bone marrow stromal cells and during mouse development.

    PubMed

    Liu, Yi; Monticone, Massimiliano; Tonachini, Laura; Mastrogiacomo, Maddalena; Marigo, Valeria; Cancedda, Ranieri; Castagnola, Patrizio

    2004-09-17

    Seven genes preferentially expressed in undifferentiated human bone marrow stromal cells (BMSC) with respect to BMSC-derived osteoblasts were previously identified by differential display. Here we characterize the expression of one of these genes, URB, belonging to the sushi-repeat-containing protein superfamily. In culture, URB is expressed in both human primary and cloned BMSC, and is drastically downregulated during osteoblastic differentiation of these cells. Here we show that in mouse tissues a single 3.8kb Urb transcript is detected and that the mouse Urb protein is secreted as a 150kDa glycoprotein. During mouse development Urb RNA is barely detectable in 9dpc embryos and increases at later stages. Both in situ hybridization and immunohistochemistry analysis show Urb expression in mouse embryos starting from 14dpc mostly in cartilage. The temporal and spatial expression pattern of Urb suggests its role in mouse skeletogenesis.

  2. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - ...

  3. Differentiation of functionally active mouse T lymphocytes from functionally inactive bone marrow precursors II. Limited recovery of T-cell responses from mouse bone marrow in tissue culture.

    PubMed

    Gorczynski, M; MacRae, S

    1977-11-01

    The limited differentiation of mature T cell function from mouse bone marrow in tissue culture is described and compared with similar differentiation occuring in vivo in irradiated bone marrow protected mice. Data are presented to show that a pool of precursors, similar in size to that able to produce early (transient?) regeneration in thymectomized recipients, is responsible for the development of mitogen responsive T cells active in MLC (proliferation) and CML (development of cytotoxic cells) assays. In contrast, a helper cell population which augments antibody formation from T-depleted normal spleen cells derives from a pool of similar precursors yet does not seem to be theta positive. Similarly, larger cells (perhaps typical of those giving rise to suppressor T cells in vivo) give rise to a suppressor cell pool after 4 days of culture, though again only a fraction of this suppressor activity could be attributed to theta positive cells. It is suggested that much of the data for regenration of T lymphocytes in vitro from T-depleted sources needs to be re-interpreted in terms of this evidence for a pool of post-thymic precursors of T cells in such T-deficient cell populations.

  4. Differentiation of functionally active mouse T lymphocytes from functionally inactive bone marrow precursors II. Limited recovery of T-cell responses from mouse bone marrow in tissue culture.

    PubMed Central

    Gorczynski, M; MacRae, S

    1977-01-01

    The limited differentiation of mature T cell function from mouse bone marrow in tissue culture is described and compared with similar differentiation occuring in vivo in irradiated bone marrow protected mice. Data are presented to show that a pool of precursors, similar in size to that able to produce early (transient?) regeneration in thymectomized recipients, is responsible for the development of mitogen responsive T cells active in MLC (proliferation) and CML (development of cytotoxic cells) assays. In contrast, a helper cell population which augments antibody formation from T-depleted normal spleen cells derives from a pool of similar precursors yet does not seem to be theta positive. Similarly, larger cells (perhaps typical of those giving rise to suppressor T cells in vivo) give rise to a suppressor cell pool after 4 days of culture, though again only a fraction of this suppressor activity could be attributed to theta positive cells. It is suggested that much of the data for regenration of T lymphocytes in vitro from T-depleted sources needs to be re-interpreted in terms of this evidence for a pool of post-thymic precursors of T cells in such T-deficient cell populations. PMID:304032

  5. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect.

    PubMed

    Kumar, Sanjay; Ponnazhagan, Selvarangan

    2012-04-01

    Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing.

  6. Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease

    PubMed Central

    Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; da Cunha, Sandro Torrentes; Paula, Luis Felipe; Carvalho, Alysson Roncally; de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli dos Santos

    2017-01-01

    BACKGROUND Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice. PMID:28767980

  7. Bone marrow transplantation reverses new-onset immunoinflammatory diabetes in a mouse model.

    PubMed

    Lv, Cheng-Lan; Wang, Jing; Xie, Ting; Ouyang, Jian

    2014-01-01

    Bone marrow transplantation might be an effective method to cure type 1 diabetes mellitus. This study aimed to investigate whether bone marrow transplantation could reverse hyperglycemia in diabetic mice and whether high-dose total body irradiation followed by high-dose bone marrow mononuclear cell infusion could improve the efficiency of bone marrow transplantation in treating diabetic mice. Diabetic mice after multiple low doses of streptozotocin injection were irradiated followed by infusion with approximately 1×10(7) bone marrow mononuclear cells intravenously. Before and after bone marrow transplantation, fasting blood glucose, intraperitoneal glucose tolerance test, serum insulin, pancreatic histology, and the examination of insulin and glucagon in islets were processed. All recipients returned to near euglycemic within 1 week after undergoing bone marrow transplantation. No mice became hyperglycemia again during investigation period. The change of serum insulin, glucose tolerance test, pancreatic histology and the expression of insulin and glucagon in recipient islets after bone marrow transplantation all revealed islets regeneration and significant amelioration when compared respectively with those of diabetic mice without bone marrow transplantation. Bone marrow transplantation contributed to reduce blood glucose, prevent further blood glucose hike in diabetic recipients, and promote islets regeneration. High-dose total body irradiation in combination with high-dose bone marrow monoclear cell infusion could improve the efficiency of bone marrow transplantation in treating streptozotocin-induced diabetes.

  8. Radiation sensitivity and cycling status of mouse bone marrow prothymocytes and day 8 colony forming units spleen (CFUs)

    SciTech Connect

    Boersma, W.J.

    1983-11-01

    Mouse bone marrow prothymocytes as determined in an in vivo thymus regeneration assay have an in vitro gamma radiation sensitivity which is different from that of spleen colony forming cells (CFUs). Determination of Do according to in vivo irradiation revealed similar but insignificant differences. Prothymocytes in normal bone marrow maintain a low but slightly different proliferative state as compared to CFUs, according to determinations using the /sup 3/H-TdR suicide technique. In regenerating bone marrow prothymocytes were found to be sensitive to an inhibitory effect of in vitro incubation with cold thymidine. CFUs and normal bone marrow prothymocytes were not affected by cold thymidine. Taking into account the cold thymidine effect it can be concluded that prothymocytes and CFUs in regenerating bone marrow are fully in cycle. These results are best explained when prothymocytes and CFUs are considered to be different cells.

  9. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    PubMed

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  10. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant.

    PubMed

    Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin

    2015-07-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.

  11. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a person's ...

  12. Radioprotective effects of Dragon's blood and its extract against gamma irradiation in mouse bone marrow cells.

    PubMed

    Ran, Yuanyuan; Wang, Ran; Lin, Fankai; Hasan, Murtaza; Jia, Qiutian; Tang, Bo; Xia, Yu; Shan, Shuangquan; Wang, Xiao; Li, Qiang; Deng, Yulin; Qing, Hong

    2014-06-01

    The radioprotective effects of Dragon's blood (DB) and its extracts (DBE) were investigated using the chromosomal aberrant test, micronucleus and oxidative stress assay for anti-clastogenic and anti-oxidative activity. Adult BALB/C mice were exposed to the whole body irradiation with 4 Gy (60)Co γ-rays. DB and DBE were administered orally once a day from 5 days prior to irradiation treatment to 1 day after irradiation. The mice were sacrificed on 24 h after irradiation. The cells of bone marrow were measured by counting different types of chromosomal aberrations and the frequency of micronuclei. Oxidative stress response was carried out by analysis of serum from blood. DB and DBE significantly decreased the number of bone marrow cells with chromosome aberrations after irradiation with respect to irradiated alone group. The administration of DB and DBE also significantly reduced the frequencies of micronucleated polychromatic erythrocytes (MPCE) and micronucleated normochromatic erythrocytes (MNCE). In addition, DB and DBE markedly increased the activity of antioxidant enzymes and the level of antioxidant molecular. Malondialdehyde (MDA) and nitric oxide (NO) levels in serum were significantly reduced by DB and DBE treatment. Our data suggested that DB and DBE have potential radioprotective properties in mouse bone marrow after (60)Co γ-ray exposure, which support their candidature as a potential radioprotective agent. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    SciTech Connect

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-02-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. /sup 51/Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras.

  14. Dose and Radioadaptive Response Analysis of Micronucleus Induction in Mouse Bone Marrow

    PubMed Central

    Bannister, Laura A.; Mantha, Rebecca R.; Devantier, Yvonne; Petoukhov, Eugenia S.; Brideau, Chantal L. A.; Serran, Mandy L.; Klokov, Dmitry Y.

    2016-01-01

    Enhanced cellular DNA repair efficiency and suppression of genomic instability have been proposed as mechanisms underlying radio-adaptive responses following low-dose radiation exposures. We previously showed that low-dose γ irradiation does not generate radio-adaptation by lowering radiation-induced cytogenetic damage in mouse spleen. Since radiation may exert tissue-specific effects, we extended these results here by examining the effects of γ radiation on cytogenetic damage and proliferative index in bone marrow erythrocytes of C57BL/6 and BALB/c mice. In C57BL/6 mice, the induction of micronuclei in polychromatic erythrocytes (MN-PCE) was observed at radiation doses of 100 mGy and greater, and suppression of erythroblast maturation occurred at doses of >500 mGy. A linear dose–response relationship for MN-PCE frequencies in C57BL/6 mice was established for radiation doses between 100 mGy and 1 Gy, with departure from linearity at doses of >1 Gy. BALB/c mice exhibited increased MN-PCE frequencies above baseline following a 20 mGy radiation exposure but did not exhibit radio-sensitivity relative to C57BL/6 mice following 2 Gy exposure. Radio-adaptation of bone marrow erythrocytes was not observed in either strain of mice exposed to low-dose priming γ irradiation (single doses of 20 mGy or 100 mGy or multiple 20 mGy doses) administered at various times prior to acute 2 Gy irradiation, confirming the lack of radio-adaptive response for induction of cytogenetic damage or suppression or erythrocyte proliferation/maturation in bone marrow of these mouse strains. PMID:27649149

  15. Haematopoietic progenitor cells from adult bone marrow differentiate into cells that express oligodendroglial antigens in the neonatal mouse brain.

    PubMed

    Bonilla, Sonia; Alarcón, Pedro; Villaverde, Ramón; Aparicio, Pedro; Silva, Augusto; Martínez, Salvador

    2002-02-01

    Stem cells are self-renewable, pluripotent cells that, in adult life, proliferate by a characteristic asymmetric division in which one daughter cell is committed to differentiation whereas the other remains a stem cell. These cells are also characterized by their ability to differentiate into various cell types under heterotopic environmental influences. In the present study, we have explored the potential of adult haematopoietic bone marrow cells to differentiate into cells of oligodendroglial lineage under physiological, active myelinating conditions. We present evidence of generation of cells expressing oligodendroglial specific markers from a bone marrow subpopulation enriched on adult haematopoietic progenitor cells (CD117+) in vivo after intracerebral transplantation into the neonatal mouse brain. Our results suggest that adult bone marrow cells have the capacity to undergo differentiation from haematopoietic to oligodendroglial cells and add support the validity of bone marrow transplants as an alternative treatment for demyelinating diseases of the CNS including Multiple Sclerosis.

  16. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    PubMed Central

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  17. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  18. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function.

    PubMed

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically "fatless" mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation.

  19. Bone Marrow Diseases

    MedlinePlus

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  20. Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I

    PubMed Central

    Pievani, Alice; Azario, Isabella; Antolini, Laura; Shimada, Tsutomu; Patel, Pravin; Remoli, Cristina; Rambaldi, Benedetta; Valsecchi, Maria Grazia; Riminucci, Mara; Biondi, Andrea; Tomatsu, Shunji

    2015-01-01

    Neonatal bone marrow transplantation (BMT) could offer a novel therapeutic opportunity for genetic disorders by providing sustainable levels of the missing protein at birth, thus preventing tissue damage. We tested this concept in mucopolysaccharidosis type I (MPS IH; Hurler syndrome), a lysosomal storage disorder caused by deficiency of α-l-iduronidase. MPS IH is characterized by a broad spectrum of clinical manifestations, including severe progressive skeletal abnormalities. Although BMT increases the life span of patients with MPS IH, musculoskeletal manifestations are only minimally responsive if the timing of BMT delays, suggesting already irreversible bone damage. In this study, we tested the hypothesis that transplanting normal BM into newborn MPS I mice soon after birth can prevent skeletal dysplasia. We observed that neonatal BMT was effective at restoring α-l-iduronidase activity and clearing elevated glycosaminoglycans in blood and multiple organs. At 37 weeks of age, we observed an almost complete normalization of all bone tissue parameters, using radiographic, microcomputed tomography, biochemical, and histological analyses. Overall, the magnitude of improvements correlated with the extent of hematopoietic engraftment. We conclude that BMT at a very early stage in life markedly reduces signs and symptoms of MPS I before they appear. PMID:25298037

  1. CURRENT PROTOCOLS IN TOXICOLOGY: Evaluation of toxicity in mouse bone marrow progenitor cells

    PubMed Central

    Ezeh, Peace C.; Xu, Huan; Wang, Shu Chun; Medina, Sebastian; Burchiel, Scott W.

    2016-01-01

    Development of blood cells through hematopoiesis occurs in the bone marrow (BM), and can be adversely impacted by various substances and/or conditions ranging from known therapeutic, intentionally administered xenobiotics to unintentional food additives and exposure to environmental chemicals. The principles underlying the techniques for evaluating toxicity to BM progenitors (erythroid, myeloid, and lymphoid) exploit changes in the normal hematopoietic process, biochemical cell surface and intracellular markers, as well as components of the BM microenvironment. Toxicological investigations following in vivo exposures of mice or in vitro exposures of mouse primary BM cell cultures allow the assessment of the developmental and functional integrity of BM cells, cell population shifts, and adverse biochemical effects due to toxicity. Colony forming unit (CFU) assays and flow cytometry are indispensable techniques in these toxicity studies. PMID:26828331

  2. A method to establish a mouse model of bone marrow microenvironment injury.

    PubMed

    Cheng, Wenzhe; Ge, Quanhu; Wan, Longfei; Wang, Xiaoyi; Chen, Xueling; Wu, Xiangwei

    2017-06-13

    A normal bone marrow microenvironment plays a very important role in the normal functioning of hematopoietic stem cells. Once disturbed, this microenvironment can become favorable for the occurrence of blood disorders, cancers, and other diseases. Therefore, further studies on the bone marrow microenvironment should be performed to reveal regulatory and stem cell fate determination mechanisms and promote the development of bone marrow transplantation, tissue repair and regenerative medicine, and other fields. A small animal model for further research is also urgently needed. In this study, an electric shock device was designed to elicit a femur bone marrow microenvironment injury in mice. A wire was inserted into the distal femur but not into the proximal femur, and the bone marrow microenvironment was evidently damaged by application of 100 ± 10 V for 1.5 ± 0.5 min; mortality, however, was low in the mice. Gross observation, hematoxylin and eosin staining, immunohistochemistry, bright-field microscopy, and micro-CT scanning were also conducted. A large number of new blood capillaries and sinusoids appeared in the injured distal femur after 2 weeks. The capillaries in the injured femur disappeared after 4 weeks, and mature blood vessels were scattered throughout the injured area. Red blood cells disappeared, and the cellular structure and trabecular bone were better than those observed 2 weeks previously. Thus, we developed a simply operated, accurate, reliable, and easily controlled small animal model as a good technical platform to examine angiogenesis and segmentation damage in the bone marrow microenvironment.

  3. In vivo visualizing the dynamics of bone marrow stem cells in mouse retina and choroidal-retinal circulation

    NASA Astrophysics Data System (ADS)

    Wang, Heuy-Ching H.; Zwick, Harry; Edsall, Peter R.; Cheramie, Rachel D.; Lund, David J.; Stuck, Bruce

    2007-02-01

    It has recently been shown that bone marrow cells can differentiate into various lineage cells including neural cells in vitro and in vivo. Therefore it is an attractive therapeutic intervention to apply autologous bone marrow-derived stem cells that may offer neuroprotection to laser-induced retinal injuries. The purpose of this study is to develop a method with which to visualize bone marrow stem cells dynamics in mouse retinal circulation. We have used a physiological method, confocal scanning laser ophthalmoscope (SLO), to track the highly enriched stem/progenitor cells circulating in the retina. Stem cells were enriched by immunomagnetic depletion of cells committed to the T- and B lymphocytic, myeloid and erythorid lineages. CellTracker TM Green-labeled stem cells were injected into the tail veins of mice with laser-induced focal retinal injuries. Bone marrow stem cells labeled with CellTracker TM Green were visible in the retinal circulation for as long as 1 hour and 30 minutes. These studies suggest that stem cell-enriched bone marrow cells may have the ability to mobilize into laser-induced retinal injuries and possibly further proliferate, differentiate and functionally integrate into the retina.

  4. The protocol for the isolation and cryopreservation of osteoclast precursors from mouse bone marrow and spleen.

    PubMed

    Boraschi-Diaz, Iris; Komarova, Svetlana V

    2016-01-01

    Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics.

  5. Minor histocompatibility antigens on transfused leukoreduced units of red blood cells induce bone marrow transplant rejection in a mouse model.

    PubMed

    Desmarets, Maxime; Cadwell, Chantel M; Peterson, Kenneth R; Neades, Renee; Zimring, James C

    2009-09-10

    When successful, human leukocyte antigen (HLA)-matched bone marrow transplantation with reduced-intensity conditioning is a cure for several nonmalignant hematologic disorders that require chronic transfusion, such as sickle cell disease and aplastic anemia. However, there are unusually high bone marrow transplant (BMT) rejection rates in these patients. Rejection correlates with the number of transfusions before bone marrow transplantation, and it has been hypothesized that preimmunization to antigens on transfused blood may prime BMT rejection. Using a novel mouse model of red blood cell (RBC) transfusion and major histocompatibility complex-matched bone marrow transplantation, we report that transfusion of RBC products induced BMT rejection across minor histocompatibility antigen (mHA) barriers. It has been proposed that contaminating leukocytes are responsible for transfusion-induced BMT rejection; however, filter leukoreduction did not prevent rejection in the current studies. Moreover, we generated a novel transgenic mouse with RBC-specific expression of a model mHA and demonstrated that transfusion of RBCs induced a CD8(+) T-cell response. Together, these data suggest that mHAs on RBCs themselves are capable of inducing BMT rejection. Cellular immunization to mHAs is neither monitored nor managed by current transfusion medicine practice; however, the current data suggest that mHAs on RBCs may represent an unappreciated and significant consequence of RBC transfusion.

  6. The effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    SciTech Connect

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-02-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. /sup 51/Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras. These results raise the possibility that the fulminant GVHD seen in human marrow transplantation is in part due to the major contamination of bone marrow with peripheral blood that results from the techniques currently used for human bone marrow harvest.

  7. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    SciTech Connect

    Kawahara, Takeshi

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.

  8. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    PubMed

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  9. Bone Marrow Mesenchymal Stem Cells Attenuate Mitochondria Damage Induced by Hypoxia in Mouse Trophoblasts

    PubMed Central

    Wang, Lingjuan; Xu, Xiaoyan; Kang, Lina

    2016-01-01

    Objective We aimed to observe the change of mitochondrial function and structure as well as the cell function induced by hypoxia in mouse trophoblasts, and moreover, to validate the restoration of these changes after co-culture with bone marrow mesenchymal stem cells (hereinafter referred to as “MSCs”). Further, we explored the mechanism of MSCs attenuating the functional damage of trophoblasts caused by hypoxia. Methods Cells were divided into two groups, trophoblasts and MSCs+trophoblasts respectively, and the two groups of cells were incubated with normoxia or hypoxia. Chemiluminescence was used to assay the β-HCG and progesterone in cell culture supernatants quantitatively. Western blotting and PCR were applied to detect the expression of Mfn2, MMP-2, MMP-9 and integrin β1 in the two groups. The mitochondrial membrane potential of each group of cells was detected with JC-1 dye and the ATP content was measured by the phosphomolybdic acid colorimetric method. We utilized transmission electron microscopy for observing the ultrastructure of mitochondria in trophoblasts. Finally, we assessed the cell apoptosis with flow cytometry (FCM) and analyzed the expression of the apoptosis related genes—Bcl-2, Bax, Caspase3 and Caspase9 by western blotting. Results The results showed that the Mfn2 expression was reduced after 4 h in hypoxia compared with that in normoxia, but increased in the co-culture group when compared with that in the separated-culture group (p<0.05). In addition, compared with the separated-culture group, theβ-HCG and progesterone levels in the co-culture group were significantly enhanced (p<0.05), and so were the expressions of MMP-2, MMP-9 and integrin β1 (p<0.05). Moreover, it exhibited significantly higher in ATP levels and intensified about the mitochondrial membrane potential in the co-culture group. TEM revealed disorders of the mitochondrial cristae and presented short rod-like structure and spheroids in hypoxia, however, in the co

  10. Effects of GSM-modulated radiofrequency electromagnetic fields on mouse bone marrow cells.

    PubMed

    Prisco, Maria Grazia; Nasta, Francesca; Rosado, Maria Manuela; Lovisolo, Giorgio Alfonso; Marino, Carmela; Pioli, Claudio

    2008-12-01

    We examined the effects of in vivo exposure to a GSM-modulated 900 MHz RF field on the ability of bone marrow cells to differentiate, colonize lymphatic organs, and rescue lethally X-irradiated mice from death. X-irradiated mice were injected with medium alone or containing bone marrow cells from either RF-field-exposed (SAR 2 W/kg, 2 h/day, 5 days/ week, 4 weeks) or sham-exposed or cage control donor mice. Whereas all mice injected with medium alone died, mice that received bone marrow cells survived. Three and 6 weeks after bone marrow cell transplantation, no differences in thymus cellularity and in the frequencies of differentiating cell subpopulations (identified by CD4/CD8 expression) were observed among the three transplanted groups. Mitogen-induced thymocyte proliferation yielded comparable levels in all transplanted groups. As to the spleen, no effects of the RF-field exposure on cell number, percentages of B and T (CD4 and CD8) cells, B- and T-cell proliferation, and IFN-gamma production were found in transplanted mice. In conclusion, our results show no effect of in vivo exposure to GSM-modulated RF fields on the ability of bone marrow precursor cells to home and colonize lymphoid organs and differentiate in phenotypically and functionally mature T and B lymphocytes.

  11. β-Caryophyllene promotes osteoblastic mineralization, and suppresses osteoclastogenesis and adipogenesis in mouse bone marrow cultures in vitro

    PubMed Central

    Yamaguchi, Masayoshi; Levy, Robert M.

    2016-01-01

    Osteoporosis is induced by the reduction in bone mass through decreased osteoblastic osteogenesis and increased osteoclastic bone resorption, and it is associated with obesity and diabetes. Osteoblasts and adipocytes are derived from bone marrow mesenchymal stem cells. The prevention of osteoporosis is an important public health concern in aging populations. β-caryophyllene, a component of various essential oils, is a selective agonist of the cannabinoid receptor type 2 and exerts cannabimimetic anti-inflammatory effects in animals. The present study aimed to identify the effect of β-caryophyllene on adipogenesis, osteoblastic mineralization and osteoclastogenesis in mouse bone marrow cell cultures in vitro. Bone marrow cells obtained from mouse femoral tissues were cultured in the presence of β-caryophyllene (0.1–100 µM) in vitro. The results revealed that β-caryophyllene stimulated osteoblastic mineralization, and suppressed adipogenesis and osteoclastogenesis. Thus, β-caryophyllene may be used as a therapeutic agent for the prevention and treatment of osteoporosis. PMID:28105093

  12. Deletion of bone-marrow-derived receptor for AGEs (RAGE) improves renal function in an experimental mouse model of diabetes.

    PubMed

    Tesch, Greg; Sourris, Karly C; Summers, Shaun A; McCarthy, Domenica; Ward, Micheal S; Borg, Danielle J; Gallo, Linda A; Fotheringham, Amelia K; Pettit, Allison R; Yap, Felicia Y T; Harcourt, Brooke E; Tan, Adeline L Y; Kausman, Joshua Y; Nikolic-Paterson, David; Kitching, Arthur R; Forbes, Josephine M

    2014-09-01

    The AGEs and the receptor for AGEs (RAGE) are known contributors to diabetic complications. RAGE also has a physiological role in innate and adaptive immunity and is expressed on immune cells. The aim of this study was to determine whether deletion of RAGE from bone-marrow-derived cells influences the pathogenesis of experimental diabetic nephropathy. Groups (n = 8/group) of lethally irradiated 8 week old wild-type (WT) mice were reconstituted with bone marrow from WT (WT → WT) or RAGE-deficient (RG) mice (RG → WT). Diabetes was induced using multiple low doses of streptozotocin after 8 weeks of bone marrow reconstitution and mice were followed for a further 24 weeks. Compared with diabetic WT mice reconstituted with WT bone marrow, diabetic WT mice reconstituted with RG bone marrow had lower urinary albumin excretion and podocyte loss, more normal creatinine clearance and less tubulo-interstitial injury and fibrosis. However, glomerular collagen IV deposition, glomerulosclerosis and cortical levels of TGF-β were not different among diabetic mouse groups. The renal tubulo-interstitium of diabetic RG → WT mice also contained fewer infiltrating CD68(+) macrophages that were activated. Diabetic RG → WT mice had lower renal cortical concentrations of CC chemokine ligand 2 (CCL2), macrophage inhibitory factor (MIF) and IL-6 than diabetic WT → WT mice. Renal cortical RAGE ligands S100 calgranulin (S100A)8/9 and AGEs, but not high mobility box protein B-1 (HMGB-1) were also decreased in diabetic RG → WT compared with diabetic WT → WT mice. In vitro, bone-marrow-derived macrophages from WT but not RG mice stimulated collagen IV production in cultured proximal tubule cells. These studies suggest that RAGE expression on haemopoietically derived immune cells contributes to the functional changes seen in diabetic nephropathy by promoting macrophage infiltration and renal tubulo-interstitial damage.

  13. Differentiating functional roles of gene expression from immune and non-immune cells in mouse colitis by bone marrow transplantation.

    PubMed

    Koon, Hon Wai; Ho, Samantha; Cheng, Michelle; Ichikawa, Ryan; Pothoulakis, Charalabos

    2012-10-01

    To understand the role of a gene in the development of colitis, we compared the responses of wild-type mice and gene-of-interest deficient knockout mice to colitis. If the gene-of-interest is expressed in both bone marrow derived cells and non-bone marrow derived cells of the host; however, it is possible to differentiate the role of a gene of interest in bone marrow derived cells and non- bone marrow derived cells by bone marrow transplantation technique. To change the bone marrow derived cell genotype of mice, the original bone marrow of recipient mice were destroyed by irradiation and then replaced by new donor bone marrow of different genotype. When wild-type mice donor bone marrow was transplanted to knockout mice, we could generate knockout mice with wild-type gene expression in bone marrow derived cells. Alternatively, when knockout mice donor bone marrow was transplanted to wild-type recipient mice, wild-type mice without gene-of-interest expressing from bone marrow derived cells were produced. However, bone marrow transplantation may not be 100% complete. Therefore, we utilized cluster of differentiation (CD) molecules (CD45.1 and CD45.2) as markers of donor and recipient cells to track the proportion of donor bone marrow derived cells in recipient mice and success of bone marrow transplantation. Wild-type mice with CD45.1 genotype and knockout mice with CD45.2 genotype were used. After irradiation of recipient mice, the donor bone marrow cells of different genotypes were infused into the recipient mice. When the new bone marrow regenerated to take over its immunity, the mice were challenged by chemical agent (dextran sodium sulfate, DSS 5%) to induce colitis. Here we also showed the method to induce colitis in mice and evaluate the role of the gene of interest expressed from bone-marrow derived cells. If the gene-of-interest from the bone derived cells plays an important role in the development of the disease (such as colitis), the phenotype of the

  14. Differentiating Functional Roles of Gene Expression from Immune and Non-immune Cells in Mouse Colitis by Bone Marrow Transplantation

    PubMed Central

    Koon, Hon Wai; Ho, Samantha; Cheng, Michelle; Ichikawa, Ryan; Pothoulakis, Charalabos

    2012-01-01

    To understand the role of a gene in the development of colitis, we compared the responses of wild-type mice and gene-of-interest deficient knockout mice to colitis. If the gene-of-interest is expressed in both bone marrow derived cells and non-bone marrow derived cells of the host; however, it is possible to differentiate the role of a gene of interest in bone marrow derived cells and non- bone marrow derived cells by bone marrow transplantation technique. To change the bone marrow derived cell genotype of mice, the original bone marrow of recipient mice were destroyed by irradiation and then replaced by new donor bone marrow of different genotype. When wild-type mice donor bone marrow was transplanted to knockout mice, we could generate knockout mice with wild-type gene expression in bone marrow derived cells. Alternatively, when knockout mice donor bone marrow was transplanted to wild-type recipient mice, wild-type mice without gene-of-interest expressing from bone marrow derived cells were produced. However, bone marrow transplantation may not be 100% complete. Therefore, we utilized cluster of differentiation (CD) molecules (CD45.1 and CD45.2) as markers of donor and recipient cells to track the proportion of donor bone marrow derived cells in recipient mice and success of bone marrow transplantation. Wild-type mice with CD45.1 genotype and knockout mice with CD45.2 genotype were used. After irradiation of recipient mice, the donor bone marrow cells of different genotypes were infused into the recipient mice. When the new bone marrow regenerated to take over its immunity, the mice were challenged by chemical agent (dextran sodium sulfate, DSS 5%) to induce colitis. Here we also showed the method to induce colitis in mice and evaluate the role of the gene of interest expressed from bone-marrow derived cells. If the gene-of-interest from the bone derived cells plays an important role in the development of the disease (such as colitis), the phenotype of the

  15. Aldose reductase (AKR1B) deficiency promotes phagocytosis in bone marrow derived mouse macrophages.

    PubMed

    Singh, Mahavir; Kapoor, Aniruddh; McCracken, James; Hill, Bradford; Bhatnagar, Aruni

    2017-03-01

    Macrophages are critical drivers of the immune response during infection and inflammation. The pathogenesis of several inflammatory conditions, such as diabetes, cancer and sepsis has been linked with aldose reductase (AR), a member of the aldo-keto reductase (AKR) superfamily. However, the role of AR in the early stages of innate immunity such as phagocytosis remains unclear. In this study, we examined the role of AR in regulating the growth and the phagocytic activity of bone marrow-derived mouse macrophages (BMMs) from AR-null and wild-type (WT) mice. We found that macrophages derived from AR-null mice were larger in size and had a slower growth rate than those derived from WT mice. The AR-null macrophages also displayed higher basal, and lipopolysaccharide (LPS) stimulated phagocytic activity than WT macrophages. Moreover, absence of AR led to a marked increase in cellular levels of both ATP and NADPH. These data suggest that metabolic pathways involving AR suppress macrophage energy production, and that inhibition of AR could induce a favorable metabolic state that promotes macrophage phagocytosis. Hence, modulation of macrophage metabolism by inhibition of AR might represent a novel strategy to modulate host defense responses and to modify metabolism to promote macrophage hypertrophy and phagocytosis under inflammatory conditions.

  16. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    PubMed Central

    Lee, Eun-Shil; Yu, Song-Hee; Jang, Yu-Jin; Hwang, Dong-Youn; Jeon, Chang-Jin

    2011-01-01

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs. PMID:22096261

  17. Antigenotoxicity protection of Carapa guianensis oil against mitomycin C and cyclophosphamide in mouse bone marrow.

    PubMed

    Lemes, Susy R; Chaves, Dwight A; Silva, Nelson J DA; Carneiro, Cristiene C; Chen-Chen, Lee; Almeida, Luciane M DE; Gonçalves, Pablo J; Melo-Reis, Paulo R DE

    2017-06-29

    The aim of this study was to evaluate the possible protective of C. guianensis oil against MMC and CP, which are direct- and indirect-acting chemical mutagens, using the micronucleus test. Three experiments were performed. First the C. guianensis oil was co-administered to mice at doses of 250, 500 and 1000 mg/kg bw with 4 mg/kg bw MMC or 50 mg/kg bw CP. Second, the mutagenic drug (CP) was administered ip 50 mg/kg bw and after 6 and 12 hours 250 and 500 mg/kg bw of C. guianensis oil were administered. In the last, C. guianensis oil was administrated (250 and 500 mg/kg bw) during five days and after it was administered ip 50 mg/kg bw CP. The results obtained showed that the C. guianensis oil is not cytotoxic neither genotoxic to mouse bone marrow. Regarding the antimutagenic effect, all doses of C. guianensis oil were significantly (p < 0.05) effective in reducing the frequency of micronucleated polychromatic erythrocytes, when compared with MMC or CP alone. Based on these results, our results suggest that the C. guianensis oil shows medicinal potential as an antimutagenic agent, modulating the mutagenicity caused by both direct- and indirect-acting chemical mutagens, in a mammalian model.

  18. The function of CCR3 on mouse bone marrow-derived mast cells in vitro.

    PubMed

    Collington, Sarah J; Westwick, John; Williams, Timothy J; Weller, Charlotte L

    2010-01-01

    The mechanisms governing the population of tissues by mast cells are not fully understood, but several studies using human mast cells have suggested that expression of the chemokine receptor CCR3 and migration to its ligands may be important. In CCR3-deficient mice, a change in mast cell tissue distribution in the airways following allergen challenge was reported compared with wild-type mice. In addition, there is evidence that CCR3 is important in mast cell maturation in mouse. In this study, bone marrow-derived mast cells (BMMCs) were cultured and CCR3 expression and the migratory response to CCR3 ligands were characterized. In addition, BMMCs were cultured from wild-type and CCR3-deficient mice and their phenotype and migratory responses were compared. CCR3 messenger RNA was detectable in BMMCs, but this was not significantly increased after activation by immunoglobulin E (IgE). CCR3 protein was not detected on BMMCs during maturation and expression could not be enhanced after IgE activation. Resting and IgE-activated immature and mature BMMCs did not migrate in response to the CCR3 ligands eotaxin- 1 and eotaxin-2. Comparing wild-type and CCR3-deficient BMMCs, there were no differences in mast cell phenotype or ability to migrate to the mast cell chemoattractants leukotriene B4 and stem cell factor. The results of this study show that CCR3 may not mediate mast cell migration in mouse BMMCs in vitro. These observations need to be considered in relation to the findings of CCR3 deficiency on mast cells in vivo.

  19. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells.

    PubMed

    Marquardt, D L; Walker, L L; Heinemann, S

    1994-05-01

    Adenosine potentiates the stimulated release of mast cell mediators. Pharmacologic studies suggest the presence of two adenosine receptors, one positively coupled to adenylate cyclase and the other coupled to phospholipase C activation. To identify mast cell adenosine receptor subtypes, cDNAs for the A1 and A2a adenosine receptors were obtained by screening a mouse brain cDNA library with the use of PCR-derived probes. Mouse bone marrow-derived mast cell cDNA libraries were constructed and screened with the use of A1 and A2a cDNA probes, which revealed the presence of A2a, but not A1, receptor clones. A putative A2b receptor was identified by using low stringency mast cell library screening. Northern blotting of mast cell poly(A)+ RNA with the use of receptor subtype probes labeled single mRNA bands of 2.4 kb and 1.8 kb for the A2a and A2b receptors, respectively. In situ cells. An A2a receptor-specific agonist failed to enhance mast cell mediator release, which suggests that the secretory process is modulated through the A2b and/or another receptor subtype. By using RNase protection assays, we found that mast cells that had been cultured in the presence of N-ethylcarboxamidoadenosine for 24 h exhibited a decrease in both A2a and A2b receptor RNA levels. Cells that had been cultured for 1 to 2 days in the presence of dexamethasone demonstrated increased amounts of A2a receptor mRNA, but no identifiable change in A2b receptor mRNA. Mast cells possess at least two adenosine receptor subtypes that may be differentially regulated.

  20. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    PubMed

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells.

  1. Thermal response and hyperthermic radiosensitization of scid mouse bone marrow CFU-C.

    PubMed

    O'Hara, M D; Pollard, M D; Wheatley, G; Regine, W F; Mohiuddin, M; Leeper, D B

    1995-02-15

    Scid mice are severely immunodeficient as a result of a defective recombinase system. Mice with the scid mutation have been shown to have an increased sensitivity to ionizing radiation, presumably as a result of an inability to repair DNA damage. Little is known of the impact of this mutation on the thermal response and on hyperthermic radiosensitization. This investigation established the thermal response (42-44 degrees C), patterns of thermotolerance development, and the impact of hyperthermia (60 min at 40 degrees C or 42 degrees C) on the radiation response of bone marrow colony forming unit-culture cells (CFU-C) in scid mice. Anesthetized scid mice (pentobarbital, 90 mg/kg) were killed by cervical dislocation and the nucleated marrow obtained from both tibia and femora by passing 2 ml of cold McCoy's 5A medium supplemented with 15% fetal bovine serum through each bone. Single cell suspensions of nucleated marrow were heated in 12 x 75 mm sterile tissue culture tubes at a concentration of approximately 5 x 10(6) cells/ml. Radiation, when used, was delivered immediately prior to hyperthermia by a 137Cs irradiator (dose rate of 1.20 Gy/min). Colony forming unit-culture were cultured in semisolid agar in the presence of colony stimulating factor (conditioned medium from L929 cells) for 7 days. The slope of the radiation dose-response curve for CFU-C in scid mice was biphasic, the Dos (+/- SE) were 0.29 +/- 0.03 Gy and 1.09 +/- 0.20 Gy, respectively. The Dos of the radiation dose-response curve for wild type marrow from CB-17 and Balb/c mice were 1.28 +/- 0.05 Gy and 1.47 +/- 0.15 Gy, respectively. The Dos of the hyperthermia dose-response curves for scid mice were 75 +/- 5, 10 +/- 1.4, and 4 +/- 0.2 min, respectively, for temperatures of 42 degrees, 43 degrees, and 44 degrees C. Thermotolerance development at 37 degrees C increased to a maximum at approximately 240 min after acute hyperthermia (15 min at 44 degrees C) and thereafter, decreased to control levels

  2. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation.

    PubMed

    Becker, Amy M; Callahan, Derrick J; Richner, Justin M; Choi, Jaebok; DiPersio, John F; Diamond, Michael S; Bhattacharya, Deepta

    2015-01-01

    Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation.

  3. Systemically Transplanted Bone Marrow-derived Cells Contribute to Dental Pulp Regeneration in a Chimeric Mouse Model.

    PubMed

    Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei

    2016-02-01

    Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease

    PubMed Central

    Park, Jin Seok; Yi, Tac-Ghee; Park, Jong-Min; Han, Young Min; Kim, Jun-Hyung; Shin, Dong-Hee; Tak, Seon Ji; Lee, Kyuheon; Lee, Youn Sook; Jeon, Myung-Shin; Hahm, Ki-Baik; Song, Sun U; Park, Seok Hee

    2015-01-01

    Mouse bone marrow-derived clonal mesenchymal stem cells (mcMSCs), which were originated from a single cell by a subfractionation culturing method, are recognized as new paradigm for stem cell therapy featured with its homogenous cell population. Next to proven therapeutic effects against pancreatitis, in the current study we demonstrated that mcMSCs showed significant therapeutic effects in dextran sulfate sodium (DSS)-induced experimental colitis model supported with anti-inflammatory and restorative activities. mcMSCs significantly reduced the disease activity index (DAI) score, including weight loss, stool consistency, and intestinal bleeding and significantly increased survival rates. The pathological scores were also significantly improved with mcMSC. We have demonstrated that especial mucosal regeneration activity accompanied with significantly lowered level of apoptosis as beneficiary actions of mcMSCs in UC models. The levels of inflammatory cytokines including TNF-α, IFN-γ, IL-1β, IL-6, and IL-17 were all significantly concurrent with significantly repressed NF-κB activation compared to the control group and significantly decreased infiltrations of responsible macrophage and neutrophil. Conclusively, our findings provide the rationale that mcMSCs are applicable as a potential source of cell-based therapy in inflammatory bowel diseases, especially contributing either to prevent relapse or to accelerate healing as solution to unmet medical needs in IBD therapy. PMID:26566304

  5. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    SciTech Connect

    Taguchi, Kazuhiro . E-mail: s3061@nms.ac.jp; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-05-27

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses.

  6. Turnover of bone marrow-derived cells in the irradiated mouse cornea

    PubMed Central

    Chinnery, Holly R; Humphries, Timothy; Clare, Adam; Dixon, Ariane E; Howes, Kristen; Moran, Caitlin B; Scott, Danielle; Zakrzewski, Marianna; Pearlman, Eric; McMenamin, Paul G

    2008-01-01

    In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation. PMID:18540963

  7. Androgen, Estrogen and the Bone Marrow Microenvironment

    DTIC Science & Technology

    2009-12-01

    SUPPLEMENTARY NOTES 14. ABSTRACT We have accomplished the following: 1) Characterized androgen responsive genes in mouse bone marrow (BM) via...castration (androgen ablation) and estrogen stimulation. 2) Measurements of testosterone, dihydrotestosterone and of genes that regulate the local... gene expression in the bone marrow. In males, the main source of estrogen is through conversion of androgen by aromatase. We postulate that gene

  8. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... Your 1- to 2-Year-Old Aspiration and Biopsy: Bone Marrow KidsHealth > For Parents > Aspiration and Biopsy: Bone Marrow A A A What's in this ... ósea What It Is Bone marrow aspirations and biopsies are performed to examine bone marrow, the spongy ...

  9. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness Aspiration and Biopsy: Bone Marrow KidsHealth > For Teens > Aspiration and Biopsy: Bone Marrow A A A What's in this ... Questions What It Is Bone marrow aspirations and biopsies are performed to examine bone marrow, the spongy ...

  10. Differential sensitivity of a mouse myeloid leukemia cell line and normal mouse bone marrow cells to X-ray-induced chromosome aberrations

    SciTech Connect

    Aardema, M.J.; Au, W.W.; Hand, R.E. Jr.; Preston, R.J.

    1985-11-01

    Cell line ML-1 was established from a myelogenous leukemia of an RFM mouse. The ML-1 cells and in vitro normal mouse bone marrow cells were analyzed to determine if there was a differential sensitivity to X-ray-induced chromosome aberrations in G1 cells and/or differences in postirradiation cell cycle progression. Cells identified as being in G1 at the time of irradiation by their staining pattern after replication in 5-bromodeoxyuridine were analyzed for all types of chromosomal aberrations following X-ray doses of 0.5, 1.0, 1.5, and 2.0 Gy. ML-1 cells showed a greater sensitivity to the induction of both chromosome-type aberrations and chromatid-type aberrations compared to normal mouse bone marrow cells, which only contained chromosome-type aberrations. The presence of chromatid-type aberrations in the ML-1 cells and not normal bone marrow cells suggested a differential progression through the cell cycle for the two cell types after irradiation. Mitotic index and flow cytometric analyses were performed and showed that both cell types have a delay in progression from G2 into mitosis, but only the normal mouse bone marrow cells have a delay in progression from G1 into S, as well as delayed progression through the S phase following X-irradiation. These results indicate that the ML-1 leukemia cells have an increased radiosensitivity. These same characteristics have been observed in ataxia telangiectasia cells and may well represent a general feature of cells with increased radiosensitivity.

  11. Bone marrow biopsy

    MedlinePlus

    ... myelodysplastic syndrome; MDS) A nerve tissue tumor called neuroblastoma Bone marrow disease that leads to an abnormal ... Hairy cell leukemia Hodgkin lymphoma Multiple myeloma Myelofibrosis Neuroblastoma Non-Hodgkin lymphoma Platelet count Polycythemia vera Primary ...

  12. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    SciTech Connect

    Colnot, C. . E-mail: colnotc@orthosurg.ucsf.edu; Huang, S.; Helms, J.

    2006-11-24

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.

  13. Clastogenic potential of Ruta graveolens extract and a homeopathic preparation in mouse bone marrow cells.

    PubMed

    Preethi, Korengath C; Nair, Cherappally K K; Kuttan, Ramadasan

    2008-01-01

    Ruta graveolens belonging to family Rutaceae has long been traditionally used as a medicinal plant as well as a flavoring agent in food. However, very little data are available on the toxicity of the plant. This report presents evidence on the genotoxic and clastogenic potential of an extract of Ruta graveolens and Ruta 200C, a homeopathic preparation. Various types of chromosomal aberrations were noted in bone marrow cells after treatment. The percentage of aberrated cells in the 400mg/kgb.wt extract administered group was found to be 21% and with 1,000 mg/kg.b.wt it was 31%. The value for the Ruta 200C treated group was also elevated to 23% as compared to the 3%for untreated animals. In addition, bone marrow cells had higher incidence of micronuclei induction when treated with the extract (400 mg and 1,000 mg/kg body weight) and Ruta 200C for 30 days. Administration of the extract (1,000 mg/kg.b.wt) over a period of 30 days also resulted in damage to cellular DNA as evidenced by comet formation where the comet parameters such as percentage DNA in tail, tail length, tail moment of the bone marrow cells were increased several fold over control values. The comet tail moment of the bone marrow cells increased from 4.5 to 50.2 after the extract treatment. Administration of Ruta 200C for 5 consecutive days increased the tail moment to 11.7. These results indicate that Ruta graveolens and Ruta 200C may induce genotoxicity in animals.

  14. The mechanism of recurrence of mouse myeloid leukaemia after total body irradiation and bone marrow transplantation.

    PubMed

    Poljak-Blazi, M; Popović, M; Majić, T

    1994-01-01

    RFM mice were X-irradiated (9.5 Gy) 3, 4, 5, 6 or 7 days after inoculation of a transplantable strain-specific myeloid leukaemia (ML) and were reconstituted or not with syngeneic or allogeneic bone marrow cells. Recurrent leukaemia was observed in mice with either type of the bone marrow transplant, indicating that ML cells survived the dose of 9.5 Gy of X-rays. ML cells exposed in vitro to high doses of X-rays (20, 30, 40, 50, 60 Gy) and injected into lethally irradiated syngeneic recipients were still capable of forming leukaemic colonies on the spleens. Higher doses (70, 80, 90 and 100 Gy) abolished the colony formation completely. Irradiated ML cells were also capable of causing leukaemia (hepatosplenomegaly) if inoculated into lethally irradiated CBA mice reconstituted with bone marrow cells of CBA or RFM mice. That was attributed to the release of a leukaemogenic factor from the ML cells, capable of transforming transplanted normal cells.

  15. Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization.

    PubMed

    Chakroborty, Debanjan; Chowdhury, Uttio Roy; Sarkar, Chandrani; Baral, Rathindranath; Dasgupta, Partha Sarathi; Basu, Sujit

    2008-04-01

    Mobilization of endothelial progenitor cells (EPCs) from the bone marrow and their subsequent participation in neovessel formation are implicated in tumor growth and neovascularization. As the neurotransmitter dopamine (DA) modulates adult endothelial cell function, we hypothesized that DA might have a regulatory role in mobilization of EPCs from the bone marrow niche. We show that there was a significant decrease in bone marrow DA content and an increase in EPC mobilization in tumor-bearing mice associated with tumor neovascularization. DA treatment of tumor-bearing mice inhibited EPC mobilization and tumor growth through its D2 receptors, as DA treatment failed to inhibit EPC mobilization in tumor-bearing mice treated with a specific DA D2 receptor antagonist and in tumor-bearing mice lacking the D2 receptor. In addition, we found that DA, through D2 receptors, exerted its inhibitory effect on EPC mobilization through suppression of VEGFA-induced ERK1/ERK2 phosphorylation and MMP-9 synthesis. These findings reveal a new link between DA and EPC mobilization and suggest a novel use for DA and D2 agents in the treatment of cancer and other diseases involving neovessel formation.

  16. Effect of Coadministration of Vancomycin and BMP-2 on Cocultured Staphylococcus aureus and W-20-17 Mouse Bone Marrow Stromal Cells in Vitro

    DTIC Science & Technology

    2012-07-01

    Hudson MC. 2000. Intracellular Staph - ylococcus aureus induces apoptosis in mouse osteoblasts. FEMS Micro- biol. Lett. 186:151–156. 45. Wang Y, et al...Staphylococcus aureus and W-20-17 Mouse Bone Marrow Stromal Cells In Vitro 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Cocultured Staphylococcus aureus and W-20-17 Mouse Bone Marrow Stromal Cells In Vitro A. H. Nguyen,a S. Kim,a,b W. J. Maloney,b J. C. Wenke,c and Y. Yanga

  17. Enumeration of the colony-forming units–fibroblast from mouse and human bone marrow in normal and pathological conditions

    PubMed Central

    Kuznetsov, Sergei A.; Mankani, Mahesh H.; Bianco, Paolo; Robey, Pamela G.

    2009-01-01

    Bone marrow stromal cell populations, containing a subset of multipotential skeletal stem cells, are increasingly contemplated for use in tissue engineering and stem cell therapy, whereas their involvement in the pathogenetic mechanisms of skeletal disorders is far less recognized. We compared the concentrations of stromal clonogenic cells, colony forming units–fibroblast (CFU-Fs), in norm and pathology. Initially, culture conditions were optimized by demonstrating that fetal bovine serum heat inactivation could significantly repress colony formation. Using non-heat-inactivated fetal bovine serum, the concentration of CFU-Fs (colony-forming efficiency, CFE) ranged from 3.5 ± 1.0 to 11.5 ± 4.0 per 1 × 105 nucleated cells in five inbred mouse strains. In four transgenic lines with profound bone involvement, CFE was either significantly reduced or increased compared to wild-type littermates. In normal human donors, CFE decreased slightly with age and averaged 52.2 ± 4.1 for children and 32.3 ± 3.0 for adults. CFE was significantly altered in patients with several skeletal, metabolic, and hematological disorders: reduced in congenital generalized lipodystrophy, achondroplasia (SADDAN), pseudoachondroplasia, and Paget disease of bone and elevated in alcaptonuria and sickle cell anemia. Our findings indicate that under appropriate culture conditions, CFE values may provide useful insights into bone/bone marrow pathophysiology. PMID:19383412

  18. In vivo 4-dimensional tracking of hematopoietic stem and progenitor cells in adult mouse calvarial bone marrow.

    PubMed

    Scott, Mark K; Akinduro, Olufolake; Lo Celso, Cristina

    2014-09-04

    Through a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood([1-2]). We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging. High definition imaging allows detecting ex vivo labeled hematopoietic stem and progenitor cells (HSPCs) residing within the bone marrow. Moreover, multi-point time-lapse 3D imaging, obtained with faster acquisition settings, provides accurate information about HSPC movement and the reciprocal interactions between HSPCs and stroma cells. Tracking of HSPCs in relation to GFP positive osteoblastic cells is shown as an exemplary application of this method. This technique can be utilized to track any appropriately labeled hematopoietic or stromal cell of interest within the mouse calvarium bone marrow space.

  19. In Vivo 4-Dimensional Tracking of Hematopoietic Stem and Progenitor Cells in Adult Mouse Calvarial Bone Marrow

    PubMed Central

    Scott, Mark K.; Akinduro, Olufolake; Lo Celso, Cristina

    2014-01-01

    Through a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood[1-2]. We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging. High definition imaging allows detecting ex vivo labeled hematopoietic stem and progenitor cells (HSPCs) residing within the bone marrow. Moreover, multi-point time-lapse 3D imaging, obtained with faster acquisition settings, provides accurate information about HSPC movement and the reciprocal interactions between HSPCs and stroma cells. Tracking of HSPCs in relation to GFP positive osteoblastic cells is shown as an exemplary application of this method. This technique can be utilized to track any appropriately labeled hematopoietic or stromal cell of interest within the mouse calvarium bone marrow space. PMID:25225854

  20. Mouse embryonic fibroblasts (MEF) exhibit a similar but not identical phenotype to bone marrow stromal stem cells (BMSC).

    PubMed

    Saeed, Hamid; Taipaleenmäki, Hanna; Aldahmash, Abdullah M; Abdallah, Basem M; Kassem, Moustapha

    2012-06-01

    Mouse embryonic fibroblasts have been utilized as a surrogate stem cell model for the postnatal bone marrow-derived stromal stem cells (BMSC) to study mesoderm-type cell differentiation e.g. osteoblasts, adipocytes and chondrocytes. However, no formal characterization of MEF phenotype has been reported. Utilizing standard in vitro and in vivo assays we performed a side-by-side comparison of MEF and BMSC to determine their ability to differentiate into mesoderm-type cells. BMSC were isolated from 8-10 weeks old mouse bone marrow by plastic adherence. MEF were established by trypsin/EDTA digestion from E13.5 embryos after removing heads and viscera, followed by plastic adherence. Compared to BMSC, MEF exhibited telomerase activity and improved cell proliferation as assessed by q-PCR based TRAP assay and cell number quantification, respectively. FACS analysis revealed that MEF exhibited surface markers characteristic of the BMSC: Sca-1(+), CD73(+), CD105(+), CD29(+), CD44(+), CD106(+), CD11b(-), and CD45(-). In contrast to BMSC, ex vivo osteoblast (OB) differentiation of MEF exhibited a less mature osteoblastic phenotype (less alkaline phosphatase, collagen type I and osteocalcin) as assessed by real-time PCR analysis. Compared to BMSC, MEF exhibited a more enhanced differentiation into adipocyte and chondrocyte lineages. Interestingly, both MEF and BMSC formed the same amount of heterotopic bone and bone marrow elements upon in vivo subcutaneous implantation with hydroxyapatite/tricalcium phosphate, in immune deficient mice. In conclusion, MEF contain a population of stem cells that behave in ex vivo and in vivo assays, similar but not identical, to BMSC. Due to their enhanced cell growth, they may represent a good alternative for BMSC in studying molecular mechanisms of stem cell commitment and differentiation to osteoblasts, adipocytes and chondrocytes.

  1. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study.

    PubMed

    Inoue, S; Osmond, D G

    2001-11-01

    Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the

  2. Bone and bone marrow: the same organ.

    PubMed

    Del Fattore, Andrea; Capannolo, Marta; Rucci, Nadia

    2010-11-01

    Interplays between bone and bone marrow are not limited to merely anatomic and histological connections, but include a tight functional correlation. Bone marrow resides within the medullary cavity of the bones and the process of hematopoiesis is regulated, at least in part, by bone cells. Moreover, osteoclasts and osteoblasts derive from precursors of hematopoietic and mesenchymal origin, respectively, both residing within the bone marrow. Alterations in one of these components typically cause impairment in the other, so diseases of the bone marrow compartment often affect the bone and vice versa. All these findings could make us to speculate that bone and bone marrow are not two separate districts, but can be considered as the two elements of the same unique functional unit, the bone-bone marrow organ. Here we will describe histological and functional interplays between bone and bone marrow, and will illustrate some diseases in which this tight correlation is evident.

  3. Bone Marrow-Derived Cells May Not Be the Original Cells for Carcinogen-Induced Mouse Gastrointestinal Carcinomas

    PubMed Central

    Yang, Chen; Gu, Liankun; Deng, Dajun

    2013-01-01

    Aim It has been reported that bone marrow-derived cells (BMDC) can be original cells of mouse gastric cancers induced by Helicobacter felis (H. felis) infection. However, it is unknown whether BMDCs are also the original cells of mouse gastrointestinal cancers induced by gastric carcinogens N-nitroso-N-methylurea (NMU) and H. felis infection. Methods C57BL/6 recipient mice were initially irradiated with 10Gy X-ray, reconstituted with bone marrow cells from the C57BL/6-Tg (CAG-EGFP) donor mice to label BMDCs with green fluorescence protein (GFP). After 4 weeks of recovery, the bone marrow-transplanted mice were given NMU in drinking water (240 ppm) and subsequently infected with H. felis by gavage. Eighty weeks later, all mice were euthanized for pathological examination. The BMDCs expressing GFP were detected in tissues using direct GFP fluorescence confocal microscopy analysis and immunohistochemistry staining (IHC) assays. Results Neoplastic lesions were induced by NMU treatment and/or H. felis infection at the antrum of the glandular stomach and small intestine. In the direct GFP fluorescence confocal assay, GFP(+) epithelial cell cluster or glands were not observed in these gastrointestinal tumors, however, most GFP(+) BMDCs sporadically located in the tumor stromal tissues. Some of these GFP(+) stromal BMDCs co-expressed the hematopoietic marker CD45 or myofibroblasts markers αSMA and SRF. In the indirect GFP IHC assay, similar results were observed among 11 gastric intraepithelial neoplasia lesions and 2 small intestine tumors. Conclusion These results demonstrated that BMDCs might not be the source of gastrointestinal tumor cells induced by NMU and/or H. felis infection. PMID:24260263

  4. SCE frequencies induced by ethanol, tequila and brandy in mouse bone marrow cells in vivo.

    PubMed

    Piña Calva, A; Madrigal-Bujaidar, E

    1993-01-01

    The genotoxicity of ethanol, tequila and brandy was evaluated by scoring the frequency of sister chromatid exchanges (SCE) and determining the values of the average generation time (AGT). We studied four dosages of each substance i.p. inoculated into mice. The cytogenetic analysis was performed in bone marrow cells. The results showed that all three substances were weak genotoxicants. Tequila showed the strongest response followed by brandy and ethanol. None of them modified the cell proliferation kinetics as demonstrated by the AGT results.

  5. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... 1- to 2-Year-Old Aspiration and Biopsy: Bone Marrow KidsHealth > For Parents > Aspiration and Biopsy: Bone Marrow Print A A A What's in this article? ... Aspiraciones y biopsias: médula ósea What It Is Bone marrow aspirations and biopsies are performed to examine bone ...

  6. In vivo longitudinal visualization of bone marrow engraftment process in mouse calvaria using two-photon microscopy.

    PubMed

    Le, Viet-Hoan; Lee, Seunghun; Lee, Seungwon; Wang, Taejun; Hyuk Jang, Won; Yoon, Yeoreum; Kwon, Soonjae; Kim, Hyekang; Lee, Seung-Woo; Hean Kim, Ki

    2017-03-09

    Intravital microscopy of mouse calvarial bone marrow (BM) is a powerful method for studying hematopoietic stem cells (HSCs) and the BM microenvironment at the cellular level. However, the current method used to access the mouse calvaria allows for only a few imaging times in the same mouse because of scar formation and inflammation induced by multiple surgeries. Longitudinal imaging of the BM may help better understand its microenvironment. In this study, a mouse calvarial window model was developed for longitudinal imaging that involves attaching a cover glass window onto the mouse calvaria and sealing the surrounding exposed area with cyanoacrylate glue and dental cement. The model was used for the longitudinal two-photon microscopy (TPM) imaging of the BM engraftment process. The same BM cavity sites were imaged multiple times over 4 weeks after BM transplantation (BMT). Temporal changes in the BM microenvironment, such as the reconstitution of transplanted BM cells and the recovery of vasculature, were observed and analysed qualitatively and quantitatively. Longitudinal intravital microscopy using the mouse calvarial window model was successfully demonstrated and may be useful for further BM studies.

  7. In vivo longitudinal visualization of bone marrow engraftment process in mouse calvaria using two-photon microscopy

    PubMed Central

    Le, Viet-Hoan; Lee, Seunghun; Lee, Seungwon; Wang, Taejun; Hyuk Jang, Won; Yoon, Yeoreum; Kwon, Soonjae; Kim, Hyekang; Lee, Seung-Woo; Hean Kim, Ki

    2017-01-01

    Intravital microscopy of mouse calvarial bone marrow (BM) is a powerful method for studying hematopoietic stem cells (HSCs) and the BM microenvironment at the cellular level. However, the current method used to access the mouse calvaria allows for only a few imaging times in the same mouse because of scar formation and inflammation induced by multiple surgeries. Longitudinal imaging of the BM may help better understand its microenvironment. In this study, a mouse calvarial window model was developed for longitudinal imaging that involves attaching a cover glass window onto the mouse calvaria and sealing the surrounding exposed area with cyanoacrylate glue and dental cement. The model was used for the longitudinal two-photon microscopy (TPM) imaging of the BM engraftment process. The same BM cavity sites were imaged multiple times over 4 weeks after BM transplantation (BMT). Temporal changes in the BM microenvironment, such as the reconstitution of transplanted BM cells and the recovery of vasculature, were observed and analysed qualitatively and quantitatively. Longitudinal intravital microscopy using the mouse calvarial window model was successfully demonstrated and may be useful for further BM studies. PMID:28276477

  8. Inducible protective processes in animal systems: adaptive response to a low dose of methyl methanesulfonate in mouse bone marrow cells.

    PubMed

    Mahmood, R; Vasudev, V; Harish, S K; Guruprasad, K P

    1996-06-01

    To investigate the induction of adaptive response (inducible protective processes) in mitotic cells of Swiss albino mouse, a monofunctional alkylating agent methyl methanesulfonate (MMS) was employed. When the animals treated with a low dose of 50 mg/kg body weight were challenged with a subsequent high (challenging) dose of 150 mg/kg body weight, after different time lags (2,5,8 or 10 hr), the yield of chromosomal aberrations in bone marrow cells was found to be significantly reduced compared to the additive effects of both conditioning and challenging doses. It seems, therefore, that the low dose of MMS employed has made the cells less sensitive against further clastogenic effect of challenge dose of MMS. The data clearly suggest that the phenomenon of adaptive response to methylating agents can be encountered in in vivo mammalian cells. Furthermore, it is also observed that ethylating agent EMS is a poor inducer of adaptive response than its corresponding methylating agent MMS in the bone marrow cells of mouse.

  9. Characterization of xenogeneic mouse-to-rat bone marrow chimeras. I. Examination of hematologic and immunologic function

    SciTech Connect

    Wade, A.C.; Luckert, P.H.; Tazume, S.; Niedbalski, J.L.; Pollard, M.

    1987-07-01

    Eighteen xenogeneic chimeric rats (survival: greater than 100 days) were established by transplanting bone marrow cells from femurs of 10 gnotobiotic CFW mice into each germfree Sprague-Dawley or Wistar rat. The erythrocytes circulating in the rats were of mouse origin as determined by hemagglutination. Hemoglobin electrophoresis, radial immunodiffusion for IgG, and assay of granulocytic neutrophils for leukocyte alkaline phosphatase verified that true chimerism was achieved. The extent of hematological and immunological reconstitution varied. In general, hematocrit levels were low to normal, white blood cell counts and differentials were within normal limits, and serum protein levels were normal. Levels of circulating IgG of each species were comparable to those of germfree rat and mouse controls. Natural killer (NK) activity was depressed, a phenomenon that may be attributable to the radiation treatment of recipients, or to failure to transfer NK cells or precursors. Mitogenic stimulation reactions were varied, but most chimeric rats demonstrated moderately depressed responses. Reactions as a whole suggested that gnotobiotic rats with xenogeneic bone marrow are incompletely reconstituted, both hematologically and immunologically. No acute graft-versus-host reaction was seen.

  10. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow

    PubMed Central

    Lo Celso, Cristina; Lin, Charles P; Scadden, David T

    2011-01-01

    In vivo imaging of transplanted hematopoietic stem and progenitor cells (HSPCs) was developed to investigate the relationship between HSPCs and components of their microenvironment in the bone marrow. In particular, it allows a direct observation of the behavior of hematopoietic cells during the first few days after transplantation, when the critical events in homing and early engraftment are occurring. By directly imaging these events in living animals, this method permits a detailed assessment of functions previously evaluated by crude assessments of cell counts (homing) or after prolonged periods (engraftment). This protocol offers a new means of investigating the role of cell-intrinsic and cell-extrinsic molecular regulators of hematopoiesis during the early stages of transplantation, and it is the first to allow the study of cell-cell interactions within the bone marrow in three dimensions and in real time. In this paper, we describe how to isolate, label and inject HSPCs, as well as how to perform calvarium intravital microscopy and analyze the resulting images. A typical experiment can be performed and analyzed in ~1 week. PMID:21212779

  11. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow.

    PubMed

    Lo Celso, Cristina; Lin, Charles P; Scadden, David T

    2011-01-01

    In vivo imaging of transplanted hematopoietic stem and progenitor cells (HSPCs) was developed to investigate the relationship between HSPCs and components of their microenvironment in the bone marrow. In particular, it allows a direct observation of the behavior of hematopoietic cells during the first few days after transplantation, when the critical events in homing and early engraftment are occurring. By directly imaging these events in living animals, this method permits a detailed assessment of functions previously evaluated by crude assessments of cell counts (homing) or after prolonged periods (engraftment). This protocol offers a new means of investigating the role of cell-intrinsic and cell-extrinsic molecular regulators of hematopoiesis during the early stages of transplantation, and it is the first to allow the study of cell-cell interactions within the bone marrow in three dimensions and in real time. In this paper, we describe how to isolate, label and inject HSPCs, as well as how to perform calvarium intravital microscopy and analyze the resulting images. A typical experiment can be performed and analyzed in ∼1 week.

  12. Multiple hemopoietic lineages are found after stimulation of mouse bone marrow precursor cells with interleukin 3.

    PubMed Central

    Prystowsky, M. B.; Otten, G.; Naujokas, M. F.; Vardiman, J.; Ihle, J. N.; Goldwasser, E.; Fitch, F. W.

    1984-01-01

    When the murine T-lymphocyte clone L2 is stimulated with concanavalin A, it secretes at least two distinct factors that affect hemopoietic precursor cells, interleukin 3 (IL3) and granulocyte/macrophage colony-stimulating factor (GM-CSF). IL3 accounts for approximately 10% of the colony-stimulating activity in L2-cell-conditioned medium. The IL3 secreted by L2 cells is similar antigenically to the IL3 secreted by WEHI-3 cells. Like the IL3 from WEHI-3 cells, IL3 secreted by L2 cells does not bind to DEAE Sephacel and can be separated from the L2-cell GM-CSF, which does bind to DEAE. By assessment of the functional, morphologic, surface phenotypic, and cytochemical characteristics of bone marrow cells 6 days after stimulation with IL3 in liquid culture, four hemopoietic lineages were found, including macrophage, neutrophilic granulocyte, megakaryocyte, and basophil/mast cell. In addition, when bone marrow cells were stimulated with IL3 in semisolid medium, several types of colonies were found, including mixed colonies containing macrophage, megakaryocyte, and granulocyte lineages. Images Figure 2 Figure 4 Figure 1 PMID:6437231

  13. Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow

    PubMed Central

    Zheng, Junke; Lu, Zhigang; Kocabas, Fatih; Böttcher, Ralph T.; Costell, Mercedes; Kang, Xunlei; Liu, Xiaoye; DeBerardinis, Ralph J.; Wang, Qianming; Chen, Guo-Qiang

    2014-01-01

    How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we demonstrated that the deletion of the cytoskeleton-modulating protein profilin 1 (pfn1) in hematopoietic stem cell (HSCs) led to bone marrow failure, loss of quiescence, and mobilization and apoptosis of HSCs in vivo. A switch from glycolysis to mitochondrial respiration with increased reactive oxygen species (ROS) level was also observed in HSCs on pfn1 deletion. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that the metabolism is mechanistically linked to the cell cycle quiescence of stem cells. The actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Our study provided evidence that pfn1 at least partially acts through the axis of pfn1/Gα13/EGR1 to regulate stem cell retention and metabolism in the bone marrow. PMID:24385538

  14. Bone-marrow transplant - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Bone-marrow is a soft, fatty tissue found inside of ...

  15. Cerium oxide nanoparticles protect primary mouse bone marrow stromal cells from apoptosis induced by oxidative stress

    NASA Astrophysics Data System (ADS)

    Zhang, Qun; Ge, Kun; Duan, Jianlei; Chen, Shizhu; Zhang, Ran; Zhang, Cuimiao; Wang, Shuxiang; Zhang, Jinchao

    2014-11-01

    Cerium oxide nanoparticles (nanoceria) have been widely used in industries and biomedical fields due to its unique properties. Previous biodistribution studies of nanoceria in vivo have shown that they are accumulated in the bone of mice after intravenous administration, about 20 % of the total intake, however, the potential effect and the mechanism of nanoceria on bone metabolism are not well-understood. Our results showed that both 25 and 50 nm nanceria decreased the damage of cell viability induced by H2O2 in a dose-dependent manner. The apoptosis ratio of pre-incubated group with nanoceria was lower than the H2O2 group. The cellular uptake studies indicated that there was a dose-dependent accumulation of both two size nanoparticles in bone marrow stromal cells. Nanoceria could be uptaken by cells due to the synergistic effect of multiple endocytosis mechanisms, and then evenly distributed in the cytoplasm without entering the nucleus. Our results suggest that nanoceria could reduce intracellular ROS level induced by H2O2 in a dose-dependent manner, moreover, maintain the normal function of mitochondria, suggesting nanoceria may have potent applications for preventing or treating osteoporosis.

  16. ERR{alpha} regulates osteoblastic and adipogenic differentiation of mouse bone marrow mesenchymal stem cells

    SciTech Connect

    Rajalin, Ann-Marie; Pollock, Hanna; Aarnisalo, Piia

    2010-05-28

    The orphan nuclear receptor estrogen-related receptor-{alpha} (ERR{alpha}) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERR{alpha} in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERR{alpha} deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERR{alpha} deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERR{alpha} in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERR{alpha} deficient MSCs and enhanced upon ERR{alpha} overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERR{alpha}. Under adipogenic conditions, ERR{alpha} deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERR{alpha} in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERR{alpha} may play different roles in bone under different physiological conditions.

  17. Age-related BMAL1 change affects mouse bone marrow stromal cell proliferation and osteo-differentiation potential

    PubMed Central

    Chen, Yijia; Xu, Xiaomei; Tan, Zhen; Ye, Cui; Chen, Yangxi

    2012-01-01

    Introduction Aging people's bone regeneration potential is always impaired. Bone marrow stromal cells (MSCs) contain progenitors of osteoblasts. Donor age may affect MSCs’ proliferation and differentiation potential, but the genomic base is still unknown. Due to recent research's indication that a core circadian component, brain and muscle ARNT-like 1 protein (BMAL1), has a role in premature aging, we investigated the normal aging mechanism in mice with their MSCs and Bmal1 gene/protein level. Material and methods 1, 6 and 16 month old C57BL/6 mice were used and the bone marrow stromal cells were gained and cultured at early passage. Bmal1 gene and protein level were detected in these cells. Marrow stromal cells were also induced to differentiate to osteoblasts or adipocytes. Three groups of mice MSCs were compared on proliferation by flow cytometry, on cell senescence by SA-β-gal expression and after osteo-induction on osteogenic potential by the expression of osterix (Osx), alkaline phosphatase (ALP) and osteocalcin (OCN). Results Bmal1 gene and protein level as well as S-phase fraction of the cell cycle decreased in MSCs along with the aging process. At the same time, SA-β-gal+ levels increased, especially in the aged mice MSCs. When induced to be osteogenic, Osx gene expression and ALP activity declined in the mid-age and aged mice MSCs, while OCN protein secretion deteriorated in the aged mice MSCs. Conclusions These findings demonstrate that mouse MSCs changed with their proliferation and osteo-differentiation abilities at different aging stages, and that Bmal1 is related to the normal aging process in MSCs. PMID:22457671

  18. Comparative analyses of B cell populations in trout kidney and mouse bone marrow; establishing “B cell signatures”

    PubMed Central

    Zwollo, Patty; Mott, Katrina; Barr, Maggie

    2010-01-01

    This study aimed to identify the frequency and distribution of developing B cell populations in the kidney of the rainbow trout, using four molecular B cell markers that are highly conserved between species, including two transcription factors, Pax5 and EBF1, recombination activating gene RAG1, and the immunoglobulin heavy chain mu. Three distinct B cell stages were defined: early developing B cells (CLP, pro-B, and early pre-B cells), late developing B cell (late pre-B, immature B, and mature B cells), and IgM-secreting cells. Developmental stage-specific, combinatorial expression of Pax5, EBF1, RAG1 and immunoglobulin mu was determined in trout anterior kidney cells by flow cytometry. Trout staining patterns were compared to a well-defined primary immune tissue, mouse bone marrow, and using mouse surface markers B220 and CD43. A remarkable level of similarity was uncovered between the primary immune tissues of both species. Subsequent analysis of the entire trout kidney, divided into five contiguous segments K1-K5, revealed a complex pattern of early developing, late developing, and IgM-secreting B cells. Patterns in anterior kidney segment K1 were most similar to those of mouse bone marrow, while the most posterior part of the kidney, K5, had many IgM-secreting cells, but lacked early developing B cells. A potential second B lymphopoiesis site was uncovered in segment K4 of the kidney. The B cell patterns, or “B cell signatures” described here provide information on the relative abundance of distinct developing B cell populations in the trout kidney, and can be used in future studies on B cell development in other vertebrate species. PMID:20705088

  19. Comparative effects between bone marrow and mesenchymal stem cell transplantation in GDNF expression and motor function recovery in a motorneuron degenerative mouse model.

    PubMed

    Pastor, Diego; Viso-León, Mari Carmen; Jones, Jonathan; Jaramillo-Merchán, Jesus; Toledo-Aral, Juan José; Moraleda, Jose M; Martínez, Salvador

    2012-06-01

    Motorneuron degenerative diseases, such as amyotrophic lateral sclerosis (ALS), are characterized by the progressive and rapid loss of motor neurons in the brain and spinal cord, leading to paralysis and death. GDNF (glial cell line derived neurotrophic factor) has been previously shown to be capable of protecting motor-neurons in ALS animal models although its delivery to the spinal cord after systemic administration is blocked by the blood brain barrier. Thus, it is necessary to develop new neurotrophic approaches to protect these motor neurons from death. Bone marrow-derived stem cells have been shown to be capable of improving a large variety of neurodegenerative disorders through neurotrophic mediated mechanisms. Here we analyzed the effect of transplanting whole bone marrow or cultured mesenchymal stem cells into the spinal cord of a motor neuron degenerative mouse model. Motor functions were analyzed using various behavior tests for several weeks after transplantation. We observed that bone marrow, and to a lesser degree mesenchymal stem cell, treated mice improved significantly in the motor tests performed, coinciding with a higher GDNF immunoreactivity in the grafted spinal cord. In several cases, the treated spinal cords were extracted, the engrafted bone marrow cells isolated and cultured, and finally re-transplanted into the spleen of immunodeficient mice. Re-grafted cells were detected in the host spleen, bloodstream and bone marrow, demonstrating a phenotypic stability. Thus, bone marrow cells do not suffer significant phenotypic modifications and is an efficient procedure to ameliorate motor-neuron degeneration, making it a possible therapeutic approach.

  20. Deflazacort increases osteoclast formation in mouse bone marrow culture and the ratio of RANKL/OPG mRNA expression in marrow stromal cells.

    PubMed Central

    Chung, H.; Kang, Y. S.; Hwang, C. S.; Moon, I. K.; Yim, C. H.; Choi, K. H.; Han, K. O.; Jang, H. C.; Yoon, H. K.; Han, I. K.

    2001-01-01

    Information on precise effects of deflazacort on bone cell function, especially osteoclasts, is quite limited. Therefore, the present study was undertaken to test effects of deflazacort on osteoclast-like cell formation in mouse bone marrow cultures and on the regulation of osteoprotegerin (OPG) and its ligand (RANKL) mRNA expressions by RT-PCR in the ST2 marrow stromal cells. TRAP-positive mononuclear cells increased after the treatment of deflazacort at 10(-9) to 10(-7) M alone for 6 days in a dose-dependent manner. Number of TRAP-positive multi-nucleated cells (MNCs) increased significantly with combined treatment of deflazacort at 10(-7) M and 1,25-(OH)2D3 at 10(-9) M compared to that of cultures treated with 1,25-(OH)2D3 alone (p<0.05). Exposure to deflazacort at 10(-7) M in the presence of 1,25-(OH)2D3 at 10(-9) M in the last 3-day culture had greater stimulatory effect on osteoclast-like cell formation than that of the first 3-day culture did. Deflazacort at 10(-10) -10(-6) M downregulated OPG and upregulated RANKL in mRNA levels in a dose-dependent manner. These observations suggest that deflazacort stimulate osteoclast precursor in the absence of 1,25-(OH)2D3 and enhance differentiation of osteoclasts in the presence of 1,25-(OH)2D3. These effects are, in part, thought to be mediated by the regulation of the expression of OPG and RANKL mRNA in marrow stromal cells. PMID:11748360

  1. Activation of the A3 Adenosine Receptor Suppresses Superoxide Production and Chemotaxis of Mouse Bone Marrow Neutrophils

    PubMed Central

    van der Hoeven, Dharini; Wan, Tina C.; Auchampach, John A.

    2008-01-01

    Adenosine is formed in injured/ischemic tissues where it suppresses the actions of essentially all cells of the immune system. Most of the anti-inflammatory actions of adenosine have been attributed to signaling through the Gs protein-coupled A2A adenosine receptor (AR). Here, we report that the A3AR is highly expressed in murine neutrophils isolated from bone marrow. Selective activation of the A3AR with CP-532,903 potently inhibited mouse bone marrow neutrophil superoxide generation and chemotaxis induced by various activating agents. The selectivity of CP-532,903 was confirmed in assays using neutrophils obtained from A2AAR and A3AR gene “knock-out” mice. In a model of thioglycollate-induced inflammation, treating mice with CP-532,903 inhibited recruitment of leukocytes into the peritoneum by specifically activating the A3AR. Collectively, our findings support the theory that the A3AR contributes to the anti-inflammatory actions of adenosine on neutrophils, and provide a potential mechanistic explanation for the efficacy of A3AR agonists in animal models of inflammation, i.e., inhibition of neutrophil-mediated tissue injury. PMID:18583455

  2. Clastogenic effect of extracts obtained from Crotalaria retusa L. and Crotalaria mucronata Desv. on mouse bone marrow cells.

    PubMed

    Ribeiro, L R; Silva, A R; Bautista, A R; Costa, S L; Sales, L A; Rios, A C; Salvadori, D M

    1993-08-01

    This work has evaluated the clastogenicity of six extracts (tea and aqueous extract of leaves, tea, aqueous and methanolic extracts of dried fruit, and tea of unripe fruit) obtained from Crotalaria retusa L. and three extracts (tea and methanolic extract of dried fruit, and tea of unripe fruit) obtained from Crotalaria mucronata Desv. The extracts were injected intraperitoneally into mice, and the animals were killed 24 h after treatment for preparation of bone marrow cells. The extracts obtained from fruits of Crotalaria retusa were found to cause a dose-dependent increase in the frequency of chromosomal aberrations in mice. On the other hand, no statistically significant increase in the frequency of aberrant cells was observed for the animals treated with leaf extracts obtained from Crotalaria retusa and with extracts from fruits of Crotalaria mucronata. The possibility that the pyrrolizidine alkaloid, monocrotaline, present in Crotalaria retusa exerts a clastogenic effect on mouse bone marrow cells is discussed. Our conclusion is based on studies using intraperitoneal treatments. Effects of oral exposure to extracts of Crotalaria retusa are unknown.

  3. Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies

    NASA Astrophysics Data System (ADS)

    Sun, Jianfei; Liu, Xuan; Huang, Jiqing; Song, Lina; Chen, Zihao; Liu, Haoyu; Li, Yan; Zhang, Yu; Gu, Ning

    2014-05-01

    Here we reported an interesting phenomenon that the field-induced assemblies of magnetic nanoparticles can promote the differentiation of primary mouse bone marrow cells into osteoblasts. The reason was thought to lie in the remnant magnetic interaction inside the assemblies which resulted from the magnetic field-directed assembly. Influence of the assemblies on the cells was realized by means of interface effect rather than the internalization effect. We fabricated a stripe-like assemblies array on the glass plate and cultured cells on this surface. We characterized the morphology of assemblies and measured the mechanic property as well as the magnetic property. The cellular differentiation was measured by staining and quantitative PCR. Finally, Fe uptake was excluded as the reason to cause the phenomenon.

  4. MicroRNA-1 effectively induces differentiation of myocardial cells from mouse bone marrow mesenchymal stem cells.

    PubMed

    Zhao, Xiao-Ling; Yang, Bo; Ma, Li-Na; Dong, Yan-Hua

    2016-11-01

    In this research, bone marrow mesenchymal stem cells (BMSCs) were isolated from mouse, and induced differentiation into myocardial cells in vitro after overexpression of miR-1a. The results showed that the BMSCs could induce differentiation into myocardial cells under the special condition medium, but when the miR-1a was over-expressed in BMSCs, the differentiation efficiency and induction time of myocardial cells from BMSCs could be promoted. This reason was demonstrated that Delta-like 1 (Dll-1) was a transcriptional repressor of myocardium gene expression during myocardium differentiation, miR-1a reduced Dll-1 levels, leading to the accumulation of myocardium gene mRNA and a dramatic increase in myocardium gene protein.

  5. Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies

    PubMed Central

    Sun, Jianfei; Liu, Xuan; Huang, Jiqing; Song, Lina; Chen, Zihao; Liu, Haoyu; Li, Yan; Zhang, Yu; Gu, Ning

    2014-01-01

    Here we reported an interesting phenomenon that the field-induced assemblies of magnetic nanoparticles can promote the differentiation of primary mouse bone marrow cells into osteoblasts. The reason was thought to lie in the remnant magnetic interaction inside the assemblies which resulted from the magnetic field-directed assembly. Influence of the assemblies on the cells was realized by means of interface effect rather than the internalization effect. We fabricated a stripe-like assemblies array on the glass plate and cultured cells on this surface. We characterized the morphology of assemblies and measured the mechanic property as well as the magnetic property. The cellular differentiation was measured by staining and quantitative PCR. Finally, Fe uptake was excluded as the reason to cause the phenomenon. PMID:24874764

  6. Isolation of a mouse bone marrow population enriched in stem and progenitor cells by centrifugation on a Percoll gradient.

    PubMed

    Rosca, Ana-Maria; Burlacu, Alexandrina

    2010-04-12

    Given the complex composition of bone marrow, a cell separation technique that results in populations enriched in progenitor cells is required for cellular differentiation and transplantation studies. In the present study, we designed a method that allows for the isolation of a progenitor-enriched population of bone marrow by exploiting the physical properties of these cells. Bone marrow aspirate was separated on a discontinuous Percoll gradient (ranging from 1.050 to 1.083 g/cm3) that resulted in the recovery of six cell fractions. The fractions were characterized by FACS and RT-PCR (reverse transcription-PCR) analyses and evaluated for their capacity to differentiate into haematopoietic and mesenchymal cells. Fraction IV, including cells with a density of 1.070-1.076 g/ml, contained 11.68% of total bone marrow cells and was enriched in c-kit+ and Sca-1+ (stem cell antigen-1) progenitor cells as compared with total bone marrow. This fraction demonstrated an increase in clonogenic capacity under specific conditions as well as a potential to generate a mesenchymal stem cell culture in a shorter period than that using bone marrow aspirate. Furthermore, this fraction lacked differentiated cell types and contained cells positive for endothelial markers, which further increases its value in cellular transplant. In conclusion, a bone marrow subpopulation that is enriched in progenitor cells and may be valuable in cellular transplant therapy can be isolated by exploiting the physical properties of these cells.

  7. The effect of deletion of cyclooxygenase-2, prostaglandin receptor EP2, or EP4 in bone marrow cells on osteoclasts induced by mouse mammary cancer cell lines.

    PubMed

    Ono, Katsuhiro; Akatsu, Takuhiko; Kugai, Nobuo; Pilbeam, Carol C; Raisz, Lawrence G

    2003-11-01

    The inducible prostaglandin (PG) synthesis enzyme, cyclooxygenase-2 (COX-2), is involved in osteoclast (OC) formation in cocultures of mouse mammary cancer cell lines (MMT060562 or BALB/c-MC) and bone marrow cells through production of PGE(2). There are four PGE(2) receptors but only the EP2 and EP4 receptors are reported to be important for OC formation. We have investigated the role of COX-2, EP2 receptor, and EP4 receptor in marrow cells for osteoclastogenesis in cocultures of cancer cells and bone marrow cells. We cocultured cancer cell lines with bone marrow cells from COX-2 knockout (-/-), EP2 -/- or EP4 -/- mice compared to wild-type mice. In addition, an EP4 receptor antagonist (EP4 RA) was added in some cocultures. Disruption of COX-2 gene in bone marrow cells had no effect on PGE(2) production and OC formation in cocultures with MMT060562, while it abrogated PGE(2) production and OC formation in cocultures with BALB/c-MC. Disruption of the EP2 gene in bone marrow cells had no effect on OC formation in the cocultures, while disruption of the EP4 gene in bone marrow cells abrogated OC formation in the cocultures. Furthermore, EP4 RA suppressed OC formation and prevented the increase in receptor activator of nuclear factor kappaB ligand (RANKL) mRNA levels in the cocultures. We conclude that COX-2 in cancer cells is responsible for PGE(2) and OC production in cocultures with MMT060562, while COX-2 in bone marrow cells, not cancer cells, is responsible for PGE(2) and OC production in cocultures with BALB/c-MC, and EP4 receptors are essential for OC formation in both cocultures.

  8. Effect of Matrix Metallopeptidase 13 on the Function of Mouse Bone Marrow-derived Dendritic Cells

    PubMed Central

    Li, Xiao-Dong; Zhang, Xin-Rui; Li, Zhi-Hao; Yang, Yang; Zhang, Duo; Zheng, Heng; Dong, Shu-Ying; Chen, Juan; Zeng, Xian-Dong

    2017-01-01

    Background: Dendritic cells are professional antigen-presenting cells found in an immature state in epithelia and interstitial space, where they capture antigens such as pathogens or damaged tissue. Matrix metallopeptidase 13 (MMP-13), a member of the collagenase subfamily, is involved in many different cellular processes and is expressed in murine bone marrow-derived dendritic cells (DCs). The function of MMP-13 in DCs is not well understood. Here, we investigated the effect of MMP-13 on DC maturation, apoptosis, and phagocytosis. Methods: Bone marrow-derived dendritic cells were obtained from C57BL/6 mice. One short-interfering RNA specific for MMP-13 was used to transfect DCs. MMP-13-silenced DCs and control DCs were prepared, and apoptosis was measured using real-time polymerase chain reaction and Western blotting. MMP-13-silenced DCs and control DCs were analyzed for surface expression of CD80 and CD86 and phagocytosis capability using flow cytometry. Results: Compared to the control DCs, MMP-13-silenced DCs increased expression of anti-apoptosis-related genes, BAG1 (control group vs. MMP-13-silenced group: 4.08 ± 0.60 vs. 6.11 ± 0.87, P = 0.008), BCL-2 (control group vs. MMP-13-silenced group: 7.54 ± 0.76 vs. 9.54 ± 1.29, P = 0.036), and TP73 (control group vs. MMP-13-silenced group: 4.33 ± 0.29 vs. 5.60 ± 0.32, P = 0.001) and decreased apoptosis-related genes, CASP1 (control group vs. MMP-13-silenced group: 3.79 ± 0.67 vs. 2.54 ± 0.39, P = 0.019), LTBR (control group vs. MMP-13-silenced group: 9.23 ± 1.25 vs. 6.24 ± 1.15, P = 0.012), and CASP4 (control group vs. MMP-13-silenced group: 2.07 ± 0.56 vs. 0.35 ± 0.35, P = 0.002). Protein levels confirmed the same expression pattern. MMP-13-silenced groups decreased expression of CD86 on DCs; however, there was no statistical difference in CD80 surface expression. Furthermore, MMP-13-silenced groups exhibited weaker phagocytosis capability. Conclusion: These results indicate that MMP-13 inhibition

  9. IL-32-induced Inflammatory Cytokines Are Selectively Suppressed by α1-antitrypsin in Mouse Bone Marrow Cells.

    PubMed

    Lee, Siyoung; Choi, Dong-Ki; Kwak, Areum; Kim, Sinae; Nguyen, Tam Thanh; Gil, Gaae; Kim, Eunhye; Yoo, Kwang Ha; Kim, In Ae; Lee, Youngmin; Jhun, Hyunjhung; Chan, Edward D; Bai, Xiyuan; Kim, Hyunwoo; Kim, Yong-Sung; Kim, Soohyun

    2017-04-01

    The induction of interleukin (IL)-32 in bone marrow (BM) inflammation is crucial in graft versus host disease (GvHD) that is a common side effect of allogeneic BM transplantation. Clinical trials on α-1 antitrypsin (AAT) in patients with GvHD are based on the preliminary human and mouse studies on AAT reducing the severity of GvHD. Proteinase 3 (PR3) is an IL-32-binding protein that was isolated from human urine. IL-32 primarily induces inflammatory cytokines in myeloid cells, probably due to PR3 expression on the membrane of the myeloid lineage cells. The inhibitory activity of AAT on serine proteinases may explain the anti-inflammatory effect of AAT on GvHD. However, the anti-inflammatory activity of AAT on BM cells remains unclear. Mouse BM cells were treated with IL-32γ and different inflammatory stimuli to investigate the anti-inflammatory activity of AAT. Recombinant AAT-Fc fusion protein inhibited IL-32γ-induced IL-6 expression in BM cells, but failed to suppress that induced by other stimuli. In addition, the binding of IL-32γ to PR3 was abrogated by AAT-Fc. The data suggest that the specific anti-inflammatory effect of AAT in mouse BM cells is due to the blocking of IL-32 binding to membrane PR3.

  10. Mouse host unlicensed NK cells promote donor allogeneic bone marrow engraftment.

    PubMed

    Alvarez, Maite; Sun, Kai; Murphy, William J

    2016-03-03

    Natural killer (NK) cells exist as subsets based on expression of inhibitory receptors that recognize major histocompatibility complex I (MHCI) molecules. NK cell subsets bearing MHCI binding receptors for self-MHCI have been termed as "licensed" and exhibit a higher ability to respond to stimuli. In the context of bone marrow transplantation (BMT), host licensed-NK (L-NK) cells have also been demonstrated to be responsible for the acute rejection of allogeneic and MHCI-deficient BM cells (BMCs) in mice after lethal irradiation. However, the role of recipient unlicensed-NK (U-NK) cells has not been well established with regard to allogeneic BMC resistance. After NK cell stimulation, the prior depletion of host L-NK cells resulted in a marked increase of donor engraftment compared with the untreated group. Surprisingly, this increased donor engraftment was reduced after total host NK cell depletion, indicating that U-NK cells can actually promote donor allogeneic BMC engraftment. Furthermore, direct coculture of U-NK cells with allogeneic but not syngeneic BMCs resulted in increased colony-forming unit cell growth in vitro, which was at least partially mediated by granulocyte macrophage colony-stimulating factor (GM-CSF) production. These data demonstrate that host NK cell subsets exert markedly different roles in allogeneic BMC engraftment where host L- and U-NK cells reject or promote donor allogeneic BMC engraftment, respectively.

  11. Genotoxicity of Casiopeina III-Ea in mouse bone marrow cells.

    PubMed

    Álvarez-Barrera, Lucila; Rodríguez-Mercado, Juan J; López-Chaparro, Michel; Altamirano-Lozano, Mario A

    2016-10-26

    Casiopeina III-Ea® (Cas III-Ea®) is a chelated copper complex with antineoplastic activity that is capable of reducing tumor size and inducing antiproliferative and apoptotic effects. However, little is known about its in vivo genotoxic effects. Therefore, this study evaluated two cytogenetic and two proliferative parameters 24 h after the administration of Casiopeina III-Ea® to male CD-1 mice. Three doses of Cas III-Ea® were administered by intraperitoneal injections of 1.69, 3.39 and 6.76 mg/kg (corresponding to 1/8, 1/4 and 1/2 of LD50, respectively). A reduction in the mitotic index (MI) and an increased numbers of cells with structural chromosomal aberrations (SCA) were detected. Additionally, a low but significant increase in the frequency of sister chromatid exchange (SCE) was observed at the highest dose. Changes in the DNA replication index (RI) were not observed. These results indicate that Casiopeina III-Ea® shows cytotoxic and clastogenic activity in bone marrow cells from treated mice.

  12. Hirudin and heparin enable efficient megakaryocyte differentiation of mouse bone marrow progenitors.

    PubMed

    Strassel, Catherine; Eckly, Anita; Léon, Catherine; Moog, Sylvie; Cazenave, Jean-Pierre; Gachet, Christian; Lanza, François

    2012-01-01

    Hematopoietic progenitors from murine fetal liver efficiently differentiate in culture into proplatelet-producing megakaryocytes and have proved valuable to study platelet biogenesis. In contrast, megakaryocyte maturation is far less efficient in cultured bone marrow progenitors, which hampers studies in adult animals. It is shown here that addition of hirudin to media containing thrombopoietin and serum yielded a proportion of proplatelet-forming megakaryocytes similar to that in fetal liver cultures (approximately 50%) with well developed extensions and increased the release of platelet particles in the media. The effect of hirudin was maximal at 100 U/ml, and was more pronounced when it was added in the early stages of differentiation. Hirugen, which targets the thrombin anion binding exosite I, and argatroban, a selective active site blocker, also promoted proplatelet formation albeit less efficiently than hirudin. Heparin, an indirect thrombin blocker, and OTR1500, a stable heparin-like synthetic glycosaminoglycan generated proplatelets at levels comparable to hirudin. Heparin with low affinity for antithrombin was equally as effective as standard heparin, which indicates antithrombin independent effects. Use of hirudin and heparin compounds should lead to improved culture conditions and facilitate studies of platelet biogenesis in adult mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The genotoxic and cytotoxic effects of nimesulide in the mouse bone marrow.

    PubMed

    Tripathi, Rina; Tripathi, Pankaj; Pancholi, Shyam S; Patel, Chhagan N

    2014-07-01

    Genotoxicity of nimesulide (NM) was evaluated by employing bone marrow (BM) chromosomal aberration (CA) and micronucleus assays in Swiss albino mice. For BM CA assay, mice of either sex were treated orally with 1.5, 2.5 and 5 mg body weight solution of NM in 0.2 mL of 0.05% CMC (carboxy methyl cellulose) daily for 4, 13, 28 and 40 weeks. Treatment induced dose-dependent and significantly depressed mitotic activity and increase in CAs per cell in the BM cells after 13 weeks of treatment at all dose levels. In micronucleus assay, male mice were treated orally with the same dose levels and sampling durations as for CA assay. Treatment increased the percentage of micronucleated polychromatic erythrocytes frequency and showed a statistically significant reduction in polychromatic erythrocyte/normochromatic erythrocyte ratio, as compared to control groups. Cyclophosphamide (40 mg/kg) was used as clastogen (positive control) and yielded the expected positive results. Cytotoxicity was observed in the 8-week recovery period after 40 weeks of dosing, but it was not significant. On the basis of these findings, it may be concluded that in the long term, NM, or its biotransformed product, is genotoxic and cytotoxic for BM cells of mice in vivo.

  14. Nonadherent culture method downregulates stem cell antigen-1 expression in mouse bone marrow mesenchymal stem cells

    PubMed Central

    DENG, BAOPING; DENG, WEIPING; XIAO, PINGNAN; ZENG, KUAN; ZHANG, SHINING; ZHANG, HONGWU; DENG, DAVID YB; YANG, YANQI

    2015-01-01

    Mesenchymal stem cells (MSCs) are primarily isolated by their adherence to plastic and their in vitro growth characteristics. Expansion of these cells from an adherent culture is the only method to obtain a sufficient number of cells for use in clinical practice and research. However, little is known with regard to the effect of adherence to plastic on the phenotype of the cells. In the present study, bone marrow CD45−CD31−CD44− stem cell antigen (Sca)-1+ MSCs were sorted by flow cytometry and expanded in adherent cultures. The expression levels of the adhesion molecule, Sca-1, in the adherent cultures were compared with those from nonadherent cultures at different time points. The flow cytometry results indicated that the expression levels of Sca-1 decreased in the MSCs in the nonadherent cultures grown in ultra-low-adherent plates. Furthermore, the result was confirmed by quantitative polymerase chain reaction at the same time points. Therefore, the results demonstrated that the loss of plastic adherence downregulated the expression of Sca-1. The observations may provide novel insights into the molecular mechanisms underlying plastic adherent culture. PMID:26170908

  15. Noncanonical Wnt5a-Ca(2+) -NFAT signaling axis in pesticide induced bone marrow aplasia mouse model: A study to explore the novel mechanism of pesticide toxicity.

    PubMed

    Chattopadhyay, Sukalpa; Chatterjee, Ritam; Law, Sujata

    2016-10-01

    According to case-control studies, long-term pesticide exposure can cause bone marrow aplasia like hematopoietic degenerative disease leading to impaired hematopoiesis and increased risk of aplastic anemia in human subjects. However, the exact mechanism of pesticide mediated hematotoxicity still remains elusive. In this study, we investigated the role of noncanonical Wnt signaling pathway, a crucial regulator of adult hematopoiesis, in pesticide induced bone marrow aplasia mouse model. Aplasia mouse model was developed following inhalation and dermal exposure of 5% aqueous mixture of common agriculturally used pesticides for 6 h/day for 5 days a week up to 90 days. After that, blood hemogram, marrow smear, cellularity, scanning electron microscopy, extramedullary hematopoiesis and flowcytometric expression analysis of noncanonical Wnt signaling components, such as Wnt 5a, fzd5, NFAT, IFN-γ, intracellular Ca(2+) level were evaluated in the bone marrow hematopoietic stem/progenitor compartment of the control and pesticide induced aplasia groups of animals. Results showed that pesticide exposed mice were anemic with peripheral blood pancytopenia, hypocellular degenerative marrow, and extramedullary hematopoiesis in the spleen. Upon pesticide exposure, Wnt 5a expression was severely downregulated with a decline in intracellular Ca(2+) level. Moreover, downstream of Wnt5a, we observed sharp downregulation of NFATc2 transcription factor expression, the major target of pesticide toxicity and its target molecule IFN-γ. Taken together, our result suggests that deregulation of Wnt5a-Ca(2+) -NFAT signaling axis in the hematopoietic stem/progenitor compartment plays a crucial role behind the pathogenesis of pesticide mediated bone marrow aplasia by limiting primitive hematopoietic stem cells' ability to maintain hematopoietic homeostasis and reconstitution mechanism in vivo during xenobiotic stress leading to ineffective hematopoiesis and evolution of bone marrow aplasia.

  16. Bone marrow micronucleus assay: a review of the mouse stocks used and their published mean spontaneous micronucleus frequencies.

    PubMed

    Salamone, M F; Mavournin, K H

    1994-01-01

    We have examined published negative control data from 581 papers on micronucleated bone marrow polychromatic erythrocytes (mnPCE) for differences in mean frequency and the frequency distribution profile among the mouse stocks used with the bone marrow micronucleus assay. For the 55 mouse stocks with published micronucleus assay data, the overall mean frequency is 1.95 mnPCE/1,000 PCE (1.95 mnPCE/1,000); for the 13 stocks most commonly used in the assay, it is 1.88 mnPCE/1,000. During the last 5 years, the mnPCE rate for these 13 major stocks has been 1.74 mnPCE/1,000. This current mean frequency is a substantial decrease from the mean of 3.07 mnPCE/1,000 observed for these 13 stocks for data published prior to 1981. Of the major stocks, the highest mean mnPCE negative control frequencies were observed for MS/Ae > BALB/c > C57Bl/6, and the lowest for CD-1 < Swiss Webster. We note that hybrid mouse stocks appear to have lower and less variable negative control frequencies than either of their parent strains and that the negative control frequency for some progeny stocks have diverged significantly from that of the parent stocks. Overall mean negative control frequencies appear to be correlated with breadth of the frequency distribution profile of published mean negative control values. Furthermore, a possible correlation between negative control frequency in the micronucleus assay and sensitivity to clastogens of different mouse strains may be indicated. The databases generated here allow us to define a range of norms for both the historical mean frequency and individual experimental mean frequencies for most stocks, but in particular, for the more commonly used mouse stocks. Our analysis, for the most part, bears out the recommendation of the first Gene-Tox Report on the micronucleus assay that the historical negative control frequency for a mouse stock should fall between 1 and 3 mnPCE/1,000. Eighty-six percent of the most commonly used mouse stocks have historical

  17. Diabetes impairs mobilization of mouse bone marrow-derived Lin(-)/VEGF-R2(+) progenitor cells.

    PubMed

    Barthelmes, D; Irhimeh, M R; Gillies, M C; Karimipour, M; Zhou, M; Zhu, L; Shen, W Y

    2013-10-01

    Endothelial progenitor cells circulating in the peripheral blood (PB) contribute to vascular repair. This study aimed to evaluate the potential of a 'cocktail' consisting of erythropoietin, granulocyte colony-stimulating factor and tetrahydrobiopterin to mobilize hematopoietic lineage negative/vascular endothelial growth factor receptor 2 positive (Lin(-)/VEGF-R2(+)) cells from the bone marrow (BM) to PB in non-diabetic and diabetic mice. Diabetes was induced in mice by intraperitoneal injection of streptozotocin. Diabetic mice were studied after 16weeks of hyperglycemia. Half the mice in each group (non-diabetic and diabetic) received daily intraperitoneal injections of the cocktail for 6 consecutive days while the other half received vehicle buffer. Mobilization of Lin(-)/VEGF-R2(+) cells, which were expanded in MCP301 medium, was evaluated after isolating them from BM and PB and their phenotypic and morphological properties were studied. We found that 16weeks of diabetes affected neither the total number of BM mononucleated cells nor the number of Lin(-)/VEGF-R2(+) cells in BM compared with non-diabetic controls. In non-diabetic mice, cocktail treatment resulted in a significant decrease in BM Lin(-)/VEGF-R2(+) cells, paralleled by a significant increase of these cells in PB. Such changes in the number of Lin(-)/VEGF-R2(+) cells in BM and PB after the cocktail treatment were less marked in diabetic mice. In vitro studies of BM Lin(-)/VEGF-R2(+) cells from diabetic and non-diabetic mice did not reveal any differences in either phenotypes or colony forming potential. These findings indicate that diabetes impairs the mobilization of Lin(-)/VEGF-R2(+) cells from BM to PB. Impaired mobilization of BM Lin(-)/VEGF-R2(+) cells soon after the onset of diabetes may contribute to complications such as diabetic retinopathy.

  18. Characterization of thrombopoietin (TPO)-responsive progenitor cells in adult mouse bone marrow with in vivo megakaryocyte and erythroid potential.

    PubMed

    Ng, Ashley P; Kauppi, Maria; Metcalf, Donald; Di Rago, Ladina; Hyland, Craig D; Alexander, Warren S

    2012-02-14

    Hematopoietic progenitor cells are the progeny of hematopoietic stem cells that coordinate the production of precise numbers of mature blood cells of diverse functional lineages. Identification of cell-surface antigen expression associated with hematopoietic lineage restriction has allowed prospective isolation of progenitor cells with defined hematopoietic potential. To clarify further the cellular origins of megakaryocyte commitment, we assessed the in vitro and in vivo megakaryocyte and platelet potential of defined progenitor populations in the adult mouse bone marrow. We show that megakaryocytes arise from CD150(+) bipotential progenitors that display both platelet- and erythrocyte-producing potential in vivo and that can develop from the Flt3(-) fraction of the pregranulocyte-macrophage population. We define a bipotential erythroid-megakaryocyte progenitor population, the CD150(+)CD9(lo)endoglin(lo) fraction of Lin(-)cKit(+)IL7 receptor alpha(-)FcγRII/III(lo)Sca1(-) cells, which contains the bulk of the megakaryocyte colony-forming capacity of the bone marrow, including bipotential megakaryocyte-erythroid colony-forming capacity, and can generate both erythrocytes and platelets efficiently in vivo. This fraction is distinct from the CD150(+)CD9(hi)endoglin(lo) fraction, which contains bipotential precursors with characteristics of increased megakaryocytic maturation, and the CD150(+)CD9(lo)endoglin(hi) fraction, which contains erythroid lineage-committed cells. Finally, we demonstrate that bipotential erythroid-megakaryocyte progenitor and CD150(+)CD9(hi)endoglin(lo) cells are TPO-responsive and that the latter population specifically expands in the recovery from thrombocytopenia induced by anti-platelet serum.

  19. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments

    PubMed Central

    Achyut, B. R.; Shankar, Adarsh; Iskander, A. S. M.; Ara, Roxan; Knight, Robert A.; Scicli, Alfonso G.; Arbab, Ali S.

    2016-01-01

    ABSTRACT Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 106 GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer. PMID:26797476

  20. Intra-bone marrow-bone marrow transplantation slows disease progression and prolongs survival in G93A mutant SOD1 transgenic mice, an animal model mouse for amyotrophic lateral sclerosis.

    PubMed

    Ohnishi, Shizuo; Ito, Hidefumi; Suzuki, Yasuhiro; Adachi, Yasushi; Wate, Reika; Zhang, Jianhua; Nakano, Satoshi; Kusaka, Hirofumi; Ikehara, Susumu

    2009-11-03

    It has been reported that bone marrow transplantation (BMT) has clinical effects on not only hematopoietic diseases and autoimmune diseases but also solid malignant tumors and metabolic diseases. We have found that intra-bone marrow-bone marrow transplantation (IBM-BMT) is superior to conventional intravenous BMT, since IBM-BMT enables rapid recovery of donor hematopoiesis and reduces the extent of graft-versus-host disease (GVHD). In this experiment, we examined the effects of IBM-BMT on symptomatic G93A mutant SOD1 transgenic mice (mSOD1 Tg mice), a model mouse line for amyotrophic lateral sclerosis (ALS). Symptomatic mSOD1 Tg mice (12 weeks old) were irradiated with 6Gyx2 at a 4-hour interval, one day before IBM-BMT. The mice were transplanted with bone marrow cells (BMCs) from 12-wk-old eGFP-transgenic C57BL/6 mice (eGFP Tg mice) or BMCs from 12-wk-old mSOD1 Tg mice. The ALS model mice transplanted with BMCs from eGFP Tg mice showed longer survival and slower disease progression than those transplanted with BMCs from mSOD1 Tg mice or untreated mSOD1 Tg mice. There was a significantly high number of eGFP(+) cells in the anterior horn of the spinal cord of the mSOD1 Tg mice transplanted with BMCs of eGFP Tg mice, some of which expressed Iba-1, a marker of microglia, although they did not differentiate into neural cells. These results suggest that the replacement with normal hematopoietic cells improved the neural cell environment, thereby slowing the progression of the disease.

  1. Genetic toxicity evaluation of iodotrifluoromethane (Cf{sub 3}I). Volume 2. Results of in vivo mouse bone marrow erythrocyte micronucleus testing. Final report, March-December 1994

    SciTech Connect

    Mitchell, A.D.

    1995-01-01

    Under subcontract to ManTech Environmental Technology, Incorporated, Genesys Research, Incorporated, examined the potential of odotrifluoromethane (CF3I) to induce structural chromosomes aberrations in erythropoietic cells of the bone marrow. Genesys used the mouse micronucleus test which measures the clastogenic (chromosomes breaking) action of chemicals by the induction of micronuclei in bone marrow cells, as observed in erythrocytes from the peripheral blood of male and female mice obtained approximately 24 hours after steady-state dosing. Based on preliminary toxicity information obtained by ManTech, a mouse bone marrow micronucleus test of CF3I was conducted using 2.6, 5.0, and 7.5% CF3I administered to male and female Swiss Webster mice by inhalation for six hours on each of three consecutive days. Bone marrow cells were obtained from the mice sacrificed 24 hours after the third exposure. Erythrocytes from mice exposed to the test material, and to the negative and positive controls, were evaluated for toxicity and the presence of micronuclei. The positive control, 0.4 mg triethylenemelamine (TEM)/kg (administered intraperitonealy) significantly (pmous` bone marrow micronucleus test and clastogenic in vivo.

  2. [Characterization of bone marrow mesenchymal stem cells.

    PubMed

    Mizoguchi, Toshihide

    Bones support the body as part of the human musculoskeletal system. They also contain bone marrow, which is a site of hematopoiesis. Bone marrow mesenchymal stem cells play a vital role by regulating skeletal tissue formation and maintaining hematopoiesis. While the presence of bone marrow-derived mesenchymal stem cells has been indicated, they have yet to be fully understood in vivo. Recent studies using genetic mouse models revealed that perivascular stromal cells function as mesenchymal stem cells, and their differentiation status may vary during the early stage of life to adulthood. Furthermore, studies have investigated the underlying mechanisms that regulate the cell fate decision of mesenchymal stem cells. These findings could lead to the design of new therapeutic approaches for metabolic bone disease and hematopoietic disease.

  3. [Calcitonin gene-related peptide-induced osteogenic differentiation of mouse bone marrow stromal cells through Hippo pathway in vitro].

    PubMed

    Fei, Wang; Huiyu, Zhang; Yuxin, Dou; Shiting, Li; Gang, Zhang; Yinghui, Tan

    2016-06-01

    Previous studies have clarified that calcitonin gene-related peptide (CGRP) can promote the biologi- cal activity of osteoblasts. To further reveal the role of CGRP in bone repair, we studied its influence on osteogenic differentia- tion of mouse bone marrow stromal cells (BMSCs) and initially explored the effect of the Hippo signaling pathway with this process. BMSCs were induced to osteogenic differentiate osteoblasts by different concentrations of CGRP for a screening of the optimal concentration. CGRP was added in BMSCs, then the activity of alkaline phosphatase (ALP) and the number of mineralized nodules were examined by specific ALP kits after 48 hours and alizarin red staining fluid after 7 days, respectively. The protein expression of p-Mst1/2 was measured by Western blot. Verteporfin was used to block the downstream Yap signaling. The mRNA expression of collagen type I (Col I) and runt-related transcription factor 2 (Runx2) were detected by reverse transcription-polymerase chain reaction. Compared to the blank group, different concentrations of CGRP (10⁻⁹, 10⁻⁸, 10⁻⁷ mol · L⁻¹), especially 10⁻⁸ mol · L⁻¹, significantly increased the ALP activity of BMSCs (P < 0.05). Alizarin red staining also showed more mineralized nodules in 10⁻⁸ mol · L⁻¹ group. The expression of p-Mst1/2 increased in the CGRP group (P < 0.05). Verteporfin treatment effectively decreased the mRNA expression of Runx2 and Col I (P < 0.05). The Hippo signaling pathway plays a role in CGRP-induced osteogenic differentiation in mouse BMSCs.

  4. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential.

  5. Early B-lymphocyte precursor cells in mouse bone marrow: Subosteal localization of B220+ cells during postirradiation regeneration

    SciTech Connect

    Jacobsen, K.; Tepper, J.; Osmond, D.G. )

    1990-05-01

    The localization of early B-lymphocyte precursor cells in the bone marrow of young mice has been studied during recovery from sublethal whole body gamma-irradiation (150 rad). Initial studies by double immunofluorescence labeling of the B-lineage-associated cell surface glycoprotein, B220, and of mu heavy chains in bone marrow cell suspensions, demonstrated a sequential wave of regeneration of early B precursor cells, pre-B cells, and B cells. Early B precursor cells expressing B220 but not mu chains were enriched at 1-3 days following irradiation. After in vivo administration of 125I-labeled monoclonal antibody 14.8 to detect B220+ cells in situ, light and electron microscope radioautography of femoral bone marrow sections revealed concentrations of labeled B220+ cells located peripherally near the cortical bone at 1-3 days following irradiation, increasing in numbers in more central areas by 5-7 days. Proliferative B220+ precursor cells were found within layers of bone-lining cells and in a subosteal area characterized by a prominent electron-dense extracellular matrix, often associated with stromal reticular cells. The results demonstrate that the precursor cells that are active in the bone marrow early in the recovery of B lymphopoiesis after gamma-irradiation are located both within and near the endosteum of the surrounding bone. The distinctive extracellular matrix and stromal cell associations noted in this region may contribute to a supportive local microenvironment for early hemopoietic progenitor cells.

  6. Age-Related Modulation of the Effects of Obesity on Gene Expression Profiles of Mouse Bone Marrow and Epididymal Adipocytes

    PubMed Central

    Liu, Li-Fen; Shen, Wen-Jun; Ueno, Masami; Patel, Shailja; Azhar, Salman; Kraemer, Fredric B.

    2013-01-01

    This study aimed to characterize and compare the effects of obesity on gene expression profiles in two distinct adipose depots, epididymal and bone marrow, at two different ages in mice. Alterations in gene expression were analyzed in adipocytes isolated from diet-induced obese (DIO) C57BL/6J male mice at 6 and 14 months of age and from leptin deficient mice (ob/ob) at 6 months of age using microarrays. DIO affected gene expression in both depots at 6 and 14 months, but more genes were altered in epididymal than bone marrow adipocytes at each age and younger mice displayed more changes than older animals. In epididymal adipocytes a total of 2789 (9.6%) genes were differentially expressed at 6-months with DIO, whereas 952 (3.3%) were affected at 14-months. In bone marrow adipocytes, 347 (1.2%) genes were differentially expressed at 6-months with DIO, whereas only 189 (0.66%) were changed at 14-months. 133 genes were altered by DIO in both fat depots at 6-months, and 37 genes at 14-months. Only four genes were altered in both depots at both ages with DIO. Bone marrow adipocytes are less responsive to DIO than epididymal adipocytes and the response of both depots to DIO declines with age. This loss of responsiveness with age is likely due to age-associated changes in expression of genes related to adipogenesis, inflammation and mitochondrial function that are similar to and obscure the changes commonly associated with DIO. Patterns of gene expression were generally similar in epididymal adipocytes from ob/ob and DIO mice; however, several genes were differentially expressed in bone marrow adipocytes from ob/ob and DIO mice, perhaps reflecting the importance of leptin signaling for bone metabolism. In conclusion, obesity affects age-associated alterations in gene expression in both epididymal and bone marrow adipocytes regardless of diet or genetic background. PMID:23967297

  7. Age-related modulation of the effects of obesity on gene expression profiles of mouse bone marrow and epididymal adipocytes.

    PubMed

    Liu, Li-Fen; Shen, Wen-Jun; Ueno, Masami; Patel, Shailja; Azhar, Salman; Kraemer, Fredric B

    2013-01-01

    This study aimed to characterize and compare the effects of obesity on gene expression profiles in two distinct adipose depots, epididymal and bone marrow, at two different ages in mice. Alterations in gene expression were analyzed in adipocytes isolated from diet-induced obese (DIO) C57BL/6J male mice at 6 and 14 months of age and from leptin deficient mice (ob/ob) at 6 months of age using microarrays. DIO affected gene expression in both depots at 6 and 14 months, but more genes were altered in epididymal than bone marrow adipocytes at each age and younger mice displayed more changes than older animals. In epididymal adipocytes a total of 2789 (9.6%) genes were differentially expressed at 6-months with DIO, whereas 952 (3.3%) were affected at 14-months. In bone marrow adipocytes, 347 (1.2%) genes were differentially expressed at 6-months with DIO, whereas only 189 (0.66%) were changed at 14-months. 133 genes were altered by DIO in both fat depots at 6-months, and 37 genes at 14-months. Only four genes were altered in both depots at both ages with DIO. Bone marrow adipocytes are less responsive to DIO than epididymal adipocytes and the response of both depots to DIO declines with age. This loss of responsiveness with age is likely due to age-associated changes in expression of genes related to adipogenesis, inflammation and mitochondrial function that are similar to and obscure the changes commonly associated with DIO. Patterns of gene expression were generally similar in epididymal adipocytes from ob/ob and DIO mice; however, several genes were differentially expressed in bone marrow adipocytes from ob/ob and DIO mice, perhaps reflecting the importance of leptin signaling for bone metabolism. In conclusion, obesity affects age-associated alterations in gene expression in both epididymal and bone marrow adipocytes regardless of diet or genetic background.

  8. Bone and bone marrow involvement in sarcoidosis.

    PubMed

    Yachoui, Ralph; Parker, Brian J; Nguyen, Thanhcuong T

    2015-11-01

    Bone and bone marrow involvement in sarcoidosis have been infrequently reported. We aimed to describe the clinical features, radiological descriptions, pathological examinations, and outcomes of three patients with osseous sarcoidosis and one patient with bone marrow sarcoidosis seen at our institution. Our case series included fluorodeoxyglucose positron emission tomography descriptions in assessing the whole-body extent of sarcoidosis. In the era of advanced imaging, large bone and axial skeleton sarcoidosis lesions are more common than previously reported.

  9. Genetically modified bone marrow continuously supplies anti-inflammatory cells and suppresses renal injury in mouse Goodpasture syndrome.

    PubMed

    Yokoo, T; Ohashi, T; Utsunomiya, Y; Shen, J S; Hisada, Y; Eto, Y; Kawamura, T; Hosoya, T

    2001-07-01

    In chronic inflammation, macrophages and neutrophils, which are derived from bone marrow, play a pivotal role. Therefore, reconstitution of bone marrow with anti-inflammatory stem cells may modify inflammation. In this study, transplantation-based gene therapy was applied to glomerular inflammation for a long-lasting suppression of the glomerular damage seen in chronic nephritis. Bone marrow cells were harvested from male donor mice, which had received 5-fluorouracil 3 days previously, and transduced with an interleukin 1 (IL-1) receptor antagonist (IL-1Ra) or a mock gene using a retrovirus vector. After confirmation that transduced cells possessed the transgene at approximately 0.7 copies per cell and secreted recombinant IL-1Ra, these cells were infused into sublethally irradiated (6 Gy) female recipients once daily for 4 consecutive days. These female recipient mice had the male Y antigen in bone marrow, liver, and spleen, and 10% to 20% of their spleen cells possessed the transgene even 8 weeks after transplantation. Glomerulonephritis was then induced in these mice. Renal function and histology were retarded in the mice whose bone marrow was reconstituted with IL-1Ra-producing cells compared with mock transduced cells. In situ hybridization using a Y painting probe revealed that transplanted donor cells were recruited into the glomerulus upon induction of nephritis, suggesting therapeutic effects were channeled through the secretion of IL-1Ra from these cells. Furthermore, the survival rate after a second challenge with nephrotoxic antibody was significantly improved in the IL-1Ra chimera. These results suggest that reconstitution of bone marrow for continuous supply of anti-inflammatory cells may be a useful strategy for the treatment of chronic inflammation.

  10. Expression and methylation analysis of p15 and p16 in mouse bone marrow cells exposed to 1,4-benzoquinone.

    PubMed

    Tian, J-F; Peng, C-H; Yu, X-Y; Yang, X-J; Yan, Hong-Tao

    2012-07-01

    Benzene is an important industrial chemical. It is also an environmental pollutant recognized as a human carcinogen. Both prenatal and adult exposures to benzene are associated with the development of leukemia. To understand the mechanism of benzene-induced epigenetic variations, we investigated the expression and methylation patterns of CpG (phosphodiester bond between cytosine and guanine) islands in p15 and p16 promoter regions in 1,4-benzoquinone (1,4-BQ)-treated primary cultivated C57BL/6J mouse bone marrow cells in vitro. The cell toxicity of 1,4-BQ was evaluated by cell viability test, real-time PCR was used to measure the mRNA expression levels, and bisulfite sequencing PCR (BSP) was used to look into the methylation patterns. The cell viability test indicates that 1,4-BQ exhibited a dose-dependent toxicity to mouse bone marrow cells. After a 24-h exposure to 1,4-BQ at final concentrations of 0, 0.1, 1, and 10 μmol/L, the mRNA expression of p15 and p16 decreased with the increase in 1,4-BQ concentration. The BSP results gathered from the exposure and the control groups were the same. In summary, despite the observation that short-term exposure to 1,4-BQ primary cultivated mouse bone marrow cells decreased the p15 and p16 transcripts, with no influence by their gene promoter methylation.

  11. Resistance to infection with Eimeria vermiformis in mouse radiation chimeras is determined by donor bone-marrow cells

    SciTech Connect

    Joysey, H.S.; Wakelin, D.; Rose, M.E.

    1988-05-01

    The course of infection with Eimeria vermiformis was determined in BALB/b, BALB/c, and C57BL/10ScSn (B10) mice and in radiation chimeras prepared from the H-2-compatible BALB/b and B10 mice. The BALB strains, irrespective of H-2 haplotype, were resistant, the B10 mice were susceptible, and in the chimeras infection was characterized by the genotype of the donated bone-marrow cells and not by the phenotype of the recipient. Thus, the genetic control of relative resistance or susceptibility to infection with this parasite is expressed through bone-marrow-derived cells.

  12. Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease.

    PubMed

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Nishimaki, Kiyomi; Iuchi, Katsuya; Lee, Hyunjin; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Ueda, Masayuki; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-04-24

    Stem cell transplantation therapy is currently in clinical trials for the treatment of ischemic stroke, and several beneficial aspects have been reported. Similarly, in Alzheimer's disease (AD), stem cell therapy is expected to provide an efficient therapeutic approach. Indeed, the intracerebral transplantation of stem cells reduced amyloid-β (Aβ) deposition and rescued memory deficits in AD model mice. Here, we show that intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) improves cognitive function in two different AD mouse models, DAL and APP mice, and prevents neurodegeneration. GFP-positive BMMCs were isolated from tibiae and femurs of 4-week-old mice and then transplanted intravenously into DAL and APP mice. Transplantation of BMMCs suppressed neuronal loss and restored memory impairment of DAL mice to almost the same level as in wild-type mice. Transplantation of BMMCs to APP mice reduced Aβ deposition in the brain. APP mice treated with BMMCs performed significantly better on behavioral tests than vehicle-injected mice. Moreover, the effects were observed even with transplantation after the onset of cognitive impairment in DAL mice. Together, our results indicate that intravenous transplantation of BMMCs has preventive effects against the cognitive decline in AD model mice and suggest a potential therapeutic effect of BMMC transplantation therapy.

  13. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis.

    PubMed

    Wang, Dong; Li, Shi-Ping; Fu, Jin-Sheng; Bai, Lin; Guo, Li

    2016-04-01

    Experimental autoimmune encephalitis (EAE) is an inflammatory demyelinating disease, which served as a useful model providing considerable insights into the pathogenesis of multiple sclerosis (MS). Mouse bone marrow mesenchymal stem cells (mBM-MSC) were shown to have neuroprotection capabilities in EAE. Resveratrol is a small polyphenolic compound and possess therapeutic activity in various immune-mediated diseases. The sensitivity of mBM-MSCs to resveratrol was determined by an established cell-viability assay. Resveratrol-treated mBM-MSCs were also characterized with flow cytometry using MSC-specific surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by immunization with MOG35-55. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct T helper type 1 (Th1) and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). In vivo efficacy experiments showed that mBM-MSCs or resveratrol alone led to a significant reduction in clinical scores, and combined treatment resulted in even more prominent reduction. The combined treatment with mBM-MSCs and resveratrol enhanced the immunomodulatory effects, showing suppressed proinflammatory cytokines (IFN-γ, TNF-α) and increased anti-inflammatory cytokines (IL-4, IL-10). The combination of mBM-MSCs and resveratrol provides a novel potential experimental protocol for alleviating EAE symptoms.

  14. Modeling the development of the post-natal mouse thymus in the absence of bone marrow progenitors

    PubMed Central

    Zaharie, Daniela; Moleriu, Radu D.; Mic, Felix A.

    2016-01-01

    Many mathematical models have been published with the purpose of explaining aspects of T-cell development in the thymus. In this manuscript we adapted a four-compartment model of the thymus and used a range of mathematical approaches with the aim of explaining the dynamics of the four main thymocyte populations in the mouse thymus, from the emergence of the first fetal thymocyte until the death of the animal. At various pre-natal and post-natal stages we investigated experimentally the number and composition of thymocytes populations, their apoptosis and proliferation, along with data from literature, to create and validate the model. In our model the proliferation processes are characterized by decreasing proliferation rates, which allows us to model the natural involution of the thymus. The best results were obtained when different sets of parameters were used for the fetal and post-natal periods, suggesting that birth may induce a discontinuity in the modeled processes. Our model is able to model the development of both pre-natal and post-natal thymocyte populations. Also, our findings showed that the post-natal thymus is able to develop in the absence of the daily input of bone marrow progenitors, providing more evidence to support the autonomous development of the post-natal thymus. PMID:27824070

  15. Cell Fusion Reprogramming Leads to a Specific Hepatic Expression Pattern during Mouse Bone Marrow Derived Hepatocyte Formation In Vivo

    PubMed Central

    Arza, Elvira; Alvarez-Barrientos, Alberto; Fabregat, Isabel; Garcia-Bravo, Maria; Meza, Nestor W.; Segovia, Jose C.

    2012-01-01

    The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation. PMID:22457803

  16. Tissue inhibitor of matrix metalloproteinase-1 suppresses apoptosis of mouse bone marrow stromal cell line MBA-1.

    PubMed

    Guo, L-J; Luo, X-H; Xie, H; Zhou, H-D; Yuan, L-Q; Wang, M; Liao, E-Y

    2006-05-01

    We investigated the action of tissue inhibitor of metalloproteinase-1 (TIMP-1) on apoptosis and differentiation of mouse bone marrow stromal cell line MBA-1. TIMP-1 did not affect alkaline phosphatase (ALP) activity, suggesting that it is not involved in osteoblastic differentiation in MBA-1 cells. However, TIMP-1 inhibited MBA-1 apoptosis induced by serum deprivation in a dose-dependent manner. Our study also showed increased Bcl-2 protein expression and decreased Bax protein expression with TIMP-1 treatment. TIMP-1 decreased cytochrome c release and caspase-3 activation in MBA-1 cells. TIMP-1 activated phosphatidylinositol 3-kinase (PI3-kinase) and c-Jun N-terminal kinase (JNK), and the PI3-kinase inhibitor LY294002 or the JNK inhibitor SP600125 abolished its antiapoptotic activity. To investigate whether antiapoptotic action of TIMP-1 was mediated through its inhibition on MMP activities, we constructed mutant TIMP-1 by side-directed mutagenesis, which abolished the inhibitory activity of MMPs by deletion of Cys1 to Ala4. Wild-type TIMP-1 and mutant TIMP-1 expression plasmids were transfected in MBA-1 cells, and results showed that mutant TIMP-1 still protected the induced MBA-1 cell against apoptosis. These data suggest that TIMP-1 antiapoptotic actions are mediated via the PI3-kinase and JNK signaling pathways and independent of TIMP-1 inhibition of MMP activities.

  17. The Influence of Bone Marrow-Secreted IL-10 in a Mouse Model of Cerulein-Induced Pancreatic Fibrosis

    PubMed Central

    Lin, Wey-Ran; Lim, Siew-Na; Yen, Tzung-Hai; Alison, Malcolm R.

    2016-01-01

    This study aimed to understand the role of IL-10 secreted from bone marrow (BM) in a mouse model of pancreatic fibrosis. The severity of cerulein-induced inflammation, fibrosis, and the frequency of BM-derived myofibroblasts were evaluated in the pancreas of mice receiving either a wild-type (WT) BM or an IL-10 knockout (KO) BM transplantation. The area of collagen deposition increased significantly in the 3 weeks after cerulein cessation in mice with an IL-10 KO BM transplant (13.7 ± 0.6% and 18.4 ± 1.1%, p < 0.05), but no further increase was seen in WT BM recipients over this time. The percentage of BM-derived myofibroblasts also increased in the pancreas of the IL-10 KO BM recipients after cessation of cerulein (6.7 ± 1.1% and 11.9 ± 1.3%, p < 0.05), while this figure fell in WT BM recipients after cerulein withdrawal. Furthermore, macrophages were more numerous in the IL-10 KO BM recipients than the WT BM recipients after cerulein cessation (23.2 ± 2.3 versus 15.3 ± 1.7 per HPF, p < 0.05). In conclusion, the degree of fibrosis, inflammatory cell infiltration, and the number of BM-derived myofibroblasts were significantly different between IL-10 KO BM and WT BM transplanted mice, highlighting a likely role of IL-10 in pancreatitis. PMID:27314021

  18. Genotoxic evaluation of aspirin eugenol ester using the Ames test and the mouse bone marrow micronucleus assay.

    PubMed

    Li, Jianyong; Kong, Xiaojun; Li, Xiwang; Yang, Yajun; Zhang, Jiyu

    2013-12-01

    Aspirin eugenol ester (AEE) is a promising drug candidate for treatment of inflammation, pain and fever and prevention of cardiovascular diseases with less side effects and it is important to characterize its genotoxicity. In this study, the genotoxicity of AEE was assessed with two standard genotoxicity assays of the Salmonella typhimurium mutagenicity assay (Ames test) and the mouse bone marrow micronucleus assay. In the Ames test, Salmonella strains TA97, TA98, TA100, TA102 and TA1535 were treated with or without the metabolic activation with a S9 fraction from Acroclor-induced rat liver. The doses of AEE were 5 mg/plate, 2.5 mg/plate, 1.25 mg/plate, 0.625 mg/plate and 0.3125 mg/plate, respectively. In the above tested strains, mutagenicity with or without the S-9 mixture was not detected. In the mammalian erythrocyte micronucleus assay, fifty mice were divided into five groups evenly and the AEE dose at 5000 mg/kg, 2500 mg/kg and 1250 mg/kg and the cyclophosphamide dose at 40 mg/kg as a positive control, the 0.5% of CMC-Na as negative control were administered. The results showed that AEE did not induce any significant increase in micronucleated erythrocytes after 24 h (p<0.01). Our results suggested that AEE was non-genotoxic in vivo or in vitro.

  19. STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model

    PubMed Central

    Couronné, Lucile; Scourzic, Laurianne; Pilati, Camilla; Valle, Véronique Della; Duffourd, Yannis; Solary, Eric; Vainchenker, William; Merlio, Jean-Philippe; Beylot-Barry, Marie; Damm, Frederik; Stern, Marc-Henri; Gaulard, Philippe; Lamant, Laurence; Delabesse, Eric; Merle-Beral, Hélène; Nguyen-Khac, Florence; Fontenay, Michaëla; Tilly, Hervé; Bastard, Christian; Zucman-Rossi, Jessica; Bernard, Olivier A.; Mercher, Thomas

    2013-01-01

    STAT3 protein phosphorylation is a frequent event in various hematologic malignancies and solid tumors. Acquired STAT3 mutations have been recently identified in 40% of patients with T-cell large granular lymphocytic leukemia, a rare T-cell disorder. In this study, we investigated the mutational status of STAT3 in a large series of patients with lymphoid and myeloid diseases. STAT3 mutations were identified in 1.6% (4 of 258) of patients with T-cell neoplasms, in 2.5% (2 of 79) of patients with diffuse large B-cell lymphoma but in no other B-cell lymphoma patients (0 of 104) or patients with myeloid malignancies (0 of 96). Functional in vitro assays indicated that the STAT3Y640F mutation leads to a constitutive phosphorylation of the protein. STA21, a STAT3 small molecule inhibitor, inhibited the proliferation of two distinct STAT3 mutated cell lines. Using a mouse bone marrow transplantation assay, we observed that STAT3Y640F expression leads to the development of myeloproliferative neoplasms with expansion of either myeloid cells or megakaryocytes. Together, these data indicate that the STAT3Y640F mutation leads to constitutive activation of STAT3, induces malignant hematopoiesis in vivo, and may represent a novel therapeutic target in some lymphoid malignancies. PMID:23872306

  20. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

    PubMed Central

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca2+, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca2+ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca2+ uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  1. The Effect of EPO Gene Overexpression on Proliferation and Migration of Mouse Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Lin, Haihong; Luo, Xinping; Jin, Bo; Shi, Haiming; Gong, Hui

    2015-04-01

    The aim of this study is to investigate the effect of erythropoietin (EPO) gene overexpression on proliferation and migration of mouse bone marrow-derived mesenchymal stem cells (MSCs), and to determine the underlying signaling pathway. Mouse MSCs were cultured in vitro and EPO gene was transfected into the 6th generation of MSCs via lentivirus vector. The transfected cells were identified by flow cytometry and the EPO levels in supernatant were measured with ELISA. In addition, cell proliferation was assessed by CCK-8 assay and cell migration was evaluated by Transwell assay. The activation of Akt, ERK1/2, and p38MAPK signaling was detected by western blotting. The lentivirus vector containing EPO was successfully constructed and transfected into MSCs. No remarkable change was found in the cell surface markers after transfection while a significant increase of EPO level in supernatant was noticed in transfected MSCs compared to controls (P < 0.01). In addition, transfected MSCs showed a significantly enhanced proliferation (P < 0.01) as well as a notable increase in migration (P < 0.01) compared to controls. Furthermore, we also found that EPO modification enhanced the phosphorylation of PI3K/Akt and ERK signaling pathway, and suppressed the phosphorylation of p38MAPK without affecting the levels of total Akt, ERK1/2, and p38MAPK in MSCs. After transfection, MSCs secreted more EPO which enhanced the capability of proliferation and migration. Moreover, our results suggested that the enhanced proliferation and migration might be associated with activation of PI3K/Akt and ERK or inhibition of P38MAPK signaling pathway.

  2. Characteristics of three-dimensional prospectively isolated mouse bone marrow mesenchymal stem/stromal cell aggregates on nanoculture plates.

    PubMed

    Obara, Chizuka; Tomiyama, Ken-Ichi; Takizawa, Kazuya; Islam, Rafiqul; Yasuda, Takeshi; Gotoh, Takaya; Tajima, Katsushi

    2016-10-01

    Three-dimensional (3-D) aggregate culturing is useful for investigating the functional properties of mesenchymal stem/stromal cells (MSCs). For 3-D MSC analysis, however, pre-expansion of MSCs with two-dimensional (2-D) monolayer culturing must first be performed, which might abolish their endogenous properties. To avoid the need for 2-D expansion, we used prospectively isolated mouse bone marrow (BM)-MSCs and examined the differences in the biological properties of 2-D and 3-D MSC cultures. The BM-MSCs self-assembled into aggregates on nanoculture plates (NCP) that have nanoimprinted patterns with a low-cellular binding texture. The 3-D MSCs proliferated at the same rate as 2-D-cultured cells by only diffusion culture and secreted higher levels of pro-angiogenic factors such as vascular endothelial growth factor and hepatocyte growth factor (HGF). Conditioned medium from 3-D MSC cultures promoted more capillary formation than that of 2-D MSCs in an in vitro tube formation assay. Matrigel-implanted 3-D MSC aggregates tended to induce angiogenesis in host mice. The 3-D culturing on NCP induced alpha-fetoprotein (AFP) expression in MSCs without the application of AFP- or endodermal-inducible factors, possibly via an HGF-autocrine mechanism, and maintained their differentiation ability for adipocytes, osteocytes, and chondrocytes. Prospectively isolated mouse BM-MSCs expressed low/negative stemness-related genes including Oct3/4, Nanog, and Sox2, which were not enhanced by NCP-based 3-D culturing, suggesting that some of these cells differentiate into meso-endodermal layer cells. Culturing of prospectively isolated MSCs on NCP in 3-D allows the analysis of the biological properties of more closely endogenous BM-MSCs and might contribute to tissue engineering and repair.

  3. Zinc finger factor 521 enhances adipogenic differentiation of mouse multipotent cells and human bone marrow mesenchymal stem cells.

    PubMed

    Tseng, Kuo-Yun; Lin, Shankung

    2015-06-20

    Previously, we found that ZNF521 expression was up-regulated with advancing age in human bone marrow mesenchymal stem cells (bmMSCs). Here, we investigated the regulatory role of ZNF521 in the differentiation of mouse C3H10T1/2 cells and human bmMSCs. Our data show that ZNF521 overexpression repressed osteoblastic differentiation of C3H10T1/2 cells, accompanied by a decrease in Runx2 expression and an increase in PPARγ2 expression. In contrast, ZNF521 overexpression enhanced adipogenic differentiation of C3H10T1/2 cells, concomitant with increased expression of PPARγ2, aP2, adiponectin and C/EBPδ. Chromatin immunoprecipitation followed by quantitative PCR analyses and luciferase reporter assays suggested that ZNF521 overexpression enhances PPARγ2 expression at the transcriptional level. The enhancing effect of ZNF521 overexpression on the adipogenic differentiation of C3H10T1/2 cells was also observed ex vivo. Finally, similar to those noted in C3H10T1/2 cells, ZNF521 overexpression in human bmMSCs was found to promote adipogenic differentiation in vitro and ex vivo, but repressed osteoblastic differentiation in vitro. ZNF521 knockdown significantly repressed adipogenic differentiation in vitro and ex vivo, but promoted osteoblastic differentiation in vitro. We propose that ZNF521 can function as a repressor of osteoblastic differentiation of bmMSCs while promoting adipogenesis, and that elevated ZNF521 expression might play a role in the age-related bone loss.

  4. PPARα Is Essential for Microparticle-Induced Differentiation of Mouse Bone Marrow-Derived Endothelial Progenitor Cells and Angiogenesis

    PubMed Central

    Benameur, Tarek; Tual-Chalot, Simon; Andriantsitohaina, Ramaroson; Martínez, María Carmen

    2010-01-01

    Background Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs. Methodology/Principal Findings We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−/−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−/− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms. Conclusions/Significance Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization. PMID:20811625

  5. Context Matters: Distinct Disease Outcomes as a Result of Crebbp Hemizygosity in Different Mouse Bone Marrow Compartments

    PubMed Central

    Zhou, Ting; Perez, Stephanie N.; Cheng, Ziming; Kinney, Marsha C.; Lemieux, Madeleine E.; Scott, Linda M.; Rebel, Vivienne I.

    2016-01-01

    Perturbations in CREB binding protein (CREBBP) are associated with hematopoietic malignancies, including myelodysplastic syndrome (MDS). Mice hemizygous for Crebbp develop myelodysplasia with proliferative features, reminiscent of human MDS/myeloproliferative neoplasm-unclassifiable (MDS/MPN-U), and a proportion goes on to develop acute myeloid leukemia (AML). We have also shown that the Crebbp+/- non-hematopoietic bone marrow microenvironment induces excessive myeloproliferation of wild-type cells. We now report that transplantation of unfractionated Crebbp+/- bone marrow into wild-type recipients resulted in either early-onset AML or late-onset MDS and MDS/MPN-U. In contrast, purified Lin-Sca-1+c-Kit++ cells primarily gave rise to MDS with occasional transformation to AML. Furthermore, Crebbp+/- common myeloid progenitors and granulocyte/macrophage progenitors could trigger skewed myelopoiesis, myelodysplasia and late-onset AML. Surprisingly, the phenotypically abnormal cells were all of wild-type origin. MDS, MPN and AML can thus all be transferred from Crebbp+/- BM to wild-type hosts but fractionated bone marrow does not recapitulate the full disease spectrum of whole bone marrow, indicating that not only mutational status but also cellular context contribute to disease outcome. This has important consequences for structuring and interpreting future investigations into the underlying mechanisms of myeloid malignancies as well as for their treatment. PMID:27427906

  6. Transplanted bone marrow-derived circulating PDGFRα+ cells restore type VII collagen in recessive dystrophic epidermolysis bullosa mouse skin graft.

    PubMed

    Iinuma, Shin; Aikawa, Eriko; Tamai, Katsuto; Fujita, Ryo; Kikuchi, Yasushi; Chino, Takenao; Kikuta, Junichi; McGrath, John A; Uitto, Jouni; Ishii, Masaru; Iizuka, Hajime; Kaneda, Yasufumi

    2015-02-15

    Recessive dystrophic epidermolysis bullosa (RDEB) is an intractable genetic blistering skin disease in which the epithelial structure easily separates from the underlying dermis because of genetic loss of functional type VII collagen (Col7) in the cutaneous basement membrane zone. Recent studies have demonstrated that allogeneic bone marrow transplantation (BMT) ameliorates the skin blistering phenotype of RDEB patients by restoring Col7. However, the exact therapeutic mechanism of BMT in RDEB remains unclear. In this study, we investigated the roles of transplanted bone marrow-derived circulating mesenchymal cells in RDEB (Col7-null) mice. In wild-type mice with prior GFP-BMT after lethal irradiation, lineage-negative/GFP-positive (Lin(-)/GFP(+)) cells, including platelet-derived growth factor receptor α-positive (PDGFRα(+)) mesenchymal cells, specifically migrated to skin grafts from RDEB mice and expressed Col7. Vascular endothelial cells and follicular keratinocytes in the deep dermis of the skin grafts expressed SDF-1α, and the bone marrow-derived PDGFRα(+) cells expressed CXCR4 on their surface. Systemic administration of the CXCR4 antagonist AMD3100 markedly decreased the migration of bone marrow-derived PDGFRα(+) cells into the skin graft, resulting in persistent epidermal detachment with massive necrosis and inflammation in the skin graft of RDEB mice; without AMD3100 administration, Col7 was significantly supplemented to ameliorate the pathogenic blistering phenotype. Collectively, these data suggest that the SDF1α/CXCR4 signaling axis induces transplanted bone marrow-derived circulating PDGFRα(+) mesenchymal cells to migrate and supply functional Col7 to regenerate RDEB skin.

  7. Mouse bone marrow-derived mast cells (BMMC) change their phenotype when cultured with fibroblasts

    SciTech Connect

    Levi-Schaffer, F.; Austen, K.F.; Stevens, R.L.

    1986-03-05

    The heparin-containing mast cells (HP-MC) that reside in the connective tissues of the mouse, but not the chondroitin sulfate containing mast cells in the gastrointestinal mucosa, stain with safranin when exposed to alcian blue/safranin. Mouse BMMC (the presumptive in vitro counterpart of the in vivo differentiated mucosal mast cell) were cultured for 2-14 days with confluent skin-derived 3T3 fibroblasts in RPMI-1640 containing 10% fetal calf serum and 50% WEHI-3 conditioned medium. Although the BMMC adhered to the fibroblast monolayer, they continued to divide, probably due to the presence of interleukin-3 in the conditioned medium. The mast cells remained viable throughout the period of co-culture, since they failed to release LDG and because they increased their histamine content per cell approx.15-fold. After 8-9 days of co-culture, >50% of the BMMC changed histochemically becoming safranin positive. At this time, 30-50% of the (/sup 35/S)glycosaminoglycans on the proteoglycans synthesized by these co-cultured mass cells were heparin, whereas the initial BMMC synthesized proteoglycans containing only chondroitin sulfate E. That interleukin 3-dependent mouse BMMC can be induced to undergo a phenotypic change so as to express characteristics of a HP-MC suggests that the tissue microenvironment determines the differentiated characteristics of these cells.

  8. Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model

    PubMed Central

    Park, Chan-Mi; Kim, Hye-Min; Kim, Dong Hyun; Han, Ho-Jin; Noh, Haneul; Jang, Jae-Hyuk; Park, Soo-Hyun; Chae, Han-Jung; Chae, Soo-Wan; Ryu, Eun Kyoung; Lee, Sangku; Liu, Kangdong; Liu, Haidan; Ahn, Jong-Seog; Kim, Young Ock; Kim, Bo-Yeon; Soung, Nak-Kyun

    2016-01-01

    Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-κB ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health. PMID:27927007

  9. Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model.

    PubMed

    Park, Chan-Mi; Kim, Hye-Min; Kim, Dong Hyun; Han, Ho-Jin; Noh, Haneul; Jang, Jae-Hyuk; Park, Soo-Hyun; Chae, Han-Jung; Chae, Soo-Wan; Ryu, Eun Kyoung; Lee, Sangku; Liu, Kangdong; Liu, Haidan; Ahn, Jong-Seog; Kim, Young Ock; Kim, Bo-Yeon; Soung, Nak-Kyun

    2016-12-01

    Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-κB ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health.

  10. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus.

    PubMed

    Roberts, Kimberly K; Hill, Terence E; Davis, Melissa N; Holbrook, Michael R; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.

  11. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus

    PubMed Central

    Roberts, Kimberly K.; Hill, Terence E.; Davis, Melissa N.; Holbrook, Michael R.

    2015-01-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection. PMID:25759029

  12. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test

    PubMed Central

    Borges, Flávio Fernandes Veloso; Bernardes, Aline; Perez, Caridad Noda; Silva, Daniela de Melo e

    2015-01-01

    Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenyl)prop-2-enoyl]phenyl} benzenesulfonamide (CPN) were assessed using the Salmonella typhimurium reverse mutation test (Ames test) and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05). The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p < 0.05), whereas in strain TA100 this occurred only at doses higher than 50 μg/plate (p < 0.05). The results of the micronucleus test indicated that CPN significantly increased the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect of this compound. Also, a significant decrease in polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was observed at the higher doses of CPN at 24 h and 48 h (p < 0.05), indicating its cytotoxic action. CPN co-administered with mitomycin C (MMC) significantly decreased the frequency of MNPCE at almost all doses tested at 24 h (p < 0.05), showing its antigenotoxic activity, and also presented a small decrease in MNPCE at 48 h (p > 0.05). Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties. PMID:26335560

  13. Reduction of doxorubicin-induced genotoxicity by Handroanthus impetiginosus in mouse bone marrow revealed by micronucleus assay.

    PubMed

    Boriollo, M F G; Silva, T A; Rodrigues-Netto, M F; Silva, J J; Marques, M B; Dias, C T S; Höfling, J F; Resck, M C C; Oliveira, N M S

    2017-07-10

    Handroanthus impetiginosus has long been used in traditional medicine and various studies have determined the presence of bioactive chemical compounds and potential phytotherapeutics. In this study, the genotoxicity of the lyophilized tincture of H. impetiginosus bark (THI) was evaluated in mouse bone marrow using micronucleus assays. The interaction between THI and genotoxic effects induced by the chemotherapeutic agent, doxorubicin (DXR), was also analyzed. Experimental groups were evaluated 24 to 48 h after treatment with N-nitroso-N-ethylurea (NEU; 50 mg/kg), DXR (5 mg/kg), sodium chloride (NaCl; 150 mM), and THI (0.5-2 g/kg). Antigenotoxic assays were carried out using THI (0.5 g/kg) in combination with NEU or DXR. Analysis of the micronucleated polychromatic erythrocytes (MNPCEs) indicated no significant differences between treatment doses of THI (0.5-2 g/kg) and NaCl. Polychromatic erythrocyte (PCE) to normochromatic erythrocyte (NCE) ratios did not indicate any statistical differences between DXR and THI or NaCl, but there were differences between THI and NaCl. A significant reduction in MNPCEs and PCE/NCE ratios was observed when THI was administered in combination with DXR. This study suggested the absence of THI genotoxicity that was dose-, time-, and gender-independent and the presence of moderate systemic toxicity that was dose-independent, but time- and gender-dependent. The combination of THI and DXR also suggested antigenotoxic effects, indicating that THI reduced genotoxic effects induced by chemotherapeutic agents.

  14. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test.

    PubMed

    Silva, Carolina Ribeiro E; Borges, Flávio Fernandes Veloso; Bernardes, Aline; Perez, Caridad Noda; Silva, Daniela de Melo E; Chen-Chen, Lee

    2015-01-01

    Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenyl)prop-2-enoyl]phenyl} benzenesulfonamide (CPN) were assessed using the Salmonella typhimurium reverse mutation test (Ames test) and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05). The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p < 0.05), whereas in strain TA100 this occurred only at doses higher than 50 μg/plate (p < 0.05). The results of the micronucleus test indicated that CPN significantly increased the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect of this compound. Also, a significant decrease in polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was observed at the higher doses of CPN at 24 h and 48 h (p < 0.05), indicating its cytotoxic action. CPN co-administered with mitomycin C (MMC) significantly decreased the frequency of MNPCE at almost all doses tested at 24 h (p < 0.05), showing its antigenotoxic activity, and also presented a small decrease in MNPCE at 48 h (p > 0.05). Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties.

  15. Initial Binding and Recellularization of Decellularized Mouse Lung Scaffolds with Bone Marrow-Derived Mesenchymal Stromal Cells

    PubMed Central

    Daly, Amanda B.; Wallis, John M.; Borg, Zachary D.; Bonvillain, Ryan W.; Deng, Bin; Ballif, Bryan A.; Jaworski, Diane M.; Allen, Gilman B.

    2012-01-01

    Recellularization of whole decellularized lung scaffolds provides a novel approach for generating functional lung tissue ex vivo for subsequent clinical transplantation. To explore the potential utility of stem and progenitor cells in this model, we investigated recellularization of decellularized whole mouse lungs after intratracheal inoculation of bone marrow-derived mesenchymal stromal cells (MSCs). The decellularized lungs maintained structural features of native lungs, including intact vasculature, ability to undergo ventilation, and an extracellular matrix (ECM) scaffold consisting primarily of collagens I and IV, laminin, and fibronectin. However, even in the absence of intact cells or nuclei, a number of cell-associated (non-ECM) proteins were detected using mass spectroscopy, western blots, and immunohistochemistry. MSCs initially homed and engrafted to regions enriched in types I and IV collagen, laminin, and fibronectin, and subsequently proliferated and migrated toward regions enriched in types I and IV collagen and laminin but not provisional matrix (fibronectin). MSCs cultured for up to 1 month in either basal MSC medium or in a small airways growth media (SAGM) localized in both parenchymal and airway regions and demonstrated several different morphologies. However, while MSCs cultured in basal medium increased in number, MSCs cultured in SAGM decreased in number over 1 month. Under both media conditions, the MSCs predominantly expressed genes consistent with mesenchymal and osteoblast phenotype. Despite a transient expression of the lung precursor TTF-1, no other airway or alveolar genes or vascular genes were expressed. These studies highlight the power of whole decellularized lung scaffolds to study functional recellularization with MSCs and other cells. PMID:21756220

  16. [Atrophy of the bone marrow].

    PubMed

    Dziecioł, J; Kemona, A; Sulik, M; Sulkowski, S; Brykalska, A; Sobaniec-Lotowska, M; Ostapiuk, H

    1990-01-01

    The authors made a quantitative analysis of the active hematopoietic tissue of the bone marrow with particular consideration of its atrophy in the course of various diseases. The material consisted of 407 non-selected autopsy cases. For a morphometric analysis the bone marrow was sampled from the sternum, ala ossis illi and spine. In the quantitative analysis of the active hematopoietic tissue we took into account age groups as quantitative changes appear with age. Atrophy of the bone marrow was in 19.4% of the studied cases. The presence of bone marrow atrophy was found in the course of various diseases, most frequently neoplastic, particularly in patients aged from 50 to 59 years.

  17. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... in determining treatment and prognosis) viral, bacterial, or fungal infections in the bone marrow that might be causing a lasting fever or other symptoms certain genetic diseases (such as lipid storage diseases) They also ...

  18. What Are Bone Marrow Tests?

    MedlinePlus

    ... for people with certain bleeding disorders such as hemophilia. Bone marrow tests can be done in a ... reading Anemia Aplastic Anemia Blood Tests Clinical Trials Hemophilia Thrombocythemia and Thrombocytosis Thrombocytopenia Rate This Content: Updated: ...

  19. Bone Marrow Diseases - Multiple Languages

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bone Marrow Diseases URL of this page: https://medlineplus.gov/languages/bonemarrowdiseases.html Other topics A-Z Expand Section ...

  20. ADAR1 is vital for B cell lineage development in the mouse bone marrow

    PubMed Central

    Marcu-Malina, Victoria; Goldberg, Sanja; Vax, Einav; Amariglio, Ninette

    2016-01-01

    Adenosine deaminase acting on RNA (ADAR) 1 is the master editor of the transcriptome, catalyzing the conversion of adenosine to inosine (A-to-I). RNA transcripts fold into a variety of secondary structures including long intramolecular RNA duplexes that are the major substrate of ADAR1. Most A-to-I editing sites occur within RNA duplexes formed by complementary pairing of inverted retrotransposable elements interspersed within noncoding regions of transcripts. This catalytic activity of ADAR1 most likely prevents the abnormal activation of cytosolic nucleic acid sensors by self-dsRNAs. Homozygous disruption of mouse Adar is embryonic lethal due to a toxic type-I interferons response and correspondingly biallelic missense mutations in human ADAR1 cause a severe congenital interferonopathy. Here, we report that Cd19-Cre-mediated Adar gene ablation in the mouse causes a significant defect in the final stages of B cell development with an almost complete absence of newly formed immature and CD23+ mature recirculating B cells in the BM. Adar ablation in pre-B cells induced upregulation of typical interferon-stimulated genes (ISGs) and apoptosis upon further maturation. ADAR1 deficiency also inhibited the in vitro, IL-7-mediated, differentiation of BM-derived B cell precursors. In summary, ADAR1 is required, non-redundantly, for normal B lymphopoiesis in the BM and peripheral maintenance. PMID:27494846

  1. DNA content determination of micronucleated polychromatic erythrocytes induced by clastogens and spindle poisons in mouse bone marrow and peripheral blood

    SciTech Connect

    Grawe, J.; Amneus, H. Uppsala Univ. ); Zetterberg, G. )

    1993-01-01

    The frequencies and DNA distributions of micronuclei in polychromatic erythrocytes from the bone marrow and peripheral blood of mice after four different treatments were determined by flow cytometry. Polychromatic erthrocytes were detected using the fluorescent RNA stain thiazole orange, while micronuclei were detected with the DNA stain Hoechst 33342. The treatments were X-irradiation (1 Gy), cyclophosphamide (30 mg/kg), vincristine sulfphate (0.08 mg/kg), and cochicine (1 mg/kg). All treatments showed increased frequencies of micronucleated polychromatic erythrocytes at 30h after treatment in the bone marrow (colchicine 50h) and at 50h in the peripheral blood. The clostogenic agents X-irradiation and cyclophosphamide and the spindle poisons vincristine sulphate and cochicine could be grouped according to the fluorescent characteristics of the induced micronuclei as well as the relative frequency of small (0.5-2% if the diploid G1 DNA content) and large (2-10%) micronuclei. In the peripheral blood the relative frequency of large micronuclei was lower than in the bone marrow, indicating that they were partly eliminated before entrance into the peripheral circulation. The nature of presumed micronuclei was verified by sorting. The potential of this approach to give information on the mechanism of induction of micronuclei is discussed.

  2. In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil

    PubMed Central

    Coronado-Cerda, Erika Evangelina; Franco-Molina, Moisés Armides; Mendoza-Gamboa, Edgar; Prado-García, Heriberto; Rivera-Morales, Lydia Guadalupe; Zapata-Benavides, Pablo; Rodríguez-Salazar, María del Carmen; Caballero-Hernandez, Diana; Tamez-Guerra, Reyes Silvestre; Rodríguez-Padilla, Cristina

    2016-01-01

    Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients. PMID:27191003

  3. In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil.

    PubMed

    Coronado-Cerda, Erika Evangelina; Franco-Molina, Moisés Armides; Mendoza-Gamboa, Edgar; Prado-García, Heriberto; Rivera-Morales, Lydia Guadalupe; Zapata-Benavides, Pablo; Rodríguez-Salazar, María Del Carmen; Caballero-Hernandez, Diana; Tamez-Guerra, Reyes Silvestre; Rodríguez-Padilla, Cristina

    2016-01-01

    Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients.

  4. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    PubMed Central

    2012-01-01

    Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life. PMID:22853637

  5. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells.

    PubMed

    Guruprasad, Kanive Parashiva; Subramanian, Advait; Singh, Vikram Jeet; Sharma, Raghavendra Sudheer Kumar; Gopinath, Puthiya Mundyat; Sewram, Vikash; Varier, Panniyampilly Madhavankutty; Satyamoorthy, Kapaettu

    2012-08-01

    Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life.

  6. Dissociation between dopaminergic response and motor behavior following intrastriatal, but not intravenous, transplant of bone marrow mononuclear stem cells in a mouse model of Parkinson's disease.

    PubMed

    Calice da Silva, Caroline; Azevedo, Bárbara Nunes; Machado, Denise Cantarelli; Zimmer, Eduardo R; Martins, Leo Anderson Meira; da Costa, Jaderson Costa

    2017-05-01

    Parkinson's disease is characterized by the progressive loss of dopaminergic neurons from the substantia nigra, a process that leads to a dopamine deficiency in the striatum. This deficiency is responsible for the development of motor symptoms, including resting tremor, bradykinesia, rigidity and postural instability. Based on the observation of substantial neuronal death, alternatives to Parkinson's disease treatment have been studied, including cell-based therapies. The present study aimed to assess the therapeutic potential of intravenous and intrastriatal transplant of bone marrow mononuclear cells in a mouse model of Parkinson's disease. Animals underwent stereotaxic surgery and received an injection of 6-hydroxydopamine into their medial forebrain bundle. Three weeks later, mice were injected with bone marrow mononuclear cells or saline through the caudal vein or directly into their right striatum. Motor function was assessed using the rotarod and apomorphine-induced rotation tests. Our results showed that intrastriatal bone marrow mononuclear cells, but not intravenous, have a short-term therapeutic effect on dopaminergic response in this mice model of parkinsonism assessed by the apomorphine-induced rotation test. This phenomenon was not identified on the rotarod test, showing dissociation between dopaminergic response and motor behavior. Further experiments are needed to elucidate the precise mechanisms involved in these effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Infection of mouse bone marrow-derived immature dendritic cells with classical swine fever virus C-strain promotes cells maturation and lymphocyte proliferation.

    PubMed

    Zheng, Fu-Ying; Qiu, Chang-Qing; Jia, Huai-Jie; Chen, Guo-Hua; Zeng, Shuang; He, Xiao-Bing; Fang, Yong-Xiang; Lin, Guo-Zhen; Jing, Zhi-Zhong

    2013-12-01

    In this study, the interactions of classical swine fever virus (CSFV) C-strain and the virulent GSLZ strain with mouse bone marrow-derived immature dendritic cells (BM-imDCs) were investigated for the first time. Both the C-strain and the virulent GSLZ strain could effectively infect and replicate in mouse BM-imDCs. C-strain-infected BM-imDCs showed a greatly enhanced degree of maturation, and could effectively promote the expansion and proliferation of allogeneic naive T cells. The C-strain induced a stronger Th1 response. Infection with the virulent GSLZ strain had no obvious influence on cell maturation or lymphocyte proliferation, and failed to induce any obvious immune response. The results of this study provided initial information for research of the immunologic mechanisms of CSFV using mouse DCs as the model cells.

  8. [The modulation of low-level laser on polarization of mouse bone marrow-derived macrophages].

    PubMed

    Dai, Chen; Song, Jiwei; Liang, Zhuowen; Zhang, Qian; Zhang, Kun; Wang, Zhe; Hu, Xueyu

    2016-08-01

    Objective To investigate the influence of 810 nm low-level laser of different energy on the polarization of macrophages. Methods The macrophages were isolated from the bone borrow of BALB/c mice and cultured in macrophage colony stimulating factor (M-CSF) conditioned cultural medium. The expression of F4/80 was examined by flow cytometry for identification. After lipopolysaccharide-γ interferon (LPS-IFN-γ) induced polarization status in the macrophages, the mRNA expressions of inducible nitric oxide synthase (iNOS), arginase 1 (Arg1) and CD86 were detected by reverse transcription PCR, and the protein expressions of iNOS and Arg1 were tested by Western blotting. Thereafter, the M1 macrophages were exposed to 810 nm low-level laser of (1, 2, 3, 4) J/cm(2), and then the cell viability was evaluated by MTT assay; the expressions of iNOS and Arg1 were observed by immunofluorescent cytochemical staining; the mRNA and protein levels of iNOS and Arg1 were studied by reverse transcription PCR and Western blotting. Results Flow cytometry showed that the percentage of F4/80 positive cells cultured with M-CSF conditioned medium was 99.9%. The mRNA and protein levels of iNOS and CD86 in macrophages were both significantly raised after induction by LPS-IFN-γ. Compared with the control cells, the viability of M1 cells significantly decreased when the energy of the low-level laser exposure was 4 J/cm(2), while the viability remained unchanged when the energy was 1, 2 or 3 J/cm(2). Immunocytochemistry revealed that the percentage of Arg1 positive cells that represent M2 macrophages was not significantly different from the control group when the irradiation dose was 1 or 2 J/cm(2), however, the Arg1 positive cells significantly increased and the iNOS positive cells that represent M1 macrophages significantly decreased when the irradiation dose was 3 or 4 J/cm(2). When the irradiation dose was 1 or 2 J/cm(2), the mRNA and protein levels of iNOS and Arg1 remained unchanged

  9. [Normal bone marrow and common reactive alterations].

    PubMed

    Tzankov, A; Dirnhofer, S; Beham-Schmid, C

    2012-11-01

    Histological examination of bone marrow biopsies is an important and powerful diagnostic tool to assess various hematological and non-hematological disorders. Morphological examination of such biopsies requires knowledge of the composition of normal bone marrow and its variations, such as age-related changes. Diagnostic problems may arise due to poor specimen quality, insufficient sections or stainings and insufficient experience with reactive bone marrow changes which occasionally resemble neoplastic disorders. Reactive bone marrow processes can affect one or more hematopoietic cell lines, lead to disruption of the normal architecture and specifically affect the bone marrow stroma. Optimal bone marrow diagnosis requires adequately stained slides and, when needed, immunophenotyping and molecular examinations. Furthermore, rather than biopsy interpretation of other organs, pathologists routinely need clinical history information for correct interpretation and diagnosis of bone marrow changes. In this article, the normal features of bone marrow as well as the most frequent reactive bone marrow alterations are described.

  10. In Vitro Differentiation of Insulin Secreting Cells from Mouse Bone Marrow Derived Stage-Specific Embryonic Antigen 1 Positive Stem Cells

    PubMed Central

    Abouzaripour, Morteza; Pasbakhsh, Parichehr; Atlasi, Nader; Shahverdi, Abdol Hossein; Mahmoudi, Reza; Kashani, Iraj Ragerdi

    2016-01-01

    Objective Bone marrow has recently been recognized as a novel source of stem cells for the treatment of wide range of diseases. A number of studies on murine bone mar- row have shown a homogenous population of rare stage-specific embryonic antigen 1 (SSEA-1) positive cells that express markers of pluripotent stem cells. This study focuses on SSEA-1 positive cells isolated from murine bone marrow in an attempt to differentiate them into insulin-secreting cells (ISCs) in order to investigate their differentiation potential for future use in cell therapy. Materials and Methods This study is an experimental research. Mouse SSEA-1 positive cells were isolated by Magnetic-activated cell sorting (MACS) followed by characteriza- tion with flow cytometry. Induced SSEA-1 positive cells were differentiated into ISCs with specific differentiation media. In order to evaluate differentiation quality and analysis, dithizone (DTZ) staining was use, followed by reverse transcription polymerase chain reaction (RT-PCR), immunocytochemistry and insulin secretion assay. Statistical results were analyzed by one-way ANOVA. Results The results achieved in this study reveal that mouse bone marrow contains a population of SSEA-1 positive cells that expresses pluripotent stem cells markers such as SSEA-1, octamer-binding transcription factor 4 (OCT-4) detected by immunocytochem- istry and C-X-C chemokine receptor type 4 (CXCR4) and stem cell antigen-1 (SCA-1) detected by flow cytometric analysis. SSEA-1 positive cells can differentiate into ISCs cell clusters as evidenced by their DTZ positive staining and expression of genes such as Pdx1 (pancreatic transcription factors), Ngn3 (endocrine progenitor marker), Insulin1 and Insulin2 (pancreaticβ-cell markers). Additionally, our results demonstrate expression of Pdx1 and Glut2 protein and insulin secretion in response to a glucose challenge in the differentiated cells. Conclusion Our study clearly demonstrates the potential of SSEA-1 positive

  11. The Small Molecule Inhibitor G6 Significantly Reduces Bone Marrow Fibrosis and the Mutant Burden in a Mouse Model of Jak2-Mediated Myelofibrosis

    PubMed Central

    Kirabo, Annet; Park, Sung O.; Wamsley, Heather L.; Gali, Meghanath; Baskin, Rebekah; Reinhard, Mary K.; Zhao, Zhizhuang J.; Bisht, Kirpal S.; Keserű, György M.; Cogle, Christopher R.; Sayeski, Peter P.

    2013-01-01

    Philadelphia chromosome–negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are disorders characterized by abnormal hematopoiesis. Among these myeloproliferative neoplasms, myelofibrosis has the most unfavorable prognosis. Furthermore, currently available therapies for myelofibrosis have little to no efficacy in the bone marrow and hence, are palliative. We recently developed a Janus kinase 2 (Jak2) small molecule inhibitor called G6 and found that it exhibits marked efficacy in a xenograft model of Jak2-V617F–mediated hyperplasia and a transgenic mouse model of Jak2-V617F–mediated polycythemia vera/essential thrombocytosis. However, its efficacy in Jak2-mediated myelofibrosis has not previously been examined. Here, we hypothesized that G6 would be efficacious in Jak2-V617F–mediated myelofibrosis. To test this, mice expressing the human Jak2-V617F cDNA under the control of the vav promoter were administered G6 or vehicle control solution, and efficacy was determined by measuring parameters within the peripheral blood, liver, spleen, and bone marrow. We found that G6 significantly reduced extramedullary hematopoiesis in the liver and splenomegaly. In the bone marrow, G6 significantly reduced pathogenic Jak/STAT signaling by 53%, megakaryocytic hyperplasia by 70%, and the Jak2 mutant burden by 68%. Furthermore, G6 significantly improved the myeloid to erythroid ratio and significantly reversed the myelofibrosis. Collectively, these results indicate that G6 is efficacious in Jak2-V617F–mediated myelofibrosis, and given its bone marrow efficacy, it may alter the natural history of this disease. PMID:22796437

  12. Myelosuppressive Conditioning Using Busulfan Enables Bone Marrow Cell Accumulation in the Spinal Cord of a Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Lewis, Coral-Ann B.; Manning, John; Barr, Christine; Peake, Kyle; Humphries, R. Keith; Rossi, Fabio; Krieger, Charles

    2013-01-01

    Myeloablative preconditioning using irradiation is the most commonly used technique to generate rodents having chimeric bone marrow, employed for the study of bone marrow-derived cell accumulation in the healthy and diseased central nervous system. However, irradiation has been shown to alter the blood-brain barrier, potentially creating confounding artefacts. To better study the potential of bone marrow-derived cells to function as treatment vehicles for neurodegenerative diseases alternative preconditioning regimens must be developed. We treated transgenic mice that over-express human mutant superoxide dismutase 1, a model of amyotrophic lateral sclerosis, with busulfan to determine whether this commonly used chemotherapeutic leads to stable chimerism and promotes the entry of bone marrow-derived cells into spinal cord. Intraperitoneal treatment with busulfan at 60 mg/kg or 80 mg/kg followed by intravenous injection of green fluorescent protein-expressing bone marrow resulted in sustained levels of chimerism (∼80%). Bone marrow-derived cells accumulated in the lumbar spinal cord of diseased mice at advanced stages of pathology at both doses, with limited numbers of bone marrow derived cells observed in the spinal cords of similarly treated, age-matched controls; the majority of bone marrow-derived cells in spinal cord immunolabelled for macrophage antigens. Comparatively, significantly greater numbers of bone marrow-derived cells were observed in lumbar spinal cord following irradiative myeloablation. These results demonstrate bone marrow-derived cell accumulation in diseased spinal cord is possible without irradiative preconditioning. PMID:23593276

  13. Pyruvate dehydrogenase kinase 1 is essential for transplantable mouse bone marrow hematopoietic stem cell and progenitor function

    PubMed Central

    Halvarsson, Camilla; Eliasson, Pernilla

    2017-01-01

    Background Accumulating evidence suggests that hypoxic areas in the bone marrow are crucial for maintenance of hematopoietic stem cells (HSCs) by supporting a quiescent state of cell cycle and regulating the transplantation capacity of long-term (LT)-HSCs. In addition, HSCs seem to express a metabolic profile of energy production away from mitochondrial oxidative phosphorylation in favor of glycolysis. At oxygen deprivation, hypoxia inducible factor 1α (HIF-1α) is known to induce glycolytic enzymes as well as suppressing mitochondrial energy production by inducing pyruvate dehydrogenase kinase 1 (Pdk1) in most cell types. It has not been established whether PDK1 is essential for HSC function and mediates hypoxia-adapting functions in HSCs. While the Pdk gene family contains four members (Pdk1-4), it was recently shown that Pdk2 and Pdk4 have an important role in regulating LT-HSCs. Principle findings Here we demonstrate that PDK1 activity is crucial for transplantable HSC function. Whereas Pdkl, Pdk2, and Pdk3 transcripts were expressed at higher levels in different subtypes of HSCs compared to differentiated cells, we could not detect any major differences in expression between LT-HSCs and more short-term HSCs and multipotent progenitors. When studying HIF-1α-mediated regulation of Pdk activity in vitro, Pdk1 was the most robust target regulated by hypoxia, whereas Pdk2, Pdk3, and Pdk4 were not affected. Contrary, genetic ablation in a cre-inducible Hif-1α knockout mouse did not support a link between HIF-1α and Pdk1. Silencing of Pdk1 by shRNA lentiviral gene transfer partially impaired progenitor colony formation in vitro and had a strong negative effect on both long-term and short-term engraftment in mice. Conclusions Our study demonstrates that PDK1 has broad effects in hematopoiesis and is a critical factor for engraftment of both HSCs and multipotent progenitors upon transplantation to recipient mice. While Pdk1 was a robust hypoxia-inducible gene

  14. In vitro differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mouse: a proteomic analysis

    PubMed Central

    Cong, Qing; Li, Bin; Wang, Yisheng; Zhang, Wenbi; Cheng, Mingjun; Wu, Zhiyong; Zhang, Xiaoyan; Jiang, Wei; Xu, Congjian

    2014-01-01

    Objective: Mouse bone marrow mesenchymal stem cells (BMSCs) have been demonstrated to differentiate into female endometrial epithelial cells (EECs) in vivo. Our previous studies demonstrated that BMSCs can differentiate in the direction of EECs when co-cultured with endometrial stromal cells in vitro. Here, we obtain and analyse differential proteins and their relevant pathways in the process of BMSCs differentiating into EECs by isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis. Methods: A 0.4-μm pore size indirect co-culture system was established with female mice endometrial stromal cells (EStCs) restricted in the upper Transwell chamber and BMSCs in the lower well plate. After indirect co-culture for several days, the BMSCs were revealed to progressively differentiate towards EECs in vitro. Then, four groups were divided according to different co-culture days with single culture groups of BMSCs as controls. Proteins were detected using iTRAQ based on 2DLC-ESI-MS/MS and data were analysed by bioinformatics. Results: A total number of 311 proteins were detected, of which 210 proteins were identified with relative quantitation. Among them, 107 proteins were differentially expressed with a 1.2-fold change as the benchmark, with 61 up-regulated and 46 down-regulated proteins. Differential proteins CK19 and CK8 were epithelial markers and upregulated. Stromal marker vimentin were downregulated. Top canonical pathways was “remodeling of epithelial adhesions junctions” and “actin cytoskeleton signaling”. Top networks was “cell-to-cell signaling and interaction, tissue development and cellular movement” regulated by ERK/MAPK and α-catenin. Conclusion: To the best of our knowledge, this is the first preliminary study of differential protein expression in the differentiation process of BMSCs into EECs in vitro. We further elucidated BMSCs differentiated in the direction of EECs. In addition, ERK/MAPK and α-catenin played

  15. IL-6 Contributes to the Defective Osteogenesis of Bone Marrow Stromal Cells from the Vertebral Body of the Glucocorticoid-Induced Osteoporotic Mouse

    PubMed Central

    Zhang, Yuan-yuan; Yang, Hui-lin

    2016-01-01

    Osteoporosis is one of the most prevalent skeletal system diseases. It is characterized by a decrease in bone mass and microarchitectural changes in bone tissue that lead to an attenuation of bone resistance and susceptibility to fracture. Vertebral fracture is by far the most prevalent osteoporotic fracture. In the musculoskeletal system, osteoblasts, originated from bone marrow stromal cells (BMSC), are responsible for osteoid synthesis and mineralization. In osteoporosis, BMSC osteogenic differentiation is defective. However, to date, what leads to the defective BMSC osteogenesis in osteoporosis remains an open question. In the current study, we made attempts to answer this question. A mouse model of glucocorticoid-induced osteoporosis (GIO) was established and BMSC were isolated from vertebral body. The impairment of osteogenesis was observed in BMSC of osteoporotic vertebral body. The expression profiles of thirty-six factors, which play important roles in bone metabolisms, were compared through antibody array between normal and osteoporotic BMSC. Significantly higher secretion level of IL-6 was observed in osteoporotic BMSCs compared with normal control. We provided evidences that IL-6 over-secretion impaired osteogenesis of osteoporotic BMSC. Further, it was observed that β-catenin activity was inhibited in response to IL-6 over-secretion. More importantly, in vivo administration of IL-6 neutralizing antibody was found to be helpful to rescue the osteoporotic phenotype of mouse vertebral body. Our study provides a deeper insight into the pathophysiology of osteoporosis and identifies IL-6 as a promising target for osteoporosis therapy. PMID:27128729

  16. Evolution of malignant plasmacytoma cell lines from K14E7 Fancd2−/− mouse long-term bone marrow cultures

    PubMed Central

    Zhang, Xichen; Hou, Wen; Epperly, Michael W.; Rigatti, Lora; Wang, Hong; Franicola, Darcy; Sivanathan, Aranee; Greenberger, Joel S.

    2016-01-01

    We tested the effect of expression of the Human Papilloma Virus (HPV E7) oncogene on hematopoiesis in long-term bone marrow cultures (LTBMCs) derived from K14E7 (FVB) Fancd2−/− (129/Sv), K14E7 Fancd2+/+, Fancd2−/−, and control (FVB X 129/Sv) Fl mice. K14E7 Fancd2−/− and Fancd2−/− LTBMCs showed decreased duration of production of total nonadherent hematopoietic cells and progenitors forming day 7 and day 14 multilineage CFU-GEMM colonies in secondary cultures (7 wks and 8 wks respectively) compared to cultures from K14E7 Fancd2+/+ (17 wks) or control mice (18 wks) p < 0.0001. Marrow stromal cell lines derived from both K14E7 Fancd2−/− and Fancd2−/− cultures were radiosensitive, as were IL-3 dependent hematopoietic progenitor cell lines derived from K14E7 Fancd2−/− cultures. In contrast, Fancd2−/− mouse hematopoietic progenitor cell lines and fresh marrow were radioresistant. K14E7 Fancd2−/− mouse freshly explanted bone marrow expressed no detectable K14 or E7; however, LTBMCs produced K14 positive factor-independent (FI) clonal malignant plasmacytoma forming cell lines in which E7 was detected in the nucleus with p53 and Rb. Transfection of an E6/E7 plasmid into Fancd2−/−, but not control Fancd2+/+ IL-3 dependent hematopoietic progenitor cell lines, increased cloning efficiency, cell growth, and induced malignant cell lines. Therefore, the altered radiobiology of hematopoietic progenitor cells and malignant transformation in vitro by K14E7 expression in cells of the Fancd2−/− genotype suggests a potential role of HPV in hematopoietic malignancies in FA patients. PMID:27637088

  17. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches.

    PubMed

    Kaur, Simranpreet; Raggatt, Liza Jane; Batoon, Lena; Hume, David Arthur; Levesque, Jean-Pierre; Pettit, Allison Robyn

    2017-01-01

    Macrophages, named for their phagocytic ability, participate in homeostasis, tissue regeneration and inflammatory responses. Bone and adjacent marrow contain multiple functionally unique resident tissue macrophage subsets which maintain and regulate anatomically distinct niche environments within these interconnected tissues. Three subsets of bone-bone marrow resident tissue macrophages have been characterised; erythroblastic island macrophages, haematopoietic stem cell niche macrophages and osteal macrophages. The role of these macrophages in controlling homeostasis and repair in bone and bone marrow niches is reviewed in detail.

  18. Methotrexate and bone marrow metaphases.

    PubMed

    Cunningham, J J; Potter, A M; Watmore, A E; Winfield, D A

    1988-07-15

    The efficacy of a methotrexate (MTX) block/thymidine release synchronization technique has been assessed in bone marrow cultures from patients with acute nonlymphocytic leukemia and myelodysplasia. In contrast to cultures of stimulated lymphocytes from normal individuals, no improvement in mitotic index (MI) or metaphase quality could be detected using this technique. Demonstration of an unchanged level of division in bone marrow cultures in the presence of MTX suggests that the technique is unsuitable for synchronization purposes in this tissue. The influence of preincubation prior to MTX exposure and duration of exposure to colcemid on MI and metaphase quality have also been examined.

  19. Bone marrow-derived dendritic cells.

    PubMed

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  20. Bone Marrow Transplantation Results in Human Donor Blood Cells Acquiring and Displaying Mouse Recipient Class I MHC and CD45 Antigens on Their Surface

    PubMed Central

    Yamanaka, Nobuko; Wong, Christine J.; Gertsenstein, Marina; Casper, Robert F.; Nagy, Andras; Rogers, Ian M.

    2009-01-01

    Background Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100% of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cells and that trogocytosis is evident in non-blood cells in chimera mice. PMID:20046883

  1. The separation of a mixture of bone marrow stem cells from tumor cells: an essential step for autologous bone marrow transplantation

    SciTech Connect

    Rubin, P.; Wheeler, K.T.; Keng, P.C.; Gregory, P.K.; Croizat, H.

    1981-10-01

    KHT tumor cells were mixed with mouse bone marrow to simulate a sample of bone marrow containing metastatic tumor cells. This mixture was separated into a bone marrow fraction and a tumor cell fraction by centrifugal elutriation. Elutriation did not change the transplantability of the bone marrow stem cells as measured by a spleen colony assay and an in vitro erythroid burst forming unit assay. The tumorogenicity of the KHT cells was similarly unaffected by elutriation. The data showed that bone marrow cells could be purified to less than 1 tumor cell in more than 10/sup 6/ bone marrow cells. Therefore, purification of bone marrow removed prior to lethal radiation-drug combined therapy for subsequent autologous transplantation appears to be feasible using modifications of this method if similar physical differences between human metastatic tumor cells and human bone marrow cells exist. This possibility is presently being explored.

  2. Blood and Bone MarrowTransplant?

    MedlinePlus

    ... page from the NHLBI on Twitter. Blood and Bone Marrow Transplant Also known as hematopoietic stem cell ... autologous transplant, or allogeneic transplant. A blood or bone marrow transplant replaces abnormal blood-forming stem cells ...

  3. Effects of mixed hematopoietic chimerism in a mouse model of bone marrow transplantation for sickle cell anemia.

    PubMed

    Iannone, R; Luznik, L; Engstrom, L W; Tennessee, S L; Askin, F B; Casella, J F; Kickler, T S; Goodman, S N; Hawkins, A L; Griffin, C A; Noffsinger, L; Fuchs, E J

    2001-06-15

    Sickle cell anemia (SCA) is an inherited disorder of beta-globin, resulting in red blood cell rigidity, anemia, painful crises, organ infarctions, and reduced life expectancy. Allogeneic blood or marrow transplantation (BMT) can cure SCA but is associated with an 8% to 10% mortality rate, primarily from complications of marrow-ablative conditioning. Transplantation of allogeneic marrow after less intensive conditioning reduces toxicity but may result in stable mixed hematopoietic chimerism. The few SCA patients who inadvertently developed mixed chimerism after BMT remain symptom free, suggesting that mixed chimerism can reduce disease-related morbidity. However, because the effects of various levels of mixed chimerism on organ pathology have not been characterized, this study examined the histologic effects of an increasing percentage of normal donor hematopoiesis in a mouse model of BMT for SCA. In lethally irradiated normal mice that were reconstituted with varying ratios of T-cell-depleted marrow from normal and transgenic "sickle cell" mice, normal myeloid chimerism in excess of 25% was associated with more than 90% normal hemoglobin (Hb). However, 70% normal myeloid chimerism was required to reverse the anemia. Organ pathology, including liver infarction, was present in mice with sickle Hb (HbS) levels as low as 16.8% (19.6% normal myeloid chimerism). Histologic abnormalities increased in severity up to 80% HbS, but were less severe in mice with more than 80% HbS than in those with 40% to 80% HbS. Therefore, stable mixed chimerism resulting from nonmyeloablative BMT may reduce the morbidity from SCA, but prevention of all disease complications may require minimizing the fraction of circulating sickle red cells. (Blood. 2001;97:3960-3965)

  4. Acellular Bone Marrow Extracts Significantly Enhance Engraftment Levels of Human Hematopoietic Stem Cells in Mouse Xeno-Transplantation Models

    PubMed Central

    Zibara, Kazem; Hamdan, Rima; Dib, Leila; Sindet-Pedersen, Steen; Kharfan-Dabaja, Mohamed; Bazarbachi, Ali; El-Sabban, Marwan

    2012-01-01

    Hematopoietic stem cells (HSC) derived from cord blood (CB), bone marrow (BM), or mobilized peripheral blood (PBSC) can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME) on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC) or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34+ cells, transplanted in immuno-compromised mice (NOD/SCID or NSG). These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells. PMID:22768336

  5. Effects of GSM-modulated 900 MHz radiofrequency electromagnetic fields on the hematopoietic potential of mouse bone marrow cells.

    PubMed

    Rosado, Maria Manuela; Nasta, Francesca; Prisco, Maria Grazia; Lovisolo, Giorgio Alfonso; Marino, Carmela; Pioli, Claudio

    2014-12-01

    Studies describing the influence of radiofrequency electromagnetic fields on bone marrow cells (BMC) often lack functional data. We examined the effects of in vivo exposure to a Global System for Mobile Communications (GSM) modulated 900 MHz RF fields on BMC using two transplantation models. X-irradiated syngeneic mice were injected with BMC from either RF-field-exposed, sham-exposed or cage control mice. Twelve weeks after transplantation, no differences in thymocyte number, frequency of subpopulations and cell proliferation were found in mice receiving BMC from either group. Also, in the spleen cell number, percentages of B/T cells, B/T-cell proliferation, and interferon γ (IFN-γ) production were similar in all groups. In parallel, a mixture of BMC from congenic sham- and RF-exposed mice were co-transplanted into lymphopenic Rag2 deficient mice. BMC from RF-exposed and sham-exposed mice displayed no advantage or disadvantage when competing for the replenishment of lymphatic organs with mature lymphocytes in Rag2 deficient mice. This model revealed that BMC from sham-exposed and RF-exposed mice were less efficient than BMC from cage control mice in repopulating the thymus, an effect likely due to restraint stress. In conclusion, our results showed no effects of in vivo exposure to GSM-modulated RF-fields on the ability of bone marrow (BM) precursors to long-term reconstitute peripheral T and B cell compartments.

  6. Bone marrow-derived mesenchymal stem cells reduce immune reaction in a mouse model of allergic rhinitis

    PubMed Central

    Zhao, Ning; Liu, Yanjuan; Liang, Hongfeng; Jiang, Xuejun

    2016-01-01

    Object: To determine the potential of bone marrow-derived mesenchymal stem cells (BMSCs) for immunomodulatory mechanism in mice model of allergic rhinitis (AR). Methods: BMSCs were isolated and the surface markers and stemness were analyzed. The effect of BMSCs was evaluated in BALB/c mice that were randomly divided into three groups (control group, ovalbumin (OVA) group, OVA+BMSCs group). BMSCs were administered intravenously to OVA sensitized mice on days 1, 7, 14 and 21, and subsequent OVA challenge was conducted daily from days 22 to 35. Several parameters of allergic inflammation were assessed. Results: Mesenchymal stem cells can be successfully isolated from bone marrow of mice. Intravenous injection of BMSCs significantly reduced allergic symptoms, eosinophil infiltration, OVA-specific immunoglobulin E (IgE), T-helper 2 (Th2) cytokine profile (interleukin (IL)-4, IL-5 and IL-13) and regulatory cytokines (IL-10). In addition, level of Th1 (IFN-γ) was significantly increased. Conclusion: Administration of BMSCs effectively reduced allergic symptoms and inflammatory parameters in the mice model of AR. BMSCs treatment is potentially an alternative therapeutic modality in AR. PMID:28078033

  7. Bone scan appearances following bone and bone marrow biopsy

    SciTech Connect

    McKillop, J.H.; Maharaj, D.; Boyce, B.F.; Fogelman, I.

    1984-01-01

    Bone marrow and bone biopsies are performed not infrequently in patients referred for bone scans and represent a potential cause of a ''false positive'' focal abnormality on the bone scan. The authors have therefore examined the scan appearances in a series of patients who had undergone either sternal marrow biopsy, (Salah needle, diameter 1.2 mm) trephine iliac crest marrow biopsy (Jamshidi 11 gauge needle, diameter 3.5 mm) or a transiliac bone biopsy (needle diameter 8 mm). Of 18 patients studied 1 to 45 days after sternal marrow 17 had normal scan appearances at the biopsy site and 1 had a possible abnormality. None of 9 patients studied 4 to 19 days after trephine iliac crest marrow biopsy had a hot spot at the biopsy site. A focal scan abnormality was present at the biopsy site in 9/11 patients studied 5 to 59 days after a trans iliac bone biopsy. No resultant scan abnormality was seen in 4 patients imaged within 3 days of the bone biopsy or in 3 patients imaged 79 to 138 days after the procedure. Bone marrow biopsy of the sternum or iliac crest does not usually cause bone scan abnormalities. A focal abnormality at the biopsy site is common in patients imaged 5 days to 2 months after bone biopsy. The gauge of the needle employed in the biopsy and thus the degree of bone trauma inflicted, is likely to be main factor determining the appearance of bone scan abnormalities at the biopsy site.

  8. Structural features of bone marrow

    PubMed Central

    Romaniuk, Anatolii; Lyndina, Yuliia; Sikora, Vladyslav; Lyndin, Mykola; Karpenko, Ludmyla; Gladchenko, Oksana; Masalitin, Igor

    2016-01-01

    Purpose This article is devoted to the investigation of the structural features of the bone marrow of mature rats. Materials and methods The investigation of the structural features of the bone marrow was performed on the femurs of the mature male rats. General structure of the organ was studied with hematoxylin–eosin and Van Gieson staining of samples. Certain features of the bone marrow structure were studied using immunohistochemical method (CD3, CD79α, S100, myeloperoxidase, and cyclin D1). Results We can state that stromal–parenchymal structure is typical for the bone marrow of rats as for any other organ. The stromal component is presented with bone tissue (48.8 ± 3.3% at epiphyses), the net of blood vessels (18.7 ± 2.1%), fat tissue (11 ± 2%), fibrous tissue (0.7 ± 0.2%), and the network of reticular fibers. Hematopoietic tissue covers 20.9 ± 3.7% at the femoral epiphyses and 69.6 ± 2.2% at diaphysis. Among these tissues, myelopoiesis occupies 74.2 ± 4.7%, erythropoiesis – 24.3 ± 4.7%, and lymphopoiesis – less than 5%. Megalokaryocytes take 0.1–0.3%. Conclusion Considering the lack of significant anatomical, morphological, and histological differences of red bone marrow of rats and humans, we can state that hematopoiesis in rats takes place on the basis of the same principles as in humans, although it has certain mechanisms. PMID:28203394

  9. Differential Inactivation of Lymphocytes (Graft-versus-Host Reactions) and Bone Marrow Stem Cells by Heterologous Anti-Mouse Gamma-Globulin Serum,

    DTIC Science & Technology

    The major obstacle to the clinical application of allogeneic bone marrow transplantation , in the treatment of certain immunologic deficiency disease...prevent GVH disease, following allogeneic bone marrow transplantation . The experimental approach of this research rests on the premise that mature

  10. Lymphocytes with Aberrant Expression of Fas or Fas-ligand Attenuate Immune Bone Marrow Failure in a Mouse Model

    PubMed Central

    Omokaro, Stephanie O.; Desierto, Marie J.; Eckhaus, Michael A.; Ellison, Felicia M.; Chen, Jichun; Young, Neal S.

    2012-01-01

    Bone marrow (BM) and lymphocyte samples from aplastic anemia patients show up-regulated Fas and Fas-ligand (FasL) expression respectively, supporting a relationship between immune-mediated BM destruction and the Fas apoptotic pathway. Mice with spontaneous lymphoproliferation (lpr) and generalized lymphoproliferative disease (gld) mutations exhibit abnormal expression of Fas and FasL; serving as potential models to elucidate underlying mechanisms of BM failure. We examined cellular and functional characteristics of lpr and gld mutants on the C57BL/6 (B6) background. Lymph node (LN) cells from lpr and gld mice produced less apoptosis when co-incubated with C.B10-H2b/LilMcd (C.B10) BM cells in vitro. This functional difference was confirmed by infusing lpr, gld, and B6 LN cells into sub-lethally irradiated CB10 mice; all donor LN cells showed significant T cell expansion and activation but only B6 LN cells caused severe BM destruction. Mice infused with gld LN cells developed mild to moderate BM failure, despite receiving FasL-deficient effectors, thus suggesting the existence of alternative pathways or incomplete penetrance of the mutation. Paradoxically, mice that received Fas-deficient lpr LN cells also had reduced BM failure, likely due to down-regulation of pro-apoptotic genes, an effect that can be overcome by higher doses of lpr LN cells. Our model demonstrates that abnormal Fas or FasL expression interferes with the development of pancytopenia and marrow hypoplasia, validating a major role for the Fas/FasL cytotoxic pathway in immune-mediated BM failure, although disruption of this pathway does not completely abolish marrow destruction. PMID:19265119

  11. Lymphocytes with aberrant expression of Fas or Fas ligand attenuate immune bone marrow failure in a mouse model.

    PubMed

    Omokaro, Stephanie O; Desierto, Marie J; Eckhaus, Michael A; Ellison, Felicia M; Chen, Jichun; Young, Neal S

    2009-03-15

    Bone marrow (BM) and lymphocyte samples from aplastic anemia patients show up-regulated Fas and Fas-ligand (FasL) expression, respectively, supporting a relationship between immune-mediated BM destruction and the Fas apoptotic pathway. Mice with spontaneous lymphoproliferation (lpr) and generalized lymphoproliferative disease (gld) mutations exhibit abnormal expression of Fas and FasL, serving as potential models to elucidate underlying mechanisms of BM failure. We examined cellular and functional characteristics of lpr and gld mutants on the C57BL/6 (B6) background. Lymph node (LN) cells from lpr and gld mice produced less apoptosis when coincubated with C.B10-H2(b)/LilMcd (C.B10) BM cells in vitro. This functional difference was confirmed by infusing lpr, gld, and B6 LN cells into sublethally irradiated CB10 mice. All donor LN cells showed significant T cell expansion and activation, but only B6 LN cells caused severe BM destruction. Mice infused with gld LN cells developed mild to moderate BM failure despite receiving FasL-deficient effectors, thus suggesting the existence of alternative pathways or incomplete penetrance of the mutation. Paradoxically, mice that received Fas-deficient lpr LN cells also had reduced BM failure, likely due to down-regulation of proapoptotic genes, an effect that can be overcome by higher doses of lpr LN cells. Our model demonstrates that abnormal Fas or FasL expression interferes with the development of pancytopenia and marrow hypoplasia, validating a major role for the Fas/FasL cytotoxic pathway in immune-mediated BM failure, although disruption of this pathway does not completely abolish marrow destruction.

  12. [Gelatinous transformation of the bone marrow].

    PubMed

    Kemona, A; Dziecioł, J; Sulik, M; Brykalska, A; Sobaniec-Lotowska, M; Baltaziak, M

    1990-01-01

    The incidence and histopathologic picture of gelatinous transformation of the bone marrow were analysed in non-selected autopsy material. It was found that gelatinous transformation of the bone marrow occurred in terminal stages of various diseases (malignant neoplasms, chronic inflammation). Histological studies showed that gelatinous transformation of the bone marrow led to atrophy of the hematopoietic and adipose tissues of the bone marrow and accumulation of acid mucopolysaccharides. The patients with gelatinous transformation of the bone marrow exhibit hematologic disorders, most frequently anemia and thrombocytopenia.

  13. Bone marrow and the control of immunity

    PubMed Central

    Zhao, Ende; Xu, Huanbin; Wang, Lin; Kryczek, Ilona; Wu, Ke; Hu, Yu; Wang, Guobin; Zou, Weiping

    2012-01-01

    Bone marrow is thought to be a primary hematopoietic organ. However, accumulated evidences demonstrate that active function and trafficking of immune cells, including regulatory T cells, conventional T cells, B cells, dendritic cells, natural killer T (NKT) cells, neutrophils, myeloid-derived suppressor cells and mesenchymal stem cells, are observed in the bone marrow. Furthermore, bone marrow is a predetermined metastatic location for multiple human tumors. In this review, we discuss the immune network in the bone marrow. We suggest that bone marrow is an immune regulatory organ capable of fine tuning immunity and may be a potential therapeutic target for immunotherapy and immune vaccination. PMID:22020068

  14. Bone scan appearances following biopsy of bone and bone marrow

    SciTech Connect

    McKillop, J.H.; Maharaj, D.; Boyce, B.F.; Fogelman, I.

    1984-10-01

    The influence of sternal marrow aspiration, iliac crest marrow aspiration, and iliac crest bone biopsy on bone scan appearances was examined. Eighteen patients were scanned a mean of 9.9 days after sternal marrow aspiration with a Salah needle. Bone scans obtained in 9 patients a mean of 10 days aftr iliac crest trephine marrow biopsy with a Jamshidi needle showed no abnormality at the biopsy site. In 18 patients with metabolic bone disease who had undergone iliac crest bone biopsy with an 8 mm needle, a scan abnormality due to the biopsy was usually present when the interval between the biopsy and the scan was 5 days to 2 months. Patients who were scanned within 3 days of iliac crest bone biopsy or more than 2 months after biopsy had normal scan appearance at the biopsy site.

  15. Genotoxicity studies on the azo dye Direct Red 2 using the in vivo mouse bone marrow micronucleus test.

    PubMed

    Rajaguru, P; Fairbairn, L J; Ashby, J; Willington, M A; Turner, S; Woolford, L A; Chinnasamy, N; Rafferty, J A

    1999-07-21

    The clastogenicity of the azo dye Direct Red 2 (DR2) has been investigated using the murine bone marrow micronucleus assay. A potent dose-dependent response was observed following oral gavage of DR2 up to 4 mg/kg, after which significant toxicity to the erythroid compartment was observed. The route of administration had a significant effect on the frequency of micronucleus formation: intraperitoneal injection was approximately two-fold less clastogenic than the equivalent dose delivered orally (p<0.05). The requirement for activation of DR2 by intestinal microflora was indicated by the fact that mice given acid-treated water prior to administration of DR2 showed a significant reduction (40%; p<0.001) in micronucleated polychromatic erythrocyte formation. The implications of these findings for the health and safety of occupationally exposed workers are discussed.

  16. Evaluation of mutagenic effects of formocresol: detection of DNA-protein cross-links and micronucleus in mouse bone marrow.

    PubMed

    Ramos, Maria Emília Santos Pereira; Cavalcanti, Bruno Coêlho; Lotufo, Letícia Veras Costa; de Moraes, Manoel Odorico; Cerqueira, Eneida de Moraes Marcílio; Pessoa, Cláudia

    2008-03-01

    The genotoxic potential of formocresol was assessed by comet assay on human peripheral blood lymphocytes and in vivo micronucleus in mice. Peripheral blood lymphocytes, obtained from healthy donors, were exposed directly with different dilutions of formocresol for 45 minutes at 37 degrees C. To verify the possibility of formocresol to induce DNA-protein cross-links, treated lymphocytes were incubated with proteinase K. Micronucleus test was performed on male Swiss mice treated with several dilutions of formocresol by single intraperitoneal injection. After treatment, bone marrow was sampled 24 and 48 hours after formocresol administration. Formocresol did not produce detectable DNA damage as evaluated by comet assay. However, after proteinase K exposure, a dose-dependent increase of DNA migration was observed. Formocresol induced a significant increase in micronucleus frequencies at the highest dilution only at 24 hours after administration. Formocresol induced DNA-protein cross-links and an increased frequency of micronucleus.

  17. Deletion of Mitogen-Activated Protein Kinase Phosphatase 1 Modifies the Response to Mechanical Bone Marrow Ablation in a Mouse Model

    PubMed Central

    Carlson, Jodi; Zhang, Qing; Bennett, Anton; Vignery, Agnès

    2009-01-01

    The maintenance of bone mass results from a delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts. Understanding these processes is essential for the development of effective treatments for skeletal diseases. Mechanical bone marrow ablation provides a unique animal model to study bone repair and the roles of specific genes in this process. Ablation of marrow induces the formation of intramembranous bone in the medullary cavity, which is subsequently resorbed by osteoclasts. We used this model to ask whether mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP1) affects the bone formed in response to marrow ablation. MKP1 is a negative regulator of MAPK signaling, which is essential for a wide variety of cellular mechanisms, including those critical for osteoblast and osteoclast function. At 10 d after mechanical bone marrow ablation, the femurs of male mkp1+/+ and mkp1−/− mice were compared with those of unoperated baseline mice by using radiography, peripheral quantitative computed tomography, and microcomputed tomography. Both genotypes developed increased bone mass after marrow ablation, but the increase was more pronounced in mkp1−/− mice compared with mkp1+/+ mice. These results indicate that MKP1 affects the bone formed in response to marrow ablation and suggest encouraging possibilities for the use of inhibitors of MKP1 to modulate bone repair. PMID:19619411

  18. Interferon regulatory factor-1 (IRF-1) interacts with regulated in development and DNA damage response 2 (REDD2) in the cytoplasm of mouse bone marrow cells.

    PubMed

    Gupta, Manish; Rath, Pramod C

    2014-04-01

    IRF-1 is a critical hematopoietic transcription factor, which regulates cell growth, development of immune cells, immune response, tumor suppression, apoptosis and autophagy in mammalian cells. Protein-protein interactions of IRF-1 in mouse bone marrow cells (BMCs) by GST-IRF-1 pull-down followed by mass spectrometry, coimmunoprecipitation, immunoblotting and colocalization show that regulated in development and DNA damage response 2 (REDD2) is an IRF-1-interacting protein. REDD2 is a highly conserved mammalian regulatory protein of the TSC2/mTOR pathway. It is structurally similar to REDD1 but has a distinct loop region. Cellular IRF-1 and REDD2 complex is present in the cytoplasm of BMCs as distinct speckles in punctate pattern. In vitro interaction of recombinant IRF-1 and REDD2 shows their physical interaction. Taken together, our results suggest that IRF-1 physically interacts with REDD2 in the large cytoplasmic protein complex, which may function as cellular signaling proteins for 'cross-talk' of mTOR and cytokine pathways during regulation of cell growth/proliferation, apoptosis and autophagy of mammalian bone marrow cells during health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model

    PubMed Central

    Ogawa, Yoko; Morikawa, Satoru; Okano, Hideyuki; Mabuchi, Yo; Suzuki, Sadafumi; Yaguchi, Tomonori; Sato, Yukio; Mukai, Shin; Yaguchi, Saori; Inaba, Takaaki; Okamoto, Shinichiro; Kawakami, Yutaka; Tsubota, Kazuo; Matsuzaki, Yumi; Shimmura, Shigeto

    2016-01-01

    Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα+ Sca-1+ BMSCs expressed MHC class II following transplantation and activated host T cells. A decrease in FOXP3+ CD25+ Treg population was observed. T cells proliferated and secreted IL-6 when stimulated with mismatched BMSCs in vitro. Donor T cells were not involved in fibrosis because transplanting T cell-deficient RAG2 knock out mice bone marrow still caused disease. Once initially triggered by mismatched BMSCs, the autoimmune phenotype was not donor BMSC dependent as the phenotype was observed after effector T cells were adoptively transferred into naïve syngeneic mice. Our data suggest that minor antigen mismatched BMSCs trigger systemic fibrosis in this autoimmune scleroderma model. DOI: http://dx.doi.org/10.7554/eLife.09394.001 PMID:26809474

  20. Squalene Selectively Protects Mouse Bone Marrow Progenitors Against Cisplatin and Carboplatin-Induced Cytotoxicity In Vivo Without Protecting Tumor Growth12

    PubMed Central

    Das, Bikul; Antoon, Roula; Tsuchida, Rika; Lotfi, Shamim; Morozova, Olena; Farhat, Walid; Malkin, David; Koren, Gideon; Yeger, Herman; Baruchel, Sylvain

    2008-01-01

    Squalene, an isoprenoid antioxidant is a potential cytoprotective agent against chemotherapy-induced toxicity. We have previously published that squalene protects light-density bone marrow cells against cis-diamminedichloroplatinum( II) (cisplatin)-induced toxicity without protecting tumor cells in vitro. Here, we developed an in vivo mouse model of cisplatin and cis-diammine (cyclobutane-1,1-dicarboxylato) platinum(II) (carboplatin)-induced toxicity to further investigate squalene-mediated LD-BM cytoprotection including the molecular mechanism behind selective cytoprotection. We found that squalene significantly reduced the body weight loss of cisplatin and carboplatin-treated mice. Light-density bone marrow cells from squalene-treated mice exhibited improved formation of hematopoietic colonies (colony-forming unit-granulocyte macrophage). Furthermore, squalene also protected mesenchymal stem cell colonies (colony-forming unit-fibroblast) from cisplatin and carboplatin-induced toxicity. Squalene-induced protection was associated with decreased reactive oxygen species and increased levels of glutathione and glutathione peroxidase/glutathione-S-transferase. Importantly, squalene did not protect neuroblastoma, small cell carcinoma, or medulloblastoma xenografts against cisplatin-induced toxicity. These results suggest that squalene is a potential candidate for future development as a cytoprotective agent against chemotherapeutic toxicity. PMID:18813359

  1. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury.

    PubMed

    Neirinckx, Virginie; Agirman, Gulistan; Coste, Cécile; Marquet, Alice; Dion, Valérie; Rogister, Bernard; Franzen, Rachelle; Wislet, Sabine

    2015-11-04

    Stem cells from adult tissues were considered for a long time as promising tools for regenerative therapy of neurological diseases, including spinal cord injuries (SCI). Indeed, mesenchymal (MSCs) and neural crest stem cells (NCSCs) together constitute the bone marrow stromal stem cells (BMSCs) that were used as therapeutic options in various models of experimental SCI. However, as clinical approaches remained disappointing, we thought that reducing BMSC heterogeneity should be a potential way to improve treatment efficiency and reproducibility. We investigated the impact of pure populations of MSCs and NCSCs isolated from adult bone marrow in a mouse model of spinal cord injury. We then analyzed the secretome of both MSCs and NCSCs, and its effect on macrophage migration in vitro. We first observed that both cell types induced motor recovery in mice, and modified the inflammatory reaction in the lesion site. We also demonstrated that NCSCs but especially MSCs were able to secrete chemokines and attract macrophages in vitro. Finally, it appears that MSC injection in the spinal cord enhance early inflammatory events in the blood and spinal cord of SCI mice. Altogether, our results suggest that both cell types have beneficial effects in experimental SCI, and that further investigation should be dedicated to the regulation of the inflammatory reaction following SCI, in the context of stem cell-based therapy but also in the early-phase clinical management of SCI patients.

  2. Bone Marrow Matters

    ERIC Educational Resources Information Center

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  3. Bone Marrow Matters

    ERIC Educational Resources Information Center

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  4. Primary bone marrow oedema syndromes.

    PubMed

    Patel, Sanjeev

    2014-05-01

    MRI scanning in patients with rheumatological conditions often shows bone marrow oedema, which can be secondary to inflammatory, degenerative, infective or malignant conditions but can also be primary. The latter condition is of uncertain aetiology and it is also uncertain whether it represents a stage in the progression to osteonecrosis in some patients. Patients with primary bone marrow oedema usually have lower limb pain, commonly the hip, knee, ankle or feet. The diagnosis is one of exclusion with the presence of typical MRI findings. Treatment is usually conservative and includes analgesics and staying off the affected limb. The natural history is that of gradual resolution of symptoms over a number of months. Evidence for medical treatment is limited, but open-label studies suggest bisphosphonates may help in the resolution of pain and improve radiological findings. Surgical decompression is usually used as a last resort.

  5. Adaptation and Infection of Mouse Bone Marrow (JLS-V9) Cells in Suspension Culture for Production of Rauscher Leukemia Virus

    PubMed Central

    Hodge, Howard M.; Klein, Frederick; Bandyopadhyay, Alok K.; Robinson, Orson R.; Shibley, George P.

    1974-01-01

    JLS-V9 mouse bone marrow cells were readily adapted to suspension culture, chronically infected with Rauscher leukemia virus (RLV), and subsequently grown in 7.5- and 14-liter New Brunswick fermentors. The suspension-type cell system can be modified to produce virus with clearly defined properties, such as high ribonucleic acid-dependent deoxyribonucleic acid polymerase (RDDP) activity, high particle count, and high infectious particle count. Biological and biophysical properties of suspension-produced RLV were not affected by concentration and purification employing continuous-flow and rate-zonal centrifugation procedures. The RDDP assay was standardized and showed a linear incorporation of 3H-thymidine 5′-monophosphate (3H-TMP) up to 30 min. Further characterization indicated that a high percentage of 3H-TMP incorporation was due to RDDP. Images PMID:4129475

  6. Using brain slice cultures of mouse brain to assess the effect of growth factors on differentiation of bone marrow derived stem cells.

    PubMed

    Bratincsák, András; Lonyai, Anna; Shahar, Tal; Hansen, Arne; Tóth, Zsuzsanna E; Mezey, Eva

    2007-03-30

    Bone marrow derived stem cells (BMDSCs) have been reported to form neurons and supportive cells in the brain. We describe a technique that combines the simplicity of in vitro studies with many of the advantages of in vivo experiments. We cultured mouse brain slices, deposited GFP-tagged BMDSCs evenly distributed on their surfaces, and then added test factors to the culture medium. Addition of both SDF-1 and EGF resulted in morphological changes of BMDSC and in the induction of islet-1, a marker of neuroepithelial progenitors. We conclude that organotypic tissue culture (OTC) may allow us to detect the effects of exogenous factors on the differentiation of BMDSCs (or any other type of stem cells) in an environment that may resemble the CNS after brain injury. Once such factors have been identified they could be evaluated for tissue regeneration in more complex, whole animal models.

  7. Genotoxicity testing of the herbicide Roundup and its active ingredient glyphosate isopropylamine using the mouse bone marrow micronucleus test, Salmonella mutagenicity test, and Allium anaphase-telophase test.

    PubMed

    Rank, J; Jensen, A G; Skov, B; Pedersen, L H; Jensen, K

    1993-06-01

    The genotoxic potential of the herbicide Roundup and its active agent, glyphosate isopropylamine salt, was studied in three different assays. No clastogenic effects were found in the mouse bone marrow micronucleus test for either of the two agents. In the Salmonella assay only Roundup was tested. It showed a weak mutagenic effect for the concentrations 360 micrograms/plate in TA98 (without S9) and 720 micrograms/plate in TA100 (with S9). These concentrations are close to the toxic level. The anaphase-telophase Allium test showed no effect for the glyphosate isopropylamine salt, but a significant increase in chromosome aberrations appeared after treatment with Roundup at concentrations of 1.44 and 2.88 mg/l when calculated as glyphosate isopropylamine. The most frequent aberrations observed could be characterized as disturbances of the spindle.

  8. Bronchiectasis in bone marrow transplantation.

    PubMed

    Morehead, R S

    1997-04-01

    Two patients are described with clinical and radiographic bronchiectasis which occurred after allogeneic bone marrow transplantation for haematological malignancy. Both had evidence of chronic graft versus host disease in other organs. Increased immunosuppression with corticosteroids resulted in clinical response, although both patients persisted with chronic mucopurulent sputum production and one had progressive airflow obstruction. Bronchiectasis may be an under-recognised manifestation of chronic graft versus host disease of the lung.

  9. Genotoxicity evaluation of pesticide formulations containing alachlor and atrazine in multiple mouse tissues (blood, kidney, liver, bone marrow, spleen) by comet assay.

    PubMed

    Zeljezic, D; Garaj-Vrhovac, V

    2004-01-01

    Every year, in the European countries more than 2 million tons of pesticides are released into the environment. More than 60% of those substances appear to be herbicides. Due to extensive production and application of this chemical their putative detrimental effect on life should be known and minimized. In this study we applied the comet assay on blood and 4 mouse organs (kidney, liver, bone marrow, and spleen) to evaluate possible genome damage caused by two pesticide formulations (Bravo and Gesaprim) containing alachlor and atrazine as active ingredients. Five male CBA mice were assigned to each of 4 treatment groups and control group. Bravo and Gesaprim were injected intraperitoneally once. Two different doses of Bravo were used: 0.031 ml/kg and 0.021 microl/kg, so that doses of alachlor mice received within the pesticide formulation given were 15 mg/kg and 0.01 mg/kg. Also Gesaprim was given at two different doses: 1.08 ml/kg and 0.07 microl/kg so that the doses of atrazine contained within the pesticide formulation given were 540 mg/kg and 3.5 x 10(-2) mg/kg. Mice were sacrificed 24 hours after treatment. Alkaline comet assay on the blood samples, kidney, liver, bone marrow and spleen was performed. Statistically significant (p<0.01) increase of tail length for all 5 tissues examined in mice treated with both Bravo and Gesaprim compared to the control was found. For both pesticides DNA of kidney and liver showed largest increase in migration. Also, distribution of tail length values for Bravo and Gesaprim for all mouse tissues examined showed a shift to the right when compared to the controls.

  10. Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection.

    PubMed

    Drujont, Lucile; Carretero-Iglesia, Laura; Bouchet-Delbos, Laurence; Beriou, Gaelle; Merieau, Emmanuel; Hill, Marcelo; Delneste, Yves; Cuturi, Maria Cristina; Louvet, Cedric

    2014-01-01

    Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations. In this study, we aimed to evaluate the potential of adoptive transfer of such cells to control auto- and allo-immunity in the mouse. Culture of bone marrow cells with GM-CSF and IL-6 consistently yielded a majority of CD11b+Gr1hi/lo cells exhibiting strong inhibition of CD8+ T cell proliferation in vitro. However, adoptive transfer of these cells failed to alter antigen-specific CD8+ T cell proliferation and cytotoxicity in vivo. Furthermore, MDSC could not prevent the development of autoimmunity in a stringent model of type 1 diabetes. Rather, loading the cells prior to injection with a pancreatic neo-antigen peptide accelerated the development of the disease. Contrastingly, in a model of skin transplantation, repeated injection of MDSC or single injection of LPS-activated MDSC resulted in a significant prolongation of allograft survival. The beneficial effect of MDSC infusions on skin graft survival was paradoxically not explained by a decrease of donor-specific T cell response but associated with a systemic over-activation of T cells and antigen presenting cells, prominently in the spleen. Taken together, our results indicate that in vitro generated MDSC bear therapeutic potential but will require additional in vitro factors or adjunct immunosuppressive treatments to achieve safe and more robust immunomodulation upon adoptive transfer.

  11. Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Tear Production in a Mouse Model of Sjögren's Syndrome

    PubMed Central

    Aluri, Hema S.; Samizadeh, Mahta; Edman, Maria C.; Armaos, Helene L.; Janga, Srikanth R.; Meng, Zhen; Sendra, Victor G.; Hamrah, Pedram; Kublin, Claire L.

    2017-01-01

    The purpose of the present study was to test the potential of mouse bone marrow-derived mesenchymal stem cells (BD-MSCs) in improving tear production in a mouse model of Sjögren's syndrome dry eye and to investigate the underlying mechanisms involved. NOD mice (n = 20) were randomized to receive i.p. injection of sterile phosphate buffered saline (PBS, control) or murine BD-MSCs (1 × 106 cells). Tears production was measured at baseline and once a week after treatment using phenol red impregnated threads. Cathepsin S activity in the tears was measured at the end of treatment. After 4 weeks, animals were sacrificed and the lacrimal glands were excised and processed for histopathology, immunohistochemistry, and RNA analysis. Following BD-MSC injection, tears production increased over time when compared to both baseline and PBS injected mice. Although the number of lymphocytic foci in the lacrimal glands of treated animals did not change, the size of the foci decreased by 40.5% when compared to control animals. The mRNA level of the water channel aquaporin 5 was significantly increased following delivery of BD-MSCs. We conclude that treatment with BD-MSCs increases tear production in the NOD mouse model of Sjögren's syndrome. This is likely due to decreased inflammation and increased expression of aquaporin 5. PMID:28348600

  12. Iron-induced epigenetic abnormalities of mouse bone marrow through aberrant activation of aconitase and isocitrate dehydrogenase.

    PubMed

    Yamamoto, Masayo; Tanaka, Hiroki; Toki, Yasumichi; Hatayama, Mayumi; Ito, Satoshi; Addo, Lynda; Shindo, Motohiro; Sasaki, Katsunori; Ikuta, Katsuya; Ohtake, Takaaki; Fujiya, Mikihiro; Torimoto, Yoshihiro; Kohgo, Yutaka

    2016-10-01

    Iron overload remains a concern in myelodysplastic syndrome (MDS) patients. Iron chelation therapy (ICT) thus plays an integral role in the management of these patients. Moreover, ICT has been shown to prolong leukemia-free survival in MDS patients; however, the mechanisms responsible for this effect are unclear. Iron is a key molecule for regulating cytosolic aconitase 1 (ACO1). Additionally, the mutation of isocitrate dehydrogenase (IDH), the enzyme downstream of ACO1 in the TCA cycle, is associated with epigenetic abnormalities secondary to 2-hydroxyglutarate (2-HG) and DNA methylation. However, epigenetic abnormalities observed in many MDS patients occur without IDH mutation. We hypothesized that iron itself activates the ACO1-IDH pathway, which may increase 2-HG and DNA methylation, and eventually contribute to leukemogenesis without IDH mutation. Using whole RNA sequencing of bone marrow cells in iron-overloaded mice, we observed that the enzymes, phosphoglucomutase 1, glycogen debranching enzyme, and isocitrate dehydrogenase 1 (Idh1), which are involved in glycogen and glucose metabolism, were increased. Digital PCR further showed that Idh1 and Aco1, enzymes involved in the TCA cycle, were also elevated. Additionally, enzymatic activities of TCA cycle and methylated DNA were increased. Iron chelation reversed these phenomena. In conclusion, iron activation of glucose metabolism causes an increase of 2-HG and DNA methylation.

  13. Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma

    PubMed Central

    Calcinotto, Arianna; Ponzoni, Maurilio; Ria, Roberto; Grioni, Matteo; Cattaneo, Elena; Villa, Isabella; Sabrina Bertilaccio, Maria Teresa; Chesi, Marta; Rubinacci, Alessandro; Tonon, Giovanni; Bergsagel, P Leif; Vacca, Angelo; Bellone, Matteo

    2015-01-01

    While multiple myeloma (MM) is almost invariably preceded by asymptomatic monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering MM (SMM), the alterations of the bone marrow (BM) microenvironment that establish progression to symptomatic disease are circumstantial. Here we show that in Vk*MYC mice harboring oncogene-driven plasma cell proliferative disorder, disease appearance associated with substantial modifications of the BM microenvironment, including a progressive accumulation of both CD8+ and CD4+ T cells with a dominant T helper type 1 (Th1) response. Progression from asymptomatic to symptomatic MM was characterized by further BM accrual of T cells with reduced Th1 and persistently increased Th2 cytokine production, which associated with accumulation of CD206+Tie2+ macrophages, and increased pro-angiogenic cytokines and microvessel density (MVD). Notably, MVD was also increased at diagnosis in the BM of MGUS and SMM patients that subsequently progressed to MM when compared with MGUS and SMM that remained quiescent. These findings suggest a multistep pathogenic process in MM, in which the immune system may contribute to angiogenesis and disease progression. They also suggest initiating a large multicenter study to investigate MVD in asymptomatic patients as prognostic factor for the progression and outcome of this disease. PMID:26155424

  14. Characterization of megakaryocyte development in the native bone marrow environment.

    PubMed

    Eckly, Anita; Strassel, Catherine; Cazenave, Jean-Pierre; Lanza, François; Léon, Catherine; Gachet, Christian

    2012-01-01

    Differentiation and maturation of megakaryocytes occur in close association with cellular and extracellular components in the bone marrow. Thus, direct examination of these processes in the native environment provides important information regarding the development of megakaryocytes. In this chapter, we present methods applied to mouse bone marrow to (1) examine the ultrastructure of megakaryocytes and their state of maturation in situ in fixed bone marrow sections and (2) study the dynamics of proplatelet formation by real-time observation of fresh bone marrow explants where megakaryocytes have matured in their natural physiological context. Combining these two approaches allows detailed investigation of in situ megakaryocyte differentiation, including proplatelet formation, which is the final maturation step before platelet release.

  15. Bone Marrow Therapies for Chronic Heart Disease.

    PubMed

    Behbahan, Iman Saramipoor; Keating, Armand; Gale, Robert Peter

    2015-11-01

    Chronic heart failure is a leading cause of death. The demand for new therapies and the potential regenerative capacity of bone marrow-derived cells has led to numerous clinical trials. We critically discuss current knowledge of the biology and clinical application of bone marrow cells. It appears unlikely that bone marrow cells can develop into functional cardiomyocyte after infusion but may have favorable paracrine effects. Most, but not all, clinical trials report a modest short- but not long-term benefit of infusing bone marrow-derived cells. Effect size appears to correlate with stringency of study-design: the most stringent trials report the smallest effect-sizes. We conclude there may be short- but not substantial long-term benefit of infusing bone marrow-derived cells into persons with chronic heart failure and any benefit observed is unlikely to result from trans-differentiation of bone marrow-derived cells into functioning cardiomyocytes. © 2015 AlphaMed Press.

  16. Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment

    PubMed Central

    Naveiras, Olaia; Nardi, Valentina; Wenzel, Pamela L.; Fahey, Frederic; Daley, George Q.

    2009-01-01

    Osteoblasts and endothelium constitute functional niches that support hematopoietic stem cells (HSC) in mammalian bone marrow (BM) 1,2,3 . Adult BM also contains adipocytes, whose numbers correlate inversely with the hematopoietic activity of the marrow. Fatty infiltration of hematopoietic red marrow follows irradiation or chemotherapy and is a diagnostic feature in biopsies from patients with marrow aplasia 4. To explore whether adipocytes influence hematopoiesis or simply fill marrow space, we compared the hematopoietic activity of distinct regions of the mouse skeleton that differ in adiposity. By flow cytometry, colony forming activity, and competitive repopulation assay, HSCs and short-term progenitors are reduced in frequency in the adipocyte-rich vertebrae of the mouse tail relative to the adipocyte-free vertebrae of the thorax. In lipoatrophic A-ZIP/F1 “fatless” mice, which are genetically incapable of forming adipocytes8, and in mice treated with the PPARγ inhibitor Bisphenol-A-DiGlycidyl-Ether (BADGE), which inhibits adipogenesis9, post-irradiation marrow engraftment is accelerated relative to wild type or untreated mice. These data implicate adipocytes as predominantly negative regulators of the bone marrow microenvironment, and suggest that antagonizingmarrow adipogenesis may enhance hematopoietic recovery in clinical bone marrow transplantation. PMID:19516257

  17. Effects of glucan on bone marrow

    PubMed Central

    Vannucci, Luca; Vetvicka, Vaclav

    2014-01-01

    Bone marrow damage represents a significant problem in cancer treatment. Therefore, it is clear that the pharmacologic protection against bone marrow damage is of considerable interest, since the development of novel and effective medical approaches to combat radiation or cytotoxic damage are of major importance not only to the medical field but also to several industries and the military. This review represents a summary of our knowledge of the effects of various glucans on bone marrow protection. PMID:25332994

  18. Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells.

    PubMed

    Ma, Nan; Ladilov, Yury; Moebius, Jeannette M; Ong, Leelee; Piechaczek, Christoph; Dávid, Arpád; Kaminski, Alexander; Choi, Yeong-Hoon; Li, Wenzhong; Egger, Dietmar; Stamm, Christof; Steinhoff, Gustav

    2006-07-01

    The regenerative potential of endothelial and hematopoietic progenitor cells in the heart may vary according to their origin. This study was designed to compare the functional effects of CD133+ cells from human cord blood and bone marrow in a mouse model of myocardial injury. 5 x 10(5) CD133+ cells from bone marrow (BM(CD133)) or cord blood (UCB(CD133)) were injected in the necrosis border zone of NOD/SCID (non-obese diabetic/severe combined immunodeficiency) mice with left ventricular cryoinjury (CI+). Transplanted cells were tracked by immunostaining for hNuclear antigen and by PCR for hDNA. Echocardiography was used to measure contractility. Scar size, capillary density, and cardiomyocyte apoptosis were evaluated by histology. In addition, the myogenic and endothelial differentiation capacity of BM(CD133) and UCB(CD133) was compared in vitro. DNA was detected 4 weeks after cell injection by PCR, but hNuc+ cells were found by immunostaining only after 48 h. Capillary density in both BM(CD133) and UCB(CD133) cell-treated CI+ mice was higher than in control CI+ mice, but not different between BM(CD133) and UCB(CD133) cell-treated hearts. There were no differences in scar size and myocardial mass among BM(CD133), UCB(CD133) and control CI+ mice, but cardiomyocyte apoptosis was reduced by both BM(CD133) and UCB(CD133) cells. The post-injury deterioration of shortening fraction (46.2+/-1% in sham-operated mice and 41.3+/-0.8% in control CI+ mice) was prevented by BM(CD133) cells (45.4+/-0.9%), but not by UCB(CD133) cells (40.8+/-0.7%). On the other hand, both BM(CD133) and UCB(CD133) cells abolished post-injury mortality. In vitro, neither cultivated BM(CD133) or UCB(CD133) cells developed into myocytes, but both readily differentiated towards an endothelial cell phenotype. While both cord blood and marrow CD133+ cells have some beneficial effects on post-injury angiogenesis and survival, only marrow cells appear to improve myocardial contractility.

  19. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow.

    PubMed

    Mayer, Christian Thomas; Ghorbani, Peyman; Nandan, Amrita; Dudek, Markus; Arnold-Schrauf, Catharina; Hesse, Christina; Berod, Luciana; Stüve, Philipp; Puttur, Franz; Merad, Miriam; Sparwasser, Tim

    2014-11-13

    Multiple subsets of FMS-like tyrosine kinase 3 ligand (FLT3L)-dependent dendritic cells (DCs) control T-cell tolerance and immunity. In mice, Batf3-dependent CD103(+) DCs efficiently enter lymph nodes and cross-present antigens, rendering this conserved DC subset a promising target for tolerance induction or vaccination. However, only limited numbers of CD103(+) DCs can be isolated with current methods. Established bone marrow culture protocols efficiently generate monocyte-derived DCs or produce a mixture of FLT3L-dependent DC subsets. We show that CD103(+) DC development requires prolonged culture time and continuous action of both FLT3L and granulocyte macrophage colony-stimulating factor (GM-CSF), explained by a dual effect of GM-CSF on DC precursors and differentiating CD103(+) DCs. Accordingly, we established a novel method to generate large numbers of CD103(+) DCs (iCD103-DCs) with limited presence of other DC subsets. iCD103-DCs develop in a Batf3- and Irf8-dependent fashion, express a CD8α/CD103 DC gene signature, cross-present cell-associated antigens, and respond to TLR3 stimulation. Thus, iCD103-DCs reflect key features of tissue CD103(+) DCs. Importantly, iCD103-DCs express high levels of CCR7 upon maturation and migrate to lymph nodes more efficiently than classical monocyte-derived DCs. Finally, iCD103-DCs induce T cell-mediated protective immunity in vivo. Our study provides insights into CD103(+) DC development and function.

  20. Identifying Differentiation Stage of Individual Primary Hematopoietic Cells from Mouse Bone Marrow by Multivariate Analysis of TOF-Secondary Ion Mass Spectrometry Data

    PubMed Central

    Frisz, Jessica F.; Choi, Ji Sun; Wilson, Robert L.; Harley, Brendan A. C.; Kraft, Mary L.

    2014-01-01

    The ability to self-renew and differentiate into multiple types of blood and immune cells renders hematopoietic stem and progenitor cells (HSPCs) valuable for clinical treatment of hematopoietic pathologies and as models of stem cell differentiation for tissue engineering applications. To study directed HSC differentiation and identify the conditions that recreate the native bone marrow environment, combinatorial biomaterials that exhibit lateral variations in chemical and mechanical properties are employed. New experimental approaches are needed to facilitate correlating cell differentiation stage with location in the culture system. We demonstrate that multivariate analysis of time-of-flight secondary ion mass spectrometry (TOF-SIMS) data can be used to identify the differentiation state of individual hematopoietic cells (HCs) isolated from mouse bone marrow. Here, we identify primary HCs from three distinct stages of B cell lymphopoiesis at the single cell level: HSPCs, common lymphoid progenitors, and mature B cells. The differentiation state of individual HCs in a test set could be identified with a partial least squares discriminant analysis (PLS-DA) model that was constructed with calibration spectra from HCs of known differentiation status. The lowest error of identification was obtained when the intra-population spectral variation between the cells in the calibration and test sets was minimized. This approach complements the traditional methods that are used to identify HC differentiation stage. Further, the ability to gather mass spectrometry data from single HSCs cultured on graded biomaterial substrates may provide significant new insight into how HSPCs respond to extrinsic cues as well as the molecular changes that occur during cell differentiation. PMID:22507202

  1. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer

    PubMed Central

    Morton, J. Jason; Bird, Gregory; Keysar, Stephen B.; Astling, David P.; Lyons, Traci R; Anderson, Ryan T.; Glogowska, Magdalena J.; Estes, Patricia; Eagles, Justin R.; Le, Phuong N.; Gan, Gregory; McGettigan, Brett; Fernandez, Pamela; Padilla-Just, Nuria; Varella-Garcia, Marileila; Song, John I.; Bowles, Daniel W.; Schedin, Pepper; Tan, Aik-Choon; Roop, Dennis R.; Wang, Xiao-Jing; Refaeli, Yosef; Jimeno, Antonio

    2015-01-01

    The limitations of cancer cell lines have led to the development of direct patient derived xenograft (PDX) models. However, the interplay between the implanted human cancer cells and recruited mouse stromal and immune cells alters the tumor microenvironment and limits the value of these models. To overcome these constraints, we have developed a technique to expand human hematopoietic stem and progenitor cells (HSPCs) and use them to reconstitute the radiation-depleted bone marrow of a NOD/SCID/IL2rg−/− (NSG) mouse on which a patient’s tumor is then transplanted (XactMice). The human HSPCs produce immune cells that home into the tumor and help replicate its natural microenvironment. Despite previous passage on nude mice, the expression of epithelial, stromal, and immune genes in XactMice tumors aligns more closely to that of the patient tumor than to those grown in non-humanized mice – an effect partially facilitated by human cytokines expressed by both the HSPC progeny and the tumor cells. The human immune and stromal cells produced in the XactMice can help recapitulate the microenvironment of an implanted xenograft, reverse the initial genetic drift seen after passage on non-humanized mice, and provide a more accurate tumor model to guide patient treatment. PMID:25893296

  2. Cooperation by Fibroblasts and Bone Marrow-Mesenchymal Stem Cells to Improve Pancreatic Rat-to-Mouse Islet Xenotransplantation

    PubMed Central

    Meana, Alvaro; Otero, Jesus; Esteban, Manuel M.

    2013-01-01

    Experimental and clinical experiences highlight the need to review some aspects of islet transplantation, especially with regard to site of grafting and control of the immune response. The subcutaneous space could be a good alternative to liver but its sparse vasculature is its main limitation. Induction of graft tolerance by using cells with immunoregulatory properties is a promising approach to avoid graft rejection. Both Fibroblasts and Mesenchymal Stem Cells (MSCs) have shown pro-angiogenic and immunomodulatory properties. Transplantation of islets into the subcutaneous space using plasma as scaffold and supplemented with fibroblasts and/or Bone Marrow-MSCs could be a promising strategy to achieve a functional extra-hepatic islet graft, without using immunosuppressive drugs. Xenogenic rat islets, autologous fibroblasts and/or allogenic BM-MSCs, were mixed with plasma, and coagulation was induced to constitute a Plasma-based Scaffold containing Islets (PSI), which was transplanted subcutaneously both in immunodeficient and immunocompetent diabetic mice. In immunodeficient diabetic mice, PSI itself allowed hyperglycemia reversion temporarily, but the presence of pro-angiogenic cells (fibroblasts or BM-MSCs) within PSI was necessary to improve graft re-vascularization and, thus, consistently maintain normoglycemia. In immunocompetent diabetic mice, only PSI containing BM-MSCs, but not those containing fibroblasts, normalized glycemia lasting up to one week after transplantation. Interestingly, when PSI contained both fibroblasts and BM-MSCs, the normoglycemia period showed an increase of 4-times with a physiological-like response in functional tests. Histology of immunocompetent mice showed an attenuation of the immune response in those grafts with BM-MSCs, which was improved by co-transplantation with fibroblasts, since they increased BM-MSC survival. In summary, fibroblasts and BM-MSCs showed similar pro-angiogenic properties in this model of islet

  3. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Cancer.gov

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  4. HLA Typing for Bone Marrow Transplantation

    DTIC Science & Technology

    2007-01-31

    for Bone Marrow Transplantation Progress Report for the Period 7 Funding October 1, 2006 - December 31, 2006 Task 1: Product Validation Description...1-0310 HLA Typing for Bone Marrow Transplantation Progress Report for the Period 7 Funding October 1, 2006 - December 31, 2006 Task 2: Validation of

  5. Alterations in Fc[epsilon]RI induced by protoporphyrin plus long-wavelength ultraviolet light in mouse bone marrow-derived mast cells

    SciTech Connect

    Yen, A.; Barrett, K.E.; Gigli, I. ); Liu, F.T. )

    1993-07-15

    As previously reported, protoporphyrin plus long-wavelength UV light (PP/UVA) inhibits IgE-mediated degranulation of mouse bone marrow-derived mast cells, as assessed by measurement of the release of [beta]-hexosaminidase. This inhibitory effect was seen with cells sensitized with IgE either before or after PP/UVA treatment (57.8 and 55.35 inhibition, respectively). PP/UVA did not dissociate IgE already bound to cells as assessed either by measure of release of bound [sup 125]I-IgE or by flow cytometric analysis. Results from immunoadsorption followed by SDS-PAGE analysis suggested that PP/UVA treatment may cause stable conjugation of IgE to its receptor. In unsensitized cells, PP/UVA did not cause conjugation of the unoccupied Fc[epsilon]RI to other proteins in the plasma membrane. Nevertheless, Scatchard analysis revealed that PP/UVA decreased the number of Fc[epsilon]Ri per cell by 37% (0.95 [times] 10[sup 5] vs 1.51 [times] 10[sup 5] cell), whereas affinity of the receptor for IgE was comparable between PP/UVA-treated and untreated cells (3.40 nM vs 3.27 nM). Flow cytometric analysis also confirmed the decrease in Fc[epsilon]RI number in PP/UVA-treated unsensitized mouse bone marrow-derived mast cells. Although 84% of PP/UVA-treated and 82% of untreated cells expressed positive fluorescence when stained with FITC-conjugated IgE, fluorescence intensity was reduced by 40% after PP/UVA treatment. The authors conclude that PP/UVA alters the conformational structure and/or number of Fc[epsilon]RI expressed on the mast cell surface. This effect could potentially explain the ability of PP/UVA to inhibit mast cell secretory function and may be related to an ability of PP/UVA to alter the properties of the plasma membrane. 29 refs., 8 figs.

  6. Autoclaved bone autograph reconstituted with autologous bone marrow.

    PubMed

    Granados-García, Martín; Cabrera-Rojas, Jesús; Guzmán-Flores, Gerardo; Estrada-Lobato, Enrique; Cano-Valdés, Ana María; Santamaría-Linares, Erik

    2011-01-01

    Bone reconstruction is a common problem in the oncological setting. Mandibular reconstruction is done with microvascularized free flaps, but noticeable differences in shape and size exist in relation to the normal mandible; consequently, new reconstructive methods are desirable. We explored the feasibility of recovering osseous viability using a sterilized mandibular segment reconstituted with autologous bone marrow. A 6- to 7-cm mandibular segment was excised in three Creole dogs. The segment was autoclaved for 40 min. The bone was then drilled, producing 3-mm holes every 10-mm. Bone was reconstituted with autologous bone marrow from the iliac spine mixed with particulated bone. Bone autograph was installed underneath the latissimus dorsi muscle. On week four after surgery, dogs received colloidal rhenium and were placed in a gamma camera. The study showed uptake of the radiotracer in the bone graft, demonstrating viability of bone marrow. One hour later, the autograph was excised in two dogs and a histopathological study corroborated the viability of the bone marrow and the formation of new vessels and osteoid. On week twelve, the third dog was administered MDP-99Tc and placed in a gamma camera. Results proved production of new bone. Osseous reconstruction with microvascularized flaps may cause problems, but sterilized bone reconstituted with bone marrow becomes viable. This observation eventually would allow osseous reconstruction, including the mandibule, easily and reliably in patients with osseous tumors. Autoclaved bone reconstituted with bone marrow recovers its viability.

  7. Identification of Suitable Reference Genes for mRNA Studies in Bone Marrow in a Mouse Model of Hematopoietic Stem Cell Transplantation.

    PubMed

    Li, H; Chen, C; Yao, H; Li, X; Yang, N; Qiao, J; Xu, K; Zeng, L

    2016-10-01

    Bone marrow micro-environment changes during hematopoietic stem cell transplantation (HSCT) with subsequent alteration of genes expression. Quantitative polymerase chain reaction (q-PCR) is a reliable and reproducible technique for the analysis of gene expression. To obtain more accurate results, it is essential to find a reference during HSCT. However, which gene is suitable during HSCT remains unclear. This study aimed to identify suitable reference genes for mRNA studies in bone marrow after HSCT. C57BL/6 mice were treated with either total body irradiation (group T) or busulfan/cyclophosphamide (BU/CY) (group B) followed by infusion of bone marrow cells. Normal mice without treatments were served as a control. All samples (group T + group B + control) were defined as group G. On days 7, 14, and 21 after transplantation, transcription levels of 7 candidate genes, ACTB, B2M, GAPDH, HMBS, HPRT, SDHA, and YWHAZ, in bone marrow cells were measured by use of real-time quantitative PCR. The expression stability of these 7 candidate reference genes were analyzed by 2 statistical software programs, GeNorm and NormFinder. Our results showed that ACTB displayed the highest expression in group G, with lowest expression of PSDHA in group T and HPRT in groups B and G. Analysis of expression stability by use of GeNorm or NormFinder demonstrated that expression of B2M in bone marrow were much more stable during HSCT, compared with other candidate genes including commonly used reference genes GAPDH and ACTB. ACTB could be used as a suitable reference gene for mRNA studies in bone marrow after HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Bone marrow examination in pancytopenia.

    PubMed

    Rangaswamy, M; Prabhu; Nandini, N M; Manjunath, G V

    2012-08-01

    Pancytopenia is defined by reduction of all the three formed elements of blood below the normal reference. It may be a manifestation of a wide variety of disorders, which primarily or secondarily affect the bone marrow. Haematological investigation forms the bedrock in the management of patients with pancytopenia and therefore needs detailed study. The total number of cases studied were 100 over a period of two years in the department of pathology, JSS Hospital, Mysore. Megaloblastic anaemia (33%) was the commonest cause of pancytopenia. Other causes were nutritional anaemia (16%), aplastic anaemia (14%), hypersplenism (10%), sepsis (9%) and leukaemia (5%). Less common causes were alcoholic liver disease, haemolytic anaemia, HIV, dengue, systemic lupus erythematosus, viral hepatitis, disseminated TB and multiple myeloma. Most of the patients were in the age group of 11-30 years with a male:female ratio of 1.6:1.Generalised weakness and fatigue (88%) were the commonest presenting complaints. Haemoglobin level varied from 1-10 g/dl with majorIty (70%) of them in the range of 5.1-10 g/dI. TLC was in the range of 500-4000 cells/cmm. Most (34%) of them had 3100-4000 cells/cmm. Platelet count was in the range of 4000-1,40,000 cells/cmm. Reticulocyte count varied from 0.1%-15% with majority (82%) of them ranging from 0.1%-2%. The bone marrow cellularity was hypocellular in 14%, hypercellular in 75%, and normocellular in 11% of the patients. Pancytopenia is a relatively common entity with inadequate attention in Indian subcontinent. A comprehensive clinical and haematological study of patients with pancytopenia will usually help in the identification of the underlying cause. However in view of wide array of aetiologies, pancytopenia continues to be a diagnostic challenge for haematologists.

  9. Question of bone marrow stromal fibroblast traffic

    SciTech Connect

    Maloney, M.A.; Lamela, R.A.; Patt, H.M.

    1985-01-01

    Bone marrow stromal fibroblasts (CFU-F) normally do not exchange bone marrow sites in vivo. Restitution of the CFU-F after radiation damage is primarily recovery by the local fibroblasts from potentially lethal damage. Migration of stromal fibroblasts from shielded sites to an irradiated site makes a minimal contribution, if any, to CFU-F recovery. Determination of the relative contribution of donor stromal cells in bone marrow transplants by karyotyping the proliferating bone marrow stromal cells in vitro may not reflect the relative distribution of fibroblasts in the marrow. If there is residual damage to the host stromal fibroblasts from treatment before transplantation, these cells may not be able to proliferate in vitro. Therefore, an occasional transplanted fibroblast may contribute most of the metaphase figures scored for karyotype.

  10. An assay for growth of mouse bone marrow cells in microtiter liquid culture using the tetrazolium salt MTT, and its application to studies of myelopoiesis.

    PubMed

    Monner, D A

    1988-12-01

    Mouse bone marrow cells were grown in liquid culture in microtiter plates in the presence of different colony-stimulating factors (CSF). Growth was assayed using the tetrazolium salt MTT, which is reduced in the mitochondria of viable cells to a water-insoluble blue formazan dye. Two technical problems have limited the use of this assay: the solubilization of the dye crystals and the necessity to acidify the phenol red in the culture medium. Both could be solved here by the use of a developing solution of 5% formic acid in isopropanol. Using manual mixing combined with a short sonication by floating the plates in a sonic bath, the crystals were dissolved within minutes. There was no flocculation of protein, even using medium with 20% serum. The color remained stable for at least 4 h. This enabled the semi-automatic measurement of large numbers of cultures directly in the microtiter plates. Growth and differentiation of myelopoietic precursor cells in the liquid cultures was shown to be comparable to that in soft agar. Cell growth was CSF-dependent. The calculated cell yield per colony forming cell (CFC) seeded was within the range of the average cell number per colony found in soft agar, and the spectrum of mature cells obtained reflected the type of CSF used as stimulus. Using the combined culture and assay systems, it was possible to perform detailed kinetic studies of myelopoiesis. This technique should be useful for studying the mechanisms of action of pharmacological modulators of myelopoiesis.

  11. Induction of Poly(ADP-ribose) Polymerase in Mouse Bone Marrow Stromal Cells Exposed to 900 MHz Radiofrequency Fields: Preliminary Observations

    PubMed Central

    He, Qina; Sun, Yulong; Zong, Lin; Tong, Jian; Cao, Yi

    2016-01-01

    Background. Several investigators have reported increased levels of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme which plays an important role in the repair of damaged DNA, in cells exposed to extremely low dose ionizing radiation which does not cause measurable DNA damage. Objective. To examine whether exposure of the cells to nonionizing radiofrequency fields (RF) is capable of increasing messenger RNA of PARP-1 and its protein levels in mouse bone marrow stromal cells (BMSCs). Methods. BMSCs were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 3 hours/day for 5 days. PARP-1 mRNA and its protein levels were examined at 0, 0.5, 1, 2, 4, 6, 8, and 10 hours after exposure using RT-PCR and Western blot analyses. Sham-exposed (SH) cells and those exposed to ionizing radiation were used as unexposed and positive control cells. Results. BMSCs exposed to RF showed significantly increased expression of PARP-1 mRNA and its protein levels after exposure to RF while such changes were not observed in SH-exposed cells. Conclusion. Nonionizing RF exposure is capable of inducing PARP-1. PMID:27190989

  12. Comparing the effect of uniaxial cyclic mechanical stimulation and chemical factors on myogenin and Myh2 expression in mouse embryonic and bone marrow derived mesenchymal stem cells.

    PubMed

    Tannaz, Norizadeh Abbariki; Ali, Shokrgozar Mohammad; Nooshin, Haghighipour; Nasser, Aghdami; Reza, Mahdian; Amir, Amanzadeh; Maryam, Jazayeri

    2014-03-01

    Environmental factors affect stem cell differentiation. In addition to chemical factors, mechanical signals have been suggested to enhance myogenic differentiation of stem cells. Therefore, this study was undertaken to illustrate and compare the effect of chemical and mechanical stimuli on Myogenin (MyoG) and Myosin heavy chani 2 (Myh2) expression of mouse bone marrow-derived mesenchymal stem cells (BMSCs) and embryonic stem cells (ESCs). After isolation and expansion of BMSCs and generation of embryoid bodies and spontaneous differentiation of ESCs, cells were examined in 4 groups: (1) control group: untreated cells; (2) chemical group: cells incubated in myogenic medium (5-azacythidine and horse serum for BMSCs, dimethyl sulfoxide (DMSO) and horse serum for ESCs) for 5 days; (3) mechanical group: cells exposed to uniaxial cyclic strain (8%, 1 Hz, 24 h) and (4) chemical + mechanical group: cells incubated in myogenic medium for 4 days and then exposed to uniaxial cyclic strain. Real-time PCR was used to examine the expression of MyoG and Myh2 as specific myogenic markers. suggested that mechanical loading, as a single factor, could elevate MyoG and Myh2 expression. Combining chemical with mechanical factor increases expression and there was no significant difference in MyoG expression of ESCs- and MSCs-chemical + mechanical groups; however, Myh2 expression was significantly higher in ESCs-mechanical group than that in the same group of MSCs.

  13. Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: Gamma-radiation-induced DNA strand breaks and repair.

    PubMed

    Ji, Yongxin; He, Qina; Sun, Yulong; Tong, Jian; Cao, Yi

    2016-01-01

    The aim of this study was to examine whether radiofrequency field (RF) preexposure induced adaptive responses (AR) in mouse bone-marrow stromal cells (BMSC) and the mechanisms underlying the observed findings. Cells were preexposed to 900-MHz radiofrequency fields (RF) at 120 μW/cm(2) power intensity for 4 h/d for 5 d. Some cells were subjected to 1.5 Gy γ-radiation (GR) 4 h following the last RF exposure. The intensity of strand breaks in the DNA was assessed immediately at 4 h. Subsequently, some BMSC were examined at 30, 60, 90, or 120 min utilizing the alkaline comet assay and γ-H2AX foci technique. Data showed no significant differences in number and intensity of strand breaks in DNA between RF-exposed and control cells. A significant increase in number and intensity of DNA strand breaks was noted in cells exposed to GR exposure alone. RF followed by GR exposure significantly decreased number of strand breaks and resulted in faster kinetics of repair of DNA strand breaks compared to GR alone. Thus, data suggest that RF preexposure protected cells from damage induced by GR. Evidence indicates that in RF-mediated AR more rapid repair kinetics occurs under conditions of GR-induced damage, which may be attributed to diminished DNA strand breakage.

  14. Cellular behaviour of hepatocyte-like cells from nude mouse bone marrow-derived mesenchymal stem cells on galactosylated poly(D,L-lactic-co-glycolic acid).

    PubMed

    Roh, Hyun; Yang, Dae Hyeok; Chun, Heung Jae; Khang, Gilson

    2015-07-01

    Previously, the galactosylation of poly(d,l-lactic-co-glycolic acid) (PLGA) surface was accomplished by grafting allylamine (AA), using inductively coupled plasma-assisted chemical vapour deposition (ICP-CVD) and conjugating lactobionic acid (LA) with AA via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) activation for hepatic tissue-engineering purposes. As a continuation study, the cellular behaviour of hepatocyte-like cells (HLCs) on the surface of the galactosylated PLGA were investigated. Nude mouse bone marrow-derived mesenchymal stem cells (MSCs) were cultured under hepatogenic conditions and the differentiated cells were characterized by reverse-transcription polymerase chain reaction (RT-PCR), immunofluorescence and periodic acid-Schiff (PAS) staining. Galactosylated PLGA enhanced the proliferation rate of HLCs compared to the control; HLCs on the surface of the sample became aggregated and formed spheroids after 3 days of culture. A large number of cells on the surface of the sample exhibited increased liver-specific functional activities, such as albumin and urea secretions. In addition, multicellular spheroids in the sample strongly expressed phospholyated focal adhesion kinase (pFAK) (cell-matrix interactions), E-cadherin (cell-cell interactions) and connexin 32 (Cox32; gap junction).

  15. Modulating effect of Leptadenia reticulata (Retz) Wight & arn against chromate (VI)-induced immunosuppression and oxidative stress on mouse splenic lymphocytes and bone marrow derived macrophages.

    PubMed

    Girishkumar, V; Sreepriya, M; Praveenkumar, S; Bali, Geetha; Jagadeesh, M S

    2010-09-15

    Leptadenia reticulata (Retz) Wight & arn is mentioned in the ancient ayurvedic literature as an immune booster and rejuvenator. To investigate, the effects of different forms of the extract of Leptadenia reticulata [Aqueous extract (JAE), Padavashesha kashaya (JPK) and Tarpana kashaya (JTK)] to alleviate the experimental immunosuppression induced by the immunotoxicant chromate (VI) in vitro. Standard cell proliferation and cytotoxicity assays like MTT assay, trypan blue dye exclusion test, neutral red dye uptake test, NBT reduction test, determination of percentage cell survival and estimation of markers of oxidative stress were performed in the study. The study was conducted on primary cultures of mouse splenic lymphocytes and bone marrow derived macrophages. Treatment with all the three forms of the extract used in the study offered protection against chromate (VI)-induced immunosuppression and the overall protective effect was found to be superior in the case of the aqueous extract of Leptadenia reticulata (JAE). These results confirm that Leptadenia reticulata acts as a modulator and alleviates the immunosuppressive conditions induced by chromate (VI). Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Molecular Characterization of Prospectively Isolated Multipotent Mesenchymal Progenitors Provides New Insight into the Cellular Identity of Mesenchymal Stem Cells in Mouse Bone Marrow

    PubMed Central

    Badaloni, Aurora; Chiara, Francesca; Stjernberg, Jenny; Polisetti, Naresh; Nihlberg, Kristian; Consalez, G. Giacomo; Sigvardsson, Mikael

    2013-01-01

    Despite great progress in the identification of mesenchymal stem cells (MSCs) from bone marrow (BM), our knowledge of their in vivo cellular identity remains limited. We report here that cells expressing the transcription factor Ebf2 in adult BM display characteristics of MSCs. The Ebf2+ cells are highly clonal and physiologically quiescent. In vivo lineage-tracing experiments, single cell clone transplantations, and in vitro differentiation assays revealed their self-renewal and multilineage differentiation capacity. Gene expression analysis of the freshly sorted Ebf2+ cells demonstrated the expression of genes previously reported to be associated with MSCs and the coexpression of multiple lineage-associated genes at the single-cell level. Thus, Ebf2 expression is not restricted to committed osteoblast progenitor cells but rather marks a multipotent mesenchymal progenitor cell population in adult mouse BM. These cells do not appear to completely overlap the previously reported MSC populations. These findings provide new insights into the in vivo cellular identity and molecular properties of BM mesenchymal stem and progenitor cells. PMID:23184664

  17. Up-regulation of immunomodulatory effects of mouse bone-marrow derived mesenchymal stem cells by tetrahydrocannabinol pre-treatment involving cannabinoid receptor CB2

    PubMed Central

    Xie, Junran; Xiao, Dongju; Xu, Yun; Zhao, Jinning; Jiang, Li; Hu, Xuming; Zhang, Yaping; Yu, Lina

    2016-01-01

    Chronic pain is commonly and closely correlated with inflammation. Both cannabinoid signaling and mesenchymal stem cells (MSCs) have been demonstrated to reduce inflammatory pain. Although cannabinoid signaling is essential for mesenchymal stem cell survival and differentiation, little is known about its role in modulatory effect of MSCs on inflammation and pain sensitivity. Here we showed that mouse bone-marrow derived MSCs (BM-MSCs) expressed both cannabinoid receptor type 1 and 2 (CB1 and CB2). CB2 expression level in BM-MSCs increased with their maturation. In addition, we found that tetrahydrocannabinol (THC) activated CB2 receptor and ERK signaling, consequently enhancing the modulation of MSCs on inflammation-associated cytokine release from lipopolysaccharides-stimulated microglia. Consistent with in vitro data, THC pretreatment enhanced the immunomodulatory effects of BM-MSC on thermal hyperalgesia and mechanical allodynia in chronic constriction injury model, by decreasing the release of pro-inflammation cytokines. Our study revealed the crucial role of THC in promoting the immunomodulatory effects of MSCs and proposed a new strategy to alleviate pain based on stem cells therapy. PMID:26824325

  18. Effects of Cerium Oxide Nanoparticles on the Proliferation, Osteogenic Differentiation and Adipogenic Differentiation of Primary Mouse Bone Marrow Stromal Cells In Vitro.

    PubMed

    Zhang, Qun; Ge, Kun; Ren, Huihui; Zhang, Cuimiao; Zhang, Jinchao

    2015-09-01

    The effects of cerium oxide nanoparticles (nanoceria) on the proliferation, osteogenic and adipogenic differentiation of primary mouse bone marrow stromal cells (BMSCs) were studied by employing 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheny tetrazolium bromide (MTT), alkaline phosphatase (ALP) activity, collagen production, alizarin red-S (ARS) and oil red o stain assays. The results indicated that nanoceria increased the viability of BMSCs at all tested concentrations with evident dose dependence for 24 and 72 h. On day 14, nanoceria inhibited the osteogenic differentiation of BMSCs at all tested concentrations. On day 19 and 24, nanoceria inhibited the formation of mineralized matrix nodules of BMSCs at all tested concentrations. On day 17, nanoceria inhibited the adipogenic differentiation of BMSCs at all tested concentrations. This suggests that the effects of nanoceria on the proliferation, osteogenic differentiation and adipogenic differentiation of BMSCs are very complicated. Both the concentration and culture time have significant influence on the proliferation, osteogenic differentiation and adipogenic differentiation of BMSCs. These results will be helpful for rational applications of nanoceria in the future.

  19. Human Bone Marrow Mesenchymal Stem Cell-Derived Hepatocytes Improve the Mouse Liver after Acute Acetaminophen Intoxication by Preventing Progress of Injury

    PubMed Central

    Stock, Peggy; Brückner, Sandra; Winkler, Sandra; Dollinger, Matthias M.; Christ, Bruno

    2014-01-01

    Mesenchymal stem cells from human bone marrow (hMSC) have the potential to differentiate into hepatocyte-like cells in vitro and continue to maintain important hepatocyte functions in vivo after transplantation into host mouse livers. Here, hMSC were differentiated into hepatocyte-like cells in vitro (hMSC-HC) and transplanted into livers of immunodeficient Pfp/Rag2−/− mice treated with a sublethal dose of acetaminophen (APAP) to induce acute liver injury. APAP induced a time- and dose-dependent damage of perivenous areas of the liver lobule. Serum levels of aspartate aminotransferase (AST) increased to similar levels irrespective of hMSC-HC transplantation. Yet, hMSC-HC resided in the damaged perivenous areas of the liver lobules short-term preventing apoptosis and thus progress of organ destruction. Disturbance of metabolic protein expression was lower in the livers receiving hMSC-HC. Seven weeks after APAP treatment, hepatic injury had completely recovered in groups both with and without hMSC-HC. Clusters of transplanted cells appeared predominantly in the periportal portion of the liver lobule and secreted human albumin featuring a prominent quality of differentiated hepatocytes. Thus, hMSC-HC attenuated the inflammatory response and supported liver regeneration after acute injury induced by acetaminophen. They hence may serve as a novel source of hepatocyte-like cells suitable for cell therapy of acute liver diseases. PMID:24758938

  20. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF- and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains

    PubMed Central

    de Souza Silva, Calliandra; Tavares, Aldo Henrique; Sousa Jeronimo, Marcio; Soares de Lima, Yasmin; da Silveira Derengowski, Lorena; Lorenzetti Bocca, Anamélia; Silva-Pereira, Ildinete

    2015-01-01

    Considering the importance of macrophages as the first line of defense against fungal infection and the different roles played by the two M1- and M2-like polarized macrophages, we decided to evaluate the effects of Paracoccidioides brasiliensis infection on GM-CSF- and M-CSF-induced bone marrow-derived macrophages (BMM) from the A/J and B10.A mouse strains, an established model of resistance/susceptibility to PCM, respectively. Upon differentiation, the generated GM- or M-BMMs were characterized by morphological analyses, gene expression profiles, and cytokines production. Our main results demonstrate that GM-BMMs derived from A/J and B.10 produced high levels of pro- and anti-inflammatory cytokines that may contribute to generate an unbalanced early immune response. In accordance with the literature, the B10.A susceptible mice lineage has an innate tendency to polarize into M1-like phenotype, whereas the opposite phenotype occurs in A/J resistance mice. In this context, our data support that susceptibility and resistance are strongly correlated with M1 and M2 polarization, respectively. PMID:26543326

  1. Gene therapy cures the anemia and lethal bone marrow failure in a mouse model of RPS19-deficient Diamond-Blackfan anemia

    PubMed Central

    Jaako, Pekka; Debnath, Shubhranshu; Olsson, Karin; Modlich, Ute; Rothe, Michael; Schambach, Axel; Flygare, Johan; Karlsson, Stefan

    2014-01-01

    Diamond-Blackfan anemia is a congenital erythroid hypoplasia caused by functional haploinsufficiency of genes encoding ribosomal proteins. Mutations involving the ribosomal protein S19 gene are detected in 25% of patients. Enforced expression of ribosomal protein S19 improves the overall proliferative capacity, erythroid colony-forming potential and erythroid differentiation of hematopoietic progenitors from ribosomal protein S19-deficient patients in vitro and in vivo following xenotransplantation. However, studies using animal models are needed to assess the therapeutic efficacy and safety of the viral vectors. In the present study we have validated the therapeutic potential of gene therapy using mouse models of ribosomal protein S19-deficient Diamond-Blackfan anemia. Using lentiviral gene transfer we demonstrated that enforced expression of ribosomal protein S19 cures the anemia and lethal bone marrow failure in recipients transplanted with ribosomal protein S19-deficient cells. Furthermore, gene-corrected ribosomal protein S19-deficient cells showed an increased pan-hematopoietic contribution over time compared to untransduced cells without signs of vector-mediated toxicity. Our study provides a proof of principle for the development of clinical gene therapy to cure ribosomal protein 19-deficient Diamond-Blackfan anemia. PMID:25216681

  2. The Effects of Paracoccidioides brasiliensis Infection on GM-CSF- and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains.

    PubMed

    de Souza Silva, Calliandra; Tavares, Aldo Henrique; Sousa Jeronimo, Marcio; Soares de Lima, Yasmin; da Silveira Derengowski, Lorena; Bocca, Anamélia Lorenzetti; Silva-Pereira, Ildinete

    2015-01-01

    Considering the importance of macrophages as the first line of defense against fungal infection and the different roles played by the two M1- and M2-like polarized macrophages, we decided to evaluate the effects of Paracoccidioides brasiliensis infection on GM-CSF- and M-CSF-induced bone marrow-derived macrophages (BMM) from the A/J and B10.A mouse strains, an established model of resistance/susceptibility to PCM, respectively. Upon differentiation, the generated GM- or M-BMMs were characterized by morphological analyses, gene expression profiles, and cytokines production. Our main results demonstrate that GM-BMMs derived from A/J and B.10 produced high levels of pro- and anti-inflammatory cytokines that may contribute to generate an unbalanced early immune response. In accordance with the literature, the B10.A susceptible mice lineage has an innate tendency to polarize into M1-like phenotype, whereas the opposite phenotype occurs in A/J resistance mice. In this context, our data support that susceptibility and resistance are strongly correlated with M1 and M2 polarization, respectively.

  3. Lineage-related and particle size-dependent cytotoxicity of chitosan nanoparticles on mouse bone marrow-derived hematopoietic stem and progenitor cells.

    PubMed

    Omar Zaki, Siti Sarah; Katas, Haliza; Hamid, Zariyantey Abd

    2015-11-01

    Chitosan nanoparticles (CSNPs) have potential applications in stem cell research. In this study, ex vivo cytotoxicity of CSNPs on mouse bone marrow-derived (MBMCs) hematopoietic stem and progenitor cells (HSPCs) was determined. MBMCs were exposed to CSNPs of different particle sizes at various concentrations for up to 72 h. Cytotoxicity effect of CSNPs on MBMCs was determined using MTT, Live/Dead Viability/Cytotoxicity assays and flow cytometry analysis of surface antigens on HSCs (Sca-1(+)), myeloid-committed progenitors (CD11b(+), Gr-1(+)), and lymphoid-committed progenitors (CD45(+), CD3e(+)). At 24 h incubation, MBMCs' viability was not affected by CSNPs. At 48 and 72 h, significant reduction was detected at higher CSNPs concentrations. Small CSNPs (200 nm) significantly reduced MBMCs' viability while medium-sized particle (∼400 nm) selectively promoted MBMCs growth. Surface antigen assessment demonstrated lineage-dependent effect. Significant decrease in Sca-1(+) cells percentage was observed for medium-sized particle at the lowest CSNPs concentration. Meanwhile, reduction of CD11b(+) and Gr-1(+) cells percentage was detected at high and intermediate concentrations of medium-sized and large CSNPs. Percentage of CD45(+) and CD3e(+) cells along with ROS levels were not significantly affected by CSNPs. In conclusion, medium-sized and large CSNPs were relatively non-toxic at lower concentrations. However, further investigations are necessary for therapeutic applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Acetylcorynoline Impairs the Maturation of Mouse Bone Marrow-Derived Dendritic Cells via Suppression of IκB Kinase and Mitogen-Activated Protein Kinase Activities

    PubMed Central

    Fu, Ru-Huei; Wang, Yu-Chi; Liu, Shih-Ping; Chu, Ching-Liang; Tsai, Rong-Tzong; Ho, Yu-Chen; Chang, Wen-Lin; Chiu, Shao-Chih; Harn, Horng-Jyh; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2013-01-01

    Background Dendritic cells (DCs) are major modulators in the immune system. One active field of research is the manipulation of DCs as pharmacological targets to screen novel biological modifiers for the treatment of inflammatory and autoimmune disorders. Acetylcorynoline is the major alkaloid component derived from Corydalis bungeana herbs. We assessed the capability of acetylcorynoline to regulate lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs. Methodology/Principal Findings Our experimental data showed that treatment with up to 20 µM acetylcorynoline does not cause cytotoxicity in cells. Acetylcorynoline significantly inhibited the secretion of tumor necrosis factor-α, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also decreased by acetylcorynoline, and the endocytic capacity of LPS-stimulated DCs was restored by acetylcorynoline. In addition, LPS-stimulated DC-elicited allogeneic T-cell proliferation was blocked by acetylcorynoline, and the migratory ability of LPS-stimulated DCs was reduced by acetylcorynoline. Moreover, acetylcorynoline significantly inhibits LPS-induced activation of IκB kinase and mitogen-activated protein kinase. Importantly, administration of acetylcorynoline significantly attenuates 2,4-dinitro-1-fluorobenzene-induced delayed-type hypersensitivity. Conclusions/Significance Acetylcorynoline may be one of the potent immunosuppressive agents through the blockage of DC maturation and function. PMID:23472193

  5. Gene therapy cures the anemia and lethal bone marrow failure in a mouse model of RPS19-deficient Diamond-Blackfan anemia.

    PubMed

    Jaako, Pekka; Debnath, Shubhranshu; Olsson, Karin; Modlich, Ute; Rothe, Michael; Schambach, Axel; Flygare, Johan; Karlsson, Stefan

    2014-12-01

    Diamond-Blackfan anemia is a congenital erythroid hypoplasia caused by functional haploinsufficiency of genes encoding ribosomal proteins. Mutations involving the ribosomal protein S19 gene are detected in 25% of patients. Enforced expression of ribosomal protein S19 improves the overall proliferative capacity, erythroid colony-forming potential and erythroid differentiation of hematopoietic progenitors from ribosomal protein S19-deficient patients in vitro and in vivo following xenotransplantation. However, studies using animal models are needed to assess the therapeutic efficacy and safety of the viral vectors. In the present study we have validated the therapeutic potential of gene therapy using mouse models of ribosomal protein S19-deficient Diamond-Blackfan anemia. Using lentiviral gene transfer we demonstrated that enforced expression of ribosomal protein S19 cures the anemia and lethal bone marrow failure in recipients transplanted with ribosomal protein S19-deficient cells. Furthermore, gene-corrected ribosomal protein S19-deficient cells showed an increased pan-hematopoietic contribution over time compared to untransduced cells without signs of vector-mediated toxicity. Our study provides a proof of principle for the development of clinical gene therapy to cure ribosomal protein 19-deficient Diamond-Blackfan anemia.

  6. Mast cell growth-enhancing activity (MEA) stimulates interleukin 6 production in a mouse bone marrow-derived mast cell line and a malignant subline.

    PubMed

    Hültner, L; Moeller, J

    1990-09-01

    A novel mast cell growth-enhancing activity (MEA/P40/interleukin 9 [IL-9]) purified from the conditioned medium of a murine interleukin 2 (IL-2)-dependent Mlsa-specific T-cell line (MLS4.2) was tested for its capacity to induce interleukin 6 (IL-6) production in a mouse bone marrow-derived factor-dependent mast cell line (L138.8A). This interleukin 3 (IL-3)/interleukin 4 (IL-4)/MEA-responsive cell line was demonstrated recently to express IL-6 mRNA and to secrete IL-6 when cultured with IL-3/IL-4. Now we were able to show that conditioned medium from L138.8A mast cells stimulated with MEA alone contained growth factor activity for the IL-6-dependent mouse hybridoma cell line 7TD1 that was completely blocked by the monoclonal anti-IL-6 antibody 6B4. A dose-response study including IL-3, IL-4, and MEA tested either alone or in different combinations revealed that among these growth factors MEA was the most potent inducer of IL-6 in L138.8A cells. Moreover, IL-4 but not IL-3 had a strong synergistic effect on MEA-induced IL-6 production. The autonomous malignant mast cell subline L138Cauto also showed enhanced IL-6 production when stimulated with MEA. Our findings indicate that MEA (IL-9) not only provides a proliferation signal, but also leads to a marked functional activation of responsive mast cells.

  7. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure.

    PubMed

    Lee, Ho-Joon; Selesniemi, Kaisa; Niikura, Yuichi; Niikura, Teruko; Klein, Rachael; Dombkowski, David M; Tilly, Jonathan L

    2007-08-01

    Although early menopause frequently occurs in female cancer patients after chemotherapy (CTx), bone marrow (BM) transplantation (BMT) has been linked to an unexplained return of ovarian function and fertility in some survivors. Studies modeling this in mice have shown that BMT generates donor-derived oocytes in CTx-treated recipients. However, a subsequent report claimed that ovulated eggs are not derived from BM and that BM-derived oocytes reported previously are misidentified immune cells. This study was conducted to further clarify the impact of BMT on female reproductive function after CTx using a preclinical mouse model. Female mice were administered CTx followed by BMT using coat color-mismatched female donors. After housing with males, the number of pregnancies and offspring genotype were recorded. For cell tracking, BM from germline-specific green fluorescent protein-transgenic mice was transplanted into CTx-treated wild-type recipients. Immune cells were sorted from blood and analyzed for germline markers. BMT rescued long-term fertility in CTx-treated females, but all offspring were derived from the recipient germline. Cell tracking showed that donor-derived oocytes were generated in ovaries of recipients after BMT, and two lines of evidence dispelled the claim that these oocytes are misidentified immune cells. These data from a preclinical mouse model validate a testable clinical strategy for preserving or resurrecting ovarian function and fertility in female cancer patients after CTx, thus aligning with recommendations of the 2005 National Cancer Institute Breast Cancer Progress Review Group and President's Cancer Panel to prioritize research efforts aimed at improving the quality of life in cancer survivors.

  8. Bone Marrow-Derived Cell Accumulation in the Spinal Cord Is Independent of Peripheral Mobilization in a Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Peake, Kyle; Manning, John; Lewis, Coral-Ann; Tran, Kevin; Rossi, Fabio; Krieger, Charles

    2017-01-01

    Bone marrow-derived cells (BMDCs) are capable of migrating across the blood–brain barrier (BBB) and accumulating in the central nervous system (CNS) when transplanted into recipients conditioned with whole-body irradiation or chemotherapy. We used the chemotherapeutic agents busulfan and treosulfan to condition recipient mice for transplantation with bone marrow (BM) cells isolated from donor mice ubiquitously expressing green fluorescent protein. We attempted to increase the accumulation of BMDCs in the CNS by mobilization of BMDCs using either, or both, granulocyte colony-stimulating factor (GCSF) or plerixafor (AMD3100). We also used several concentrations of busulfan. We hypothesized that higher concentrations of busulfan and BMDC mobilization would increase numbers of GFP+ cells in the CNS. The doses of busulfan employed (60–125 mg/kg) all resulted in high levels of sustained chimerism (>85% 1 year post-transplant) in both the blood and BM of wild-type (WT) mice and an amyotrophic lateral sclerosis (ALS) mouse model. Moreover, cells accumulated within the CNS in a dose-, time-, and disease-dependent manner. Conditioning with the hydrophilic busulfan analog treosulfan, which is unable to cross the BBB efficiently, also resulted in a high degree of BM chimerism. However, few GFP+ BMDCs were found within the CNS of WT or ALS mice of treosulfan-conditioned mice. Mobilization of BMDCs into the circulation using GCSF and/or AMD3100 did not lead to increased accumulation of GFP+ BMDCs within the CNS of WT or ALS mice. Weekly analysis of BMDC accumulation revealed that BMDCs accumulated more rapidly and to a greater extent in the CNS of ALS mice conditioned with a high dose (125 mg/kg) of busulfan compared to a lower dose (80 mg/kg). The number of GFP+ BMDCs in the CNS labeling with the proliferation marker Ki67 increased in parallel with BMDC accumulation within the CNS. Our results indicate that establishment of high levels of blood and BM chimerism

  9. Kinetics of erythrogenesis after bone marrow transplantation.

    PubMed

    Lazarus, H M; Chahine, A; Lacerna, K; Wamble, A; Iaffaldano, C; Straight, M; Rabinovitch, A; Schimenti, K J; Jacobberger, J

    1992-04-01

    To determine the kinetics of bone marrow erythrogenesis after bone marrow transplantation, the authors counted reticulocytes (by blood smear and flow cytometry) and compared those data with neutrophil and platelet recovery in 23 consecutive bone marrow transplant patients. The earliest indication of marrow recovery after allogeneic and autologous bone marrow transplantation was defined as the second increasing cell count after the lowest recorded count, provided that the trend continued upward. Recovery of marrow function was detected earlier in 10 of 23 patients using reticulocyte counts than by either neutrophil or platelet count alone. Specifically, in 8 of these 10 patients, recovery of erythropoiesis was determined earlier by flow cytometric examination than by the blood smear method. On the other hand, combining the data using the earliest value of platelet, neutrophil, and reticulocyte counts indicated that the mean day of recovery in our patient population was determined to be 12.1 +/- 4 days after marrow infusion. In patients undergoing autologous and allogeneic bone marrow transplantation, serial neutrophil and reticulocyte count determinations are complementary in early clinical detection of successful engraftment.

  10. Pituitary abscess after autologous bone marrow transplantation.

    PubMed

    Leff, R S; Martino, R L; Pollock, W J; Knight, W A

    1989-05-01

    The first case of pituitary abscess arising in a patient during recovery from autologous bone marrow transplantation is reported. A 31-year-old man with a 9 month history of T-cell lymphoma died suddenly more than 60 days after successful treatment with high-dose cyclophosphamide, total body irradiation, and autologous bone marrow infusion. Autopsy revealed a pituitary abscess associated with clinically silent sphenoid sinusitis. Unique aspects of this case are presented and clinical and pathologic features of pituitary abscess are reviewed. Although rare, pituitary abscess may complicate recovery from bone marrow transplantation.

  11. [Increased efficacy of allogenic bone marrow transplantation].

    PubMed

    Fedotenkov, A G; Danilova, L A; Ignasheva, L P

    1982-08-01

    Experiments made in vivo and vitro have demonstrated that conservation of allogeneic hemopoietic tissue with glycerin brings about a decrease in transplatation, homologous activity of T lymphocytes. Allogeneic bone marrow conserved with glycerin compares very favourably with freshly prepared allogeneic bone marrow since the transplant-versus-host reaction is attenuated under the effect of glycerin. Moreover, it shows a higher proliferative activity. The glycerin-induced reduction of the inactivating effect of lymphocytes against non-syngeneic colony-forming units enables the conserved bone marrow to be transplanted from several donors.

  12. Megakaryocytes, malignancy and bone marrow vascular niches.

    PubMed

    Psaila, B; Lyden, D; Roberts, I

    2012-02-01

    Dynamic interactions between hematopoietic cells and their specialized bone marrow microenvironments, namely the vascular and osteoblastic 'niches', regulate hematopoiesis. The vascular niche is conducive for thrombopoiesis and megakaryocytes may, in turn, regulate the vascular niche, especially in supporting vascular and hematopoietic regeneration following irradiation or chemotherapy. A role for platelets in tumor growth and metastasis is well established and, more recently, the vascular niche has also been implicated as an area for preferential homing and engraftment of malignant cells. This article aims to provide an overview of the dynamic interactions between cellular and molecular components of the bone marrow vascular niche and the potential role of megakaryocytes in bone marrow malignancy.

  13. [Changes in the bone marrow in cancer patients. 61 bone marrow biopsies].

    PubMed

    Marsan, C; Henon, P; Cywiner-Golenzer, C; Zitouna, M M; Girardi, P

    1976-01-01

    The authors studied 61 bone marrow biopsies carried out in cancerous patients, presumably suffering from a bone metastasis and before any treatment. They feel that quantitative and qualitative changes in the bone marrow may be considered to be an indirect diagnostic indication of metastatic spread.

  14. Suppressive activity of acivicin on murine bone marrow hemopoietic progenitors.

    PubMed

    Castello, G; Mencoboni, M; Lerza, R; Cerruti, A; Bogliolo, G; Pannacciulli, I

    1992-01-01

    Acivicin (AVC), a L-glutamine antagonist, is an intriguing antimetabolite coupling cell growth inhibition activity with differentiating effects. In this in vivo study the influence of acivicin on mice bone marrow hemopoietic progenitors was tested. 10 mg/kg b.w./day of acivicin were i.p. injected in B6D2F1 mice for nine days. Leucocyte and reticulocyte level (in peripheral blood), CFU-S (multipotent stem cells) and GM-CFU (granulocyte-macrophage committed progenitors) content in bone marrow were determined during drug administration and for 14 days thereafter. All tested populations decreased severely during the first days of treatment. The drop was particularly striking for bone marrow CFU-S. The recovery of hemopoietic progenitors, however, began while AVC was still administered. These results suggest that the effects of acivicin on normal mouse hemopoietic system are mainly inhibitory, causing considerable myelosuppression.

  15. Alteration of hedgehog signaling by chronic exposure to different pesticide formulations and unveiling the regenerative potential of recombinant sonic hedgehog in mouse model of bone marrow aplasia.

    PubMed

    Chaklader, Malay; Law, Sujata

    2015-03-01

    Chronic pesticide exposure-induced downregulation of hedgehog signaling and its subsequent degenerative effects on the mammalian hematopoietic system have not been investigated yet. However a number of concurrent studies have pointed out the positive correlation between chronic pesticide exposure induced bone marrow failure and immune suppression. Here, we have given an emphasis on the recapitulation of human marrow aplasia like condition in mice by chronic mixed pesticide exposures and simultaneously unravel the role of individual pesticides in the said event. Unlike the effect of mixed pesticide, individual pesticides differentially alter the hedgehog signaling in the bone marrow primitive hematopoietic compartment (Sca1 + compartment) and stromal compartment. Individually, hexaconazole disrupted hematopoietic as well as stromal hedgehog signaling activation through inhibiting SMO and facilitating PKC δ expression. On contrary, both chlorpyriphos and cypermethrin increased the sequestration and degradation of GLI1 by upregulating SU(FU) and βTrCP, respectively. However, cypermethrin-mediated inhibition of hedgehog signaling has partly shown to be circumvented by non-canonical activation of GLI1. Finally, we have tested the regenerative response of sonic hedgehog and shown that in vitro supplemented recombinant SHH protein augmented clonogenic stromal progenitors (CFU-F) as well as primitive multipotent hematopoietic clones including CFU-GEMM and CFU-GM of mixed pesticide-induced aplastic marrow. It is an indication of the marrow regeneration. Finally, our findings provide a gripping evidence that downregulated hedgehog signaling contribute to pesticide-mediated bone marrow aplasia but it could be recovered by proper supplementation of recombinant SHH along with hematopoietic base cocktail. Furthermore, SU(FU) and GLI1 can be exploited as future theradiagnostic markers for early marrow aplasia diagnosis.

  16. Identification of Stages of Erythroid Differentiation in Bone Marrow and Erythrocyte Subpopulations in Blood Circulation that Are Preferentially Lost in Autoimmune Hemolytic Anemia in Mouse.

    PubMed

    Chatterjee, Sreoshi; Bhardwaj, Nitin; Saxena, Rajiv K

    2016-01-01

    Repeated weekly injections of rat erythrocytes produced autoimmune hemolytic anemia (AIHA) in C57BL/6 mice after 5-6 weeks. Using the double in vivo biotinylation (DIB) technique, recently developed in our laboratory, turnover of erythrocyte cohorts of different age groups during AIHA was monitored. Results indicate a significant decline in the proportion of reticulocytes, young and intermediate age groups of erythrocytes, but a significant increase in the proportion of old erythrocytes in blood circulation. Binding of the autoantibody was relatively higher to the young erythrocytes and higher levels of intracellular reactive oxygen species (ROS) were also seen in these cells. Erythropoietic activity in the bone marrows and the spleen of AIHA induced mice was examined by monitoring the relative proportion of erythroid cells at various stages of differentiation in these organs. Cells at different stages of differentiation were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71) monoclonal antibodies. Erythroid cells in bone marrow declined significantly in AIHA induced mice, erythroblast C being most affected (50% decline). Erythroblast C also recorded high intracellular ROS level along with increased levels of membrane-bound autoantibody. No such decline was observed in spleen. A model of AIHA has been proposed indicating that binding of autoantibodies may not be a sufficient condition for destruction of erythroid cells in bone marrow and in blood circulation. Last stage of erythropoietic differentiation in bone marrow and early stages of erythrocytes in blood circulation are specifically susceptible to removal in AIHA.

  17. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death.

    PubMed

    Coe, Lindsay M; Irwin, Regina; Lippner, Dennean; McCabe, Laura R

    2011-02-01

    Type I diabetes increases an individual's risk for bone loss and fracture, predominantly through suppression of osteoblast activity (bone formation). During diabetes onset, levels of blood glucose and pro-inflammatory cytokines (including tumor necrosis factor α (TNFα)) increased. At the same time, levels of osteoblast markers are rapidly decreased and stay decreased chronically (i.e., 40 days later) at which point bone loss is clearly evident. We hypothesized that early bone marrow inflammation can promote osteoblast death and hence reduced osteoblast markers. Indeed, examination of type I diabetic mouse bones demonstrates a greater than twofold increase in osteoblast TUNEL staining and increased expression of pro-apoptotic factors. Osteoblast death was amplified in both pharmacologic and spontaneous diabetic mouse models. Given the known signaling and inter-relationships between marrow cells and osteoblasts, we examined the role of diabetic marrow in causing the osteoblast death. Co-culture studies demonstrate that compared to control marrow cells, diabetic bone marrow cells increase osteoblast (MC3T3 and bone marrow derived) caspase 3 activity and the ratio of Bax/Bcl-2 expression. Mouse blood glucose levels positively correlated with bone marrow induced osteoblast death and negatively correlated with osteocalcin expression in bone, suggesting a relationship between type I diabetes, bone marrow and osteoblast death. TNF expression was elevated in diabetic marrow (but not co-cultured osteoblasts); therefore, we treated co-cultures with TNFα neutralizing antibodies. The antibody protected osteoblasts from bone marrow induced death. Taken together, our findings implicate the bone marrow microenvironment and TNFα in mediating osteoblast death and contributing to type I diabetic bone loss.

  18. Lasting engraftment of histoincompatible bone marrow cells in dogs

    SciTech Connect

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.C.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasng the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradiation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-h interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplotype-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  19. Lasting engraftment of histoincompatible bone marrow cells in dogs

    SciTech Connect

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasing the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-hr interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplo-type-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  20. Bone marrow-derived microglia-based neurturin delivery protects against dopaminergic neurodegeneration in a mouse model of Parkinson’s disease

    PubMed Central

    Biju, K.C.; Santacruz, Rene A.; Chen, Cang; Zhou, Qing; Yao, Jiemin; Rohrabaugh, Sara L.; Clark, Robert A.; Roberts, James L.; Phillips, Kimberley A.; Imam, Syed Z.; Li, Senlin

    2013-01-01

    Although neurotrophic factors have long been recognized as potent agents for protecting against neuronal degeneration, clinical success in treating Parkinson’s disease and other neurodegenerative disorders has been hindered by difficulties in delivery of trophic factors across the blood brain barrier (BBB). Bone marrow hematopoietic stem cell-based gene therapy is emerging as a promising tool for overcoming drug delivery problems, as myeloid cells can cross the BBB and are recruited in large numbers to sites of neurodegeneration, where they become activated microglia that can secrete trophic factors. We tested the efficacy of bone marrow-derived microglial delivery of neurturin (NTN) in protecting dopaminergic neurons against neurotoxin-induced death in mice. Bone marrow cells were transduced ex vivo with lentivirus expressing the NTN gene driven by a synthetic macrophage-specific promoter. Infected bone marrow cells were then collected and transplanted into recipient animals. Eight weeks after transplantation, the mice were injected with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropuridine (MPTP) for seven days to induce dopaminergic neurodegeneration. Microglia-mediated NTN delivery dramatically ameliorated MPTP-induced degeneration of tyrosine hydroxylase (TH)-positive neurons of the substantia nigra and their terminals in the striatum. Microglia-mediated NTN delivery also induced significant recovery of synaptic marker staining in the striatum of MPTP-treated animals. Functionally, NTN treatment restored MPTP-induced decline in general activity, rearing behavior, and food intake. Thus, bone marrow-derived microglia can serve as cellular vehicles for sustained delivery of neurotrophic factors capable of mitigating dopaminergic injury. PMID:23295906

  1. Bone marrow histology in monoclonal macroglobulinemia.

    PubMed

    Rywlin, A M; Civantos, F; Ortega, R S; Dominguez, C J

    1975-06-01

    Rywlin, Arkadi, M., Civantos, Francisco, Ortega, Rolando S., and Dominguez, Carlos J.: Bone marrow histology in monoclonal macroglobulinemiamam J Clin Pathol 63. 769-778, 1975. Histologic sections and smears of aspirated bone marrow particles in 26 cases of monoclonal macroglobulinemia were studied. The bone marrows did not show uniform histologic features. Twenty-two patients had various degrees of lymphoid infiltration of the marrow, including nodules of malignant lymphoma, diffuse lymphocytic infiltration, nodular lymphoid hyperplasia, and normal lymphoid nodules. Four patients had no demonstrable lymphoid collections in the marrow. Additional histologic features of the marrows are summarized. A variant of a Dutcher body consisting of multiple PAS-positive inclusions that by light microscopy appear intranuclear is described. Even though the average macroglobulin levels were higher in patients with abnormal lymphoid infiltrates than in patients with noraml or no lymphoid collections, there was considerable overlap between individual patients values in the different groups. Similarly, no correlation between macroglobulin levels and other histologic features could be established. Patients with monoclonal macroglobulinemia represent a spectrum including benign monoclonal gammopathy, lymphoproliferative disorders of the marrow, nodal or extranodal lymphomas. The separation of Waldenström's macroglobulinemia by arbitrary criteria does not appear justified. (key words: Bone marrow; Monoclonal macroglobulinemia.

  2. LD Typing for Bone Marrow Transplantation.

    DTIC Science & Technology

    1977-06-15

    marrow transplantation will be required for treatment of patients who suffer damage to marrow either through exposure to radiation or to drugs being used...which could be used in various test systems to identify the tissue typ ing antigens of the fourth locus of the human histocompatibility system. Bone

  3. Psycholegal issues in sibling bone marrow donation.

    PubMed

    Weisz, Victoria

    1992-01-01

    The only hope of survival for children with a number of life-threatening illnesses is a successful bone marrow transplant (BMT). Unlike the treatment source for most therapies, the raw material for transplant therapy comes from a human being. Although many BMTs are autologous, utilizing the patient's own bone marrow, a large percentage of childhood BMTs rely on bone marrow from children or adolescents who are biological siblings to the sick child. Medical and legal systems are confronted with a dilemma when healthy children are needed to undergo minimally risky, yet somewhat painful, procedures for the benefit of their critically ill siblings. This article reviews legal issues involved in sibling bone marrow donation and psychological research that is relevant to those issues. The article concludes with proposed directions for future psycholegal research and a discussion of ethical issues that are not amenable to empirical investigation.

  4. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow.

    PubMed

    Park, Min Hee; Jin, Hee Kyung; Min, Woo-Kie; Lee, Won Woo; Lee, Jeong Eun; Akiyama, Haruhiko; Herzog, Herbert; Enikolopov, Grigori N; Schuchman, Edward H; Bae, Jae-sung

    2015-06-12

    Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.

  5. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow

    PubMed Central

    Park, Min Hee; Jin, Hee Kyung; Min, Woo-Kie; Lee, Won Woo; Lee, Jeong Eun; Akiyama, Haruhiko; Herzog, Herbert; Enikolopov, Grigori N; Schuchman, Edward H; Bae, Jae-sung

    2015-01-01

    Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide. PMID:25916827

  6. Redox Regulation in Bone Marrow Failure

    DTIC Science & Technology

    2012-06-01

    aplastic anemia patients with a p38 MAPK inhibitor can restore defective hematopoietic activity, suggesting the critical role of p38 in bone marrow...hematopoietic stem cells, and eventually leading to bone marrow failure [7, 8] [9] [10]. On the other hand, treating aplastic anemia patients with a p38...in aplastic anemia . J Immunol, 2002. 168(12): p. 5984-8. 12. Ikebuchi, K., et al., Interleukin 6 enhancement of interleukin 3-dependent

  7. Bone marrow lesions: A systematic diagnostic approach

    PubMed Central

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted. PMID:25114392

  8. Bone Formation by Sheep Stem Cells in an Ectopic Mouse Model: Comparison of Adipose and Bone Marrow Derived Cells and Identification of Donor-Derived Bone by Antibody Staining

    PubMed Central

    Dreyer, Chris H.; Ditzel, Nicholas; Andreasen, Christina M.; Chen, Li; Sheikh, Søren P.; Overgaard, Søren

    2016-01-01

    Background. Scaffolds for bone tissue engineering (BTE) can be loaded with stem and progenitor cells (SPC) from different sources to improve osteogenesis. SPC can be found in bone marrow, adipose tissue, and other tissues. Little is known about osteogenic potential of adipose-derived culture expanded, adherent cells (A-CEAC). This study compares in vivo osteogenic capacity between A-CEAC and bone marrow derived culture expanded, adherent cells (BM-CEAC). Method. A-CEAC and BM-CEAC were isolated from five female sheep and seeded on hydroxyapatite granules prior to subcutaneous implantation in immunodeficient mice. The doses of cells in the implants were 0.5 × 106, 1.0 × 106, or 1.5 × 106 A-CEAC and 0.5 × 106 BM-CEAC, respectively. After eight weeks, bone volume versus total tissue volume (BV/TV) was quantified using histomorphometry. Origin of new bone was assessed using human vimentin (HVIM) antibody staining. Results. BM-CEAC yielded significantly higher BV/TV than any A-CEAC group, and differences between A-CEAC groups were not statistically significant. HVIM antibody stain was successfully used to identify sheep cells in this model. Conclusion. A-CEAC and BM-CEAC were capable of forming bone, and BM-CEAC yielded significantly higher BV/TV than any A-CEAC group. In vitro treatment to enhance osteogenic capacity of A-CEAC is suggested for further research in ovine bone tissue engineering. PMID:27994622

  9. Comparative evaluation of simultaneous bone marrow aspiration and bone marrow biopsy: an institutional experience.

    PubMed

    Toi, Pampa Ch; Varghese, Renu G'boy; Rai, Ramji

    2010-06-01

    Bone marrow aspirations and bone marrow biopsies are important diagnostic procedures. A comparative study of both the procedures done simultaneously was retrospectively reviewed in 160 cases where the clinical history is correlated with BMA and BMB results. The advantage of each method is analyzed. Correlation of our findings with that given in the literature is done to give a guideline for both techniques. We have found that 61.25% of the cases showed a positive correlation between bone marrow aspiration and bone marrow biopsy. However, we found that tuberculous granulomas and Hodgkin disease involvement of the marrow were detected better in bone marrow biopsies. The advantage of both the procedures done together provided more material and enabled us to study the cytomorphology of the cells, with the pattern of distribution of the cells depending on the cases. However, when both the procedures are done simultaneously, a proper technique is required so as to yield good diagnostic material.

  10. The pathology of bone marrow failure.

    PubMed

    Leguit, Roos J; van den Tweel, Jan G

    2010-11-01

    An important indication for bone marrow investigation is the presence of bone marrow failure, which manifests itself as (pan)cytopenia. The causes of cytopenia are varied and differ considerably between childhood and adulthood. In the paediatric age group inherited bone marrow failure syndromes are important causes of bone marrow failure, but they play only a minor role in later life. This review gives a comprehensive overview of bone marrow failure disorders in children and adults. We classified the causes of bone marrow failure according to the main presenting haematological abnormality, i.e. anaemia, neutropenia, thrombocytopenia or pancytopenia. The following red cell disorders are discussed: red cell aplasia, sideroblastic anaemia, congenital dyserythropoietic anaemia, haemolytic anaemia, paroxysmal nocturnal haemoglobinuria, iron deficiency anaemia, anaemia of chronic disease and megaloblastic anaemia. The neutropenias occur in the context of Shwachman-Diamond syndrome (SDS), severe congenital neutropenia, cyclic neutropenia, immune-related neutropenia and non-immune neutropenia. In addition, the following causes of thrombocytopenia are discussed: congenital amegakaryocytic thrombocytopenia, thrombocytopenia with absent radii, immune-related thrombocytopenia and non-immune thrombocytopenia. Finally, we pay attention to the following pancytopenic disorders: Fanconi anaemia, dyskeratosis congenita, aplastic anaemia, myelodysplastic syndromes and human immunodeficiency virus (HIV) infection.

  11. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation.

    PubMed

    Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J

    2016-04-14

    Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability.

  12. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer

    PubMed Central

    Zhao, Ende; Wang, Lin; Dai, Jinlu; Kryczek, Ilona; Wei, Shuang; Vatan, Linda; Altuwaijri, Saleh; Sparwasser, Tim; Wang, Guobin; Keller, Evan T.; Zou, Weiping

    2012-01-01

    Human prostate cancer frequently metastasizes to bone marrow. What defines the cellular and molecular predilection for prostate cancer to metastasize to bone marrow is not well understood. CD4+CD25+ regulatory T (Treg) cells contribute to self-tolerance and tumor immune pathology. We now show that functional Treg cells are increased in the bone marrow microenvironment in prostate cancer patients with bone metastasis, and that CXCR4/CXCL12 signaling pathway contributes to Treg cell bone marrow trafficking. Treg cells exhibit active cell cycling in the bone marrow, and bone marrow dendritic cells express high levels of receptor activator of NFκB (RANK), and promote Treg cell expansion through RANK and its ligand (RANKL) signals. Furthermore, Treg cells suppress osteoclast differentiation induced by activated T cells and M-CSF, adoptive transferred Treg cells migrate to bone marrow, and increase bone mineral intensity in the xenograft mouse models with human prostate cancer bone marrow inoculation. In vivo Treg cell depletion results in reduced bone density in tumor bearing mice. The data indicates that bone marrow Treg cells may form an immunosuppressive niche to facilitate cancer bone metastasis and contribute to bone deposition, the major bone pathology in prostate cancer patients with bone metastasis. These findings mechanistically explain why Treg cells accumulate in the bone marrow, and demonstrate a previously unappreciated role for Treg cells in patients with prostate cancer. Thus, targeting Treg cells may not only improve anti-tumor immunity, but also ameliorate bone pathology in prostate cancer patients with bone metastasis. PMID:22720236

  13. Neuroprotective and Angiogenic Effects of Bone Marrow Transplantation Combined With Granulocyte Colony-Stimulating Factor in a Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Ohta, Yasuyuki; Nagai, Makiko; Miyazaki, Kazunori; Tanaka, Nobuhito; Kawai, Hiromi; Mimoto, Takafumi; Morimoto, Nobutoshi; Kurata, Tomoko; Ikeda, Yoshio; Matsuura, Tohru; Abe, Koji

    2011-01-01

    Bone marrow (BM) cells from amyotrophic lateral sclerosis (ALS) patients show significantly reduced expression of several neurotrophic factors. Monotherapy with either wild-type (WT) BM transplantation (BMT) or granulocyte colony-stimulating factor (GCSF) has only a small clinical therapeutic effect in an ALS mouse model, due to the phenomenon of neuroprotection. In this study, we investigated the clinical benefits of combination therapy using BMT with WT BM cells, plus GCSF after disease onset in ALS mice [transgenic mice expressing human Cu/Zn superoxide dismutase (SOD1) bearing a G93A mutation]. Combined treatment with BMT and GCSF delayed disease progression and prolonged the survival of G93A mice, whereas BMT or GCSF treatment alone did not. Histological study of the ventral horns of lumbar cords from G93A mice treated with BMT and GCSF showed a reduction in motor neuron loss coupled with induced neuronal precursor cell proliferation, increased expression of neurotrophic factors (glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, vascular endothelial growth factor and angiogenin), and neovascularization compared with controls (vehicle only). Compared with G93A microglial cells, most BM-derived WT cells differentiated into microglial cells and strongly expressed neurotrophic factors, combined BMT and GCSF treatment led to the replacement of G93A microglial cells with BM-derived WT cells. These results indicate combined treatment with BMT and GCSF has potential neuroprotective and angiogenic effects in ALS mice, induced by the replacement of G93A microglial cells with BM-derived WT cells. Furthermore, this is the first report showing the effects of combined BMT and GCSF treatment on blood vessels in ALS. PMID:26998403

  14. Common Cold Can Be Dangerous After Bone Marrow Transplant

    MedlinePlus

    ... 164206.html Common Cold Can Be Dangerous After Bone Marrow Transplant Rhinovirus far more worrisome in those with ... cold can be deadly for patients recovering from bone marrow transplants, a new study warns. After a bone ...

  15. Stromal cell-derived factor-1 mediates changes of bone marrow stem cells during the bone repair process.

    PubMed

    Okada, Kiyotaka; Kawao, Naoyuki; Yano, Masato; Tamura, Yukinori; Kurashimo, Shinzi; Okumoto, Katsumi; Kojima, Kotarou; Kaji, Hiroshi

    2016-01-01

    Osteoblasts, osteoclasts, chondrocytes, and macrophages that participate in the bone repair process are derived from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). However, the roles of these stem cells during the repair of injured bone tissue are still unclear. In the present study, we examined the effects of bone defect on HSCs and MSCs in bone marrow and spleen in 75 mice and its mechanism. We analyzed the HSC and MSC populations in these tissues of a mouse with femoral bone damage by using flow cytometry. The number of HSCs in the bone marrow of mice with damaged femurs was significantly lower than the number of these cells in the bone marrow of the contralateral intact femurs on day 2 after injury. Meanwhile, the number of MSCs in the bone marrow of mice with damaged femurs was significantly higher than that of the contralateral femurs. Both intraperitoneal administration of AMD3100, a C-X-C chemokine receptor 4 (CXCR4) antagonist, and local treatment with an anti-stromal cell-derived factor-1 (SDF-1) antibody blunted the observed decrease in HSC and increase in MSC populations within the bone marrow of injured femurs. In conclusion, the present study revealed that there is a concurrent decrease and increase in the numbers of HSCs and MSCs, respectively, in the bone marrow during repair of mouse femoral bone damage. Furthermore, the SDF-1/CXCR4 system was implicated as contributing to the changes in these stem cell populations upon bone injury.

  16. [Bone and Stem Cells. Intravital imaging of bone marrow microenvironment].

    PubMed

    Mizuno, Hiroki; Kikuta, Junichi; Ishii, Masaru

    2014-04-01

    Various kinds of cell types, such as osteoclasts, osteoblasts, hematopoietic cells, and mesenchymal cells, have been reported to exist in the bone marrow and communicate with each other. Although there have been many previous studies about bone marrow microenvironment, most of them were analyzed by conventional methods such as histological analysis and flow cytometry. These methods could not observe the dynamic cell movement in living bone marrow. Recently rapid development of fluorescent imaging techniques enables us to understand the cellular dynamics in vivo . That's why we have originally established an advanced imaging system for visualizing living bone tissues with intravital two-photon microscopy. Here we show the latest data and the detailed methodology of intravital imaging of bone marrow microenvironment, and also discuss its further application.

  17. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer's and Parkinson's disease.

    PubMed

    Danielyan, Lusine; Beer-Hammer, Sandra; Stolzing, Alexandra; Schäfer, Richard; Siegel, Georg; Fabian, Claire; Kahle, Philipp; Biedermann, Tilo; Lourhmati, Ali; Buadze, Marine; Novakovic, Ana; Proksch, Barbara; Gleiter, Christoph H; Frey, William H; Schwab, Matthias

    2014-01-01

    In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated

  18. Identification of Stages of Erythroid Differentiation in Bone Marrow and Erythrocyte Subpopulations in Blood Circulation that Are Preferentially Lost in Autoimmune Hemolytic Anemia in Mouse

    PubMed Central

    Chatterjee, Sreoshi; Bhardwaj, Nitin; Saxena, Rajiv K.

    2016-01-01

    Repeated weekly injections of rat erythrocytes produced autoimmune hemolytic anemia (AIHA) in C57BL/6 mice after 5–6 weeks. Using the double in vivo biotinylation (DIB) technique, recently developed in our laboratory, turnover of erythrocyte cohorts of different age groups during AIHA was monitored. Results indicate a significant decline in the proportion of reticulocytes, young and intermediate age groups of erythrocytes, but a significant increase in the proportion of old erythrocytes in blood circulation. Binding of the autoantibody was relatively higher to the young erythrocytes and higher levels of intracellular reactive oxygen species (ROS) were also seen in these cells. Erythropoietic activity in the bone marrows and the spleen of AIHA induced mice was examined by monitoring the relative proportion of erythroid cells at various stages of differentiation in these organs. Cells at different stages of differentiation were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71) monoclonal antibodies. Erythroid cells in bone marrow declined significantly in AIHA induced mice, erythroblast C being most affected (50% decline). Erythroblast C also recorded high intracellular ROS level along with increased levels of membrane-bound autoantibody. No such decline was observed in spleen. A model of AIHA has been proposed indicating that binding of autoantibodies may not be a sufficient condition for destruction of erythroid cells in bone marrow and in blood circulation. Last stage of erythropoietic differentiation in bone marrow and early stages of erythrocytes in blood circulation are specifically susceptible to removal in AIHA. PMID:27870894

  19. Mobilization of endogenous bone marrow-derived stem cells in a thioacetamide-induced mouse model of liver fibrosis.

    PubMed

    El-Akabawy, Gehan; El-Mehi, Abeer

    2015-06-01

    The clinical significance of enhancing endogenous circulating haematopoietic stem cells is becoming increasingly recognized, and the augmentation of circulating stem cells using granulocyte-colony stimulating factor (G-CSF) has led to promising preclinical and clinical results for several liver fibrotic conditions. However, this approach is largely limited by cost and the infeasibility of maintaining long-term administration. Preclinical studies have reported that StemEnhance, a mild haematopoietic stem cell mobilizer, promotes cardiac muscle regeneration and remedies the manifestation of diabetes. However, the effectiveness of StemEnhance in ameliorating liver cirrhosis has not been studied. This study is the first to evaluate the beneficial effect of StemEnhance administration in a thioacetamide-induced mouse model of liver fibrosis. StemEnhance augmented the number of peripheral CD34-positive cells, reduced hepatic fibrosis, improved histopathological changes, and induced endogenous liver proliferation. In addition, VEGF expression was up-regulated, while TNF-α expression was down-regulated in thioacetamide-induced fibrotic livers after StemEnhance intake. These data suggest that StemEnhance may be useful as a potential therapeutic candidate for liver fibrosis by inducing reparative effects via mobilization of haematopoietic stem cells.

  20. Radionuclide imaging of bone marrow disorders

    PubMed Central

    Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo

    2010-01-01

    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed. PMID:20625724

  1. Radionuclide imaging of bone marrow disorders.

    PubMed

    Agool, Ali; Glaudemans, Andor W J M; Boersma, Hendrikus H; Dierckx, Rudi A J O; Vellenga, Edo; Slart, Riemer H J A

    2011-01-01

    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as (99m)Tc-nanocolloid, (99m)Tc-sulphur colloid, (111)In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using (18)F-FDG and (18)F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed.

  2. Performance of a gravitational marrow separator, multidirectional bone marrow aspiration needle, and repeated bone marrow collections on the production of concentrated bone marrow and separation of mesenchymal stem cells in horses.

    PubMed

    Ishihara, Akikazu; Helbig, Holly J; Sanchez-Hodge, Rebekah B; Wellman, Maxey L; Landrigan, Matthew D; Bertone, Alicia L

    2013-06-01

    Objective-To determine the efficiency of a novel point-of-care gravitational marrow separator and bone marrow aspiration needle for concentrated bone marrow production and bone marrow-derived mesenchymal stem cell (MSC) separation and assess the effect of repeated bone marrow collections in horses. Animals-8 healthy adult horses. Procedures-Bone marrow aspiration was performed twice (1 month apart) from sternebral bodies with a standard or prototype multidirectional needle. Concentrated bone marrow was obtained by gravitational marrow separation and evaluated for WBC and platelet counts, automated and cytomorphologic cell differential counts, MSCs, and cell viability. Results-Concentrated bone marrow samples obtained with the marrow separator had 5- to 19-fold bone marrow-derived MSC, WBC, and platelet counts, compared with original bone marrow samples. Use of a multidirectional needle increased the frequency of obtaining MSC-richer concentrated bone marrow. Repeating bone marrow aspiration at 1 month yielded greater MSC numbers but slightly lower cell viability after processing. Conclusions and Clinical Relevance-The gravitational bone marrow separator and multidirectional needle were used to effectively harvest bone marrow and improve the quality of concentrated bone marrow. Comparable, or even greater, numbers of bone marrow-derived MSCs were collected by repeated bone marrow aspiration after a 1-month interval from the same aspiration sites. Use of the marrow separator and multidirectional bone marrow aspiration needle can facilitate a 1-step, point-of-care, nonlaboratory method to obtain concentrated bone marrow as a mixture of bone marrow-derived MSCs and growth factors from platelets and plasma.

  3. Bone marrow osteoblast vulnerability to chemotherapy.

    PubMed

    Gencheva, Marieta; Hare, Ian; Kurian, Susan; Fortney, Jim; Piktel, Debbie; Wysolmerski, Robert; Gibson, Laura F

    2013-06-01

    Osteoblasts are a major component of the bone marrow microenvironment, which provide support for hematopoietic cell development. Functional disruption of any element of the bone marrow niche, including osteoblasts, can potentially impair hematopoiesis. We have studied the effect of two widely used drugs with different mechanisms of action, etoposide (VP16) and melphalan, on murine osteoblasts at distinct stages of maturation. VP16 and melphalan delayed maturation of preosteoblasts and altered CXCL12 protein levels, a key regulator of hematopoietic cell homing to the bone marrow. Sublethal concentrations of VP16 and melphalan also decreased the levels of several transcripts which contribute to the composition of the extracellular matrix (ECM) including osteopontin (OPN), osteocalcin (OCN), and collagen 1A1 (Col1a1). The impact of chemotherapy on message and protein levels for some targets was not always aligned, suggesting differential responses at the transcription and translation or protein stability levels. As one of the main functions of a mature osteoblast is to synthesize ECM of a defined composition, disruption of the ratio of its components may be one mechanism by which chemotherapy affects the ability of osteoblasts to support hematopoietic recovery coincident with altered marrow architecture. Collectively, these observations suggest that the osteoblast compartment of the marrow hematopoietic niche is vulnerable to functional dysregulation by damage imposed by agents frequently used in clinical settings. Understanding the mechanistic underpinning of chemotherapy-induced changes on the hematopoietic support capacity of the marrow microenvironment may contribute to improved strategies to optimize patient recovery post-transplantation.

  4. Bone marrow cells and myocardial regeneration.

    PubMed

    Wang, Fu-Sheng; Trester, Cathy

    2004-05-01

    Hematopoietic stem cell (HSC) plasticity and its clinical application have been studied profoundly in the past few years. Recent investigations indicate that HSC and other bone marrow stem cells can develop into other tissues. Because of the high morbidity and mortality of myocardial infarction and other heart disorders, myocardial regeneration is a good example of the clinical application of HSC plasticity in regenerative medicine. Preclinical studies in animals suggest that the use of this kind of treatment can reconstruct heart blood vessels, muscle, and function. Some clinical study results have been reported in the past 2 years. In 2003, reports of myocardial regeneration treatment increased significantly. Other studies include observations on the cell surface markers of transplanted cells and treatment efficacy. Some investigations, such as HSC testing, have focused on clinical applications using HSC plasticity and bone marrow transplantation to treat different types of disorders. In this review, we focus on the clinical application of bone marrow cells for myocardial regeneration.

  5. To evaluate the role of bone marrow aspiration and bone marrow biopsy in pancytopenia.

    PubMed

    Desalphine, Melina; Bagga, Permeet Kaur; Gupta, Parmod Kumar; Kataria, Amarjit Singh

    2014-11-01

    Pancytopenia is not a disease entity but a triad of findings that may result from various disease processes, primarily or secondarily involving the bone marrow. Bone marrow aspiration and biopsy evaluation along with good clinical correlation is of utmost importance to evaluate the causes of pancytopenia and planning further investigations. The present study was a prospective clinicohaematological study undertaken to analyse the various causes of pancytopenia by evaluating bone marrow aspiration and biopsy and correlating with clinical findings, complete blood counts and peripheral blood picture. Fifty patients of pancytopenia were included in the study in which relevant history and physical examination findings were recorded. Bone marrow aspiration and biopsy were performed simultaneously in all cases. Perl's stain was done in all cases and special stains like MPO, PAS and reticulin were also done wherever necessary. The maximum cases of pancytopenia were in the age group of 10 to 30 y with male preponderance. Aplastic anaemia was found to be the most common aetiology of pancytopenia followed by normoblastic erythroid hyperplasia, megaloblastic anaemia, acute leukemias, myelofibrosis, lymphoid neoplasia and iron deficiency anaemia. It was concluded from the study that although the advantages of bone marrow aspiration and biopsy differ, both are complimentary to each other and should be performed simultaneously for a complete bone marrow work up and evaluation. It is only through the correlation of clinical, hematological and bone marrow examination findings that proper evaluation and management of patients of pancytopenia can be made.

  6. To Evaluate the Role of Bone Marrow Aspiration and Bone Marrow Biopsy in Pancytopenia

    PubMed Central

    Desalphine, Melina; Gupta, Parmod Kumar; Kataria, Amarjit Singh

    2014-01-01

    Background: Pancytopenia is not a disease entity but a triad of findings that may result from various disease processes, primarily or secondarily involving the bone marrow. Bone marrow aspiration and biopsy evaluation along with good clinical correlation is of utmost importance to evaluate the causes of pancytopenia and planning further investigations. Aims: The present study was a prospective clinicohaematological study undertaken to analyse the various causes of pancytopenia by evaluating bone marrow aspiration and biopsy and correlating with clinical findings, complete blood counts and peripheral blood picture. Materials and Methods: Fifty patients of pancytopenia were included in the study in which relevant history and physical examination findings were recorded. Bone marrow aspiration and biopsy were performed simultaneously in all cases. Perl’s stain was done in all cases and special stains like MPO, PAS and reticulin were also done wherever necessary. Results and Conclusion: The maximum cases of pancytopenia were in the age group of 10 to 30 y with male preponderance. Aplastic anaemia was found to be the most common aetiology of pancytopenia followed by normoblastic erythroid hyperplasia, megaloblastic anaemia, acute leukemias, myelofibrosis, lymphoid neoplasia and iron deficiency anaemia. It was concluded from the study that although the advantages of bone marrow aspiration and biopsy differ, both are complimentary to each other and should be performed simultaneously for a complete bone marrow work up and evaluation. It is only through the correlation of clinical, hematological and bone marrow examination findings that proper evaluation and management of patients of pancytopenia can be made. PMID:25584228

  7. HIV infection presenting as bone marrow cryptococcosis

    PubMed Central

    Dharwadkar, Arpana; Vimal, Shruti; Buch, Archana C.; Panicker, N. K.

    2014-01-01

    Disseminated cryptococcal infection is an uncommon initial manifestation in immunocompromised patients. We report a rare case of a 40-year-old female presenting with fever and burning epigastrium. Peripheral blood film revealed a leukoerythroblastic picture with thrombocytopenia. Bone marrow aspiration showed granulomas along with cryptococcal yeast forms. The ELISA test for detection of human immunodeficiency virus (HIV) antigen was positive. Disseminated cryptococcosis can develop as the first manifestation of HIV infection in previously healthy individuals and granulomas in such bone marrow aspiration smears are a valuable clue to an underlying opportunistic infection. PMID:25161991

  8. Blood and Bone Marrow Evaluation for Eosinophilia.

    PubMed

    Boyer, Daniel F

    2016-10-01

    Evaluation of peripheral blood and bone marrow for an indication of persistent eosinophilia can be a challenging task because there are many causes of eosinophilia and the morphologic differences between reactive and neoplastic causes are often subtle or lack specificity. The purpose of this review is to provide an overview of the differential diagnosis for eosinophilia, to recommend specific steps for the pathologist evaluating blood and bone marrow, and to emphasize 2 important causes of eosinophilia that require specific ancillary tests for diagnosis: myeloproliferative neoplasm with PDGFRA rearrangement and lymphocyte-variant hypereosinophilic syndrome.

  9. APOE3, but not APOE4, bone marrow transplantation mitigates behavioral and pathological changes in a mouse model of Alzheimer disease.

    PubMed

    Yang, Yue; Cudaback, Eiron; Jorstad, Nikolas L; Hemingway, Jake F; Hagan, Catherine E; Melief, Erica J; Li, Xianwu; Yoo, Tom; Khademi, Shawn B; Montine, Kathleen S; Montine, Thomas J; Keene, C Dirk

    2013-09-01

    Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset Alzheimer disease and confers a proinflammatory, neurotoxic phenotype to microglia. Here, we tested the hypothesis that bone marrow cell APOE genotype modulates pathological progression in experimental Alzheimer disease. We performed bone marrow transplants (BMT) from green fluorescent protein-expressing human APOE3/3 or APOE4/4 donor mice into lethally irradiated 5-month-old APPswe/PS1ΔE9 mice. Eight months later, APOE4/4 BMT-recipient APPswe/PS1ΔE9 mice had significantly impaired spatial working memory and increased detergent-soluble and plaque Aβ compared with APOE3/3 BMT-recipient APPswe/PS1ΔE9 mice. BMT-derived microglia engraftment was significantly reduced in APOE4/4 recipients, who also had correspondingly less cerebral apoE. Gene expression analysis in cerebral cortex of APOE3/3 BMT recipients showed reduced expression of tumor necrosis factor-α and macrophage migration inhibitory factor (both neurotoxic cytokines) and elevated immunomodulatory IL-10 expression in APOE3/3 recipients compared with those that received APOE4/4 bone marrow. This was not due to detectable APOE-specific differences in expression of microglial major histocompatibility complex class II, C-C chemokine receptor (CCR) type 1, CCR2, CX3C chemokine receptor 1 (CX3CR1), or C5a anaphylatoxin chemotactic receptor (C5aR). Together, these findings suggest that BMT-derived APOE3-expressing cells are superior to those that express APOE4 in their ability to mitigate the behavioral and neuropathological changes in experimental Alzheimer disease.

  10. APOE3, but Not APOE4, Bone Marrow Transplantation Mitigates Behavioral and Pathological Changes in a Mouse Model of Alzheimer Disease

    PubMed Central

    Yang, Yue; Cudaback, Eiron; Jorstad, Nikolas L.; Hemingway, Jake F.; Hagan, Catherine E.; Melief, Erica J.; Li, Xianwu; Yoo, Tom; Khademi, Shawn B.; Montine, Kathleen S.; Montine, Thomas J.; Keene, C. Dirk

    2014-01-01

    Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset Alzheimer disease and confers a proinflammatory, neurotoxic phenotype to microglia. Here, we tested the hypothesis that bone marrow cell APOE genotype modulates pathological progression in experimental Alzheimer disease. We performed bone marrow transplants (BMT) from green fluorescent protein–expressing human APOE3/3 or APOE4/4 donor mice into lethally irradiated 5-month-old APPswe/PS1ΔE9 mice. Eight months later, APOE4/4 BMT–recipient APPswe/PS1ΔE9 mice had significantly impaired spatial working memory and increased detergent-soluble and plaque Aβ compared with APOE3/3 BMT–recipient APPswe/PS1ΔE9 mice. BMT-derived microglia engraftment was significantly reduced in APOE4/4 recipients, who also had correspondingly less cerebral apoE. Gene expression analysis in cerebral cortex of APOE3/3 BMT recipients showed reduced expression of tumor necrosis factor-α and macrophage migration inhibitory factor (both neurotoxic cytokines) and elevated immunomodulatory IL-10 expression in APOE3/3 recipients compared with those that received APOE4/4 bone marrow. This was not due to detectable APOE-specific differences in expression of microglial major histocompatibility complex class II, C-C chemokine receptor (CCR) type 1, CCR2, CX3C chemokine receptor 1 (CX3CR1), or C5a anaphylatoxin chemotactic receptor (C5aR). Together, these findings suggest that BMT-derived APOE3-expressing cells are superior to those that express APOE4 in their ability to mitigate the behavioral and neuropathological changes in experimental Alzheimer disease. PMID:23831297

  11. Androgen, Estrogen and the Bone Marrow Microenvironment

    DTIC Science & Technology

    2009-12-01

    vivo in osteoblasts, BM stromal cells, and endothelial cells. Primary human bone marrow stromal cell cultures secrete IGFBP5. In vitro, treatment of...immortalized prostate epithelial cells. Treatment of mice with DES for 3 weeks had a dramatic effect on the bone. 518 genes were upregulated by...DES by at least 1.5 fold with a false discovery rate of < 5%. The genes that are 5-fold or greater overexpressed after DES treatment are: procollagen

  12. Intracranial extramedullary hematopoiesis. CT and bone marrow scan findings

    SciTech Connect

    Urman, M.; O'Sullivan, R.A.; Nugent, R.A.; Lentle, B.C. )

    1991-06-01

    This case concerns a patient with intracranial extramedullary hematopoiesis (EH) suspected on a CT scan and subsequently confirmed with In-111 chloride and Tc-99m SC bone marrow scans. The bone marrow scans also provided additional information by demonstrating other sites of EH in the paravertebral tissues and bone marrow expansion into the distal extremities.

  13. Gelatinous bone marrow in an HIV-positive patient

    PubMed Central

    Stephens, Johnny R.; Baker, Damon L.

    2007-01-01

    Gelatinous bone marrow transformation has been identified in patients with anorexia, malignancy, malabsorption, and HIV/AIDS. This represents a deposition of gelatinous material within the bone marrow, along with atrophy. We report the case of an HIV-seropositive man who presented with low back pain related to his gelatinous bone marrow changes. PMID:17637880

  14. Gelatinous bone marrow in an HIV-positive patient.

    PubMed

    Stroup, Jeffrey S; Stephens, Johnny R; Baker, Damon L

    2007-07-01

    Gelatinous bone marrow transformation has been identified in patients with anorexia, malignancy, malabsorption, and HIV/AIDS. This represents a deposition of gelatinous material within the bone marrow, along with atrophy. We report the case of an HIV-seropositive man who presented with low back pain related to his gelatinous bone marrow changes.

  15. Bone marrow-derived lung epithelial cells.

    PubMed

    Krause, Diane S

    2008-08-15

    Bone marrow-derived cells can take on the phenotype of epithelial cells and express epithelial-specific genes in multiple organs. Here, we focus on recent data on the appearance of marrow-derived epithelial cells in the adult lung. These findings have garnered significant skepticism because in most cases marrow-derived epithelial cells are very rare, the marrow cell of origin is not known, the techniques for detection have needed improvement, and there seem to be multiple mechanisms by which this occurs. Recent studies have focused on these concerns. Once these important concerns are addressed, further studies on the function(s) of these cells will need to be performed to determine whether this engraftment has any clinical significance-either beneficial or detrimental.

  16. Future of bone marrow transplantation in oncology

    SciTech Connect

    Fefer, A.

    1982-05-01

    The editorial presents an assessment of the current status of bone marrow transportation (BMT) for treatment of leukemia and the problems that must be resolved to render the approach more widely applicable. Studies are in progress which may show that the patient's autologous bone marrow, cryopreserved when it has no detectable tumor and reinfused after supralethal chemoradiotherapy, is associated with long-term, tumor-free survival. Effective chemoradiotherapy regimens may be identified from studies of twin BMT and the potential problem of tumor contamination of infused autologous marrow resolved by using monoclonal antibodies directed to tumor cells. Solving the problems associated with syngeneic, allogenic or autologous BMT may make it possible to use BMT for patients with nonhematologic malignancies sensitive to high doses of chemoradiotherapy. (JMT)

  17. Translational Control in Bone Marrow Failure

    DTIC Science & Technology

    2015-05-01

    HCLS1 associated protein X-1 (HAX1), cause hereditary forms of neutropenia. Previously, competing hypotheses have posited that mutant forms of...common pathways in different forms of hereditary neutropenia, and better understand how different types of mutations result in pathogenesis. Specific... hereditary forms of neutropenia and other bone marrow failure syndromes, including myelodysplasia (which is a complication of hereditary neutropenia) by

  18. The diagnostic value of bone marrow iron.

    PubMed

    Wulfhekel, U; Düllmann, J

    1990-01-01

    The light and electronmicroscopic representation of non-haemiron in the bone-marrow provides the unique opportunity of extensively evaluating the iron metabolism. In the bone-marrow, macrophages represent the physiological place of iron storage. The iron in the cytoplasma is stored in them in the form of free ferritin molecules and lysomally as aggregated ferritin and/or haemosiderin in siderosomes. In an equal iron balance and unimpaired internal iron exchange only erythroblasts (sideroblasts) and erythrocytes (siderocytes) of the bone-marrow besides macrophages possess siderosomes. In addition to this physiological or orthotopic iron storage a heterotopic iron storage can be observed under pathological conditions, particularly with iron overloading of the organism, in the endothelial cells of sinusoids and plasma cells. In detail, the patterns of iron storage in the bone-marrow are described in the different stages of iron deficiency, disturbance of iron utilization in chronically inflammatory processes or tumour diseases, condition after intravenous iron administration, transfusion siderosis, hereditary haemochromatosis and sideroblastic anaemia.

  19. [Genetic diversity and bone marrow transplantation].

    PubMed

    Marry, E

    2012-05-01

    The genetic origin of the patients, for whom a bone marrow transplantation has been proposed, is a key determinant in the possibility of identifying or not a compatible unrelated donor, and consequently in the possibility of performing the bone marrow transplantation. The required strict HLA compatibility, in the context of a bone marrow transplantation, increases the difficulty. A patient has one chance over four to have a compatible donor within his brothers and sisters, if any. This chance becomes one over a million, as an average, in the context of unrelated donor search. Taking into consideration the genetic history of the populations, their evolution and the large actual HLA diversity, the probability of finding an unrelated donor for a defined patient varies according to the frequency and the combination of the patient's HLA antigens, genetic markers inherited not only from his parents, but also from his ancestries. In the unrelated context, the HLA compatible donor most probably shares the same genetic history than the patient, and consequently belongs to the same population group. The study of the genetic of populations explains the difficulties in finding an unrelated compatible donor in the migrant populations, particularly those originated from Africa and from the middle east, due to their HLA specificities and to the small number of donors sharing the same origins registered on a volunteer bone marrow donors' file worldwide.

  20. Evaluation of the inflammatory potential of implant materials in a mouse model by bioluminescent imaging of intravenously injected bone marrow cells.

    PubMed

    Rais, Bushra; Köster, Mario; Rahim, Muhammad Imran; Pils, Marina; Seitz, Jan-Marten; Hauser, Hansjörg; Wirth, Dagmar; Mueller, Peter P

    2016-09-01

    To evaluate the inflammatory potential of implants a bioluminescent imaging assay was developed using luciferase-expressing bone marrow cells that were injected into the blood circulation of wild-type mice. After subcutaneous implantation of titanium discs as an example for a clinically established biocompatible material, the luminosity was modest. Similarly, low luminosity signals were generated by pure magnesium implants that were used to represent metallic alloys that are presently under investigation as novel degradable implant materials. Increased luminosity was observed in response to degradable polymeric PLGA implants. Surgical wounds induced a basic luminescent response even in the absence of an implant. However, the material-independent response to injury could be minimized using injectable microparticle suspensions. In parallel with the resorption of biodegradable microparticles, the signal induced by PLGA declined faster when compared to non-degradable polystyrene suspensions. By using an interferon type I inducible Mx2 promoter construct to drive luciferase gene expression, the highest luminosity was observed in response to bacteria, indicating that the system could also be employed to monitor implant infections. Overall, labeled bone marrow cells yielded specific, well-defined localized signals that correlated with the inflammatory responses to implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2149-2158, 2016.

  1. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.

    PubMed

    Govey, Peter M; Zhang, Yue; Donahue, Henry J

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.

  2. Value of bone marrow imprint smears in early diagnosis of bone marrow pathologies.

    PubMed

    Tilak, Vijai; Das, Subhajit; Bundhun, Soobashchan

    2014-11-01

    Examination of bone marrow plays a pivotal role in the practice of haematology. It can be evaluated by three ways-bone marrow aspiration (BMA), bone marrow touch imprints (BMI) and bone marrow biopsy (BMBx). To study the efficacy and reliability of BMI smears in comparison to BMA smears, in making a diagnosis of diseases involving bone marrow. Setting and Designs: This study was carried out in the Department of Pathology, Institute of Medical Sciences, Varanasi over a period of 26 months. A total number of 182 cases, with their BMA, BMI and BMBx samples (from each and every case), were evaluated and their findings even compared. All the observations were evaluated using simple and basic statistical tool, i.e. percentage. The cellularity or cell density on BMI correlated with the cellularity of BMBx in 78.6% cases, which was higher than the value observed with BMA smears (71.4%). The spreading quality was better and cytological details were better appreciated in BMI as compared to BMA. Also, the presence of lymphoglandular bodies and particles on BMI were additive diagnostic clues. All of those findings were reflected in the higher diagnostic accuracy of BMI than BMA. BMI should be a standard practice and be considered as an early and reliable diagnostic tool for evaluating bone marrow pathologies.

  3. Comparison of bone marrow aspiration and bone marrow biopsy in neoplastic diseases.

    PubMed

    Hamid, G A; Hanbala, N

    2009-07-01

    Naturally trephine biopsies have definitive advantages over aspirates in case of dry tap bone marrow aspirates as a result of fibrosis or densely packed bone marrow by tumour cells and may be informative independent of cytology especially in bone marrow involvement by lymphomas and carcinomas. In this prospective descriptive study we aimed to compare between the bone marrow trephine biopsy (BMTB) and bone marrow aspirates (BMAs) regarding the detection rate of solid tumours, lymphoma and myeloma involvement of the bone marrow. The study was carried out in the department of pathology and Haematology-Oncology of Al-Gamhouria Teaching Hospital/Aden during the period between Jan 2005 to Dec 2005. A total of 32 patients with suspected or confirmed malignancy undergone both BMTB and BMA from the posterior superior iliac crest and both results were compared. We divided them into three groups: those with solid tumours (21) patients, lymphoma (7) patients and with MM (4) patients. Our results showed that BMA had a 47.6% sensitivity, 100.0% specificity, with positive predictive value (100%), and negative predictive value (50.0%). In solid tumours alone it had a sensitivity of (40.0%), 100% specificity, with positive predictive value (100%), and negative predictive value (64.7%). This gives the BMA a lower sensitivity in detecting solid tumour metastasis and lymphoma involvement in comparison to BMTB. In conclusion, any patient with suspected or confirmed cancer should undergo BMTB because of its high sensitivity compared to BMA.

  4. [Significance of Simultaneous Analysis of Bone Marrow Smear and Bone Marrow Biopsy in the Diagnosis of Lymphoma].

    PubMed

    Zhao, Juan; Yuan, Ting-Ting; Yang, Xuao-Liang; Guan, Jian-Hong

    2017-06-01

    To explore the value of bone marrow smear combined with biopsy in the diagnosis of lymphoma. Clinical data of 50 cases of lymphoma from our hospital were analyzed retrospectively, and the results of the bone marrow smear and the bone marrow biopsy were compared simultaneously. The decision for the degree of bone marrow hyperplasia in bone marrow biopsy slice was superior to that in smear, and the active or highly active hyperplasia of nucleated cells were observed in all the bone marrow biopsies; the lymphomatic cells were observed in bone marrow smear of the 12 patients(24%), but the bone marrow biopsies showed a higher detection rate of lymphomatic cells 44% in 22 patients(P<0.05); The hyperplasia of bone marrow fibrous tissue, mainly mild to moderate, were the common in cases with bone marrow involvement and the severity of bone marrow fibrosis positively correlated with the number of lymphomatic cells. Biopsy combined with aspiration can improve the accuracy of diagnosis in lymphoma with bone marrow involvement.

  5. A clinical overview of bone marrow edema.

    PubMed

    Manara, M; Varenna, M

    2014-07-28

    Bone marrow edema (BME) is a descriptive term which identifies a specific magnetic resonance imaging (MRI) pattern that can be observed in a number of clinical entities, which are often characterized by pain as their main symptom, but show significant differences in terms of histopathological findings, causal mechanisms and prognosis. Bone marrow lesions in the subchondral bone of subjects with knee osteoarthritis (OA) seem to be associated with pain and progression of cartilage damage over time. Some histopathological studies of advanced OA have shown a prevalent fibrosis and bone marrow necrosis. BME of the subchondral bone in rheumatoid arthritis is associated with an infiltrate of inflammatory cells and osteoclasts and has a predictive value of further development of erosions. In spondyloarthritis, BME of the sacroiliac joints identifies an active sacroiliitis and is associated with histological inflammation and radiographic progression, whereas the relationship between BME lesions of the spine and syndesmophyte development is still controversial. BME syndromes (BMES), such as transient osteoporosis of the hip, regional migratory osteoporosis, and transient post-traumatic BMES, are characterized by a BME pattern on MRI and a self-limiting course. The potential evolution of BMES toward osteonecrosis is still controversial.

  6. Femoral bone marrow aspiration in live mice.

    PubMed

    Chung, Young Rock; Kim, Eunhee; Abdel-Wahab, Omar

    2014-07-05

    Serial sampling of the cellular composition of bone marrow (BM) is a routine procedure critical to clinical hematology. This protocol describes a detailed step-by-step technical procedure for an analogous procedure in live mice which allows for serial characterization of cells present in the BM. This procedure facilitates studies aimed to detect the presence of exogenously administered cells within the BM of mice as would be done in xenograft studies for instance. Moreover, this procedure allows for the retrieval and characterization of cells enriched in the BM such as hematopoietic stem and progenitor cells (HSPCs) without sacrifice of mice. Given that the cellular composition of peripheral blood is not necessarily reflective of proportions and types of stem and progenitor cells present in the marrow, procedures which provide access to this compartment without requiring termination of the mice are very helpful. The use of femoral bone marrow aspiration is illustrated here for cytological analysis of marrow cells, flow cytometric characterization of the hematopoietic stem/progenitor compartment, and culture of sorted HSPCs obtained by femoral BM aspiration compared with conventional marrow harvest.

  7. Bone marrow osteoblast vulnerability to chemotherapy

    PubMed Central

    Gencheva, Marieta; Hare, Ian; Kurian, Susan; Fortney, Jim; Piktel, Debbie; Wysolmerski, Robert; Gibson, Laura F.

    2013-01-01

    Osteoblasts are a major component of the bone marrow microenvironment which provide support for hematopoietic cell development. Functional disruption of any element of the bone marrow niche, including osteoblasts, can potentially impair hematopoiesis. We have studied the effect of two widely used drugs with different mechanisms of action, etoposide (VP16) and melphalan, on murine osteoblasts at distinct stages of maturation. VP16 and melphalan delayed maturation of preosteoblasts and altered CXCL12 protein levels, a key regulator of hematopoietic cell homing to the bone marrow. Sublethal concentrations of VP16 and melphalan also decreased the levels of several transcripts which contribute to the composition of the extracellular matrix (ECM) including osteopontin (OPN), osteocalcin (OCN) and collagen 1A1 (Col1a1). The impact of chemotherapy on message and protein levels for some targets was not always aligned, suggesting differential responses at the transcription and translation or protein stability levels. Since one of the main functions of a mature osteoblast is to synthesize ECM of a defined composition, disruption of the ratio of its components may be one mechanism by which chemotherapy affects the ability of osteoblasts to support hematopoietic recovery coincident with altered marrow architecture. Collectively, these observations suggest that the osteoblast compartment of the marrow hematopoietic niche is vulnerable to functional dysregulation by damage imposed by agents frequently used in clinical settings. Understanding the mechanistic underpinning of chemotherapy-induced changes on the hematopoietic support capacity of the marrow microenvironment may contribute to improved strategies to optimize patient recovery post-transplantation. PMID:23551534

  8. PECULIAR IMMUNOBIOLOGY OF BONE MARROW ALLOGRAFTS

    PubMed Central

    Cudkowicz, Gustavo; Bennett, Michael

    1971-01-01

    Mice are capable of rejecting H-2-incompatible bone marrow grafts after a single lethal exposure to X-rays. The onset of rejection begins 18–24 hr after transplantation and is completed by 96 hr. Maturation of this type of allograft reactivity does not occur until the 22nd day of life. In adult mice, the resistance to marrow allografts can be weakened by administration of cyclophosphamide or dead cultures of Corynebacterium parvum, but not heterologous anti-thymocyte serum. Sublethal exposures to X-rays 7 or 14 days before transplantation also weaken resistance. There is considerable interstrain variation in the ability of mice to resist allografts, even when H-2 differences between hosts and donor are kept identical. Although H-2 incompatibility is a necessary prerequisite for resistance, additional genetic factors influence the outcome of marrow allografts, presumably by controlling recognition. The regulator genes are determinant specific and the alleles for resistance or responder status appear to be dominant. The responder phenotype is expressed by hemopoietic cells and not by the environment. Accordingly, resistance is conferred to otherwise susceptible mice upon transfer of bone marrow cells but not of serum. The production and differentiation of effector cells for marrow graft rejection are thymus independent. In conclusion, bone marrow allografts elicit a particular transplantation reaction, previously unknown, in irradiated mice. Peculiar features of this reaction are the lack of proliferation of host lymphoid cells, tissue specificity, thymus independence, and regulation by genetic factors which apparently do not affect the fate of other grafts. PMID:4397663

  9. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  10. Comparison of bone marrow aspiration cytology with bone marrow trephine biopsy histopathology: An observational study.

    PubMed

    Gilotra, Meenu; Gupta, Monika; Singh, Sunita; Sen, Rajeev

    2017-01-01

    Bone marrow examination is a useful investigative tool for the diagnosis of many hematological and nonhematological disorders. Bone marrow aspiration (BMA) provides information about the numerical and cytological features of marrow cells, whereas bone marrow trephine biopsies (BMB) provide excellent appreciation of spatial relationships between cells and of overall bone marrow structure. We conducted this study with the objective of comparing the accuracy of BMA with BMB in the diagnosis of various hematological disorders. Both BMA and BMB were performed on a total of 130 cases and a comparative evaluation was performed in 100 cases to see the complementary role of both the procedures. However, 30 cases were excluded due to inadequate BMA, BMB, or both. Immunohistochemistry (IHC) was employed whenever required. In our study of 100 cases, 87% of cases were confirmed on bone marrow biopsy and in remaining 13% of cases final diagnosis was achieved with the help of other ancillary investigations. These cases were excluded for calculation of concordance rate between BMA and BMB. The concordance and disconcordance rate between BMA and BMB was 72.4% and 27.6%, respectively. BMA cytology and trephine biopsy histopathology complement each other and the superiority of one method over the other depended on the underlying disorder. Furthermore, application of ancillary techniques such as flow cytometery and IHC proved to be an additional advantage in further typing of various diseases.

  11. MR imaging of therapy-induced changes of bone marrow

    PubMed Central

    Henning, Tobias; Link, Thomas M.

    2006-01-01

    MR imaging of bone marrow infiltration by hematologic malignancies provides non-invasive assays of bone marrow cellularity and vascularity to supplement the information provided by bone marrow biopsies. This article will review the MR imaging findings of bone marrow infiltration by hematologic malignancies with special focus on treatment effects. MR imaging findings of the bone marrow after radiation therapy and chemotherapy will be described. In addition, changes in bone marrow microcirculation and metabolism after anti-angiogenesis treatment will be reviewed. Finally, new specific imaging techniques for the depiction of regulatory events that control blood vessel growth and cell proliferation will be discussed. Future developments are directed to yield comprehensive information about bone marrow structure, function and microenvironment. PMID:17021706

  12. Molecular Mechanisms That Contribute to Bone Marrow Pain

    PubMed Central

    Ivanusic, Jason J.

    2017-01-01

    Pain associated a bony pathology puts a significant burden on individuals, society, and the health-care systems worldwide. Pathology that involves the bone marrow activates sensory nerve terminal endings of peripheral bone marrow nociceptors, and is the likely trigger for pain. This review presents our current understanding of how bone marrow nociceptors are influenced by noxious stimuli presented in pathology associated with bone marrow. A number of ion channels and receptors are emerging as important modulators of the activity of peripheral bone marrow nociceptors. Nerve growth factor (NGF) sequestration has been trialed for the management of inflammatory bone pain (osteoarthritis), and there is significant evidence for interaction of NGF with bone marrow nociceptors. Activation of transient receptor potential cation channel subfamily V member 1 sensitizes bone marrow nociceptors and could contribute to increased sensitivity of patients to noxious stimuli in various bony pathologies. Acid-sensing ion channels sense changes to tissue pH in the bone marrow microenvironment and could be targeted to treat pathology that involves acidosis of the bone marrow. Piezo2 is a mechanically gated ion channel that has recently been reported to be expressed by most myelinated bone marrow nociceptors and might be a target for treatments directed against mechanically induced bone pain. These ion channels and receptors could be useful targets for the development of peripherally acting drugs to treat pain of bony origin. PMID:28955292

  13. Molecular Mechanisms That Contribute to Bone Marrow Pain.

    PubMed

    Ivanusic, Jason J

    2017-01-01

    Pain associated a bony pathology puts a significant burden on individuals, society, and the health-care systems worldwide. Pathology that involves the bone marrow activates sensory nerve terminal endings of peripheral bone marrow nociceptors, and is the likely trigger for pain. This review presents our current understanding of how bone marrow nociceptors are influenced by noxious stimuli presented in pathology associated with bone marrow. A number of ion channels and receptors are emerging as important modulators of the activity of peripheral bone marrow nociceptors. Nerve growth factor (NGF) sequestration has been trialed for the management of inflammatory bone pain (osteoarthritis), and there is significant evidence for interaction of NGF with bone marrow nociceptors. Activation of transient receptor potential cation channel subfamily V member 1 sensitizes bone marrow nociceptors and could contribute to increased sensitivity of patients to noxious stimuli in various bony pathologies. Acid-sensing ion channels sense changes to tissue pH in the bone marrow microenvironment and could be targeted to treat pathology that involves acidosis of the bone marrow. Piezo2 is a mechanically gated ion channel that has recently been reported to be expressed by most myelinated bone marrow nociceptors and might be a target for treatments directed against mechanically induced bone pain. These ion channels and receptors could be useful targets for the development of peripherally acting drugs to treat pain of bony origin.

  14. Factors affecting mesenchymal stromal cells yield from bone marrow aspiration.

    PubMed

    Li, Jing; Wong, Wilfred Hing-Sang; Chan, Shing; Chim, James Chor-San; Cheung, Kenneth Man-Chee; Lee, Tsz-Leung; Au, Wing-Yan; Ha, Shau-Yin; Lie, Albert Kwok-Wei; Lau, Yu-Lung; Liang, Raymond Hin-Suen; Chan, Godfrey Chi-Fung

    2011-03-01

    This study was to investigate the variables in bone marrow harvesting procedure and individual donor factors which can potentially affect the yield of mesenchymal stromal cells (MSC). WE DETERMINED THE YIELD OF MSC FROM BONE MARROW UNDER DIFFERENT CLINICAL CONDITIONS BY COMPARING THE MSC COLONY NUMBERS FROM: (1) donors of different ages; (2) healthy donors and patients with leukemia; (3) bone marrow aspirated at different time points during marrow harvesting; (4) bone marrow harvested by different needles. During the process of harvesting, the number of MSC significantly decreased with increase number of aspiration, from 675/ml at the initial decreased to 60/ml after 100 ml bone marrow aspirated, and 50/ml after 200 ml bone marrow aspirated. The number of MSC retrieved from leukemia patients (99/ml bone marrow) was significantly lower than that of healthy donors (708/ml bone marrow). However, there was no significant difference in growth rate. There was no significant age-related difference of MSC yielded from donors <55 years. And there was no significant difference in MSC number between the samples from single end-holed needle and those from multiple-side-hole needle. The optimal bone marrow samples for MSC collection should be obtained earlier in the process of harvesting procedure. Bone marrow from donors <55 years was equally good as MSC sources. The autologous MSC from leukemia patients can be utilized for in-vitro MSC expansion.

  15. Malfunction of Bone Marrow Derived Osteoclasts and the Delay of Bone Fracture Healing in Diabetic Mice

    PubMed Central

    Kasahara, Toshiyuki; Imai, Sinji; Kojima, Hideto; Katagi, Miwako; Kimura, Hiroshi; Chan, Lawrence; Matsusue, Yoshitaka

    2010-01-01

    It is well known that bone fracture healing is delayed in diabetes mellitus, but the mechanism remains to be elucidated. Since several studies have demonstrated that diabetes causes abnormalities in bone marrow-derived cells, we used the streptozotocin (STZ)-induced diabetic mouse model after bone marrow transfer from green fluorescent protein (GFP) transgenic mice, and examined fracture healing. Compared with non-diabetic mice, diabetic mice at 3 weeks after fracture showed a decrease in mineralized callus, with the remainder consisting of cartilage. Bone formation parameters and mineralization rate were not altered in the STZ mice, but bone resorption parameters were significantly decreased. Therefore, the delayed bone formation in the STZ mice may have resulted from an impairment of cartilage resorption. Interestingly, we found that 80 % of the osteoclasts in the callus were derived from bone marrow and the sizes of the osteoclasts as well as the resorption pits formed were significantly smaller in the diabetic mice. Moreover, transcript analysis using RNA isolated by laser capture microdissection (LCM) showed that the expression of DC-STAMP, a putative pivotal gene for osteoclast fusion, was decreased in osteoclasts from diabetic mice. Since the sustainability of osteoclast function depends on the controlled renewal of multinuclear osteoclasts, impaired osteoclast function in diabetes may contribute to decreased cartilage resorption and delayed endochondral ossification. PMID:20601287

  16. Adaptive response in mouse bone marrow stromal cells exposed to 900MHz radiofrequency fields: Impact of poly (ADP-ribose) polymerase (PARP).

    PubMed

    He, Qina; Zong, Lin; Sun, Yulong; Vijayalaxmi; Prihoda, Thomas J; Tong, Jian; Cao, Yi

    2017-08-01

    This study examined whether non-ionizing radiofrequency fields (RF) exposure is capable of inducing poly (ADP-ribose) polymerase-1 (PARP-1) in bone marrow stromal cells (BMSCs) and whether it plays a role in RF-induced adaptive response (AR). Bone marrow stromal cells (BMSCs) were exposed to 900MHz RF at 120μW/cm(2) power flux density for 3h/day for 5days and then challenged with a genotoxic dose of 1.5Gy gamma-radiation (GR). Some cells were also treated with 3-aminobenzamide (3-AB, 2mM final concentration), a potent inhibitor of PARP-1. Un-exposed and sham (SH)-exposed control cells as well as positive control cells exposed to gamma radiation (GR) were included in the experiments. The expression of PARP-1 mRNA and its protein levels as well as single strand breaks in the DNA and the kinetics of their repair were evaluated at several times after exposures. The results indicated the following. (a) Cells exposed to RF alone showed significantly increased PARP-1 mRNA expression and its protein levels compared with those exposed to SH- and GR alone. (b) Treatment of RF-exposed cells with 3-AB had diminished such increase in PARP-1. (c) Cells exposed to RF+GR showed significantly decreased genetic damage as well as faster kinetics of repair compared with those exposed to GR alone. (d) Cells exposed to RF+3-AB+GR showed no such decrease in genetic damage. Thus, the overall date suggested that non-ionizing RF exposure was capable of inducing PARP-1 which has a role in RF-induced AR. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mobilised bone marrow-derived cells accelerate wound healing.

    PubMed

    Wang, Yu; Sun, Yu; Yang, Xiao-Yan; Ji, Shi-Zhao; Han, Shu; Xia, Zhao-Fan

    2013-08-01

    Massive skin defects caused by severe burn and trauma are a clinical challenge to surgeons. Timely and effective wound closure is often hindered by the lack of skin donor site. Bone marrow-derived cells (BMDCs) have been shown to 'differentiate' into multiple tissue cells. In this study we focused on the direct manipulation of endogenous BMDCs, avoiding the immunocompatibility issues and complicated cell isolation, purification, identification and amplification procedures in vitro on wound repair. We found that mobilisation of the BMDCs into the circulation significantly increased the amount of BMDCs at the injury site which in turn accelerated healing of large open wound. We used a chimeric green fluorescent protein (GFP) mouse model to track BMDCs and to investigate their role in full-thickness skin excisional wounds. We have shown that bone marrow mobilisation by granulocyte colony stimulating factor (G-CSF) exerted multiple beneficial effects on skin repair, both by increasing the engraftment of BMDCs into the skin to differentiate into multiple skin cell types and by upregulating essential cytokine mRNAs critical to wound repair. The potential trophic effects of G-CSF on bone marrow stem cells to accelerate wound healing could have a significant clinical impact.

  18. Efficient generation of canine bone marrow-derived dendritic cells.

    PubMed

    Isotani, Mayu; Katsuma, Kensuke; Tamura, Kyoichi; Yamada, Misato; Yagihara, Hiroko; Azakami, Daigo; Ono, Kenichiro; Washizu, Tsukimi; Bonkobara, Makoto

    2006-08-01

    Because of their unsurpassed potency in presenting antigens to naive T cells, dendritic cells are considered to be an important candidate in the development of immunotherapeutic strategies. Despite the high potential of dendritic cell-based immunotherapy, as a so-called dendritic cell vaccination, few clinical approaches using dendritic cell vaccination have been performed in the dog because of very limited information regarding the generation of canine dendritic cells and their functional properties. We therefore established a protocol for the efficient generation of dendritic cells from canine bone marrow cells using recombinant feline granulocyte-macrophage colony-stimulating factor and canine interleukin-4. Dendritic cells were generated efficiently: a yield of 1-9 x 10(6) cells per approximately 0.5 ml of canine bone marrow aspiration was achieved. These dendritic cells showed features shared with mouse and human dendritic cells: dendrite morphology, expression of surface markers MHC class II and CD11c, and up-regulation of molecules related to antigen presentation (MHC class II, B7-1, and B7-2) by activation with lipopolysaccharide. Moreover, the dendritic cells demonstrated phagocytic activity, processing activity of pinocytosed proteins, and activation of allogeneic T cells far more potent than that by macrophages. Our findings suggest that the bone marrow-derived dendritic cells are functional for the capturing and processing of antigens and the initiation of T cell responses.

  19. Modeling selective elimination of quiescent cancer cells from bone marrow.

    PubMed

    Cavnar, Stephen P; Rickelmann, Andrew D; Meguiar, Kaille F; Xiao, Annie; Dosch, Joseph; Leung, Brendan M; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E; Takayama, Shuichi; Luker, Gary D

    2015-08-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. [One-step method of bone marrow aspiration and biopsy applied in diagnosis of the bone marrow metastatic cancer].

    PubMed

    Guan, Jian-Hong; Wang, Xiao-Ning; Ma, Kai

    2013-08-01

    This study was aimed to explore the value of one-step method of bone marrow aspiration and biopsy applied in diagnosis of the bone marrow metastatic cancer. The total of 46 cases of bone marrow metastatic cancer were analyzed retrospectively, and the results of the bone marrow smear and the bone marrow biopsies were compared. The results indicated that the success rate of one-step method of bone marrow aspiration and biopsy was 95.7%. Metastatic carcinoma cells in clumps or clusters with morphological changes were observed in the bone marrow biopsies of the 45 patients (97.8%), but the metastatic carcinoma cell clusters were observed only in bone marrow smears of the 25 patients (54.3%). There were mild to moderate hyperplasia of fibrous tissue in the patients with metastatic cancer. In addition to the 83.3% diagnostic rate of esophageal cancer, the rest diagnostic rate of bone marrow biopsy for metastatic carcinoma was 100%. The diagnostic rate of bone marrow smear for ovarian cancer, lung cancer, gastric cancer, thoracic tumor, sigmoid colon cancer, esophageal cancer and metastatic cancer of unknown primary cancers were 33.3%, 50%, 72.2%, 60%, 50%, 33.3% and 25%, respectively. The diagnostic rate of bone marrow biopsy was higher than that of bone marrow smear. It is concluded that the success rate of drawing specimen by one-step method of bone marrow aspiration and biopsy is high. The bone marrow biopsy is better than that of aspiration in diagnosis of metastatic cancer. Combining biopsy with aspiration can improve the accuracy of diagnosis.

  1. Autoimmune Encephalitis Following Bone Marrow Transplantation.

    PubMed

    Rathore, Geetanjali S; Leung, Kathryn S; Muscal, Eyal

    2015-09-01

    Neurological complications, especially encephalopathy and seizures, are commonly seen in bone marrow transplant patients. Infections, chemotoxicity, graft versus host disease, or secondary central nervous system malignancies are the most common underlying etiologies. There is increased awareness that autoimmune encephalitis may cause neurological dysfunction in immunocompetent children. The potential role of such a mechanism in children undergoing bone marrow transplantation is unknown. We report a boy who developed autoimmune encephalitis with voltage-gated potassium channel-associated and thyroid autoantibodies subsequent to transplantation. A 7-year-old boy presented with a change in behavior, poor attention, cognitive deficits, and abnormal movements 15 months after undergoing transplantation for idiopathic aplastic anemia. He had clinical and subclinical seizures and brain magnetic resonance imaging hyperintensities bilaterally in the uncal regions. His evaluation revealed high titers of voltage-gated potassium channel, leucine-rich glioma-inactivated 1 protein, and thyroglobulin antibodies suggestive of autoimmune limbic encephalitis. He showed significant improvement in behavior and neuropsychological testing and has remained seizure-free on levetiracetam after immunotherapy with corticosteroids and intravenous immunoglobulin. Systemic autoimmune manifestations in bone marrow transplant patients have been well-documented, but autoimmune encephalitis after transplantation has yet to be described in children. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Bone Marrow Stroma and Vascular Contributions to Myeloma Bone Homing.

    PubMed

    Moschetta, Michele; Kawano, Yawara; Sacco, Antonio; Belotti, Angelo; Ribolla, Rossella; Chiarini, Marco; Giustini, Viviana; Bertoli, Diego; Sottini, Alessandra; Valotti, Monica; Ghidini, Claudia; Serana, Federico; Malagola, Michele; Imberti, Luisa; Russo, Domenico; Montanelli, Alessandro; Rossi, Giuseppe; Reagan, Michaela R; Maiso, Patricia; Paiva, Bruno; Ghobrial, Irene M; Roccaro, Aldo M

    2017-09-09

    Herein we dissect mechanisms behind the dissemination of cancer cells from primary tumor site to the bone marrow, which are necessary for metastasis development, with a specific focus on multiple myeloma. The ability of tumor cells to invade vessels and reach the systemic circulation is a fundamental process for metastasis development; however, the interaction between clonal cells and the surrounding microenvironment is equally important for supporting colonization, survival, and growth in the secondary sites of dissemination. The intrinsic propensity of tumor cells to recognize a favorable milieu where to establish secondary growth is the basis of the "seed and soil" theory. This theory assumes that certain tumor cells (the "seeds") have a specific affinity for the milieu of certain organs (the "soil"). Recent literature has highlighted the important contributions of the vascular niche to the hospitable "soil" within the bone marrow. In this review, we discuss the crucial role of stromal cells and endothelial cells in supporting primary growth, homing, and metastasis to the bone marrow, in the context of multiple myeloma, a plasma cell malignancy with the unique propensity to primarily grow and metastasize to the bone marrow.

  3. Meeting report of the 2016 bone marrow adiposity meeting.

    PubMed

    van der Eerden, Bram; van Wijnen, André

    2017-04-05

    There is considerable interest in the physiology and pathology, as well as the cellular and molecular biology, of bone marrow adipose tissue (BMAT). Because bone marrow adiposity is linked not only to systemic energy metabolism, but also to both bone marrow and musculoskeletal disorders, this biologic compartment has become of major interest to investigators from diverse disciplines. Bone marrow adiposity represents a virtual multi-tissue endocrine organ, which encompasses cells from multiple developmental lineages (e.g., mesenchymal, myeloid, lymphoid) and occupies all the non-osseous and non-cartilaginous space within long bones. A number of research groups are now focusing on bone marrow adiposity to understand a range of clinical afflictions associated with bone marrow disorders and to consider mechanisms-based strategies for future therapies.

  4. Magnetic resonance imaging of bone marrow disease in children

    SciTech Connect

    Cohen, M.D.; Klatte, E.C.; Baehner, R.; Smith, J.A.; Martin-Simmerman, P.; Carr, B.E.; Provisor, A.J.; Weetman, R.M.; Coates, T.; Siddiqui, A.

    1984-06-01

    Seven children underwent magnetic resonance imaging (MRI) of the bone marrow: results showed that it is technically feasible to obtain good MR images of marrow in children. MR has detected abnormality in the bone marrow of a child who had metastatic neuroblastoma. The extent of abnormality in the femur correlated well with findings of a bone marrow isotope scan. In one child who had idiopathic aplastic anemia, diseased marrow could not be distinguished from normal marrow on MR images. MRI identified abnormality of the marrow in osteogenic sarcoma, and demonstrated change in response to chemotherapy. It displayed marrow spread of tumors as well as CT. MRI showed marrow abnormality in four children who had leukemia.

  5. Bone marrow manifestations in multicentric Castleman disease.

    PubMed

    Ibrahim, Hazem A H; Balachandran, Kirsty; Bower, Mark; Naresh, Kikkeri N

    2016-03-01

    This study aimed to document the morphological and immunophenotypic features, and describe the diagnostic features of bone marrow (BM) involvement in human herpes virus 8 Multicentric Castleman disease (HHV8-MCD). BM trephine biopsy (BMTB) specimens from 28 patients were revisited. Samples were evaluated for expression of CD3, CD20, CD138, CD68R, glycophorin C, CD42b, HHV8-latency-associated nuclear antigen (LANA1), Epstein-Barr virus-encoded small RNA and light chains. Presence of significant numbers of HHV8-LANA1(+) lymphoid/plasmacytic cells, noted in 10/28 cases, was indicative of BM involvement and was associated with low CD4 and CD8 counts in peripheral blood. The characteristic morphological appearance of MCD seen in lymph nodes is a rare finding in BMTB. 4/5 cases with lymphoid aggregates were involved by MCD, whereas 6/23 cases without lymphoid aggregates were involved by MCD (P = 0·023). 9/18 cases with hypercellular marrow were involved by MCD, whilst only 1/8 cases with normo/hypocellular marrow showed involvement by MCD (P = 0·070). While 9/21 cases with increased marrow reticulin were involved by MCD, none of the cases with no increase in reticulin were involved by MCD (P = 0·080). Reactive plasmacytosis is a frequent finding. We conclude that bone marrow is involved in a significant proportion of patients with MCD (36%), and involvement can be identified by HHV8-LANA1 immunohistochemistry. © 2016 John Wiley & Sons Ltd.

  6. Bone Marrow Edema: Chronic Bone Marrow Lesions of the Knee and the Association with Osteoarthritis.

    PubMed

    Collins, Jason A; Beutel, Bryan G; Strauss, Eric; Youm, Thomas; Jazrawi, Laith

    2016-03-01

    Bone marrow edema of the knee occurs secondary to a myriad of causes. The hallmark of a bone marrow lesion (BML) is an area of decreased signal intensity on T1 weighted MRI with a corresponding area of increased signal intensity on a T2 weighted MRI. Recently, chronic bone marrow lesions have been correlated with knee pain and progression of osteoarthritis. These lesions have also been associated with other degenerative conditions such as meniscal tears, cartilage deterioration, subchondral cyst formation, mechanical malalignment, and ultimately progression to arthroplasty. Medical treatments, such as prostacyclin and bisphosphonate therapy, have shown promise. Alignment procedures, as well as core decompression and subchondroplasty, have been used as surgical treatments for chronic BMLs.

  7. Engineering bone grafts with enhanced bone marrow and native scaffolds.

    PubMed

    Hung, Ben P; Salter, Erin K; Temple, Josh; Mundinger, Gerhard S; Brown, Emile N; Brazio, Philip; Rodriguez, Eduardo D; Grayson, Warren L

    2013-01-01

    The translation of tissue engineering approaches to the clinic has been hampered by the inability to find suitable multipotent cell sources requiring minimal in vitro expansion. Enhanced bone marrow (eBM), which is obtained by reaming long bone medullary canals and isolating the solid marrow putty, has large quantities of stem cells and demonstrates significant potential to regenerate bone tissues. eBM, however, cannot impart immediate load-bearing mechanical integrity or maintain the gross anatomical structure to guide bone healing. Yet, its putty-like consistency creates a challenge for obtaining the uniform seeding necessary to effectively combine it with porous scaffolds. In this study, we examined the potential for combining eBM with mechanically strong, osteoinductive trabecular bone scaffolds for bone regeneration by creating channels into scaffolds for seeding the eBM. eBM was extracted from the femurs of adult Yorkshire pigs using a Synthes reamer-irrigator-aspirator device, analyzed histologically, and digested to extract cells and characterize their differentiation potential. To evaluate bone tissue formation, eBM was seeded into the channels in collagen-coated or noncoated scaffolds, cultured in osteogenic conditions for 4 weeks, harvested and assessed for tissue distribution and bone formation. Our data demonstrates that eBM is a heterogenous tissue containing multipotent cell populations. Furthermore, coating scaffolds with a collagen hydrogel significantly enhanced cellular migration, promoted uniform tissue development and increased bone mineral deposition. These findings suggest the potential for generating customized autologous bone grafts for treating critical-sized bone defects by combining a readily available eBM cell source with decellularized trabecular bone scaffolds.

  8. The role of the Th1 transcription factor T-bet in a mouse model of immune-mediated bone-marrow failure.

    PubMed

    Tang, Yong; Desierto, Marie J; Chen, Jichun; Young, Neal S

    2010-01-21

    The transcription factor T-bet is a key regulator of type 1 immune responses. We examined the role of T-bet in an animal model of immune-mediated bone marrow (BM) failure using mice carrying a germline T-bet gene deletion (T-bet(-/-)). In comparison with normal C57BL6 (B6) control mice, T-bet(-/-) mice had normal cellular composition in lymphohematopoietic tissues, but T-bet(-/-) lymphocytes were functionally defective. Infusion of 5 x 10(6) T-bet(-/-) lymph node (LN) cells into sublethally irradiated, major histocompatibility complex-mismatched CByB6F1 (F1) recipients failed to induce the severe marrow hypoplasia and fatal pancytopenia that is produced by injection of similar numbers of B6 LN cells. Increasing T-bet(-/-) LN-cell dose to 10 to 23 x 10(6) per recipient led to only mild hematopoietic deficiency. Recipients of T-bet(-/-) LN cells had no expansion in T cells or interferon-gamma-producing T cells but showed a significant increase in Lin(-)Sca1(+)CD117(+)CD34(-) BM cells. Plasma transforming growth factor-beta and interleukin-17 concentrations were increased in T-bet(-/-) LN-cell recipients, possibly a compensatory up-regulation of the Th17 immune response. Continuous infusion of interferon-gamma resulted in hematopoietic suppression but did not cause T-bet(-/-) LN-cell expansion or BM destruction. Our data provided fresh evidence demonstrating a critical role of T-bet in immune-mediated BM failure.

  9. The role of the Th1 transcription factor T-bet in a mouse model of immune-mediated bone-marrow failure

    PubMed Central

    Tang, Yong; Desierto, Marie J.; Chen, Jichun

    2010-01-01

    The transcription factor T-bet is a key regulator of type 1 immune responses. We examined the role of T-bet in an animal model of immune-mediated bone marrow (BM) failure using mice carrying a germline T-bet gene deletion (T-bet−/−). In comparison with normal C57BL6 (B6) control mice, T-bet−/− mice had normal cellular composition in lymphohematopoietic tissues, but T-bet−/− lymphocytes were functionally defective. Infusion of 5 × 106 T-bet−/− lymph node (LN) cells into sublethally irradiated, major histocompatibility complex–mismatched CByB6F1 (F1) recipients failed to induce the severe marrow hypoplasia and fatal pancytopenia that is produced by injection of similar numbers of B6 LN cells. Increasing T-bet−/− LN-cell dose to 10 to 23 × 106 per recipient led to only mild hematopoietic deficiency. Recipients of T-bet−/− LN cells had no expansion in T cells or interferon-γ–producing T cells but showed a significant increase in Lin−Sca1+CD117+CD34− BM cells. Plasma transforming growth factor-β and interleukin-17 concentrations were increased in T-bet−/− LN-cell recipients, possibly a compensatory up-regulation of the Th17 immune response. Continuous infusion of interferon-γ resulted in hematopoietic suppression but did not cause T-bet−/− LN-cell expansion or BM destruction. Our data provided fresh evidence demonstrating a critical role of T-bet in immune-mediated BM failure. PMID:19903901

  10. IMMUNOLOGIC MEMORY CELLS OF BONE MARROW ORIGIN

    PubMed Central

    Miller, Harold C.; Cudkowicz, Gustavo

    1972-01-01

    Individual immunocompetent precursor cells of (C57BL/10 x C3H)F1 mouse marrow generate, on transplantation, three to five times more antibody-forming cells localized in recipient spleens during secondary than during primary immune responses. The increased burst size is immunologically specific since antigens of horse and chicken erythrocytes and of Salmonella typhimurium do not cause this effect in marrow cells responsive to sheep red blood cells. Both sensitized and nonsensitized precursors require the helper function of thymus-derived cells and antigen for the final steps of differentiation and maturation. The burst size of primed precursor cells is the same after cooperative interactions with virgin or educated helper cells of thymic origin. The greater potential of these marrow precursors may be attributable to self-replication and migration before differentiation into antibody-forming descendants. In fact, the progeny cells of primed precursor units are distributed among a multiplicity of foci, whereas those of nonimmune precursors are clustered into one focus. The described properties of specifically primed marrow precursors are those underlying immunologic memory. It remains to be established whether memory cells are induced or selected by antigens and whether the thymus plays a role in this process. PMID:4553850

  11. Bone marrow concentrate: a novel strategy for bone defect treatment.

    PubMed

    Jäger, Marcus; Jelinek, Eva M; Wess, Kai M; Scharfstädt, Axel; Jacobson, May; Kevy, Sherwin V; Krauspe, Rüdiger

    2009-01-01

    Although strong efforts have been made over the last decade to introduce stem cell and tissue engineering treatment strategies to the field of orthopaedics, only few clinical applications are currently available. The clinical outcomes of ten patients with volumetric bone deficiencies treated with mesenchymal stem cells and bone marrow aspirate are presented in this case series. Results were evaluated with radiographs. In addition to the in vivo data, we also presented in vitro data of BMC cultivated onto a porous collagen I scaffold and the technique of bone marrow aspiration via a commercially available system. Our results demonstrated that there is a rationale for a clinical application of BMC / bone aspirate in the treatment of osseous defects. The intraoperative harvest procedure is a safe method and does not significantly prolong the time of surgery. In addition, MSC isolated from the aspirate was able to adhere and proliferate onto a collagen scaffold in significant numbers after a 15 min incubation period. These cells were then able to allow osteogenic differentiation in vitro without any osteogenic stimuli. The local application of BMC / bone aspirate in the treatment of bone deficiencies may be a promising alternative to autogenous bone grafting and help reduce donor site morbidity.

  12. Neonatal Bone Marrow Transplantation in MPS IIIA Mice.

    PubMed

    Lau, Adeline A; Shamsani, N Jannah; Winner, Leanne K; Hassiotis, Sofia; King, Barbara M; Hopwood, John J; Hemsley, Kim M

    2013-01-01

    Patients with some neurological lysosomal storage disorders (LSD) exhibit improved clinical signs following bone marrow transplantation (BMT). The failure of mucopolysaccharidosis (MPS) type IIIA patients and adult mice with the condition to respond to this treatment may relate to factors such as impaired migration of donor-derived cells into the brain, insufficient enzyme production and/or secretion by the donor-derived microglial cells, or the age at which treatment is initiated. To explore these possibilities, we treated neonatal MPS IIIA mice with whole unfractionated bone marrow and observed that nucleated blood cell reconstitution occurred to a similar degree in MPS IIIA mice receiving green fluorescent protein (GFP)-expressing normal (treatment group) or MPS IIIA-GFP marrow (control group) and normal mice receiving normal-GFP marrow (control group). Further, similar distribution patterns of GFP(+) normal or MPS IIIA donor-derived cells were observed throughout the MPS IIIA mouse brain. We demonstrate that N-sulfoglucosamine sulfohydrolase (SGSH), the enzyme deficient in MPS IIIA, is produced and secreted in a manner proportional to that of other lysosomal enzymes. However, despite this, overall brain SGSH activity was unchanged in MPS IIIA mice treated with normal marrow and the lysosomal storage burden in whole brain homogenates did not decrease, most likely due to donor-derived cells comprising <0.24% of total recipient brain cells in all groups. This suggests that the failure of MPS IIIA patients and mice to respond to BMT may occur as a result of insufficient donor-derived enzyme production and/or uptake by host brain cells.

  13. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments.

    PubMed

    Hawkins, Edwin D; Duarte, Delfim; Akinduro, Olufolake; Khorshed, Reema A; Passaro, Diana; Nowicka, Malgorzata; Straszkowski, Lenny; Scott, Mark K; Rothery, Steve; Ruivo, Nicola; Foster, Katie; Waibel, Michaela; Johnstone, Ricky W; Harrison, Simon J; Westerman, David A; Quach, Hang; Gribben, John; Robinson, Mark D; Purton, Louise E; Bonnet, Dominique; Lo Celso, Cristina

    2016-10-27

    It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment

  14. T cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments

    PubMed Central

    Hawkins, Edwin D; Duarte, Delfim; Akinduro, Olufolake; Khorshed, Reema A; Passaro, Diana; Nowicka, Malgorzata; Straszkowski, Lenny; Scott, Mark K; Rothery, Steve; Ruivo, Nicola; Foster, Katie; Waibel, Michaela; Johnstone, Ricky W; Harrison, Simon J; Westerman, David A; Quach, Hang; Gribben, John; Robinson, Mark D; Purton, Louise E; Bonnet, Dominique; Lo Celso, Cristina

    2016-01-01

    It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. To this end, we studied a mouse model of human T cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting a stochastic mechanism underlies these processes. Yet, while T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells whilst perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function1. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding

  15. JAK3/STAT6 Stimulates Bone Marrow-Derived Fibroblast Activation in Renal Fibrosis.

    PubMed

    Yan, Jingyin; Zhang, Zhengmao; Yang, Jun; Mitch, William E; Wang, Yanlin

    2015-12-01

    Renal fibrosis is a final common manifestation of CKD resulting in progressive loss of kidney function. Bone marrow-derived fibroblast precursors contribute significantly to the pathogenesis of renal fibrosis. However, the signaling mechanisms underlying the activation of bone marrow-derived fibroblast precursors in the kidney are not fully understood. In this study, we investigated the role of the Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT6) signaling pathway in the activation of bone marrow-derived fibroblasts. In cultured mouse monocytes, IL-4 or IL-13 activated STAT6 and induced expression of α-smooth muscle actin and extracellular matrix proteins (fibronectin and collagen I), which was abolished by a JAK3 inhibitor (CP690,550) in a dose-dependent manner or blocked in the absence of STAT6. In vivo, STAT6 was activated in interstitial cells of the obstructed kidney, an effect that was abolished by CP690,550. Mice treated with CP690,550 accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys compared with vehicle-treated mice. Treatment with CP690,550 also significantly reduced myofibroblast transformation, matrix protein expression, fibrosis development, and apoptosis in obstructed kidneys. Furthermore, STAT6-deficient mice accumulated fewer bone marrow-derived fibroblasts in the obstructed kidneys, produced less extracellular matrix protein, and developed much less fibrosis. Finally, wild-type mice engrafted with STAT6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the obstructed kidneys and showed less severe renal fibrosis compared with wild-type mice engrafted with STAT6(+/+) bone marrow cells. Our results demonstrate that JAK3/STAT6 has an important role in bone marrow-derived fibroblast activation, extracellular matrix production, and interstitial fibrosis development.

  16. Periosteum and bone marrow in bone lengthening: a DEXA quantitative evaluation in rabbits.

    PubMed

    Guichet, J M; Braillon, P; Bodenreider, O; Lascombes, P

    1998-10-01

    We quantitatively studied the role of periosteum and bone marrow-endosteum during lengthening in 18 growing rabbits, comparing four surgical procedures: 1) periosteum and bone marrow preservation, 2) periosteum preservation, bone marrow destruction, 3) periosteum destruction, bone marrow preservation, 4) periosteum and bone marrow destruction. An external fixator was set on one femur, the other serving as a control. Distraction began on day 5 and stopped on day 25 (0.25 mm/12 hours). On day 30, femora were harvested with a layer of muscle. Area, bone mineral content and density were measured by dual-energy x-ray absorptiometry. Procedure 2 showed the highest increase in bone mineral content around the elongated callus (127%) compared to procedures: 1 (81%), 3 (25%) and 4 (-8%, i.e., resorption of bone ends). A statistically significant effect on bone formation was observed when preserving (vs. destroying): 1) periosteum, 2) bone marrow (effect observed only around the distraction gap), 3) periosteum and bone marrow in combination. Periosteum alone forms a larger callus, with more mineral content than bone marrow alone, and destruction of both results in the absence of bone formation around the distraction area. Careful preservation of periosteum is essential to bone healing. Formation of bone with a large mineral content does not require bone marrow preservation, but there is an interaction effect on healing between bone marrow and periosteum.

  17. Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage.

    PubMed

    Jin, Yi; Chen, Shizhu; Duan, Jianlei; Jia, Guang; Zhang, Jinchao

    2015-05-01

    With the wide applications of europium-doped Gd2O3 nanoparticles (Gd2O3:Eu(3+) NPs) in biomedical fields, it will inevitably increase the chance of human exposure. It was reported that Gd2O3:Eu(3+) NPs could accumulate in bone. However, there have been few reports about the potential effect of Gd2O3:Eu(3+) NPs on bone marrow stromal cells (BMSCs). In this study, the Gd2O3:Eu(3+) nanotubes were prepared and characterized by powder X-ray diffraction (XRD), photoluminescence (PL) excitation and emission spectra, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The cytotoxicity of Gd2O3:Eu(3+) nanotubes on BMSCs and the associated mechanisms were further studied. The results indicated that they could be uptaken into BMSCs by an energy-dependent and macropinocytosis-mediated endocytosis process, and primarily localized in lysosome. Gd2O3:Eu(3+) nanotubes effectively inhibited the viability of BMSCs in concentration and time-dependent manners. A significant increase in the percentage of late apoptotic/necrotic cells, lactate dehydrogenase (LDH) leakage and the number of PI-stained cells was found after BMSCs were treated by 10, 20, and 40μg/mL of Gd2O3:Eu(3+) nanotubes for 12h. No obvious DNA ladders were detected, but a dispersed band was observed. The above results revealed that Gd2O3:Eu(3+) nanotubes could trigger cell death by necrosis instead of apoptosis. Two mechanisms were involved in Gd2O3:Eu(3+) nanotube-induced BMSCs necrosis: lysosomal rupture and release of cathepsins B; and the overproduction of reactive oxygen species (ROS) injury to the mitochondria and DNA. The study provides novel evidence to elucidate the toxicity mechanisms and may be beneficial to more rational applications of these nanomaterials in the future.

  18. Mesenchymal progenitors residing close to the bone surface are functionally distinct from those in the central bone marrow.

    PubMed

    Siclari, Valerie A; Zhu, Ji; Akiyama, Kentaro; Liu, Fei; Zhang, Xianrong; Chandra, Abhishek; Nah, Hyun-Duck; Shi, Songtao; Qin, Ling

    2013-04-01

    Long bone is an anatomically complicated tissue with trabecular-rich metaphyses at two ends and cortical-rich diaphysis at the center. The traditional flushing method isolates only mesenchymal progenitor cells from the central region of long bones and these cells are distant from the bone surface. We propose that mesenchymal progenitors residing in endosteal bone marrow that is close to the sites of bone formation, such as trabecular bone and endosteum, behave differently from those in the central bone marrow. In this report, we separately isolated endosteal bone marrow using a unique enzymatic digestion approach and demonstrated that it contained a much higher frequency of mesenchymal progenitors than the central bone marrow. Endosteal mesenchymal progenitors express common mesenchymal stem cell markers and are capable of multi-lineage differentiation. However, we found that mesenchymal progenitors isolated from different anatomical regions of the marrow did exhibit important functional differences. Compared with their central marrow counterparts, endosteal mesenchymal progenitors have superior proliferative ability with reduced expression of cell cycle inhibitors. They showed greater immunosuppressive activity in culture and in a mouse model of inflammatory bowel disease. Aging is a major contributing factor for trabecular bone loss. We found that old mice have a dramatically decreased number of endosteal mesenchymal progenitors compared with young mice. Parathyroid hormone (PTH) treatment potently stimulates bone formation. A single PTH injection greatly increased the number of endosteal mesenchymal progenitors, particularly those located at the metaphyseal bone, but had no effect on their central counterparts. In summary, endosteal mesenchymal progenitors are more metabolically active and relevant to physiological bone formation than central mesenchymal progenitors. Hence, they represent a biologically important target for future mesenchymal stem cell studies.

  19. Mesenchymal Progenitors Residing Close to the Bone Surface Are Functionally Distinct from Those in the Central Bone Marrow

    PubMed Central

    Siclari, Valerie A.; Zhu, Ji; Akiyama, Kentaro; Liu, Fei; Zhang, Xianrong; Chandra, Abhishek; Nah-Cederquist, Hyun-Duck; Shi, Songtao; Qin, Ling

    2013-01-01

    Long bone is an anatomically complicated tissue with trabecular-rich metaphyses at two ends and cortical-rich diaphysis at the center. The traditional flushing method only isolates mesenchymal progenitor cells from the central region of long bones and these cells are distant from the bone surface. We propose that mesenchymal progenitors residing in endosteal bone marrow that is close to the sites of bone formation, such as trabecular bone and endosteum, behave differently from those in the central bone marrow. In this report, we separately isolated endosteal bone marrow using a unique enzymatic digestion approach and demonstrated that it contained a much higher frequency of mesenchymal progenitors than the central bone marrow. Endosteal mesenchymal progenitors express traditional mesenchymal stem cell markers and are capable of multi-lineage differentiation. However, we found that mesenchymal progenitors isolated from different anatomical regions of the marrow did exhibit important functional differences. Compared to their central marrow counterparts, endosteal mesenchymal progenitors have superior proliferative ability with reduced expression of cell cycle inhibitors. They showed greater immunosuppressive activity in culture and in a mouse model of inflammatory bowel disease. Aging is a major contributing factor for trabecular bone loss. We found that old mice have a dramatically decreased number of endosteal mesenchymal progenitors compared to young mice. Parathyroid hormone (PTH) treatment potently stimulates bone formation. A single PTH injection greatly increased the number of endosteal mesenchymal progenitors, particularly those located at the metaphyseal bone, but had no effect on their central counterparts. In summary, endosteal mesenchymal progenitors are more metabolically active and relevant to physiological bone formation than central mesenchymal progenitors. Hence, they represent a biologically important target for future mesenchymal stem cell studies

  20. Neuroprotective and antiapoptotic activity of lineage-negative bone marrow cells after intravitreal injection in a mouse model of acute retinal injury.

    PubMed

    Machalińska, Anna; Rogińska, Dorota; Pius-Sadowska, Ewa; Kawa, Miłosz P; Paczkowska, Edyta; Rudnicki, Michał; Lejkowska, Renata; Baumert, Bartłomiej; Wiszniewska, Barbara; Machaliński, Bogusław

    2015-01-01

    We investigated effects of bone marrow-derived, lineage-negative cell (Lin(-)BMC) transplantation in acute retinal injury. Lin(-)BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin(-)BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin(-)BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin(-)BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin(-)BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors.

  1. Cytotoxic and genotoxic effects of Br-containing oxaphosphole on Allium cepa L. root tip cells and mouse bone marrow cells

    PubMed Central

    2009-01-01

    The continuous production and release of chemicals into the environment has led to the need to assess their genotoxicity. Numerous organophosphorus compounds with different structures have been synthesized in recent years, and several oxaphosphole derivatives are known to possess biological activity. Such chemical compounds may influence proliferating cells and cause disturbances of the genetic material. In this study, we examined the cytotoxicity and genotoxicity of 4-bromo-N,N-diethyl-5,5-dimethyl-2,5-dihydro-1,2-oxaphosphol-2-amine 2-oxide (Br-oxph). In A. cepa cells, Br-oxph (10-9 M, 10 -6 M and 10 -3 M) reduced the mitotic index 48 h after treatment with the two highest concentrations, with no significant effect at earlier intervals. Mitotic cells showed abnormalities 24 h and 48 h after treatment with the two lowest concentrations but there were no consistent changes in interphase cells. Bone marrow cells from mice treated with Br-oxph (2.82 x 10 -3 μg/kg) also showed a reduced mitotic index after 48 h and a greater percentage of cells with aberrations (principally chromatid and isochromatid breaks). These findings indicate the cytotoxicity and genotoxicity of Br-oxph in the two systems studied. PMID:21637696

  2. Inhibitory effect of heat-killed Lactobacillus strain on immunoglobulin E-mediated degranulation and late-phase immune reactions of mouse bone marrow-derived mast cells.

    PubMed

    Kawahara, Takeshi

    2010-12-01

    This study investigated the in vitro effect of Lactobacillus strains, a major group of probiotic lactic acid bacteria, on immunoglobulin E (IgE)- and antigen-induced mast cell degranulation and subsequent gene expression. Bone marrow-derived mast cells (BMMCs) from DBA/2 mice were cultured with heat-killed Lactobacillus strains for 24 h. Some strains significantly inhibited IgE- and antigen-induced β-hexosaminidase release from BMMCs. Furthermore, Lactobacillus reuteri NBRC 15892, which exhibited the strongest inhibitory activity, significantly reduced the elevated interleukin (IL)-4, IL-13, tumor necrosis factor-α, and cyclooxygenase-2 expression levels that was induced by 1-2 h of stimulation with IgE and antigens. The suppressive effect of NBRC 15892 strain on BMMC degranulation was significantly reduced in the presence of a toll-like receptor (TLR)2-neutralizing antibody. In addition, downregulation of cell surface FcεRIα expression was observed after 6 h of NBRC 15892 treatment. These results suggest that some Lactobacillus strains inhibited IgE-mediated mast cell degranulation and subsequent late-phase reactions involving mast cells via a TLR2-dependent mechanism with FcεRIα downregulation.

  3. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line

    PubMed Central

    Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  4. Protective effects of solvent fractions of Mentha spicata (L.) leaves evaluated on 4-nitroquinoline-1-oxide induced chromosome damage and apoptosis in mouse bone marrow cells.

    PubMed

    Arumugam, Ponnan; Ramesh, Arabandi

    2009-10-01

    Spearmint leaves (Mentha spicata L.) contain high levels of antioxidants that are known to protect against both exogenous and endogenous DNA damage. In this study, the protective effects of the hexane fraction (HF), chloroform fraction (CF) and ethyl acetate fraction (EAF) in an ethanol extract from M. spicata were evaluated against 4-nitroquinoline-1-oxide (4-NQO) induced chromosome damage and apoptosis in bone marrow cells of Swiss albino mice. Two (EAF; 80 and 160 mg/ kg body weight - bw) or three (HF and CF; 80, 160 and 320 mg/ kg bw) doses of solvent fractions or vehicle control (25% DMSO in water) were administered orally for five consecutive days. Upon the sixth day, 4-NQO was injected intraperitoneally. The animals were killed the following day. Other control groups were comprised of animals treated with either the vehicle control or the various doses of solvent fractions, but with no 4-NQO treatment. 4-NQO induced micro-nucleated polychromatic erythrocytes (MnPCEs) in all the test groups. However, pre-treatment of animals with the solvent fractions significantly reduced the 4-NQO-induced MnPCEs as well as the percentage of apoptotic cells. The reduction of both MnPCE and apoptosis was more evident following the pre-treatment of animals with 160 mg/kg bw EAF.

  5. Protective effects of solvent fractions of Mentha spicata (L.) leaves evaluated on 4-nitroquinoline-1-oxide induced chromosome damage and apoptosis in mouse bone marrow cells

    PubMed Central

    2009-01-01

    Spearmint leaves (Mentha spicata L.) contain high levels of antioxidants that are known to protect against both exogenous and endogenous DNA damage. In this study, the protective effects of the hexane fraction (HF), chloroform fraction (CF) and ethyl acetate fraction (EAF) in an ethanol extract from M. spicata were evaluated against 4-nitroquinoline-1-oxide (4-NQO) induced chromosome damage and apoptosis in bone marrow cells of Swiss albino mice. Two (EAF; 80 and 160 mg/ kg body weight - bw) or three (HF and CF; 80, 160 and 320 mg/ kg bw) doses of solvent fractions or vehicle control (25% DMSO in water) were administered orally for five consecutive days. Upon the sixth day, 4-NQO was injected intraperitoneally. The animals were killed the following day. Other control groups were comprised of animals treated with either the vehicle control or the various doses of solvent fractions, but with no 4-NQO treatment. 4-NQO induced micro-nucleated polychromatic erythrocytes (MnPCEs) in all the test groups. However, pre-treatment of animals with the solvent fractions significantly reduced the 4-NQO-induced MnPCEs as well as the percentage of apoptotic cells. The reduction of both MnPCE and apoptosis was more evident following the pre-treatment of animals with 160 mg/kg bw EAF. PMID:21637463

  6. Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apc(del/+) MDS mouse model.

    PubMed

    Stoddart, Angela; Wang, Jianghong; Hu, Chunmei; Fernald, Anthony A; Davis, Elizabeth M; Cheng, Jason X; Le Beau, Michelle M

    2017-03-27

    There is accumulating evidence that functional alteration(s) of the bone marrow (BM) microenvironment contributes to the development of some myeloid disorders, such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). In addition to a cell intrinsic role of WNT activation in leukemia stem cells, WNT activation in the BM niche is also thought to contribute to the pathogenesis of MDS and AML. We previously showed that Apc haploinsufficient mice (Apc(del/+) ) model MDS induced by an aberrant BM microenvironment. We sought to determine whether Apc, a multifunctional protein and key negative regulator of the canonical β-catenin (Ctnnb1)/WNT signaling pathway, mediates this disease through modulating WNT signaling, and whether inhibition of WNT signaling prevents the development of MDS in Apc(del/+) mice. Here, we demonstrate that loss of one copy of Ctnnb1 is sufficient to prevent the development of MDS in Apc(del/+) mice and that altered canonical WNT signaling in the microenvironment is responsible for the disease. Furthermore, the FDA-approved drug, pyrvinium, delays and/or inhibits disease in Apc(del/+) mice, even when it is administered after the presentation of anemia. Other groups have observed increased nuclear CTNNB1 in stromal cells from a high frequency of MDS/AML patients, a finding that together with our results highlights a potential new strategy for treating some myeloid disorders.

  7. 16,16-Dimethyl prostaglandin E2 and/or syngeneic bone marrow transplantation increase mouse survival after supra-lethal total body irradiation

    SciTech Connect

    Berk, L.B.; Patrene, K.D.; Boggs, S.S. )

    1990-06-01

    We evaluated the effects of 16,16-dimethyl prostaglandin E2 (dm-PGE2), with and without syngeneic bone marrow transplantation (BMT) on the survival and hematopoietic recovery of mice given 14-20 Gy total body irradiation (TBI). Survival of mice given combined dm-PGE2 and BMT was improved significantly over that of mice given either treatment alone. The 30-day survival after 14, 15, 16 or 18 Gy TBI for combined treatment was 97, 90, 20 or 10 percent, respectively. The corresponding 30-day survival rates for mice given BMT alone were 69, 60, 7 or 0 percent, respectively. For dm-PGE2 alone, 30-day survival was 63, 20, 10 or 0 percent, respectively. Deaths in both dm-PGE2 treated groups generally occurred after day 10 whereas deaths in the BMT group occurred before day 10. All irradiated controls were dead on or before day 10; after larger doses, deaths clustered around day 5. After 20 Gy TBI, all mice in all groups were dead by day 7. Studies of white blood cell recovery 1-9 days after 14 Gy TBI showed improvement with BMT, whereas dm-PGE2 did not enhance recovery. Nucleated cells per humerus, spleen weight, and spleen iron uptake (erythropoiesis) were also improved by BMT but not dm-PGE2.

  8. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    PubMed Central

    Machalińska, Anna; Pius-Sadowska, Ewa; Kawa, Miłosz P.; Paczkowska, Edyta; Rudnicki, Michał; Lejkowska, Renata; Baumert, Bartłomiej; Wiszniewska, Barbara; Machaliński, Bogusław

    2015-01-01

    We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC) transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors. PMID:25810725

  9. Chronic Trichuris muris infection alters hematopoiesis and causes IFN-γ-expressing T-cell accumulation in the mouse bone marrow.

    PubMed

    Chenery, Alistair L; Antignano, Frann; Hughes, Michael R; Burrows, Kyle; McNagny, Kelly M; Zaph, Colby

    2016-11-01

    Proinflammatory cytokines produced during immune responses to infectious stimuli are well-characterized to have secondary effects on the function of hematopoietic progenitor cells in the BM. However, these effects on the BM are poorly characterized during chronic infection with intestinal helminth parasites. In this study, we use the Trichuris muris model of infection and show that Th1 cell-associated, but not acute Th2 cell-associated, responses to chronic T. muris infection cause a major, transient expansion of CD48(-) CD150(-) multipotent progenitor cells in the BM that is dependent on the presence of adaptive immune cells and IFN-γ signaling. Chronic T. muris infection also broadly stimulated proliferation of BM progenitor cells including CD48(-) CD150(+) hematopoietic stem cells. This shift in progenitor activity during chronic T. muris infection correlated with a functional increase in myeloid colony formation in vitro as well as neutrophilia in the BM and peripheral blood. In parallel, we observed an accumulation of CD4(+) , CD8(+) , and CD4(-) CD8(-) (double negative) T cells that expressed IFN-γ, displaying activated and central memory-type phenotypes in the bone marrow during chronic infection. Thus, these results demonstrate that Th1 cell-driven responses in the intestine during chronic helminth infection potently influence upstream hematopoietic processes in the BM via IFN-γ. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Therapeutic Efficacy of Bone Marrow Transplant, Intracranial AAV-mediated Gene Therapy, or Both in the Mouse Model of MPS IIIB

    PubMed Central

    Heldermon, Coy D; Ohlemiller, Kevin K; Herzog, Erik D; Vogler, Carole; Qin, Elizabeth; Wozniak, David F; Tan, Yun; Orrock, John L; Sands, Mark S

    2010-01-01

    Sanfilippo syndrome type B (MPS IIIB) is a lysosomal storage disease resulting from a deficiency of N-acetyl-glucosaminidase (NAGLU) activity. In an attempt to correct the disease in the murine model of MPS IIIB, neonatal mice were treated with intracranial AAV2/5-NAGLU (AAV), syngeneic bone marrow transplant (BMT), or both (AAV/BMT). All treatments resulted in some improvement in clinical phenotype. Adeno-associated viral (AAV) treatment resulted in improvements in lifespan, motor function, hearing, time to activity onset, and daytime activity level, but no reduction of lysosomal storage. BMT resulted in improved hearing by 9 months, and improved circadian measures, but had no effect on lifespan, motor function, or central nervous system (CNS) lysosomal storage. AAV/BMT treatment resulted in improvements in hearing, time to activity onset, motor function, and reduced CNS lysosomal storage, but had no effect on lifespan. Combination therapy compared to either therapy alone resulted in synergistic effects on hearing and CNS lysosomal inclusions but antagonistic effects on motor function and lifespan. AAV alone is more efficacious than BMT or AAV/BMT treatment for lifespan. BMT was the least efficacious treatment by all measures. CNS-directed AAV treatment alone appears to be the preferred treatment, combining the most efficacy with the least toxicity of the approaches assessed. PMID:20179679

  11. GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c(+)MHCII(+) Macrophages and Dendritic Cells.

    PubMed

    Helft, Julie; Böttcher, Jan; Chakravarty, Probir; Zelenay, Santiago; Huotari, Jatta; Schraml, Barbara U; Goubau, Delphine; Reis e Sousa, Caetano

    2015-06-16

    Dendritic cells (DCs) are key players in the immune system. Much of their biology has been elucidated via culture systems in which hematopoietic precursors differentiate into DCs under the aegis of cytokines. A widely used protocol involves the culture of murine bone marrow (BM) cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) to generate BM-derived DCs (BMDCs). BMDCs express CD11c and MHC class II (MHCII) molecules and share with DCs isolated from tissues the ability to present exogenous antigens to T cells and to respond to microbial stimuli by undergoing maturation. We demonstrate that CD11c(+)MHCII(+) BMDCs are in fact a heterogeneous group of cells that comprises conventional DCs and monocyte-derived macrophages. DCs and macrophages in GM-CSF cultures both undergo maturation upon stimulation with lipopolysaccharide but respond differentially to the stimulus and remain separable entities. These results have important implications for the interpretation of a vast array of data obtained with DC culture systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia.

    PubMed

    Bär, Christian; Povedano, Juan Manuel; Serrano, Rosa; Benitez-Buelga, Carlos; Popkes, Miriam; Formentini, Ivan; Bobadilla, Maria; Bosch, Fatima; Blasco, Maria A

    2016-04-07

    Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomerase Tert gene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- and Tert-deficient mice). We find that a high dose of AAV9-Tert targets the bone marrow compartment, including hematopoietic stem cells. AAV9-Tert treatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres.

  13. Strain energy density gradients in bone marrow predict osteoblast and osteoclast activity: a finite element study.

    PubMed

    Webster, Duncan; Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2015-03-18

    Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, p<0.001). Nevertheless, SED gradients in the marrow were shown to be the best predictor of osteoblastic and osteoclastic activity (R(2)=0.83 and 0.60, respectively, p<0.001). These data suggest that the mechanical environment of the bone marrow plays a significant role in determining osteoblast and osteoclast activity.

  14. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    PubMed

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  15. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    SciTech Connect

    Waksman, Ron; Baffour, Richard

    2003-09-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell.

  16. [Fundamental study of blood and bone marrow].

    PubMed

    Miura, Ikuo

    2009-10-01

    The WHO classification incorporated recent advances of immunology, cytogenetics, and molecular biology, which developed from FAB classification based on cell morphology and cytochemistry. One of the most distinct changes was "AML with recurrent genetic abnormalities." The immunological and cytogenetic studies are required to apply the classification to hematopoietic and lymphoid neoplasms in addition to conventional examinations of the blood and bone marrow. The fundamentals of specimen collection, cell counts, morphologic analysis of blood cells, special stains and other laboratory studies were described in related to the management of myeloid leukemias.

  17. The inherited bone marrow failure syndromes.

    PubMed

    Chirnomas, S Deborah; Kupfer, Gary M

    2013-12-01

    Molecular pathogenesis may be elucidated for inherited bone marrow failure syndromes (IBMFS). The study and presentation of the details of their molecular biology and biochemistry is warranted for appropriate diagnosis and management of afflicted patients and to identify the physiology of the normal hematopoiesis and mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies, which include ribosome assembly and ribosomal RNA processing. The Fanconi anemia pathway has become interdigitated with the familial breast cancer syndromes. In this article, the diseases that account for most IBMFS diagnoses are analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Autologous bone marrow transplantation by photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.

    1992-06-01

    Simultaneous exposure of Merocyanine 540 dye containing cultured tumor cells to 514-nm laser light (93.6 J/cm2) results in virtually complete cell destruction. Under identical conditions, 40% of the normal progenitor (CFU-GM) cells survive the treatment. Laser- photoradiation treated, cultured breast cancer cells also were killed, and living tumor cells could not be detected by clonogenic assays or by anti-cytokeratin monoclonal antibody method. Thus, laser photoradiation therapy could be useful for purging of contaminating tumor cells from autologous bone marrow.

  19. Performing a Better Bone Marrow Aspiration.

    PubMed

    Friedlis, Mayo F; Centeno, Christopher J

    2016-11-01

    Bone marrow aspiration (BMA) is increasingly being used to harvest stem cells for use in regenerative medicine. The focus of BMA in interventional orthopedics is to maximize the yield of mesenchymal stem cells. The authors present an improved method for BMA that involves fluoroscope or ultrasound guidance combined with anesthesia; in the authors' experience, it produces the highest possible stem cell yield and is well tolerated by patients. The authors provide a step-by-step guide to the process, along with a discussion of technical and other considerations and quick reference guides for ultrasound- and fluoroscope-guided BMA. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [Modified method for whole bone marrow adherent culture of human bone marrow mesenchymal stem cells].

    PubMed

    Wang, Xiao-Qing; Zhong, Zhao-Dong; Chen, Zhi-Chao; Zou, Ping

    2014-04-01

    This study was aimed to investigate a more convenient and efficient method to cultivate the human bone marrow mesenchymal stem cells by means of natural erythrocyte sedimentation principle, based on the whole bone marrow adherent method. The bone marrow was cultured with a six-well plate instead of the flasks.Firstly, the bone marrow specimen was cultivated with the MSC complete medium for 48 h, then the upper RBC-free supernatant layer was drawn and placed into the new wells to isolate MSC. Inverted microscope was used to observe the cell morphology and to record the adherent time of first cell passage, first passaging time. The traditional whole bone marrow adherent method was used as the control. The cell cycle and cell surface markers were detected by flow cytometry,and the differentiative capacity of MSC into osteocyte and adipocyte was identified by alkaline phosphatase kit and oil red O, respectively. Besides, the proliferative curve of P1,P3,P5 of BMSC was depicted by counting method. The results showed that MSC cultured by the modified method highly expressed CD90, CD105, CD13, CD44 and lowly expressed CD14, CD45, CD34. Concerning the cell cycle feature, it was found that most of the cells were in G0/G1 phase (88.76%) , followed by G2/M phase (3.04%) and S phase (8.2%), which was in accordance with stem cell cycle characteristics. The proliferative curve showed a typical "S" type, and both the oil red O and alkaline phosphatase staining of MSC were positive. Compared with the traditional method, the modified method had the advantage of high adherence rate (P = 0.0001) and shorter passaging time for the first passage (P = 0.001), with the statistically significant difference. It is concluded that there is a large number of adherent, active and suspended MSC in the RBC-free supernatant layer after the culture of bone marrow for 48 h. Isolating MSC by the modified method is more convenient and efficient than the traditional whole bone marrow adherent method.

  1. Marrow Fat and Bone: Review of Clinical Findings

    PubMed Central

    Schwartz, Ann V.

    2015-01-01

    With growing interest in the connection between fat and bone, there has been increased investigation of the relationship with marrow fat in particular. Clinical research has been facilitated by the development of non-invasive methods to measure bone marrow fat content and composition. Studies in different populations using different measurement techniques have established that higher marrow fat is associated with lower bone density and prevalent vertebral fracture. The degree of unsaturation in marrow fat may also affect bone health. Although other fat depots tend to be strongly correlated, marrow fat has a distinct pattern, suggesting separate mechanisms of control. Longitudinal studies are limited, but are crucial to understand the direct and indirect roles of marrow fat as an influence on skeletal health. With greater appreciation of the links between bone and energy metabolism, there has been growing interest in understanding the relationship between marrow fat and bone. It is well established that levels of marrow fat are higher in older adults with osteoporosis, defined by either low bone density or vertebral fracture. However, the reasons for and implications of this association are not clear. This review focuses on clinical studies of marrow fat and its relationship to bone. PMID:25870585

  2. [Significance of Simultaneous Analysis of Bone Marrow Smear and Bone Marrow Biopsy in the Diagnosis of Multiple Myloma].

    PubMed

    Liu, Ya-Lin; Wang, Wen-Juan; Liu, Hai-Bo

    2015-08-01

    To explore the value of bone marrow smear and biopsy simultaneously applied to diagnosis of multiple myloma (MM). Clinical data of 30 cases of multiple myloma were collected from our hospital in the year 2014 and analyzed retrospectively, and the results of the bone marrow smear and the simultaneous bone marrow biopsy were compared. Hyperplasia levels in bone marrow biopsy was significantly higher than that in bone marrow smears, and the active and highly active hyperplasia of nucleated cells were observed in all the bone marrow biopsies; the myeloma cells showed a focal or diffuse distribution, the binuclear or polynuclear myeloma cells were observed in 22 patients (73%), but the detection rate of abnormal myeloma cells was 40% in bone marrow smear (P < 0.05). There was mild to moderate hyperplasia of fibrous tissue in bone marrow biopsy, and the hyperplasia degeree of fibrous tissue strongly positively correlated with the myeloma cell ratio (r = 0.412). The bone marrow smear and aspiration biopsy can complement each other so as to reduce the misdiagnosis rate, therefore contributes to the early diaglosis and treatment.

  3. Schwann cells induce neuronal differentiation of bone marrow stromal cells.

    PubMed

    Zurita, Mercedes; Vaquero, Jesús; Oya, Santiago; Miguel, Miriam

    2005-04-04

    Bone marrow stromal cells are multipotent stem cells that have the potential to differentiate into bone, cartilage, fat and muscle. Recently, bone marrow stromal cells have been shown to have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. We now describe how bone marrow stromal cells can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells. When compared with chemical differentiation, expression of neuronal differentiation markers begins later, but one week after beginning co-culture, most bone marrow stromal cells showed a typical neuronal morphology. Our present findings support the transdifferentiation of bone marrow stromal cells, and the potential utility of these cells for the treatment of degenerative and acquired disorders of the nervous system.

  4. Effects of the bone marrow microenvironment on hematopoietic malignancy.

    PubMed

    Askmyr, Maria; Quach, Julie; Purton, Louise E

    2011-01-01

    The bone marrow (BM) is contained within the bone cavity and is the main site of hematopoiesis, the continuous development of blood cells from immature hematopoietic stem and progenitor cells. The bone marrow consists of developing hematopoietic cells and non-hematopoietic cells, the latter collectively termed the bone marrow microenvironment. These non-hematopoietic cells include cells of the osteoblast lineage, adipocytes and endothelial cells. For many years these bone marrow microenvironment cells were predicted to play active roles in regulating hematopoiesis, and recent studies have confirmed such roles. Importantly, more recent data has indicated that cells of the BM microenvironment may also contribute to hematopoietic diseases. In this review we provide an overview of the roles of the data suggesting that the cells of the bone marrow microenvironment may play an active role in the initiation and progression of hematopoietic malignancy.

  5. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy.

    PubMed

    Wilderman, S J; Roberson, P L; Bolch, W E; Dewaraja, Y K

    2013-07-21

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  6. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy

    NASA Astrophysics Data System (ADS)

    Wilderman, S. J.; Roberson, P. L.; Bolch, W. E.; Dewaraja, Y. K.

    2013-07-01

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  7. Nongenotoxic effects and a reduction of the DXR-induced genotoxic effects of Helianthus annuus Linné (sunflower) seeds revealed by micronucleus assays in mouse bone marrow

    PubMed Central

    2014-01-01

    Background This research evaluated the genotoxicity of oil and tincture of H. annuus L. seeds using the micronucleus assay in bone marrow of mice. The interaction between these preparations and the genotoxic effects of doxorubicin (DXR) was also analysed (antigenotoxicity test). Methods Experimental groups were evaluated at 24-48 h post treatment with N-Nitroso-N-ethylurea (positive control – NEU), DXR (chemotherapeutic), NaCl (negative control), a sunflower tincture (THALS) and two sources of sunflower oils (POHALS and FOHALS). Antigenotoxic assays were carried out using the sunflower tincture and oils separately and in combination with NUE or DXR. Results For THALS, analysis of the MNPCEs showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. A significant reduction in MNPCE was observed when THALS (2,000 mg.Kg-1) was administered in combination with DXR (5 mg.Kg-1). For POHALS or FOHALS, analysis of the MNPCEs also showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. However, the combination DXR + POHALS (2,000 mg.Kg-1) or DXR + FOHALS (2,000 mg.Kg-1) not contributed to the MNPCEs reduction. Conclusions This research suggests absence of genotoxicity of THALS, dose-, time- and sex-independent, and its combination with DXR can reduce the genotoxic effects of DXR. POHALS and FOHALS also showed absence of genotoxicity, but their association with DXR showed no antigenotoxic effects. PMID:24694203

  8. Specific antigen targeting to surface IgE and IgG on mouse bone marrow-derived mast cells enhances efficiency of antigen presentation.

    PubMed Central

    Tkaczyk, C; Viguier, M; Boutin, Y; Frandji, P; David, B; Hébert, J; Mécheri, S

    1998-01-01

    The discovery that bone marrow-derived mast cells can express major histocompatibility complex class II molecules and act as antigen-presenting cells prompted us to evaluate this function when antigen is internalized through fluid-phase endocytosis or via specific uptake by using IgG and IgE antibodies. This study was performed using a specific T-cell hybridoma developed against Lol p 1, the major allergen of grass pollen Lolium perenne. Expression of Fc gamma R and Fc epsilon RI by mast cells led us to investigate the influence of IgG- and IgE-targeted antigen on the antigen-presenting function of mast cells. Internalization of Lol p 1 through different specific IgG monoclonal antibodies (mAb) resulted in the activation of Lol p 1-specific T-cell hybridoma at concentrations about 100-fold less than that required for T-cell stimulation by uncomplexed antigen. IgE-complexed Lol p 1, which facilitates trapping of antigen by mast cells, induced an accelerated and more efficient antigen-presenting capacity of mast cells than that obtained with uncomplexed antigen. However, aggregation of anti-dinitrophenyl (DNP) IgE mAb by the irrelevant antigen DNP-human serum albumin did not substantially increase the capacity of mast cells to present Lol p 1 to T cells. This suggests that the mere aggregation of Fc epsilon RI is not sufficient for enhanced antigen presentation mediated by IgE. Tissue distribution and strategic location of mast cells at the mucosal barriers and their capacity to process the antigen through efficient fluid-phase pinocytosis as well as IgG- and IgE-dependent targeting of antigens provide mast cells with a prominent role in immune surveillance. Images Figure 1 PMID:9767412

  9. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    SciTech Connect

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  10. Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Solomon, Jennifer N; Lewis, Coral-Ann B; Ajami, Bahareh; Corbel, Stephane Y; Rossi, Fabio M V; Krieger, Charles

    2006-05-01

    Amyotrophic lateral sclerosis (ALS) is associated with increased numbers of microglia within the central nervous system (CNS). However, it is unknown whether the microgliosis results from proliferation of CNS resident microglia, or recruitment of bone marrow (BM)-derived microglial precursors. Here we assess the distribution and number of BM-derived cells in spinal cord using transplantation of green fluorescent protein (GFP)-labeled BM cells into myelo-ablated mice over-expressing human mutant superoxide dismutase 1 (mSOD), a murine model of ALS. Transplantation of GFP+ BM did not affect the rate of disease progression in mSOD mice. Mean numbers of microglia and GFP+ cells in spinal cords of control mice were not significantly different from those in asymptomatic mSOD mice and showed no change with animal age. The number of GFP+ cells and microglia (F4/80+ and CD11b+ cells) within the spinal cord of mSOD mice increased compared to age-matched controls at a time when mSOD mice exhibited disease symptoms, continuing up to disease end-stage. Although we observed an increase in the number of GFP+ cells in spinal cords of mSOD mice with disease symptoms, mean numbers of GFP+ F4/80+ cells comprised less than 20% of all F4/80+ cells and did not increase with disease progression. Furthermore, the relative rates of proliferation in CD45+GFP- and CD45+GFP+ cells were comparable. Thus, we demonstrate that the microgliosis present in spinal cord tissue of mSOD mice is primarily due to an expansion of resident microglia and not to the recruitment of microglial precursors from the circulation. Copyright 2006 Wiley-Liss, Inc.

  11. A multiscale model of the bone marrow and hematopoiesis

    PubMed Central

    Silva, Ariosto S; Anderson, Alexander R.A.

    2013-01-01

    The bone marrow is necessary for renewal of all hematopoietic cells and critical for maintenance of a wide range of physiologic functions. Multiple human diseases result from bone marrow dysfunction. It is also the site in which “liquid” tumors, including leukemia and multiple myeloma, develop as well as a frequent site of metastases. Understanding the complex cellular and microenvironmental interactions that govern normal bone marrow function as well as diseases and cancers of the bone marrow would be a valuable medical advance. Our goal is the development of a spatially-explicit in silico model of the bone marrow to understand both its normal function and the evolutionary dynamics that govern the emergence of bone marrow malignancy. Here we introduce a multiscale computational model of the bone marrow that incorporates three distinct spatial scales, cell, hematopoietic subunit, whole marrow. Implemented as a fixed lattice 3D cellular automaton, it reproduces the spatial characteristics of the normal bone marrow and is validated against data from the daily production of mature blood cells and response of hematopoiesis after irradiation. The major mechanisms modeled in this work are: (1) replication, specialization and migration of hematopoietic cells, (2) optimized spatial configuration of sinuses and hematopoietic compartments and, (3) intravasation of mature hematopoietic cells into sinuses. Our results, using parameter estimates from literature, recapitulates normal bone marrow function and suggest an explanation for the fractal-like structure of trabeculae and sinuses in the marrow, which would be an optimization of the hematopoietic function in order to maximize the number of mature blood cells produced daily within the volumetric restrictions of the marrow. PMID:21631151

  12. Enteral nutrition after bone marrow transplantation

    PubMed Central

    Papadopoulou, A; MacDonald, A; Williams, M; Darbyshire, P; Booth, I

    1997-01-01

    Accepted 16 April 1997
 Nutritional insult after bone marrow transplantation (BMT) is complex and its nutritional management challenging. Enteral nutrition is cheaper and easier to provide than parenteral nutrition, but its tolerance and effectiveness in reversing nutritional depletion after BMT is poorly defined. Nutritional status, wellbeing, and nutritional biochemistry were prospectively assessed in 21 children (mean age 7.5 years; 14 boys) who received nasogastric feeding after BMT (mean duration 17 days) and in eight children (mean age 8 years, four boys) who refused enteral nutrition and who received dietetic advice only.
 Enteral nutrition was stopped prematurely in eight patients. Greater changes in weight and mid upper arm circumference were observed in the enteral nutrition group, while positive correlations were found between the duration of feeds and increase in weight and in mid upper arm circumference. Vomiting and diarrhoea had a similar incidence in the two groups, while fever and positive blood cultures occurred more frequently in the dietetic advice group. Diarrhoea occurring during enteral nutrition was not associated with fat malabsorption, while carbohydrate malabsorption was associated with rotavirus infection only. Enteral feeding did not, however, affect bone marrow recovery, hospital stay, general wellbeing, or serum albumin concentrations. Hypomagnesaemia, hypophosphataemia, zinc and selenium deficiency were common in both groups. In conclusion, enteral nutrition, when tolerated, is effective in limiting nutritional insult after BMT. With existing regimens nutritional biochemistry should be closely monitored in order to provide supplements when required.

 PMID:9301351

  13. Aerobic nitroreduction of dehydrochloramphenicol by bone marrow.

    PubMed

    Isildar, M; Abou-Khalil, W H; Jimenez, J J; Abou-Khalil, S; Yunis, A A

    1988-06-30

    It has been previously demonstrated that dehydrochloramphenicol (DH-CAP), a bacterial metabolite of chloramphenicol, induces DNA single strand breaks in intact cells and is profoundly more cytotoxic than chloramphenicol (CAP). In view of previous observations relating genotoxicity of nitrocompounds to their nitroreduction by the target tissue, we studied the nitroreduction of DH-CAP by human and rabbit bone marrow. Nitroreduction by tissue homogenates was determined by the Bratton Marshall colorimetric assay and by high-performance liquid chromatography (HPLC). Nitroreduction of DH-CAP by bone marrow cell homogenates was observed under aerobic conditions and the reduction was both cell concentration- and time-dependent. The formation of the amino product aminodehydrochloramphenicol was confirmed by HPLC. Reduction by other tissues including human liver, Raji cells, and HL-60 tumors was also observed. These results suggest that genotoxicity of DH-CAP may be related to its nitroreduction by the target tissue with in situ production of toxic intermediates. Together with previous studies, these observations lend support to the thesis that the p-NO2 group may be the structural feature underlying aplastic anemia from CAP.

  14. Efficient conditional gene expression following transplantation of retrovirally transduced bone marrow stem cells.

    PubMed

    Chung, Jie-Yu; Mackay, Fabienne; Alderuccio, Frank

    2015-01-01

    Retroviral gene therapy combined with bone marrow stem cell transplantation can be used to generate mice with ectopic gene expression in the bone marrow compartment in a quick and cost effective manner when compared to generating and maintaining transgenic mouse lines. However a limitation of this procedure is the lack of cell specificity in gene expression that is associated with the use of endogenous retroviral promoters. Restricting gene expression to specific cell subsets utilising tissue-specific promoter driven retroviral vectors is a challenge. Here we describe the generation of conditional expression of retrovirally encoded genes in specific bone marrow derived cell lineages utilising a Cre-dependent retroviral vector. By utilising Lck and CD19 restricted Cre transgenic bone marrow stem cells, we generate chimeric animals with T or B lymphocyte restricted gene expression respectively. The design of the Cre-dependent retroviral vector enables expression of encoded MOG and GFP genes only in association with Cre mediated DNA inversion. Importantly this strategy does not significantly increase the size of the retroviral vector; as such we are able to generate bone marrow chimeric animals with significantly higher chimerism levels than previous studies utilising Cre-dependent retroviral vectors and Cre transgenic bone marrow stem cells. This demonstrates that the use of Cre-dependent retroviral vectors is able to yield high chimerism levels for experimental use and represent a viable alternative to generating transgenic animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Role of neuropeptide Y in the bone marrow hematopoietic stem cell microenvironment.

    PubMed

    Park, Min Hee; Min, Woo-Kie; Jin, Hee Kyung; Bae, Jae-Sung

    2015-12-01

    The sympathetic nervous system (SNS) or neurotransmitters in the bone marrow microenvironment has been known to regulate hematopoietic stem cell (HSC) functions such as self-renewal, proliferation and differentiation. However, the specific role of neuropeptide Y (NPY) in this process remains relatively unexplored. In this study, we demonstrated that NPY deficient mice have significantly reduced HSC numbers and impaired bone marrow regeneration due to apoptotic destruction of SNS fibers and/or endothelial cells. Moreover, NPY treatment prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while conditional knockout mice lacking the Y1 receptor in macrophages did not restore bone marrow dysfunction in spite of NPY injection. Transforming growth factor-beta (TGF-β) secreted by NPY-mediated Y1 receptor stimulation in macrophages plays a key role in neuroprotection and HSC survival in the bone marrow. Therefore, this study reveals a new role of NPY in bone marrow HSC microenvironment, and provides an insight into the therapeutic application of this neuropeptide.

  16. [Frontiers in Live Bone Imaging Researches. In vivo imaging of bone marrow microenvironment].

    PubMed

    Mizuno, Hiroki; Ishii, Masaru

    2015-06-01

    The function of hematopoietic stem cells and leukemia stem cells depends on their interaction with complex microenvironment within the bone marrow. Conventional methods could not observe the dynamic cell movement in living bone marrow. Recently rapid development of live imaging techniques enables us to understand the cellular interaction. Intravital two-photon imaging is the ideal method to understand the nature of bone marrow because of visualizing the cellular dynamics in vivo and observing the bone marrow long time. Here we show the latest reports about bone marrow microenvironment by intravital imaging, and also discuss its further application.

  17. Autologous Bone Marrow Transplantation for Poor-Prognosis Neuroblastoma

    DTIC Science & Technology

    1987-01-01

    Recent pilot studies of intensive chemotherapy and total body irradiation (TBI) followed by allogeneic bone marrow transplantation (BMT) or...autologous bone marrow transplantation (ABMT) have produced encouraging results. In this report, we update our original study in which 20 patients with

  18. The Procuring and Processing of Human Cadaveric Bone Marrow

    DTIC Science & Technology

    1990-01-01

    PROCESSING OF HUMAN CADAVERIC BONE MARROW 12. PERSONAL AUTHOR(S) Timothy R. Faloon 13a. TYPE OF REPORT 13b. TIMECiOVED 14. DATE OF REPORT (Year, Month, Day) S...CADAVERIC BONE MARROW PROCESSING PROTOCOL ................ 15 Procedure for processing and freezing . .................................. 15 CELL VIABILITY...18 Procedure . ....................................................... 18 USING THE COULTER COUNTER

  19. Bone marrow macrophages support prostate cancer growth in bone

    PubMed Central

    Soki, Fabiana N.; Cho, Sun Wook; Kim, Yeo Won; Jones, Jacqueline D.; Park, Serk In; Koh, Amy J.; Entezami, Payam; Daignault-Newton, Stephanie; Pienta, Kenneth J.; Roca, Hernan; McCauley, Laurie K.

    2015-01-01

    Resident macrophages in bone play important roles in bone remodeling, repair, and hematopoietic stem cell maintenance, yet their role in skeletal metastasis remains under investigated. The purpose of this study was to determine the role of macrophages in prostate cancer skeletal metastasis, using two in vivo mouse models of conditional macrophage depletion. RM-1 syngeneic tumor growth was analyzed in an inducible macrophage (CSF-1 receptor positive cells) ablation model (MAFIA mice). There was a significant reduction in tumor growth in the tibiae of macrophage-ablated mice, compared with control non-ablated mice. Similar results were observed when macrophage ablation was performed using liposome-encapsulated clodronate and human PC-3 prostate cancer cells where tumor-bearing long bones had increased numbers of tumor associated-macrophages. Although tumors were consistently smaller in macrophage-depleted mice, paradoxical results of macrophage depletion on bone were observed. Histomorphometric and micro-CT analyses demonstrated that clodronate-treated mice had increased bone volume, while MAFIA mice had reduced bone volume. These results suggest that the effect of macrophage depletion on tumor growth was independent of its effect on bone responses and that macrophages in bone may be more important to tumor growth than the bone itself. In conclusion, resident macrophages play a pivotal role in prostate cancer growth in bone. PMID:26459393

  20. Bone marrow macrophages support prostate cancer growth in bone.

    PubMed

    Soki, Fabiana N; Cho, Sun Wook; Kim, Yeo Won; Jones, Jacqueline D; Park, Serk In; Koh, Amy J; Entezami, Payam; Daignault-Newton, Stephanie; Pienta, Kenneth J; Roca, Hernan; McCauley, Laurie K

    2015-11-03

    Resident macrophages in bone play important roles in bone remodeling, repair, and hematopoietic stem cell maintenance, yet their role in skeletal metastasis remains under investigated. The purpose of this study was to determine the role of macrophages in prostate cancer skeletal metastasis, using two in vivo mouse models of conditional macrophage depletion. RM-1 syngeneic tumor growth was analyzed in an inducible macrophage (CSF-1 receptor positive cells) ablation model (MAFIA mice). There was a significant reduction in tumor growth in the tibiae of macrophage-ablated mice, compared with control non-ablated mice. Similar results were observed when macrophage ablation was performed using liposome-encapsulated clodronate and human PC-3 prostate cancer cells where tumor-bearing long bones had increased numbers of tumor associated-macrophages. Although tumors were consistently smaller in macrophage-depleted mice, paradoxical results of macrophage depletion on bone were observed. Histomorphometric and micro-CT analyses demonstrated that clodronate-treated mice had increased bone volume, while MAFIA mice had reduced bone volume. These results suggest that the effect of macrophage depletion on tumor growth was independent of its effect on bone responses and that macrophages in bone may be more important to tumor growth than the bone itself. In conclusion, resident macrophages play a pivotal role in prostate cancer growth in bone.

  1. Vertebral hyperemia associated with bone marrow insult and recovery

    SciTech Connect

    Klein, H.A.; Bolden, R.O.; Simone, F.J.

    1984-06-01

    A 15-year-old boy with rhabdoid sarcoma received chemotherapy, which was followed by bone marrow depression, massive nosebleeds and, finally, hematologic recovery. On both hepatobiliary and renal scintigraphy, prominent vertebral activity was present in early images. Correlation with his clinical course suggests that the findings reflect hyperemia due to marrow insult and recovery. Radionuclide imaging to detect hyperemia may be a useful probe for drug effects on hematopoietic bone marrow.

  2. Bone marrow necrosis complicating post-transplant lymphoproliferative disorder: resolution with rituximab.

    PubMed

    Rossi, Davide; Ramponi, Antonio; Franceschetti, Silvia; Stratta, Piero; Gaidano, Gianluca

    2008-05-01

    Bone marrow necrosis is a rare cause of bone marrow failure. Malignancy is the most frequent cause of bone marrow necrosis. Among malignancies, non-Hodgkin lymphoma (NHL) accounts for 10% of cases of bone marrow necrosis. Virtually all reported cases of NHL-associated bone marrow necrosis have developed in immunocompetent hosts. We report on a case of bone marrow necrosis complicating post-transplant lymphoproliferative disorder (PTLD) and resolving after rituximab monotherapy. This case report provides the first evidence of (i) bone marrow necrosis as a complication of PTLD; (ii) rapid resolution of NHL-associated bone marrow necrosis after rituximab treatment.

  3. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  4. Engineering injectable bone using bone marrow stromal cell aggregates.

    PubMed

    Ma, Dongyang; Zhong, Cuiping; Yao, Hong; Liu, Yanpu; Chen, Fulin; Li, Jianxue; Zhao, Jinlong; Mao, Tianqiu; Ren, Liling

    2011-06-01

    With the increasing popularity of minimally invasive surgery, to develop an injectable bone would be highly preferable for the repair of bone nonunions and defects. However, the use of dissociated cells and exogenous carriers to construct injectable bone faces several drawbacks. To circumvent these limitations, we first harvested a cell sheet from rabbit bone marrow stromal cells using a continuous culture method and a scraping technique. The obtained sheet was then cut into fragments of multicellular aggregates, each of which was composed of a certain number of cells, extracellular matrix, and intercellular connections. The aggregates showed apparent mineralization properties, high alkaline phosphatase activity, increased osteocalcin content, and upregulated bone markers, implying their in vitro osteogenic potential. Then, serum-free medium (the control group), dissociated cell suspension (the cell group), and suspension of multicellular aggregates (the aggregate group) were injected subcutaneously on the back of the nude mice to evaluate ectopic bone formation. The results revealed that the aggregate group showed significantly larger and denser bone at the injection sites than the cell group, whereas bone formation did not occur in the control group. Additionally, when injecting them locally into the mandibular fracture gap of delayed healing in a rabbit model, we observed the most improved bone healing in the aggregate group. More cells survive and retain at the injection sites in the aggregate group than that in the cell group postoperatively. Our study indicates that the multicellular aggregates might be considered a promising strategy to generate injectable bone tissue and improve the efficacy of cell therapy.

  5. Bone marrow lesions and subchondral bone pathology of the knee.

    PubMed

    Kon, Elizaveta; Ronga, Mario; Filardo, Giuseppe; Farr, Jack; Madry, Henning; Milano, Giuseppe; Andriolo, Luca; Shabshin, Nogah

    2016-06-01

    Bone marrow lesions (BMLs) around the knee are a common magnetic resonance imaging (MRI) finding. However, despite the growing interest on BMLs in multiple pathological conditions, they remain controversial not only for the still unknown role in the etiopathological processes, but also in terms of clinical impact and treatment. The differential diagnosis includes a wide range of conditions: traumatic contusion and fractures, cyst formation and erosions, hematopoietic and infiltrated marrow, developmental chondroses, disuse and overuse, transient bone marrow oedema syndrome and, lastly, subchondral insufficiency fractures and true osteonecrosis. Regardless the heterogeneous spectrum of these pathologies, a key factor for patient management is the distinction between reversible and irreversible conditions. To this regard, MRI plays a major role, leading to the correct diagnosis based on recognizable typical patterns that have to be considered together with coexistent abnormalities, age, and clinical history. Several treatment options have been proposed, from conservative to surgical approaches. In this manuscript the main lesion patterns and their management have been analysed to provide the most updated evidence for the differential diagnosis and the most effective treatment.

  6. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.

    PubMed

    Colnot, Céline

    2009-02-01

    Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results show that periosteal injuries heal by endochondral ossification, whereas bone marrow injuries heal by intramembranous ossification, indicating that distinct cellular responses occur within these tissues during repair. [corrected] Next, lineage analyses were used to track the fate of cells derived from periosteum, bone marrow, and endosteum, a subcompartment of the bone marrow. Skeletal progenitor cells were found to be recruited locally and concurrently from periosteum and/or bone marrow/endosteum during bone repair. Periosteum and bone marrow/endosteum both gave rise to osteoblasts, whereas the periosteum was the major source of chondrocytes. Finally, results show that intrinsic and environmental signals modulate cell fate decisions within these tissues. In conclusion, this study sheds light into the origins of skeletal stem cells/progenitors during bone regeneration and indicates that periosteum, endosteum, and bone marrow contain pools of stem cells/progenitors with distinct osteogenic and chondrogenic potentials that vary with the tissue environment.

  7. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    PubMed

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  8. Lectin-like oxidized LDL receptor-1 expresses in mouse bone marrow-derived mesenchymal stem cells and stimulates their proliferation

    SciTech Connect

    Zhang, Fenxi; Wang, Congrui; Jing, Suhua; Ren, Tongming; Li, Yonghai; Cao, Yulin; Lin, Juntang

    2013-04-15

    The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs and which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals.

  9. Exposure to low-dose (56)Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells.

    PubMed

    Miousse, Isabelle R; Shao, Lijian; Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Zhou, Daohong; Koturbash, Igor

    2014-07-01

    There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to (56)Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose (56)Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to (56)Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to (56)Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to (56)Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in

  10. The effects of simulated hypogravity on murine bone marrow cells

    NASA Technical Reports Server (NTRS)

    Lawless, Desales

    1989-01-01

    Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.

  11. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications

    PubMed Central

    Piccinin, Meghan A; Khan, Zia A

    2014-01-01

    Diabetes leads to complications in select organ systems primarily by disrupting the vasculature of the target organs. These complications include both micro- (cardiomyopathy, retinopathy, nephropathy, and neuropathy) and macro-(atherosclerosis) angiopathies. Bone marrow angiopathy is also evident in both experimental models of the disease as well as in human diabetes. In addition to vascular disruption, bone loss and increased marrow adiposity have become hallmarks of the diabetic bone phenotype. Emerging evidence now implicates enhanced marrow adipogenesis and changes to cellular makeup of the marrow in a novel mechanistic link between various secondary complications of diabetes. In this review, we explore the mechanisms of enhanced marrow adipogenesis in diabetes and the link between changes to marrow cellular composition, and disruption and depletion of reparative stem cells. PMID:26317050

  12. A case of synovial sarcoma with bone metastasis identified by bone marrow scintigraphy

    SciTech Connect

    Otsuka, N.; Morita, R.; Yamamoto, T.; Muranaka, A.; Tomomitsu, T.; Yanagimoto, S.; Sone, T.; Fukunaga, M.

    1985-04-01

    In a patient with synovial sarcoma, routine bone survey showed no abnormality, while bone marrow scintigraphy with Tc-99m sulfur colloid revealed a defect in the fifth lumbar vertebra. At surgery, tumorous invasion was noted in the fifth lumbar vertebra and the surrounding tissues. It was suggested that the bone marrow scintigraphy was particularly useful in the detection of tumorous invasion into the bone marrow at the early stage before the destruction of skeletal tissue.

  13. Fetal RHD genotyping after bone marrow transplantation.

    PubMed

    Thurik, Florentine F; Page-Christiaens, Godelieve C M L; Ait Soussan, Aicha; Ligthart, Peter C; Cheroutre, Goedele M A F; Bossers, Bernadette; Veldhuisen, Barbera; van der Schoot, C Ellen; de Haas, Masja

    2016-08-01

    Fetal RHD genotyping allows targeted diagnostic testing, fetal surveillance, and eventually intrauterine treatment to D-alloimmunized pregnant women who carry an RHD+ fetus. However, false-positive and false-negative results of noninvasive prenatal fetal RHD genotyping have been described due to a variety of causes. In this case report we present two cases where noninvasive fetal RHD typing was complicated by a previous bone marrow transplantation (BMT). We describe two women with a history of allogeneic BMT in early childhood. Both were born D+ and received a transplant of their D- male sibling. Anti-D were detected during pregnancy in one of them. The biologic father of this pregnancy was D+. In both cases polymerase chain reaction procedures specific for RHD on maternal plasma DNA were positive whereas a D- neonate was born in one case (Case 1). False-positive results of noninvasive fetal RHD genotyping occur in D+ women transplanted with marrow of a D- donor, due to circulating cell-free DNA originating from nonhematopoietic tissue. The cases highlight that health care professionals and laboratories should be aware that allogeneic BMT can be a cause for false-positive results in fetal RHD genotyping with cell-free DNA in maternal plasma, and likewise the wrong fetal sex can be reported in the case of a male donor and a female fetus. Based on one of the cases we also recommend giving D- blood products to young female patients who receive a BMT of D- donors. © 2016 AABB.

  14. The Inherited Bone Marrow Failure Syndromes

    PubMed Central

    Chirnomas, S. Deborah; Kupfer, Gary M

    2013-01-01

    In spite of the rarity of inherited bone marrow failure syndromes (IBMFS), they represent diseases for which the molecular pathogenesis may be elucidated. Their study and presentation of the details of their molecular biology and biochemistry is warranted not only for appropriate diagnosis and management of afflicted patients but also because they lend clues to the normal physiology of the normal hematopoiesis and, in many cases, mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies that entail both ribosome assembly as well as ribosomal RNA processing. The Fanconi anemia (FA) pathway itself has become interdigitated with the familial breast cancer syndromes. The sections that follow present a more detailed analysis of the diseases that account for the majority of IBMFS diagnoses. PMID:24237972

  15. Non-myeloablative bone marrow transplantation.

    PubMed

    Ruiz-Argüelles, Guillermo J

    2003-01-01

    As a result of the evolution of knowledge in the area of allogeneic hematopoietic stem cells (HSC) transplantation, several dogmata have been broken. We now have the following information: a) successful engraftment if allogeneic HSC bone marrow ablation of the recipient is not required; b) HSC create their own space through graft-vs.-host reactions; c) several malignancies are eradicated by the graft-vs.-tumor effect; d) allografting can be conducted on an out-patient basis; e) allografting can be done in aged or debilitated individuals; f) allografting can be achieved without transfusion of blood products, and g) costs of the allografting procedures can be substantially diminished. Breaking all these dogmata has resulted in availability of HSC allografting to a larger number of individuals, thus offering true curative therapeutic options to patients who otherwise would not qualify to receive these opportunities.

  16. Bone Marrow Microenvironmental Control of Prostate Cancer Skeletal Localization

    DTIC Science & Technology

    2009-07-01

    approaches to alter the bone marrow microenvironment. The first is cyclophosphamide (CTX) treatment . Four to five weeks old male C57BL/6J mice and...cyclophosphamide pre- treatment increased metastatic PCa tumor growth in the bone. Closer observation of the data suggests that increase of tumor growth may be...a result of more tumor cells engrafted in the bone marrow space. This led us to hypothesize that cyclophosphamide pre- treatment increased

  17. [Origin of Hematopoietic Stem Cells in Bone Marrow--Endothelial to Hematopoietic Transition (EHT)?].

    PubMed

    Wang, Fen; Yuan, Yan; Chen, Tong

    2015-06-01

    In contrast to primitive hematopoiesis, during embryonic definitive hematopoiesis, it has been demonstrated that multilineage hematopoietic stem/progenitor cells (HSPCs) arise from hemogenic endothelium, and the endothelial to hematopoietic transition (EHT) exists within the yolk sac, placenta, AGM, mouse head vascular and extraembryonic vessels. However, whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, including fetal liver and bone marrow, remains largely unknown. Recently, more and more researches showed that hematopoiesis within bone marrow had a close relationship with vascular endothelium development, too. This review summarizes the mechanism of EHT during embryo development, and discuss whether EHT exists in adult hematopoiesis.

  18. Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone.

    PubMed

    Arens, Daniel; Rothstock, Stephan; Windolf, Markus; Boger, Andreas

    2011-11-01

    The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. This might be one reason for fractures at the adjacent vertebrae following this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize PMMA bone cements with a reduced Young's modulus by adding bone marrow. Bone cements were produced by combining PMMA with various volume fractions of freshly harvested bone marrow from sheep. Porosity, Young's modulus, yield strength, polymerization temperature, setting time and cement viscosity of different cement modifications were investigated. The samples generated comprised pores with diameters in the range of 30-250 μm leading to porosity up to 51%. Compared to the control cement, Young's modulus and yield strength decreased from 1830 to 740 MPa and from 58 to 23 MPa respectively by adding 7.5 ml bone marrow to 23 ml premixed cement. The polymerization temperature decreased from 61 to 38 ∘C for cement modification with 7.5 ml of bone marrow. Setting times of the modified cements were lower in comparison to the regular cement (28 min). Setting times increased with higher amounts of added bone marrow from around 16-25 min. The initial viscosities of the modified cements were higher in comparison to the control cement leading to a lower risk of extravasation. The hardening times followed the same trend as the setting times. In conclusion, blending bone marrow with acrylic bone cement seems to be a promising method to increase the compliance of PMMA cement for use in cancellous bone augmentation in osteoporotic patients due to its modified mechanical properties, lower polymerization temperature and elevated initial viscosity.

  19. Direct and indirect contribution of bone marrow-derived cells to cancer.

    PubMed

    Guest, Ian; Ilic, Zoran; Ma, Jun; Grant, Denise; Glinsky, Gennadi; Sell, Stewart

    2010-05-15

    Stromal-epithelial interactions may control the growth and initiation of cancers. Here, we not only test the hypothesis that bone marrow-derived cells may effect development of cancers arising from other tissue cells by forming tumor stroma but also that sarcomas may arise by transformation of stem cells from the bone marrow and epithelial cancers may arise by transdifferentiation of bone marrow stem cells to epithelial cancers. Lethally irradiated female FVB/N mice were restored with bone marrow (BM) transplants from a male transgenic mouse carrying the polyoma middle T-oncoprotein under the control of the mouse mammary tumor virus promoter (MMTV-PyMT) and followed for development of lesions. All of 8 lethally irradiated female FVB/N recipient mice, restored with BM transplants from a male MMTV-PyMT transgenic mouse, developed Y-chromosome negative (Y-) cancers of various organs surrounded by Y+ stroma. One of the female FVB/N recipient mice also developed fibrosarcoma and 1, a diploid breast adenocarcinoma containing Y chromosomes. In contrast, only 1 of 12 control female mice restored with normal male BM developed a tumor (lymphoma) during the same time period. These results indicate not only that the transgenic BM-derived stromal cells may indirectly contribute to development of tumors in recipient mice but also that sarcomas may arise by transformation of BM stem cells and that breast cancers arise by transdifferentiation of BM stem cells, presumably by mesenchymal-epithelial transition.

  20. Copper-64 labeled liposomes for imaging bone marrow.

    PubMed

    Lee, Sang-Gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M; Pillarsetty, Naga Vara Kishore

    2016-12-01

    Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [(18)F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140nm, and were doped with DOTA-Bn-DSPE for stable (64)Cu incorporation into liposomes. PET imaging and biodistribution studies with (64)Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18±3.69%ID/g for 90nm liposomes and 7.01±0.92%ID/g for 140nm liposomes at 24h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90nm particles is approximately 0.89±0.48%ID/g in tumor and 14.22±8.07%ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83±0.49%ID/g and 2.23±1.00%ID/g. Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Marrow stromal fibroblastic cell cultivation in vitro on decellularized bone marrow extracellular matrix.

    PubMed

    Dutra, Timothy F; French, Samuel W

    2010-02-01

    The in vitro biocompatibility of decellularized bone marrow extracellular matrix was evaluated. Following a freeze-thaw cycle, sectioned discs of fresh frozen rat metaphyseal bone were sequentially incubated in solutions of hypertonic, then hypotonic Ringer's solution, followed by deoxycholic acid, then DNAase I. The adequacy of decellularization of marrow stroma was examined by light microscopy. Marrow stromal fibroblastic cells were harvested by dispersion of rat long bone marrow, followed by concentration by discontinuous Ficoll-Paque gradient centrifugation. The fibroblastic cells were expanded by in vitro cultivation, and second passage cells were cryopreserved until needed. Cryopreserved marrow stromal cells were applied dropwise to sections of decellularized bone marrow extracellular matrix, and cultured in BJGb medium with 20% fetal bovine serum for ten days. Mature cultures were formalin fixed, decalcified, and embedded in paraffin. Light microscopy of hematoxylin and eosin stained sections showed individual spindle cells invading the upper portion of the decellularized extracellular matrix, and also a monolayer of spindle cells on the upper surfaces of exposed trabecular and cortical bone. This experiment showed that decellularized marrow extracellular matrix is a biocompatible three dimensional in vitro substrate for marrow stromal fibroblastic cells.

  2. Marrow-tumor interactions: the role of the bone marrow in controlling chemically induced tumors

    SciTech Connect

    Rosse, C

    1980-01-01

    This report summarizes work done to evaluate the role of the bone marrow in tumor growth regulation. Work done with the MCA tumor showed that several subclasses of mononuclear bone marrow cells (e.g. natural regulatory cell, NRC) play a major role in the regulation of tumor growth. Experiments with the spontaneous CE mammary carcinoma system illustrate that a rapid growth of certain neoplasms may be due to the fact that through some as yet undefined mechanism the tumor eliminates mononuclear cells in the bone marrow of the host and stops their production. (KRM)

  3. Last marrow standing: bone marrow transplantation for acquired bone marrow failure conditions.

    PubMed

    Gerds, Aaron T; Scott, Bart L

    2012-12-01

    Paroxysmal nocturnal hemoglobinuria, aplastic anemia, and myelodysplastic syndrome are a spectrum of acquired marrow failure, having a common pathologic thread of both immune dysregulation and the development of abnormal hematopoiesis. Allogeneic hematopoietic cell transplantation plays a critical role in the treatment of these disorders and, for many patients, is the only treatment modality with demonstrated curative potential. In recent years, there have been many breakthroughs in the understanding of the pathogenesis of these uncommon disorders. The subsequent advances in non-transplant therapies, along with concurrent improvement in outcomes after hematopoietic cell transplantation, necessitate continual appraisal of the indications, timing, and approaches to transplantation for acquired marrow failure syndromes. We review here contemporary and critical new findings driving current treatment decisions.

  4. Replacement of bone marrow by bone in rat femurs: the bone bioreactor.

    PubMed

    Zhang, Qing; Cuartas, Esteban; Mehta, Nozer; Gilligan, James; Ke, Hua-Zhu; Saltzman, W Mark; Kotas, Maya; Ma, Mandy; Rajan, Sonali; Chalouni, Cécile; Carlson, Jodi; Vignery, Agnès

    2008-02-01

    During development and repair of bone, two distinct yet complementary mechanisms, intramembranous and endochondral, mediate new bone formation via osteoblasts. Because mechanical bone marrow ablation leads to the rapid and transient formation of new bone in the marrow cavity, we postulated that parathyroid hormone (PTH), which is a bone anabolic hormone, enhances the formation of new bone that forms after marrow ablation. We subjected the left femur of rats to mechanical marrow ablation, or sham operation, and injected the animals daily with PTH or vehicle for 1, 2, or 3 weeks in a first experiment, then with PTH, parathyroid hormone-related peptide (PTHrP), or vehicle for 3 weeks in a second experiment. We subjected both femurs from each rat to soft X-ray, peripheral quantitative computed tomography, computed tomography on a microscale, and histological analysis, and determined the concentration of serum osteocalcin. In addition, in the second experiment, we determined the serum concentration of calcium, tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-kappaB ligand (RANKL) at 3 weeks, and subjected femurs to biomechanical testing. Following treatment with PTH or PTHrP for 3 weeks, bone filled the marrow cavity of the shafts whose marrow had been ablated. PTH increased trabecular density in the right femur, but failed to induce bone formation in the medullary region of the right unoperated femoral shafts. The newly formed bone endowed left femoral shafts with improved biomechanical properties when compared to those of right femurs and left femurs from control, sham-operated, and vehicle-treated rats. PTHrP, like PTH, increased serum osteocalcin, but neither increased serum calcium, TRAP, or RANKL at 3 weeks. Our results reveal that the newly formed bone that follows marrow ablation is responsive to PTH, expand the role of PTH in bone, and might open new avenues of investigations to the field of regenerative medicine and tissue engineering

  5. Primary Splenic Angiosarcoma Revealed by Bone Marrow Metastasis

    PubMed Central

    Anoun, Soumaya; Marouane, Sofia; Quessar, Asmae; Benchekroun, Said

    2014-01-01

    Primary splenic angiosarcomas are the most common malignant non-hematopoietic tumors of the spleen. Metastatic diseases were found in 69% of patients in a reported series but the incidence of bone marrow involvement is unclear. We report a rare case of a 25-years-old Moroccan woman with unsuspected primary splenic angiosarcoma revealed by bone marrow metastasis. She presented with serious anemia and splenomegaly. Bone marrow biopsy revealed proliferating spindle cells. Computed tomography scanning showed an enlarged spleen with heterogeneous lesions. Splenectomy was performed and retrospective histological study of the spleen confirmed the diagnosis. She died 1 year after splenectomy. PMID:25541659

  6. Primary splenic angiosarcoma revealed by bone marrow metastasis.

    PubMed

    Anoun, Soumaya; Marouane, Sofia; Quessar, Asmae; Benchekroun, Said

    2014-12-05

    Primary splenic angiosarcomas are the most common malignant non-hematopoietic tumors of the spleen. Metastatic diseases were found in 69% of patients in a reported series but the incidence of bone marrow involvement is unclear. We report a rare case of a 25-years-old Moroccan woman with unsuspected primary splenic angiosarcoma revealed by bone marrow metastasis. She presented with serious anemia and splenomegaly. Bone marrow biopsy revealed proliferating spindle cells. Computed tomography scanning showed an enlarged spleen with heterogeneous lesions. Splenectomy was performed and retrospective histological study of the spleen confirmed the diagnosis. She died 1 year after splenectomy.

  7. Allospecific rejection of MHC class I-deficient bone marrow by CD8 T cells

    PubMed Central

    Haspot, Fabienne; Li, Hao Wei; Lucas, Carrie L.; Fehr, Thomas; Beyaz, Semir; Sykes, Megan

    2014-01-01

    Avoidance of long-term immunosuppression is a desired goal in organ transplantation. Mixed chimerism offers a promising approach to tolerance induction, and we have aimed to develop low-toxicity, non-immunodepleting approaches to achieve this outcome. In a mouse model achieving fully MHC-mismatched allogeneic bone marrow engraftment with minimal conditioning (3 Gy total body irradiation followed by anti-CD154 and T cell-depleted allogeneic bone marrow cells), CD4 T cells in the recipient are required to promote tolerance of pre-existing alloreactive recipient CD8 T cells and thereby permit chimerism induction. We now demonstrate that mice devoid of CD4 T cells and NK cells reject MHC class-I deficient and class I/class II-deficient marrow in a CD8 T cell-dependent manner. This rejection is specific for donor alloantigens, since recipient hematopoiesis is not affected by donor marrow rejection and MHC class-I deficient bone marrow that is syngeneic to the recipient is not rejected. Recipient CD8 T cells are activated and develop cytotoxicity against MHC class I-deficient donor cells in association with rejection. These data implicate a novel CD8 T cell-dependent bone marrow rejection pathway, wherein recipient CD8 T cells indirectly activated by donor alloantigens promote direct killing, in a TCR-independent manner, of class I-deficient donor cells. PMID:24304495

  8. Evaluation of mutagenic and antimutagenic activities of neem (Azadirachta indica) seed oil in the in vitro Ames Salmonella/microsome assay and in vivo mouse bone marrow micronucleus test.

    PubMed

    Vinod, V; Tiwari, P K; Meshram, G P

    2011-04-12

    The possible mutagenic and antimutagenic activity of neem oil (NO) and its DMSO extract (NDE) were, examined in the Ames Salmonella/microsome mutagenicity test and the mouse bone marrow micronucleus assay. Eight different strains of Salmonella typhimurium were, used to study the genotoxicity of neem oil both in the presence and absence of Aroclor-1254 induced rat liver homogenate (S9). Two-dose treatment protocol was, employed to study the cytogenetic activity in micronucleus assay. Similarly, the antimutagenic activity of neem oil and NDE was studied against mitomycin (MMC) and 7,12-dimethylbenz[a]anthracene (DMBA) in the above two test systems. Neem oil was non-mutagenic in all the eight tester strains of Salmonella typhimurium both in the presence and absence of S9 mix. In the present study, there was no significant increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs) in neem oil treated groups over the negative control (DMSO) group of animals, indicating the non-clastogenic activity of neem oil in the micronucleus test. Neem oil showed good antimutagenic activity against DMBA induced mutagenicity compared to its DMSO extract. However, neem oil showed comparatively less antimutagenicity against MMC in the Ames assay. In vivo anticlastogenic assays shows that neem oil exhibited better activity against DMBA induced clastogenicity. These results indicate non-mutagenic activity of neem oil and significant antimutagenic activity of neem oil suggesting its pharmacological importance for the prevention of cancer. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Bone and bone-marrow blood flow in chronic granulocytic leukemia and primary myelofibrosis

    SciTech Connect

    Lahtinen, R.; Lahtinen, T.; Romppanen, T.

    1982-03-01

    Blood flow in hematopoietic bone marrow and in nonhematopoietic bone has been measured with a Xe-133 washout method in 20 patients with chronic granulocytic leukemia (CGL) and in seven with primary myelofibrosis. Age-matched healthy persons served as controls. Bone-marrow blood flow in CGL was dependent upon the phase of the disease. In the metamorphosis phase, bone-marrow blood flow was high compared with that in the well-controlled phase. Apart from the initial phase, the mean values for bone blood flow in CGL were increased compared with the values of the healthy controls. In myelofibrosis the bone blood flow was also increased. Bone-marrow blood flow in these diseases was dependent upon the cellularity of bone marrow as measured morphometrically.

  10. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    SciTech Connect

    Otsuru, Satoru; Tamai, Katsuto . E-mail: tamai@gts.med.osaka-u.ac.jp; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-03-09

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood.

  11. Infections and immunodeficiency in bone marrow transplantation.

    PubMed

    Tutschka, P J

    1988-05-01

    After allogeneic bone marrow transplantation certain patterns of infectious complications emerge that follow the clinical course, are correlated to the immunobiology of transplantation and are almost predictable in their character and expression. The preparative regimen, designed to generate complete aplasia, will be associated with severe and sometimes life-threatening bacterial infections, predominantly with Gram-negative organisms derived from bowel flora, but also Gram-positive skin saprophytes. In this early aplastic phase, life-threatening viral infections are less common, consisting mainly of herpes simplex and possibly Epstein-Barr stomatitis and BK papovavirus cystitis. Systemic infections with invasive filamentous fungi are rare and are seen only when the induced aplasia is markedly prolonged. Once early marrow recovery has been achieved, systemic infections will generally disappear unless acute graft-vs.-host disease develops. This complication, which will lead to the breakdown of natural barriers such as skin and gastrointestinal epithelium and the marked impairment of all systemic defense mechanisms, can cause polymicrobial infections as well as set the stage for life-threatening viral infections. Such opportunistic viral infections, leading to either interstitial pneumonia or hemorrhagic gastroenteritis, are the major threat in the early recovery phase after engraftment has taken place. Usually caused by cytomegalovirus and rotavirus, respectively, these infections are the primary expression of the severe combined immunodeficiency post transplant, statistically associated with the presence of acute graft-vs.-host disease and amenable to immunologic manipulations. With the recovery of cellular and humoral immune function derived from transplanted donor lymphoid cells, the third phase of infectious complications is reached, covering 3 months to 2 years post grafting.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. In Vivo Test for Chemical Induction of Micronucleated Polychromatic Erythrocytes for Mouse bone Marrow Cells, Test Article, Diethylene Triamine Trinitrate (DETN)

    DTIC Science & Technology

    2010-02-25

    marrow cytogenetics tests : Micronucleus Assay. Revised July 1, 2002, (1). OECD Guideline for Testing of Chemicals, No. 474. Mammalian Erythrocyte... Micronucleus Test . Adopted July 21, 1997, (2). International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals...in the Range Finding Test . Five male and five female mice per dose group per harvest time were used in the Micronucleus Assay. The Range Finding Test

  13. Floatation of decalcified bone marrow core biopsy - a clue to marrow hypocellularity.

    PubMed

    Tilak, Vijai; Das, Subhajit; Singh, Gyan Prakash

    2014-12-01

    Background : Examination of bone marrow plays a pivotal role in the practice of haematology. It can be evaluated by three ways - bone marrow aspiration smears (BMA), bone marrow touch imprints (BMI) and bone marrow biopsy (BMB). BMB sections are considered to be the gold standard for assessing overall marrow cellularity. To evaluate the correlation, if any, between bone marrow cellularity and floatation pattern of the core biopsy specimen, after proper decalcification. This study was carried out in the Department of Pathology, Institute of Medical Sciences, Varanasi over a period of 26 months. Specimens of BMA, BMI and BMB were collected from 182 cases. The core biopsy specimens were fixed in 10% buffered formalin for 24 hours, and were decalcified in 5% formic acid for 12 hours. The properly decalcified core biopsy samples were then put into adequate-sized container filled with 10% buffered formalin, and floatation pattern was documented. All the observations were evaluated using simple and basic statistical tools, i.e. sensitivity, specificity, positive predictive value. Chi square test was applied for obtaining statistical correlation i.e. p-value. Out of 182 core biopsy specimens, 32.4% (n=59) floated, while rests sank. Out of the 59 floating core biopsies, 57 were hypocellular. Seven core biopsies, among 123 specimens that sank, were hypocellular. The sensitivity and specificity of floatation pattern for hypocellular marrow were 89.2% and 99.1%, respectively. A strong correlation (p-value <0.001) between the floatation pattern and bone marrow cellularity was obtained. Assessment of floatation pattern of properly decalcified marrow core specimen is reliable for assessing marrow hypocellularity.

  14. Expression of Cadherin-17 Promotes Metastasis in a Highly Bone Marrow Metastatic Murine Breast Cancer Model

    PubMed Central

    Kurabayashi, Atsushi; Furihata, Mutsuo

    2017-01-01

    We previously established 4T1E/M3 highly bone marrow metastatic mouse breast cancer cells through in vivo selection of 4T1 cells. But while the incidence of bone marrow metastasis of 4T1E/M3 cells was high (~80%) when injected intravenously to mice, it was rather low (~20%) when injected subcutaneously. Therefore, using 4T1E/M3 cells, we carried out further in vitro and in vivo selection steps to establish FP10SC2 cells, which show a very high incidence of metastasis to lungs (100%) and spines (85%) after subcutaneous injection into mice. qRT-PCR and western bolt analysis revealed that cadherin-17 gene and protein expression were higher in FP10SC2 cells than in parental 4T1E/M3 cells. In addition, immunostaining revealed the presence of cadherin-17 at sites of bone marrow and lung metastasis after subcutaneous injection of FP10SC2 cells into mice. Suppressing cadherin-17 expression in FP10SC2 cells using RNAi dramatically decreased the cells' anchorage-independent growth and migration in vitro and their metastasis to lung and bone marrow in vivo. These findings suggest that cadherin-17 plays a crucial role in mediating breast cancer metastasis to bone marrow. PMID:28197418

  15. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases.

  16. Distinct bone marrow blood vessels differentially regulate haematopoiesis.

    PubMed

    Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee

    2016-04-21

    Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.

  17. Bone marrow infection with Mycobacterium fortuitum in a diabetic patient.

    PubMed

    Satti, Luqman; Abbasi, Shahid; Sattar, Abdul; Ikram, Aamer; Manzar, Muhammad Adnan; Khalid, Malik Muhammad

    2011-08-01

    Incidence and prevalence of Mycobacterium fortuitum infection vary greatly by location and death is very rare except in disseminated disease in immunocompromised individuals. We present what we believe is the first case of bone marrow infection with Mycobacterium fortuitum in an HIV negative patient. Bone marrow examination revealed presence of numerous acid fast bacilli which were confirmed as Mycobacterium fortuitum on culture and by molecular analysis. Patient was managed successfully with amikacin and ciprofloxacin.

  18. Memory T-cell competition for bone marrow seeding

    PubMed Central

    Di Rosa, Francesca; Santoni, Angela

    2003-01-01

    The presence in the bone marrow of memory CD8 T cells is well recognized. However, it is still largely unclear how T-cell migration from the lymphoid periphery to the bone marrow is regulated. In the present report, we show that antigen-specific CD4 T cells, as well as antigen-specific CD8 T cells, localize to the bone marrow of immunized mice, and are sustained there over long periods of time. To investigate the rules governing T-cell migration to the bone marrow, we generated chimeric mice in which the lymphoid periphery contained two genetically or phenotypically distinct groups of T cells, one of which was identical to the host. We then examined whether a distinct type of T cell had an advantage over the others in the colonization of bone marrow. Our results show that whereas ICAM1 and CD18 molecules are both involved in homing to lymph nodes, neither is crucial for T-cell bone marrow colonization. We also observed that memory-phenotype CD44high T cells, but not virgin-type CD44−/low T cells, preferentially home to the bone marrow upon adoptive transfer to normal young mice, but not to thymectomized old recipients where an existing memory T-cell pool precludes their free access. Thus, T-cell colonization of the bone marrow uses distinct molecules from those implicated in lymph node homing, and is regulated both by the properties of the T cell and by the competitive efficacy of other T cells inhabiting the same, saturable niche. This implies that the homing potential of an individual lymphocyte is not merely an intrinsic property of the cell, but rather a property of the lymphoid system taken as a whole. PMID:12603595

  19. Assessment of dysplastic hematopoiesis: lessons from healthy bone marrow donors.

    PubMed

    Parmentier, Stefani; Schetelig, Johannes; Lorenz, Kerstin; Kramer, Michael; Ireland, Robin; Schuler, Ulrich; Ordemann, Rainer; Rall, Gabi; Schaich, Markus; Bornhäuser, Martin; Ehninger, Gerhard; Kroschinsky, Frank

    2012-05-01

    According to WHO 2008 guidelines, the required percentage of cells manifesting dysplasia in the bone marrow to qualify as significant is 10% or over in one or more hematopoietic cell lineages, but this threshold is controversial. No 'normal' values have been established. Therefore, we investigated dyshematopoiesis in bone marrow aspirate squash preparations of 120 healthy bone marrow donors. Bone marrow squash slides of 120 healthy unrelated bone marrow donors were examined independently by 4 experienced morphologists. Samples were taken from the first aspiration during the harvest. Bone marrow preparation and assessment were performed according to WHO recommendations and ICSH guidelines. More than 10% dysmyelopoiesis could be detected in 46% of bone marrow aspirate squash preparations with 26% in 2 or more cell lineages and 7% in 3 cell lineages in healthy bone marrow donors. Donors under the age of 30 years exhibited more dysgranulopoietic changes and dysmegakaryopoietic changes (P<0.001) compared to the older donors. Female donors showed more dysgranulopoietic changes than male donors (P = 0.025). The concordance rate between the 4 investigators was modest in dysgranulopoiesis but poor in dyserythropoiesis and dysmegakaryopoiesis. The poor reliability of the 10% cut off was partly related to the proximity of the current criteria to the observed cut-off mean values of the normal population. These findings question the current WHO threshold of the 10% or over necessary for the percentage of cells manifesting dysplasia to be considered significant, and suggest that either a higher threshold would be more appropriate or different thresholds should be set for each lineage.

  20. Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow.

    PubMed

    Falla, N; Van Vlasselaer; Bierkens, J; Borremans, B; Schoeters, G; Van Gorp, U

    1993-12-15

    In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.

  1. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate.

    PubMed

    Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T; Bi, Ruiye; Maridas, David; DeMambro, Victoria; Figueroa, Carolina A; Kir, Serkan; Zhou, Xuedong; Mannstadt, Michael; Baron, Roland; Bronson, Roderick T; Horowitz, Mark C; Wu, Joy Y; Bilezikian, John P; Dempster, David W; Rosen, Clifford J; Lanske, Beate

    2017-03-07

    Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1(+)RANKL(+) marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Benzene toxicokinetics in humans: exposure of bone marrow to metabolites.

    PubMed Central

    Watanabe, K H; Bois, F Y; Daisey, J M; Auslander, D M; Spear, R C

    1994-01-01

    A three compartment physiologically based toxicokinetic model was fitted to human data on benzene disposition. Two separate groups of model parameter derivations were obtained, depending on which data sets were being fitted. The model was then used to simulate five environmental or occupational exposures. Predicted values of the total bone marrow exposure to benzene and cumulative quantity of metabolites produced by the bone marrow were generated for each scenario. The relation between cumulative quantity of metabolites produced by the bone marrow and continuous benzene exposure was also investigated in detail for simulated inhalation exposure concentrations ranging from 0.0039 ppm to 150 ppm. At the level of environmental exposures, no dose rate effect was found for either model. The occupational exposures led to only slight dose rate effects. A 32 ppm exposure for 15 minutes predicted consistently higher values than a 1 ppm exposure for eight hours for the total exposure of bone marrow to benzene and the cumulative quantity of metabolites produced by the bone marrow. The general relation between the cumulative quantity of metabolites produced by the bone marrow and the inhalation concentration of benzene is not linear. An inflection point exists in some cases leading to a slightly S shaped curve. At environmental levels (0.0039-10 ppm) the curve bends upward, and it saturates at high experimental exposures (greater than 100 ppm). PMID:8044234

  3. CD38 and bone marrow microenvironment.

    PubMed

    Chillemi, Antonella; Zaccarello, Gianluca; Quarona, Valeria; Lazzaretti, Mirca; Martella, Eugenia; Giuliani, Nicola; Ferracini, Riccardo; Pistoia, Vito; Horenstein, Alberto L; Malavasi, Fabio

    2014-01-01

    This review summarizes the events ruled by CD38 shaping the bone marrow environment, recapitulating old and new aspects derived from the body of knowledge on the molecule. The disease models considered were myeloma and chronic lymphocytic leukemia (CLL). CD38 has been analyzed considering its twin function as receptor and enzyme, roles usually not considered in clinics, where it is used as a routine marker. Another aspect pertaining basic science concerns the role of the molecule as a member of an ectoenzyme network, potentially metabolizing soluble factors not yet analyzed (e.g., NAD+, ATP, NAM) or influencing hormone secretion (e.g., oxytocin). The last point is focused on the use of CD38 as a target of an antibody-mediated therapeutic approach in myeloma and CLL. A recent observation is that CD38 may run an escape circuit leading to the production of adenosine. The generation of local anergy may be blocked by using anti-CD38 antibodies. Consequently, not only might CD38 be a prime target for mAb-mediated therapy, but its functional block may contribute to general improvement in cancer immunotherapy and outcomes.

  4. Diffuse proliferative glomerulonephritis after bone marrow transplantation.

    PubMed

    Suehiro, T; Masutani, K; Yokoyama, M; Tokumoto, M; Tsuruya, K; Fukuda, K; Kanai, H; Katafuchi, R; Nagatoshi, Y; Hirakata, H

    2002-09-01

    A 15-year-old boy developed nephrotic syndrome and acute renal failure 4 years after allogenic bone marrow transplantation (BMT) for lymphoid crisis of chronic myelocytic leukemia. On admission, he presented with clinical features of chronic GVHD including transient exacerbation of cholestatic liver injury. Renal biopsy showed diffuse proliferative glomerulonephritis with cellular crescents. The patient was treated with methylprednisolone pulse therapy (1 g/day, for 3 days) followed by oral prednisolone. Renal function gradually improved but nephrotic state was persistent. A second renal biopsy showed improvement of acute tubular necrosis and endocapillary proliferation and transformation of crescents into a fibrous form. After tapering of oral prednisolone, cyclophosphamide was started, which resulted in a gradual improvement of proteinuria. Several cases of nephrotic syndrome occurring after BMT have already been reported, but most cases had membranous nephropathy. In our case, renal biopsy revealed diffuse proliferative glomerulonephritis with findings of active cellular immunity, and aggressive treatment resulted in attenuation of these findings. Moreover, chronic GVHD-related liver injury was noted at the time of this episode. Our findings suggest that chronic GVHD may be complicated with diffuse proliferative glomerulonephritis through unknown cellular immune mechanism.

  5. Comparative sensitivity of small mammals to micronucleus induction in bone marrow cells by clastogenic compounds

    SciTech Connect

    Meier, J.R.; Wernsing, P.; Daniel, F.B.; Torsella, J.

    1995-12-31

    The bone marrow micronucleus assay is the most widely used method for detecting genetic damage in vivo, but this assay has received little attention for its possible application to biomonitoring terrestrial environments. The present study compared the responsiveness of three small mammalian species, Cryptotus parva (least shrew), Peromyscus leucopus (white-footed mouse), and strain CD-1 Mus musculus (house mouse), to the clastogen, methylmethanesulfonate (MMS). Five animals of each sex of each species were exposed for 24 h to four concentrations of MMS ranging from 0 to 50 mg/kg. Bone marrow cells were flushed from the femurs, and smears were stained with acridine orange and examined using fluorescence microscopy. The slides were scored for evidence of acute bone marrow toxicity (polychromatic to normochromatic erythrocyte ratio, PCE:NCE) and frequency of micronucleated PCE. PCE:NCE was depressed at 50 mg/kg in P. leucopus, but not in the other species. Dose-related increases in micronucleated PCE were observed in all three species, with males being more sensitive for P. leucopus and M. musculus, and females being more sensitive for C. parva. For both sexes, the two feral species, P. leucopus and C. parva, were more sensitive than M. musculus. These studies demonstrate the successful application of the bone marrow micronucleus assay to species other than standard laboratory strains of mice. The results also demonstrate heretofore unrecognized species differences in responsiveness.

  6. Vascularized bone marrow transplantation model in rats as an alternative to conventional cellular bone marrow transplantation: preliminary results.

    PubMed

    Zamfirescu, D; Popovicu, C; Stefanescu, A; Bularda, A; Popescu, M; Zegrea, I; Lanzetta, M; Lascar, I

    2011-11-01

    The aim of the study was to follow the development of microchimerism after allogeneic vascularized bone marrow transplantation (VBMT) versus conventional bone marrow transplantation (BMT). In one group, a VBMT model consisted of donor Brown Norway rat hind limb heterotopic transplanted on recipient Lewis rats. An intravenous infusion of donor bone marrow cells in suspension equivalent to that grafted in the vascularized femur limb was administered intravenously to recipient rats in the second group. Cellular microchimerism was investigated in recipients of VBMT versus BMT. Donor-derived cells could be detected in VBMT recipients at 30 and 60 days but not in recipients of intravenous suspension of BMC. VBMT provides a theoretical alternative to conventional cellular bone marrow transplantation by addressing crucial clinical problems such as failure of engraftment or graft-versus-host disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.

    PubMed

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin

    2014-08-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.

  8. The fate of bone marrow-derived cells carrying a polycystic kidney disease mutation in the genetically normal kidney

    PubMed Central

    2012-01-01

    Background Polycystic Kidney Disease (PKD) is a genetic condition in which dedifferentiated and highly proliferative epithelial cells form renal cysts and is frequently treated by renal transplantation. Studies have reported that bone marrow-derived cells give rise to renal epithelial cells, particularly following renal injury as often occurs during transplantation. This raises the possibility that bone marrow-derived cells from a PKD-afflicted recipient could populate a transplanted kidney and express a disease phenotype. However, for reasons that are not clear the reoccurrence of PKD has not been reported in a genetically normal renal graft. We used a mouse model to examine whether PKD mutant bone marrow-derived cells are capable of expressing a disease phenotype in the kidney. Methods Wild type female mice were transplanted with bone marrow from male mice homozygous for a PKD-causing mutation and subjected to renal injury. Y chromosome positive, bone marrow-derived cells in the kidney were assessed for epithelial markers. Results Mutant bone marrow-derived cells were present in the kidney. Some mutant cells were within the bounds of the tubule or duct, but none demonstrated convincing evidence of an epithelial phenotype. Conclusions Bone marrow-derived cells appear incapable of giving rise to genuine epithelial cells and this is the most likely reason cysts do not reoccur in kidneys transplanted into PKD patients. PMID:22931547

  9. Radioimmune imaging of bone marrow in patients with suspected bone metastases from primary breast cancer

    SciTech Connect

    Duncker, C.M.; Carrio, I.; Berna, L.; Estorch, M.; Alonso, C.; Ojeda, B.; Blanco, R.; Germa, J.R.; Ortega, V. )

    1990-09-01

    Radioimmune imaging of bone marrow was performed by technetium-99m- (99mTc) labeled antigranulocyte monoclonal antibody BW 250/183 (AGMoAb) scans in 32 patients with suspected bone metastases from primary breast cancer. AGMoAb scans showed bone marrow defects in 25/32 (78%) patients; bone invasion was subsequently confirmed in 23 (72%) patients. Conventional bone scans performed within the same week detected bone metastases in 17/32 (53%) patients (p less than 0.001). AGMoAb scans detected more sites indicating metastatic disease than bone scans in 12 of these 17 patients (71%). All patients with bone metastases in the axial skeleton had bone marrow defects at least at the sites of bone metastases. Of 15 patients with normal, or indicative of, benign disease bone scans, 8 patients (53%) presented with bone marrow defects in the AGMoAb scans. Bone invasion was confirmed in six of them. AGMoAb bone marrow scans provide a method for the early detection of bone metastatic invasion in patients with breast cancer and suspected bone metastases.

  10. Bone marrow evaluation in new-onset pancytopenia.

    PubMed

    Weinzierl, Elizabeth P; Arber, Daniel A

    2013-06-01

    The new onset of pancytopenia often creates a diagnostic dilemma to the treating physician and leads to bone marrow biopsy and aspiration. To determine the distribution of bone marrow findings in such cases of new-onset pancytopenia in a tertiary academic medical center, we evaluated 250 recent bone marrow aspirates and biopsies performed in the setting of new-onset pancytopenia in patients without previously diagnosed hematologic neoplastic disease. Of the 250 bone marrow studies, 193 were performed in adults and 57 were performed in children. In children, the most prevalent bone marrow finding was B-lymphoblastic leukemia, followed by nonspecific changes attributed clinically to a variety of factors including multifactorial, autoimmune, inflammatory, and infectious etiologies. In adults, hematologic neoplastic causes of pancytopenia were the most prevalent diagnoses, with the cases divided mostly between acute myeloid leukemia and myelodysplastic syndrome, with fewer numbers of cases of acute lymphoblastic leukemia, myeloproliferative neoplasms, and lymphomas. Many bone marrow findings demonstrated nonspecific changes that were attributed clinically to a variety of etiologies such as myelodysplastic syndrome, multifactorial causes, hypersplenism, drugs, and systemic disease. Overall, in both the pediatric and the adult population, new-onset pancytopenia was most commonly associated with neoplasia, although the neoplasm differed by age group. Although in most cases, a definitive diagnosis could be made based solely on bone marrow aspirate and biopsy interpretation, a significant fraction of cases in both children and adults demonstrated nonspecific marrow findings that required clinical follow-up and/or repeat biopsy for definitive diagnosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Murine bone marrow IgA responses to orally administered sheep erythrocytes.

    PubMed

    Alley, C D; Kiyono, H; McGhee, J R

    1986-06-15

    Specific immunization protocols have been established for the induction of murine bone marrow IgA responses to the T cell-dependent (TD) antigen sheep red blood cells (SRBC). Systemic immunization, either i.p. or i.v., followed by a second injection, induced splenic IgM and IgG responses and a bone marrow IgM response. No significant IgA responses were observed in either lymphoid tissue compartment. Oral immunization with SRBC by gastric intubation for 2 days, followed 1 wk later by an i.p. injection of SRBC resulted in a splenic IgA plaque-forming cell (PFC) response, but did not elicit a bone marrow IgA response. Repeated daily gastric intubation of SRBC to C3H/HeN and C3H/HeJ mice led to the previously reported pattern of systemic unresponsiveness in C3H/HeN mice and good anamnestic type IgM, IgG, and IgA splenic anti-SRBC PFC responses in the C3H/HeJ strain upon parenteral challenge. Oral administration of SRBC for 14 days to C3H/HeN mice, followed by systemic SRBC challenge, resulted in diminished splenic PFC responses of all isotypes, whereas gastric intubation of SRBC for 28 days led to complete systemic unresponsiveness to antigen in C3H/HeN mice. Interestingly, the repeated oral administration of SRBC resulted in significant bone marrow IgA PFC responses upon i.p. challenge in both C3H/HeN and C3H/HeJ mouse strains. The bone marrow IgA responses were clearly dependent upon chronic oral exposure to SRBC, because gastric intubation with SRBC for 2 consecutive days/wk for 10 wk also induced bone marrow and splenic IgA anti-SRBC PFC responses in C3H/HeN mice. These results suggest that memory B cells reside in the bone marrow of orally immunized mice and can yield anamnestic-type responses to challenge with the inducing antigen. The memory cells may arise in the Peyer's patches of the gut and migrate to the bone marrow. The possibility that the bone marrow is a component of the common mucosal immune system in mammals is suggested by this study.

  12. Detection of Bone Marrow Derived Lung Epithelial Cells

    PubMed Central

    Kassmer, Susannah H.; Krause, Diane S.

    2010-01-01

    Studies on the ability of bone marrow derived cells to adopt the morphology and protein expression of epithelial cells in vivo have expanded rapidly over the last decade, and hundreds of publications report that bone marrow derived cells can become epithelial cells of multiple organs including lung, liver, GI tract, skin, pancreas and others. In this review, we critically evaluate the literature related to engraftment of bone marrow derived cells as epithelial cells in the lung. Over 40 manuscripts focused on whether bone marrow cells can differentiate into lung epithelial cells have been published, nearly all of which claim to identify marrow derived epithelial cells. A few investigations have concluded that no such cells are present and that the phenomenon of marrow derived epithelial cells is based on detection artifacts. Here we discuss the problems that exist in published papers identifying marrow derived epithelial cells, and propose standards for detection methods that provide the most definitive data. Identification of BM derived epithelial cells requires reliable and sensitive techniques for their detection, which must include cell identification based on the presence of an epithelial marker and the absence of blood cell markers as well as a marker for donor BM origin. In order for these studies to be rigorous, they must also use approaches to rule out cell overlap by microscopy or single cell isolation. Once these stringent criteria for identification of marrow derived epithelial cells are used universally, then the field can move forward to address the critical questions regarding which bone marrow derived cells are responsible for engraftment as epithelial cells, the mechanisms by which this occurs, whether these cells play a role in normal tissue repair, and whether specific cell subsets can be used for therapeutic benefit. PMID:20447442

  13. Visualization of bone marrow monocyte mobilization using Cx3cr1gfp/+Flt3L−/− reporter mouse by multiphoton intravital microscopy

    PubMed Central

    Evrard, Maximilien; Chong, Shu Zhen; Devi, Sapna; Chew, Weng Keong; Lee, Bernett; Poidinger, Michael; Ginhoux, Florent; Tan, Suet Mien; Ng, Lai Guan

    2015-01-01

    Monocytes are innate immune cells that play critical roles in inflammation and immune defense. A better comprehension of how monocytes are mobilized and recruited is fundamental to understand their biologic role in disease and steady state. The BM represents a major “checkpoint” for monocyte homeostasis, as it is the primary site for their production and release. Our study determined that the Cx3cr1gfp/+ mouse strain is currently the most ideal model for the visualization of monocyte behavior in the BM by multiphoton intravital microscopy. However, we observed that DCs are also labeled with high levels of GFP and thus, interfere with the accuracy of monocyte tracking in vivo. Hence, we generated a Cx3cr1gfp/+Flt3L−/− reporter mouse and showed that whereas monocyte numbers were not affected, DC numbers were reduced significantly, as DCs but not monocytes depend on Flt3 signaling for their development. We thus verified that mobilization of monocytes from the BM in Cx3cr1gfp/+Flt3L−/− mice is intact in response to LPS. Collectively, our study demonstrates that the Cx3cr1gfp/+Flt3L−/− reporter mouse model represents a powerful tool to visualize monocyte activities in BM and illustrates the potential of a Cx3cr1gfp/+-based, multifunctionality fluorescence reporter approach to dissect monocyte function in vivo. PMID:25516753

  14. Role of Nanog in the maintenance of marrow stromal stem cells during post natal bone regeneration

    SciTech Connect

    Bais, Manish V.; Shabin, Zabrina M.; Young, Megan; Einhorn, Thomas A.; Kotton, Darrell N.; Gerstnefeld, Louis C.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Nanog is related to marrow stromal stem cell maintenance. Black-Right-Pointing-Pointer Increasing Nanog expression is seen during post natal surgical bone repair. Black-Right-Pointing-Pointer Nanog knockdown decreases post surgical bone regeneration. -- Abstract: Post natal bone repair elicits a regenerative mechanism that restores the injured tissue to its pre-injury cellular composition and structure and is believed to recapitulate the embryological processes of bone formation. Prior studies showed that Nanog, a central epigenetic regulator associated with the maintenance of embryonic stem cells (ESC) was transiently expressed during fracture healing, Bais et al. . In this study, we show that murine bone marrow stromal cells (MSCs) before they are induced to undergo osteogenic differentiation express {approx}50 Multiplication-Sign the background levels of Nanog seen in murine embryonic fibroblasts (MEFs) and the W20-17 murine marrow stromal cell line stably expresses Nanog at {approx}80 Multiplication-Sign the MEF levels. Nanog expression in this cell line was inhibited by BMP7 treatment and Nanog lentivrial shRNA knockdown induced the expression of the terminal osteogenic gene osteocalcin. Lentivrial shRNA knockdown or lentiviral overexpression of Nanog in bone MSCs had inverse effects on proliferation, with knockdown decreasing and overexpression increasing MSC cell proliferation. Surgical marrow ablation of mouse tibia by medullary reaming led to a {approx}3-fold increase in Nanog that preceded osteogenic differentiation during intramembranous bone formation. Lentiviral shRNA knockdown of Nanog after surgical ablation led to an initial overexpression of osteogenic gene expression with no initial effect on bone formation but during subsequent remodeling of the newly formed bone a {approx}50% decrease was seen in the expression of terminal osteogenic gene expression and a {approx}50% loss in trabecular bone mass. This

  15. Spinal nociceptive transmission by mechanical stimulation of bone marrow

    PubMed Central

    Tanaka, Satoshi; Sekiguchi, Takemi; Sugiyama, Daisuke; Kawamata, Mikito

    2016-01-01

    Background Since bone marrow receives innervation from A-delta and C-fibers and since an increase in intramedullary pressure in bone marrow may induce acute pain in orthopedic patients during surgery and chronic pain in patients with bone marrow edema, skeletal pain may partly originate from bone marrow. Intraosseous lesions, such as osteomyelitis and bone cancer, are also known to produce cutaneous hypersensitivity, which might be referred pain from bone. However, little is known about pain perception in bone marrow and referred pain induced by bone disease. Thus, we carried out an in vivo electrophysiological study and behavioral study to determine whether increased intraosseous pressure of the femur induces acute pain and whether increased intraosseous pressure induces referred pain in the corresponding receptive fields of the skin. Results Intraosseous balloon inflation caused spontaneous pain-related behavior and mechanical hyperalgesia and allodynia in the lumbosacral region. Single neuronal activities of spinal dorsal horn neurons were extracellularly isolated, and then evoked responses to non-noxious and noxious cutaneous stimuli and intraosseous balloon inflation were recorded. Ninety-four spinal dorsal horn neurons, which had somatic receptive fields at the lower back and thigh, were obtained. Sixty-two percent of the wide-dynamic-range neurons (24/39) and 86% of the high-threshold neurons (12/14) responded to intraosseous balloon inflation, while none of the low-threshold neurons (0/41) responded to intraosseous balloon inflation. Spinally administered morphine (1 µg) abolished balloon inflation-induced spontaneous pain-related behavior and mechanical hyperalgesia in awake rats and also suppressed evoked activities of wide-dynamic-range neurons to noxious cutaneous stimulation and intraosseous balloon inflation. Conclusions The results suggest that mechanical stimulation to bone marrow produces nociception, concomitantly producing its referred pain

  16. Diagnosis and quantification of bone marrow fibrosis are significantly biased by the pre-staining processing of bone marrow biopsies.

    PubMed

    Buesche, G; Georgii, A; Kreipe, H-H

    2006-01-01

    Marrow fibrosis (MF) is an unfavourable, often lethal complication of haematological neoplasms. Although biopsy technique and staining procedure are standardized, the prestaining processing of bone marrow biopsies (BMBs) varies markedly without any existing data on its significance for the diagnosis of MF. In this study on 712 BMBs from 296 patients with chronic idiopathic myelofibrosis (CIMF), chronic myeloid leukaemia (CML), or healthy bone marrow, MF was a characteristic complication of CML and CIMF. However, diagnosis and quantification of MF and detection of its prognostic significance were significantly biased by fixation, decalcification, embedding, marrow tissue shrinkage during biopsy processing and the thickness of marrow sections (P < 0.000005). The relevance of these influences was explained by their effect on the marrow volume to which the fibre content was related, whereas the stainability of fibres was not affected. Semiquantitative grading of fibrosis and measurements of fibre density could not be adjusted to various methods of processing of bone marrow biopsies (P < 0.003). Evaluations of MF and its prognostic significance should consider the bias due to the prestaining processing of BMBs and the necessity of an adjustment to the thickness of tissue sections and the degree of marrow tissue shrinkage.

  17. Hemorrhagic cytitis after bone marrow transplantation.

    PubMed

    Padilla-Fernandez, Barbara; Bastida-Bermejo, J M; Virseda-Rodriguez, A J; Labrador-Gomez, J; Caballero-Barrigon, D; Silva-Abuin, J M; San Miguel-Izquierdo, J F; Lorenzo-Gomez, M F

    2014-03-01

    Hemorrhagic cystitis (HC) presenting with gross hematuria, bladder pain and urinary frequency develops in 13-38% of patients following bone marrow transplantation (BMT). The objective of the study was to study the characteristics of patients suffering hemorrhagic cystitis after hematopoietic stem cell transplantation in our center. We conducted a retrospective chart review of all patients who underwent BMT at our institution between January 1996 and August 2012. We recorded the age, sex, diagnosis, conditioning regimen, interval between BMT and development of symptoms of cystitis and treatment instituted. Five hundred patients underwent BMT in the period of time studied. 52 of them developed hemorrhagic cystitis. The mean age of the affected patients was 39 years; there were 34 males and 18 females. The diagnoses include AML (n=11), ALL (n=8), CML (n=6), MDS (n=11), CLL (n=5), NHL (n=1), HD (n=5), MM (n=2), Medular aplasia((n=3). HC appeared 59.48 days after BMT. There were no differences between sexes. Mortality among the 52 patients was 51.14% but HC was not the cause of death in any patient. Polyomaviruses were detected in the urine of 78.94 % of survivors. Polyomavirus infection with BK and JC types is usually acquired in infancy and the virus remains latent in renal tissue. Immunosuppression facilitates reactivation of the renal infection and replication of the virus responsible for the clinical manifestations of HC. The differential diagnoses include other urinary infections, lithiasis, thrombocytopenia and adverse effects of pharmacological agents. The urologist plays a limited role in the management of this disease.

  18. Following damage, the majority of bone marrow-derived airway cells express an epithelial marker

    PubMed Central

    MacPherson, Heather; Keir, Pamela A; Edwards, Carol J; Webb, Sheila; Dorin, Julia R

    2006-01-01

    Background Adult-derived bone marrow stem cells are capable of reconstituting the haematopoietic system. However there is ongoing debate in the literature as to whether bone marrow derived cells have the ability to populate other tissues and express tissue specific markers. The airway has been an organ of major interest and was one of the first where this was demonstrated. We have previously demonstrated that the mouse airway can be repopulated by side population bone marrow transplanted cells. Here we investigate the frequency and phenotypic nature of these bone marrow derived cells. Methods Female mice were engrafted with male whole bone marrow or side population (SP) cells and subjected to detergent-induced damage after 3 months. Donor cells were identified by Y chromosome fluorescence in situ hybridisation and their phenotype was assessed by immunohistochemistry on the same sections. Slides were visualised by a combination of widefield and deconvolved microscopy and whole cells were analysed on cytospin preparations. Results The frequencies of engraftment of male cells in the airway of mice that show this (9/10), range from 1.0 – 1.6% with whole marrow and 0.6 – 1.5% with SP cells. Undamaged controls have only between 0.1 and 0.2% male cells in the trachea. By widefield microscopy analysis we find 60.2% (53/88) of male donor derived cells express cytokeratins as a marker of epithelial cells. These results were reinforced using deconvolved microscopy and scored by two independent investigators. In addition cytospin analysis of cells dissociated from the damaged trachea of engrafted mice also reveals donor derived Y chromosome positive cells that are immunopositive for cytokeratin. Using cytokeratin and the universal haematopoietic marker CD45 immunohistochemistry, we find the donor derived cells fall into four phenotypic classes. We do not detect cytokeratin positive cells in whole bone marrow using cytokeratin immunostaining and we do not detect any

  19. Modular flow chamber for engineering bone marrow architecture and function.

    PubMed

    Di Buduo, Christian A; Soprano, Paolo M; Tozzi, Lorenzo; Marconi, Stefania; Auricchio, Ferdinando; Kaplan, David L; Balduini, Alessandra

    2017-11-01

    The bone marrow is a soft, spongy, gelatinous tissue found in the hollow cavities of flat and long bones that support hematopoiesis in order to maintain the physiologic turnover of all blood cells. Silk fibroin, derived from Bombyx mori silkworm cocoons, is a promising biomaterial for bone marrow engineering, because of its tunable architecture and mechanical properties, the capacity of incorporating labile compounds without loss of bioactivity and demonstrated ability to support blood cell formation. In this study, we developed a bone marrow scaffold consisting of a modular flow chamber made of polydimethylsiloxane, holding a silk sponge, prepared with salt leaching methods and functionalized with extracellular matrix components. The silk sponge was able to support efficient platelet formation when megakaryocytes were seeded in the system. Perfusion of the chamber allowed the recovery of functional platelets based on multiple activation tests. Further, inhibition of AKT signaling molecule, which has been shown to be crucial in regulating physiologic platelet formation, significantly reduced the number of collected platelets, suggesting the applicability of this tissue model for evaluation of the effects of bone marrow exposure to compounds that may affect platelet formation. In conclusion, we have bioengineered a novel modular system that, along with multi-porous silk sponges, can provide a useful technology for reproducing a simplified bone marrow scaffold for blood cell production ex vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer's disease.

    PubMed

    Bae, Jae-sung; Jin, Hee Kyung; Lee, Jong Kil; Richardson, Jill C; Carter, Janet E

    2013-06-01

    The remarkable potentiality of bone marrow-derived mesenchymal stem cells (BM-MSCs) after transplantation to models of neurological disease and injury has been described. We have previously published data confirming the influence of BM-MSCs on β-amyloid (Aβ) deposition in an Alzheimer's disease (AD) mouse model. However, therapeutic approaches in neurological diseases such as AD, including those for BM-MSCs, are increasingly centered on the potential for prophylactic therapy in pro-dromal states where the underlying cause of the disease is apparent but functional deficits are not. In order to investigate whether BM-MSCs could have a beneficial effect in high-risk pre-dementia AD individuals, we treated young AD mice, at an age at which they display neuropathological, but not cognitive features of AD. Following a single intra-cerebral injection of BM-MSCs, interestingly, we found a significant decrease in the cerebral Aβ deposition compared with controls treated with PBS that was sustained up to 2 months post-injection. Expression of dynamin 1 and Synapsin 1, key pre-synaptic proteins associated with synaptic transmission, which are typically decreased in brains of AD patients, were considerably enhanced in the brains of AD mice treated with BM-MSCs and this response was sustained beyond 2 months. These data demonstrate that BM-MSCs produce an acute reduction in Aβ deposits and facilitate changes in key proteins required for synaptic transmission. These findings suggest that BM-MSC transplantation warrants further investigation as a potential therapy for early intervention in pro-dromal AD.

  1. Apa2H1, the first head domain of Apa2 trimeric autotransporter adhesin, activates mouse bone marrow-derived dendritic cells and immunization with Apa2H1 protects against Actinobacillus pleuropneumoniae infection.

    PubMed

    Qin, Wanhai; Wang, Lei; Zhai, Ruidong; Ma, Qiuyue; Liu, Jianfang; Bao, Chuntong; Sun, Diangang; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2017-01-01

    Actinobacillus pleuropneumoniae is the causative pathogen of porcine pleuropneumonia, which results in large economic losses in the pig industry worldwide. There are, however, no effective subunit vaccines are available in the market owing to the various serotypes and the absence of cross-protection against this pathogen. Therefore, the selection of protective components is of great significance for vaccine development. We previously showed that trimeric autotransporter adhesins are important virulence factors of A. pleuropneumoniae. To determine the potential role in vaccine development of the functional head domain (Apa2H1) of Apa2, a trimeric autotransporter adhesin found in A. pleuropneumoniae, we obtained nature-like trimeric Apa2H1 using a prokaryotic expression system and co-culture of Apa2H1 with bone marrow derived dendritic cells (BMDCs) in vitro resulted in maturation of BMDCs, characterised by the up-regulation of CD83, MHC-II, CCR7, ICAM-I and the increased expression of factors related to B lymphoid cells stimulation, such as proliferation-inducing ligand (APRIL), B lymphocyte stimulator (BLyS) and B cell activating factor (BAFF). The in vivo results showed that vaccination with Apa2H1 resulted in the robust production of antigen-specific antibodies, modestly induced mixed Th1 and Th2 immunity, impaired bacterial colonization and dissemination, and improved mouse survival rates. This study is the first to show that Apa2H1 is antigenic and can be used as a component of a subunit vaccine against A. pleuropneumoniae infection, providing valuable reference material for the development of an effective vaccine against A. pleuropneumoniae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Embryonic Hematopoietic Progenitor Cells Reside in Muscle before Bone Marrow Hematopoiesis.

    PubMed

    Tanaka, Yuka; Inoue-Yokoo, Tomoko; Kulkeaw, Kasem; Yanagi-Mizuochi, Chiyo; Shirasawa, Senji; Nakanishi, Yoichi; Sugiyama, Daisuke

    2015-01-01

    In mice, hematopoietic cells home to bone marrow from fetal liver prenatally. To elucidate mechanisms underlying homing, we performed immunohistochemistry with the hematopoietic cell marker c-Kit, and observed c-Kit(+) cells localized inside muscle surrounding bone after 14.5 days post coitum. Flow cytometric analysis showed that CD45(+) c-Kit(+) hematopoietic cells were more abundant in muscle than in bone marrow between 14.5 and 17.5 days post coitum, peaking at 16.5 days post coitum. CD45(+) c-Kit(+) cells in muscle at 16.5 days post coitum exhibited higher expression of Gata2, among several hematopoietic genes, than did fetal liver or bone marrow cells. Colony formation assays revealed that muscle hematopoietic cells possess hematopoietic progenitor activity. Furthermore, exo utero transplantation revealed that fetal liver hematopoietic progenitor cells home to muscle and then to BM. Our findings demonstrate that hematopoietic progenitor cell homing occurs earlier than previously reported and that hematopoietic progenitor cells reside in muscle tissue before bone marrow hematopoiesis occurs during mouse embryogenesis.

  3. Cigarette smoke inhibits recruitment of bone-marrow-derived stem cells to the uterus.

    PubMed

    Zhou, Yuping; Gan, Ye; Taylor, Hugh S

    2011-02-01

    Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues.

  4. CD87-positive tumor cells in bone marrow aspirates identified by confocal laser scanning fluorescence microscopy.

    PubMed

    Noack, F; Helmecke, D; Rosenberg, R; Thorban, S; Nekarda, H; Fink, U; Lewald, J; Stich, M; Schutze, K; Harbeck, N; Magdolen, V; Graeff, H; Schmitt, M

    1999-10-01

    Dissemination of single tumor cells to the bone marrow is a common event in cancer. The clinical significance of cytokeratin-positive cells detected in the bone marrow of cancer patients is still a matter of debate. In gastric cancer, overexpression of the receptor (uPAR or CD87) for the serine protease urokinase-type plasminogen activator (uPA) in disseminated cancer cells indicates shorter survival of cancer patients. A new immunofluorescence approach, applying confocal laser scanning microscopy, is introduced to locate CD87 antigen in cytokeratin-positive tumor cells and to quantify the CD87 antigen by consecutive scanning. At first, cytokeratin 8/18/19-positive carcinoma cells are identified at excitation wavelength 488 nm using monoclonal antibody A45B/B3 to the cytokeratins and goat anti-mouse IgG labeled with the fluorochrome Alexa488. Next, CD87 in tumor cells is identified by chicken antibody HU277 to the uPA-receptor and goat anti-chicken IgY labeled with fluorochrome Alexa568 (excitation wavelength 568 nm) and the fluorescence signal quantified on a single cell basis using f