Sample records for mouse bone mechanical

  1. A methodology for the investigation of toughness and crack propagation in mouse bone.

    PubMed

    Carriero, Alessandra; Zimmermann, Elizabeth A; Shefelbine, Sandra J; Ritchie, Robert O

    2014-11-01

    Bone fracture is a health concern for those with aged bone and brittle bone diseases. Mouse bone is widely used as a model of human bone, especially to investigate preclinical treatment strategies. However, little is known about the mechanisms of mouse bone fracture and its similarities and differences from fracture in human bone. In this work we present a methodology to investigate the fracture toughness during crack initiation and crack propagation for mouse bone. Mouse femora were dissected, polished on their periosteal surface, notched on the posterior surface at their mid-diaphysis, and tested in three-point bending under displacement control at a rate of 0.1mm/min using an in situ loading stage within an environmental scanning electron microscope. We obtained high-resolution real-time imaging of the crack initiation and propagation in mouse bone. From the images we can measure the crack extension at each step of the crack growth and calculate the toughness of the bone (in terms of stress intensity factor (K) and work to fracture (Wf)) as a function of stable crack length (Δa), thus generating a resistance curve for the mouse bone. The technique presented here provides insight into the evolution of microdamage and the toughening mechanisms that resist crack propagation, which are essential for preclinical development of treatments to enhance bone quality and combat fracture risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Establishing Biomechanical Mechanisms in Mouse Models: Practical Guidelines for Systematically Evaluating Phenotypic Changes in the Diaphyses of Long Bones

    PubMed Central

    Jepsen, Karl J; Silva, Matthew J; Vashishth, Deepak; Guo, X Edward; van der Meulen, Marjolein CH

    2016-01-01

    Mice are widely used in studies of skeletal biology, and assessment of their bones by mechanical testing is a critical step when evaluating the functional effects of an experimental perturbation. For example, a gene knockout may target a pathway important in bone formation and result in a “low bone mass” phenotype. But how well does the skeleton bear functional loads; eg, how much do bones deform during loading and how resistant are bones to fracture? By systematic evaluation of bone morphological, densitometric, and mechanical properties, investigators can establish the “biomechanical mechanisms” whereby an experimental perturbation alters whole-bone mechanical function. The goal of this review is to clarify these biomechanical mechanisms and to make recommendations for systematically evaluating phenotypic changes in mouse bones, with a focus on long-bone diaphyses and cortical bone. Further, minimum reportable standards for testing conditions and outcome variables are suggested that will improve the comparison of data across studies. Basic biomechanical principles are reviewed, followed by a description of the cross-sectional morphological properties that best inform the net cellular effects of a given experimental perturbation and are most relevant to biomechanical function. Although morphology is critical, whole-bone mechanical properties can only be determined accurately by a mechanical test. The functional importance of stiffness, maximum load, postyield displacement, and work-to-fracture are reviewed. Because bone and body size are often strongly related, strategies to adjust whole-bone properties for body mass are detailed. Finally, a comprehensive framework is presented using real data, and several examples from the literature are reviewed to illustrate how to synthesize morphological, tissue-level, and whole-bone mechanical properties of mouse long bones. PMID:25917136

  3. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hypmore » mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.« less

  4. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models.

    PubMed

    Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang

    2016-02-17

    Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction.

    PubMed

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo

    2016-11-01

    The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue response near the implant surface in a bone marrow microenvironment, and it also shows great potential in making transgenic animal resource applicable to biomaterial studies, so that the design of novel biomaterials could be better guided.

  6. Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.

  7. Analysis of Mouse Growth Plate Development

    PubMed Central

    Mangiavini, Laura; Merceron, Christophe; Schipani, Ernestina

    2016-01-01

    To investigate skeletal development, pathophysiological mechanisms of cartilage and bone disease, and eventually assess innovative treatments, the mouse is a very important resource. During embryonic development, mesenchymal condensations are formed, and cells within these mesenchymal condensations either directly differentiate into osteoblasts and give origin to intramembranous bone, or differentiate into chondrocytes and form a cartilaginous anlage. The cartilaginous anlage or fetal growth plate is then replaced with bone. This process is also called endochondral bone development, and it is responsible for the generation of most of our skeleton. In this Review, we will discuss in detail the most common in vivo and in vitro techniques our laboratory is currently using for the analysis of the mouse fetal growth plate during development. PMID:26928664

  8. R-Spondin 1 promotes vibration-induced bone formation in mouse models of osteoporosis

    PubMed Central

    Wang, Haitao; Brennan, Tracy A.; Russell, Elizabeth; Kim, Jung-Hoon; Egan, Kevin P.; Chen, Qijun; Israelite, Craig; Schultz, David C.; Johnson, Frederick B.; Pignolo, Robert J.

    2013-01-01

    Bone tissue adapts to its functional environment by optimizing its morphology for mechanical demand. Among the mechanosensitive cells that recognize and respond to forces in the skeleton are osteocytes, osteoblasts, and mesenchymal progenitor cells (MPCs). Therefore, the ability to use mechanical signals to improve bone health through exercise and devices that deliver mechanical signals is an attractive approach to age-related bone loss; however, the extracellular or circulating mediators of such signals are largely unknown. Using SDS-PAGE separation of proteins secreted by MPCs in response to low magnitude mechanical signals and in-gel trypsin digestion followed by HPLC and mass spectroscopy, we identified secreted proteins up-regulated by vibratory stimulation. We exploited a cell senescence-associated secretory phenotype screen, and reasoned that a subset of vibration-induced proteins with diminished secretion by senescent MPCs will have the capacity to promote bone formation in vivo. We identified one such vibration-induced bone-enhancing (vibe) gene as R-Spondin 1, a Wnt pathway modulator, and demonstrated that it has the capacity to promote bone formation in three mouse models of age-related bone loss. By virtue of their secretory status, some vibe proteins may be candidates for pre-clinical development as anabolic agents for the treatment of osteoporosis. PMID:23974989

  9. Mechanical loading, damping, and load-driven bone formation in mouse tibiae.

    PubMed

    Dodge, Todd; Wanis, Mina; Ayoub, Ramez; Zhao, Liming; Watts, Nelson B; Bhattacharya, Amit; Akkus, Ozan; Robling, Alexander; Yokota, Hiroki

    2012-10-01

    Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect bone remodeling and bone quality. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. [Homeostasis and Disorder of Musculoskeletal System.Molecular mechanism of bone metabolism and future therapeutic strategies.

    PubMed

    Nakashima, Tomoki

    Recent studies of mouse genetics and human gene mutations has greatly contributed to clarifying the molecular mechanism of bone metabolism. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication among bone component cells such as osteoclasts, osteoblasts, osteocytes and endothelial cells. An imbalance of this process is often linked to various bone diseases. Thus, the elucidation of the molecular mechanisms involved in bone remodeling is critical for a deeper understanding of the maintenance of healthy skeleton and bone disease.

  11. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading

    PubMed Central

    Jing, Da; Baik, Andrew D.; Lu, X. Lucas; Zhou, Bin; Lai, Xiaohan; Wang, Liyun; Luo, Erping; Guo, X. Edward

    2014-01-01

    Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca2+) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized bone matrix under dynamic loading remains unknown. Using a novel synchronized loading/imaging technique, we successfully visualized in real time and quantified Ca2+ responses in osteocytes and bone surface cells in situ under controlled dynamic loading on intact mouse tibia. The resultant fluid-induced shear stress on the osteocyte in the lacunocanalicular system (LCS) was also quantified. Osteocytes, but not surface cells, displayed repetitive Ca2+ spikes in response to dynamic loading, with spike frequency and magnitude dependent on load magnitude, tissue strain, and shear stress in the LCS. The Ca2+ oscillations were significantly reduced by endoplasmic reticulum (ER) depletion and P2 purinergic receptor (P2R)/phospholipase C (PLC) inhibition. This study provides direct evidence that osteocytes respond to in situ mechanical loading by Ca2+ oscillations, which are dependent on the P2R/PLC/inositol trisphosphate/ER pathway. This study develops a novel approach in skeletal mechanobiology and also advances our fundamental knowledge of bone mechanotransduction.—Jing, D., Baik, A. D., Lu, X. L., Zhou, B., Lai, X., Wang, L., Luo, E., Guo, X. E. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. PMID:24347610

  12. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment.

    PubMed

    Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G

    2017-02-01

    Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  13. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  14. Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition

    PubMed Central

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B.; Spevak, Lyudmila; Boskey, Adele L.; Jepsen, Karl J.

    2009-01-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways. PMID:18855037

  15. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    PubMed

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  16. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  17. Missense Mutations in LRP5 Associated with High Bone Mass Protect the Mouse Skeleton from Disuse- and Ovariectomy-Induced Osteopenia.

    PubMed

    Niziolek, Paul J; Bullock, Whitney; Warman, Matthew L; Robling, Alexander G

    2015-01-01

    The low density lipoprotein receptor-related protein-5 (LRP5), a co-receptor in the Wnt signaling pathway, modulates bone mass in humans and in mice. Lrp5 knock-out mice have severely impaired responsiveness to mechanical stimulation whereas Lrp5 gain-of-function knock-in and transgenic mice have enhanced responsiveness to mechanical stimulation. Those observations highlight the importance of Lrp5 protein in bone cell mechanotransduction. It is unclear if and how high bone mass-causing (HBM) point mutations in Lrp5 alter the bone-wasting effects of mechanical disuse. To address this issue we explored the skeletal effects of mechanical disuse using two models, tail suspension and Botulinum toxin-induced muscle paralysis, in two different Lrp5 HBM knock-in mouse models. A separate experiment employing estrogen withdrawal-induced bone loss by ovariectomy was also conducted as a control. Both disuse stimuli induced significant bone loss in WT mice, but Lrp5 A214V and G171V were partially or fully protected from the bone loss that normally results from disuse. Trabecular bone parameters among HBM mice were significantly affected by disuse in both models, but these data are consistent with DEXA data showing a failure to continue growing in HBM mice, rather than a loss of pre-existing bone. Ovariectomy in Lrp5 HBM mice resulted in similar protection from catabolism as was observed for the disuse experiments. In conclusion, the Lrp5 HBM alleles offer significant protection from the resorptive effects of disuse and from estrogen withdrawal, and consequently, present a potential mechanism to mimic with pharmaceutical intervention to protect against various bone-wasting stimuli.

  18. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model.

    PubMed

    Yao, Xiaomei; Carleton, Stephanie M; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L; Wang, Yong

    2013-06-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.

  19. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model

    PubMed Central

    Yao, Xiaomei; Carleton, Stephanie M.; Kettle, Arin D; Melander, Jennifer; Phillips, Charlotte L.; Wang, Yong

    2013-01-01

    Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition, hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI. PMID:23536112

  20. Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae.

    PubMed

    Tommasini, Steven M; Hu, Bin; Nadeau, Joseph H; Jepsen, Karl J

    2009-04-01

    Conventional approaches to identifying quantitative trait loci (QTLs) regulating bone mass and fragility are limited because they examine cortical and trabecular traits independently. Prior work examining long bones from young adult mice and humans indicated that skeletal traits are functionally related and that compensatory interactions among morphological and compositional traits are critical for establishing mechanical function. However, it is not known whether trait covariation (i.e., phenotypic integration) also is important for establishing mechanical function in more complex, corticocancellous structures. Covariation among trabecular, cortical, and compositional bone traits was examined in the context of mechanical functionality for L(4) vertebral bodies across a panel of 16-wk-old female AXB/BXA recombinant inbred (RI) mouse strains. The unique pattern of randomization of the A/J and C57BL/6J (B6) genome among the RI panel provides a powerful tool that can be used to measure the tendency for different traits to covary and to study the biology of complex traits. We tested the hypothesis that genetic variants affecting vertebral size and mass are buffered by changes in the relative amounts of cortical and trabecular bone and overall mineralization. Despite inheriting random sets of A/J and B6 genomes, the RI strains inherited nonrandom sets of cortical and trabecular bone traits. Path analysis, which is a multivariate analysis that shows how multiple traits covary simultaneously when confounding variables like body size are taken into consideration, showed that RI strains that tended to have smaller vertebrae relative to body size achieved mechanical functionality by increasing mineralization and the relative amounts of cortical and trabecular bone. The interdependence among corticocancellous traits in the vertebral body indicated that variation in trabecular bone traits among inbred mouse strains, which is often thought to arise from genetic factors, is also determined in part by the adaptive response to variation in traits describing the cortical shell. The covariation among corticocancellous traits has important implications for genetic analyses and for interpreting the response of bone to genetic and environmental perturbations.

  1. Assessment of bone dysplasia by micro-CT and glycosaminoglycan levels in mouse models for mucopolysaccharidosis type I, IIIA, IVA, and VII

    PubMed Central

    Rowan, Daniel J.; Tomatsu, Shunji; Grubb, Jeffrey H.; Montaño, Adriana M.; Sly, William S.

    2012-01-01

    Summary Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases caused by mutations in lysosomal enzymes involved in degradation of glycosaminoglycans (GAGs). Patients with MPS grow poorly and become physically disabled due to systemic bone disease. While many of the major skeletal effects in mouse models for MPS have been described, no detailed analysis that compares GAGs levels and characteristics of bone by micro-CT has been done. The aims of this study were to assess severity of bone dysplasia among four MPS mouse models (MPS I, IIIA, IVA and VII), to determine the relationship between severity of bone dysplasia and serum keratan sulfate (KS) and heparan sulfate (HS) levels in those models, and to explore the mechanism of KS elevation in MPS I, IIIA, and VII mouse models. Clinically, MPS VII mice had the most severe bone pathology; however, MPS I and IVA mice also showed skeletal pathology. MPS I and VII mice showed severe bone dysplasia, higher bone mineral density, narrowed spinal canal, and shorter sclerotic bones by micro-CT and radiographs. Serum KS and HS levels were elevated in MPS I, IIIA, and VII mice. Severity of skeletal disease displayed by micro-CT, radiographs and histopathology correlated with the level of KS elevation. We showed that elevated HS levels in MPS mouse models could inhibit N-acetylgalactosamine-6-sulfate sulfatase enzyme. These studies suggest that KS could be released from chondrocytes affected by accumulation of other GAGs and that KS could be useful as a biomarker for severity of bone dysplasia in MPS disorders. PMID:22971960

  2. Bone sialoprotein, but not osteopontin, deficiency impairs the mineralization of regenerating bone during cortical defect healing.

    PubMed

    Monfoulet, Laurent; Malaval, Luc; Aubin, Jane E; Rittling, Susan R; Gadeau, Alain P; Fricain, Jean-Christophe; Chassande, Olivier

    2010-02-01

    Bone healing is a complex multi-step process, which depends on the position and size of the lesion, and on the mechanical stability of the wounded area. To address more specifically the mechanisms involved in cortical bone healing, we created drill-hole defects in the cortex of mouse femur, a lesion that triggers intramembranous repair, and compared the roles of bone sialoprotein (BSP) and osteopontin (OPN), two proteins of the extracellular matrix, in the repair process. Bone regeneration was analyzed by ex vivo microcomputerized X-ray tomography and histomorphometry of bones of BSP-deficient, OPN-deficient and wild-type mice. In all mouse strains, the cortical gap was bridged with woven bone within 2 weeks and no mineralized tissue was observed in the marrow. Within 3 weeks, lamellar cortical bone filled the gap. The amount and degree of mineralization of the woven bone was not affected by OPN deficiency, but cortical bone healing was delayed in BSP-deficient mice due to delayed mineralization. Gene expression studies showed a higher amount of BSP transcripts in the repair bone of OPN-deficient mice, suggesting a possible compensation of OPN function by BSP in OPN-null mice. Our data suggest that BSP, but not OPN, plays a role in primary bone formation and mineralization of newly formed bone during the process of cortical bone healing. (c) 2009 Elsevier Inc. All rights reserved.

  3. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  4. Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1

    PubMed Central

    Kühnisch, Jirko; Seto, Jong; Lange, Claudia; Schrof, Susanne; Stumpp, Sabine; Kobus, Karolina; Grohmann, Julia; Kossler, Nadine; Varga, Peter; Osswald, Monika; Emmerich, Denise; Tinschert, Sigrid; Thielemann, Falk; Duda, Georg; Seifert, Wenke; el Khassawna, Thaqif; Stevenson, David A.; Elefteriou, Florent; Kornak, Uwe; Raum, Kay; Fratzl, Peter; Mundlos, Stefan; Kolanczyk, Mateusz

    2014-01-01

    Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions. PMID:24465906

  5. The bone diagnostic instrument III: Testing mouse femora

    NASA Astrophysics Data System (ADS)

    Randall, Connor; Mathews, Phillip; Yurtsev, Eugene; Sahar, Nadder; Kohn, David; Hansma, Paul

    2009-06-01

    Here we describe modifications that allow the bone diagnostic instrument (BDI) [P. Hansma et al., Rev. Sci. Instrum. 79, 064303 (2008); Rev. Sci. Instrum. 77, 075105 (2006)], developed to test human bone, to test the femora of mice. These modifications include reducing the effective weight of the instrument on the bone, designing and fabricating new probe assemblies to minimize damage to the small bone, developing new testing protocols that involve smaller testing forces, and fabricating a jig for securing the smaller bones for testing. With these modifications, the BDI was used to test the hypothesis that short-term running has greater benefit on the mechanical properties of the femur for young growing mice compared to older, skeletally mature mice. We measured elastic modulus, hardness, and indentation distance increase (IDI), which had previously been shown to be the best discriminators in model systems known to exhibit differences in mechanical properties at the whole bone level. In the young exercised murine femora, the IDI was significantly lower than in young control femora. Since IDI has a relation to postyield properties, these results suggest that exercise during bone development increases post yield mechanical competence. We were also able to measure effects of aging on bone properties with the BDI. There was a significant increase in the IDI, and a significant decrease in the elastic modulus and hardness between the young and old groups. Thus, with the modifications described here, the BDI can take measurements on mouse bones and obtain statistically significant results.

  6. Measurement of Strain Distributions in Mouse Femora with 3D-Digital Speckle Pattern Interferometry

    PubMed Central

    Yang, Lianxiang; Zhang, Ping; Liu, Sheng; Samala, Praveen R; Su, Min; Yokota, Hiroki

    2007-01-01

    Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to external loading. Appropriate mechanical loads offer an effective means to stimulate bone remodeling and prevent bone loss. A role of in situ strain in bone is considered essential in enhancement of bone formation, and establishing a quantitative relationship between 3D strain distributions and a rate of local bone formation is important. Digital speckle pattern interferometry (DSPI) can achieve whole-field, non-contacting measurements of microscopic deformation for high-resolution determination of 3D strain distributions. However, the current system does not allow us to derive accurate strain distributions because of complex surface contours inherent to biological samples. Through development of a custom-made piezoelectric loading device as well as a new DSPI-based force calibration system, we built an advanced DSPI system and integrated local contour information to deformation data. Using a mouse femur in response to a knee loading modality as a model system, we determined 3D strain distributions and discussed effectiveness and limitations of the described system. PMID:18670581

  7. The development of inter-strain variation in cortical and trabecular traits during growth of the mouse lumbar vertebral body.

    PubMed

    Ramcharan, M A; Faillace, M E; Guengerich, Z; Williams, V A; Jepsen, K J

    2017-03-01

    How cortical and trabecular bone co-develop to establish a mechanically functional structure is not well understood. Comparing early postnatal differences in morphology of lumbar vertebral bodies for three inbred mouse strains identified coordinated changes within and between cortical and trabecular traits. These early coordinate changes defined the phenotypic differences among the inbred mouse strains. Age-related changes in cortical and trabecular traits have been well studied; however, very little is known about how these bone tissues co-develop from day 1 of postnatal growth to establish functional structures by adulthood. In this study, we aimed to establish how cortical and trabecular tissues within the lumbar vertebral body change during growth for three inbred mouse strains that express wide variation in adult bone structure and function. Bone traits were quantified for lumbar vertebral bodies of female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse strains from 1 to 105 days of age (n = 6-10 mice/age/strain). Inter-strain differences in external bone size were observed as early as 1 day of age. Reciprocal and rapid changes in the trabecular bone volume fraction and alignment in the direction of axial compression were observed by 7 days of age. Importantly, the inter-strain difference in adult trabecular bone volume fraction was established by 7 days of age. Early variation in external bone size and trabecular architecture was followed by progressive increases in cortical area between 28 and 105 days of age, with the greatest increases in cortical area seen in the mouse strain with the lowest trabecular mass. Establishing the temporal changes in bone morphology for three inbred mouse strains revealed that genetic variation in adult trabecular traits were established early in postnatal development. Early variation in trabecular architecture preceded strain-specific increases in cortical area and changes in cortical thickness. This study established the sequence of how cortical and trabecular traits co-develop during growth, which is important for identifying critical early ages to further focus on intervention studies that optimize adult bone strength.

  8. Predicting the bending properties of long bones: Insights from an experimental mouse model.

    PubMed

    Peacock, Sarah J; Coats, Brittney R; Kirkland, J Kyle; Tanner, Courtney A; Garland, Theodore; Middleton, Kevin M

    2018-03-01

    Analyses of bone cross-sectional geometry are frequently used by anthropologists and paleontologists to infer the loading histories of past populations. To address some underlying assumptions, we investigated the relative roles of genetics and exercise on bone cross-sectional geometry and bending mechanics in three mouse strains: high bone density (C3H/He), low bone density (C57BL/6), and a high-runner strain homozygous for the Myh4 Minimsc allele (MM). Weanlings of each strain were divided into exercise (wheel) or control (sedentary) treatment groups for a 7-week experimental period. Morphometrics of the femoral mid-diaphysis and mechanical testing were used to assess both theoretical and ex vivo bending mechanics. Across all measured morphological and bending traits, we found relatively small effects of exercise treatment compared to larger and more frequent interstrain differences. In the exercised group, total distance run over the experimental period was not a predictor of any morphological or bending traits. Cross-sectional geometry did not accurately predict bone response to loading. Results from this experimental model do not support hypothesized associations among extreme exercise, cross-sectional geometry, and bending mechanics. Our results suggest that analysis of cross-sectional geometry alone is insufficient to predict loading response, and questions the common assumption that cross-sectional geometry differences are indicative of differential loading history. © 2017 Wiley Periodicals, Inc.

  9. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone

    PubMed Central

    Balmelli, Anna; Carnelli, Davide; Courty, Diana; Müller, Ralph

    2017-01-01

    Studies investigating micromechanical properties in mouse cortical bone often solely focus on the mechanical behaviour along the long axis of the bone. Therefore, data on the anisotropy of mouse cortical bone is scarce. The aim of this study is the first-time evaluation of the anisotropy ratio between the longitudinal and transverse directions of reduced modulus and hardness in mouse femurs by using the nanoindentation technique. For this purpose, nine 22-week-old mice (C57BL/6) were sacrificed and all femurs extracted. A total of 648 indentations were performed with a Berkovich tip in the proximal (P), central (C) and distal (D) regions of the femoral shaft in the longitudinal and transverse directions. Higher values for reduced modulus are obtained for indentations in the longitudinal direction, with anisotropy ratios of 1.72 ± 0.40 (P), 1.75 ± 0.69 (C) and 1.34 ± 0.30 (D). Hardness is also higher in the longitudinal direction, with anisotropic ratios of 1.35 ± 0.27 (P), 1.35 ± 0.47 (C) and 1.17 ± 0.19 (D). We observed a significant anisotropy in the micromechanical properties of the mouse femur, but the correlation for reduced modulus and hardness between the two directions is low (r2 < 0.3) and not significant. Therefore, we highly recommend performing independent indentation testing in both the longitudinal and transverse directions when knowledge of the tissue mechanical behaviour along multiple directions is required. PMID:28386450

  10. The STR/ort mouse model of spontaneous osteoarthritis - an update.

    PubMed

    Staines, K A; Poulet, B; Wentworth, D N; Pitsillides, A A

    2017-06-01

    Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. The use of fractography to supplement analysis of bone mechanical properties in different strains of mice.

    PubMed

    Wise, L M; Wang, Z; Grynpas, M D

    2007-10-01

    Fractography has not been fully developed as a useful technique in assessing failure mechanisms of bone. While fracture surfaces of osteonal bone have been explored, this may not apply to conventional mechanical testing of mouse bone. Thus, the focus of this work was to develop and evaluate the efficacy of a fractography protocol for use in supplementing the interpretation of failure mechanisms in mouse bone. Micro-computed tomography and three-point bending were performed on femora of two groups of 6-month-old mice (C57BL/6 and a mixed strain background of 129SV/C57BL6). SEM images of fracture surfaces were collected, and areas of "tension", "compression" and "transition" were identified. Percent areas of roughness were identified and estimated within areas of "tension" and "compression" and subsequently compared to surface roughness measurements generated from an optical profiler. Porosity parameters were determined on the tensile side. Linear regression analysis was performed to evaluate correlations between certain parameters. Results show that 129 mice exhibit significantly increased bone mineral density (BMD), number of "large" pores, failure strength, elastic modulus and energy to failure compared to B6 mice (p<0.001). Both 129 and B6 mice exhibit significantly (p<0.01) more percent areas of tension (49+/-1%, 42+/-2%; respectively) compared to compression (26+/-2%, 31+/-1%; respectively). In terms of "roughness", B6 mice exhibit significantly less "rough" areas (30+/-4%) compared to "smooth" areas (70+/-4%) on the tensile side only (p<0.001). Qualitatively, 129 mice demonstrate more evidence of bone toughening through fiber bridging and loosely connected fiber bundles. The number of large pores is positively correlated with failure strength (p=0.004), elastic modulus (p=0.002) and energy to failure (p=0.041). Percent area of tensile surfaces is positively correlated with failure strength (p<0.001), elastic modulus (p=0.016) and BMD (p=0.037). Percent area of rough compressive surfaces is positively correlated with energy to failure (p=0.039). Evaluation of fracture surfaces has helped to explain why 129 mice have increased mechanical properties compared to B6 mice, namely via toughening mechanisms on the compressive side of failure. Several correlations exist between fractography parameters and mechanical behavior, supporting the utility of fractography with skeletal mouse models.

  12. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models

    PubMed Central

    Su, Nan; Jin, Min; Chen, Lin

    2014-01-01

    Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis. PMID:26273516

  13. Bone as an endocrine organ relevant to diabetes

    USDA-ARS?s Scientific Manuscript database

    There are well-established associations between diabetes and fracture risk and yet the mechanism underlying these associations are controversial. Guided by a series of mouse studies, a specific form of the bone protein, osteocalcin, was proposed to be the mechanistic link between these two chronic d...

  14. Leukemia inhibitory factor: a novel bone-active cytokine.

    PubMed

    Reid, L R; Lowe, C; Cornish, J; Skinner, S J; Hilton, D J; Willson, T A; Gearing, D P; Martin, T J

    1990-03-01

    A number of cytokines have been found to be potent regulators of bone resorption and to share the properties originally attributed to osteoclast-activating factor. One such activity, differentiation-inducing factor (DIF, D-factor) from mouse spleen cells, shares a number of biological and biochemical properties with the recently characterized and cloned leukemia inhibitory factor (LIF). We have assessed the effects of recombinant LIF on bone resorption and other parameters in neonatal mouse calvaria. Both recombinant murine and human (h) LIFs stimulated 45Ca release from prelabeled calvaria in a dose-dependent manner. The increase in bone resorption was associated with an increase in the number of osteoclasts per mm2 bone. The osteolytic effect of hLIF were blocked by 10(-7) M indomethacin. hLIF also stimulated incorporation of [3H] thymidine into calvaria, but the dose-response relationship was distinct from that for bone resorption, and this effect was not blocked by indomethacin. Similarly, hLIF increased [3H]phenylalanine incorporation into calvaria, and this was also not inhibited by indomethacin. It is concluded that LIF stimulates bone resorption by a mechanism involving prostaglandin production, but that a distinct mechanism is responsible for its stimulation of DNA and protein synthesis. The primary structure of LIF differs from that of other fully characterized, bone-active cytokines, and it, thus, represents a novel factor which may be involved in the normal regulation of bone cell function.

  15. New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis.

    PubMed

    Sabrautzki, Sibylle; Rubio-Aliaga, Isabel; Hans, Wolfgang; Fuchs, Helmut; Rathkolb, Birgit; Calzada-Wack, Julia; Cohrs, Christian M; Klaften, Matthias; Seedorf, Hartwig; Eck, Sebastian; Benet-Pagès, Ana; Favor, Jack; Esposito, Irene; Strom, Tim M; Wolf, Eckhard; Lorenz-Depiereux, Bettina; Hrabě de Angelis, Martin

    2012-08-01

    Metabolic bone disorders arise as primary diseases or may be secondary due to a multitude of organ malfunctions. Animal models are required to understand the molecular mechanisms responsible for the imbalances of bone metabolism in disturbed bone mineralization diseases. Here we present the isolation of mutant mouse models for metabolic bone diseases by phenotyping blood parameters that target bone turnover within the large-scale genome-wide Munich ENU Mutagenesis Project. A screening panel of three clinical parameters, also commonly used as biochemical markers in patients with metabolic bone diseases, was chosen. Total alkaline phosphatase activity and total calcium and inorganic phosphate levels in plasma samples of F1 offspring produced from ENU-mutagenized C3HeB/FeJ male mice were measured. Screening of 9,540 mice led to the identification of 257 phenodeviants of which 190 were tested by genetic confirmation crosses. Seventy-one new dominant mutant lines showing alterations of at least one of the biochemical parameters of interest were confirmed. Fifteen mutations among three genes (Phex, Casr, and Alpl) have been identified by positional-candidate gene approaches and one mutation of the Asgr1 gene, which was identified by next-generation sequencing. All new mutant mouse lines are offered as a resource for the scientific community.

  16. Responsiveness of mouse calvaria to parathyroid hormone after explant cryopreservation: 45Ca release in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wezeman, F.H.; Dungan, D.D.

    1986-08-01

    Newborn mouse calvaria prelabeled with /sup 45/Ca and cryopreserved at -196 degrees C in serum-free medium containing dimethylsulfoxide were compared to unpreserved explants for response to parathyroid hormone during subsequent culture. After short-term cryopreservation followed by rapid thawing, the viable explants continued to release /sup 45/Ca to the culture medium but additions of parathyroid hormone to the medium did not cause increased bone resorption. The data suggest that cryopreservation and thawing impairs mechanisms responsible for parathyroid hormone action on bone cells.

  17. Remnant Woven Bone and Calcified Cartilage in Mouse Bone: Differences between Ages/Sex and Effects on Bone Strength

    PubMed Central

    Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah

    2016-01-01

    Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic models where calcified cartilage percent is double our highest value. PMID:27829059

  18. How tough is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone††

    PubMed Central

    Carriero, A.; Zimmermann, E. A.; Paluszny, A.; Tang, S. Y.; Bale, H.; Busse, B.; Alliston, T.; Kazakia, G.

    2015-01-01

    The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level we attribute the loss in toughness to a decrease in the stabilizing enzymatic crosslinks and an increase in non-enzymatic crosslinks, which may break prematurely inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales. PMID:24420672

  19. Overexpression of TIMP-3 in Chondrocytes Produces Transient Reduction in Growth Plate Length but Permanently Reduces Adult Bone Quality and Quantity

    PubMed Central

    Plumb, Darren; Vo, Phoung; Shah, Mittal; Staines, Katherine; Sampson, Alexandra; Shefelbine, Sandra; Pitsillides, Andrew A.; Bou-Gharios, George

    2016-01-01

    Bone development and length relies on the growth plate formation, which is dependent on degradative enzymes such as MMPs. Indeed, deletion of specific members of this enzyme family in mice results in important joint and bone abnormalities, suggesting a role in skeletal development. As such, the control of MMP activity is vital in the complex process of bone formation and growth. We generated a transgenic mouse line to overexpress TIMP3 in mouse chondrocytes using the Col2a1-chondrocyte promoter. This overexpression in cartilage resulted in a transient shortening of growth plate in homozygote mice but bone length was restored at eight weeks of age. However, tibial bone structure and mechanical properties remained compromised. Despite no transgene expression in adult osteoblasts from transgenic mice in vitro, their differentiation capacity was decreased. Neonates, however, did show transgene expression in a subset of bone cells. Our data demonstrate for the first time that transgene function persists in the chondro-osseous lineage continuum and exert influence upon bone quantity and quality. PMID:28002442

  20. RANKL, Osteopontin, and Osteoclast Homeostasis in a Hyper-Occlusion Mouse Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit

    2010-11-15

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression ofmore » receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.« less

  1. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit

    2009-10-21

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression ofmore » receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.« less

  2. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    DTIC Science & Technology

    2013-10-01

    mechanical loading (months 6-18): 2a. Strain gage analysis of bone strain during tibial compression (months 6-7) 2b. Capsaicin or vehicle treatment...of neonatal mice (months 6-8) 2c. Tibial compression of capsaicin- and vehicle-injected mice (months 8-10) 2d. Micro-computed tomography of mouse...the endosteal and periosteal surfaces. Capsaicin treatment altered bone formation rate parameters in the tibias of treated mice (Table 2). There

  3. Noncanonical Wnt5a-Ca(2+) -NFAT signaling axis in pesticide induced bone marrow aplasia mouse model: A study to explore the novel mechanism of pesticide toxicity.

    PubMed

    Chattopadhyay, Sukalpa; Chatterjee, Ritam; Law, Sujata

    2016-10-01

    According to case-control studies, long-term pesticide exposure can cause bone marrow aplasia like hematopoietic degenerative disease leading to impaired hematopoiesis and increased risk of aplastic anemia in human subjects. However, the exact mechanism of pesticide mediated hematotoxicity still remains elusive. In this study, we investigated the role of noncanonical Wnt signaling pathway, a crucial regulator of adult hematopoiesis, in pesticide induced bone marrow aplasia mouse model. Aplasia mouse model was developed following inhalation and dermal exposure of 5% aqueous mixture of common agriculturally used pesticides for 6 h/day for 5 days a week up to 90 days. After that, blood hemogram, marrow smear, cellularity, scanning electron microscopy, extramedullary hematopoiesis and flowcytometric expression analysis of noncanonical Wnt signaling components, such as Wnt 5a, fzd5, NFAT, IFN-γ, intracellular Ca(2+) level were evaluated in the bone marrow hematopoietic stem/progenitor compartment of the control and pesticide induced aplasia groups of animals. Results showed that pesticide exposed mice were anemic with peripheral blood pancytopenia, hypocellular degenerative marrow, and extramedullary hematopoiesis in the spleen. Upon pesticide exposure, Wnt 5a expression was severely downregulated with a decline in intracellular Ca(2+) level. Moreover, downstream of Wnt5a, we observed sharp downregulation of NFATc2 transcription factor expression, the major target of pesticide toxicity and its target molecule IFN-γ. Taken together, our result suggests that deregulation of Wnt5a-Ca(2+) -NFAT signaling axis in the hematopoietic stem/progenitor compartment plays a crucial role behind the pathogenesis of pesticide mediated bone marrow aplasia by limiting primitive hematopoietic stem cells' ability to maintain hematopoietic homeostasis and reconstitution mechanism in vivo during xenobiotic stress leading to ineffective hematopoiesis and evolution of bone marrow aplasia. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1163-1175, 2016. © 2015 Wiley Periodicals, Inc.

  4. Chondrocyte burst promotes space for mineral expansion.

    PubMed

    Hara, Emilio Satoshi; Okada, Masahiro; Nagaoka, Noriyuki; Hattori, Takako; Iida, Letycia Mary; Kuboki, Takuo; Nakano, Takayoshi; Matsumoto, Takuya

    2018-01-22

    Analysis of tissue development from multidisciplinary approaches can result in more integrative biological findings, and can eventually allow the development of more effective bioengineering methods. In this study, we analyzed the initial steps of mineral formation during secondary ossification of mouse femur based on biological and bioengineering approaches. We first found that some chondrocytes burst near the mineralized area. External factors that could trigger chondrocyte burst were then investigated. Chondrocyte burst was shown to be modulated by mechanical and osmotic pressure. A hypotonic solution, as well as mechanical stress, significantly induced chondrocyte burst. We further hypothesized that chondrocyte burst could be associated with space-making for mineral expansion. In fact, ex vivo culture of femur epiphysis in hypotonic conditions, or under mechanical pressure, enhanced mineral formation, compared to normal culture conditions. Additionally, the effect of mechanical pressure on bone formation in vivo was investigated by immobilization of mouse lower limbs to decrease the body pressure onto the joints. The results showed that limb immobilization suppressed bone formation. Together, these results suggest chondrocyte burst as a novel fate of chondrocytes, and that manipulation of chondrocyte burst with external mechano-chemical stimuli could be an additional approach for cartilage and bone tissue engineering.

  5. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong

    2012-12-01

    Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.

  6. Establishment of a bilateral femoral large segmental bone defect mouse model potentially applicable to basic research in bone tissue engineering.

    PubMed

    Xing, Junchao; Jin, Huiyong; Hou, Tianyong; Chang, Zhengqi; Luo, Fei; Wang, Pinpin; Li, Zhiqiang; Xie, Zhao; Xu, Jianzhong

    2014-12-01

    To understand the cellular mechanism underlying bone defect healing in the context of tissue engineering, a reliable, reproducible, and standardized load-bearing large segmental bone defect model in small animals is indispensable. The aim of this study was to establish and evaluate a bilateral femoral defect model in mice. Donor mouse bone marrow mesenchymal stem cells (mBMSCs) were obtained from six mice (FVB/N) and incorporated into partially demineralized bone matrix scaffolds to construct tissue-engineered bones. In total, 36 GFP(+) mice were used for modeling. Titanium fixation plates with locking steel wires were attached to the femurs for stabilization, and 2-mm-long segmental bone defects were created in the bilateral femoral midshafts. The defects in the left and right femurs were transplanted with tissue-engineered bones and control scaffolds, respectively. The healing process was monitored by x-ray radiography, microcomputed tomography, and histology. The capacity of the transplanted mBMSCs to recruit host CD31(+) cells was investigated by immunofluorescence and real-time polymerase chain reaction. Postoperatively, no complication was observed, except that two mice died of unknown causes. Stable fixation of femurs and implants with full load bearing was achieved in all animals. The process of bone defect repair was significantly accelerated due to the introduction of mBMSCs. Moreover, the transplanted mBMSCs attracted more host CD31(+) endothelial progenitors into the grafts. The present study established a feasible, reproducible, and clinically relevant bilateral femoral large segmental bone defect mouse model. This model is potentially suitable for basic research in the field of bone tissue engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Tissue level material composition and mechanical properties in Brtl/+ mouse model of Osteogenesis Imperfecta after sclerostin antibody treatment

    NASA Astrophysics Data System (ADS)

    Lloyd, William R.; Sinder, Benjamin P.; Salemi, Joseph; Ominsky, Michael S.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.

    2015-02-01

    Osteogenesis imperfecta (OI) is a genetic disorder resulting in defective collagen or collagen-associated proteins and fragile, brittle bones. To date, therapies to improve OI bone mass, such as bisphosphonates, have increased bone mass in the axial skeleton of OI patients, but have shown limited effects at reducing long bone fragility. Sclerostin antibody (Scl- Ab), currently in clinical trials for osteoporosis, stimulates bone formation and may have the potential to reduce long bone fracture rates in OI patients. Scl-Ab has been investigated as an anabolic therapy for OI in the Brtl/+ mouse model of moderately severe Type IV OI. While Scl-Ab increases long bone mass in the Brtl/+ mouse, it is not known whether material properties and composition changes also occur. Here, we report on the effects of Scl-Ab on wild type and Brtl/+ young (3 week) and adult (6 month) male mice. Scl-Ab was administered over 5 weeks (25mg/kg, 2x/week). Raman microspectroscopy and nanoindentation are used for bone composition and biomechanical bone property measurements in excised bone. Fluorescent labels (calcein and alizarin) at 4 time points over the entire treatment period are used to enable measurements at specific tissue age. Differences between wild type and Brtl/+ groups included variations in the mineral and matrix lattices, particularly the phosphate v1, carbonate v1, and the v(CC) proline and hydroxyproline stretch vibrations. Results of Raman spectroscopy corresponded to nanoindentation findings which indicated that old bone (near midcortex) is stiffer (higher elastic modulus) than new bone. We compare and contrast mineral to matrix and carbonate to phosphate ratios in young and adult mice with and without treatment.

  8. Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis

    PubMed Central

    Li, Xinle; Yang, Jing; Liu, Daquan; Li, Jie; Niu, Kaijun; Feng, Shiqing; Yokota, Hiroki; Zhang, Ping

    2016-01-01

    Osteoarthritis (OA) is a whole joint disorder that involves cartilage degradation and periarticular bone response. Changes of cartilage and subchondral bone are associated with development and activity of osteoclasts from subchondral bone. Knee loading promotes bone formation, but its effects on OA have not been well investigated. Here, we hypothesized that knee loading regulates subchondral bone remodeling by suppressing osteoclast development, and prevents degradation of cartilage through crosstalk of bone-cartilage in osteoarthritic mice. Surgery-induced mouse model of OA was used. Two weeks application of daily dynamic knee loading significantly reduced OARSI scores and CC/TAC (calcified cartilage to total articular cartilage), but increased SBP (subchondral bone plate) and B.Ar/T.Ar (trabecular bone area to total tissue area). Bone resorption of osteoclasts from subchondral bone and the differentiation of osteoclasts from bone marrow-derived cells were completely suppressed by knee loading. The osteoclast activity was positively correlated with OARSI scores and negatively correlated with SBP and B.Ar/T.Ar. Furthermore, knee loading exerted protective effects by suppressing osteoclastogenesis through Wnt signaling. Overall, osteoclast lineage is the hyper responsiveness of knee loading in osteoarthritic mice. Mechanical stimulation prevents OA-induced cartilage degeneration through crosstalk with subchondral bone. Knee loading might be a new potential therapy for osteoarthritis patients. PMID:27087498

  9. Intraperitoneal injection of thalidomide attenuates bone cancer pain and decreases spinal tumor necrosis factor-α expression in a mouse model.

    PubMed

    Gu, Xiaoping; Zheng, Yaguo; Ren, Bingxu; Zhang, Rui; Mei, Fengmei; Zhang, Juan; Ma, Zhengliang

    2010-10-05

    Tumor necrosis factor α (TNF-α) may have a pivotal role in the genesis of mechanical allodynia and thermal hyperalgesia during inflammatory and neuropathic pain. Thalidomide has been shown to selectively inhibit TNF-α production. Previous studies have suggested that thalidomide exerts anti-nociceptive effects in various pain models, but its effects on bone cancer pain have not previously been studied. Therefore, in the present study, we investigated the effect of thalidomide on bone cancer-induced hyperalgesia and up-regulated expression of spinal TNF-α in a mouse model. Osteosarcoma NCTC 2472 cells were implanted into the intramedullary space of the right femurs of C3H/HeJ mice to induce ongoing bone cancer related pain behaviors. At day 5, 7, 10 and 14 after operation, the expression of TNF-α in the spinal cord was higher in tumor-bearing mice compared to the sham mice. Intraperitoneal injection of thalidomide (50 mg/kg), started at day 1 after surgery and once daily thereafter until day 7, attenuated bone cancer-evoked mechanical allodynia and thermal hyperalgesia as well as the up-regulation of TNF-α in the spinal cord. These results suggest that thalidomide can efficiently alleviate bone cancer pain and it may be a useful alternative or adjunct therapy for bone cancer pain. Our data also suggest a role of spinal TNF-α in the development of bone cancer pain.

  10. Intraperitoneal injection of thalidomide attenuates bone cancer pain and decreases spinal tumor necrosis factor-α expression in a mouse model

    PubMed Central

    2010-01-01

    Background Tumor necrosis factor α (TNF-α) may have a pivotal role in the genesis of mechanical allodynia and thermal hyperalgesia during inflammatory and neuropathic pain. Thalidomide has been shown to selectively inhibit TNF-α production. Previous studies have suggested that thalidomide exerts anti-nociceptive effects in various pain models, but its effects on bone cancer pain have not previously been studied. Therefore, in the present study, we investigated the effect of thalidomide on bone cancer-induced hyperalgesia and up-regulated expression of spinal TNF-α in a mouse model. Results Osteosarcoma NCTC 2472 cells were implanted into the intramedullary space of the right femurs of C3H/HeJ mice to induce ongoing bone cancer related pain behaviors. At day 5, 7, 10 and 14 after operation, the expression of TNF-α in the spinal cord was higher in tumor-bearing mice compared to the sham mice. Intraperitoneal injection of thalidomide (50 mg/kg), started at day 1 after surgery and once daily thereafter until day 7, attenuated bone cancer-evoked mechanical allodynia and thermal hyperalgesia as well as the up-regulation of TNF-α in the spinal cord. Conclusions These results suggest that thalidomide can efficiently alleviate bone cancer pain and it may be a useful alternative or adjunct therapy for bone cancer pain. Our data also suggest a role of spinal TNF-α in the development of bone cancer pain. PMID:20923560

  11. An investigation of the mineral in ductile and brittle cortical mouse bone.

    PubMed

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size, composition, and structure are correlated with reduced mechanical integrity of bone. © 2014 American Society for Bone and Mineral Research.

  12. Effects of Loading Duration and Short Rest Insertion on Cancellous and Cortical Bone Adaptation in the Mouse Tibia

    PubMed Central

    Yang, Haisheng; Embry, Rachel E.; Main, Russell P.

    2017-01-01

    The skeleton’s osteogenic response to mechanical loading can be affected by loading duration and rest insertion during a series of loading events. Prior animal loading studies have shown that the cortical bone response saturates quickly and short rest insertions between load cycles can enhance cortical bone formation. However, it remains unknown how loading duration and short rest insertion affect load-induced osteogenesis in the mouse tibial compressive loading model, and particularly in cancellous bone. To address this issue, we applied cyclic loading (-9 N peak load; 4 Hz) to the tibiae of three groups of 16 week-old female C57BL/6 mice for two weeks, with a different number of continuous load cycles applied daily to each group (36, 216 and 1200). A fourth group was loaded under 216 daily load cycles with a 10 s rest insertion after every fourth cycle. We found that as few as 36 load cycles per day were able to induce osteogenic responses in both cancellous and cortical bone. Furthermore, while cortical bone area and thickness continued to increase through 1200 cycles, the incremental increase in the osteogenic response decreased as load number increased, indicating a reduced benefit of the increasing number of load cycles. In the proximal metaphyseal cancellous bone, trabecular thickness increased with load up to 216 cycles. We also found that insertion of a 10 s rest between load cycles did not improve the osteogenic response of the cortical or cancellous tissues compared to continuous loading in this model given the age and sex of the mice and the loading parameters used here. These results suggest that relatively few load cycles (e.g. 36) are sufficient to induce osteogenic responses in both cortical and cancellous bone in the mouse tibial loading model. Mechanistic studies using the mouse tibial loading model to examine bone formation and skeletal mechanobiology could be accomplished with relatively few load cycles. PMID:28076363

  13. [Action of two pyrazine-containing chemosignals on cells of bone marrow and testes in male house mouse Mus musculus L].

    PubMed

    Daev, E V; Vyborova, A M; Kazarova, V É; Dukel'skaia, A V

    2012-01-01

    Evolutionary conservative chemosignal 2,5-dimethylpyrazin that is pheromone in female mice has been shown to increase frequency of mitotic aberrations analyzed with aid of metaphasic and ana-telophasic analysis in bone marrow cells. Replacement of one of methyl radicals in the pheromone molecule by the carboxyl radical reveals specificity of action of the used derivative: the frequency of disturbances revealed only by the ana-telophasic analysis increases, whereas by the metaphasic analysis, no induction of disturbance is detected. In the sperm head abnormality test there is shown a rise of the anomalies by both compounds. Possible mechanisms of specific action of the tested substances on stability of genetic apparatus of the bone marrow dividing cells in the house mouse are discussed.

  14. Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer.

    PubMed

    Sekita, Aiko; Matsugaki, Aira; Nakano, Takayoshi

    2017-04-01

    Prostate cancer (PCa) frequently metastasizes to the bone, generally inducing osteoblastic alterations that increase bone brittleness. Although there is growing interest in the management of the physical capability of patients with bone metastasis, the mechanism underlying the impairment of bone mechanical function remains unclear. The alignment of both collagen fibrils and biological apatite (BAp) c-axis, together with bone mineral density, is one of the strongest contributors to bone mechanical function. In this study, we analyzed the bone microstructure of the mouse femurs with and without PCa cell inoculation. Histological assessment revealed that the bone-forming pattern in the PCa-bearing bone was non-directional, resulting in a spongious structure, whereas that in the control bone was unidirectional and layer-by-layer, resulting in a compact lamellar structure. The degree of preferential alignment of collagen fibrils and BAp, which was evaluated by quantitative polarized microscopy and microbeam X-ray diffraction, respectively, were significantly lower in the PCa-bearing bone than in the control bone. Material parameters including Young's modulus and toughness, measured by the three-point bending test, were simultaneously decreased in the PCa-bearing bone. Specifically, there was a significant positive correlation between the degree of BAp c-axis orientation and Young's modulus. In conclusion, the impairment of mechanical function in the PCa-bearing bone is attributable to disruption of the anisotropic microstructure of bone in multiple phases. This is the first report demonstrating that cancer bone metastasis induces disruption of the collagen/BAp alignment in long bones, thereby impairing their mechanical function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Mechanism Underlying Linezolid-induced Thrombocytopenia in a Chronic Kidney Failure Mouse Model

    PubMed Central

    Nishijo, Nao; Tsuji, Yasuhiro; Matsunaga, Kazuhisa; Kutsukake, Masahiko; Okazaki, Fumiyasu; Fukumori, Shiro; Kasai, Hidefumi; Hiraki, Yoichi; Sakamaki, Ippei; Yamamoto, Yoshihiro; Karube, Yoshiharu; To, Hideto

    2017-01-01

    Objective: To investigate the relationship between renal function and linezolid (LZD)-induced thrombocytopenia and elucidate the underlying mechanism using a chronic renal disease (CRD) mouse model. Materials and Methods: CRD was induced in 5-week-old male Institute of Cancer Research (ICR) mice by 5/6 nephrectomy. After this procedure, LZD (25 and 100 mg/kg) was administered intraperitoneally once every day for 28 days. Platelet counts, white blood cell (WBC) counts, and hematocrit (HCT) levels were measured every 7 days. 2-14C-thymidine (0.185 MBq) was administrated intravenously to LZD-administered mice to evaluate the thymidine uptake ability of bone marrow. Results: Platelet counts were significantly lower in the LZD-administered CRD group than in the LZD-nonadministered groups at 14, 21, and 28 days (P < 0.05); however, these changes were not observed in LZD-administered mice with normal renal function, regardless of the duration of LZD administration. No significant changes were observed in WBC counts or HCT levels in any LZD-administered CRD mouse. Moreover, radioactive levels in bone marrow were not significantly different in each group. Conclusions: These results indicate that LZD-induced decreases in platelet counts were enhanced by renal impairment in vivo, suggesting that LZD-induced thrombocytopenia is not caused by nonimmune-mediated bone marrow suppression. PMID:28405130

  16. Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone

    PubMed Central

    Ascenzi, Maria-Grazia; Du, Xia; Harding, James I; Beylerian, Emily N; de Silva, Brian M; Gross, Ben J; Kastein, Hannah K; Wang, Weiguang; Lyons, Karen M; Schaeffer, Hayden

    2014-01-01

    Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cell. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth. PMID:25525552

  17. Leptin regulation of bone resorption by the sympathetic nervous system and CART.

    PubMed

    Elefteriou, Florent; Ahn, Jong Deok; Takeda, Shu; Starbuck, Michael; Yang, Xiangli; Liu, Xiuyun; Kondo, Hisataka; Richards, William G; Bannon, Tony W; Noda, Masaki; Clement, Karine; Vaisse, Christian; Karsenty, Gerard

    2005-03-24

    Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb2) present on osteoblasts controls bone formation downstream of leptin. Here we show, by analysing Adrb2-deficient mice, that the sympathetic nervous system favours bone resorption by increasing expression in osteoblast progenitor cells of the osteoclast differentiation factor Rankl. This sympathetic function requires phosphorylation (by protein kinase A) of ATF4, a cell-specific CREB-related transcription factor essential for osteoblast differentiation and function. That bone resorption cannot increase in gonadectomized Adrb2-deficient mice highlights the biological importance of this regulation, but also contrasts sharply with the increase in bone resorption characterizing another hypogonadic mouse with low sympathetic tone, the ob/ob mouse. This discrepancy is explained, in part, by the fact that CART ('cocaine amphetamine regulated transcript'), a neuropeptide whose expression is controlled by leptin and nearly abolished in ob/ob mice, inhibits bone resorption by modulating Rankl expression. Our study establishes that leptin-regulated neural pathways control both aspects of bone remodelling, and demonstrates that integrity of sympathetic signalling is necessary for the increase in bone resorption caused by gonadal failure.

  18. Lipid Osteoclastokines Regulate Breast Cancer Bone Metastasis

    PubMed Central

    Krzeszinski, Jing Y.; Schwaid, Adam G.; Cheng, Wing Yin; Jin, Zixue; Gallegos, Zachary R.; Saghatelian, Alan

    2017-01-01

    Bone metastasis is a deadly consequence of cancers, in which osteoclast forms a vicious cycle with tumor cells. Bone metastasis attenuation by clinical usage of osteoclast inhibitors and in our osteopetrotic mouse genetic models with β-catenin constitutive activation or peroxisome proliferator-activated receptor γ deficiency fully support the important role of osteoclast in driving the bone metastatic niche. However, the mechanisms for this “partnership in crime” are underexplored. Here we show that osteoclasts reprogram their lipid secretion to support cancer cells. Metabolomic profiling reveals elevated prometastatic arachidonic acid (AA) but reduced antimetastatic lysophosphatidylcholines (LPCs). This shift in lipid osteoclastokines synergistically stimulates tumor cell proliferation, migration, survival, and expression of prometastatic genes. Pharmacologically, combined treatment with LPCs and BW-755C, an inhibitor of AA signaling via blocking lipoxygenase and cyclooxygenase, impedes breast cancer bone metastasis. Our findings elucidate key paracrine mechanisms for the osteoclast-cancer vicious cycle and uncover important therapeutic targets for bone metastasis. PMID:27967239

  19. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    PubMed Central

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This indicates that alterations from normal crystal size, composition, and structure will reduce the mechanical integrity of bone. PMID:25418329

  20. Contributions of Raman spectroscopy to the understanding of bone strength.

    PubMed

    Mandair, Gurjit S; Morris, Michael D

    2015-01-01

    Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.

  1. Age-related changes in mouse bone permeability.

    PubMed

    Rodriguez-Florez, Naiara; Oyen, Michelle L; Shefelbine, Sandra J

    2014-03-21

    The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.

    PubMed

    Govey, Peter M; Zhang, Yue; Donahue, Henry J

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.

  3. Loss of BMP signaling through BMPR1A in osteoblasts leads to greater collagen cross-link maturation and material-level mechanical properties in mouse femoral trabecular compartments

    PubMed Central

    Zhang, Yanshuai; McNerny, Erin Gatenby; Terajima, Masahiko; Raghavan, Mekhala; Romanowicz, Genevieve; Zhang, Zhanpeng; Zhang, Honghao; Kamiya, Nobuhiro; Tantillo, Margaret; Zhu, Peizhi; Scott, Gregory J.; Ray, Manas K.; Lynch, Michelle; Ma, Peter X.; Morris, Michael D.; Yamauchi, Mitsuo; Kohn, David H.; Mishina, Yuji

    2016-01-01

    Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments. PMID:27113526

  4. A Progressive Translational Mouse Model of Human VCP Disease: The VCP R155H/+ Mouse

    PubMed Central

    Nalbandian, Angèle; Llewellyn, Katrina J.; Badadani, Mallikarjun; Yin, Hong Z.; Nguyen, Christopher; Katheria, Veeral; Watts, Giles; Mukherjee, Jogeshwar; Vesa, Jouni; Caiozzo, Vincent; Mozaffar, Tahseen; Weiss, John H.; Kimonis, Virginia E.

    2012-01-01

    Introduction Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion Body Myopathy (hIBM) associated with Paget disease of bone (PDB), and frontotemporal dementia (FTD). More recently they have been linked to 2% of familial ALS cases. A knock-in mouse model offers the opportunity to study VCP-associated pathogenesis. Methods The VCPR155H/+ knock-in mouse model was assessed for muscle strength, immunohistochemical, Western, apoptosis, autophagy and MicroPET/CT imaging analyses. Results VCPR155H/+ mice developed significant progressive muscle weakness, and the quadriceps and brain developed progressive cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-II staining. MicroCT analyses revealed Paget-like lesions at the ends of long bones. Spinal cord demonstrated neurodegenerative changes, ubiquitin, and TDP-43 pathology of motor neurons. Discussion VCPR155H/+ knock-in mice represent an excellent pre-clinical model for understanding VCP-associated disease mechanisms and future treatments. PMID:23169451

  5. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  6. Kbus/Idr, a mutant mouse strain with skeletal abnormalities and hypophosphatemia: identification as an allele of 'Hyp'.

    PubMed

    Moriyama, Kenji; Hanai, Atsuko; Mekada, Kazuyuki; Yoshiki, Atsushi; Ogiwara, Katsueki; Kimura, Atsushi; Takahashi, Takayuki

    2011-08-20

    The endopeptidase encoded by Phex (phosphate-regulating gene with homologies to endopeptidases linked to the X chromosome) is critical for regulation of bone matrix mineralization and phosphate homeostasis. PHEX has been identified from analyses of human X-linked hypophosphatemic rickets and Hyp mutant mouse models. We here demonstrated a newly established dwarfism-like Kbus/Idr mouse line to be a novel Hyp model. Histopathological and X-ray examination with cross experiments were performed to characterize Kbus/Idr. RT-PCR-based and exon-directed PCR screening performed to identify the presence of genetic alteration. Biochemical assays were also performed to evaluate activity of alkaline phosphatase. Kbus/Idr, characterized by bone mineralization defects, was found to be inherited in an X chromosome-linked dominant manner. RT-PCR experiments showed that a novel mutation spanning exon 16 and 18 causing hypophosphatemic rickets. Alkaline phosphatase activity, as an osteoblast marker, demonstrated raised levels in the bone marrow of Kbus/Idr independent of the age. Kbus mice should serve as a useful research tool exploring molecular mechanisms underlying aberrant Phex-associated pathophysiological phenomena.

  7. [The role of metabolic activation of promutagens in the genome destabilization under pheromonal stress in the house mouse (Mus musculus)].

    PubMed

    Zhuk, A S; Stepchenkova, E I; Dukel'skaia, A V; Daev, E V; Inge-Vechtomov, S G

    2011-10-01

    The hypothesis on a relationship between the high frequency of mitotic disturbances in bone marrow cells and the change in the activity of the S9 liver fraction containing promutagen-activating enzymes under olfactory stress in the house mouse Mus musculus has been tested. For this purpose, the effect of the pheromone 2,5-dimethylpyrazine on the frequency of mitotic disturbances in mouse bone marrow cells has been measured by the anaphase-telophase assay. The Ames test using Salmonella typhimurium has been employed to compare the capacities of the S9 liver fractions from stressed and intact mice for activating the promutagen 2-aminofluorene. It has been demonstrated that the increased frequency of mitotic disturbances in bone marrow cells induced by the pheromonal stressor in male house mice is accompanied by an increased promutagen-activating capacity of the S9 liver fraction. The model system used in the study allowed the genetic consequences of the exposure to the olfactory stressor to be estimated and the possible mechanisms of genome destabilization to be assumed.

  8. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone

    PubMed Central

    Culbertson, Christopher D.; Kyker-Snowman, Kelly; Bushinsky, David A.

    2012-01-01

    Fibroblast growth factor 23 (FGF23) significantly increases with declining renal function, leading to reduced renal tubular phosphate reabsorption, decreased 1,25-dihydroxyvitamin D, and increased left ventricular hypertrophy. Elevated FGF23 is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the mechanisms by which it is regulated are not clear. Patients with chronic kidney disease have decreased renal acid excretion leading to metabolic acidosis, which has a direct effect on bone cell activity. We hypothesized that metabolic acidosis would directly increase bone cell FGF23 production. Using cultured neonatal mouse calvariae, we found that metabolic acidosis increased medium FGF23 protein levels as well as FGF23 RNA expression at 24 h and 48 h compared with incubation in neutral pH medium. To exclude that the increased FGF23 was secondary to metabolic acidosis-induced release of bone mineral phosphate, we cultured primary calvarial osteoblasts. In these cells, metabolic acidosis increased FGF23 RNA expression at 6 h compared with incubation in neutral pH medium. Thus metabolic acidosis directly increases FGF23 mRNA and protein in mouse bone. If these results are confirmed in humans with chronic kidney disease, therapeutic interventions to mitigate acidosis, such as bicarbonate administration, may also lower levels of FGF23, decrease left ventricular hypertrophy, and perhaps even decrease mortality. PMID:22647635

  9. An essential role for IGF2 in cartilage development and glucose metabolism during postnatal long bone growth.

    PubMed

    Uchimura, Tomoya; Hollander, Judith M; Nakamura, Daisy S; Liu, Zhiyi; Rosen, Clifford J; Georgakoudi, Irene; Zeng, Li

    2017-10-01

    Postnatal bone growth involves a dramatic increase in length and girth. Intriguingly, this period of growth is independent of growth hormone and the underlying mechanism is poorly understood. Recently, an IGF2 mutation was identified in humans with early postnatal growth restriction. Here, we show that IGF2 is essential for longitudinal and appositional murine postnatal bone development, which involves proper timing of chondrocyte maturation and perichondrial cell differentiation and survival. Importantly, the Igf2 null mouse model does not represent a simple delay of growth but instead uncoordinated growth plate development. Furthermore, biochemical and two-photon imaging analyses identified elevated and imbalanced glucose metabolism in the Igf2 null mouse. Attenuation of glycolysis rescued the mutant phenotype of premature cartilage maturation, thereby indicating that IGF2 controls bone growth by regulating glucose metabolism in chondrocytes. This work links glucose metabolism with cartilage development and provides insight into the fundamental understanding of human growth abnormalities. © 2017. Published by The Company of Biologists Ltd.

  10. Parathyroid Hormone-Related Peptide Elicits Peripheral TRPV1-dependent Mechanical Hypersensitivity

    PubMed Central

    Shepherd, Andrew J.; Mickle, Aaron D.; Kadunganattil, Suraj; Hu, Hongzhen; Mohapatra, Durga P.

    2018-01-01

    Bone metastasis in breast, prostate and lung cancers often leads to chronic pain, which is poorly managed by existing analgesics. The neurobiological mechanisms that underlie chronic pain associated with bone-metastasized cancers are not well understood, but sensitization of peripheral nociceptors by tumor microenvironment factors has been demonstrated to be important. Parathyroid hormone-related peptide (PTHrP) is highly expressed in bone-metastasized breast and prostate cancers, and is critical to growth and proliferation of these tumors in the bone tumor microenvironment. Previous studies have suggested that PTHrP could sensitize nociceptive sensory neurons, resulting in peripheral pain hypersensitivity. In this study, we found that PTHrP induces both heat and mechanical hypersensitivity, that are dependent on the pain-transducing transient receptor potential channel family vanilloid, member-1 (TRPV1), but not the mechano-transducing TRPV4 and TRPA1 ion channels. Functional ratiometric Ca2+ imaging and voltage-clamp electrophysiological analysis of cultured mouse DRG neurons show significant potentiation of TRPV1, but not TRPA1 or TRPV4 channel activation by PTHrP. Interestingly, PTHrP exposure led to the slow and sustained activation of TRPV1, in the absence of any exogenous channel agonist, and is dependent on the expression of the type-1 parathyroid hormone receptor (PTH1), as well as on downstream phosphorylation of the channel by protein kinase C (PKC). Accordingly, local administration of specific small-molecule antagonists of TRPV1 to mouse hindpaws after the development of PTHrP-induced mechanical hypersensitivity led to its significant attenuation. Collectively, our findings suggest that PTHrP/PTH1-mediated flow activation of TRPV1 channel contributes at least in part to the development and maintenance of peripheral mechanical pain hypersensitivity, and could therefore constitute a mechanism for nociceptor sensitization in the context of metastatic bone cancer pain. PMID:29497363

  11. Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance

    PubMed Central

    Stern, Tomer; Aviram, Rona; Rot, Chagai; Galili, Tal; Sharir, Amnon; Kalish Achrai, Noga; Keller, Yosi; Shahar, Ron; Zelzer, Elazar

    2015-01-01

    One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of individual epiphyseal plates. PMID:26241802

  12. Wnt and the Wnt signaling pathway in bone development and disease

    PubMed Central

    Wang, Yiping; Li, Yi-Ping; Paulson, Christie; Shao, Jian-Zhong; Zhang, Xiaoling; Wu, Mengrui; Chen, Wei

    2014-01-01

    Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases. PMID:24389191

  13. Effects of water extract of Cajanus cajan leaves on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and the adipocytic trans-differentiation of mouse primary osteoblasts.

    PubMed

    Zhang, Jinchao; Liu, Cuilian; Sun, Jing; Liu, Dandan; Wang, Peng

    2010-01-01

    The effects of water extract of Cajanus cajan (Linn.) Millsp. (Leguminosae) leaves (WECML) on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells (BMSCs) and the adipocytic trans-differentiation of mouse primary osteoblasts (OBs) were studied. The results indicated that WECML promoted the proliferation of BMSCs and OBs at most concentrations. WECML promoted the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentrations of 0.1, 1, and 10 microg/mL, but inhibited the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentration of 0.01 microg/mL. WECML inhibited the adipogenic differentiation of BMSCs and adipocytic trans-differentiation of OBs at concentrations of 0.001, 0.1, 1, 10, and 100 microg/mL, but had no effects at concentration of 0.01 microg/mL. The results suggest that WECML has protective effects on bone and these protective effects may be mediated by decreasing adipocytic cell formation from BMSCs, which may promote the proliferation, differentiation, and mineralization function of OBs. The defined active ingredients in the WECML and the active mechanism need to be further studied.

  14. Four-point bending protocols to study the effects of dynamic strain in osteoblastic cells in vitro.

    PubMed

    Galea, Gabriel L; Price, Joanna S

    2015-01-01

    Strain engendered within bone tissue by mechanical loading of the skeleton is a major influence on the processes of bone modeling and remodeling and so a critical determinant of bone mass and architecture. The cells best placed to respond to strain in bone tissue are the resident osteocytes and osteoblasts. To address the mechanisms of strain-related responses in osteoblast-like cells, our group uses both in vivo and in vitro approaches, including a system of four-point bending of the substrate on which cells are cultured. A range of cell lines can be studied using this system but we routinely compare their responses to those in primary cultures of osteoblast-like cells derived from explants of mouse long bones. These cells show a range of well-characterized responses to physiological levels of strain, including increased proliferation, which in vivo is a feature of the osteogenic response.

  15. A Novel Immune-Intact Mouse Model of Prostate Cancer Bone Metastasis: Mechanisms of Chemotaxis and Bone Colonization

    DTIC Science & Technology

    2017-10-01

    Colonization PRINCIPAL INVESTIGATOR: Srinivas Nandana CONTRACTING ORGANIZATION: Cedars-Sinai Medical Center Los Angeles, CA, 90048 REPORT DATE...8. PERFORMING ORGANIZATION REPORT NUMBER Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048 9. SPONSORING / MONITORING...Revised Statement of Work (SOW): PROPOSED START DATE Sep 30, 2016 ACTUAL START DATE – Sep 18, 2017 Site: Uro -Oncology, Dept of Medicine

  16. The Mice Drawer System Tissue Sharing Program (MDS-TSP): osteobiology in microgravity

    NASA Astrophysics Data System (ADS)

    Ruggiu, Alessandra; Cancedda, Ranieri; Biticchi, Roberta; Cilli, Michele; Cotronei, Vittorio; Costa, Delfina; Liu, Yi; Piccardi, Federica; Pignataro, Salvatore; Tasso, Roberta; Tavella, Sara

    The capacity of bone tissue to alter its mass and architecture in response to mechanical request has long been known. Bone not only develops as a structure designed specifically for mechanical demands, but it can adapt during life toward more efficient mechanical performance. In partic-ular, the skeletal effects of microgravity result in the development of an osteoporotic phenotype with several bone defects including a bone mass decrease resembling the bone modifications occurring in elder people and in bed rest conditions. This is particularly true for weight bearing bones such as spine, femur and tibiae. In contrast non-weight bearing bones like calvaria etc didn't show bone mineral density decrease in weightlessness. Given the interest of our labora-tory in the microgravity induced skeleton alterations, we focused our attention on a transgenic mouse overexpressing pleiotrophin (PTN) under the control of the bone specific human os-teocalcin promoter. This protein is a heparin-binding cytokine with different functions. In particular PTN-transgenic mice (PTN-Tg) show an increase in the bone mass and mineral-ization, with a calcium content/mg bone of 10We used this mouse model in the MDS flight experiment to study the PTN potential role in counteracting bone loss in microgravity. Three PTN-transgenic mice (Tg) and three wild type (Wt) mice were housed in the MDS (Mouse Drawer System) at the ISS for three months. During these three months two wt and one tg mice died and therefore could be only frozen for subsequent skeletal analysis. The other three mice, daily checked for their health status, were viable and in good condition throughout the all three months at the ISS. At the end of November 2009 the three mice came back to Earth and after blood collection were immediately sacrificed and the different bones isolated. From blood cell analysis no major hematological alterations were noticed in the blood cell count except a slight increase in the number of erythrocytes. The serum collected from these mice is being used in a Luminex panel assay for several cytokine and bone metabolism markers. A ground replica of the flight experiment ("ground control") was performed at the University of Genova from November 2009 to the second week of February 2010 during which we collected the bone samples. To study the microgravity effects on both wt and PTN-Tg mice we are performing morphological analysis by classical histological technique. A finer microarchitectural study by synchrotron and bench microCT has been initiated both at the Grenoble and the Trieste facil-ities. With this last technique we are analyzing both weight and non-weight bearing bones and we are evaluating bone mineral density, mineralization amount, trabecular architecture. We are also in the process of obtaining a holotomographic reconstruction of the trabecular and cortical bone from both the flight and the ground control mice. In addition we extracted RNA from long bones and bone marrow of the same mice and we are performing Real-time PCR analysis to determine the expression of bone marker such as osteocalcin, runx2, bone sialoprotein and of markers of bone turnover such as RankL, TRAP, cathepsin K, IL6 in the different animals.

  17. The beneficial effects of exercise on cartilage are lost in mice with reduced levels of ECSOD in tissues.

    PubMed

    Pate, Kathryn M; Sherk, Vanessa D; Carpenter, R Dana; Weaver, Michael; Crapo, Silvia; Gally, Fabienne; Chatham, Lillian S; Goldstrohm, David A; Crapo, James D; Kohrt, Wendy M; Bowler, Russell P; Oberley-Deegan, Rebecca E; Regan, Elizabeth A

    2015-03-15

    Osteoarthritis (OA) is associated with increased mechanical damage to joint cartilage. We have previously found that extracellular superoxide dismutase (ECSOD) is decreased in OA joint fluid and cartilage, suggesting oxidant damage may play a role in OA. We explored the effect of forced running as a surrogate for mechanical damage in a transgenic mouse with reduced ECSOD tissue binding. Transgenic mice heterozygous (Het) for the human ECSOD R213G polymorphism and 129-SvEv (wild-type, WT) mice were exposed to forced running on a treadmill for 45 min/day, 5 days/wk, over 8 wk. At the end of the running protocol, knee joint tissue was obtained for histology, immunohistochemistry, and protein analysis. Sedentary Het and WT mice were maintained for comparison. Whole tibias were studied for bone morphometry, finite element analysis, and mechanical testing. Forced running improved joint histology in WT mice. However, when ECSOD levels were reduced, this beneficial effect with running was lost. Het ECSOD runner mice had significantly worse histology scores compared with WT runner mice. Runner mice for both strains had increased bone strength in response to the running protocol, while Het mice showed evidence of a less robust bone structure in both runners and untrained mice. Reduced levels of ECSOD in cartilage produced joint damage when joints were stressed by forced running. The bone tissues responded to increased loading with hypertrophy, regardless of mouse strain. We conclude that ECSOD plays an important role in protecting cartilage from damage caused by mechanical loading. Copyright © 2015 the American Physiological Society.

  18. Molecular Mechanisms of Soft Tissue Regeneration and Bone Formation in Mice: Implications in Fracture Repair and Wound Healing in Humans

    DTIC Science & Technology

    2007-04-01

    Teruya, B. Lokensgard, S. Daneshmand, J. Brown, R. J. Gray, et al. 1994. Linkage analysis of the genetic determinants of high density lipoprotein ...and soft tissue function and to clarify the function of these genes. Three hypotheses have been proposed: 1) The high bone density gene in...locus (QTL) that contributes significantly to high bone density on mouse chromosome 1 (Chr. 1) from a cross between C57BL/6J (B6) and CAST/EiJ (CAST

  19. Phenotypic research on senile osteoporosis caused by SIRT6 deficiency

    PubMed Central

    Zhang, De-Mao; Cui, Di-Xin; Xu, Ruo-Shi; Zhou, Ya-Chuan; Zheng, Li-Wei; Liu, Peng; Zhou, Xue-Dong

    2016-01-01

    Osteoporosis is a serious public bone metabolic disease. However, the mechanisms underlying bone loss combined with ageing, which is known as senile osteoporosis, remains unknown. Here we show the detailed phenotype of this disease caused by SIRT6 knock out (KO) in mice. To the best of our knowledge, this is the first study to reveal that SIRT6 is expressed in both bone marrow stroma cells and bone-related cells in both mouse and human models, which suggests that SIRT6 is an important regulator in bone metabolism. SIRT6-KO mice exhibit a significant decrease in body weight and remarkable dwarfism. The skeleton of the SIRT6-KO mouse is deficient in cartilage and mineralized bone tissue. Moreover, the osteocalcin concentration in blood is lower, which suggests that bone mass is markedly lost. Besides, the tartrate-resistant acid phosphatase 5b (TRAP5b) concentration is much higher, which suggests that bone resorption is overactive. Both trabecular and cortical bones exhibit severe osteopenia, and the bone mineral density is decreased. Moreover, double-labelling analysis shows that bone formation is much slower. To determine whether SIRT6 directly regulates bone metabolism, we cultured primary bone marrow stromal cells for osteogenesis and osteoclastogenesis separately to avoid indirect interference in vivo responses such as inflammation. Taken together, these results show that SIRT6 can directly regulate osteoblast proliferation and differentiation, resulting in attenuation in mineralization. Furthermore, SIRT6 can directly regulate osteoclast differentiation and results in a higher number of small osteoclasts, which may be related to overactive bone resorption. PMID:27357320

  20. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts.

    PubMed

    Uluçkan, Özge; Jimenez, Maria; Karbach, Susanne; Jeschke, Anke; Graña, Osvaldo; Keller, Johannes; Busse, Björn; Croxford, Andrew L; Finzel, Stephanie; Koenders, Marije; van den Berg, Wim; Schinke, Thorsten; Amling, Michael; Waisman, Ari; Schett, Georg; Wagner, Erwin F

    2016-03-16

    Inflammation has important roles in tissue regeneration, autoimmunity, and cancer. Different inflammatory stimuli can lead to bone loss by mechanisms that are not well understood. We show that skin inflammation induces bone loss in mice and humans. In psoriasis, one of the prototypic IL-17A-mediated inflammatory human skin diseases, low bone formation and bone loss correlated with increased serum IL-17A levels. Similarly, in two mouse models with chronic IL-17A-mediated skin inflammation,K14-IL17A(ind)andJunB(Δep), strong inhibition of bone formation was observed, different from classical inflammatory bone loss where osteoclast activation leads to bone degradation. We show that under inflammatory conditions, skin-resident cells such as keratinocytes, γδ T cells, and innate lymphoid cells were able to express IL-17A, which acted systemically to inhibit osteoblast and osteocyte function by a mechanism involving Wnt signaling. IL-17A led to decreased Wnt signaling in vitro, and importantly, pharmacological blockade of IL-17A rescued Wnt target gene expression and bone formation in vivo. These data provide a mechanism where IL-17A affects bone formation by regulating Wnt signaling in osteoblasts and osteocytes. This study suggests that using IL-17A blocking agents in psoriasis could be beneficial against bone loss in these patients. Copyright © 2016, American Association for the Advancement of Science.

  1. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice☆

    PubMed Central

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-01-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. PMID:22449447

  2. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice.

    PubMed

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-06-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Preventing Cartilage Degeneration in Warfighters by Elucidating Novel Mechanisms Regulating Osteocyte-Mediated Perilacunar Bone Remodeling

    DTIC Science & Technology

    2016-10-01

    sclerosis as in human PTOA. We also find that PLR is deregulated in human PTOA. We have made great strides in understanding the mechanosensitive regulation...conditions. We conducted an extremely thorough analysis of multiple experimental variables (loading regimen, mouse age, time course analysis) to better...Aim 3. Determine the extent of causality between defective PLR and cartilage degeneration in PTOA. A role for PLR in bone sclerosis

  4. Estrogen receptors in skeletal metabolism: lessons from genetically modified models of receptor function.

    PubMed

    McCauley, Laurie K; Tözüm, Tolga F; Rosol, Thomas J

    2002-01-01

    Estrogens have long been known to be important for skeletal homeostasis, but their precise mechanisms of action in bone are still unclear. Mice with targeted deletions of the estrogen receptors alpha (ERalpha) and beta (ERbeta) have been generated by two research groups and several studies performed characterizing the phenotype of ERalpha knockout (ERKOalpha), ERbeta knockout (ERKObeta), or double deletion of ERalpha and ERbeta (DERKO) mice. Initial studies reported a reduction in bone mineral density in male ERKOalpha mice. More extensive analyses have been puzzling, likely because of compensatory mechanisms in ERKO mice. Furthermore, the existence of a third ER continues to be a potential explanation for some actions of estrogen in bone. Other rodent models, including the testicular feminized mouse and rat, the aromatase knockout mouse, and a rat with a dominant negative ER mutation, have added information regarding estrogen's actions in bone. This review summarizes many reports characterizing available rodent models with genetic alterations relevant to estrogen action. The sum of these reports suggests that the ERbeta is not highly protective in bone because loss of its function results in minimal alterations in the skeleton. Furthermore, loss of both the ERalpha and the ERbeta does not account for loss of estrogen action in bone, because the impact of DERKO is seemingly not as great as the impact of gonadectomy on the skeleton. Finally, through studies of ERKO mice and other rodent models of altered sex steroid action, it appears that estrogen may be more protective in the skeleton than androgens.

  5. Survival of Free and Encapsulated Human and Rat Islet Xenografts Transplanted into the Mouse Bone Marrow

    PubMed Central

    Meier, Raphael P. H.; Seebach, Jörg D.; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H.; Muller, Yannick D.

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation. PMID:24625569

  6. Sex Steroid Actions in Male Bone

    PubMed Central

    Laurent, Michaël R.; Claessens, Frank; Gielen, Evelien; Lagerquist, Marie K.; Vandenput, Liesbeth; Börjesson, Anna E.; Ohlsson, Claes

    2014-01-01

    Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority. PMID:25202834

  7. The role of estrogen and androgen receptors in bone health and disease

    PubMed Central

    2014-01-01

    Mouse models with cell-specific deletion of the estrogen receptor (ER) α, the androgen receptor (AR) or the receptor activator of nuclear factor κB ligand (RANKL), as well as cascade-selective estrogenic compounds have provided novel insights into the function and signalling of ERα and AR. The studies reveal that the effects of estrogens on trabecular versus cortical bone mass are mediated by direct effects on osteoclasts and osteoblasts, respectively. The protection of cortical bone mass by estrogens is mediated via ERα, using a non-nucleus-initiated mechanism. By contrast, the AR of mature osteoblasts is indispensable for the maintenance of trabecular bone mass in male mammals, but not required for the anabolic effects of androgens on cortical bone. Most unexpectedly, and independently of estrogens, ERα in osteoblast progenitors stimulates Wnt signalling and periosteal bone accrual in response to mechanical strain. RANKL expression in B lymphocytes, but not T lymphocytes, contributes to the loss of trabecular bone caused by estrogen deficiency. In this Review, we summarize this evidence and discuss its implications for understanding the regulation of trabecular and cortical bone mass; the integration of hormonal and mechanical signals; the relative importance of estrogens versus androgens in the male skeleton; and, finally, the pathogenesis and treatment of osteoporosis. PMID:24042328

  8. Mechanical force-induced midpalatal suture remodeling in mice.

    PubMed

    Hou, Bo; Fukai, Naomi; Olsen, Bjorn R

    2007-06-01

    Mechanical stress is an important epigenetic factor for regulating skeletal remodeling, and application of force can lead to remodeling of both bone and cartilage. Chondrocytes, osteoblasts and osteoclasts all participate and interact with each other in this remodeling process. To study cellular responses to mechanical stimuli in a system that can be genetically manipulated, we used mouse midpalatal suture expansion in vivo. Six-week-old male C57BL/6 mice were subjected to palatal suture expansion by opening loops with an initial force of 0.56 N for the periods of 1, 3, 5, 7, 14 or 28 days. Periosteal cells in expanding sutures showed increased proliferation, with Ki67-positive cells representing 1.8+/-0.1% to 4.5+/-0.4% of total suture cells in control groups and 12.0+/-2.6% to 19.9+/-1.2% in experimental/expansion groups (p<0.05). Starting at day 1, cells expressing alkaline phosphatase and type I collagen were seen. New cartilage and bone formation was observed at the oral edges of the palatal bones at day 7; at the nasal edges only bone formation without cartilage appeared to occur. An increase in osteoclast numbers suggested increased bone remodeling, ranging from 60 to 160% throughout the experimental period. Decreased Saffranin O staining after day 3 suggested decreased proteoglycan content in the secondary cartilage. Micro-CT showed a significant increase in maxillary width at days 14 and 28 (from 2334+/-4 microm to 2485+/-3 microm at day 14 and from 2383+/-5 microm to 2574+/-7 microm at day 28, p<0.001). The suture width was increased at days 14 and 28, except in the oral third region at day 28 (from 48+/-5 microm to 36+/-4 microm, p<0.05). Bone volume/total volume was significantly reduced at days 14 and 28 (50.2+/-0.7% vs. 68.0+/-3.7% and 56.5+/-1.0% vs. 60.9+/-1.3%, respectively, p<0.05), indicative of increased bone marrow space. These findings demonstrate that expansion forces across the midpalatal suture promote bone resorption through activation of osteoclasts and bone and cartilage formation via increased proliferation and differentiation of periosteal cells. Mouse midpalatal suture expansion would be useful in further studies of the ability of mineralized tissues to respond to mechanical stimulation.

  9. Sex steroids during bone growth: a comparative study between mouse models for hypogonadal and senile osteoporosis.

    PubMed

    Ophoff, J; Venken, K; Callewaert, F; Boonen, S; Bouillon, R; Vanderschueren, D

    2009-10-01

    In this study, the role of disturbed bone mineral acquisition during puberty in the pathogenesis of osteoporosis was studied. To this end, a mouse model for senile and hypogonadal osteoporosis was used. Longitudinal follow-up showed that bone fragility in both models results from deficient bone build-up during early puberty. Male osteoporosis may result from impaired bone growth. This study characterizes the mechanisms of deficient peak bone mass acquisition in models for senile (SAMP6) and hypogonadal (orchidectomized SAMR1) osteoporosis. Bone mineral acquisition was investigated longitudinally in SAMP6 and orchidectomized SAMR1 mice (eight to ten animals per group) using peripheral quantitative computed tomography and histomorphometry. Additionally, the effects of long-term 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2) replacement were studied. Statistical analysis was performed using ANOVA and Student's t test. SAMP6 mice showed an early (4 weeks) medullary expansion of the cortex due to impaired endocortical bone formation (-43%). Despite compensatory periosteal bone formation (+47%), cortical thickness was severely reduced in 20-week-old SAMP6 versus SAMR1. Orchidectomy reduced periosteal apposition between 4 and 8 weeks of age and resulted in high bone turnover and less trabecular bone gain in SAMP6 and SAMR1. DHT and E2 stimulated periosteal expansion and trabecular bone in orchidectomized SAMP6 and SAMR1. E2 stimulated endocortical apposition in SAMP6. Moreover, sex steroid action occurred between 4 and 8 weeks of age. Bone fragility in both models resulted from deficient bone build-up during early puberty. DHT and E2 improved bone mass acquisition in orchidectomized animals, suggesting a role for AR and ER in male skeletal development.

  10. Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Maryka H.

    Extensive epidemiological studies have recently demonstrated increased cadmium exposure correlating significantly with decreased bone mineral density and increased fracture incidence in humans at lower exposure levels than ever before evaluated. Studies in experimental animals have addressed whether very low concentrations of dietary cadmium can negatively impact the skeleton. This overview evaluates results in experimental animals regarding mechanisms of action on bone and the application of these results to humans. Results demonstrate that long-term dietary exposures in rats, at levels corresponding to environmental exposures in humans, result in increased skeletal fragility and decreased mineral density. Cadmium-induced demineralization begins soon after exposure,more » within 24 h of an oral dose to mice. In bone culture systems, cadmium at low concentrations acts directly on bone cells to cause both decreases in bone formation and increases in bone resorption, independent of its effects on kidney, intestine, or circulating hormone concentrations. Results from gene expression microarray and gene knock-out mouse models provide insight into mechanisms by which cadmium may affect bone. Application of the results to humans is considered with respect to cigarette smoke exposure pathways and direct vs. indirect effects of cadmium. Clearly, understanding the mechanism(s) by which cadmium causes bone loss in experimental animals will provide insight into its diverse effects in humans. Preventing bone loss is critical to maintaining an active, independent lifestyle, particularly among elderly persons. Identifying environmental factors such as cadmium that contribute to increased fractures in humans is an important undertaking and a first step to prevention.« less

  11. Development of an in vitro culture method for stepwise differentiation of mouse embryonic stem cells and induced pluripotent stem cells into mature osteoclasts.

    PubMed

    Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru

    2014-05-01

    The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.

  12. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta

    PubMed Central

    Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A.; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L.; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C.; Vezzoni, Paolo

    2009-01-01

    Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [α1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862

  13. Congenital Bone Fractures in Spinal Muscular Atrophy: Functional Role for SMN Protein in Bone Remodeling

    PubMed Central

    Shanmugarajan, Srinivasan; Swoboda, Kathryn J.; Iannaccone, Susan T.; Ries, William L.; Maria, Bernard L.; Reddy, Sakamuri V.

    2009-01-01

    Spinal muscular atrophy is the second most common fatal childhood disorder. Core clinical features include muscle weakness caused by degenerating lower motor neurons and a high incidence of bone fractures and hypercalcemia. Fractures further compromise quality of life by progression of joint contractures or additional loss of motor function. Recent observations suggest that bone disease in spinal muscular atrophy may not be attributed entirely to lower motor neuron degeneration. The presence of the spinal muscular atrophy disease-determining survival motor neuron gene (SMN), SMN expression, and differential splicing in bone-resorbing osteoclasts was recently discovered. Its ubiquitous expression and the differential expression of splice variants suggest that SMN has specific roles in bone cell function. SMN protein also interacts with osteoclast stimulatory factor. Mouse models of human spinal muscular atrophy disease suggest a potential role of SMN protein in skeletal development. Dual energy x-ray absorptiometry analysis demonstrated a substantial decrease in total bone area and poorly developed caudal vertebra in the mouse model. These mice also had pelvic bone fractures. Studies delineating SMN signaling mechanisms and gene transcription in a cell-specific manner will provide important molecular insights into the pathogenesis of bone disease in children with spinal muscular atrophy. Moreover, understanding bone remodeling in spinal muscular atrophy may lead to novel therapeutic approaches to enhance skeletal health and quality of life. This article reviews the skeletal complications associated with spinal muscular atrophy and describes a functional role for SMN protein in osteoclast development and bone resorption activity. PMID:17761651

  14. MACF1 Overexpression by Transfecting the 21 kbp Large Plasmid PEGFP-C1A-ACF7 Promotes Osteoblast Differentiation and Bone Formation.

    PubMed

    Zhang, Yan; Yin, Chong; Hu, Lifang; Chen, Zhihao; Zhao, Fan; Li, Dijie; Ma, Jianhua; Ma, Xiaoli; Su, Peihong; Qiu, Wuxia; Yang, Chaofei; Wang, Pai; Li, Siyu; Zhang, Ge; Wang, Liping; Qian, Airong; Xian, Cory J

    2018-02-01

    Microtubule actin crosslinking factor 1 (MACF1) is a large spectraplakin protein known to have crucial roles in regulating cytoskeletal dynamics, cell migration, growth, and differentiation. However, its role and action mechanism in bone remain unclear. The present study investigated optimal conditions for effective transfection of the large plasmid PEGFP-C1A-ACF7 (∼21 kbp) containing full-length human MACF1 cDNA, as well as the potential role of MACF1 in bone formation. To enhance MACF1 expression, the plasmid was transfected into osteogenic cells by electroporation in vitro and into mouse calvaria with nanoparticles. Then, transfection efficiency, osteogenic marker expression, calvarial thickness, and bone formation were analyzed. Notably, MACF1 overexpression triggered a drastic increase in osteogenic gene expression, alkaline phosphatase activity, and matrix mineralization in vitro. Mouse calvarial thickness, mineral apposition rate, and osteogenic marker protein expression were significantly enhanced by local transfection. In addition, MACF1 overexpression promoted β-catenin expression and signaling. In conclusion, MACF1 overexpression by transfecting the large plasmid containing full-length MACF1 cDNA promotes osteoblast differentiation and bone formation via β-catenin signaling. Current data will provide useful experimental parameters for the transfection of large plasmids and a novel strategy based on promoting bone formation for prevention and therapy of bone disorders.

  15. ZIP4 silencing improves bone loss in pancreatic cancer

    PubMed Central

    Yang, Jingxuan; Ding, Hao; LeBrun, Drake; Ding, Kai; Houchen, Courtney W.; Postier, Russell G.; Ambrose, Catherine G.; Li, Zhaoshen; Bi, Xiaohong; Li, Min

    2015-01-01

    Metabolic bone disorders are associated with several types of human cancers. Pancreatic cancer patients usually suffer from severe nutrition deficiency, muscle wasting, and loss of bone mass. We have previously found that silencing of a zinc transporter ZIP4 prolongs the survival and reduces the severity of the cachexia in vivo. However, the role of ZIP4 in the pancreatic cancer related bone loss remains unknown. In this study we investigated the effect of ZIP4 knockdown on the bone structure, composition and mechanical properties of femurs in an orthotopic xenograft mouse model. Our data showed that silencing of ZIP4 resulted in increased bone tissue mineral density, decreased bone crystallinity and restoration of bone strength through the RANK/RANKL pathway. The results further support the impact of ZIP4 on the progression of pancreatic cancer, and suggest its potential significance as a therapeutic target for treating patients with such devastating disease and cancer related disorders. PMID:26305676

  16. Engineering a humanized bone organ model in mice to study bone metastases.

    PubMed

    Martine, Laure C; Holzapfel, Boris M; McGovern, Jacqui A; Wagner, Ferdinand; Quent, Verena M; Hesami, Parisa; Wunner, Felix M; Vaquette, Cedryck; De-Juan-Pardo, Elena M; Brown, Toby D; Nowlan, Bianca; Wu, Dan Jing; Hutmacher, Cosmo Orlando; Moi, Davide; Oussenko, Tatiana; Piccinini, Elia; Zandstra, Peter W; Mazzieri, Roberta; Lévesque, Jean-Pierre; Dalton, Paul D; Taubenberger, Anna V; Hutmacher, Dietmar W

    2017-04-01

    Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.

  17. Hypercholesterolemia Promotes an Osteoporotic Phenotype

    PubMed Central

    Pelton, Kristine; Krieder, Jaclynn; Joiner, Danese; Freeman, Michael R.; Goldstein, Steven A.; Solomon, Keith R.

    2013-01-01

    A role for hypercholesterolemia in the development of osteoporosis has been suggested in published reports. However, few studies contain direct evidence of a role for maintenance of cholesterol homeostasis in bone health. Using isocaloric high-fat/high-cholesterol and low-fat/no-cholesterol diets in a 4-month feeding study combined with micro computed tomography analysis, we demonstrated in two different mouse strains that mice with hypercholesterolemia lose cortical and trabecular bone in the femurs and vertebrae (bone mineral density was decreased on average by ≈90 mg/mL in the cortical vertebrae in one strain) and cortical bone in the calvariae (bone mineral density was decreased on average by ≈60 mg/mL in one strain). Mechanical testing of the femurs demonstrated that loss of bone in the mice with hypercholesterolemia caused changes in the mechanical properties of the bone including loss of failure load (failure load was decreased by ≈10 N in one strain) and energy to failure. Serologic and histomorphologic analyses suggested that hypercholesterolemia promotes osteoclastogenesis. These studies support a role for hypercholesterolemia in the development of osteoporosis and provide a model with which to test intervention strategies to reduce the effects of hypercholesterolemia on bone health. PMID:22770664

  18. Transplantation of Hepatocyte Growth Factor-Modified Dental Pulp Stem Cells Prevents Bone Loss in the Early Phase of Ovariectomy-Induced Osteoporosis.

    PubMed

    Kong, Fanxuan; Shi, Xuefeng; Xiao, Fengjun; Yang, Yuefeng; Zhang, Xiaoyan; Wang, Li-Sheng; Wu, Chu-Tse; Wang, Hua

    2018-02-01

    Investigations based on mesenchymal stem cells (MSCs) for osteoporosis have attracted attention recently. MSCs can be derived from various tissues, such as bone marrow, adipose, umbilical cord, placenta, and dental pulp. Among these, dental pulp-derived MSCs (DPSCs) and hepatocyte growth factor (HGF)-modified DPSCs (DPSCs-HGF) highly express osteogenic-related genes and have stronger osteogenic differentiation capacities. DPSCs have more benefits in treating osteoporosis. The purpose of this study was to investigate the roles of HGF gene-modified DPSCs in bone regeneration using a mouse model of ovariectomy (OVX)-induced bone loss. The HGF and luciferase genes were transferred into human DPSCs using recombinant adenovirus. These transduced cells were assayed for distribution or bone regeneration assay by transplantation into an OVX-induced osteoporosis model. By using bioluminogenic imaging, it was determined that some DPSCs could survive for >1 month in vivo. The DPSCs were mainly distributed to the lung in the early stage and to the liver in the late stage of OVX osteoporosis after administration, but they were scarcely distributed to the bone. The homing efficiency of DPSCs is higher when administrated in the early stage of a mouse OVX model. Micro-computed tomography indicated that DPSCs-Null or DPSCs-HGF transplantation significantly reduces OVX-induced bone loss in the trabecular bone of the distal femur metaphysis, and DPSCs-HGF show a stronger capacity to reduce bone loss. The data suggest that systemic infusion of DPSCs-HGF is a potential therapeutic approach for OVX-induced bone loss, which might be mediated by paracrine mechanisms.

  19. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    PubMed

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  20. Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging.

    PubMed

    Yang, Haisheng; Albiol, Laia; Chan, Wing-Lee; Wulsten, Dag; Seliger, Anne; Thelen, Michael; Thiele, Tobias; Spevak, Lyudmila; Boskey, Adele; Kornak, Uwe; Checa, Sara; Willie, Bettina M

    2017-12-08

    Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab Prx1 ) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab Prx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that Gorab Prx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the Gorab Prx1 tibiae (p < .05), suggesting delayed mineralization. In vivo strain gauge measurement and finite element analysis showed ∼two times higher tissue-level strains within the Gorab Prx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that Gorab Prx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the Gorab Prx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Epigenetic remodeling and modification to preserve skeletogenesis in vivo.

    PubMed

    Godfrey, Tanner C; Wildman, Benjamin J; Javed, Amjad; Lengner, Christopher J; Hassan, Mohammad Quamarul

    2018-12-01

    Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a Cl ZIP ) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.

  2. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis

    PubMed Central

    Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.

    2016-01-01

    A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825

  3. Real-Time Measurement of Solute Transport Within the Lacunar-Canalicular System of Mechanically Loaded Bone: Direct Evidence for Load-Induced Fluid Flow

    PubMed Central

    Price, Christopher; Zhou, Xiaozhou; Li, Wen; Wang, Liyun

    2011-01-01

    Since proposed by Piekarski and Munro in 1977, load-induced fluid flow through the bone lacunar-canalicular system (LCS) has been accepted as critical for bone metabolism, mechanotransduction, and adaptation. However, direct unequivocal observation and quantification of load-induced fluid and solute convection through the LCS have been lacking due to technical difficulties. Using a novel experimental approach based on fluorescence recovery after photobleaching (FRAP) and synchronized mechanical loading and imaging, we successfully quantified the diffusive and convective transport of a small fluorescent tracer (sodium fluorescein, 376 Da) in the bone LCS of adult male C57BL/6J mice. We demonstrated that cyclic end-compression of the mouse tibia with a moderate loading magnitude (–3 N peak load or 400 µɛ surface strain at 0.5 Hz) and a 4-second rest/imaging window inserted between adjacent load cycles significantly enhanced (+31%) the transport of sodium fluorescein through the LCS compared with diffusion alone. Using an anatomically based three-compartment transport model, the peak canalicular fluid velocity in the loaded bone was predicted (60 µm/s), and the resulting peak shear stress at the osteocyte process membrane was estimated (∼5 Pa). This study convincingly demonstrated the presence of load-induced convection in mechanically loaded bone. The combined experimental and mathematical approach presented herein represents an important advance in quantifying the microfluidic environment experienced by osteocytes in situ and provides a foundation for further studying the mechanisms by which mechanical stimulation modulates osteocytic cellular responses, which will inform basic bone biology, clinical understanding of osteoporosis and bone loss, and the rational engineering of their treatments. © 2011 American Society for Bone and Mineral Research. PMID:20715178

  4. Osteogenesis Imperfecta: Muscle-Bone Interactions when Bi-directionally Compromised.

    PubMed

    Phillips, Charlotte L; Jeong, Youngjae

    2018-06-16

    Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder of skeletal fragility and more recently muscle weakness. This review highlights our current knowledge of the impact of compromised OI muscle function on muscle-bone interactions and skeletal strength in OI. The ramifications of inherent muscle weakness in OI muscle-bone interactions are just beginning to be elucidated. Studies in patients and in OI mouse models implicate altered mechanosensing, energy metabolism, mitochondrial dysfunction, and paracrine/endocrine crosstalk in the pathogenesis of OI. Compromised muscle-bone unit impacts mechanosensing and the ability of OI muscle and bone to respond to physiotherapeutic and pharmacologic treatment strategies. Muscle and bone are both compromised in OI, making it essential to understand the mechanisms responsible for both impaired muscle and bone functions and their interdependence, as this will expand and drive new physiotherapeutic and pharmacological approaches to treat OI and other musculoskeletal disorders.

  5. Effects of O-methylated (-)-epigallocatechin gallate (EGCG) on LPS-induced osteoclastogenesis, bone resorption, and alveolar bone loss in mice.

    PubMed

    Tominari, Tsukasa; Ichimaru, Ryota; Yoshinouchi, Shosei; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Inada, Masaki; Miyaura, Chisato

    2017-12-01

    (-)-Epigallocatechin-3- O -gallate (EGCG), present in green tea, exhibits antioxidant and antiallergy effects. EGCG3″Me, a 3- O -methylated derivative of EGCG, has been reported to show similar biological functions; the inhibitory activity of EGCG3″Me in a mouse allergy model was more potent than that of EGCG, probably due to the efficiency of absorption from the intestine. However, the functional potency of these EGCGs is controversial in each disease model. We previously observed that EGCG suppressed inflammatory bone resorption and prevented alveolar bone loss in a mouse model of periodontosis. In this study, we examined the role of EGCG3″Me in bone resorption using a mouse model of periodontitis. Lipopolysaccharide (LPS)-induced osteoclast formation was suppressed by adding EGCG3″Me to cocultures of osteoblasts and bone marrow cells, and LPS-induced bone resorption was also inhibited by EGCG3″Me in calvarial organ cultures. EGCG3″Me acted on osteoblasts and suppressed prostaglandin E (PGE) production, which is critical for inflammatory bone resorption, by inhibiting the expression of COX-2 and mPGES-1, key enzymes for PGE synthesis. In osteoclast precursor macrophages, EGCG3″Me suppressed RANKL-dependent differentiation into mature osteoclasts. In a mouse model of periodontitis, LPS-induced bone resorption was suppressed by EGCG3″Me in organ culture of mouse alveolar bone, and the alveolar bone loss was further attenuated by the treatment of EGCG3″Me in the lower gingiva in vivo . EGCG3″Me may be a potential natural compound for the protection of inflammatory bone loss in periodontitis.

  6. TREATMENT OF STROKE WITH DETA-NONOATE AND BONE MARROW STROMAL CELLS UPREGULATES ANGIOPOIETIN-1/TIE2 AND ENHANCES NEOVASCULARIZATION

    PubMed Central

    CUI, X.; CHEN, J.; ZACHAREK, A.; ROBERTS, C.; SAVANT-BHONSALE, S.; CHOPP, M.

    2008-01-01

    Neovascularization may contribute to functional recovery after neural injury. Combination treatment of stroke with a nitric oxide donor, DETA-NONOate and bone marrow stromal cells promote functional recovery. However, the mechanisms underlying functional improvement have not been elucidated. In this study, we tested the hypothesis that combination treatment upregulates Angiopoietin1 and its receptor Tie2 in the ischemic brain and bone marrow stromal cells, thereby enhances cerebral neovascularization after stroke. Adult wild type male C57BL/6 mice were intravenously administered PBS, bone marrow stromal cells 5×105, DETA-NONOate 0.4 mg/kg or combination DETA-NONOate with bone marrow stromal cells (n=12/group) after middle cerebral artery occlusion. Combination treatment significantly upregulated Angiopoietin-1/Tie2 and tight junction protein (occludin) expression, and increased the number, diameter and perimeter of blood vessels in the ischemic brain compared with vehicle control (mean ± SE, p<0.05). In vitro, DETA-NONOate significantly increased Angiopoietin-1/Tie2 protein (n=6/group) and Tie2 mRNA (n=3/group) expression in bone marrow stromal cells. DETA-NONOate also significantly increased Angiopoietin-1 protein (n=6/group) and mRNA (n=3/group) expression in mouse brain endothelial cells (p<0.05). Angiopoietin-1 mRNA (n=3/group) was significantly increased in mouse brain endothelial cells treated with DETA-NONOate in combination with bone marrow stromal cells conditioned medium compared with cells treated with bone marrow stromal cells conditioned medium or DETA-NONOate alone. Mouse brain endothelial cell capillary tube-like formation assays (n=6/group) showed that Angiopoietin-1 peptide, the supernatant of bone marrow stromal cells and DETA-NONOate significantly increased capillary tube formation compared to vehicle control. Combination treatment significantly increased capillary tube formation compared with DETA-NONOate treatment alone. Inhibition of Angiopoietin-1 significantly attenuated combination treatment-induced tube formation. Our data indicated that combination treatment of stroke with DETA-NONOate and bone marrow stromal cells promotes neovascularization, which is at least partially mediated by upregulation of the Angiopoietin-1/Tie2 axis. PMID:18691637

  7. Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells.

    PubMed

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy

    2010-10-01

    The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30-35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect.

  8. Development, validation and characterization of a novel mouse model of Adynamic Bone Disease (ABD).

    PubMed

    Ng, Adeline H; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2014-11-01

    The etiology of Adynamic Bone Disease (ABD) is poorly understood but the hallmark of ABD is a lack of bone turnover. ABD occurs in renal osteodystrophy (ROD) and is suspected to occur in elderly patients on long-term anti-resorptive therapy. A major clinical concern of ABD is diminished bone quality and an increased fracture risk. To our knowledge, experimental animal models for ABD other than ROD-ABD have not been developed or studied. The objectives of this study were to develop a mouse model of ABD without the complications of renal ablation, and to characterize changes in bone quality in ABD relative to controls. To re-create the adynamic bone condition, 4-month old female Col2.3Δtk mice were treated with ganciclovir to specifically ablate osteoblasts, and pamidronate was used to inhibit osteoclastic resorption. Four groups of animals were used to characterize bone quality in ABD: Normal bone controls, No Formation controls, No Resorption controls, and an Adynamic group. After a 6-week treatment period, the animals were sacrificed and the bones were harvested for analyses. Bone quality assessments were conducted using established techniques including bone histology, quantitative backscattered electron imaging (qBEI), dual energy X-ray absorptiometry (DXA), microcomputed tomography (microCT), and biomechanical testing. Histomorphometry confirmed osteoblast-related hallmarks of ABD in our mouse model. Bone formation was near complete suppression in the No Formation and Adynamic specimens. Inhibition of bone resorption in the Adynamic group was confirmed by tartrate-resistant acid phosphatase (TRAP) stain. Normal bone mineral density and architecture were maintained in the Adynamic group, whereas the No Formation group showed a reduction in bone mineral content and trabecular thickness relative to the Adynamic group. As expected, the No Formation group had a more hypomineralized profile and the Adynamic group had a higher mean mineralization profile that is similar to suppressed bone turnover in human. This data confirms successful replication of the adynamic bone condition in a mouse without the complication of renal ablation. Our approach is the first model of ABD that uses pharmacological manipulation in a transgenic mouse to mimic the bone cellular dynamics observed in the human ABD condition. We plan to use our mouse model to investigate the adynamic bone condition in aging and to study changes to bone quality and fracture risk as a consequence of over-suppressed bone turnover. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle

    PubMed Central

    Brittain, Evan L.; Fessel, Joshua P.; Penner, Niki; Atkinson, James; Funke, Mitch; Grueter, Carrie; Jerome, W. Gray; Freeman, Michael; Newman, John H.; West, James; Hemnes, Anna R.

    2016-01-01

    Rationale: In heritable pulmonary arterial hypertension with germline mutation in the bone morphogenetic protein receptor type 2 (BMPR2) gene, right ventricle (RV) dysfunction is associated with RV lipotoxicity; however, the underlying mechanism for lipid accumulation is not known. Objectives: We hypothesized that lipid accumulation in cardiomyocytes with BMPR2 mutation occurs owing to alterations in lipid transport and impaired fatty acid oxidation (FAO), which is exacerbated by a high-lipid (Western) diet (WD). Methods: We used a transgenic mouse model of pulmonary arterial hypertension with mutant BMPR2 and generated a cardiomyocyte cell line with BMPR2 mutation. Electron microscopy and metabolomic analysis were performed on mouse RVs. Measurements and Main Results: By metabolomics analysis, we found an increase in long-chain fatty acids in BMPR2 mutant mouse RVs compared with controls, which correlated with cardiac index. BMPR2-mutant cardiomyocytes had increased lipid compared with controls. Direct measurement of FAO in the WD-fed BMPR2-mutant RV showed impaired palmitate-linked oxygen consumption, and metabolomics analysis showed reduced indices of FAO. Using both mutant BMPR2 mouse RVs and cardiomyocytes, we found an increase in the uptake of 14C-palmitate and fatty acid transporter CD36 that was further exacerbated by WD. Conclusions: Taken together, our data suggest that impaired FAO and increased expression of the lipid transporter CD36 are key mechanisms underlying lipid deposition in the BMPR2-mutant RV, which are exacerbated in the presence of dietary lipids. These findings suggest important features leading to RV lipotoxicity in pulmonary arterial hypertension and may point to novel areas of therapeutic intervention. PMID:27077479

  10. Sequencing analysis of mutations induced by N-ethyl-N-nitrosourea at different sampling times in mouse bone marrow.

    PubMed

    Wang, Jianyong; Chen, Tao

    2010-03-01

    In our previous study (Wang et al., 2004, Toxicol. Sci. 82: 124-128), we observed that the cII gene mutant frequency (MF) in the bone marrow of Big Blue mice showed significant increase as early as day 1, reached the maximum at day 3 and then decreased to a plateau by day 15 after a single dose of carcinogen N-ethyl-N-nitrosourea (ENU) treatment, which is different from the longer mutation manifestation time and the constancy of MFs after reaching their maximum in some other tissues. To determine the mechanism underlying the quick increase in MF and the peak formation in the mutant manifestation, we examined the mutation frequencies and spectra of the ENU-induced mutants collected from different sampling times in this study. The cII mutants from days 1, 3 and 120 after ENU treatment were randomly selected from different animals. The mutation frequencies were 33, 217, 305 and 144 x 10(-6) for control, days 1, 3, and 120, respectively. The mutation spectra at days 1 and 3 were significantly different from that at day 120. Considering that stem cells are responsible for the ultimate MF plateau (day 120) and transit cells are accountable for the earlier MF induction (days 1 or 3) in mouse bone marrow, we conclude that transit cells are much more sensitive to mutation induction than stem cells in mouse bone marrow, which resulted in the specific mutation manifestation induced by ENU.

  11. Mechanical force-induced midpalatal suture remodeling in mice

    PubMed Central

    Hou, Bo; Fukai, Naomi; Olsen, Bjorn R.

    2007-01-01

    Mechanical stress is an important epigenetic factor for regulating skeletal remodeling, and application of force can lead to remodeling of both bone and cartilage. Chondrocytes, osteoblasts and osteoclasts all participate and interact with each other in this remodeling process. To study cellular responses to mechanical stimuli in a system that can be genetically manipulated, we used mouse midpalatal suture expansion in vivo. 6-weeks-old male C57BL/6 mice were subjected to palatal suture expansion by opening loops with an initial force of 0.56N for periods of 1, 3, 7, 14 or 28 days. Periosteal cells in expanding sutures showed increased proliferation, with Ki67 positive cells representing 1.8±0.1% to 4.5±0.4% of total suture cells in control groups and 12.0±2.6% to 19.9±1.2% in experimental/expansion groups (p<0.05). Starting at day 1, cells expressing alkaline phosphatase and type I collagen were seen. New cartilage and bone formation was observed at the oral edges of the palatal bones at day 7; at the nasal edges only bone formation without cartilage appeared to occur. An increase in osteoclast numbers suggested increased bone remodeling, ranging from 60 to 160% throughout the experimental period. Decreased Saffranin O staining after day 3 suggested decreased proteoglycan content in the secondary cartilage. MicroCT showed a significant increase in maxillary width at days 14 and 28 (from 2334±4μm to 2485±3μm at day 14 and from 2383±5μm to 2574±7μm at day 28, p<0.001). The suture width was increased at days 14 and 28, except in the oral third region at day 28 (from 48±5μm to 36±4μm, p<0.05). Bone volume/total volume was significantly reduced at days 14 and 28 (50.2±0.7% vs. 68.0±3.7% and 56.5±1.0%vs. 60.9±1.3%, respectively, p<0.05), indicative of increased bone marrow space. These findings demonstrate that expansion forces across the midpalatal suture promote bone resorption through activation of osteoclasts and bone and cartilage formation via increased proliferation and differentiation of periosteal cells. Mouse midpalatal suture expansion would be useful in further studies of the ability of mineralized tissues to respond to mechanical stimulation. PMID:17398175

  12. Tumor Necrosis Factor α Stimulates Osteoclast Differentiation by a Mechanism Independent of the Odf/Rankl–Rank Interaction

    PubMed Central

    Kobayashi, Kanichiro; Takahashi, Naoyuki; Jimi, Eijiro; Udagawa, Nobuyuki; Takami, Masamichi; Kotake, Shigeru; Nakagawa, Nobuaki; Kinosaki, Masahiko; Yamaguchi, Kyoji; Shima, Nobuyuki; Yasuda, Hisataka; Morinaga, Tomonori; Higashio, Kanji; Martin, T. John; Suda, Tatsuo

    2000-01-01

    Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF–dependent bone marrow macrophages (M-BMMφ) appeared within 3 d. Tartrate-resistant acid phosphatase–positive osteoclasts were also formed when M-BMMφ were further cultured for 3 d with mouse tumor necrosis factor α (TNF-α) in the presence of M-CSF. Osteoclast formation induced by TNF-α was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti–RANK (ODF/RANKL receptor) antibody. Experiments using M-BMMφ prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-α. Osteoclasts induced by TNF-α formed resorption pits on dentine slices only in the presence of IL-1α. These results demonstrate that TNF-α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL–RANK system. TNF-α together with IL-1α may play an important role in bone resorption of inflammatory bone diseases. PMID:10637272

  13. The Rachitic Tooth

    PubMed Central

    Nociti, Francisco H.; Somerman, Martha J.

    2014-01-01

    Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed. PMID:23939820

  14. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.

    PubMed

    Rodriguez, Rudy U; Kemper, Nathan; Breathwaite, Erick; Dutta, Sucharita M; Hsu, Erin L; Hsu, Wellington K; Francis, Michael P

    2016-07-26

    Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.

  15. Polycythemia is associated with bone loss and reduced osteoblast activity in mice.

    PubMed

    Oikonomidou, P R; Casu, C; Yang, Z; Crielaard, B; Shim, J H; Rivella, S; Vogiatzi, M G

    2016-04-01

    Increased fragility has been described in humans with polycythemia vera (PV). Herein, we describe an osteoporotic phenotype associated with decreased osteoblast activity in a mouse model of PV and another mouse of polycythemia and elevated circulating erythropoietin (EPO). Our results are important for patients with PV or those treated with recombinant EPO (rEPO). PV and other myeloproliferative syndromes have been recently associated with an increased risk for fractures. However, the presence of osteoporosis in these patients has not been well documented. EPO, a hormone primarily known to stimulate erythropoiesis, has been shown recently to regulate bone homeostasis in mice. The aim of this study was to examine the bone phenotype of a mouse model of PV and compare it to that of animals with polycythemia caused by elevated circulating EPO. Bone mass and remodeling were evaluated by micro-computed tomography and histomorphometry. The JAK2(V617F) knock-in mouse, a model of human PV, manifests polycythemia and low circulating EPO levels. Results from this mouse were compared to wild type (wt) controls and the tg6 transgenic mouse that shows polycythemia caused by increased constitutive expression of EPO. Compared to wt, both JAK2(V617F) and tg6 mice had a decrease in trabecular bone mass. Tg6 mice showed an additional modest decrease in cortical thickness and cortical bone volume per tissue volume (P < 0.01) suggesting a more severe bone phenotype than JAK2(V617F). Decreased osteoblast numbers and bone formation along with normal osteoclast numbers and activity were found in both mice. This study indicates that PV is associated with low bone mass and decreased osteoblast activity in mice. Our results support future studies of osteoporosis in affected humans. Polycythemia caused by chronically elevated circulating EPO also results in bone loss, and implications on patients treated with rEPO should be evaluated.

  16. The Relevance of Mouse Models for Investigating Age-Related Bone Loss in Humans

    PubMed Central

    2013-01-01

    Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized. PMID:23689830

  17. The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments.

    PubMed

    Aghajanian, Patrick; Hall, Susan; Wongworawat, Montri D; Mohan, Subburaman

    2015-11-01

    Vitamin C is an important antioxidant and cofactor that is involved in the regulation of development, function, and maintenance of several cell types in the body. Deficiencies in vitamin C can lead to conditions such as scurvy, which, among other ailments, causes gingivia, bone pain, and impaired wound healing. This review examines the functional importance of vitamin C as it relates to the development and maintenance of bone tissues. Analysis of several epidemiological studies and genetic mouse models regarding the effect of vitamin C shows a positive effect on bone health. Overall, vitamin C exerts a positive effect on trabecular bone formation by influencing expression of bone matrix genes in osteoblasts. Recent studies on the molecular pathway for vitamin C actions that include direct effects of vitamin C on transcriptional regulation of target genes by influencing the activity of transcription factors and by epigenetic modification of key genes involved in skeletal development and maintenance are discussed. With an understanding of mechanisms involved in the uptake and metabolism of vitamin C and knowledge of precise molecular pathways for vitamin C actions in bone cells, it is possible that novel therapeutic strategies can be developed or existing therapies can be modified for the treatment of osteoporotic fractures. © 2015 American Society for Bone and Mineral Research.

  18. Chronic High Dose Alcohol Induces Osteopenia via Activation of mTOR Signaling in Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Liu, Yao; Kou, Xiaoxing; Chen, Chider; Yu, Wenjing; Su, Yingying; Kim, Yong; Shi, Songtao; Liu, Yi

    2016-08-01

    Chronic consumption of excessive alcohol results in reduced bone mass, impaired bone structure, and increased risk of bone fracture. However, the mechanisms underlying alcohol-induced osteoporosis are not fully understood. Here, we show that high dose chronic alcohol consumption reduces osteogenic differentiation and enhances adipogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), leading to osteopenia in a mouse model. Mechanistically, impaired osteo/adipogenic lineage differentiation of BMMSCs is due to activation of a phosphatidylinositide 3-kinase/AKT/mammalian target of rapamycin (mTOR) signaling cascade, resulting in downregulation of runt-related transcription factor 2 and upregulation of peroxisome proliferator-activated receptor gamma via activation of p70 ribosomal protein S6 kinase. Blockage of the mTOR pathway by rapamycin treatment ameliorates alcohol-induced osteopenia by rescuing impaired osteo/adipogenic lineage differentiation of BMMSCs. In this study, we identify a previously unknown mechanism by which alcohol impairs BMMSC lineage differentiation and reveal a potential rapamycin-based drug therapy for alcohol-induced osteoporosis. Stem Cells 2016;34:2157-2168. © 2016 AlphaMed Press.

  19. Multimethod Approach to the Early Postnatal Growth of the Mandible in Mice from a Zone of Robertsonian Polymorphism.

    PubMed

    Martínez-Vargas, Jessica; Muñoz-Muñoz, Francesc; López-Fuster, María José; Cubo, Jorge; Ventura, Jacint

    2018-04-18

    The western European house mouse (Mus musculus domesticus) shows high karyotypic diversity owing to Robertsonian translocations. Morphometric studies conducted with adult mice suggest that karyotype evolution due to these chromosomal reorganizations entails variation in the form and the patterns of morphological covariation of the mandible. However, information is much scarcer regarding the effect of these rearrangements on the growth pattern of the mouse mandible over early postnatal ontogeny. Here we compare mandible growth from the second to the eighth week of postnatal life between two ontogenetic series of mice from wild populations, with the standard karyotype and with Robertsonian translocations respectively, reared under the same conditions. A multi-method approach is used, including bone histology analyses of mandible surfaces and cross-sections, as well as geometric morphometric analyses of mandible form. The mandibles of both standard and Robertsonian mice display growth acceleration around weaning, anteroposterior direction of bone maturation, a predominance of bone deposition fields over ontogeny, and relatively greater expansion of the posterior mandible region correlated with the ontogenetic increase in mandible size. Nevertheless, differences exist between the two mouse groups regarding the timing of histological maturation of the mandible, the localization of certain bone remodeling fields, the temporospatial patterns of morphological variation, and the organization into two main modules. The dissimilarities in the process of mandible growth between the two groups of mice become more evident around sexual maturity, and could arise from alterations that Robertsonian translocations may exert on genes involved in the bone remodeling mechanism. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis.

    PubMed

    Nussler, Andreas K; Wildemann, Britt; Freude, Thomas; Litzka, Christian; Soldo, Petra; Friess, Helmut; Hammad, Seddik; Hengstler, Jan G; Braun, Karl F; Trak-Smayra, Viviane; Godoy, Patricio; Ehnert, Sabrina

    2014-04-01

    Patients with chronic liver diseases frequently exhibit decreased bone mineral densities (BMD), which is defined as hepatic osteodystrophy (HOD). HOD is a multifactorial disease whose regulatory mechanisms are barely understood. Thus, an early diagnosis and therapy is hardly possible. Therefore, the aim of our study consisted in characterizing a mouse model reflecting the human pathomechanism. Serum samples were collected from patients with chronic liver diseases and 12-week old C57Bl6/N mice after 6-week treatment with carbon tetrachloride (CCl4). Repetitive injections of CCl4 induced liver damage in mice, resembling liver fibrosis in patients, as assessed by serum analysis and histological staining. Although CCl4 did not affect primary osteoblast cultures, μCT analysis revealed significantly decreased BMD, bone volume, trabecular number and thickness in CCl4-treated mice. In both HOD patients and CCl4-treated mice, an altered vitamin D metabolism with decreased CYP27A1, CYP2R1, vitamin D-binding protein GC and increased 7-dehydrocholesterol reductase hepatic gene expression, results in decreased 25-OH vitamin D serum levels. Moreover, both groups exhibit excessively high active transforming growth factor-beta (TGF-β) serum levels, inhibiting osteoblast function in vitro. Summarizing, our mouse model presents possible mediators of HOD, e.g. altered vitamin D metabolism and increased active TGF-β. Liver damage and significant changes in bone structure and mineralization are already visible by μCT analysis after 6 weeks of CCl4 treatment. This fast response and easy transferability makes it an ideal model to investigate specific gene functions in HOD.

  1. [Local injection of exogenous nerve growth factor improves early bone maturation of implants].

    PubMed

    Yao, Yang; Du, Yu; Gu, Xia; Guang, Meng-Kai; Huang, Bo; Gong, Ping

    2018-04-01

    To investigate the effects of nerve growth factor (NGF) in the osteogenic action of implants and the maturation and reconstruction changes in bone tissues in the early stage of osseointegration. The mouse implant model was established by placing titanium in the femoral head of the mouse and locally injecting NGF in the implant zone. On 1, 2 and 4 weeks after operation, stain samples were collected from animals using hematoxylin-eosin (HE) staining and Masson staining. The effect of NGF on the bone maturation was compared at different time points of early stage osseointegration. The results of HE and Masson staining indicated that the local injection of external NGF can up-regulate bone mass, amount of bone trabecula, and bone maturity in the mouse model. The mature bone rate in treatment group of 1 week and 4 weeks after operation were significantly higher than those in the control group (P<0.05). NGF can shorten the period of bone maturation.

  2. Altered ovarian function affects skeletal homeostasis independent of the action of follicle-stimulating hormone.

    PubMed

    Gao, Jianjun; Tiwari-Pandey, Rashmi; Samadfam, Rana; Yang, Yinzhi; Miao, Dengshun; Karaplis, Andrew C; Sairam, M Ram; Goltzman, David

    2007-06-01

    Osteoporosis is a leading public health problem. Although a major cause in women is thought to be a decline in estrogen, it has recently been proposed that FSH or follitropin is required for osteoporotic bone loss. We examined the FSH receptor null mouse (FORKO mouse) to determine whether altered ovarian function could induce bone loss independent of FSH action. By 3 months of age, FORKO mice developed age-dependent declines in bone mineral density and trabecular bone volume of the lumbar spine and femur, which could be partly reversed by ovarian transplantation. Bilateral ovariectomy reduced elevated circulating testosterone levels in FORKO mice and decreased bone mass to levels indistinguishable from those in ovariectomized wild-type controls. Androgen receptor blockade and especially aromatase inhibition each produced bone volume reductions in the FORKO mouse. The results indicate that ovarian secretory products, notably estrogen, and peripheral conversion of ovarian androgen to estrogen can alter bone homeostasis independent of any bone resorptive action of FSH.

  3. The role of bone sialoprotein in the tendon-bone insertion.

    PubMed

    Marinovich, Ryan; Soenjaya, Yohannes; Wallace, Gregory Q; Zuskov, Andre; Dunkman, Andrew; Foster, Brian L; Ao, Min; Bartman, Kevin; Lam, Vida; Rizkalla, Amin; Beier, Frank; Somerman, Martha J; Holdsworth, David W; Soslowsky, Louis J; Lagugné-Labarthet, François; Goldberg, Harvey A

    2016-01-01

    Tendons/ligaments insert into bone via a transitional structure, the enthesis, which is susceptible to injury and difficult to repair. Fibrocartilaginous entheses contain fibrocartilage in their transitional zone, part of which is mineralized. Mineral-associated proteins within this zone have not been adequately characterized. Members of the Small Integrin Binding Ligand N-linked Glycoprotein (SIBLING) family are acidic phosphoproteins expressed in mineralized tissues. Here we show that two SIBLING proteins, bone sialoprotein (BSP) and osteopontin (OPN), are present in the mouse enthesis. Histological analyses indicate that the calcified zone of the quadriceps tendon enthesis is longer in Bsp(-/-) mice, however no difference is apparent in the supraspinatus tendon enthesis. In an analysis of mineral content within the calcified zone, micro-CT and Raman spectroscopy reveal that the mineral content in the calcified fibrocartilage of the quadriceps tendon enthesis are similar between wild type and Bsp(-/-) mice. Mechanical testing of the patellar tendon shows that while the tendons fail under similar loads, the Bsp(-/-) patellar tendon is 7.5% larger in cross sectional area than wild type tendons, resulting in a 16.5% reduction in failure stress. However, Picrosirius Red staining shows no difference in collagen organization. Data collected here indicate that BSP is present in the calcified fibrocartilage of murine entheses and suggest that BSP plays a regulatory role in this structure, influencing the growth of the calcified fibrocartilage in addition to the weakening of the tendon mechanical properties. Based on the phenotype of the Bsp(-/-) mouse enthesis, and the known in vitro functional properties of the protein, BSP may be a useful therapeutic molecule in the reattachment of tendons and ligaments to bone. Copyright © 2016 International Society of Matrix Biology. All rights reserved.

  4. The Role of Bone Sialoprotein in the Tendon-Bone Insertion

    PubMed Central

    Marinovich, Ryan; Soenjaya, Yohannes; Wallace, Gregory Q.; Zuskov, Andre; Dunkman, Andrew; Foster, Brian L.; Ao, Min; Bartman, Kevin; Lam, Vida; Rizkalla, Amin; Beier, Frank; Somerman, Martha J.; Holdsworth, David W.; Soslowsky, Louis J.; Lagugné-Labarthet, François; Goldberg, Harvey A.

    2016-01-01

    Tendons/ligaments insert into bone via a transitional structure, the enthesis, which is susceptible to injury and difficult to repair. Fibrocartilaginous entheses contain fibrocartilage in their transitional zone, part of which is mineralized. Mineral-associated proteins within this zone have not been adequately characterized. Members of the Small Integrin Binding Ligand N-Linked Glycoprotein (SIBLING) family are acidic phosphoproteins expressed in mineralized tissues. Here we show that two SIBLING proteins, bone sialoprotein (BSP) and osteopontin (OPN), are present in the mouse enthesis. Histological analyses indicate that the calcified zone of the quadriceps tendon enthesis is longer in Bsp−/− mice, however no difference is apparent in the supraspinatus tendon enthesis. In an analysis of mineral content within the calcified zone, micro-CT and Raman spectroscopy reveal that the mineral content in the calcified fibrocartilage of the quadriceps tendon enthesis are similar between wild type and Bsp−/− mice. Mechanical testing of the patellar tendon shows that while the tendons fail under similar loads, the Bsp−/− patellar tendon is 7.5% larger in cross sectional area than wild type tendons, resulting in a 16.5% reduction in failure stress. However, picrosirius red staining shows no difference in collagen organization. Data collected here indicate that BSP is present in the calcified fibrocartilage of murine entheses and suggest that BSP plays a regulatory role in this structure, influencing the growth of the calcified fibrocartilage in addition to the weakening of the tendon mechanical properties. Based on the phenotype of the Bsp−/− mouse enthesis, and the known in vitro functional properties of the protein, BSP may be a useful therapeutic molecule in the reattachment of tendons and ligaments to bone. PMID:26826499

  5. Defective Bone Repair in C57Bl6 Mice With Acute Systemic Inflammation.

    PubMed

    Behrends, D A; Hui, D; Gao, C; Awlia, A; Al-Saran, Y; Li, A; Henderson, J E; Martineau, P A

    2017-03-01

    Bone repair is initiated with a local inflammatory response to injury. The presence of systemic inflammation impairs bone healing and often leads to malunion, although the underlying mechanisms remain poorly defined. Our research objective was to use a mouse model of cortical bone repair to determine the effect of systemic inflammation on cells in the bone healing microenvironment. QUESTION/PURPOSES: (1) Does systemic inflammation, induced by lipopolysaccharide (LPS) administration affect the quantity and quality of regenerating bone in primary bone healing? (2) Does systemic inflammation alter vascularization and the number or activity of inflammatory cells, osteoblasts, and osteoclasts in the bone healing microenvironment? Cortical defects were drilled in the femoral diaphysis of female and male C57BL/6 mice aged 5 to 9 months that were treated with daily systemic injections of LPS or physiologic saline as control for 7 days. Mice were euthanized at 1 week (Control, n = 7; LPS, n = 8), 2 weeks (Control, n = 7; LPS, n = 8), and 6 weeks (Control, n = 9; LPS, n = 8) after surgery. The quantity (bone volume per tissue volume [BV/TV]) and microarchitecture (trabecular separation and thickness, porosity) of bone in the defect were quantified with time using microCT. The presence or activity of vascular endothelial cells (CD34), macrophages (F4/80), osteoblasts (alkaline phosphatase [ALP]), and osteoclasts (tartrate-resistant acid phosphatase [TRAP]) were evaluated using histochemical analyses. Only one of eight defects was bridged completely 6 weeks after surgery in LPS-injected mouse bones compared with seven of nine defects in the control mouse bones (odds ratio [OR], 0.04; 95% CI, 0.003-0.560; p = 0.007). The decrease in cortical bone in LPS-treated mice was reflected in reduced BV/TV (21% ± 4% vs 39% ± 10%; p < 0.01), increased trabecular separation (240 ± 36 μm vs 171 ± 29 μm; p < 0.01), decreased trabecular thickness (81 ± 18 μm vs 110 ± 22 μm; p = 0.02), and porosity (79% ± 4% vs 60% ± 10%; p < 0.01) at 6 weeks postoperative. Defective healing was accompanied by decreased CD34 (1.1 ± 0.6 vs 3.4 ± 0.9; p < 0.01), ALP (1.9 ± 0.9 vs 6.1 ± 3.2; p = 0.03), and TRAP (3.3 ± 4.7 vs 7.2 ± 4.0; p = 0.01) activity, and increased F4/80 (13 ± 2.6 vs 6.8 ± 1.7; p < 0.01) activity at 2 weeks postoperative. The results indicate that LPS-induced systemic inflammation reduced the amount and impaired the quality of bone regenerated in mouse femurs. The effects were associated with impaired revascularization, decreased bone turnover by osteoblasts and osteoclasts, and by increased catabolic activity by macrophages. Results from this preclinical study support clinical observations of impaired primary bone healing in patients with systemic inflammation. Based on our data, local administration of VEGF in the callus to stimulate revascularization, or transplantation of stem cells to enhance bone turnover represent potentially feasible approaches to improve outcomes in clinical practice.

  6. Age dependent regulation of bone-mass and renal function by the MEPE ASARM-motif

    PubMed Central

    Zelenchuk, Lesya V; Hedge, Anne-Marie; Rowe, Peter S N

    2015-01-01

    Context Mice with null mutations in Matrix Extracellular Phosphoglycoprotein (MEPE) have increased bone mass, increased trabecular density and abnormal cancellous bone (MN-mice). These defects worsen with age and MEPE over expression induces opposite effects. Also, Genome Wide Association studies show MEPE plays a major role in bone mass. We hypothesized the conserved C-terminal MEPE ASARM-motif is chiefly responsible for regulating bone mass and trabecular structure. Design To test our theory we over expressed C-terminal ASARM-peptide in MN-mice using the Col1α1 promoter (MNAt-mice). We then compared the bone and renal phenotypes of the MNAt-mouse with the MN-mouse and the X-linked hypophosphatemic rickets mouse (HYP). The HYP mouse over expresses ASARM-peptides and is defective for the PHEX gene. Results The MN-mouse developed increased bone mass, bone strength and trabecular abnormalities that worsened markedly with age. Defects in bone formation were chiefly responsible with suppressed sclerostin and increased active β-catenin. Increased uric acid levels also suggested abnormalities in purine-metabolism and a reduced fractional excretion of uric acid signaled additional renal transport changes. The MN mouse developed a worsening hyperphosphatemia and reduced FGF23 with age. An increase in the fractional excretion of phosphate (FEP) despite the hyperphosphatemia confirms an imbalance in kidney-intestinal phosphate regulation. Also, the MN mice showed an increased creatinine clearance suggesting hyperfiltration. A reversal of the MN bone-renal phenotype changes occurred with the MNAt mice including the apparent hyperfiltration. The MNAt mice also developed localized hypomineralization, hypophosphatemia and increased FGF23. Conclusions The C-terminal ASARM-motif plays a major role in regulating bone–mass and cancellous structure as mice age. In healthy mice, the processing and release of free ASARM-peptide is chiefly responsible for preserving normal bone and renal function. Free ASARM-peptide also effects renal mineral phosphate handling by influencing FGF23 expression. These findings have implications for understanding age-dependent osteoporosis, unraveling drug-targets and developing treatments. PMID:26051469

  7. Optimisation of the differing conditions required for bone formation in vitro by primary osteoblasts from mice and rats

    PubMed Central

    ORRISS, ISABEL R.; HAJJAWI, MARK O.R.; HUESA, CARMEN; MACRAE, VICKY E.; ARNETT, TIMOTHY R.

    2014-01-01

    The in vitro culture of calvarial osteoblasts from neonatal rodents remains an important method for studying the regulation of bone formation. The widespread use of transgenic mice has created a particular need for a reliable, simple method that allows the differentiation and bone-forming activity of murine osteoblasts to be studied. In the present study, we established such a method and identified key differences in optimal culture conditions between mouse and rat osteoblasts. Cells isolated from neonatal rodent calvariae by collagenase digestion were cultured for 14–28 days before staining for tissue non-specific alkaline phosphatase (TNAP) and bone mineralisation (alizarin red). The reliable differentiation of mouse osteoblasts, resulting in abundant TNAP expression and the formation of mineralised ‘trabecular-shaped’ bone nodules, occurred only following culture in α minimum essential medium (αMEM) and took 21–28 days. Dexamethasone (10 nM) inhibited bone mineralisation in the mouse osteoblasts. By contrast, TNAP expression and bone formation by rat osteoblasts were observed following culture in both αMEM and Dulbecco’s modified Eagle’s medium (DMEM) after approximately 14 days (although ~3-fold more effectively in αMEM) and was strongly dependent on dexamethasone. Both the mouse and rat osteoblasts required ascorbate (50 μg/ml) for osteogenic differentiation and β-glycerophosphate (2 mM) for mineralisation. The rat and mouse osteoblasts showed similar sensitivity to the well-established inhibitors of mineralisation, inorganic pyrophosphate (PPi) and adenosine triphosphate (ATP; 1–100 μM). The high efficiency of osteogenic differentiation observed following culture in αMEM, compared with culture in DMEM possibly reflects the richer formulation of the former. These findings offer a reliable technique for inducing mouse osteoblasts to form bone in vitro and a more effective method for culturing bone-forming rat osteoblasts. PMID:25200658

  8. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  9. Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells

    PubMed Central

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy

    2010-01-01

    The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30–35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect. PMID:23961094

  10. Exposure-dependent incorporation of trifluridine into DNA of tumors and white blood cells in tumor-bearing mouse.

    PubMed

    Yamashita, Fumiaki; Komoto, Ikumi; Oka, Hiroaki; Kuwata, Keizo; Takeuchi, Mayuko; Nakagawa, Fumio; Yoshisue, Kunihiro; Chiba, Masato

    2015-08-01

    Trifluridine (TFT) is an antitumor component of a novel nucleoside antitumor agent, TAS-102, which consists of TFT and tipiracil hydrochloride (thymidine phosphorylase inhibitor). Incorporation of TFT into DNA is a probable mechanism of antitumor activity and hematological toxicity. The objective of this study was to examine the TFT incorporation into tumor- and white blood cell-DNA, and to elucidate the mechanism of TFT-related effect and toxicity. TFT effect on the colony formation of mouse bone marrow cells was also investigated. Pharmacokinetics of TFT was determined in nude mice after single oral administration of TAS-102, while the antitumor activity and body weight change were evaluated in the tumor-bearing nude mice after multiple oral administrations for 2 weeks. TFT concentrations in the blood- and tumor-DNA were determined by LC/MS/MS. The colony formation was evaluated by CFU-GM assay. TFT systemic exposure in plasma increased dose-dependently. The tumor growth rate and body weight gain decreased dose-dependently, but TFT concentrations in the DNA of tumor tissues and white blood cells increased dose-dependently. TFT inhibited colony formation of bone marrow cells in a concentration-dependent manner. A significant relationship between systemic exposure of TFT and pharmacological effects including the antitumor activity and body weight change was well explained by the TFT incorporation into DNA. TFT inhibited proliferations of mouse bone marrow cells and human colorectal carcinoma cells implanted to nude mice dose-dependently. The highest tolerable TFT exposure provides the highest antitumor activity, and the hematological toxicity may serve as a potential surrogate indicator of TAS-102 efficacy.

  11. Advances in cancer pain from bone metastasis.

    PubMed

    Zhu, Xiao-Cui; Zhang, Jia-Li; Ge, Chen-Tao; Yu, Yuan-Yang; Wang, Pan; Yuan, Ti-Fei; Fu, Cai-Yun

    2015-01-01

    With the technological advances in cancer diagnosis and treatment, the survival rates for patients with cancer are prolonged. The issue of figuring out how to improve the life quality of patients with cancer has become increasingly prominent. Pain, especially bone pain, is the most common symptom in malignancy patients, which seriously affects the life quality of patients with cancer. The research of cancer pain has a breakthrough due to the development of the animal models of cancer pain in recent years, such as the animal models of mouse femur, humerus, calcaneus, and rat tibia. The establishment of several kinds of animal models related to cancer pain provides a new platform in vivo to investigate the molecular mechanisms of cancer pain. In this review, we focus on the advances of cancer pain from bone metastasis, the mechanisms involved in cancer pain, and the drug treatment of cancer pain in the animal models.

  12. New mechanisms and targets in the treatment of bone fragility.

    PubMed

    Martin, T John; Seeman, Ego

    2007-01-01

    Bone modelling and remodelling are cell-mediated processes responsible for the construction and reconstruction of the skeleton throughout life. These processes are chiefly mediated by locally generated cytokines and growth factors that regulate the differentiation, activation, work and life span of osteoblasts and osteoclasts, the cells that co-ordinate the volumes of bone resorbed and formed. In this way, the material composition and structural design of bone is regulated in accordance with its loading requirements. Abnormalities in this regulatory system compromise the material and structural determinants of bone strength producing bone fragility. Understanding the intercellular control processes that regulate bone modelling and remodelling is essential in planning therapeutic approaches to prevention and treatment of bone fragility. A great deal has been learnt in the last decade. Clinical trials carried out exclusively with drugs that inhibit bone resorption have identified the importance of reducing the rate of bone remodelling and so the progression of bone fragility to achieved fracture reductions of approx. 50%. These trials have also identified limitations that should be placed upon interpretation of bone mineral density changes in relation to treatment. New resorption inhibitors are being developed, based on mechanisms of action that are different from existing drugs. Some of these might offer resorption inhibition without reducing bone formation. More recent research has provided the first effective anabolic therapy for bone reconstruction. Daily injections of PTH (parathyroid hormone)-(1-34) have been shown in preclinical studies and in a large clinical trial to increase bone tissue mass and reduce the risk of fractures. The action of PTH differs from that of the resorption inhibitors, but whether it is more effective in fracture reduction is not known. Understanding the cellular and molecular mechanisms of PTH action, particularly its interactions with other pathways in determining bone formation, is likely to lead to new therapeutic developments. The recent discovery through mouse genetics that PTHrP (PTH-related protein) is a crucial bone-derived paracrine regulator of remodelling offers new and interesting therapeutic targets.

  13. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma.

    PubMed

    Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo

    2016-01-01

    The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. NF-κB RelB Negatively Regulates Osteoblast Differentiation and Bone Formation

    PubMed Central

    Yao, Zhenqiang; Li, Yanyun; Yin, Xiaoxiang; Dong, Yufeng; Xing, Lianping; Boyce, Brendan F.

    2013-01-01

    RelA-mediated NF-κB canonical signaling promotes mesenchymal progenitor cell (MPC) proliferation, but inhibits differentiation of mature osteoblasts (OBs) and thus negatively regulates bone formation. Previous studies suggest that NF-κB RelB may also negatively regulate bone formation through non-canonical signaling, but they involved a complex knockout mouse model and the molecular mechanisms involved were not investigated. Here, we report that RelB−/− mice develop age-related increased trabecular bone mass associated with increased bone formation. RelB−/− bone marrow stromal cells expanded faster in vitro and have enhanced OB differentiation associated with increased expression of the osteoblastogenic transcription factor, Runx2. In addition, RelB directly targeted the Runx2 promoter to inhibit its activation. Importantly, RelB−/− bone-derived MPCs formed bone more rapidly than wild-type cells after they were injected into a murine tibial bone defect model. Our findings indicate that RelB negatively regulates bone mass as mice age and limits bone formation in healing bone defects, suggesting that inhibition of RelB could reduce age-related bone loss and enhance bone repair. PMID:24115294

  15. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    PubMed Central

    Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I

    2005-01-01

    As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069

  16. Anatomical Variation of the Tarsus in Common Inbred Mouse Strains.

    PubMed

    Richbourg, Heather A; Martin, Matthew J; Schachner, Emma R; McNulty, Margaret A

    2017-03-01

    Rodent models are used for a variety of orthopedic research applications; however, anatomy references include mostly artistic representations. Advanced imaging techniques, including micro-computed tomography (microCT), can provide more accurate representations of subtle anatomical characteristics. A recent microCT atlas of laboratory mouse (Mus musculus) anatomy depicts the central and tarsal bone III (T3) as a single bone, differing from previous references. Fusion of tarsal bones is generally characterized as pathological secondary to mutations associated with growth factors, and normal variation has not been documented in the mouse tarsus. Therefore, it is unclear if this fusion is a normal or a pathological characteristic. The aim of this study is to characterize the tarsus of the laboratory mouse and compare it to the rat and selected outgroup species (i.e., white-footed mouse) via microCT and histology to determine if the central and T3 are separate or fused into a single bone. Laboratory mice (C57/Bl6 [n = 17] and BalbC [n = 2]) and rats (n = 5) were scanned with microCT. A representative laboratory mouse from each strain was evaluated histologically via serial sagittal sections through the mid-tarsus. General pedal anatomy was similar between all species; however, the central and T3 bones were fused in all laboratory mice but not the rat or white-footed mouse. A band of hyaline cartilage was identified within the fused bone of the laboratory mice. We conclude that the fusion found is a normal characteristic in laboratory mice, but timing of the fusion remains ambiguous. Anat Rec, 300:450-459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments

    PubMed Central

    Aghajanian, Patrick; Hall, Susan; Wongworawat, Montri D.; Mohan, Subburaman

    2016-01-01

    Vitamin C is an important antioxidant and cofactor which is involved in the regulation of development, function and maintenance of several cell types in the body. Deficiencies in vitamin C can lead to conditions such as scurvy, which, among other ailments, causes gingivia, bone pain and impaired wound healing. This review examines the functional importance of vitamin C as it relates to the development and maintenance of bone tissues. Analysis of several epidemiological studies and genetic mouse models regarding the effect of vitamin C shows a positive effect on bone health. Overall, vitamin C exerts a positive effect on trabecular bone formation by influencing expression of bone matrix genes in osteoblasts. Recent studies on the molecular pathway for vitamin C actions that include direct effects of vitamin C on transcriptional regulation of target genes by influencing the activity of transcription factors and by epigenetic modification of key genes involved in skeletal development and maintenance are discussed. With an understanding of mechanisms involved in the uptake and metabolism of vitamin C and knowledge of precise molecular pathways for vitamin C actions in bone cells, it is possible that novel therapeutic strategies can be developed or existing therapies can be modified for the treatment of osteoporotic fractures. PMID:26358868

  18. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice.

    PubMed

    Wakabayashi, Hiroki; Wakisaka, Satoshi; Hiraga, Toru; Hata, Kenji; Nishimura, Riko; Tominaga, Makoto; Yoneda, Toshiyuki

    2018-05-01

    Bone pain is one of the most common and life-limiting complications of cancer metastasis to bone. Although the mechanism of bone pain still remains poorly understood, bone pain is evoked as a consequence of sensitization and excitation of sensory nerves (SNs) innervating bone by noxious stimuli produced in the microenvironment of bone metastases. We showed that bone is innervated by calcitonin gene-related protein (CGRP) + SNs extending from dorsal root ganglia (DRG), the cell body of SNs, in mice. Mice intratibially injected with Lewis lung cancer (LLC) cells showed progressive bone pain evaluated by mechanical allodynia and flinching with increased CGRP + SNs in bone and augmented SN excitation in DRG as indicated by elevated numbers of pERK- and pCREB-immunoreactive neurons. Immunohistochemical examination of LLC-injected bone revealed that the tumor microenvironment is acidic. Bafilomycin A1, a selective inhibitor of H + secretion from vacuolar proton pump, significantly alleviated bone pain, indicating that the acidic microenvironment contributes to bone pain. We then determined whether the transient receptor potential vanilloid 1 (TRPV1), a major acid-sensing nociceptor predominantly expressed on SNs, plays a role in bone pain by intratibially injecting LLC cells in TRPV1-deficient mice. Bone pain and SN excitation in the DRG and spinal dorsal horn were significantly decreased in TRPV1 -/- mice compared with wild-type mice. Our results suggest that TRPV1 activation on SNs innervating bone by the acidic cancer microenvironment in bone contributes to SN activation and bone pain. Targeting acid-activated TRPV1 is a potential therapeutic approach to cancer-induced bone pain.

  19. The Expression of Fn14 via Mechanical Stress-activated JNK Contributes to Apoptosis Induction in Osteoblasts*

    PubMed Central

    Matsui, Hiroyuki; Fukuno, Naoto; Kanda, Yoshiaki; Kantoh, Yusuke; Chida, Toko; Nagaura, Yuko; Suzuki, Osamu; Nishitoh, Hideki; Takeda, Kohsuke; Ichijo, Hidenori; Sawada, Yasuhiro; Sasaki, Keiichi; Kobayashi, Takayasu; Tamura, Shinri

    2014-01-01

    Bone mass is maintained by the balance between the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. It is well known that adequate mechanical stress is essential for the maintenance of bone mass, whereas excess mechanical stress induces bone resorption. However, it has not been clarified how osteoblasts respond to different magnitudes of mechanical stress. Here we report that large-magnitude (12%) cyclic stretch induced Ca2+ influx, which activated reactive oxygen species generation in MC3T3-E1 osteoblasts. Reactive oxygen species then activated the ASK1-JNK/p38 pathways. The activated JNK led to transiently enhanced expression of FGF-inducible 14 (Fn14, a member of the TNF receptor superfamily) gene. Cells with enhanced expression of Fn14 subsequently acquired sensitivity to the ligand of Fn14, TNF-related weak inducer of apoptosis, and underwent apoptosis. On the other hand, the ASK1-p38 pathway induced expression of the monocyte chemoattractant protein 3 (MCP-3) gene, which promoted chemotaxis of preosteoclasts. In contrast, the ERK pathway was activated by small-magnitude stretching (1%) and induced expression of two osteogenic genes, collagen Ia (Col1a) and osteopontin (OPN). Moreover, activated JNK suppressed Col1a and OPN induction in large-magnitude mechanical stretch-loaded cells. The enhanced expression of Fn14 and MCP-3 by 12% stretch and the enhanced expression of Col1a and OPN by 1% stretch were also observed in mouse primary osteoblasts. These results suggest that differences in the response of osteoblasts to varying magnitudes of mechanical stress play a key role in switching the mode of bone metabolism between formation and resorption. PMID:24446436

  20. Treatment of stroke with (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate and bone marrow stromal cells upregulates angiopoietin-1/Tie2 and enhances neovascularization.

    PubMed

    Cui, X; Chen, J; Zacharek, A; Roberts, C; Savant-Bhonsale, S; Chopp, M

    2008-09-22

    Neovascularization may contribute to functional recovery after neural injury. Combination treatment of stroke with a nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate) and bone marrow stromal cells promotes functional recovery. However, the mechanisms underlying functional improvement have not been elucidated. In this study, we tested the hypothesis that combination treatment upregulates angiopoietin-1 and its receptor Tie2 in the ischemic brain and bone marrow stromal cells, thereby enhancing cerebral neovascularization after stroke. Adult wild type male C57BL/6 mice were i.v. administered PBS, bone marrow stromal cells 5x10(5), DETA-NONOate 0.4 mg/kg or combination DETA-NONOate with bone marrow stromal cells (n=12/group) after middle cerebral artery occlusion. Combination treatment significantly upregulated angiopoietin-1/Tie2 and tight junction protein (occludin) expression, and increased the number, diameter and perimeter of blood vessels in the ischemic brain compared with vehicle control (mean+ or -S.E., P<0.05). In vitro, DETA-NONOate significantly increased angiopoietin-1/Tie2 protein (n=6/group) and Tie2 mRNA (n=3/group) expression in bone marrow stromal cells. DETA-NONOate also significantly increased angiopoietin-1 protein (n=6/group) and mRNA (n=3/group) expression in mouse brain endothelial cells (P<0.05). Angiopoietin-1 mRNA (n=3/group) was significantly increased in mouse brain endothelial cells treated with DETA-NONOate in combination with bone marrow stromal cell-conditioned medium compared with cells treated with bone marrow stromal cell-conditioned medium or DETA-NONOate alone. Mouse brain endothelial cell capillary tube-like formation assays (n=6/group) showed that angiopoietin-1 peptide, the supernatant of bone marrow stromal cells and DETA-NONOate significantly increased capillary tube formation compared with vehicle control. Combination treatment significantly increased capillary tube formation compared with DETA-NONOate treatment alone. Inhibition of angiopoietin-1 significantly attenuated combination treatment-induced tube formation. Our data indicated that combination treatment of stroke with DETA-NONOate and bone marrow stromal cells promotes neovascularization, which is at least partially mediated by upregulation of the angiopoietin-1/Tie2 axis.

  1. Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility

    PubMed Central

    Hu, Bin; Tommasini, Steven M.; Courtland, Hayden-William; Price, Christopher; Terranova, Carl J.; Nadeau, Joseph H.

    2007-01-01

    We examined femora from adult AXB/BXA recombinant inbred (RI) mouse strains to identify skeletal traits that are functionally related and to determine how functional interactions among these traits contribute to genetic variability in whole-bone stiffness, strength, and toughness. Randomization of A/J and C57BL/6J genomic regions resulted in each adult male and female RI strain building mechanically functional femora by assembling unique sets of morphologic and tissue-quality traits. A correlation analysis was conducted using the mean trait values for each RI strain. A third of the 66 correlations examined were significant, indicating that many bone traits covaried or were functionally related. Path analysis revealed important functional interactions among bone slenderness, cortical thickness, and tissue mineral density. The path coefficients describing these functional relations were similar for both sexes. The causal relationship among these three traits suggested that cellular processes during growth simultaneously regulate bone slenderness, cortical thickness, and tissue mineral density so that the combination of traits is sufficiently stiff and strong to satisfy daily loading demands. A disadvantage of these functional interactions was that increases in tissue mineral density also deleteriously affected tissue ductility. Consequently, slender bones with high mineral density may be stiff and strong but they are also brittle. Thus, genetically randomized mouse strains revealed a basic biological paradigm that allows for flexibility in building bones that are functional for daily activities but that creates preferred sets of traits under extreme loading conditions. Genetic or environmental perturbations that alter these functional interactions during growth would be expected to lead to loss of function and suboptimal adult bone quality. PMID:17557179

  2. Radiation and mechanical unloading effects on mouse vertebral bone: Ground-based models of the spaceflight environment

    NASA Astrophysics Data System (ADS)

    Alwood, Joshua Stewart

    Astronauts on long-duration space missions experience increased ionizing radiation background levels and occasional acute doses of ionizing radiation from solar particle events, in addition to biological challenges introduced by weightlessness. Previous research indicates that cancer radiotherapy damages bone marrow cell populations and reduces mechanical strength of bone. However, the cumulative doses in radiotherapy are an order of magnitude or greater than dose predictions for long-duration space missions. Further detriments to the skeletal system are the disuse and mechanical unloading experienced during weightlessness, which causes osteopenia in weight-bearing cancellous bone (a sponge-like bony network of rods, plates and voids) and cortical bone (dense, compact bone). Studies of radiation exposure utilizing spaceflight-relevant types and doses, and in combination with mechanical unloading, have received little attention. Motivated by the future human exploration of the solar system, the effects of acute and increased background radiation on astronaut skeletal health are important areas of study in order to prevent osteopenic deterioration and, ultimately, skeletal fracture. This dissertation addresses how spaceflight-relevant radiation affects bone microarchitecture and mechanical properties in the cancellous-rich vertebrae and compares results to that of mechanical unloading. In addition, a period of re-ambulation is used to test whether animals recover skeletal tissue after irradiation. Whether radiation exposure displays synergism with mechanical unloading is further investigated. Finite element structural and statistical analyses are used to investigate how changes in architecture affect mechanical stress within the vertebra and to interpret the mechanical testing results. In this dissertation, ground-based models provide evidence that ionizing radiation, both highly energetic gamma-rays and charged iron ions, resulted in a persistent loss of cancellous bone in male mice. Mechanical unloading, by contrast, is shown to cause bone loss in the vertebrae via cancellous and cortical thinning that resulted in decreased whole-bone mechanical properties. The effects of mechanical unloading were altogether reversible in the vertebra after re-ambulation, though some residual alteration of trabecular morphology persisted. The combination of unloading and radiation exposure appeared to worsen the reductions of strength. Under either environmental condition, cancellous bone loss occurred near the vertebral endplates and at the centrum midplane. Finite element analysis suggested that tissue-level stresses increase in the centrum after either unloading or irradiation in agreement with the cellular-solid model of dense, plate-like trabeculae. Force-sharing between cancellous and cortical bone decreased after radiation, with stress concentrating on the cortex. In conclusion, acute exposure to spaceflight-relevant ionizing radiation altered trabecular microarchitecture and stress distribution, without a loss of whole-bone strength at the endpoints investigated, while unloading presented the greater immediate detriment to whole-bone mechanical properties. From a skeletal-health perspective, strategies to mitigate and counteract astronaut exposure to acute doses of radiation and mechanical unloading should be developed in preparation for long-term human spaceflight.

  3. Mechanical loading prevents the stimulating effect of IL-1{beta} on osteocyte-modulated osteoclastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent

    Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanicalmore » loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL-1{beta}-treated osteocytes prevented osteoclast formation. Incubation with IL-1{beta} upregulated RANKL and downregulated OPG gene expression by static osteocytes. PFF upregulated CYR61, RANKL, and OPG gene expression by osteocytes. Our results suggest that IL-1{beta} increases osteocyte-modulated osteoclastogenesis, and that mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis.« less

  4. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis.

    PubMed

    Antika, Lucia Dwi; Lee, Eun-Jung; Kim, Yun-Ho; Kang, Min-Kyung; Park, Sin-Hye; Kim, Dong Yeon; Oh, Hyeongjoo; Choi, Yean-Jung; Kang, Young-Hee

    2017-11-01

    Osteoporosis is one of the most prevalent forms of age-related bone diseases. Increased bone loss with advancing age has become a grave public health concern. This study examined whether phlorizin and phloretin, dihydrochalcones in apple peels, inhibited senile osteoporosis through enhancing osteoblastogenic bone formation in cell-based and aged mouse models. Submicromolar phloretin and phlorizin markedly stimulated osteoblast differentiation of MC3T3-E1 cells with increased transcription of Runx2 and osteocalcin. Senescence-accelerated resistant mouse strain prone-6 (SAMP6) mice were orally supplemented with 10 mg/kg phlorizin and phloretin daily for 12 weeks. Male senescence-accelerated resistant mouse strain R1 mice were employed as a nonosteoporotic age-matched control. Oral administration of ploretin and phorizin boosted bone mineralization in all the bones of femur, tibia and vertebra of SAMP6. In particular, phlorizin reduced serum RANKL/OPG ratio and diminished TRAP-positive osteoclasts in trabecular bones of SAMP6. Additionally, treating phlorizin to SAMP6 inhibited the osteoporotic resorption in distal femoral bones through up-regulating expression of BMP-2 and collagen-1 and decreasing production of matrix-degrading cathepsin K and MMP-9. Finally, phlorizin and phloretin antagonized GSK-3β induction and β-catenin phosphorylation in osteoblasts and aged mouse bones. Therefore, phlorizin and phloretin were potential therapeutic agents encumbering senile osteoporosis through promoting bone-forming osteoblastogenesis via modulation of GSK-3β/β-catenin-dependent signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Inhibition of TGF–β signaling in subchondral bone mesenchymal stem cells attenuates osteoarthritis

    PubMed Central

    Zhen, Gehua; Wen, Chunyi; Jia, Xiaofeng; Li, Yu; Crane, Janet L.; Mears, Simon C.; Askin, Frederic B.; Frassica, Frank J.; Chang, Weizhong; Yao, Jie; Nayfeh, Tariq; Johnson, Carl; Artemov, Dmitri; Chen, Qianming; Zhao, Zhihe; Zhou, Xuedong; Cosgarea, Andrew; Carrino, John; Riley, Lee; Sponseller, Paul; Wan, Mei; Lu, William Weijia; Cao, Xu

    2013-01-01

    Osteoarthritis is a highly prevalent and debilitating joint disorder. There is no effective medical therapy for osteoarthritis due to limited understanding of osteoarthritis pathogenesis. We show that TGF–β1 is activated in the subchondral bone in response to altered mechanical loading in an anterior cruciate ligament transection (ACLT) osteoarthritis mouse model. TGF–β1 concentrations also increased in human osteoarthritis subchondral bone. High concentrations of TGF–β1 induced formation of nestin+ mesenchymal stem cell (MSC) clusters leading to aberrant bone formation accompanied by increased angiogenesis. Transgenic expression of active TGF–β1 in osteoblastic cells induced osteoarthritis. Inhibition of TGF–β activity in subchondral bone attenuated degeneration of osteoarthritis articular cartilage. Notably, knockout of the TGF–β type II receptor (TβRII) in nestin+ MSCs reduced development of osteoarthritis in ACLT mice. Thus, high concentrations of active TGF–β1 in the subchondral bone initiated the pathological changes of osteoarthritis, inhibition of which could be a potential therapeutic approach. PMID:23685840

  6. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice.

    PubMed

    Campbell, J Preston; Karolak, Matthew R; Ma, Yun; Perrien, Daniel S; Masood-Campbell, S Kathryn; Penner, Niki L; Munoz, Steve A; Zijlstra, Andries; Yang, Xiangli; Sterling, Julie A; Elefteriou, Florent

    2012-07-01

    Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress) or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the "vicious cycle" of bone destruction induced by these cells.

  7. Laser processing of polymer constructs from poly(3-hydroxybutyrate).

    PubMed

    Volova, T G; Tarasevich, A A; Golubev, A I; Boyandin, A N; Shumilova, A A; Nikolaeva, E D; Shishatskaya, E I

    2015-01-01

    CO2 laser radiation was used to process poly(3-hydroxybutyrate) constructs - films and 3D pressed plates. Laser processing increased the biocompatibility of unperforated films treated with moderate uniform radiation, as estimated by the number and degree of adhesion of NIH 3T3 mouse fibroblast cells. The biocompatibility of perforated films modified in the pulsed mode did not change significantly. At the same time, pulsed laser processing of the 3D plates produced perforated scaffolds with improved mechanical properties and high biocompatibility with bone marrow-derived multipotent, mesenchymal stem cells, which show great promise for bone regeneration.

  8. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications*

    PubMed Central

    Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter

    2015-01-01

    During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630

  9. Differential magnesium implant corrosion coat formation and contribution to bone bonding.

    PubMed

    Rahim, Muhammad Imran; Weizbauer, Andreas; Evertz, Florian; Hoffmann, Andrea; Rohde, Manfred; Glasmacher, Birgit; Windhagen, Henning; Gross, Gerhard; Seitz, Jan-Marten; Mueller, Peter P

    2017-03-01

    Magnesium alloys are presently under investigation as promising biodegradable implant materials with osteoconductive properties. To study the molecular mechanisms involved, the potential contribution of soluble magnesium corrosion products to the stimulation of osteoblastic cell differentiation was examined. However, no evidence for the stimulation of osteoblast differentiation could be obtained when cultured mesenchymal precursor cells were differentiated in the presence of metallic magnesium or in cell culture medium containing elevated magnesium ion levels. Similarly, in soft tissue no bone induction by metallic magnesium or by the corrosion product magnesium hydroxide could be observed in a mouse model. Motivated by the comparatively rapid accumulation solid corrosion products physicochemical processes were examined as an alternative mechanism to explain the stimulation of bone growth by magnesium-based implants. During exposure to physiological solutions a structured corrosion coat formed on magnesium whereby the elements calcium and phosphate were enriched in the outermost layer which could play a role in the established biocompatible behavior of magnesium implants. When magnesium pins were inserted into avital bones, corrosion lead to increases in the pull out force, suggesting that the expanding corrosion layer was interlocking with the surrounding bone. Since mechanical stress is a well-established inducer of bone growth, volume increases caused by the rapid accumulation of corrosion products and the resulting force development could be a key mechanism and provide an explanation for the observed stimulatory effects of magnesium-based implants in hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 697-709, 2017. © 2016 Wiley Periodicals, Inc.

  10. Bone Cell Bioenergetics and Skeletal Energy Homeostasis

    PubMed Central

    Riddle, Ryan C.; Clemens, Thomas L.

    2017-01-01

    The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease. PMID:28202599

  11. Genetic perturbations that impair functional trait interactions lead to reduced bone strength and increased fragility in mice

    PubMed Central

    Smith, Lauren M.; Bigelow, Erin M.R.; Nolan, Bonnie T.; Faillace, Meghan E.; Nadeau, Joseph H.; Jepsen, Karl J.

    2014-01-01

    Functional adaptation may complicate the choice of phenotype used in genetic studies that seek to identify genes contributing to fracture susceptibility. Often, genetic variants affecting one trait are compensated by coordinated changes in other traits. Bone fracture is a prototypic example because mechanical function of long bones (stiffness and strength) depends on how the system coordinately adjusts the amount (cortical area) and quality (tissue-mineral density, TMD) of bone tissue to mechanically offset the natural variation in bone robustness (total area/length). We propose that efforts aimed at identifying genes regulating fracture resistance will benefit from better understanding how functional adaptation contributes to the genotype-phenotype relationship. We analyzed the femurs of C57BL/6J – ChrA/J/NaJ Chromosome Substitution Strains (CSSs) to systemically interrogate the mouse genome for chromosomes harboring genes that regulate mechanical function. These CSSs (CSS-i, i = the substituted chromosome) showed changes in mechanical function on the order of -26.6 to 11.5% relative to the B6 reference strain after adjusting for body size. Seven substitutions showed altered robustness, cortical area, or TMD, but no effect on mechanical function (CSS-4, 5, 8, 9, 17, 18, 19); six substitutions showed altered robustness, cortical area, or TMD, and reduced mechanical function (CSS-1, 2, 6, 10, 12, 15); and one substitution also showed reduced mechanical function but exhibited no significant changes in the three physical traits analyzed in this study (CSS-3). A key feature that distinguished CSSs that maintained function from those with reduced function was whether the system adjusted cortical area and TMD to the levels needed to compensate for the natural variation in bone robustness. These results provide a novel biomechanical mechanism linking genotype with phenotype, indicating that genes control function not only by regulating individual traits, but also by regulating how the system coordinately adjusts multiple traits to establish function. PMID:25003813

  12. The bcl-2 knockout mouse exhibits marked changes in osteoblast phenotype and collagen deposition in bone as well as a mild growth plate phenotype

    PubMed Central

    BOOT-HANDFORD, R. P.; MICHAELIDIS, T. M.; HILLARBY, M. C.; ZAMBELLI, A.; DENTON, J.; HOYLAND, J. A.; FREEMONT, A. J.; GRANT, M. E.; WALLIS, G. A.

    1998-01-01

    Histological examination of long bones from 1-day-old bcl-2 knockout and age-matched control mice revealed no obvious differences in length of bone, growth plate architecture or stage of endochondral ossification. In 35-day-old bcl-2 knockout mice that are growth retarded or ‘dwarfed’, the proliferative zone of the growth plate appeared slightly thinner and the secondary centres of ossification less well developed than their age-matched wild-type controls. The most marked histological effects of bcl-2 ablation were on osteoblasts and bone. 35-day-old knockout mouse bones exhibited far greater numbers of osteoblasts than controls and the osteoblasts had a cuboidal phenotype in comparison with the normal flattened cell appearance. In addition, the collagen deposited by the osteoblasts in the bcl-2 knockout mouse bone was disorganized in comparison with control tissue and had a pseudo-woven appearance. The results suggest an important role for Bcl-2 in controlling osteoblast phenotype and bone deposition in vivo. PMID:10193316

  13. On the development of the patella.

    PubMed

    Eyal, Shai; Blitz, Einat; Shwartz, Yulia; Akiyama, Haruhiko; Schweitzer, Ronen; Zelzer, Elazar

    2015-05-15

    The current view of skeletal patterning fails to explain the formation of sesamoid bones. These small bones, which facilitate musculoskeletal function, are exceptionally embedded within tendons. Although their structural design has long puzzled researchers, only a limited model for sesamoid bone development has emerged. To date, sesamoids are thought to develop inside tendons in response to mechanical signals from the attaching muscles. However, this widely accepted model has lacked substantiation. Here, we show that, contrary to the current view, in the mouse embryo the patella initially develops as a bony process at the anteriodistal surface of the femur. Later, the patella is separated from the femur by a joint formation process that is regulated by mechanical load. Concurrently, the patella becomes superficially embedded within the quadriceps tendon. At the cellular level, we show that, similar to bone eminences, the patella is formed secondarily by a distinct pool of Sox9- and Scx-positive progenitor cells. Finally, we show that TGFβ signaling is necessary for the specification of patella progenitors, whereas the BMP4 pathway is required for their differentiation. These findings establish an alternative model for patella development and provide the mechanical and molecular mechanisms that underlie this process. More broadly, our finding that activation of a joint formation program can be used to switch between the formation of bony processes and of new auxiliary bones provides a new perspective on plasticity during skeletal patterning and evolution. © 2015. Published by The Company of Biologists Ltd.

  14. Isolation and clonal characterization of hematopoietic and liver stem cells.

    PubMed

    Nakauchi, Hiromitsu

    2004-11-01

    Prospective isolation of stem cells is essential to understanding the mechanisms that control their proliferation and differentiation. Using 9 monoclonal antibodies and fluorescence-activated cell sorting (FACS), we have succeeded in prospectively identifying hematopoietic stem cells (HSCs) in adult mouse bone marrow. Mouse HSCs were exclusively enriched in CD34 negative, c-Kit Sca-1 Lineage Marker (CD34 KSL) cells representing 0.004% of bone marrow (BM) mononuclear cells. When single CD34-KSL cells were transplanted individually into a lethally irradiated mouse, 25% of the recipient mice survived and showed long-term reconstitution of the BM, providing evidence for multipotency and a self-renewal capacity of HSCs. Using a similar approach, we also prospectively identified hepatic stem cells with multilineage differentiation potential and self-renewal capability in the c-Met CD49f c-Kit CD45 Ter119 fraction of cells isolated from day 13.5 fetal mouse liver. On cell transplantation, these cells differentiated into hepatocytes and cholangiocytes. As an alternative to the antibody based stem cell isolation, Hoechst33342 staining is useful. To understand the mechanism responsible for SP phenotype, we performed an expression cloning and identified bcrp-1/ABCG2 gene, a member of ATP binding-cassette (ABC) transporter family. Bcrp-1 is almost exclusively expressed in CD34 KSL cells among blood cells; however their expression in other tissue specific stem cells remains to be studied. With the use of FACS and monoclonal antibodies, hematopoietic and liver stem cells were prospectively isolated and characterized. HSCs could also be purified by Hoechst 33342 staining. By expression cloning, we identify bcrp-1/ABCG2 transporter as a molecule responsible for SP phenotype. Elucidation of the physiological role of bcrp-1/ABCG2 in HSCs may provide us with clues to understand the molecular mechanisms of stem cell self-renewal and differentiation.

  15. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  16. Human androgen deficiency: insights gained from androgen receptor knockout mouse models

    PubMed Central

    Rana, Kesha; Davey, Rachel A; Zajac, Jeffrey D

    2014-01-01

    The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype. PMID:24480924

  17. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    PubMed

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  18. Pancreatic ductal cells acquire mesenchymal characteristics through cell fusion with bone marrow-derived mesenchymal stem cells and SIRT1 attenuates the apoptosis of hybrid cells.

    PubMed

    Gou, Shanmiao; Liu, Tao; Li, Xiangsheng; Cui, Jing; Wan, Chidan; Wang, Chunyou

    2012-01-01

    Bone marrow-derived mesenchymal stem cells (bMSCs) contribute to tissue repair and regeneration. Cell fusion between somatic cells and bMSCs to form hybrid cells may have an important role in tissue repair through the subsequent reprogramming of the somatic cell nucleus. Few studies have assessed the mesenchymal characteristics of fusion-induced hybrid cells and their survival mechanisms. In this study, we investigated the effect of cell fusion on the biological characteristics of pancreatic ductal cells (PDCs) and on the survival mechanism of hybrid cells. To this end, we generated mouse-mouse hybrid cells in vitro by polyethylene glycol-mediated fusion of primary mouse bMSCs with primary mouse PDCs. Hybrid cells showed an enhanced capacity for proliferation and self-renewal compared with PDCs. No PDC had the capacity for anchorage-independent growth or invasion into Matrigel, but some hybrid cells were able to form colonies in soft agar and invade Matrigel. Expression of the tumor suppressor protein p53, which initiates apoptosis, was detected in hybrid cells but not in PDCs or bMSCs. However, the p53 deacetylase, sirtuin 1 (SIRT1), was also detected in hybrid cells, and the level of acetylated p53, the active form, was low. The addition of nicotinamide (Nam) inhibited the deacetylation activity of SIRT1 on p53 and induced cell apoptosis in hybrid cells. This study demonstrated that PDCs could obtain high proliferation rates, self-renewal capabilities, and mesenchymal characteristics by fusion with bMSCs. SIRT1 expression in the hybrid cells attenuated their apoptosis. Copyright © 2012 S. Karger AG, Basel.

  19. Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    NASA Technical Reports Server (NTRS)

    Alwood, J. S.; Limoli, C. L.; Delp, M. D.; Castillo, A. B.; Globus, R. K.

    2012-01-01

    Weightlessness causes a cephalad fluid shift and reduction in mechanical stimulation, adversely affecting both cortical and trabecular bone tissue in astronauts. In rodent models of weightlessness, the onset of bone loss correlates with reduced skeletal perfusion, reduced and rarified vasculature and lessened vasodilation, which resembles blood-bone symbiotic events that can occur with fracture repair and aging. These are especially serious risks for long term, exploration class missions when astronauts will face the challenge of increased exposure to space radiation and abrupt transitions between different gravity environments upon arrival and return. Previously, we found using the mouse hindlimb unloading model and exposure to heavy ion radiation, both disuse and irradiation cause an acute bone loss that was associated with a reduced capacity to produce bone-forming osteoblasts from the bone marrow. Together, these findings led us to hypothesize that exposure to space radiation exacerbates weightlessness-induced bone loss and impairs recovery upon return, and that treatment with anti-oxidants may mitigate these effects. The specific aims of this recently awarded grant are to: AIM 1 Determine the functional and structural consequences of prolonged weightlessness and space radiation (simulated spaceflight) for bone and skeletal vasculature in the context of bone cell function and oxidative stress. AIM 2 Determine the extent to which an anti-oxidant protects against weightlessness and space radiation-induced bone loss and vascular dysfunction. AIM 3 Determine how space radiation influences later skeletal and vasculature recovery from prolonged weightlessness and the potential of anti-oxidants to preserve adaptive remodeling.

  20. Sost deficiency does not alter bone's lacunar or vascular porosity in mice

    NASA Astrophysics Data System (ADS)

    Mosey, Henry; Núñez, Juan A.; Goring, Alice; Clarkin, Claire E.; Staines, Katherine A.; Lee, Peter D.; Pitsillides, Andrew A.; Javaheri, Behzad

    2017-09-01

    SCLEROSTIN (Sost) is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO) mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT) counterparts with high resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6 /group) were sacrificed at 12 weeks of age. Fixed tibiae were analysed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nanoCT at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We therefore conclude that the significant increases in bone mass induced by Sost deficiency are not accompanied by any significant modification in the density, organisation or shape of osteocyte lacunae or vascular content within the cortical bone. These data may imply that SCLEROSTIN does not modify the frequency of osteocytogenic recruitment of osteoblasts to initiate terminal osteocytic differentiation in mice.

  1. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These alterations indicate significant impairment of normal cellular function in the mechanically unloaded environment of space and could provide important genetic insight into the observed uncoupling of bone formation and resorption in space.

  2. Effects of sodium hydroxide, sodium hypochlorite, and gaseous hydrogen peroxide on the natural properties of cancellous bone.

    PubMed

    Bi, Long; Li, De-Cheng; Huang, Zhao-Song; Yuan, Zhi

    2013-07-01

    Processed xenegeneic cancellous bone represents an alternative to bone autograft. In order to observe the effects of present prion inactivation treatments on the natural properties of xenogeneic cancellous bones, we treated bovine bone granules with sodium hydroxide (NaOH), sodium hypochlorite (NaOCl), and gaseous hydrogen peroxide (gH2 O2 ) respectively in this study. The microstructure, composition, and mineral content of the granules were evaluated by scanning electron micrograph, energy dispersive X-ray spectroscopy, ash analysis, and micro-computed tomography. The biomechanical property was analyzed by a materials testing machine. The cytocompatibility was evaluated by using a mouse fibroblast cell line (3T3). The microstructure, organic content, and mechanical strength were dramatically altered at the surface of bone in both NaOH- and NaOCl-treated groups, but not in the gH2 O2 -treated group. Compared with the gH2 O2 -treated group, attachment and proliferation of 3T3 were reduced in either NaOH- or NaOCl-treated groups. As the consequence, gH2 O2 treatment may be a useful approach of disinfection for the preparation of natural cancellous bone with well-preserved structural, mechanical, and biological properties. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    PubMed Central

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  4. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain.

    PubMed

    Pacheco-Costa, Rafael; Davis, Hannah M; Sorenson, Chad; Hon, Mary C; Hassan, Iraj; Reginato, Rejane D; Allen, Matthew R; Bellido, Teresita; Plotkin, Lilian I

    2015-12-01

    Connexin 43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43(ΔCT/fl)) were studied. Cx43(ΔCT/fl) mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43(fl/fl) controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43(ΔCT) is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43(ΔCT) mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43(ΔCT) were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta.

    PubMed

    Berman, Alycia G; Wallace, Joseph M; Bart, Zachary R; Allen, Matthew R

    2016-01-01

    Osteogenesis imperfecta (OI) is a genetic disease of Type I collagen and collagen-associated pathways that results in brittle bone behavior characterized by fracture and reduced mechanical properties. Based on previous work in our laboratory showing that raloxifene (RAL) can significantly improve bone mechanical properties through non-cellular mechanisms, we hypothesized that raloxifene would improve the mechanical properties of OI bone. In experiment 1, tibiae from female wild type (WT) and homozygous oim mice were subjected to in vitro soaking in RAL followed by mechanical tests. RAL soaking resulted in significantly higher post-yield displacement (+75% in WT, +472% in oim; p<0.004), with no effect on ultimate load or stiffness, in both WT and oim animals. In experiment 2, eight-week old WT and oim male mice were treated for eight weeks with saline vehicle (VEH) or RAL. Endpoint measures included assessment of in vivo skeletal fractures, bone density/geometry and mechanical properties. In vivo skeletal fractures of the femora, assessed by micro CT imaging, were significantly lower in oim-RAL (20%) compared to oim-VEH (48%, p=0.047). RAL led to significantly higher DXA-based BMD (p<0.01) and CT-based trabecular BV/TV in both WT and oim animals compared to those treated with VEH. Fracture toughness of the femora was lower in oim mice compared to WT and improved with RAL in both genotypes. These results suggest that raloxifene reduces the incidence of fracture in this mouse model of oim. Furthermore, they suggest that raloxifene's effects may be the result of both cellular (increased bone mass) and non-cellular (presumably changes in hydration) mechanisms, raising the possibility of using raloxifene, or related compounds, as a new approach for treating bone fragility associated with OI. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  6. Periodontal Defects in the A116T Knock-in Murine Model of Odontohypophosphatasia.

    PubMed

    Foster, B L; Sheen, C R; Hatch, N E; Liu, J; Cory, E; Narisawa, S; Kiffer-Moreira, T; Sah, R L; Whyte, M P; Somerman, M J; Millán, J L

    2015-05-01

    Mutations in ALPL result in hypophosphatasia (HPP), a disease causing defective skeletal mineralization. ALPL encodes tissue nonspecific alkaline phosphatase (ALP), an enzyme that promotes mineralization by reducing inorganic pyrophosphate, a mineralization inhibitor. In addition to skeletal defects, HPP causes dental defects, and a mild clinical form of HPP, odontohypophosphatasia, features only a dental phenotype. The Alpl knockout (Alpl (-/-)) mouse phenocopies severe infantile HPP, including profound skeletal and dental defects. However, the severity of disease in Alpl (-/-) mice prevents analysis at advanced ages, including studies to target rescue of dental tissues. We aimed to generate a knock-in mouse model of odontohypophosphatasia with a primarily dental phenotype, based on a mutation (c.346G>A) identified in a human kindred with autosomal dominant odontohypophosphatasia. Biochemical, skeletal, and dental analyses were performed on the resulting Alpl(+/A116T) mice to validate this model. Alpl(+/A116T) mice featured 50% reduction in plasma ALP activity compared with wild-type controls. No differences in litter size, survival, or body weight were observed in Alpl(+/A116T) versus wild-type mice. The postcranial skeleton of Alpl(+/A116T) mice was normal by radiography, with no differences in femur length, cortical/trabecular structure or mineral density, or mechanical properties. Parietal bone trabecular compartment was mildly altered. Alpl(+/A116T) mice featured alterations in the alveolar bone, including radiolucencies and resorptive lesions, osteoid accumulation on the alveolar bone crest, and significant differences in several bone properties measured by micro-computed tomography. Nonsignificant changes in acellular cementum did not appear to affect periodontal attachment or function, although circulating ALP activity was correlated significantly with incisor cementum thickness. The Alpl(+/A116T) mouse is the first model of odontohypophosphatasia, providing insights on dentoalveolar development and function under reduced ALP, bringing attention to direct effects of HPP on alveolar bone, and offering a new model for testing potential dental-targeted therapies in future studies. © International & American Associations for Dental Research 2015.

  7. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae.

    PubMed

    Ko, Frank C; Dragomir, Cecilia; Plumb, Darren A; Goldring, Steven R; Wright, Timothy M; Goldring, Mary B; van der Meulen, Marjolein C H

    2013-06-01

    Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone, and may subsequently influence the development of osteoarthritis (OA). Using an in vivo tibial loading model, the aim of this study was to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Cyclic compression at peak loads of 4.5N and 9.0N was applied to the left tibial knee joint of adult (26-week-old) C57BL/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. Changes in articular cartilage and subchondral bone were analyzed by histology and micro-computed tomography. Mechanical loading promoted cartilage damage in both age groups of mice, and the severity of joint damage increased with longer duration of loading. Metaphyseal bone mass increased with loading in young mice, but not in adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. In both age groups, articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau. Mice in both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. This noninvasive loading model permits dissection of temporal and topographic changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biologic events that promote OA onset and progression. Copyright © 2013 by the American College of Rheumatology.

  9. WAIF1 Is a Cell-Surface CTHRC1 Binding Protein Coupling Bone Resorption and Formation.

    PubMed

    Matsuoka, Kazuhiko; Kohara, Yukihiro; Naoe, Yoshinori; Watanabe, Atsushi; Ito, Masako; Ikeda, Kyoji; Takeshita, Sunao

    2018-04-06

    The osteoclast-derived collagen triple helix repeat containing 1 (CTHRC1) protein stimulates osteoblast differentiation, but the underlying mechanism remains unclear. Here, we identified Wnt-activated inhibitory factor 1 (WAIF1)/5T4 as a cell-surface protein binding CTHRC1. The WAIF1-encoding Trophoblast glycoprotein (Tpbg) gene, which is abundantly expressed in the brain and bone but not in other tissues, showed the same expression pattern as Cthrc1. Tpbg downregulation in marrow stromal cells reduced CTHRC1 binding and CTHRC1-stimulated alkaline phosphatase activity through PKCδ activation of MEK/ERK, suggesting a novel WAIF1/PKCδ/ERK pathway triggered by CTHRC1. Unexpectedly, osteoblast lineage-specific deletion of Tpbg downregulated Rankl expression in mouse bones and reduced both bone formation and resorption; importantly, it impaired bone mass recovery following RANKL-induced resorption, reproducing the phenotype of osteoclast-specific Cthrc1 deficiency. Thus, the binding of osteoclast-derived CTHRC1 to WAIF1 in stromal cells activates PKCδ-ERK osteoblastogenic signaling and serves as a key molecular link between bone resorption and formation during bone remodeling. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.

  10. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis.

    PubMed

    Fairfield, Heather; Falank, Carolyne; Harris, Elizabeth; Demambro, Victoria; McDonald, Michelle; Pettitt, Jessica A; Mohanty, Sindhu T; Croucher, Peter; Kramer, Ina; Kneissel, Michaela; Rosen, Clifford J; Reagan, Michaela R

    2018-02-01

    The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications. © 2017 Wiley Periodicals, Inc.

  11. Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold.

    PubMed

    Bouet, G; Cruel, M; Laurent, C; Vico, L; Malaval, L; Marchat, D

    2015-05-15

    An engineered three dimensional (3D) in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D) models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 µL/min, corresponding to 3 ≤ Medium velocity ≤ 23 µm/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a "proof-of-concept" for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.

  12. Hepatocyte growth factor improves bone regeneration via the bone morphogenetic protein‑2‑mediated NF‑κB signaling pathway.

    PubMed

    Zhen, Ruixin; Yang, Jianing; Wang, Yu; Li, Yubo; Chen, Bin; Song, Youxin; Ma, Guiyun; Yang, Bo

    2018-04-01

    Bone regeneration is an important process associated with the treatment of osteonecrosis, which is caused by various factors. Hepatocyte growth factor (HGF) is an active biological factor that has multifunctional roles in cell biology, life sciences and clinical medicine. It has previously been suggested that bone morphogenetic protein (BMP)‑2 exerts beneficial roles in bone formation, repair and angiogenesis in the femoral head. The present study aimed to investigate the benefits and molecular mechanisms of HGF in bone regeneration. The viability of osteoblasts and osteoclasts were studied in vitro. In addition, the expression levels of tumor necrosis factor (TNF)‑α, monocyte chemotactic protein (MCP)‑1, interleukin (IL)‑1 and IL‑6 were detected in a mouse fracture model following treatment with HGF. The expression and activity of nuclear factor (NF)‑κB were also analyzed in osteocytes post‑treatment with HGF. Histological analysis was used to determine the therapeutic effects of HGF on mice with fractures. The migration and differentiation of osteoblasts and osteoclasts were investigated in HGF‑incubated cells. Furthermore, angiogenesis and BMP‑2 expression were analyzed in the mouse fracture model post‑treatment with HGF. The results indicated that HGF regulates the cell viability of osteoblasts and osteoclasts, and also balanced the ratio between osteoblasts and osteoclasts. In addition, HGF decreased the serum expression levels of TNF‑α, MCP‑1, IL‑1 and IL‑6 in experimental mice. The results of a mechanistic analysis demonstrated that HGF upregulated p65, IκB kinase‑β and IκBα expression in osteoblasts from experimental mice. In addition, the expression levels of vascular endothelial growth factor, BMP‑2 receptor, receptor activator of NF‑κB ligand and macrophage colony‑stimulating factor were upregulated by HGF, which may effectively promote blood vessel regeneration, and contribute to the formation and revascularization of tissue‑engineered bone. Furthermore, HGF promoted BMP‑2 expression and enhanced angiogenesis at the fracture location. These results suggested that HGF treatment may significantly promote bone regeneration in a mouse fracture model. In conclusion, these results indicated that HGF is involved in bone regeneration, angiogenesis and the balance between osteoblasts and osteoclasts, thus suggesting that HGF may be considered a potential agent for the treatment of fractures via the promotion of bone regeneration through regulation of the BMP‑2‑mediated NF‑κB signaling pathway.

  13. Effects of Polymethoxyflavonoids on Bone Loss Induced by Estrogen Deficiency and by LPS-Dependent Inflammation in Mice.

    PubMed

    Matsumoto, Shigeru; Tominari, Tsukasa; Matsumoto, Chiho; Yoshinouchi, Shosei; Ichimaru, Ryota; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki

    2018-01-20

    Polymethoxyflavonoids (PMFs) are a family of the natural compounds that mainly compise nobiletin, tangeretin, heptamethoxyflavone (HMF), and tetramethoxyflavone (TMF) in citrus fruits. PMFs have shown various biological functions, including anti-oxidative effects. We previously showed that nobiletin, tangeretin, and HMF all inhibited interleukin (IL)-1-mediated osteoclast differentiation via the inhibition of prostaglandin E2 synthesis. In this study, we created an original mixture of PMFs (nobiletin, tangeretin, HMF, and TMF) and examined whether or not PMFs exhibit co-operative inhibitory effects on osteoclastogenesis and bone resorption. In a coculture of bone marrow cells and osteoblasts, PMFs dose-dependently inhibited IL-1-induced osteoclast differentiation and bone resorption. The optimum concentration of PMFs was lower than that of nobiletin alone in the suppression of osteoclast differentiation, suggesting that the potency of PMFs was stronger than that of nobiletin in vitro. The oral administration of PMFs recovered the femoral bone loss induced by estrogen deficiency in ovariectomized mice. We further tested the effects of PMFs on lipopolysaccharide-induced bone resorption in mouse alveolar bone. In an ex vivo experimental model for periodontitis, PMFs significantly suppressed the bone-resorbing activity in organ cultures of mouse alveolar bone. These results indicate that a mixture of purified nobiletin, tangeretin, HMF, and TMF exhibits a co-operative inhibitory effect for the protection against bone loss in a mouse model of bone disease, suggesting that PMFs may be potential candidates for the prevention of bone resorption diseases, such as osteoporosis and periodontitis.

  14. A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma.

    PubMed

    Wang, Michael; Zhang, Liang; Han, Xiaohong; Yang, Jing; Qian, Jianfei; Hong, Sungyoul; Lin, Pei; Shi, Yuankai; Romaguera, Jorge; Kwak, Larry W; Yi, Qing

    2008-04-01

    To establish a severe combined immunodeficient (SCID)-hu in vivo mouse model of human primary mantle cell lymphoma (MCL) for the study of the biology and novel therapy of human MCL. Primary MCL cells were isolated from spleen, lymph node, bone marrow aspirates, or peripheral blood of six different patients and injected respectively into human bone chips, which had been s.c. implanted in SCID-hu. Circulating human beta(2)-microglobulin in mouse serum was used to monitor the engraftment and growth of patient's MCL cells. H&E staining and immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies were used to confirm the tumor growth and migration. Increasing levels of circulating human beta(2)-microglobulin in mouse serum indicated that the patient's MCL cells were engrafted successfully into human bone chip of SCID-hu mice. The engraftment and growth of patient's MCL cells were dependent on human bone marrow microenvironment. Immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies confirmed that patient's MCL cells were able to not only survive and propagate in the bone marrow microenvironment of the human fetal bone chips, but also similar to the human disease, migrate to lymph nodes, spleen, bone marrow, and gastrointestinal tract of host mice. Treatment of MCL-bearing SCID-hu mice with atiprimod, a novel antitumor compound against the protection of bone marrow stromal cells, induced tumor regression. This is the first human primary MCL animal model that should be useful for the biological and therapeutic research on MCL.

  15. From isolation to implantation: a concise review of mesenchymal stem cell therapy in bone fracture repair

    PubMed Central

    2014-01-01

    Compromised bone-regenerating capability following a long bone fracture is often the result of reduced host bone marrow (BM) progenitor cell numbers and efficacy. Without surgical intervention, these malunions result in mobility restrictions, deformities, and disability. The clinical application of BM-derived mesenchymal stem cells (MSCs) is a feasible, minimally invasive therapeutic option to treat non-union fractures. This review focuses on novel, newly identified cell surface markers in both the mouse and human enabling the isolation and purification of osteogenic progenitor cells as well as their direct and indirect contributions to fracture repair upon administration. Furthermore, clinical success to date is summarized with commentary on autologous versus allogeneic cell sources and the methodology of cell administration. Given our clinical success to date in combination with recent advances in the identification, isolation, and mechanism of action of MSCs, there is a significant opportunity to develop improved technologies for defining therapeutic MSCs and potential to critically inform future clinical strategies for MSC-based bone regeneration. PMID:25099622

  16. Analogous cellular contribution and healing mechanisms following digit amputation and phalangeal fracture in mice

    PubMed Central

    Dawson, Lindsay A.; Simkin, Jennifer; Sauque, Michelle; Pela, Maegan; Palkowski, Teresa

    2016-01-01

    Abstract Regeneration of amputated structures is severely limited in humans and mice, with complete regeneration restricted to the distal portion of the terminal phalanx (P3). Here, we investigate the dynamic tissue repair response of the second phalangeal element (P2) post amputation in the adult mouse, and show that the repair response of the amputated bone is similar to the proximal P2 bone fragment in fracture healing. The regeneration‐incompetent P2 amputation response is characterized by periosteal endochondral ossification resulting in the deposition of new trabecular bone, corresponding to a significant increase in bone volume; however, this response is not associated with bone lengthening. We show that cells of the periosteum respond to amputation and fracture by contributing both chondrocytes and osteoblasts to the endochondral ossification response. Based on our studies, we suggest that the amputation response represents an attempt at regeneration that ultimately fails due to the lack of a distal organizing influence that is present in fracture healing. PMID:27499878

  17. Mouse Models in Bone Marrow Transplantation and Adoptive Cellular Therapy

    PubMed Central

    Arber, Caroline; Brenner, Malcolm K.; Reddy, Pavan

    2014-01-01

    Mouse models of transplantation have been indispensable to the development of bone marrow transplantation (BMT). Their role in the generation of basic science knowledge is invaluable and is subject to discussion below. However, this article focuses on the direct role and relevance of mouse models towards the clinical development and advances in BMT and adoptive T-cell therapy for human diseases. The authors aim to present a thoughtful perspective on the pros and cons of mouse models while noting that despite imperfections these models are obligatory for the development of science-based medicine. PMID:24216170

  18. Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation.

    PubMed

    Tang, Wei; Tian, Jingjing; Zheng, Qiang; Yan, Lin; Wang, Jiangxue; Li, Zhou; Wang, Zhong Lin

    2015-08-25

    Bone remodeling or orthodontic treatment is usually a long-term process. It is highly desirable to speed up the process for effective medical treatment. In this work, a self-powered low-level laser cure system for osteogenesis is developed using the power generated by the triboelectric nanogenerator. It is found that the system significantly accelerated the mouse embryonic osteoblasts' proliferation and differentiation, which is essential for bone and tooth healing. The system is further demonstrated to be driven by a living creature's motions, such as human walking or a mouse's breathing, suggesting its practical use as a portable or implantable clinical cure for bone remodeling or orthodontic treatment.

  19. The interactions of the cells in the development of osteoporotic changes in bones under space flight conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Kabitskaya, Olga

    2016-07-01

    Using the methods of electron microscopy and autoradiography with ³N-glycine and ³N-thymidine on biosatellites "Bion-11" (Macaca mulatta, the duration of the experiments -10 days), "Bion-M1" (mouse C57 Black, duration of the flight - 30 days) in the experiments with modeled hypokinesia (white rats, hind limbs unloading, the duration of the experiments 28 days) new data about the morpho-functional peculiarities of cellular interactions in adaptive remodeling zones of bone structures under normal conditions and after exposure of animals to microgravity. Our conception on remodeling proposes the following sequence in the development of cellular interactions after decrease of the mechanical loading: a primary response of osteocytes (mechanosensory cells) to the mechanical stimulus; osteocytic remodeling (osteolysis); transmission of the mechanical signals through a system of canals and processes to functionally active osteoblasts and paving endost one as well as to the bone-marrow stromal cells and perivascular cells. As a response to the mechanical stimulus (microgravity) the system of perivascular cell-stromal cell-preosteoblast-osteoblast shows a delay in proliferation, differentiation and specific functioning of the osteogenetic cells, the number of apoptotic osteoblasts increases. Then the osteoclastic reaction occurs (attraction of monocytes and formation of osteoclasts, bone matrix resorption in the loci of apoptosis of osteoblasts and osteocytes). The macrophagal reaction is followed by osteoblastogenesis, which appears to be a rehabilitating process. However, during prolonged absence of mechanical stimuli (microgravity, long-time immobilization) the adaptive activization of osteoblastogenesis doesn't occur (as it is the case during the physiological remodeling of bone tissue) or it occurs to a smaller degree. The loading deficit leads to an adaptive differentiation of stromal cells to fibroblastic cells and adipocytes in remodeling loci. These cell reactions are considered as adaptive-compensatory, but they don't result in rehabilitation of the resorbed bone tissue. This sequence of cells interactions is considered as a mechanism of bone tissue loss which underlies the development of osteopenia and osteoporosis under the mechanical loading deficit.

  20. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    PubMed

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  1. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway

    PubMed Central

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  2. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  3. The small world of osteocytes: connectomics of the lacuno-canalicular network in bone

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Philip; Kerschnitzki, Michael; Repp, Felix; Wagermaier, Wolfgang; Weinkamer, Richard; Fratzl, Peter

    2017-07-01

    Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization.

  4. Mouse fibroblasts homozygous for c-Src oncogene disruption shows dramatic suppression of expression of the gene encoding osteopontin, and adhesive phosphoprotein implicated in bone differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chackalaparampil, I.; Mukherjee, B.B.; Peri, A.

    1994-09-01

    Osteopetrosis, affecting mice and humans alike, arises from reduced or impaired bone resorption, causing abnormally dense bone formation. Normal bone differentiation requires continuous resorption and remodeling by osteoclasts which are derived from monocyte/macrophage lineage in the bone marrow. It has been reported that targeted homozygous disruption of c-src proto-oncogene in mice results in the development of osteopetrosis due to impaired bone-resorbing function of osteoclast cells. However, the molecular mechanism(s) which leads to osteoclast dysfunction in c-src deficient (src{sup -/-}) mice remains unclear. Here, we report that in embryonic fibroblasts derived from homozygous Src{sup -/-} mice, the expression of the genemore » coding for osteopontin (OP), a phosphorylated glycoprotein involved in bone differentiation, is drastically repressed. OP gene expression is not, however, affected in the heterozygous (Src{sup +/-}) mutant cells of identical origin, or in the c-src expression and OP production. Moreover, OP expression in c-src-deficient cells could be rescued upon treatment with 12-0-tetradecanoyl phorbol-13-myristate-acetate or okadaic acid. These observations indicate that OP expression is regulated via an src-mediated protein kinase C signaling pathway. Since it is known that OP mediates osteoclast adherence to the bone matrix, a key event in bone differentiation, our data is most significant in that they strongly suggest that drastic inhibition of synthesis of OP prevents osteoclasts in Src{sup -/-} mice from anchoring to the bone matrix. Consequently, this disruption of osteoclast adherence impairs their ability to form bone-resorbing ruffled border, causing osteopetrosis.« less

  5. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice

    PubMed Central

    McKenzie, Jennifer A.; Buettmann, Evan G.; Gardner, Michael J.; Silva, Matthew J.

    2015-01-01

    Post-natal osteogenesis after mechanical trauma or stimulus occurs through either endochondral healing, intramembranous healing or lamellar bone formation. Bone morphogenetic protein 2 (BMP2) is up-regulated in each of these osteogenic processes and is expressed by a variety of cells including osteoblasts and vascular cells. It is known that genetic knockout of Bmp2 in all cells or in osteo-chondroprogenitor cells completely abrogates endochondral healing after full fracture. However, the importance of BMP2 from differentiated osteoblasts and endothelial cells is not known. Moreover, the importance of BMP2 in non-endochondral bone formation such as intramembranous healing or lamellar bone formation is not known. Using inducible and tissue-specific Cre-lox mediated targeting of Bmp2 in adult (10–24 week old) mice, we assessed the role of BMP2 expression globally, by osteoblasts, and by vascular endothelial cells in endochondral healing, intramembranous healing and lamellar bone formation. These three osteogenic processes were modeled using full femur fracture, ulnar stress fracture, and ulnar non-damaging cyclic loading, respectively. Our results confirmed the requirement of BMP2 for endochondral fracture healing, as mice in which Bmp2 was knocked out in all cells prior to fracture failed to form a callus. Targeted deletion of Bmp2 in osteoblasts (osterix-expressing) or vascular endothelial cells (vascular endothelial cadherin-expressing) did not impact fracture healing in any way. Regarding non-endochondral bone formation, we found that BMP2 is largely dispensable for intramembranous bone formation after stress fracture and also not required for lamellar bone formation induced by mechanical loading. Taken together our results indicate that osteoblasts and endothelial cells are not a critical source of BMP2 in endochondral fracture healing, and that non-endochondral bone formation in the adult mouse is not as critically dependent on BMP2. PMID:26344756

  6. Shaping skeletal growth by modular regulatory elements in the Bmp5 gene.

    PubMed

    Guenther, Catherine; Pantalena-Filho, Luiz; Kingsley, David M

    2008-12-01

    Cartilage and bone are formed into a remarkable range of shapes and sizes that underlie many anatomical adaptations to different lifestyles in vertebrates. Although the morphological blueprints for individual cartilage and bony structures must somehow be encoded in the genome, we currently know little about the detailed genomic mechanisms that direct precise growth patterns for particular bones. We have carried out large-scale enhancer surveys to identify the regulatory architecture controlling developmental expression of the mouse Bmp5 gene, which encodes a secreted signaling molecule required for normal morphology of specific skeletal features. Although Bmp5 is expressed in many skeletal precursors, different enhancers control expression in individual bones. Remarkably, we show here that different enhancers also exist for highly restricted spatial subdomains along the surface of individual skeletal structures, including ribs and nasal cartilages. Transgenic, null, and regulatory mutations confirm that these anatomy-specific sequences are sufficient to trigger local changes in skeletal morphology and are required for establishing normal growth rates on separate bone surfaces. Our findings suggest that individual bones are composite structures whose detailed growth patterns are built from many smaller lineage and gene expression domains. Individual enhancers in BMP genes provide a genomic mechanism for controlling precise growth domains in particular cartilages and bones, making it possible to separately regulate skeletal anatomy at highly specific locations in the body.

  7. Salubrinal improves mechanical properties of the femur in osteogenesis imperfecta mice.

    PubMed

    Takigawa, Shinya; Frondorf, Brian; Liu, Shengzhi; Liu, Yang; Li, Baiyan; Sudo, Akihiro; Wallace, Joseph M; Yokota, Hiroki; Hamamura, Kazunori

    2016-10-01

    Salubrinal is an agent that reduces the stress to the endoplasmic reticulum by inhibiting de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). We and others have previously shown that the elevated phosphorylation of eIF2α stimulates bone formation and attenuates bone resorption. In this study, we applied salubrinal to a mouse model of osteogenesis imperfecta (Oim), and examined whether it would improve Oim's mechanical property. We conducted in vitro experiments using RAW264.7 pre-osteoclasts and bone marrow derived cells (BMDCs), and performed in vivo administration of salubrinal to Oim (+/-) mice. The animal study included two control groups (wildtype and Oim placebo). The result revealed that salubrinal decreased expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and suppressed osteoclast maturation, and it stimulated mineralization of mesenchymal stem cells from BMDCs. Furthermore, daily injection of salubrinal at 2 mg/kg for 2 months made stiffness (N/mm) and elastic module (GPa) of the femur undistinguishable to those of the wildtype control. Collectively, this study supported salubrinal's beneficial role to Oim's femora. Unlike bisphosphonates, salubrinal stimulates bone formation. For juvenile OI patients who may favor strengthening bone without inactivating bone remodeling, salubrinal may present a novel therapeutic option. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Effects of load-bearing exercise on skeletal structure and mechanics differ between outbred populations of mice.

    PubMed

    Wallace, Ian J; Judex, Stefan; Demes, Brigitte

    2015-03-01

    Effects of load-bearing exercise on skeletal structure and mechanical properties can vary between inbred strains of mice. Here, we examine whether such variation also exists at the population level. An experiment was performed with two outbred mouse stocks that have been reproductively isolated for >120 generations (Hsd:ICR, Crl:CD1). Growing females from each stock were either treated with a treadmill-running regimen for 1 month or served as controls. Limb forces were recorded with a force plate and cage activity monitored to verify that they were similar between stocks. After the experiment, femoral cortical and trabecular bone structure were quantified with micro-CT in the mid-diaphysis and distal metaphysis, respectively, and diaphyseal structural strength was determined with mechanical testing. Among Hsd:ICR mice, running led to significant improvements in diaphyseal bone quantity, structural geometry, and mechanical properties, as well as enhanced trabecular morphology. In contrast, among Crl:CD1 mice, the same running regimen had little effect on cortical and trabecular structure and significantly reduced diaphyseal resistance to fracture. In neither stock was body mass, muscle mass, or cage activity level different between runners and controls. Given that most environmental variables were controlled in this study, the differential effects of exercise on Hsd:ICR and Crl:CD1 bones were likely due to genetic differences between stocks. These results suggest that the benefits of loading for bone may vary between human populations (e.g., ethnic groups), in which case exercise programs and technologies designed to promote bone health with mechanical signals may be more advantageous to certain populations than others. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Diabetes Alters Mechanical Properties and Collagen Fiber Re-Alignment in Multiple Mouse Tendons

    PubMed Central

    Connizzo, Brianne K.; Bhatt, Pankti R.; Liechty, Kenneth W.; Soslowsky, Louis J.

    2014-01-01

    Tendons function to transfer load from muscle to bone through their complex composition and hierarchical structure, consisting mainly of type I collagen. Recent evidence suggests that type II diabetes may cause alterations in collagen structure, such as irregular fibril morphology and density, which could play a role in the mechanical function of tendons. Using the db/db mouse model of type II diabetes, the diabetic skin was found to have impaired biomechanical properties when compared to the non-diabetic group. The purpose of this study was to assess the effect of diabetes on biomechanics, collagen fiber re-alignment, and biochemistry in three functionally different tendons (Achilles, supraspinatus, patellar) using the db/db mouse model. Results showed that cross-sectional area and stiffness, but not modulus, were significantly reduced in all three tendons. However, the tendon response to load (transition strain, collagen fiber re-alignment) occurred earlier in the mechanical test, contrary to expectations. In addition, the patellar tendon had an altered response to diabetes when compared to the other two tendons, with no changes in fiber realignment and decreased collagen content at the midsubstance of the tendon. Overall, type II diabetes alters tendon mechanical properties and the dynamic response to load. PMID:24833253

  10. Decreasing maternal myostatin programs adult offspring bone strength in a mouse model of osteogenesis imperfecta

    PubMed Central

    Oestreich, Arin K.; Kamp, William M.; McCray, Marcus G.; Carleton, Stephanie M.; Karasseva, Natalia; Lenz, Kristin L.; Jeong, Youngjae; Daghlas, Salah A.; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M.; Ellersieck, Mark R.; Schulz, Laura C.; Phillips, Charlotte L.

    2016-01-01

    During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstntm1Sjl/+) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstntm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2oim), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2oim/+ offspring from natural mating of Mstntm1Sjl/+ dams to Col1a2oim/+sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2oim/+ dams to Col1a2oim/+ sires. Finally, increased bone biomechanical strength of Col1a2oim/+ offspring that had been transferred into Mstntm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta. PMID:27821779

  11. Decreasing maternal myostatin programs adult offspring bone strength in a mouse model of osteogenesis imperfecta.

    PubMed

    Oestreich, Arin K; Kamp, William M; McCray, Marcus G; Carleton, Stephanie M; Karasseva, Natalia; Lenz, Kristin L; Jeong, Youngjae; Daghlas, Salah A; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M; Ellersieck, Mark R; Schulz, Laura C; Phillips, Charlotte L

    2016-11-22

    During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstn tm1Sjl/+ ) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstn tm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2 oim ), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2 oim/+ offspring from natural mating of Mstn tm1Sjl/+ dams to Col1a2 oim/+ sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2 oim/+ dams to Col1a2 oim/+ sires. Finally, increased bone biomechanical strength of Col1a2 oim/+ offspring that had been transferred into Mstn tm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta.

  12. Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease

    PubMed Central

    Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; da Cunha, Sandro Torrentes; Paula, Luis Felipe; Carvalho, Alysson Roncally; de Carvalho, Antonio Carlos Campos; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli dos Santos

    2017-01-01

    BACKGROUND Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice. PMID:28767980

  13. Bone marrow cell migration to the heart in a chimeric mouse model of acute chagasic disease.

    PubMed

    Irion, Camila Iansen; Paredes, Bruno Diaz; Brasil, Guilherme Visconde; Cunha, Sandro Torrentes da; Paula, Luis Felipe; Carvalho, Alysson Roncally; Carvalho, Antonio Carlos Campos de; Carvalho, Adriana Bastos; Goldenberg, Regina Coeli Dos Santos

    2017-08-01

    Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.

  14. Role of carbonic anhydrase in bone resorption induced by prostaglandin E2 in vitro

    NASA Technical Reports Server (NTRS)

    Hall, G. E.; Kenny, A. D.

    1985-01-01

    The possible role of carbonic anhydrase in bone resorption induced by prostaglandin E2 (PGE2) was studied using an in vitro neonatal mouse calvarial culture system. PGE2 (10 to the -6th M) was effective in stimulating resorption, as assessed by calcium release into culture media. This enhanced resorption was accompanied by significant increases in calvarial carbonic anhydrase activity over control values at 48 and 96 h. At 48 h, bones treated with PGE2 had 20 percent more carbonic anhydrase activity than controls. By 96 h, treated bones contained 79 percent more carbonic anhydrase activity than controls. PGE2-induced bone resorption was inhibited by the carbonic anhydrase inhibitor acetazolamide in a dose-dependent fashion from 10 to the -5th to 10 to the -4th M with 77 percent inhibition observed at 10 to the -4th M. The acetazolamide analogue CL 13,850 (N-t-butylacetazolamide), which does not inhibit carbonic anhydrase, failed to inhibit PGE2-induced resorption. These results are consistent with the hypothesis that carbonic anhydrase is a necessary component of the osteoclastic bone resorptive mechanism.

  15. Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.

    PubMed

    Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T

    2014-05-01

    Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.

  16. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Yoon, Sung-Hee; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane

    2016-01-01

    Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Ewing's sarcoma of bone tumor cells produces MCSF that stimulates monocyte proliferation in a novel mouse model of Ewing's sarcoma of bone.

    PubMed

    Margulies, B S; DeBoyace, S D; Damron, T A; Allen, M J

    2015-10-01

    Ewing's sarcoma of bone is a primary childhood malignancy of bone that is treated with X-radiation therapy in combination with surgical excision and chemotherapy. To better study Ewing's sarcoma of bone we developed a novel model of primary Ewing's sarcoma of bone and then treated animals with X-radiation therapy. We identified that uncontrolled tumor resulted in lytic bone destruction while X-radiation therapy decreased lytic bone destruction and increased limb-length asymmetry, a common, crippling complication of X-radiation therapy. Osteoclasts were indentified adjacent to the tumor, however, we were unable to detect RANK-ligand in the Ewing's tumor cells in vitro, which lead us to investigate alternate mechanisms for osteoclast formation. Ewing's sarcoma tumor cells and archival Ewing's sarcoma of bone tumor biopsy samples were shown to express MCSF, which could promote osteoclast formation. Increased monocyte numbers were detected in peripheral blood and spleen in animals with untreated Ewing's sarcoma tumor while monocyte number in animals treated with x-radiation had normal numbers of monocytes. Our data suggest that our Ewing's sarcoma of bone model will be useful in the study Ewing's sarcoma tumor progression in parallel with the effects of chemotherapy and X-radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ewing's Sarcoma of Bone Tumor Cells Produce MCSF that Stimulates Monocyte Proliferation in a Novel Mouse Model of Ewing's Sarcoma of Bone

    PubMed Central

    Margulies, BS; DeBoyace, SD; Damron, TA; Allen, MJ

    2015-01-01

    Ewing's sarcoma of bone is a primary childhood malignancy of bone that is treated with X-radiation therapy in combination with surgical excision and chemotherapy. To better study Ewing's sarcoma of bone we developed a novel model of primary Ewing's sarcoma of bone and then treated animals with X-radiation therapy. We identified that uncontrolled tumor resulted in lytic bone destruction while X-radiation therapy decreased lytic bone destruction and increased limb-length asymmetry, a common, crippling complication of X-radiation therapy. Osteoclasts were indentified adjacent to the tumor, however, we were unable to detect RANK-ligand in the Ewing's tumor cells in vitro, which lead us to investigate alternate mechanisms for osteoclast formation. Ewing's sarcoma tumor cells and archival Ewing's sarcoma of bone tumor biopsy samples were shown to express MCSF, which could promote osteoclast formation. Increased monocyte numbers were detected in peripheral blood and spleen in animals with untreated Ewing's sarcoma tumor while monocyte number in animals treated with x-radiation had normal numbers of monocytes. Our data suggest that our Ewing's sarcoma of bone model will be useful in the study Ewing's sarcoma tumor progression in parallel with the effects of chemotherapy and X-radiation therapy. PMID:26051470

  19. Cilia/Ift protein and motor -related bone diseases and mouse models.

    PubMed

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.

  20. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation

    PubMed Central

    Nishikawa, Keizo; Nakashima, Tomoki; Takeda, Shu; Isogai, Masashi; Hamada, Michito; Kimura, Ayako; Kodama, Tatsuhiko; Yamaguchi, Akira; Owen, Michael J.; Takahashi, Satoru; Takayanagi, Hiroshi

    2010-01-01

    Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf–/– mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf+/– mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases. PMID:20877012

  1. Combination with third-generation bisphosphonate (YM529) and interferon-alpha can inhibit the progression of established bone renal cell carcinoma.

    PubMed

    Kurabayashi, Atsushi; Inoue, Keiji; Fukuhara, Hideo; Karashima, Takashi; Fukata, Satoshi; Kawada, Chiaki; Shuin, Taro; Furihata, Mutsuo

    2015-08-01

    The aim of this study was to investigate whether the third-generation nitrogen-containing bisphosphonate (YM529) can inhibit the progression of established bone renal cell carcinoma (RCC) and to elucidate its mechanism. Antiproliferative effect and apoptosis induction of RCC cells and mouse osteoclasts by YM529 and/or interferon-alpha (IFN-α) were evaluated in vitro using cell counting and in vivo using soft X-ray, the TUNEL method and tartrate-resistant acid phosphatase stain. For the in vivo study, male athymic BALB/cA Jc1-nu nude mice bearing human RCC cell line RBM1-IT4 cells were treated with YM529 and/or IFN-α. The biological activity of osteoclasts was evaluated using the pit formation assay. The antiangiogenetic effect by YM529 and/or IFN-α was analyzed using micro-vessel density and in situ mRNA hybridization. Osteoclast number in bone tumors was decreased in YM529-treated mouse. YM529 also inhibited osteoclast activity and proliferation in vitro, whereas basic fibroblast growth factor expressions and micro-vessel density within tumors were inhibited by IFN-α. Neither YM529 nor IFN-α alone significantly inhibited the growth of established bone metastatic tumors. Combined treatment with YM529 and IFN-α may be beneficial in patients with human RCC bone metastasis. Their effects are mediated by osteoclast recruitment inhibition and inactivation by YM529 and antiangiogenesis by IFN-α. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  2. Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor

    PubMed Central

    Majuta, Lisa A.; Longo, Geraldine; Fealk, Michelle N.; McCaffrey, Gwen; Mantyh, Patrick W.

    2015-01-01

    The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain–related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti–nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains. PMID:25599311

  3. Microfluidic Enhancement of Intramedullary Pressure Increases Interstitial Fluid Flow and Inhibits Bone Loss in Hindlimb Suspended Mice

    PubMed Central

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-01-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process. © 2010 American Society for Bone and Mineral Research. PMID:20200992

  4. Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis

    PubMed Central

    Huang, Jialiang; Wu, Chuanlong; Tian, Bo; Zhou, Xiao; Ma, Nian; Qian, Yufen

    2016-01-01

    Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX) mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS) control (sham) OVX + ligature + PBS (vehicle), and OVX + ligature + low or high (2 or 5 mg∙kg−1∙day−1, respectively) doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p.) every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis. PMID:27011174

  5. Delta-Tocotrienol: Radiation Protection and Effects on Signal Transduction Pathways

    DTIC Science & Technology

    2011-06-15

    Delta- Tocotrienol : Radiation Protection and Effects on Signal Transduction Pathways Venkataraman Srinivasan, PhD Mang Xiao, MD Principal...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Delta- Tocotrienol : Radiation Protection And Effects On...Mechanisms? 17 Survival of γ-irradiated mouse bone marrow and primary human hematopoietic CD34+ cells was significantly enhanced by Delta- tocotrienol (DT3

  6. Population control of resident and immigrant microglia by mitosis and apoptosis.

    PubMed

    Wirenfeldt, Martin; Dissing-Olesen, Lasse; Anne Babcock, Alicia; Nielsen, Marianne; Meldgaard, Michael; Zimmer, Jens; Azcoitia, Iñigo; Leslie, Robert Graham Quinton; Dagnaes-Hansen, Frederik; Finsen, Bente

    2007-08-01

    Microglial population expansion occurs in response to neural damage via processes that involve mitosis and immigration of bone marrow-derived cells. However, little is known of the mechanisms that regulate clearance of reactive microglia, when microgliosis diminishes days to weeks later. We have investigated the mechanisms of microglial population control in a well-defined model of reactive microgliosis in the mouse dentate gyrus after perforant pathway axonal lesion. Unbiased stereological methods and flow cytometry demonstrate significant lesion-induced increases in microglial numbers. Reactive microglia often occurred in clusters, some having recently incorporated bromodeoxyuridine, showing that proliferation had occurred. Annexin V labeling and staining for activated caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling showed that apoptotic mechanisms participate in dissolution of the microglial response. Using bone marrow chimeric mice, we found that the lesion-induced proliferative capacity of resident microglia superseded that of immigrant microglia, whereas lesion-induced kinetics of apoptosis were comparable. Microglial numbers and responses were severely reduced in bone marrow chimeric mice. These results broaden our understanding of the microglial response to neural damage by demonstrating that simultaneously occurring mitosis and apoptosis regulate expansion and reduction of both resident and immigrant microglial cell populations.

  7. Neogambogic Acid Suppresses Receptor Activator of Nuclear Factor κB Ligand (RANKL)-Induced Osteoclastogenesis by Inhibiting the JNK and NF-κB Pathways in Mouse Bone Marrow-Derived Monocyte/Macrophages.

    PubMed

    Jin, Gu; Wang, Fang-Fang; Li, Tao; Jia, Dong-Dong; Shen, Yong; Xu, Hai-Chao

    2018-04-26

    BACKGROUND Neogambogic acid (NGA) is used in traditional Chinese medicine. The aim of this study was to investigate the effects of NGA on gene signaling pathways involved in osteoclastogenesis in mouse bone marrow-derived monocyte/macrophages (BMMs) and on bone resorption in vitro. MATERIAL AND METHODS Primary mouse BMMs were cultured with increasing concentrations of NGA. Real-time polymerase chain reaction was used to study the expression of mRNAs corresponding to gene products specific to receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, including tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), cathepsin K (CTSK), and nuclear factor of activated T cells c1 (NFATc1). A cell counting kit-8 assay was used to evaluate cell proliferation. Western blotting and confocal immunofluorescence microscopy were used to investigate the signaling pathways. A bone resorption model was used to quantify bone resorption. RESULTS An NGA dose of ≤0.4 μg/ml had no significant effect on the proliferation of mouse BMMs in vitro (P>0.05); concentrations of between 0.1-0.4 μg/ml significantly inhibited RANKL-induced osteoclastogenesis (P<0.01) in a dose-dependent manner. Compared with the control group, NGA significantly reduced RANKL-induced bone resorption in vitro (P <0.01), and downregulated the expression of osteoclast-related mRNAs of TRAP, CTR, CTSK, and NFATc1. NGA suppressed the activation of JNK but not the p38 signaling pathway and significantly reduced NF-κB p65 phosphorylation and the nuclear transport of NF-κB molecules, which inhibited NFATc1 expression. CONCLUSIONS NGA suppressed RANKL-induced osteoclastogenesis by inhibiting the JNK and NF-κB pathways in mouse BMMs in vitro and reduced osteoclastic bone resorption.

  8. Bone marrow-derived mesenchymal stem cells protect against lung injury in a mouse model of bronchopulmonary dysplasia.

    PubMed

    Luan, Yun; Ding, Wei; Ju, Zhi-Ye; Zhang, Zhao-Hua; Zhang, Xue; Kong, Feng

    2015-03-01

    The aim of the present study was to investigate the effect of bone marrow‑derived mesenchymal stem cells (BMSCs) in the treatment of lung injury in a mouse model of bronchopulmonary dysplasia (BPD) and examine the underlying mechanisms. A mouse model of BPD was created using continuous exposure to high oxygen levels for 14 days. BMSCs were isolated, cultured and then labeled with green fluorescent protein. Cells (1x106) were subsequently injected intravenously 1 h prior to high oxygen treatment. Animals were randomly divided into three groups (n=5 in each): Control group, BPD model group and BMSC injection group. At two weeks post‑treatment, the expression of transforming growth factor‑β1 (TGF‑β1), vascular endothelial growth factor (VEGF) and von Willebrand factor (vWF) was detected using immunohistochemical staining and immunofluorescence. Compared with the BPD model group, the body weight, airway structure and levels of TGF‑β1 and VEGF were significantly improved in the BMSC‑treated group. Immunofluorescence observations indicated that BMSCs were able to differentiate into cells expressing vWF and VEGF, which are markers of vascular tissues. The present study demonstrated that intravenous injection of BMSCs significantly improved lung damage in a neonatal mouse model of BPD at 14 days following hyperoxia‑induced injury. This provides novel information which may be used to guide further investigation into the use of stem cells in BPD.

  9. Differences in the developmental origins of the periosteum may influence bone healing.

    PubMed

    Ichikawa, Y; Watahiki, J; Nampo, T; Nose, K; Yamamoto, G; Irie, T; Mishima, K; Maki, K

    2015-08-01

    The jaw bone, unlike most other bones, is derived from neural crest stem cells, so we hypothesized that it may have different characteristics to bones from other parts of the body, especially in the nature of its periosteum. The periosteum exhibits osteogenic potential and has received considerable attention as a grafting material for the repair of bone and joint defects. Gene expression profiles of jaw bone and periosteum were evaluated by DNA microarray and real-time polymerase chain reaction. Furthermore, we perforated an area 2 mm in diameter on mouse frontal and parietal bones. Bone regeneration of these calvarial defects was evaluated using microcomputed tomography and histological analysis. The DNA microarray data revealed close homology between the gene expression profiles within the ilium and femur. The gene expression of Wnt-1, SOX10, nestin, and musashi-1 were significantly higher in the jaw bone than in other locations. Microcomputed tomography and histological analysis revealed that the jaw bone had superior bone regenerative abilities than other bones. Jaw bone periosteum exhibits a unique gene expression profile that is associated with neural crest cells and has a positive influence on bone regeneration when used as a graft material to repair bone defects. A full investigation of the biological and mechanical properties of jaw bone as an alternative graft material for jaw reconstructive surgery is recommended. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Mouse shoulder morphology responds to locomotor activity and the kinematic differences of climbing and running.

    PubMed

    Green, David J; Richmond, Brian G; Miran, Sara L

    2012-12-01

    Mechanical loads play a significant role in determining long bone shape and strength, but less work has explored how these loads influence flat bones like the scapula, which has been shown to vary with locomotor preference among primate taxa. Here, we tested the effects of voluntary running and climbing exercise in mice to examine how the mechanical loads borne from different locomotor patterns influence shoulder morphological development. Ninety-nine female wild-type mice were distributed equally among sedentary control, activity-wheel running, and vertical climbing experimental conditions. Running mice had the lowest body masses, larger intrinsic shoulder muscles, and the most pronounced differences in scapular size and shape relative to the other groups. Climbing mouse scapular morphology also differed significantly from the control individuals, but these differences were not as marked as those between the running and control mice. This might be attributable in part to greater levels of activity in the wheel-runners relative to the climbers. Additionally, climbing mice held their bodies closer to the substrate and maintained more flexed limbs and posterior hand positions compared with the kinematics of running. As a result, climbers differed significantly from both the running and control mice in developing a relatively broader infraspinous region, which is likely related to preferential recruitment of the infraspinatus and teres minor muscles to maintain flexed shoulder postures. The results of this study demonstrate that variation in activity level and type of locomotor regime over a significant portion of the life history influences muscle and bone development in the shoulder. Copyright © 2012 Wiley Periodicals, Inc.

  11. Longitudinal effects of Parathyroid Hormone treatment on morphological, densitometric and mechanical properties of mouse tibia.

    PubMed

    Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Liu, Yue; Bellantuono, Ilaria; Viceconti, Marco

    2017-11-01

    The use of Parathyroid Hormone (PTH) as bone anabolic is limited due to cost-benefit assessments. Preclinical studies evaluating the effects of PTH on bone have reported variable and often contradictory results. Here, we have applied a new approach using a combination of in-vivo longitudinal µCT, image processing techniques and finite element models to monitor early local changes in the whole tibia (divided in 40 compartments) and mechanical properties of female C57BL/6J mice treated with PTH 1-34, compared to controls. Compared with standard 3D bone morphometric analysis, our new approach allowed detection of much smaller and localised changes in bone mineral content (BMC) at very early time points (1 week vs 3 weeks with standard methods) and showed that changes do not occur uniformly over time and across the anatomical space. Indeed, in the PTH treated mice, significant changes in BMC were observed in the medial and posterior sectors of the proximal tibia, a week after treatment, and in the medial sector of the tibia midshaft region a week later (p < 0.05). By the third week, two thirds of the regions showed significantly higher values of BMC (p < 0.05). The effect of PTH on bone regional volume is similar to that on BMC, but there is almost no effect of PTH on bone tissue mineral density. The differences in estimated mechanical properties became significant after three weeks of treatment (p < 0.05). These results provide the first evidence of an early and localised PTH effect on murine bone, and show that our novel partitioning approach, compared to the standard evaluation protocol, allows a more precise quantification of bone changes following treatment, which would facilitate preclinical testing of novel mono- and/or combination therapies throughout the bone. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications

    PubMed Central

    Torossian, Frédéric; Guerton, Bernadette; Anginot, Adrienne; Alexander, Kylie A.; Desterke, Christophe; Soave, Sabrina; Tseng, Hsu-Wen; Arouche, Nassim; Boutin, Laetitia; Kulina, Irina; Salga, Marjorie; Jose, Beulah; Pettit, Allison R.; Clay, Denis; Vlachos, Erica; Genet, Guillaume; Debaud, Charlotte; Denormandie, Philippe; Genet, François; Sims, Natalie A.; Banzet, Sébastien; Levesque, Jean-Pierre; Lataillade, Jean-Jacques; Le Bousse-Kerdilès, Marie-Caroline

    2017-01-01

    Neurogenic heterotopic ossification (NHO) is the formation of ectopic bone generally in muscles surrounding joints following spinal cord or brain injury. We investigated the mechanisms of NHO formation in 64 patients and a mouse model of spinal cord injury–induced NHO. We show that marrow from human NHOs contains hematopoietic stem cell (HSC) niches, in which mesenchymal stromal cells (MSCs) and endothelial cells provide an environment supporting HSC maintenance, proliferation, and differentiation. The transcriptomic signature of MSCs from NHOs shows a neuronal imprinting associated with a molecular network required for HSC support. We demonstrate that oncostatin M (OSM) produced by activated macrophages promotes osteoblastic differentiation and mineralization of human muscle-derived stromal cells surrounding NHOs. The key role of OSM was confirmed using an experimental model of NHO in mice defective for the OSM receptor (OSMR). Our results provide strong evidence that macrophages contribute to NHO formation through the osteogenic action of OSM on muscle cells within an inflammatory context and suggest that OSM/OSMR could be a suitable therapeutic target. Altogether, the evidence of HSCs in ectopic bones growing at the expense of soft tissue in spinal cord/brain-injured patients indicates that inflammation and muscle contribute to HSC regulation by the brain-bone-blood triad. PMID:29093266

  13. Overexpression of bone sialoprotein leads to an uncoupling of bone formation and bone resorption in mice.

    PubMed

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-11-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.

  14. In vitro and in vivo evidence for orphan nuclear receptor RORα function in bone metabolism

    PubMed Central

    Meyer, Thomas; Kneissel, Michaela; Mariani, Jean; Fournier, Brigitte

    2000-01-01

    Bone is a major target site for steroid hormone action. Steroid hormones like cortisol, vitamin D, and estradiol are responsible for principal events associated with bone formation and resorption. Over the past decade, new members of the nuclear hormone gene family have been identified that lack known ligands. These orphan receptors can be used to uncover signaling molecules that regulate yet unidentified physiological networks. In the present study the function of retinoic acid receptor-related orphan receptor (ROR) α in bone metabolism has been examined. We showed that RORα and RORγ, but not RORβ, are expressed in mesenchymal stem cells derived from bone marrow. Interestingly, for RORα we observed an increased messenger signal expression between control cells and cells undergoing osteogenic differentiation. Furthermore, the direct activation of mouse bone sialoprotein by RORα, typically 7-fold, has been shown. In contrast, transient overexpression of RORα overrides the activation of the osteocalcin promoter by 1α,25-dihydroxyvitamin D3. In addition, we have investigated bone mass parameters and bone geometry in the mouse mutant staggerer (sg/sg), a mouse strain that carries a deletion within the RORα gene. Homozygote mutants have thin long bones compared with the heterozygote animals and wild-type littermates. More interestingly, the bones of the sg/sg animals are osteopenic as indicated by the comparison of bone mineral contents of sg/sg animals to the heterozygote and wild-type animals. We conclude that these in vitro and in vivo results suggest a function for RORα in bone biology. RORα most likely acts by direct modulation of a bone matrix component. PMID:10900268

  15. PULSED FOCUSED ULTRASOUND TREATMENT OF MUSCLE MITIGATES PARALYSIS-INDUCED BONE LOSS IN THE ADJACENT BONE: A STUDY IN A MOUSE MODEL

    PubMed Central

    Poliachik, Sandra L.; Khokhlova, Tatiana D.; Wang, Yak-Nam; Simon, Julianna C.; Bailey, Michael R.

    2015-01-01

    Bone loss can result from bed rest, space flight, spinal cord injury or age-related hormonal changes. Current bone loss mitigation techniques include pharmaceutical interventions, exercise, pulsed ultrasound targeted to bone and whole body vibration. In this study, we attempted to mitigate paralysis-induced bone loss by applying focused ultrasound to the midbelly of a paralyzed muscle. We employed a mouse model of disuse that uses onabotulinumtoxinA-induced paralysis, which causes rapid bone loss in 5 d. A focused 2 MHz transducer applied pulsed exposures with pulse repetition frequency mimicking that of motor neuron firing during walking (80 Hz), standing (20 Hz), or the standard pulsed ultrasound frequency used in fracture healing (1 kHz). Exposures were applied daily to calf muscle for 4 consecutive d. Trabecular bone changes were characterized using micro-computed tomography. Our results indicated that application of certain focused pulsed ultrasound parameters was able to mitigate some of the paralysis-induced bone loss. PMID:24857416

  16. Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-08-01

    Although glucocorticoids are frequently prescribed for the symptomatic management of inflammatory disorders such as rheumatoid arthritis, extended glucocorticoid exposure is the leading cause of physician-induced osteoporosis and leaves patients at a high risk of fracture. To study the biochemical effects of glucocorticoid exposure and how they might affect biomechanical properties of the bone, Raman spectra were acquired from ex vivo tibiae of glucocorticoid- and placebo-treated wild-type mice and a transgenic mouse model of rheumatoid arthritis. Statistically significant spectral differences were observed due to both treatment regimen and mouse genotype. These differences are attributed to changes in the overall bone mineral composition, as well as the degree of phosphate mineralization in tibial cortical bone. In addition, partial least squares regression was used to generate a Raman-based prediction of each tibia's biomechanical strength as quantified by a torsion test. The Raman-based predictions were as accurate as those produced by microcomputed tomography derived parameters, and more accurate than the clinically-used parameter of bone mineral density. These results suggest that Raman spectroscopy could be a valuable tool for monitoring bone biochemistry in studies of bone diseases such as osteoporosis, including tests of drugs being developed to combat these diseases.

  17. Inhibition of experimental bone resorption and osteoclast formation and survival by 2-aminoethanesulphonic acid.

    PubMed

    Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T

    1999-09-01

    It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.

  18. A Method for Whole Protein Isolation from Human Cranial Bone

    PubMed Central

    Lyon, Sarah M.; Mayampurath, Anoop; Rogers, M. Rose; Wolfgeher, Donald J.; Fisher, Sean M.; Volchenboum, Samuel L.; He, Tong-Chuan; Reid, Russell R.

    2016-01-01

    The presence of the dense hydroxyapatite matrix within human bone limits the applicability of conventional protocols for protein extraction. This has hindered the complete and accurate characterization of the human bone proteome thus far, leaving many bone-related disorders poorly understood. We sought to refine an existing method of protein extraction from mouse bone to extract whole proteins of varying molecular weights from human cranial bone. Whole protein was extracted from human cranial suture by mechanically processing samples using a method that limits protein degradation by minimizing heat introduction to proteins. The presence of whole protein was confirmed by western blotting. Mass spectrometry was used to sequence peptides and identify isolated proteins. The data have been deposited to the ProteomeXchange with identifier PXD003215. Extracted proteins were characterized as both intra- and extracellular and had molecular weights ranging from 9.4-629 kDa. High correlation scores among suture protein spectral counts support the reproducibility of the method. Ontology analytics revealed proteins of myriad functions including mediators of metabolic processes and cell organelles. These results demonstrate a reproducible method for isolation of whole protein from human cranial bone, representing a large range of molecular weights, origins and functions. PMID:27677936

  19. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice.

    PubMed

    Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lay, Yu-An E; Lane, Nancy E; Yao, Wei

    2015-12-01

    For tamoxifen-dependent Cre recombinase, also known as CreER recombinase, tamoxifen (TAM) is used to activate the Cre to generate time- and tissue-specific mouse mutants. TAM is a potent CreER system inducer; however, TAM is also an active selective estrogen receptor modulator (SERM) that can influence bone homeostasis. The purpose of this study was to optimize the TAM dose for Cre recombinase activation while minimizing the effects of TAM on bone turnover in young growing mice. To evaluate the effects of TAM on bone turnover and bone mass, 1-month-old wild-type male and female mice were intraperitoneally injected with TAM at 0, 1, 10 or 100mg/kg/day for four consecutive days, or 100, 300 mg/kg/day for one day. The distal femurs were analyzed one month after the last TAM injection by microCT, mechanical test, and surface-based bone histomorphometry. Similar doses of TAM were used in Col1 (2.3 kb)-CreERT2; mT/mG reporter male mice to evaluate the dose-dependent efficacy of Cre-ER activation in bone tissue. A TAM dose of 100 mg/kg × 4 days significantly increased trabecular bone volume/total volume (BV/TV) of the distal femur, femur length, bone strength, and serum bone turnover markers compared to the 0mg control group. In contrast, TAM doses ≤ 10 mg/kg did not significantly change any of these parameters compared to the 0mg group, although a higher bone strength was observed in the 10mg group. Surface-based histomorphometry revealed that the 100mg/kg dose of TAM dose significantly increased trabecular bone formation and decreased periosteal bone formation at 1-week post-TAM treatment. Using the reporter mouse model Col1-CreERT2; mT/mG, we found that 10mg/kg TAM induced Col1-CreERT2 activity in bone at a comparable level to the 100mg/kg dose. TAM treatment at 100mg/kg/day × 4 days significantly affects bone homeostasis, resulting in an anabolic bone effect on trabecular bone in 1-month-old male mice. However, a lower dose of TAM at 10 mg/kg/day × 4 days can yield similar Col1-CreERT2 induction efficacy with minimum effects on bone turnover in young male mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuong, A; Chow, J

    Purpose: This study investigated the surface dose variation in preclinical irradiation using small animal, when monoenergetic photon beams with energy range from 50 keV to 1.25 MeV were used. Methods: Inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom based on the same CT image set were used. The homogeneous and bone-tissue homogeneous phantom were created with the relative electron density of all and only bone voxels of the mouse overridden to one, respectively. Monte Carlo simulation based on the EGSnrc-based code was used to calculate the surface dose, when the phantoms were irradiated by a 360° photon arc with energies rangingmore » from 50 keV to 1.25 MeV. The mean surface doses of the three phantoms were calculated. In addition, the surface doses from partial arcs, 45°–315°, 125°–225°, 45°–125° and 225°–315° covering the anterior, posterior, right lateral and left lateral region of the mouse were determined using different photon beam energies. Results: When the prescribed dose at the isocenter of the mouse was 2 Gy, the maximum mean surface doses, found at the 50-keV photon beams, were 0.358 Gy, 0.363 Gy and 0.350 Gy for the inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom, respectively. The mean surface dose of the mouse was found decreasing with an increase of the photon beam energy. For surface dose in different orientations, the lateral regions of the mouse were receiving lower dose than the anterior and posterior regions. This may be due to the increase of beam attenuation along the horizontal (left-right) axis than the vertical (anterior-posterior) in the mouse. Conclusion: It is concluded that consideration of phantom inhomogeneity in the dose calculation resulted in a lower mean surface dose of the mouse. The mean surface dose also decreased with an increase of photon beam energy in the kilovoltage range.« less

  1. Early-onset type 2 diabetes impairs skeletal acquisition in the male TALLYHO/JngJ mouse.

    PubMed

    Devlin, M J; Van Vliet, M; Motyl, K; Karim, L; Brooks, D J; Louis, L; Conlon, C; Rosen, C J; Bouxsein, M L

    2014-10-01

    Type 2 diabetes (T2D) incidence in adolescents is rising and may interfere with peak bone mass acquisition. We tested the effects of early-onset T2D on bone mass, microarchitecture, and strength in the TALLYHO/JngJ mouse, which develops T2D by 8 weeks of age. We assessed metabolism and skeletal acquisition in male TALLYHO/JngJ and SWR/J controls (n = 8-10/group) from 4 weeks to 8 and 17 weeks of age. Tallyho mice were obese; had an approximately 2-fold higher leptin and percentage body fat; and had lower bone mineral density vs SWR at all time points (P < .03 for all). Tallyho had severe deficits in distal femur trabecular bone volume fraction (-54%), trabecular number (-27%), and connectivity density (-82%) (P < .01 for all). Bone formation was higher in Tallyho mice at 8 weeks but lower by 17 weeks of age vs SWR despite similar numbers of osteoblasts. Bone marrow adiposity was 7- to 50-fold higher in Tallyho vs SWR. In vitro, primary bone marrow stromal cell differentiation into osteoblast and adipocyte lineages was similar in SWR and Tallyho, suggesting skeletal deficits were not due to intrinsic defects in Tallyho bone-forming cells. These data suggest the Tallyho mouse might be a useful model to study the skeletal effects of adolescent T2D.

  2. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-08-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.

  3. Intercellular signaling pathways active during and after growth and differentiation of the lumbar vertebral growth plate.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2011-06-15

    Vertebral growth plates at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the major signaling pathways active in the postnatal mouse lumbar vertebral growth plate. The growth of all long bones is known to occur by cartilaginous growth plates. The growth plate is composed of layers of chondrocyets that actively proliferate, differentiate, die and, are replaced by bone. The role of major cell signaling pathways has been suggested for regulation of the fetal long bones. But not much is known about the molecular or cellular signals that control the postnatal vertebral growth plate and hence postnatal vertebral bone growth. Understanding such molecular mechanisms will help design therapeutic treatments for vertebral growth disorders such as scoliosis. Antibodies against activated downstream intermediates were used to identify cells in the growth plate responding to BMP, TGFβ, and FGF in cryosections of lumbar vertebrae from different postnatal age mice to identify the zones that were responding to these signals. Reporter mice were used to identify the chondrocytes responding to hedgehog (Ihh), and Wnt signaling. We present a spatial/temporal map of these signaling pathways during growth, and differentiation of the mouse lumbar vertebral growth plate. During growth and differentiation of the vertebral growth plate, its different components respond at different times to different intercellular signaling ligands. Response to most of these signals is dramatically downregulated at the end of vertebral growth.

  4. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.

    PubMed

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L

    2016-05-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.

  5. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis

    PubMed Central

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D.

    2016-01-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance—replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. Significance This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. PMID:26987353

  6. EFFECT OF MECHANICAL STIMULI ON SKELETAL REGENERATION AROUND IMPLANTS

    PubMed Central

    Leucht, Philipp; Kim, Jae-Beom; Wazen, Rima; Currey, Jennifer A.; Nanci, Antonio; Brunski, John B.; Helms, Jill A.

    2007-01-01

    Due to the aging population and the increasing need for total joint replacements, osseointegration is of a great interest for various clinical disciplines. Our objective was to investigate the molecular and cellular foundation that underlies this process. Here, we used an in vivo mouse model to study the cellular and molecular response in three distinct areas of unloaded implants: the periosteum, the gap between implant and cortical bone, and the marrow space. Our analyses began with the early phases of healing, and continued until the implants were completely osseointegrated. We investigated aspects of osseointegration ranging from vascularization, cell proliferation, differentiation, and bone remodeling. In doing so, we gained an understanding of the healing mechanisms of different skeletal tissues during unloaded implant osseointegration. To continue our analysis, we used a micromotion device to apply a defined physical stimulus to the implants, and in doing so, we dramatically enhanced bone formation in the peri-implant tissue. By comparing strain measurements with cellular and molecular analyses, we developed an understanding of the correlation between strain magnitudes and fate decisions of cells shaping the skeletal regenerate. PMID:17175211

  7. Deletion of Core-binding factor β (Cbfβ) in mesenchymal progenitor cells provides new insights into Cbfβ/Runxs complex function in cartilage and bone development

    PubMed Central

    Wu, Mengrui; Li, Chenguan; Zhu, Guochun; Wang, Yiping; Jules, Joel; Lu, Yun; McConnell, Matthew; Wang, Yong-Jun; Shao, Jian-Zhong; Li, Yi-Ping; Chen, Wei

    2015-01-01

    Core-binding factor β (Cbfβ) is a subunit of the Cbf family of heterodimeric transcription factors which plays a critical role in skeletal development through its interaction with the Cbfα subunits, also known as Runt-related transcription factors (Runxs). However, the mechanism by which Cbfβ regulates cartilage and bone development remains unclear. Existing Cbfβ-deficient mouse models cannot specify the role of Cbfβ in skeletal cell lineage. Herein, we sought to specifically address the role of Cbfβ in cartilage and bone development by using a conditional knockout (CKO) approach. A mesenchymal-specific Cbfβ CKO mouse model was generated by using the Dermo1-Cre mouse line to specifically delete Cbfβ in mesenchymal stem cells, which give rise to osteoblasts and chondrocytes. Surprisingly, the mutant mice had under-developed larynx and tracheal cartilage causing alveolus defects which led to death shortly after birth from suffocation. Also, the mutant mice exhibited severe skeletal deformities from defective intramembranous and endochondral ossification, owing to delayed chondrocyte maturation and impaired osteoblast differentiation. Almost all bones of the mutant mice, including the calvariae, vertebrae, tibiae, femurs, ribs, limbs and sternums were defective. Importantly, we showed that Cbfβ was expressed throughout the skeleton during both embryonic and postnatal development, which explains the multiple-skeletal defects observed in the mutant mice. Consistently, Cbfβ deficiency impaired both chondrocyte proliferation and hypertrophy zone hypertrophy during growth-plate development in the long bones of mutant mice. Notably, Cbfβ, Runx1 and Runx2 displayed different expression patterns in the growth plates of the wildtype mice indicating that Cbfβ/Runx1 complex and Cbfβ/Runx2 complex may regulate chondrocyte proliferation and hypertrophy, respectively, in a spatial and temporal manner. Cbfβ deletion in the mesenchymal progenitors impacted bone development by dramatically down-regulating Collagen X (Col X) and Osterix (Osx), but had a dispensable effect on osteoclast development. Collectively, the results demonstrate that Cbfβ mediates cartilage and bone development by interacting with Runx1 and Runx2 to regulate the expressions of Col X and Osx for chondrocyte and osteoblast development. These findings not only reveal a critical role for Cbfβ in cartilage and bone development, but also facilitate the design of novel therapeutic approaches for skeletal diseases. PMID:24798493

  8. Deletion of core-binding factor β (Cbfβ) in mesenchymal progenitor cells provides new insights into Cbfβ/Runxs complex function in cartilage and bone development.

    PubMed

    Wu, Mengrui; Li, Chenguan; Zhu, Guochun; Wang, Yiping; Jules, Joel; Lu, Yun; McConnell, Matthew; Wang, Yong-Jun; Shao, Jian-Zhong; Li, Yi-Ping; Chen, Wei

    2014-08-01

    Core-binding factor β (Cbfβ) is a subunit of the Cbf family of heterodimeric transcription factors, which plays a critical role in skeletal development through its interaction with the Cbfα subunits, also known as Runt-related transcription factors (Runxs). However, the mechanism by which Cbfβ regulates cartilage and bone development remains unclear. Existing Cbfβ-deficient mouse models cannot specify the role of Cbfβ in skeletal cell lineage. Herein, we sought to specifically address the role of Cbfβ in cartilage and bone development by using a conditional knockout (CKO) approach. A mesenchymal-specific Cbfβ CKO mouse model was generated by using the Dermo1-Cre mouse line to specifically delete Cbfβ in mesenchymal stem cells, which give rise to osteoblasts and chondrocytes. Surprisingly, the mutant mice had under-developed larynx and tracheal cartilage, causing alveolus defects that led to death shortly after birth from suffocation. Also, the mutant mice exhibited severe skeletal deformities from defective intramembranous and endochondral ossification, owing to delayed chondrocyte maturation and impaired osteoblast differentiation. Almost all bones of the mutant mice, including the calvariae, vertebrae, tibiae, femurs, ribs, limbs and sternums were defective. Importantly, we showed that Cbfβ was expressed throughout the skeleton during both embryonic and postnatal development, which explains the multiple-skeletal defects observed in the mutant mice. Consistently, Cbfβ deficiency impaired both chondrocyte proliferation and hypertrophy zone hypertrophy during growth-plate development in the long bones of mutant mice. Notably, Cbfβ, Runx1 and Runx2 displayed different expression patterns in the growth plates of the wild-type mice, indicating that Cbfβ/Runx1 complex and Cbfβ/Runx2 complex may regulate chondrocyte proliferation and hypertrophy, respectively, in a spatial and temporal manner. Cbfβ deletion in the mesenchymal progenitors affected bone development by dramatically down-regulating Collagen X (Col X) and Osterix (Osx) but had a dispensable effect on osteoclast development. Collectively, the results demonstrate that Cbfβ mediates cartilage and bone development by interacting with Runx1 and Runx2 to regulate the expressions of Col X and Osx for chondrocyte and osteoblast development. These findings not only reveal a critical role for Cbfβ in cartilage and bone development but also facilitate the design of novel therapeutic approaches for skeletal diseases. Copyright © 2014. Published by Elsevier Inc.

  9. Defective Endochondral Ossification-Derived Matrix and Bone Cells Alter the Lymphopoietic Niche in Collagen X Mouse Models

    PubMed Central

    Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert

    2013-01-01

    Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders. PMID:23656481

  10. Defective endochondral ossification-derived matrix and bone cells alter the lymphopoietic niche in collagen X mouse models.

    PubMed

    Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert; Jacenko, Olena

    2013-10-01

    Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders.

  11. A mouse model with postnatal endolymphatic hydrops and hearing loss

    PubMed Central

    Megerian, Cliff A.; Semaan, Maroun T.; Aftab, Saba; Kisley, Lauren B.; Zheng, Qing Yin; Pawlowski, Karen S.; Wright, Charles G.; Alagramam, Kumar N.

    2010-01-01

    Endolymphatic hydrops (ELH), hearing loss and neuronal degeneration occur together in a variety of clinically significant disorders, including Meniere’s disease (MD). However, the sequence of these pathological changes and their relationship to each other are not well understood. In this regard, an animal model that spontaneously develops these features postnatally would be useful for research purposes. A search for such a model led us to the PhexHyp-Duk mouse, a mutant allele of the Phex gene causing X-linked hypophosphatemic rickets. The hemizygous male (PhexHyp-Duk/Y) was previously reported to exhibit various abnormalities during adulthood, including thickening of bone, ELH and hearing loss. The reported inner-ear phenotype was suggestive of progressive pathology and spontaneous development of ELH postnatally, but not conclusive. The main focuses of this report are to further characterize the inner ear phenotype in PhexHyp-Duk/Y mice and to test the hypotheses that (a) the PhexHyp-Duk/Y mouse develops ELH and hearing loss postnatally, and (b) the development of ELH in the PhexHyp-Duk/Y mouse is associated with obstruction of the endolymphatic duct (ED) due to thickening of the surrounding bone. Auditory brainstem response (ABR) recordings at various times points and histological analysis of representative temporal bones reveal that PhexHyp-Duk/Y mice typically develop adult onset, asymmetric, progressive hearing loss closely followed by the onset of ELH. ABR and histological data show that functional degeneration precedes structural degeneration. The major degenerative correlate of hearing loss and ELH in the mutants is the primary loss of spiral ganglion cells. Further, PhexHyp-Duk/Y mice develop ELH without evidence of ED obstruction, supporting the idea that ELH can be induced by a mechanism other than the blockade of longitudinal flow of endolymphatic fluid, and occlusion of ED is not a prerequisite for the development of ELH in patients. PMID:18289812

  12. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.

    PubMed

    Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2016-09-01

    Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. In vitro bioactivity of akermanite ceramics.

    PubMed

    Wu, Chengtie; Chang, Jiang; Ni, Siyu; Wang, Junying

    2006-01-01

    In this study, the bone-like apatite-formation ability of akermanite ceramics (Ca2MgSi2O7) in simulated body fluid (SBF) and the effects of ionic products from akermanite dissolution on osteoblasts and mouse fibroblasts (cell line L929) were investigated. In addition, osteoblast morphology and proliferation on the ceramics were evaluated. The results showed that akermanite ceramics possessed bone-like apatite-formation ability comparable with bioactive wollastonite ceramics (CaSiO3) after 20 days of soaking in SBF and the mechanism of bone-like apatite formation on akermanite ceramics is similar to that of wollastonite ceramics. The Ca, Si, and Mg ions from akermanite dissolution at certain ranges of concentration significantly stimulated osteoblast and L929 cell proliferation. Furthermore, osteoblasts spread well on the surface of akermanite ceramics, and proliferated with increasing the culture time. The results showed that akermanite ceramics possess bone-like apatite-formation ability and can release soluble ionic products to stimulate cell proliferation, which indicated good bioactivity. (c) 2005 Wiley Periodicals, Inc

  14. Bone tissue heterogeneity is associated with fracture toughness: a polarization Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Makowski, Alexander J.; Granke, Mathilde; Uppuganti, Sasidhar; Mahadevan-Jansen, Anita; Nyman, Jeffry S.

    2015-02-01

    Polarization Raman Spectroscopy has been used to demonstrate microstructural features and collagen fiber orientation in human and mouse bone, concurrently measuring both organization and composition; however, it is unclear as to what extent these measurements explain the mechanical quality of bone. In a cohort of age and gender matched cadaveric cortical bone samples (23-101 yr.), we show homogeneity of both composition and structure are associated with the age related decrease in fracture toughness. 64 samples were machined into uniform specimens and notched for mechanical fracture toughness testing and polished for Raman Spectroscopy. Fingerprint region spectra were acquired on wet bone prior to mechanical testing by sampling nine different microstructural features spaced in a 750x750 μm grid in the region of intended crack propagation. After ASTM E1820 single edge notched beam fracture toughness tests, the sample was dried in ethanol and the osteonal-interstitial border of one osteon was samples in a 32x32 grid of 2μm2 pixels for two orthogonal orientations relative to the long bone axis. Standard peak ratios from the 9 separate microstructures show heterogeneity between structures but do not sufficiently explain fracture toughness; however, peak ratios from mapping highlight both lamellar contrast (ν1Phos/Amide I) and osteon-interstitial contrast (ν1Phos/Proline). Combining registered orthogonal maps allowed for multivariate analysis of underlying biochemical signatures. Image entropy and homogeneity metrics of single principal components significantly explain resistance to crack initiation and propagation. Ultimately, a combination of polarization content and multivariate Raman signatures allowed for the association of microstructural tissue heterogeneity with fracture resistance.

  15. Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice

    PubMed Central

    Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q.; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui

    2014-01-01

    Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. PMID:24780611

  16. Loss of Parafollicular Cells during Gravitational Changes (Microgravity, Hypergravity) and the Secret Effect of Pleiotrophin

    PubMed Central

    Albi, Elisabetta; Curcio, Francesco; Spelat, Renza; Lazzarini, Andrea; Lazzarini, Remo; Cataldi, Samuela; Loreti, Elisabetta; Ferri, Ivana; Ambesi-Impiombato, Francesco Saverio

    2012-01-01

    It is generally known that bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space. Changes in blood flow, systemic hormones, and locally produced factors were indicated as important elements contributing to the response of osteoblastic cells to loading, but research in this field still has many questions. Here, the possible biological involvement of thyroid C cells is being investigated. The paper is a comparison between a case of a wild type single mouse and a over-expressing pleiotrophin single mouse exposed to hypogravity conditions during the first animal experiment of long stay in International Space Station (91 days) and three similar mice exposed to hypergravity (2Gs) conditions. We provide evidence that both microgravity and hypergravity induce similar loss of C cells with reduction of calcitonin production. Pleiotrophin over-expression result in some protection against negative effects of gravity change. Potential implication of the gravity mechanic forces in the regulation of bone homeostasis via thyroid equilibrium is discussed. PMID:23284618

  17. Spontaneous osteosarcoma of the femur in a non-obese diabetic mouse

    PubMed Central

    Hong, Sunhwa; Lee, Hyun-A; Choe, Ohmok; Chung, Youngho

    2011-01-01

    An abnormal swelling was identified in the distal portion of the right femur in a 1-year-old non-obese diabetic (NOD) mouse. Grossly, a large mass of the distal femur was observed in the right femur. Lesions were poorly marginated, associated with destruction of the cancellous and cortical elements of the bone, and showed ossification within the soft tissue component. Histologically, the tumor was identified as a poorly differentiated sarcoma. Histopathologic examination of the bone masses revealed invasive proliferation of poorly differentiated neoplastic mesenchymal cells forming streams, bundles, and nests, which resulted in destruction of normal bone. Neoplastic cells exhibited random variation in cellular appearance and arrangement, as well as matrix composition and abundance. Haphazard and often intermingling patterns of osteogenic, chondroblastic, lipoblastic, and angiogenic tissues were present. Larger areas of neoplastic bone and hyaline cartilage contained multiple large areas of hemorrhage and necrosis bordered by neoplastic cells. The mass was diagnosed as an osteosarcoma. To our knowledge, this is the first spontaneous osteosarcoma in an NOD mouse. PMID:21998615

  18. BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation.

    PubMed

    Madhu, Vedavathi; Li, Ching-Ju; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2014-01-01

    Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.

  19. Stimulation of Bone Formation in Cortical Bone of Mice Treated with a Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-binding Peptide That Possesses Osteoclastogenesis Inhibitory Activity

    PubMed Central

    Furuya, Yuriko; Inagaki, Atsushi; Khan, Masud; Mori, Kaoru; Penninger, Josef M.; Nakamura, Midori; Udagawa, Nobuyuki; Aoki, Kazuhiro; Ohya, Keiichi; Uchida, Kohji; Yasuda, Hisataka

    2013-01-01

    To date, parathyroid hormone is the only clinically available bone anabolic drug. The major difficulty in the development of such drugs is the lack of clarification of the mechanisms regulating osteoblast differentiation and bone formation. Here, we report a peptide (W9) known to abrogate osteoclast differentiation in vivo via blocking receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling that we surprisingly found exhibits a bone anabolic effect in vivo. Subcutaneous administration of W9 three times/day for 5 days significantly augmented bone mineral density in mouse cortical bone. Histomorphometric analysis showed a decrease in osteoclastogenesis in the distal femoral metaphysis and a significant increase in bone formation in the femoral diaphysis. Our findings suggest that W9 exerts bone anabolic activity. To clarify the mechanisms involved in this activity, we investigated the effects of W9 on osteoblast differentiation/mineralization in MC3T3-E1 (E1) cells. W9 markedly increased alkaline phosphatase (a marker enzyme of osteoblasts) activity and mineralization as shown by alizarin red staining. Gene expression of several osteogenesis-related factors was increased in W9-treated E1 cells. Addition of W9 activated p38 MAPK and Smad1/5/8 in E1 cells, and W9 showed osteogenesis stimulatory activity synergistically with BMP-2 in vitro and ectopic bone formation. Knockdown of RANKL expression in E1 cells reduced the effect of W9. Furthermore, W9 showed a weak effect on RANKL-deficient osteoblasts in alkaline phosphatase assay. Taken together, our findings suggest that this peptide may be useful for the treatment of bone diseases, and W9 achieves its bone anabolic activity through RANKL on osteoblasts accompanied by production of several autocrine factors. PMID:23319583

  20. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    PubMed Central

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S. aureus regulates osteoclastogenesis to obtain better understanding of the complex mechanisms of S. aureus induced bone destruction in vivo. PMID:27311019

  1. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells

    PubMed Central

    Singh, Satyendra; Klarmann, Kimberly D.; Coppola, Vincenzo; Keller, Jonathan R.; Tessarollo, Lino

    2016-01-01

    c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies. PMID:27835883

  2. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells.

    PubMed

    Puverel, Sandrine; Kiris, Erkan; Singh, Satyendra; Klarmann, Kimberly D; Coppola, Vincenzo; Keller, Jonathan R; Tessarollo, Lino

    2016-12-20

    c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.

  3. Keratin 13 expression reprograms bone and brain metastases of human prostate cancer cells.

    PubMed

    Li, Qinlong; Yin, Lijuan; Jones, Lawrence W; Chu, Gina C-Y; Wu, Jason B-Y; Huang, Jen-Ming; Li, Quanlin; You, Sungyong; Kim, Jayoung; Lu, Yi-Tsung; Mrdenovic, Stefan; Wang, Ruoxiang; Freeman, Michael R; Garraway, Isla; Lewis, Michael S; Chung, Leland W K; Zhau, Haiyen E

    2016-12-20

    Lethal progression of prostate cancer metastasis can be improved by developing animal models that recapitulate the clinical conditions. We report here that cytokeratin 13 (KRT13), an intermediate filament protein, plays a directive role in prostate cancer bone, brain, and soft tissue metastases. KRT13 expression was elevated in bone, brain, and soft tissue metastatic prostate cancer cell lines and in primary and metastatic clinical prostate, lung, and breast cancer specimens. When KRT13 expression was determined at a single cell level in primary tumor tissues of 44 prostate cancer cases, KRT13 level predicted bone metastasis and the overall survival of prostate cancer patients. Genetically enforced KRT13 expression in human prostate cancer cell lines drove metastases toward mouse bone, brain and soft tissues through a RANKL-independent mechanism, as KRT13 altered the expression of genes associated with EMT, stemness, neuroendocrine/neuromimicry, osteomimicry, development, and extracellular matrices, but not receptor activator NF-κB ligand (RANKL) signaling networks in prostate cancer cells. Our results suggest new inhibitors targeting RANKL-independent pathways should be developed for the treatment of prostate cancer bone and soft tissue metastases.

  4. Regulation of osteoclastogenesis by gap junction communication.

    PubMed

    Matemba, Stephen F; Lie, Anita; Ransjö, Maria

    2006-10-01

    Receptor activator of NF-kappaB ligand (RANKL) is crucial in osteoclastogenesis but signaling events involved in osteoclast differentiation are far from complete and other signals may play a role in osteoclastogenesis. A more direct pathway for cellular crosstalk is provided by gap junction intercellular channel, which allows adjacent cells to exchange second messengers, ions, and cellular metabolites. Here we have investigated the role of gap junction communication in osteoclastogenesis in mouse bone marrow cultures. Immunoreactive sites for the gap junction protein connexin 43 (Cx43) were detected in the marrow stromal cells and in mature osteoclasts. Carbenoxolone (CBX) functionally blocked gap junction communication as demonstrated by a scrape loading Lucifer Yellow dye transfer technique. CBX caused a dose-dependent inhibition (significant > or = 90 microM) of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells formed in 7- to 8-day marrow cultures stimulated by parathyroid hormone (PTH; 10 nM) or forskolin (FSK; 1 microM). Furthermore, CBX (100 microM) significantly inhibited prostaglandin E2 (PGE2; 10 microM) and 1,25(OH)2-vitamin D3 stimulated osteoclast differentiation in the mouse bone marrow cultures. Consequently, quantitative real-time polymerase chain reaction (PCR) analysis demonstrated that CBX downregulated the expression of osteoclast phenotypic markers, but without having any significant effects on RANK, RANKL, and osteoprotegerin (OPG) mRNA expression. However, the results demonstrated that CBX significantly inhibits RANKL-stimulated (100 ng/ml) osteoclastogenesis in the mouse bone marrow cultures. Taken together, our results suggests that gap junctional diffusion of messenger molecules interacts with signaling pathways downstream RANKL in osteoclast differentiation. Further studies are required to define the precise mechanisms and molecular targets involved. Copyright 2006 Wiley-Liss, Inc.

  5. Deficiency of Kruppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells

    PubMed Central

    Yu, Fang; Shi, Ying; Wang, Junfeng; Li, Juan; Fan, Daping; Ai, Walden

    2013-01-01

    Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which was accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development. PMID:23737434

  6. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae

    PubMed Central

    Ko, Frank C.; Dragomir, Cecilia; Plumb, Darren A.; Goldring, Steven R.; Wright, Timothy M.; Goldring, Mary B.; van der Meulen, Marjolein C.H.

    2013-01-01

    Objectives Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone and subsequently influence the development of osteoarthritis (OA). We used an in vivo tibial loading model to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Methods We applied cyclic compression of 4.5 and 9.0N peak loads to the left tibia via the knee joint of adult (26-week-old) C57Bl/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. The changes in articular cartilage and subchondral bone were analyzed by histology and microcomputed tomography. Results Loading promoted cartilage damage in both age groups, with increased damage severity dependent upon the duration of loading. Metaphyseal bone mass increased in the young mice, but not in the adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. Articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau in both age groups. Both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. Conclusion This non-invasive loading model permits dissection of temporal and topographical changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biological events that promote OA onset and progression. PMID:23436303

  7. Follow-up of bone lesions in an experimental multiple myeloma mouse model: description of an in vivo technique using radiography dedicated for mammography.

    PubMed Central

    Vanderkerken, K.; Goes, E.; De Raeve, H.; Radl, J.; Van Camp, B.

    1996-01-01

    The evolution of bone lesions in transplantable C57BL/KaLwRjj 5T mouse myeloma (MM) has been followed in vivo. Mice were anaesthetised and a radiograph of the pelvis and hind legs was performed by a radiograph dedicated for mammography. This is the first description of an in vivo technique under experimental conditions whereby the development of bone lesions owing to the MM growth was demonstrated. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:8664113

  8. The C-terminal fragment of parathyroid hormone-related peptide promotes bone formation in diabetic mice with low-turnover osteopaenia

    PubMed Central

    Lozano, D; Fernández-de-Castro, L; Portal-Núñez, S; López-Herradón, A; Dapía, S; Gómez-Barrena, E; Esbrit, P

    2011-01-01

    BACKGROUND AND PURPOSE Current data suggest that parathyroid hormone (PTH)-related peptide (PTHrP) domains other than the N-terminal PTH-like domain contribute to its role as an endogenous bone anabolic factor. PTHrP-107-139 inhibits bone resorption, a fact which has precluded an unequivocal demonstration of its possible anabolic action in vivo. We thus sought to characterize the osteogenic effects of this peptide using a mouse model of diabetic low-turnover osteopaenia. EXPERIMENTAL APPROACH PTHrP-107-139 was administered to streptozotocin-induced diabetic mice, with or without bone marrow ablation, for 13 days. Osteopaenia was confirmed by dual-energy X-ray absorptiometry and microcomputed tomography analysis. Histological analysis was performed on paraffin-embedded bone tissue sections by haematoxylin/eosin and Masson's staining, and tartrate-resistent acid phosphatase immunohistochemistry. Mouse bone marrow stromal cells and osteoblastic MC3T3-E1 cells were cultured in normal and/or high glucose (HG) medium. Osteogenic and adipogenic markers were assessed by real-time PCR, and PTHrP and the PTH1 receptor protein expression by Western blot analysis. KEY RESULTS PTHrP-107-139 reversed the alterations in bone structure and osteoblast function, and also promoted bone healing after marrow ablation without affecting the number of osteoclast-like cells in diabetic mice. This peptide also reversed the high-glucose-induced changes in osteogenic differentiation in both bone marrow stromal cells and the more differentiated MC3T3-E1 cells. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that PTHrP-107-139 promotes bone formation in diabetic mice. This mouse model and in vitro cell cultures allowed us to identify various anabolic effects of this peptide in this scenario. PMID:21175568

  9. ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.

    PubMed

    Wang, Huan; Yi, Jianxun; Li, Xuejun; Xiao, Yajuan; Dhakal, Kamal; Zhou, Jingsong

    2018-01-01

    While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1 G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1 G93A . Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1 G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1 G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1 G93A on mitochondrial network and dynamics, indicating that SOD1 G93A likely promotes mitochondrial fission, but suppresses the fusion activity. Our data provide the first evidence that mitochondria show abnormality in osteocytes derived from an ALS mouse model. The accumulation of mutant SOD1 G93A protein inside mitochondria directly causes dysfunction in mitochondrial dynamics in cultured MLO-Y4 osteocytes. In addition, the ALS mutation SOD1 G93A -mediated dysfunction in mitochondrial dynamics is associated with an enhanced apoptosis in osteocytes, which could be a potential mechanism underlying the bone loss during ALS progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. In Vivo Hypobaric Hypoxia Performed During the Remodeling Process Accelerates Bone Healing in Mice

    PubMed Central

    Durand, Marjorie; Collombet, Jean-Marc; Frasca, Sophie; Begot, Laurent; Lataillade, Jean-Jacques; Le Bousse-Kerdilès, Marie-Caroline

    2014-01-01

    We investigated the effects of respiratory hypobaric hypoxia on femoral bone-defect repair in mice because hypoxia is believed to influence both mesenchymal stromal cell (MSC) and hematopoietic stem cell mobilization, a process involved in the bone-healing mechanism. To mimic conditions of non-weight-bearing limb immobilization in patients suffering from bone trauma, our hypoxic mouse model was further subjected to hind-limb unloading. A hole was drilled in the right femur of adult male C57/BL6J mice. Four days after surgery, mice were subjected to hind-limb unloading for 1 week. Seven days after surgery, mice were either housed for 4 days in a hypobaric room (FiO2 at 10%) or kept under normoxic conditions. Unsuspended control mice were housed in either hypobaric or normoxic conditions. Animals were sacrificed on postsurgery day 11 to allow for collection of both contralateral and lesioned femurs, blood, and spleen. As assessed by microtomography, delayed hypoxia enhanced bone-healing efficiency by increasing the closing of the cortical defect and the newly synthesized bone volume in the cavity by +55% and +35%, respectively. Proteome analysis and histomorphometric data suggested that bone-repair improvement likely results from the acceleration of the natural bone-healing process rather than from extended mobilization of MSC-derived osteoprogenitors. Hind-limb unloading had hardly any effect beyond delayed hypoxia-enhanced bone-healing efficiency. PMID:24944208

  11. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging.

    PubMed

    Tiede-Lewis, LeAnn M; Xie, Yixia; Hulbert, Molly A; Campos, Richard; Dallas, Mark R; Dusevich, Vladimir; Bonewald, Lynda F; Dallas, Sarah L

    2017-10-26

    Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging.

  12. Low Intensity, High Frequency Vibration Training to Improve Musculoskeletal Function in a Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Novotny, Susan A.; Mader, Tara L.; Greising, Angela G.; Lin, Angela S.; Guldberg, Robert E.; Warren, Gordon L.; Lowe, Dawn A.

    2014-01-01

    The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice. PMID:25121503

  13. A Literature Review on the Mechanism of Action of Sulphur and Nitrogen Mustard

    DTIC Science & Technology

    1989-07-01

    for years is also poeqible (Aasted et al, 1987; Colardyn et al, 1986). Severely poisoned individuals exhibit bone marrow depression and may die from...MMS does not produce the enhanced depression of DNA synthesis in sensitive cells, compared to resistant cells, produced by sulphur mustard and...Compound MATD 1 Protection (mg/mouse) index 2 WR-3689 15 159 WR-2721 15 44 Aminoethylcysteine 80 27 N- acetylcysteine 8 26 Glutathione 60 22 Cysteine 8

  14. Overexpression of Bone Sialoprotein Leads to an Uncoupling of Bone Formation and Bone Resorption in Mice

    PubMed Central

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-01-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP. PMID:18597627

  15. THE INFLUENCE OF HYDROCORTISONE ON THE ACTION OF EXCESS VITAMIN A ON LIMB BONE RUDIMENTS IN CULTURE

    PubMed Central

    Fell, Honor B.; Thomas, Lewis

    1961-01-01

    The effect of hydrocortisone has been studied in organ cultures of the cartilaginous long bone rudiments from 7-day chick embryos and of the well ossified limb bones from late fetal mice. In the chick rudiments, which grow rapidly in culture, the growth rate was much reduced by hydrocortisone, less intercellular material was formed, and the hypertrophic cells of the shaft were much smaller than in the controls in normal medium. In the late fetal mouse bones, which grow very little in culture, hydrocortisone had no obvious effect on growth but arrested resorption of the cartilage. These effects resemble those described by others in the skeleton of animals treated with cortisone or hydrocortisone. The influence of hydrocortisone on the response of the chick and mouse explants to excess vitamin A was investigated. In the presence of excess vitamin A, cartilage (chick, mouse) and bone (mouse) rapidly disintegrated, but when hydrocortisone also was added to the medium, this dissolution of the intercellular material was much retarded, though not suppressed. The retardative action of hydrocortisone on the changes produced by excess vitamin A in skeletal tissue in culture, contrasts sharply with the strongly additive effect of the two agents on the skeleton in the intact animal (Selye, 1958). It is suggested that this discrepancy between the results obtained in vitro and in vivo is probably due to systemic factors that operate in the body but are eliminated in organ cultures. PMID:13698768

  16. Wise Regulates Bone Deposition through Genetic Interactions with Lrp5

    PubMed Central

    Ellies, Debra L.; Economou, Androulla; Viviano, Beth; Rey, Jean-Philippe; Paine-Saunders, Stephenie; Krumlauf, Robb; Saunders, Scott

    2014-01-01

    In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise−/− mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development. PMID:24789067

  17. Wise regulates bone deposition through genetic interactions with Lrp5.

    PubMed

    Ellies, Debra L; Economou, Androulla; Viviano, Beth; Rey, Jean-Philippe; Paine-Saunders, Stephenie; Krumlauf, Robb; Saunders, Scott

    2014-01-01

    In this study using genetic approaches in mouse we demonstrate that the secreted protein Wise plays essential roles in regulating early bone formation through its ability to modulate Wnt signaling via interactions with the Lrp5 co-receptor. In Wise-/- mutant mice we find an increase in the rate of osteoblast proliferation and a transient increase in bone mineral density. This change in proliferation is dependent upon Lrp5, as Wise;Lrp5 double mutants have normal bone mass. This suggests that Wise serves as a negative modulator of Wnt signaling in active osteoblasts. Wise and the closely related protein Sclerostin (Sost) are expressed in osteoblast cells during temporally distinct early and late phases in a manner consistent with the temporal onset of their respective increased bone density phenotypes. These data suggest that Wise and Sost may have common roles in regulating bone development through their ability to control the balance of Wnt signaling. We find that Wise is also required to potentiate proliferation in chondrocytes, serving as a potential positive modulator of Wnt activity. Our analyses demonstrate that Wise plays a key role in processes that control the number of osteoblasts and chondrocytes during bone homeostasis and provide important insight into mechanisms regulating the Wnt pathway during skeletal development.

  18. Sclerostin Antibody Improves Skeletal Parameters in a Brtl/+ Mouse Model of Osteogenesis Imperfecta†

    PubMed Central

    Sinder, Benjamin P.; Eddy, Mary M.; Ominsky, Michael S; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.

    2012-01-01

    Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by osteopenia and easy susceptibility to fracture. Symptoms are most prominent during childhood. Although anti-resorptive bisphosphonates have been widely used to treat pediatric OI, controlled trials showed improved vertebral parameters but equivocal effects on long-bone fracture rates. New treatments for OI are needed to increase bone mass throughout the skeleton. Sclerostin antibody (Scl-Ab) therapy is potently anabolic in the skeleton by stimulating osteoblasts via the canonical wnt signaling pathway, and may be beneficial for treating OI. In this study, Scl-Ab therapy was investigated in mice heterozygous for a typical OI-causing Gly->Cys substitution in col1a1. Two weeks of Scl-Ab successfully stimulated osteoblast bone formation in Brtl/+ and WT mice, leading to improved bone mass and reduced long-bone fragility. Image-guided nanoindentation revealed no alteration in local tissue mineralization dynamics with Scl-Ab. These results contrast with previous findings of antiresorptive efficacy in OI both in mechanism and potency of effects on fragility. In conclusion, short-term Scl-Ab was successfully anabolic in osteoblasts harboring a typical OI-causing collagen mutation and represents a potential new therapy to improve bone mass and reduce fractures in pediatric OI. PMID:22836659

  19. Rapidly Growing Brtl/+ Mouse Model of Osteogenesis Imperfecta Improves Bone Mass and Strength with Sclerostin Antibody Treatment

    PubMed Central

    Sinder, Benjamin P.; Salemi, Joseph D.; Ominsky, Michael S.; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.

    2014-01-01

    Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3 week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly->Cys substitution on col1a1, for 5 weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI. PMID:25445450

  20. Development of new experimental platform 'MARS'-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on mice.

    PubMed

    Shiba, Dai; Mizuno, Hiroyasu; Yumoto, Akane; Shimomura, Michihiko; Kobayashi, Hiroe; Morita, Hironobu; Shimbo, Miki; Hamada, Michito; Kudo, Takashi; Shinohara, Masahiro; Asahara, Hiroshi; Shirakawa, Masaki; Takahashi, Satoru

    2017-09-07

    This Japan Aerospace Exploration Agency project focused on elucidating the impacts of partial gravity (partial g) and microgravity (μg) on mice using newly developed mouse habitat cage units (HCU) that can be installed in the Centrifuge-equipped Biological Experiment Facility in the International Space Station. In the first mission, 12 C57BL/6 J male mice were housed under μg or artificial earth-gravity (1 g). Mouse activity was monitored daily via downlinked videos; μg mice floated inside the HCU, whereas artificial 1 g mice were on their feet on the floor. After 35 days of habitation, all mice were returned to the Earth and processed. Significant decreases were evident in femur bone density and the soleus/gastrocnemius muscle weights of μg mice, whereas artificial 1 g mice maintained the same bone density and muscle weight as mice in the ground control experiment, in which housing conditions in the flight experiment were replicated. These data indicate that these changes were particularly because of gravity. They also present the first evidence that the addition of gravity can prevent decreases in bone density and muscle mass, and that the new platform 'MARS' may provide novel insights on the molecular-mechanisms regulating biological processes controlled by partial g/μg.

  1. [Development of the next generation humanized mouse for drug discovery].

    PubMed

    Ito, Ryoji

    A humanized mouse, which is efficiently engrafted human cells and tissues, is an important tool to mimic human physiology for biomedical researches. Since 2000s, severe combined immunodeficient mouse strains such as NOG, BRG, and NSG mice have been generated. They are great recipients to create humanized mouse models compared to previous other immunodeficient strains due to their multiple dysfunctions of innate and acquired immunity. Especially, the transfer of human hematopoietic stem cells into these immunodeficient mice has been enabled to reconstitute human immune systems, because the mice show high engraftment level of human leukocyte in peripheral blood (~50%), spleen and bone marrow (60~90%) and generate well-differentiated multilineage human immune cells including lymphoid and myeloid lineage cells. Using these mice, several human disease models such as cancer, allergy, graft-versus-host disease (GVHD), and etc. have been established to understand the pathogenic mechanisms of the diseases and to evaluate the efficacy and safety of novel drugs. In this review, I provide an overview of recent advances in the humanized mouse technology, including generation of novel platforms of genetically modified NOG (next generation NOG) mice and some applications of them to create human disease models for drug discovery in preclinical researches.

  2. Primary Neoplasms of Bones in Mice: Retrospective Study and Review of Literature

    PubMed Central

    Kavirayani, A. M.; Sundberg, J. P.; Foreman, O.

    2011-01-01

    To compare and summarize the mechanisms, frequencies of occurrence, and classification schemes of spontaneous, experimental, and genetically engineered, mouse skeletal neoplasms, the literature was reviewed and archived case material at The Jackson Laboratory examined. The frequency of occurrence of spontaneous bone neoplasms was less than 1% for most strains, with the exceptions of osteomas in CF-1 (5.5% and 10% in two studies) and OF-1 outbred strains (35%), and osteosarcomas in NOD/ShiLtJ (11.5%) and NOD derived (7.1%) mice. The frequency was 100% for osteochondromas induced by conditional inactivation of exostoses (multiple) 1 (Ext1) in chondrocytes, osteosarcomas induced by tibial intramedullary inoculation of Moloney’s murine sarcoma virus, and osteosarcomas induced by conditional inactivation of Trp53-with or without inactivation of Rb1-in osteoblast precursors. Spontaneous osteogenic neoplasms were more frequent than spontaneous cartilaginous and vascular types. Malignant neoplasms were more frequent than benign ones. The age of occurrence for spontaneous neoplasms ranged from 37 to 720 (Mean 316.35) days for benign, and 35 to 990 (Mean 299.28) days for malignant neoplasms. In genetically engineered mice, the average age of occurrence ranged from 28 to 70 days for benign, and from 35 to 690 days for malignant neoplasms. Histologically, non-osteogenic neoplasms were similar across strains and mutant stocks; osteogenic neoplasms exhibited greater diversity. This comparison and summarization of mouse bone neoplasms provides valuable information for the selection of strains to create, compare, and validate models of bone neoplasms. PMID:21343597

  3. A novel explanation of corneal clouding in a bone marrow transplant-treated patient with Hurler syndrome

    PubMed Central

    Yuan, Ching; Bothun, Erick D.; Hardten, David R.; Tolar, Jakub; McLoon, Linda K.

    2016-01-01

    One common complication of mucopolysaccharidosis I-Hurler (MPS1-H) is corneal clouding, which occurs despite current treatments, including bone marrow transplantation. Human corneas were obtained from a 14 year old subject with MPS1-H and visual disability from progressive corneal clouding despite a prior bone marrow transplant at age 2. This was compared to a cornea from a 17 year old donated to our eye bank after his accidental death. The corneas were analyzed microscopically after staining with Alcian blue, antibodies to collagen I, IV, VI, and α-smooth muscle actin. Differences in levels of expression of the indicated molecules were assessed. Corneas from Hurler and control mice were examined similarly to determine potential mechanistic overlap. The MPS1-H subject cornea showed elevations in mucopolysaccharide deposition. The MPS1-H and Hurler mice corneas showed increased and disorganized expression of collagen I and IV relative to the control corneas. The MPS1-H corneas also showed increased and disordered expression of collagen VI. Positive expression of α-smooth muscle actin indicated myofibroblast conversion within the MPS1-H cornea in both the patient and mutant mouse material compared to normal human and control mouse cornea. Increased deposition of collagens and smooth muscle actin correlate with corneal clouding, providing a potential mechanism for corneal clouding despite bone marrow transplantation in MPS1-H patients. It might be possible to prevent or slow the onset of corneal clouding by treating the cornea with drugs known to prevent myofibroblast conversion. PMID:27235795

  4. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro

    PubMed Central

    Ufimtseva, Elena

    2016-01-01

    The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells. PMID:27066505

  5. Bone pain caused by swelling of mouse ear capsule static xylene and effects on rat models of cervical spondylosis

    NASA Astrophysics Data System (ADS)

    Zhang, Xuhui; Xia, Lei; Hao, Shaojun; Chen, Weiliang; Guo, Junyi; Ma, Zhenzhen; Wang, Huamin; Kong, Xuejun; Wang, Hongyu; Zhang, Zhengchen

    2018-04-01

    To observe the effect of intravenous bone pain Capsule on the ear of mice induced by xylene, swelling of rat models of cervical spondylosis. Weighing 18 ˜ 21g 50 mice, male, were randomly divided into for five groups, which were fed with service for bone pain static capsule suspension, Jingfukang granule suspension 0.5%CMC liquid and the same volume of. Respectively to the mice ear drop of xylene 0.05 ml, 4h after cervical dislocation, the mice were sacrificed and the cut two ear, rapid analytical balance weighing, and calculate the ear swelling degree and the other to take the weight of 200 - 60 250g male SD rats, were randomly divided into for 6 groups, 10 rats in each group, of which 5 groups made cervical spondylosis model. Results: with the blank group than bone pain static capsule group and Jingfukang granule group can significantly reduce mouse auricular dimethylbenzene swelling, significantly reduce ear swelling degree (P < 0.01); the successful establishment of the rat model of cervical spondylosis. With the model group ratio, large, medium and small dose of bone pain static capsule group, Jingfukang granule group (P < 0.01) angle of swash plate of rats increased significantly, the high and middle dose of bone pain static capsule group, Jingfukang granule group can significantly reduce the rat X-ray scores (P < 0.05). Bone pain static capsule can significantly reduce mouse auricular dimethylbenzene swelling. The bone pain capsule has a good effect on the rat model of cervical spondylosis.

  6. Nanoscale Morphology of Type I Collagen is Altered in the Brtl Mouse Model of Osteogenesis Imperfecta

    PubMed Central

    Wallace, Joseph M.; Orr, Bradford G.; Marini, Joan C.; Banaszak Holl, Mark M.

    2010-01-01

    Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine substitutions (80%) and splice site mutations (20%) in the genes encoding the α1 or α2 chains of Type I collagen. Genotype-phenotype correlations using over 830 collagen mutations have revealed that lethal mutations are located in regions crucial for collagen-ligand binding in the matrix. However, few of these correlations have been extended to collagen structure in bone. Here, an atomic force microscopy-based approach was used to image and quantitatively analyze the D-periodic spacing of Type I collagen fibrils in femora from heterozygous (Brtl/+) mice (α1(I)G349C), compared to wild type (WT) littermates. This disease system has a well-defined change in the col1α1 allele, leading to a well characterized alteration in collagen protein structure, which are directly related to altered Type I collagen nanoscale morphology, as measured by the D-periodic spacing. In Brtl/+ bone, the D-periodic spacing shows significantly greater variability on average and along the length of the bone compared to WT, although the average spacing was unchanged. Brtl/+ bone also had a significant difference in the population distribution of collagen D-period spacings. These changes may be due to the mutant collagen structure, or to the heterogeneity of collagen monomers in the Brtl/+ matrix. These observations at the nanoscale level provide insight into the structural basis for changes present in bone composition, geometry and mechanical integrity in Brtl/+ bones. Further studies are necessary to link these morphological observations to nanoscale mechanical integrity. PMID:20696252

  7. Columnar metaplasia in a surgical mouse model of gastro-esophageal reflux disease is not derived from bone marrow-derived cell.

    PubMed

    Aikou, Susumu; Aida, Junko; Takubo, Kaiyo; Yamagata, Yukinori; Seto, Yasuyuki; Kaminishi, Michio; Nomura, Sachiyo

    2013-09-01

    The incidence of esophageal adenocarcinoma has increased in the last 25 years. Columnar metaplasia in Barrett's mucosa is assumed to be a precancerous lesion for esophageal adenocarcinoma. However, the induction process of Barrett's mucosa is still unknown. To analyze the induction of esophageal columnar metaplasia, we established a mouse gastro-esophageal reflux disease (GERD) model with associated development of columnar metaplasia in the esophagus. C57BL/6 mice received side-to-side anastomosis of the esophagogastric junction with the jejunum, and mice were killed 10, 20, and 40 weeks after operation. To analyze the contribution of bone marrow-derived cells to columnar metaplasia in this surgical GERD model, some mice were transplanted with GFP-marked bone marrow after the operation. Seventy-three percent of the mice (16/22) showed thickened mucosa in esophagus and 41% of mice (9/22) developed columnar metaplasia 40 weeks after the operation with a mortality rate of 4%. Bone marrow-derived cells were not detected in columnar metaplastic epithelia. However, scattered epithelial cells in the thickened squamous epithelia in regions of esophagitis did show bone marrow derivation. The results demonstrate that reflux induced by esophago-jejunostomy in mice leads to the development of columnar metaplasia in the esophagus. However, bone marrow-derived cells do not contribute directly to columnar metaplasia in this mouse model. © 2013 Japanese Cancer Association.

  8. Accelerated Bone Repair After Plasma Laser Corticotomies

    PubMed Central

    Leucht, Philipp; Lam, Kentson; Kim, Jae-Beom; Mackanos, Mark A.; Simanovskii, Dmitrii M.; Longaker, Michael T.; Contag, Christopher H.; Schwettman, H Alan; Helms, Jill A.

    2007-01-01

    Objective: To reveal, on a cellular and molecular level, how skeletal regeneration of a corticotomy is enhanced when using laser-plasma mediated ablation compared with conventional mechanical tissue removal. Summary Background Data: Osteotomies are well-known for their most detrimental side effect: thermal damage. This thermal and mechanical trauma to adjacent bone tissue can result in the untoward consequences of cell death and eventually in a delay in healing. Methods: Murine tibial corticotomies were performed using a conventional saw and a Ti:Sapphire plasma-generated laser that removes tissue with minimal thermal damage. Our analyses began 24 hours after injury and proceeded to postsurgical day 6. We investigated aspects of wound repair ranging from vascularization, inflammation, cell proliferation, differentiation, and bone remodeling. Results: Histology of mouse corticotomy sites uncovered a significant difference in the onset of bone healing; whereas laser corticotomies showed abundant bone matrix deposition at postsurgical day 6, saw corticotomies only exhibited undifferentiated tissue. Our analyses uncovered that cutting bone with a saw caused denaturation of the collagen matrix due to thermal effects. This denatured collagen represented an unfavorable scaffold for subsequent osteoblast attachment, which in turn impeded deposition of a new bony matrix. The matrix degradation induced a prolonged inflammatory reaction at the cut edge to create a surface favorable for osteochondroprogenitor cell attachment. Laser corticotomies were absent of collagen denaturation, therefore osteochondroprogenitor cell attachment was enabled shortly after surgery. Conclusion: In summary, these data demonstrate that corticotomies performed with Ti:Sapphire lasers are associated with a reduced initial inflammatory response at the injury site leading to accelerated osteochondroprogenitor cell migration, attachment, differentiation, and eventually matrix deposition. PMID:17592303

  9. Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice.

    PubMed

    Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui; Chen, Jake

    2014-06-15

    Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. Copyright © 2014 the American Physiological Society.

  10. Relationship between oxidative stress and bone mass in obesity and effects of berry supplementation on bone remodeling in obese male mice: an exploratory study.

    PubMed

    Lee, Sang Gil; Kim, Bohkyung; Soung, Do Yu; Vance, Terrence; Lee, Jong Suk; Lee, Ji-Young; Koo, Sung I; Kim, Dae-Ok; Drissi, Hicham; Chun, Ock K

    2015-04-01

    Berry consumption can prevent bone loss. However, the effects of different berries with distinct anthocyanin composition have not been thoroughly examined. The present study compared the effects of blueberry, blackberry, and black currant on bone health using a mouse model of diet-induced obesity. To investigate the effect of different berry supplements against a high-fat (HF) diet in vivo, 40 HF diet-induced obese (DIO) C57BL mice were assigned into four groups and fed a HF diet (35% w/w) with or without berry supplementation for 12 weeks (n=10). We measured adipose tissue mass (epididymal and retroperitoneal), plasma antioxidant, bone-related biomarkers, femur bone mineral density (BMD), and bone mineral content (proximal and distal). Adipose masses were negatively correlated with proximal BMD, but positively associated with plasma superoxide dismutase (SOD) concentrations (P<.001). Berry supplementation did not change the plasma ferric reducing antioxidant power, SOD, and insulin-like growth factor-1. However, the black currant group exhibited greater plasma alkaline phosphatase compared with the control group (P<.05). BMD in the distal epiphysis was significantly different between the blueberry and blackberry group (P<.05). However, berry supplementation did not affect bone mass compared with control. The present study demonstrates a negative relationship between fat mass and bone mass. In addition, our findings suggest that the anthocyanin composition of berries will affect bone turnover, warranting further research to investigate the underlying mechanisms.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoproteinmore » II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.« less

  12. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength.

    PubMed

    Sinder, B P; White, L E; Salemi, J D; Ominsky, M S; Caird, M S; Marini, J C; Kozloff, K M

    2014-08-01

    Treatments to reduce fracture rates in adults with osteogenesis imperfecta are limited. Sclerostin antibody, developed for treating osteoporosis, has not been explored in adults with OI. This study demonstrates that treatment of adult OI mice respond favorably to sclerostin antibody therapy despite retention of the OI-causing defect. Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Antiresorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 month old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly > Cys substitution on Col1a1. Six-month-old WT and Brtl/+ mice were treated with Scl-Ab (25 mg/kg, 2×/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI.

  13. Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models

    NASA Astrophysics Data System (ADS)

    Makowski, Alexander J.; Pence, Isaac J.; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Huszagh, Meredith C.; Mahadevan-Jansen, Anita; Nyman, Jeffry S.

    2014-11-01

    Raman spectroscopy (RS) has been extensively used to characterize bone composition. However, the link between bone biomechanics and RS measures is not well established. Here, we leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can explain differences in bone toughness in genetic mouse models for which traditional RS peak ratios are not informative. In the selected mutant mice-activating transcription factor 4 (ATF4) or matrix metalloproteinase 9 (MMP9) knock-outs-toughness is reduced but differences in bone strength do not exist between knock-out and corresponding wild-type controls. To incorporate differences in the RS of bone occurring at peak shoulders, a multivariate approach was used. Full spectrum principal components analysis of two paired, orthogonal bone orientations (relative to laser polarization) improved genotype classification and correlation to bone toughness when compared to traditional peak ratios. When applied to femurs from wild-type mice at 8 and 20 weeks of age, the principal components of orthogonal bone orientations improved age classification but not the explanation of the maturation-related increase in strength. Overall, increasing polarization information by collecting spectra from two bone orientations improves the ability of multivariate RS to explain variance in bone toughness, likely due to polarization sensitivity to organizational changes in both mineral and collagen.

  14. Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass

    PubMed Central

    Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M.; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J.; Bradshaw, Heather B.; Bab, Itai; Mechoulam, Raphael

    2010-01-01

    Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive. PMID:20876113

  15. Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass.

    PubMed

    Smoum, Reem; Bar, Arik; Tan, Bo; Milman, Garry; Attar-Namdar, Malka; Ofek, Orr; Stuart, Jordyn M; Bajayo, Alon; Tam, Joseph; Kram, Vardit; O'Dell, David; Walker, Michael J; Bradshaw, Heather B; Bab, Itai; Mechoulam, Raphael

    2010-10-12

    Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive.

  16. Host cell recruitment patterns by bone morphogenetic protein-2 releasing hyaluronic acid hydrogels in a mouse subcutaneous environment.

    PubMed

    Todeschi, Maria R; El Backly, Rania M; Varghese, Oommen P; Hilborn, Jöns; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2017-07-01

    This study aimed to identify host cell recruitment patterns in a mouse model in response to rhBMP-2 releasing hyaluronic acid hydrogels and influence of added nano-hydroxyapatite particles on rhBMP-2 release and pattern of bone formation. Implanted gels were retrieved after implantation and cells were enzymatically dissociated for flow cytometric analysis. Percentages of macrophages, progenitor endothelial cells and putative mesenchymal stem cells were measured. Implants were evaluated for BMP-2 release by ELISA and by histology to monitor tissue formation. Hyaluronic acid+BMP-2 gels influenced the inflammatory response in the bone healing microenvironment. Host-derived putative mesenchymal stem cells were major contributors. Addition of hydroxyapatite nanoparticles modified the release pattern of rhBMP-2, resulting in enhanced bone formation.

  17. Suppression of asparaginyl endopeptidase attenuates breast cancer-induced bone pain through inhibition of neurotrophin receptors.

    PubMed

    Yao, Peng; Ding, Yuanyuan; Han, Zhenkai; Mu, Ying; Hong, Tao; Zhu, Yongqiang; Li, Hongxi

    2017-01-01

    Objective Cancer-induced bone pain is a common clinical problem in breast cancer patients with bone metastasis. However, the mechanisms driving cancer-induced bone pain are poorly known. Recent studies show that a novel protease, asparaginyl endopeptidase (AEP) plays crucial roles in breast cancer metastasis and progression. We aim to determine the functions and targeted suppress of AEP in a mouse model of breast cancer-induced bone pain. Methods Breast cancer cells with AEP knocked-down or overexpression were constructed and implanted into the intramedullary space of the femur to induce pain-like behavior in mice. AEP-specific inhibitors or purified AEP proteins were further used in animal model. The histological characters of femur and pain ethological changes were measured. The expressions of AEP and neurotrophin receptors (p75NTR and TrkA) in dorsal root ganglion and spinal cord were examined. Results Femur radiographs and histological analysis revealed that cells with AEP knocked-down reduced bone destruction and pain behaviors. However, cells with AEP overexpression elevated bone damage and pain behaviors. Further, Western blot results found that the expressions of p75NTR and TrkA in dorsal root ganglions and spinal cords were reduced in mice inoculated with AEP knocked-down cells. Targeted suppression of AEP with specific small compounds significantly reduced the bone pain while purified recombinant AEP proteins increased bone pain. Conclusions AEP aggravate the development of breast cancer bone metastasis and bone pain by increasing the expression of neurotrophin receptors. AEP might be an effective target for treatment of breast cancerinduced bone pain.

  18. Investigating the Abscopal Effects of Radioablation on Shielded Bone Marrow in Rodent Models Using Multimodality Imaging.

    PubMed

    Afshar, Solmaz F; Zawaski, Janice A; Inoue, Taeko; Rendon, David A; Zieske, Arthur W; Punia, Jyotinder N; Sabek, Omaima M; Gaber, M Waleed

    2017-07-01

    The abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery. We used positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and optical imaging to quantify bone marrow activity, vascular response and marrow repopulation in fully and partially irradiated rodent models. We further measured the effects of radiation on serum cytokine levels, hematopoietic cell counts and histology. PET/CT imaging revealed a radiation-induced increase in proliferation in the shielded bone marrow (SBM) compared to exposed bone marrow (EBM) and sham controls. T 2 -weighted MRI showed radiation-induced hemorrhaging in the EBM and unirradiated SBM. In the EBM and SBM groups, we found alterations in serum cytokine and hormone levels and in hematopoietic cell population proportions, and histological evidence of osteoblast activation at the bone marrow interface. Importantly, we generated a BMT mouse model using fluorescent-labeled bone marrow donor cells and performed fluorescent imaging to reveal the migration of bone marrow cells from shielded to radioablated sites. Our study validates the use of multimodality imaging to monitor bone marrow recovery and provides evidence for the abscopal response in promoting bone marrow recovery after irradiation.

  19. Fabrication and Characterization of Biomimetic Collagen-Apatite Scaffolds with Tunable Structures for Bone Tissue Engineering

    PubMed Central

    Xia, Zengmin; Yu, Xiaohua; Jiang, Xi; Brody, Harold D; Rowe, David W; Wei, Mei

    2013-01-01

    The objective of the current study is to prepare a biomimetic collagen-apatite (Col-Ap) scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in a range 0–54 wt% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, bone forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. PMID:23567944

  20. Biomimetic Bone-like Hydroxyapatite by Mineralization on Supramolecular Porous Fiber Networks.

    PubMed

    Li, Bo; Kan, Lei; Zhang, Xinyue; Li, Jie; Li, Ruiting; Gui, Qinyuan; Qiu, Dengli; He, Fei; Ma, Ning; Wang, Yapei; Wei, Hao

    2017-08-29

    Hydroxyapatite (HA), the main inorganic component of bone tissue, is mineralized with collagen fibril scaffolds during bone formation. Inspired by the process, a self-assembled porous network architecture was designed and synthesized by using the 2-ureido-4[1H]-pyrimidone (UPy) modified glycerol molecule UPy-Gly, which was further utilized as a template for biomimetic mineralization. When incubated in simulated body fluid (SBF), the HA nucleus first formed in the holes of the template by the induction of hydroxyls on the surface, grew along the nanofibers, and fused with the template to fabricate hydroxyapatite composites (UPy-Gly/HA). Transmission electron microscopic observation demonstrates that the mineral clusters are accumulated by lamella-like nano hydroxyapatite and the elasticity modulus measured by atomic force microscopy is about 5.5 GPa, which is quite close to the natural cancellous bone tissue of human both in structure and in mechanical properties. The Cell Counting Kit 8 (CCK-8) assay of UPy-Gly and UPy-Gly/HA shows noncytotoxicity to mouse fibroblast L-929 cells. This bioinspired composite will be a promising material for potential use in bone tissue implantation and regeneration engineering.

  1. Tenascin-W inhibits proliferation and differentiation of preosteoblasts during endochondral bone formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Hiroaki; Akiyama, Haruhiko; Nakamura, Takashi

    We identified a cDNA encoding mouse Tenascin-W (TN-W) upregulated by bone morphogenetic protein (Bmp)2 in ATDC5 osteo-chondroprogenitors. In adult mice, TN-W was markedly expressed in bone. In mouse embryos, during endochondral bone formation TN-W was localized in perichondrium/periosteum, but not in trabecular and cortical bones. During bone fracture repair, cells in the newly formed perichondrium/periosteum surrounding the cartilaginous callus expressed TN-W. Furthermore, TN-W was detectable in perichondrium/periosteum of Runx2-null and Osterix-null embryos, indicating that TN-W is expressed in preosteoblasts. In CFU-F and -O cells, TN-W had no effect on initiation of osteogenesis of bone marrow cells, and in MC3T3-E1 osteoblasticmore » cells TN-W inhibited cell proliferation and Col1a1 expression. In addition, TN-W suppressed canonical Wnt signaling which stimulates osteoblastic differentiation. Our results indicate that TN-W is a novel marker of preosteoblasts in early stage of osteogenesis, and that TN-W inhibits cell proliferation and differentiation of preosteoblasts mediated by canonical Wnt signaling.« less

  2. Change in Mouse Bone Turnover in Response to Microgravity on RR-1

    NASA Technical Reports Server (NTRS)

    Cheng-Campbell, Margareth A.; Blaber, Elizabeth A.; Almeida, Eduardo A. C.

    2016-01-01

    Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1ap21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23 decrease in bone fraction (p0.005) and 11.91 decrease in bone thickness (p0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n10) and vivarium controls (n10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.

  3. Changes in Mouse Bone Turnover in Response to Microgravity

    NASA Technical Reports Server (NTRS)

    Cheng-Campbell, M.; Blaber, E.; Almeida, E.

    2016-01-01

    Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1a/p21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23% decrease in bone fraction (p=0.005) and 11.91% decrease in bone thickness (p=0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl/6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n=10) and vivarium controls (n=10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.

  4. Alpha-1 antitrypsin gene therapy prevented bone loss in ovariectomy induced osteoporosis mouse model

    USDA-ARS?s Scientific Manuscript database

    Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at meno...

  5. A Conditional Knockout Mouse Model Reveals a Critical Role of PKD1 in Osteoblast Differentiation and Bone Development

    PubMed Central

    Li, Shao; Xu, Wanfu; Xing, Zhe; Qian, Jiabi; Chen, Liping; Gu, Ruonan; Guo, Wenjing; Lai, Xiaoju; Zhao, Wanlu; Li, Songyu; Wang, Yaodong; Wang, Q. Jane; Deng, Fan

    2017-01-01

    The protein kinase D family of serine/threonine kinases, particularly PKD1, has been implicated in the regulation of a complex array of fundamental biological processes. However, its function and mechanism underlying PKD1-mediated the bone development and osteoblast differentiation are not fully understood. Here we demonstrate that loss of PKD1 function led to impaired bone development and osteoblast differentiation through STAT3 and p38 MAPK signaling using in vitro and in vivo bone-specific conditional PKD1-knockout (PKD1-KO) mice models. These mice developed markedly craniofacial dysplasia, scapula dysplasia, long bone length shortage and body weight decrease compared with wild-type littermates. Moreover, deletion of PKD1 in vivo reduced trabecular development and activity of osteoblast development, confirmed by Micro-CT and histological staining as well as expression of osteoblastic marker (OPN, Runx2 and OSX). Mechanistically, loss of PKD1 mediated the downregulation of osteoblast markers and impaired osteoblast differentiation through STAT3 and p38 MAPK signaling pathways. Taken together, these results demonstrated that PKD1 contributes to the osteoblast differentiation and bone development via elevation of osteoblast markers through activation of STAT3 and p38 MAPK signaling pathways. PMID:28084409

  6. Rpl27a mutation in the sooty foot ataxia mouse phenocopies high p53 mouse models

    PubMed Central

    Terzian, Tamara; Dumble, Melissa; Arbab, Farinaz; Thaller, Christina; Donehower, Lawrence A; Lozano, Guillermina; Justice, Monica J; Roop, Dennis R; Box, Neil F

    2013-01-01

    Ribosomal stress is an important, yet poorly understood, mechanism that results in activation of the p53 tumour suppressor. We present a mutation in the ribosomal protein Rpl27a gene (sooty foot ataxia mice), isolated through a sensitized N-ethyl-N-nitrosourea (ENU) mutagenesis screen for p53 pathway defects, that shares striking phenotypic similarities with high p53 mouse models, including cerebellar ataxia, pancytopenia and epidermal hyperpigmentation. This phenocopy is rescued in a haploinsufficient p53 background. A detailed examination of the bone marrow in these mice identified reduced numbers of haematopoietic stem cells and a p53-dependent c-Kit down-regulation. These studies suggest that reduced Rpl27a increases p53 activity in vivo, further evident with a delay in tumorigenesis in mutant mice. Taken together, these data demonstrate that Rpl27a plays a crucial role in multiple tissues and that disruption of this ribosomal protein affects both development and transformation. PMID:21674502

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hee Yoon; Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California; Raphael, Patrick D.

    Cochlear amplification has been most commonly investigated by measuring the vibrations of the basilar membrane in animal models. Several different techniques have been used for measuring these vibrations such as laser Doppler vibrometry, miniature pressure sensors, low coherence interferometry, and spectral-domain optical coherence tomography (SD-OCT). We have built a swept-source OCT (SS-OCT) system, which is similar to SD-OCT in that it is capable of performing both imaging and vibration measurements within the mouse cochlea in vivo without having to open the bone. In vivo 3D images of a mouse cochlea were obtained, and the basilar membrane, tectorial membrane, Reissner’s membrane,more » tunnel of Corti, and reticular lamina could all be resolved. We measured vibrations of multiple structures within the mouse cochlea to sound stimuli. As well, we measured the radial deflections of the reticular lamina and tectorial membrane to estimate the displacement of the outer hair cell stereocilia. These measurements have the potential to more clearly define the mechanisms underlying the linear and non-linear processes within the mammalian cochlea.« less

  8. Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis

    PubMed Central

    Su, Nan; Sun, Qidi; Li, Can; Lu, Xiumin; Qi, Huabing; Chen, Siyu; Yang, Jing; Du, Xiaolan; Zhao, Ling; He, Qifen; Jin, Min; Shen, Yue; Chen, Di; Chen, Lin

    2010-01-01

    Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3G369C/+ mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3G369C/+ cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3G369C/+ BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3G369C/+ mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH. PMID:20053668

  9. The botanical molecule p-hydroxycinnamic acid as a new osteogenic agent: insight into the treatment of cancer bone metastases.

    PubMed

    Yamaguchi, Masayoshi

    2016-10-01

    Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss with aging is induced by decreasing in osteoblastic bone formation and increasing in osteoclastic bone resorption, thereby leading to osteoporosis. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public heath problem. Pharmacologic and nutritional factors may play a role in the prevention and treatment of bone loss with aging. p-Hydroxycinnamic acid (HCA), which stimulates bone mineralization in mouse bone tissues in vitro, has been found to be present in the leafstalk of wasabi (Wasabi japonica MATSUM) among various food and plants. Other phenolic acids including cinnamic acid, ferulic acid, caffeic acid and 3,4-dimethoxycinnamic acid did not have osteogenic effects. HCA was demonstrated to stimulate osteoblastic bone formation and suppresses osteoclastic bone resorption in vitro by antagonizing activation of the nuclear factor kappa B. Oral administration of HCA was found to exhibit restorative effects on bone loss induced by ovariectomy and diabetic states, supporting a role in the treatment of osteoporosis. Moreover, HCA was demonstrated to prevent the suppressed osteoblastic mineralization and the enhanced osteoclastogenesis in mouse bone marrow cells cocultured with bone metastatic MDA-MB-231 human breast cancer cells in vitro. The botanical molecule HCA, as a new osteogenic agent, is suggested to play a role in the treatment of cancer bone metastases. This review will discuss an advanced recent finding that HCA may be a useful agent to treat bone metabolic disorder.

  10. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oue, Erika; Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Global Center of Excellence

    Highlights: Black-Right-Pointing-Pointer Oral cancer cells synthesize CXCL2. Black-Right-Pointing-Pointer CXCL2 synthesized by oral cancer is involved in osteoclastogenesis. Black-Right-Pointing-Pointer CXCL2-neutralizing antibody inhibited osteoclastogenesis induced by oral cancer cells. Black-Right-Pointing-Pointer We first report the role of CXCL2 in cancer-associated bone destruction. -- Abstract: To explore the mechanism of bone destruction associated with oral cancer, we identified factors that stimulate osteoclastic bone resorption in oral squamous cell carcinoma. Two clonal cell lines, HSC3-C13 and HSC3-C17, were isolated from the maternal oral cancer cell line, HSC3. The conditioned medium from HSC3-C13 cells showed the highest induction of Rankl expression in the mouse stromal cellmore » lines ST2 and UAMS-32 as compared to that in maternal HSC3 cells and HSC3-C17 cells, which showed similar activity. The conditioned medium from HSC3-C13 cells significantly increased the number of osteoclasts in a co-culture with mouse bone marrow cells and UAMS-32 cells. Xenograft tumors generated from these clonal cell lines into the periosteal region of the parietal bone in athymic mice showed that HSC3-C13 cells caused extensive bone destruction and a significant increase in osteoclast numbers as compared to HSC3-C17 cells. Gene expression was compared between HSC3-C13 and HSC3-C17 cells by using microarray analysis, which showed that CXCL2 gene was highly expressed in HSC3-C13 cells as compared to HSC3-C17 cells. Immunohistochemical staining revealed the localization of CXCL2 in human oral squamous cell carcinomas. The increase in osteoclast numbers induced by the HSC3-C13-conditioned medium was dose-dependently inhibited by addition of anti-human CXCL2-neutralizing antibody in a co-culture system. Recombinant CXCL2 increased the expression of Rankl in UAMS-32 cells. These results indicate that CXCL2 is involved in bone destruction induced by oral cancer. This is the first report showing the role of CXCL2 in cancer-associated bone destruction.« less

  11. Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells

    PubMed Central

    Bowser, Matthew; Herberg, Samuel; Arounleut, Phonepasong; Shi, Xingming; Fulzele, Sadanand; Hill, William D.; Isales, Carlos M.; Hamrick, Mark W.

    2013-01-01

    The activin A-myostatin-follistatin system is thought to play an important role in the regulation of muscle and bone mass throughout growth, development, and aging; however, the effects of these ligands on progenitor cell proliferation and differentiation in muscle and bone are not well understood. In addition, age-associated changes in the relative expression of these factors in musculoskeletal tissues have not been described. We therefore examined changes in protein levels of activin A, follistatin, and myostatin (GDF-8) in both muscle and bone with age in C57BL6 mice using ELISA. We then investigated the effects of activin A, myostatin and follistatin on the proliferation and differentiation of primary myoblasts and mouse bone marrow stromal cells (BMSCs) in vitro. Myostatin levels and the myostatin:follistatin ratio increased with age in the primarily slow-twitch mouse soleus muscle, whereas the pattern was reversed with age in the fast-twitch extensor digitorum longus muscle. Myostatin levels and the myostatin: follistatin ratio increased significantly (+75%) in mouse bone marrow with age, as did activin A levels (+17%). Follistatin increased the proliferation of primary myoblasts from both young and aged mice, whereas myostatin increased proliferation of younger myoblasts but decreased proliferation of older myoblasts. Myostatin reduced proliferation of both young and aged BMSCs in a dose-dependent fashion, and activin A increased mineralization in both young and aged BMSCs. Together these data suggest that aging in mice is accompanied by changes in the expression of activin A and myostatin, as well as changes in the response of bone and muscle progenitor cells to these factors. Myostatin appears to play a particularly important role in the impaired proliferative capacity of muscle and bone progenitor cells from aged mice. PMID:23178301

  12. Variable Bone Fragility Associated With an Amish COL1A2 Variant and a Knock-in Mouse Model

    PubMed Central

    Daley, Ethan; Streeten, Elizabeth A; Sorkin, John D; Kuznetsova, Natalia; Shapses, Sue A; Carleton, Stephanie M; Shuldiner, Alan R; Marini, Joan C; Phillips, Charlotte L; Goldstein, Steven A; Leikin, Sergey; McBride, Daniel J

    2010-01-01

    Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z-scores demonstrated that 73% had moderate to severe disease (less than −2), 23% had mild disease (−1 to −2), and 4% were in the unaffected range (greater than −1). A line of knock-in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F1 lines of knock-in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole-bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock-in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. © 2010 American Society for Bone and Mineral Research PMID:19594296

  13. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment.

    PubMed

    Sinder, Benjamin P; Salemi, Joseph D; Ominsky, Michael S; Caird, Michelle S; Marini, Joan C; Kozloff, Kenneth M

    2015-02-01

    Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown that bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical Wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly→Cys substitution on col1a1, for 5weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Deletion of FoxO1, 3, and 4 in Osteoblast Progenitors Attenuates the Loss of Cancellous Bone Mass in a Mouse Model of Type 1 Diabetes

    PubMed Central

    Iyer, Srividhya; Han, Li; Ambrogini, Elena; Yavropoulou, Maria; Fowlkes, John; Manolagas, Stavros C; Almeida, Maria

    2017-01-01

    Type 1 diabetes is associated with osteopenia and increased fragility fractures, attributed to reduced bone formation. However, the molecular mechanisms mediating these effects remain unknown. Insulin promotes osteoblast formation and inhibits the activity of the FoxO transcription factors. FoxOs, on the other hand, inhibit osteoprogenitor proliferation and bone formation. Here, we investigated whether FoxOs play a role in the low bone mass associated with type 1 diabetes, using mice lacking FoxO1, 3, and 4 in osteoprogenitor cells (FoxO1,3,4ΔOsx1-Cre). Streptozotocin-induced diabetes caused a reduction in bone mass and strength in FoxO-intact mice. In contrast, cancellous bone was unaffected in diabetic FoxO1,3,4ΔOsx1-Cre mice. The low bone mass in the FoxO-intact diabetic mice was associated with decreased osteoblast number and bone formation, as well as decreased expression of the anti-osteoclastogenic cytokine osteoprotegerin (OPG) and increased osteoclast number. FoxO deficiency did not alter the effects of diabetes on bone formation; however, it did prevent the decrease in OPG and the increase in osteoclast number. Addition of high glucose to osteoblastic cell cultures decreased OPG mRNA, indicating that hyperglycemia in and of itself contributes to diabetic bone loss. Taken together, these results suggest that FoxOs exacerbate the loss of cancellous bone mass associated with type 1 diabetes and that inactivation of FoxOs might ameliorate the adverse effects of insulin deficiency. PMID:27491024

  15. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    PubMed

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; p<0.001, GLM). Likewise, the femurs of white women had 12% less cortical area compared with those of white men after adjusting for body size and bone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; p<0.001, GLM). In contrast, female and male femora from recombinant inbred mouse strains showed the opposite trend; femurs from female mice had a 4% larger cortical area compared with those of male mice after adjusting for body size and bone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male femurs. Women acquire substantially less mass (cortical area) for their body size and bone size compared with men. Our analysis questions whether mouse long bone is a suitable model to study human sexual dimorphism. Identifying differences in the way bones are constructed may be clinically important for developing sex-specific diagnostics and treatment strategies to reduce fragility fractures.

  16. A comparison of stereology, structural rigidity and a novel 3D failure surface analysis method in the assessment of torsional strength and stiffness in a mouse tibia fracture model.

    PubMed

    Wright, David A; Nam, Diane; Whyne, Cari M

    2012-08-31

    In attempting to develop non-invasive image based measures for the determination of the biomechanical integrity of healing fractures, traditional μCT based measurements have been limited. This study presents the development and evaluation of a tool for assessment of fracture callus mechanical properties through determination of the geometric characteristics of the fracture callus, specifically along the surface of failure identified during destructive mechanical testing. Fractures were created in tibias of ten male mice and subjected to μCT imaging and biomechanical torsion testing. Failure surface analysis, along with previously described image based measures was calculated using the μCT image data, and correlated with mechanical strength and stiffness. Three-dimensional measures along the surface of failure, specifically the surface area and torsional rigidity of bone, were shown to be significantly correlating with mechanical strength and stiffness. It was also shown that surface area of bone along the failure surface exhibits stronger correlations with both strength and stiffness than measures of average and minimum torsional rigidity of the entire callus. Failure surfaces observed in this study were generally oriented at 45° to the long axis of the bone, and were not contained exclusively within the callus. This work represents a proof of concept study, and shows the potential utility of failure surface analysis in the assessment of fracture callus stability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure

    PubMed Central

    Alexander, Benjamin; Daulton, Tyrone L.; Genin, Guy M.; Lipner, Justin; Pasteris, Jill D.; Wopenka, Brigitte; Thomopoulos, Stavros

    2012-01-01

    The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral (‘bioapatite’) is present predominantly inside collagen fibrils: in ‘gap channels’ between abutting collagen molecules, and in ‘intermolecular spaces’ between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues. PMID:22345156

  18. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing.

    PubMed

    Han, Qianqian; Yang, Pishan; Wu, Yuwei; Meng, Shu; Sui, Lei; Zhang, Lan; Yu, Liming; Tang, Yin; Jiang, Hua; Xuan, Dongying; Kaplan, David L; Kim, Sung Hoon; Tu, Qisheng; Chen, Jake

    2015-08-01

    Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds.

  19. MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages.

    PubMed

    Li, Zhouyang; Wu, Yinfang; Chen, Hai-Pin; Zhu, Chen; Dong, Lingling; Wang, Yong; Liu, Huiwen; Xu, Xuchen; Zhou, Jiesen; Wu, Yanping; Li, Wen; Ying, Songmin; Shen, Huahao; Chen, Zhi-Hua

    2018-04-15

    Increasing toxicological and epidemiological studies have demonstrated that ambient particulate matter (PM) could cause adverse health effects including inflammation in the lung. Alveolar macrophages represent a major type of innate immune responses to foreign substances. However, the detailed mechanisms of inflammatory responses induced by PM exposure in macrophages are still unclear. We observed that coarse PM treatment rapidly activated mechanistic target of rapamycin (MTOR) in mouse alveolar macrophages in vivo, and in cultured mouse bone marrow-derived macrophages, mouse peritoneal macrophages, and RAW264.7 cells. Pharmacological inhibition or genetic knockdown of MTOR in bone marrow-derived macrophages leads to an amplified cytokine production upon PM exposure, and mice with specific knockdown of MTOR or ras homolog enriched in brain in myeloid cells exhibit significantly aggregated airway inflammation. Mechanistically, PM activated MTOR through modulation of ERK, AKT serine/threonine kinase 1, and tuberous sclerosis complex signals, whereas MTOR deficiency further enhanced the PM-induced necroptosis and activation of subsequent NF κ light-chain-enhancer of activated B cells (NFKB) signaling. Inhibition of necroptosis or NFKB pathways significantly ameliorated PM-induced inflammatory response in MTOR-deficient macrophages. The present study thus demonstrates that MTOR serves as an early adaptive signal that suppresses the PM-induced necroptosis, NFKB activation, and inflammatory response in lung macrophages, and suggests that activation of MTOR or inhibition of necroptosis in macrophages may represent novel therapeutic strategies for PM-related airway disorders. Copyright © 2018 by The American Association of Immunologists, Inc.

  20. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    PubMed

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-01-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer.

  1. Sonic hedgehog: restricted expression and limb dysmorphologies

    PubMed Central

    Hill, Robert E; Heaney, Simon JH; Lettice, Laura A

    2003-01-01

    Sonic hedgehog, SHH, is required for patterning the limb. The array of skeletal elements that compose the hands and feet, and the ordered arrangement of these bones to form the pattern of fingers and toes are dependent on SHH. The mechanism of action of SHH in the limb is not fully understood; however, an aspect that appears to be important is the localized, asymmetric expression of Shh. Shh is expressed in the posterior margin of the limb bud in a region defined as the zone of polarizing activity (ZPA). Analysis of mouse mutants which have polydactyly (extra toes) shows that asymmetric expression of Shh is lost due to the appearance of an ectopic domain of expression in the anterior limb margin. One such polydactylous mouse mutant, sasquatch (Ssq), maps to the corresponding chromosomal region of the human condition pre-axial polydactyly (PPD) and thus represents a model for this condition. The mutation responsible for Ssq is located 1 Mb away from the Shh gene; however, the mutation disrupts a long-range cis-acting regulator of Shh expression. By inference, human pre-axial polydactyly results from a similar disruption of Shh expression. Other human congenital abnormalities also map near the pre-axial polydactyly locus, suggesting a major chromosomal region for limb dysmorphologies. The distinct phenotypes range from loss of all bones of the hands and feet to syndactyly of the soft tissue and fusion of the digits. We discuss the role played by Shh expression in mouse mutant phenotypes and the human limb dysmorphologies. PMID:12587915

  2. EARLY ONSET OF CRANIOSYNOSTOSIS IN AN APERT MOUSE MODEL REVEALS CRITICAL FEATURES OF THIS PATHOLOGY

    PubMed Central

    Holmes, Greg; Rothschild, Gerson; Roy, Upal Basu; Deng, Chu-Xia; Mansukhani, Alka; Basilico, Claudio

    2009-01-01

    Activating mutations of FGFRs1–3 cause craniosynostosis (CS), the premature fusion of cranial bones, in man and mouse. The mechanisms by which such mutations lead to CS have been variously ascribed to increased osteoblast proliferation, differentiation, and apoptosis, but it is not always clear how these disturbances relate to the process of suture fusion. We have reassessed coronal suture fusion in an Apert Fgfr2 (S252W) mouse model. We find that the critical event of CS is the early loss of basal sutural mesenchyme as the osteogenic fronts, expressing activated Fgfr2, unite to form a contiguous skeletogenic membrane. A mild increase in osteoprogenitor proliferation precedes but does not accompany this event, and apoptosis is insignificant. On the other hand, the more apical coronal suture initially forms appropriately but then undergoes fusion, albeit at a slower rate, accompanied by a significant decrease in osteoprogenitor proliferation, and increased osteoblast maturation. Apoptosis now accompanies fusion, but is restricted to bone fronts in contact with one another. We correlated these in vivo observations with the intrinsic effects of the activated Fgfr2 S252W mutation in primary osteoblasts in culture, which show an increased capacity for both proliferation and differentiation. Our studies suggest that the major determinant of Fgfr2-induced craniosynostosis is the failure to respond to signals that would halt the recruitment or the advancement of osteoprogenitor cells at the sites where sutures should normally form. PMID:19389359

  3. Fast epi-detected broadband multiplex CARS and SHG imaging of mouse skull cells

    PubMed Central

    Capitaine, Erwan; Moussa, Nawel Ould; Louot, Christophe; Bardet, Sylvia M.; Kano, Hideaki; Duponchel, Ludovic; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2017-01-01

    We present a bimodal imaging system able to obtain epi-detected mutiplex coherent anti-Stokes Raman scattering (M-CARS) and second harmonic generation (SHG) signals coming from biological samples. We studied a fragment of mouse parietal bone and could detect broadband anti-Stokes and SHG responses originating from bone cells and collagen respectively. In addition we compared two post-processing methods to retrieve the imaginary part of the third-order nonlinear susceptibility related to the spontaneous Raman scattering. PMID:29359100

  4. Macrophage-selective toxicity as a mechanism of hydroquinone-induced myelotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.J.

    1989-01-01

    This research has focused upon the role of the bone marrow stroma in the etiology of benzene hematotoxicity. Treatment with the metabolite hydroquinone results in a reduced capacity of the stroma to support myelopoiesis. The goal of this research was to examine stromal cell selective toxicity following hydroquinone treatment. Populations of macrophages and a fibroblastoid cell line (LTF) or primary fibroblasts were developed from mouse bone marrow. Following treatment of with hydroquinone, treated or control fibroblastoid cells were reconstituted with control or treated macrophages, respectively, and the cultures were assayed for their ability to support myelopoiesis. To examine mechanisms ofmore » selective toxicity, macrophage and LTF cultures were incubated with 14C-hydroquinone and bioactivation was examined. After 24 hours, macrophages had 16-fold higher levels of bound {sup 14}C than LTF cells. Peroxide-dependent bioactivation in cell homogenates revealed that peroxide could support formation of covalent-binding species in macrophage homogenates but not in LTF homogenates. It was determined that macrophages, but not LTF cells, contained detectable levels of peroxidase activity which was consistent with the postulate that increased binding was due to peroxidase-mediated bioactivation of hydroquinone. Accordingly, purified myeloperoxidase incubated with {sup 14}C-hydroquinone, resulted in bioactivation to a covalent-binding species. This study provided evidence supporting selective bioactivation as a mechanism of selective toxicity of hydroquinone to bone marrow stromal macrophages.« less

  5. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone.

    PubMed

    Wöhrle, Simon; Bonny, Olivier; Beluch, Noemie; Gaulis, Swann; Stamm, Christelle; Scheibler, Marcel; Müller, Matthias; Kinzel, Bernd; Thuery, Anne; Brueggen, Joseph; Hynes, Nancy E; Sellers, William R; Hofmann, Francesco; Graus-Porta, Diana

    2011-10-01

    The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis. Copyright © 2011 American Society for Bone and Mineral Research.

  6. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications.

    PubMed

    Katunar, Maria R; Gomez Sanchez, Andrea; Santos Coquillat, Ana; Civantos, Ana; Martinez Campos, Enrique; Ballarre, Josefina; Vico, Tamara; Baca, Matias; Ramos, Viviana; Cere, Silvia

    2017-06-01

    In vitro studies offer the insights for the understanding of the mechanisms at the tissue-implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Meilan, Alexander S; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF.

  8. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice.

    PubMed

    Figeac, Florence; Andersen, Ditte C; Nipper Nielsen, Casper A; Ditzel, Nicholas; Sheikh, Søren P; Skjødt, Karsten; Kassem, Moustapha; Jensen, Charlotte H; Abdallah, Basem M

    2018-05-01

    Soluble delta-like 1 homolog (DLK1) is a circulating protein that belongs to the Notch/Serrate/delta family, which regulates many differentiation processes including osteogenesis and adipogenesis. We have previously demonstrated an inhibitory effect of DLK1 on bone mass via stimulation of bone resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E deficiency-associated bone loss in mice. Thus, we generated mouse monoclonal anti-mouse DLK1 antibodies (MAb DLK1) that enabled us to reduce and also quantitate the levels of bioavailable serum DLK1 in vivo. Ovariectomized (ovx) mice were injected intraperitoneally twice weekly with MAb DLK1 over a period of one month. DEXA-, microCT scanning, and bone histomorphometric analyses were performed. Compared to controls, MAb DLK1 treated ovx mice were protected against ovx-induced bone loss, as revealed by significantly increased total bone mass (BMD) due to increased trabecular bone volume fraction (BV/TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Bone Marrow Failure Secondary to Cytokinesis Failure

    DTIC Science & Technology

    2015-12-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia (FA) is a human genetic disease characterized by a progressive bone marrow failure and heightened...Fanconi anemia (FA) is the most commonly inherited bone marrow failure syndrome. FA patients develop bone marrow failure during the first decade of...experiments proposed in specific aims 1- 3 (Tasks 1-3). Task 1: To determine whether HSCs from Fanconi anemia mouse models have increased cytokinesis

  10. Emodin enhances osteogenesis and inhibits adipogenesis

    PubMed Central

    2014-01-01

    Background It has been suggested that the formation of osteoblasts in bone marrow is closely associated with adipogenesis, and the balance between osteogenesis and adipogenesis differentiation of MSCs (mesenchymal stem cells) is disrupted in osteoporosis. In order to improve the treatment of osteoporosis, available agents with roles of regulating the balance is highly desirable. Emodin is a natural anthraquinone derivative extracted from Chinese herbs, which have been used to treat bone diseases for thousands of years. However, the underlying molecular mechanisms of emodin in modulating osteogenesis and adipogenesis remain poorly understood. Methods The molecular mechanisms of emodin on the processes of osteogenesis and adipogenesis in ovariectomized mouse and BMSCs (bone marrow mesenchymal stem cells) have been studied. We have analyzed the effects of emodin in vivo and in vitro. Female ICR mice were assigned to three groups: sham group, ovariectomy group, emodin group. Efficacy was evaluated by H&E, immunohistochemical assay and Micro-CT. In vitro, we analyze the effect of emodin—at concentrations between 0.1 μM and 10 μM-on the processes of inducing osteogenesis and inhibiting adipogenesis in BMSCs by ALP, Oil red O staining, real time RT-PCR and western blot. Results As our experiment shows that emodin could increase the number of osteoblast, BMD (bone mineral density), BV/TV (trabecular bone volume fraction), Tb.N (trabecular number) and Conn.D (connectivity density) of OVX (ovariectomized) mice and decrease the bone marrow fat tissue and adipocytes. The genes and proteins expression of osteogenesis markers, such as Runx2, osterix, collagen type I, osteocalcin, or ALP were up-regulated. While, the genes and proteins involved in adipogenesis, PPARγ, C/EBPα and ap2 were down-regulated. Conclusion It proves that emodin inhibits adipocyte differentiation and enhances osteoblast differentiation from BMSCs. PMID:24565373

  11. Simulated Microgravity Regulates Gene Transcript Profiles of 2T3 Preosteoblasts: Comparison of the Random Positioning Machine and the Rotating Wall Vessel Bioreactor

    NASA Technical Reports Server (NTRS)

    Patel, Mamta J.; Liu, Wenbin; Sykes, Michelle C.; Ward, Nancy E.; Risin, Semyon A.; Risin, Diana; Hanjoong, Jo

    2007-01-01

    Microgravity of spaceflight induces bone loss due in part to decreased bone formation by osteoblasts. We have previously examined the microgravity-induced changes in gene expression profiles in 2T3 preosteoblasts using the Random Positioning Machine (RPM) to simulate microgravity conditions. Here, we hypothesized that exposure of preosteoblasts to an independent microgravity simulator, the Rotating Wall Vessel (RWV), induces similar changes in differentiation and gene transcript profiles, resulting in a more confined list of gravi-sensitive genes that may play a role in bone formation. In comparison to static 1g controls, exposure of 2T3 cells to RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 genes and upregulated 45 genes by more than two-fold as shown by microarray analysis. The microarray results were confirmed with real time PCR for downregulated genes osteomodulin, bone morphogenic protein 4 (BMP4), runx2, and parathyroid hormone receptor 1. Western blot analysis validated the expression of three downregulated genes, BMP4, peroxiredoxin IV, and osteoglycin, and one upregulated gene peroxiredoxin I. Comparison of the microarrays from the RPM and the RWV studies identified 14 gravi-sensitive genes that changed in the same direction in both systems. Further comparison of our results to a published database showing gene transcript profiles of mechanically loaded mouse tibiae revealed 16 genes upregulated by the loading that were shown to be downregulated by RWV and RPM. These mechanosensitive genes identified by the comparative studies may provide novel insights into understanding the mechanisms regulating bone formation and potential targets of countermeasure against decreased bone formation both in astronauts and in general patients with musculoskeletal disorders.

  12. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice.

    PubMed

    Xing, Weirong; Govoni, Kristen E; Donahue, Leah Rae; Kesavan, Chandrasekhar; Wergedal, Jon; Long, Carlin; Bassett, J H Duncan; Gogakos, Apostolos; Wojcicka, Anna; Williams, Graham R; Mohan, Subburaman

    2012-05-01

    Understanding how bone growth is regulated by hormonal and mechanical factors during early growth periods is important for optimizing the attainment of peak bone mass to prevent or postpone the occurrence of fragility fractures later in life. Using genetic mouse models that are deficient in thyroid hormone (TH) (Tshr(-/-) and Duox2(-/-)), growth hormone (GH) (Ghrhr(lit/lit)), or both (Tshr(-/-); Ghrhr(lit/lit)), we demonstrate that there is an important period prior to puberty when the effects of GH are surprisingly small and TH plays a critical role in the regulation of skeletal growth. Daily administration of T3/T4 during days 5 to 14, the time when serum levels of T3 increase rapidly in mice, rescued the skeletal deficit in TH-deficient mice but not in mice lacking both TH and GH. However, treatment of double-mutant mice with both GH and T3/T4 rescued the bone density deficit. Increased body fat in the TH-deficient as well as TH/GH double-mutant mice was rescued by T3/T4 treatment during days 5 to 14. In vitro studies in osteoblasts revealed that T3 in the presence of TH receptor (TR) α1 bound to a TH response element in intron 1 of the IGF-I gene to stimulate transcription. In vivo studies using TRα and TRβ knockout mice revealed evidence for differential regulation of insulin-like growth factor (IGF)-I expression by the two receptors. Furthermore, blockade of IGF-I action partially inhibited the biological effects of TH, thus suggesting that both IGF-I-dependent and IGF-I-independent mechanisms contribute to TH effects on prepubertal bone acquisition. Copyright © 2012 American Society for Bone and Mineral Research.

  13. Osteoinduction by Ca-P biomaterials implanted into the muscles of mice*

    PubMed Central

    Yang, Rui-na; Ye, Feng; Cheng, Li-jia; Wang, Jin-jing; Lu, Xiao-feng; Shi, Yu-jun; Fan, Hong-song; Zhang, Xing-dong; Bu, Hong

    2011-01-01

    The osteoinduction of porous biphasic calcium phosphate ceramics (BCP) has been widely reported and documented, but little research has been performed on rodent animals, e.g., mice. In this study, we report osteoinduction in a mouse model. Thirty mice were divided into two groups. BCP materials (Sample A) and control ceramics (Sample B) were implanted into the leg muscle, respectively. Five mice in each group were killed at 15, 30, and 45 d after surgery. Sample A and Sample B were harvested and used for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC) staining, and Alizarin Red S staining to check bone formation in the biomaterials. Histological analysis showed that no bone tissue was formed 15 d after implantation (0/5) in either of the two groups. Newly-formed bone tissues were observed in Sample A at 30 d (5/5) and 45 d (5/5) after implantation; the average amounts of newly-formed bone tissues were approximately 5.2% and 8.6%, respectively. However, we did not see any bone tissue in Sample B until 45 d after implantation. Bone-related molecular makers such as bone morphogenesis protein-2 (BMP-2), collagen type I, and osteopontin were detected by IHC staining in Sample A 30 d after implantation. In addition, the newly-formed bone was also confirmed by Alizarin Red S staining. Because this is the report of osteoinduction in the rodent animal on which all the biotechnologies were available, our results may contribute to further mechanism research. PMID:21726066

  14. Anabolic and Antiresorptive Modulation of Bone Homeostasis by the Epigenetic Modulator Sulforaphane, a Naturally Occurring Isothiocyanate*

    PubMed Central

    Thaler, Roman; Maurizi, Antonio; Roschger, Paul; Sturmlechner, Ines; Khani, Farzaneh; Spitzer, Silvia; Rumpler, Monika; Zwerina, Jochen; Karlic, Heidrun; Dudakovic, Amel; Klaushofer, Klaus; Teti, Anna; Rucci, Nadia; Varga, Franz; van Wijnen, Andre J.

    2016-01-01

    Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation via Tet1 and Tet2 and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2, Col1a1, Bglap2, Sp7, Atf4, and Alpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of the Tet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorption in vivo. Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis. PMID:26757819

  15. Genetic confirmation for a central role for TNFα in the direct action of thyroid stimulating hormone on the skeleton

    PubMed Central

    Sun, Li; Zhu, Ling-Ling; Lu, Ping; Yuen, Tony; Li, Jianhua; Ma, Risheng; Baliram, Ramkumarie; Moonga, Surinder S.; Liu, Peng; Zallone, Alberta; New, Maria I.; Davies, Terry F.; Zaidi, Mone

    2013-01-01

    Clinical data showing correlations between low thyroid-stimulating hormone (TSH) levels and high bone turnover markers, low bone mineral density, and an increased risk of osteoporosis-related fractures are buttressed by mouse genetic and pharmacological studies identifying a direct action of TSH on the skeleton. Here we show that the skeletal actions of TSH deficiency are mediated, in part, through TNFα. Compound mouse mutants generated by genetically deleting the Tnfα gene on a Tshr−/− (homozygote) or Tshr+/− (heterozygote) background resulted in full rescue of the osteoporosis, low bone formation, and hyperresorption that accompany TSH deficiency. Studies using ex vivo bone marrow cell cultures showed that TSH inhibits and stimulates TNFα production from macrophages and osteoblasts, respectively. TNFα, in turn, stimulates osteoclastogenesis but also enhances the production in bone marrow of a variant TSHβ. This locally produced TSH suppresses osteoclast formation in a negative feedback loop. We speculate that TNFα elevations due to low TSH signaling in human hyperthyroidism contribute to the bone loss that has traditionally been attributed solely to high thyroid hormone levels. PMID:23716650

  16. Effects of alkylphenols on bone metabolism in vivo and in vitro.

    PubMed

    Hagiwara, Hiromi; Sugizaki, Toshinori; Tsukamoto, Yu; Senoh, Emi; Goto, Tadashi; Ishihara, Yoko

    2008-09-01

    Alkylphenols are endocrine disruptors that show estrogen-like effects in various wildlife species. However, little information is available about the action of these chemicals on bone metabolism. We investigated the effects of alkylphenols, such as nonylphenol (NP) and octylphenol (OP), on the formation of bone using several culture systems for osteoclasts and osteoblasts, as well as in vivo experiments. NP and OP dose-dependently inhibited the formation of tartrate-resistant acid phosphatase-positive multinucleated cells (osteoclasts) in cocultures of mouse spleen cells or mouse bone marrow cells with ST2 cells. However, beta-estradiol at 10(-9)M to 10(-6)M did not affect this process. In contrast, neither compound affected the proliferation and differentiation of rat calvarial osteoblast-like cells (ROB cells). When NP or OP (0.1mg/kg body weight) was administered subcutaneously to pregnant mice at 10 days, 12 days and 14 days post-coitus, fetuses at 17.5 days post-coitus showed stimulation of sternebrae bone calcification. Our findings suggest that alkylphenols have critical effects on the formation of bone by non-estrogenic effects.

  17. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography.

    PubMed

    Li, Zihui; Kuhn, Gisela; Schirmer, Michael; Müller, Ralph; Ruffoni, Davide

    2017-01-01

    Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (re)modeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (re)modeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.

  18. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography

    PubMed Central

    Li, Zihui; Kuhn, Gisela; Schirmer, Michael; Müller, Ralph

    2017-01-01

    Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (re)modeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (re)modeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region. PMID:28910363

  19. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    PubMed

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Differential Bone Loss in Mouse Models of Colon Cancer Cachexia

    PubMed Central

    Bonetto, Andrea; Kays, Joshua K.; Parker, Valorie A.; Matthews, Ryan R.; Barreto, Rafael; Puppa, Melissa J.; Kang, Kyung S.; Carson, James A.; Guise, Theresa A.; Mohammad, Khalid S.; Robling, Alexander G.; Couch, Marion E.; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2017-01-01

    Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and ApcMin/+. The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the ApcMin/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia. PMID:28123369

  1. Differential Bone Loss in Mouse Models of Colon Cancer Cachexia.

    PubMed

    Bonetto, Andrea; Kays, Joshua K; Parker, Valorie A; Matthews, Ryan R; Barreto, Rafael; Puppa, Melissa J; Kang, Kyung S; Carson, James A; Guise, Theresa A; Mohammad, Khalid S; Robling, Alexander G; Couch, Marion E; Koniaris, Leonidas G; Zimmers, Teresa A

    2016-01-01

    Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and Apc Min/+ . The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the Apc Min/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia.

  2. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheetsmore » and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.« less

  3. Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system.

    PubMed

    Yong, Kylie Su Mei; Ng, Justin Han Jia; Her, Zhisheng; Hey, Ying Ying; Tan, Sue Yee; Tan, Wilson Wei Sheng; Irac, Sergio Erdal; Liu, Min; Chan, Xue Ying; Gunawan, Merry; Foo, Randy Jee Hiang; Low, Dolyce Hong Wen; Mendenhall, Ian Hewitt; Chionh, Yok Teng; Dutertre, Charles-Antoine; Chen, Qingfeng; Wang, Lin-Fa

    2018-03-16

    Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R -/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.

  4. Putative signaling action of amelogenin utilizes the Wnt/beta-catenin pathway.

    PubMed

    Matsuzawa, M; Sheu, T-J; Lee, Y-J; Chen, M; Li, T-F; Huang, C T; Holz, J D; Puzas, J E

    2009-06-01

    While it has long been known that amelogenin is essential for the proper development of enamel, its role has generally been seen as structural in nature. However, our new data implicate this protein in the regulation of cell signaling pathways in periodontal ligament cells and osteoblasts. In this article we report the successful purification of a recombinant mouse amelogenin protein and demonstrate that it has signaling activity in isolated mouse calvarial cells and human periodontal ligament cells. To determine the regulatory function of canonical Wnt signaling by amelogenin, we used TOPGAL transgenic mice. These mice express a beta-galactosidase transgene under the control of a LEF/TCF and beta-catenin-inducible promoter. To investigate in greater detail the molecular mechanisms involved in the beta-catenin signaling pathway, isolated osteoblasts and periodontal ligament cells were exposed to full-length recombinant mouse amelogenin and were evaluated for phenotypic changes and beta-catenin signaling using a TOPFLASH construct and the LacZ reporter gene. In these in vitro models, we showed that amelogenin can activate beta-catenin signaling. Using the TOPGAL transgenic mouse we showed that amelogenin expression in vivo is localized mainly around the root, the periodontal ligament and the alveolar bone.

  5. A novel ENU-induced mutation, peewee, causes dwarfism in the mouse

    PubMed Central

    Bon-Ryon, Lee; Kano, Kiyoshi; Young, Jay; John, Simon; Nishina, Patsy M; Naggert, Jurgen K; Naito, Kunihiko

    2010-01-01

    We identified a novel fertile, autosomal recessive mutation, called peewee and that results in dwarfing, in a region-specific ENU-induced mutagenesis. These mice at litter size were smaller those of other strains. Histological analysis revealed that the major organs appear normal, but abnormalities in cellular proliferation were observed in bone, liver and testis. Haplotype analysis localized the peewee gene to a 3.3-Mb region between D5Mit83 and D5Mit356.3. There are 18 genes in this linkage area, and we also performed in silico mapping using the PosMed℠ program, which searches for connections among keywords and genes in an interval, but no similar phenotype descriptions were found for these genes. In the peewee mutant compared to the normal, C57BL/6J mouse, only Slc10a4 expression was lower. Our preliminary mutation analysis examining the nucleotide sequence of three exons, two introns and an untranslated region of Slc10a4 did not find any sequence difference between the peewee mouse and the C57BL/6J mouse. Detailed analysis of peewee mice might provide novel molecular insights into the complex mechanisms regulating body growth. PMID:19513787

  6. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis.

    PubMed

    Iwamoto, Masahiro; Tamamura, Yoshihiro; Koyama, Eiki; Komori, Toshihisa; Takeshita, Nobuo; Williams, Julie A; Nakamura, Takashi; Enomoto-Iwamoto, Motomi; Pacifici, Maurizio

    2007-05-01

    Articular cartilage and synovial joints are critical for skeletal function, but the mechanisms regulating their development are largely unknown. In previous studies we found that the ets transcription factor ERG and its alternatively-spliced variant C-1-1 have roles in joint formation in chick. Here, we extended our studies to mouse. We found that ERG is also expressed in developing mouse limb joints. To test regulation of ERG expression, beads coated with the joint master regulator protein GDF-5 were implanted close to incipient joints in mouse limb explants; this led to rapid and strong ectopic ERG expression. We cloned and characterized several mammalian ERG variants and expressed a human C-1-1 counterpart (hERG3Delta81) throughout the cartilaginous skeleton of transgenic mice, using Col2a1 gene promoter/enhancer sequences. The skeletal phenotype was severe and neonatal lethal, and the transgenic mice were smaller than wild type littermates and their skeletons were largely cartilaginous. Limb long bone anlagen were entirely composed of chondrocytes actively expressing collagen IX and aggrecan as well as articular markers such as tenascin-C. Typical growth plates were absent and there was very low expression of maturation and hypertrophy markers, including Indian hedgehog, collagen X and MMP-13. The results suggest that ERG is part of molecular mechanisms leading chondrocytes into a permanent developmental path and become joint forming cells, and may do so by acting downstream of GDF-5.

  7. Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis.

    PubMed

    Krieger, Nancy S; Bushinsky, David A

    2017-10-01

    Serum fibroblast growth factor 23 (FGF23) increases progressively in chronic kidney disease (CKD) and is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the factors regulating its production are not clear. Patients with CKD have decreased renal acid excretion leading to metabolic acidosis (MET). During MET, acid is buffered by bone with release of mineral calcium (Ca) and phosphate (P). MET increases intracellular Ca signaling and cyclooxygenase 2 (COX2)-induced prostaglandin production in the osteoblast, leading to decreased bone formation and increased bone resorption. We found that MET directly stimulates FGF23 in mouse bone organ cultures and primary osteoblasts. We hypothesized that MET increases FGF23 through similar pathways that lead to bone resorption. Neonatal mouse calvariae were incubated in neutral (NTL, pH = 7.44, Pco 2 = 38 mmHg, [HCO 3 - ] = 27 mM) or acid (MET, pH = 7.18, Pco 2 = 37 mmHg, [HCO 3 - ] = 13 mM) medium without or with 2-APB (50 μM), an inhibitor of intracellular Ca signaling or NS-398 (1 μM), an inhibitor of COX2. Each agent significantly inhibited MET stimulation of medium FGF23 protein and calvarial FGF23 RNA as well as bone resorption at 48 h. To exclude the potential contribution of MET-induced bone P release, we utilized primary calvarial osteoblasts. In these cells each agent inhibited MET stimulation of FGF23 RNA expression at 6 h. Thus stimulation of FGF23 by MET in mouse osteoblasts utilizes the same initial signaling pathways as MET-induced bone resorption. Therapeutic interventions directed toward correction of MET, especially in CKD, have the potential to not only prevent bone resorption but also lower FGF23 and perhaps decrease mortality. Copyright © 2017 the American Physiological Society.

  8. Adaptive plasticity in the mouse mandible.

    PubMed

    Anderson, Philip S L; Renaud, Sabrina; Rayfield, Emily J

    2014-04-18

    Plasticity, i.e. non-heritable morphological variation, enables organisms to modify the shape of their skeletal tissues in response to varying environmental stimuli. Plastic variation may also allow individuals to survive in the face of new environmental conditions, enabling the evolution of heritable adaptive traits. However, it is uncertain whether such a plastic response of morphology constitutes an evolutionary adaption itself. Here we investigate whether shape differences due to plastic bone remodelling have functionally advantageous biomechanical consequences in mouse mandibles. Shape characteristics of mandibles from two groups of inbred laboratory mice fed either rodent pellets or ground pellets mixed with jelly were assessed using geometric morphometrics and mechanical advantage measurements of jaw adductor musculature. Mandibles raised on diets with differing food consistency showed significant differences in shape, which in turn altered their biomechanical profile. Mice raised on a soft food diet show a reduction in mechanical advantage relative to mice of the same inbred strain raised on a typical hard food diet. Further, the soft food eaters showed lower levels of integration between jaw regions, particularly between the molar and angular region relative to hard food eaters. Bone remodelling in mouse mandibles allows for significant shifts in biomechanical ability. Food consistency significantly influences this process in an adaptive direction, as mice raised on hard food develop jaws better suited to handle hard foods. This remodelling also affects the organisation of the mandible, as mice raised on soft food appear to be released from developmental constraints showing less overall integration than those raised on hard foods, but with a shift of integration towards the most solicited regions of the mandible facing such a food, namely the incisors. Our results illustrate how environmentally driven plasticity can lead to adaptive functional changes that increase biomechanical efficiency of food processing in the face of an increased solicitation. In contrast, decreased demand in terms of food processing seems to release developmental interactions between jaw parts involved in mastication, and may generate new patterns of co-variation, possibly opening new directions to subsequent selection. Overall, our results emphasize that mandible shape and integration evolved as parts of a complex system including mechanical loading food resource utilization and possibly foraging behaviour.

  9. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse

    PubMed Central

    Yan, Yaping; Wang, Junfeng; Duan, Yanchao; Li, Shanshan; Yan, Li; Wang, Hong; Chen, Bingbing; Sang, Xiongbo; Ji, Weizhi

    2018-01-01

    Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma). Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs) have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP). The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells) were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the paracrine effects of MSCs may play an important role in the improvement of liver fibrosis. PMID:29456886

  10. Osteopontin CD44 Interaction: A Novel Mechanism for the Selective Homing of Breast Tumor Cells into Bone

    DTIC Science & Technology

    2001-06-01

    285, 1182-1186. Giunciuglio, D., T. Cai, C. Filanti, P. Manduca, and A. Albini. (1995) Cancer Letters. 97:69-74. Guirguis R, Margulies I, Taraboletti G...1998; 111,3119-27. Schirrmacher V. Sci. USA 87,1620-24. Shekhar, P. V., C. J. Aslakson, and F. R. Miller . (1993) Seminars in Cancer Biology. 4:193-204...in a mouse model . Science 279:377-380 Even though uncontrolled growth does not inevitably 4. Brooks PC, Montgomery AMP, Rosenfeld M, Reisfeld RA, lead

  11. Molecular Mechanisms of Soft Tissue Regeneration and Bone Formation in Mice: Implications in Fracture Repair and Wound Healing in Humans

    DTIC Science & Technology

    2006-04-01

    nitrosourea mutagenesis, is the result of a missense mutation in the glucokinase gene. Diabetes 53(6):1577- 83. 7. Meyer CW, Korthaus D, Jagla W...Cornali E, Grosse J, Fuchs H, Klingenspor M, Roemheld S, Tschop M, Heldmaier G, De Angelis MH, Nehls M 2004 A novel missense mutation in the mouse...DNA polymorphisms or mutations that may be responsible for the QTLs. In order to identify the candidate genes for the Chr 9 QTL regions, we used

  12. Osthole Stimulates Osteoblast Differentiation and Bone Formation by Activation of β-Catenin–BMP Signaling

    PubMed Central

    Tang, De-Zhi; Hou, Wei; Zhou, Quan; Zhang, Minjie; Holz, Jonathan; Sheu, Tzong-Jen; Li, Tian-Fang; Cheng, Shao-Dan; Shi, Qi; Harris, Stephen E; Chen, Di; Wang, Yong-Jun

    2010-01-01

    Osteoporosis is defined as reduced bone mineral density with a high risk of fragile fracture. Current available treatment regimens include antiresorptive drugs such as estrogen receptor analogues and bisphosphates and anabolic agents such as parathyroid hormone (PTH). However, neither option is completely satisfactory because of adverse effects. It is thus highly desirable to identify novel anabolic agents to improve future osteoporosis treatment. Osthole, a coumarin-like derivative extracted from Chinese herbs, has been shown to stimulate osteoblast proliferation and differentiation, but its effect on bone formation in vivo and underlying mechanism remain unknown. In this study, we found that local injection of Osthole significantly increased new bone formation on the surface of mouse calvaria. Ovariectomy caused evident bone loss in rats, whereas Osthole largely prevented such loss, as shown by improved bone microarchitecture, histomorphometric parameters, and biomechanical properties. In vitro studies demonstrated that Osthole activated Wnt/β-catenin signaling, increased Bmp2 expression, and stimulated osteoblast differentiation. Targeted deletion of the β-catenin and Bmp2 genes abolished the stimulatory effect of Osthole on osteoblast differentiation. Since deletion of the Bmp2 gene did not affect Osthole-induced β-catenin expression and the deletion of the β-catenin gene inhibited Osthole-regulated Bmp2 expression in osteoblasts, we propose that Osthole acts through β-catenin–BMP signaling to promote osteoblast differentiation. Our findings demonstrate that Osthole could be a potential anabolic agent to stimulate bone formation and prevent estrogen deficiency–induced bone loss. © 2010 American Society for Bone and Mineral Research. PMID:20200936

  13. The SK-N-AS human neuroblastoma cell line develops osteolytic bone metastases with increased angiogenesis and COX-2 expression

    PubMed Central

    Tsutsumimoto, Takahiro; Williams, Paul; Yoneda, Toshiyuki

    2014-01-01

    Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB. PMID:26909300

  14. Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering.

    PubMed

    Xia, Zengmin; Yu, Xiaohua; Jiang, Xi; Brody, Harold D; Rowe, David W; Wei, Mei

    2013-07-01

    The objective of the current study is to prepare a biomimetic collagen-apatite scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0-54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Chronic Osteoporotic Pain in Mice: Cutaneous and Deep Musculoskeletal Pain Are Partially Independent of Bone Resorption and Differentially Sensitive to Pharmacological Interventions

    PubMed Central

    Millecamps, Magali; Naso, Lina; Mori, Chisato

    2017-01-01

    Although the pathological changes in osteoporotic bones are well established, the characterization of the osteoporotic pain and its appropriate treatment are not fully elucidated. We investigated the behavioral signs of cutaneous and deep musculoskeletal pain and physical function; time-dependent changes in bone mineral density (BMD) and the emergence of the behavioral phenotype; and the effects of pharmacological interventions having different mechanisms of action (chronic intraperitoneal administration of pamidronate [0.25 mg/kg, 5x/week for 5 weeks] versus acute treatment with intraperitoneal morphine [10 mg/kg] and pregabalin [100 mg/kg]) in a mouse model of ovariectomized or sham-operated mice 6 months following surgery. We observed reduced BMD associated with weight gain, referred cutaneous hypersensitivity, and deep musculoskeletal pain that persisted for 6 months. Chronic bisphosphonate treatment, 6 months after ovariectomy, reversed bone loss and hypersensitivity to cold, but other behavioral indices of osteoporotic pain were unchanged. While the efficacy of acute morphine on cutaneous pain was weak, pregabalin was highly effective; deep musculoskeletal pain was intractable. In conclusion, the reversal of bone loss alone is insufficient to manage pain in chronic osteoporosis. Additional treatments, both pharmacological and nonpharmacological, should be implemented to improve quality of life for osteoporosis patients. PMID:28299231

  16. An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva

    PubMed Central

    Chakkalakal, Salin A.; Zhang, Deyu; Culbert, Andria L.; Convente, Michael R.; Caron, Robert J.; Wright, Alexander C.; Maidment, Andrew D.A.; Kaplan, Frederick S.; Shore, Eileen M.

    2013-01-01

    Fibrodysplasia ossificans progressiva (FOP; MIM #135100) is a debilitating genetic disorder of dysregulated cellular differentiation characterized by malformation of the great toes during embryonic skeletal development and by progressive heterotopic endochondral ossification post-natally. Patients with these classic clinical features of FOP have the identical heterozygous single nucleotide substitution (c.617G>A; R206H) in the gene encoding ACVR1/ALK2, a bone morphogenetic protein (BMP) type I receptor. Gene targeting was used to develop a knock-in mouse model for FOP (Acvr1R206H/+). Radiographic analysis of Acvr1R206H/+ chimeric mice revealed that this mutation induced malformed first digits in the hind limbs and post-natal extra-skeletal bone formation, recapitulating the human disease. Histological analysis of murine lesions showed inflammatory infiltration and apoptosis of skeletal muscle followed by robust formation of heterotopic bone through an endochondral pathway, identical to that seen in patients. Progenitor cells of a Tie2+ lineage participated in each stage of endochondral osteogenesis. We further determined that both wild-type and mutant cells are present within the ectopic bone tissue, an unexpected finding that indicates that although the mutation is necessary to induce the bone formation process, the mutation is not required for progenitor cell contribution to bone and cartilage. This unique knock-in mouse model provides novel insight into the genetic regulation of heterotopic ossification and establishes the first direct in vivo evidence that the R206H mutation in ACVR1 causes FOP. PMID:22508565

  17. Effect of spaceflight hardware on the skeletal properties of ground control mice

    NASA Astrophysics Data System (ADS)

    Bateman, Ted; Lloyd, Shane; Dunlap, Alex; Ferguson, Virginia; Simske, Steven; Stodieck, Louis; Livingston, Eric

    Introduction: Spaceflight experiments using mouse or rat models require habitats that are specifically designed for the microgravity environment. During spaceflight, rodents are housed in a specially designed stainless steel meshed cage with gravity-independent food and water delivery systems and constant airflow to push floating urine and feces towards a waste filter. Differences in the housing environment alone, not even considering the spaceflight environment itself, may lead to physiological changes in the animals contained within. It is important to characterize these cage differences so that results from spaceflight experiments can be more reliably compared to studies from other laboratories. Methods: For this study, we examined the effect of NASA's Animal Enclosure Module (AEM) spaceflight hardware on the skeletal properties of 8-week-old female C57BL/6J mice. This 13-day experiment, conducted on the ground, modeled the flight experiment profile of the CBTM-01 payload on STS-108, with standard vivarium-housed mice being compared to AEM-housed mice (n = 12/group). Functional differences were compared via mechanical testing, micro-hardness indentation, microcomputed tomography, and mineral/matrix composition. Cellular changes were examined by serum chemistry, histology, quantitative histomorphometry, and RT-PCR. A Student's t-test was utilized, with the level of Type I error set at 95 Results: There was no change in elastic, maximum, or fracture force mechanical properties at the femur mid-diaphysis, however, structural stiffness was -17.5 Conclusions: Housing mice in the AEM spaceflight hardware had minimal effects on femur cortical bone properties. However, trabecular bone at the proximal tibia in AEM mice experi-enced large increases in microarchitecture and mineral composition. Increases in bone density were accompanied by reductions in bone-forming osteoblasts and bone-resorbing osteoclasts, representing a general decline in bone turnover at this site. Serum markers suggest a systemic decline in bone formation. The increase in trabecular bone formation rate is likely a result of the reduced resorptive activity; normal levels of bone resorption in vivarium mice likely removed portions of the bone label that were not removed in the AEM housed mice. This is supported by a greater mineralizing surface in AEM mice, with no change in mineral apposition rate.

  18. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models.

    PubMed

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M; Zhao, Ming

    2015-10-13

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting.

  19. Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma

    PubMed Central

    Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P. Leif; Camaschella, Clara; Campanella, Alessandro

    2015-01-01

    Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. PMID:25715406

  20. Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma.

    PubMed

    Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P Leif; Camaschella, Clara; Campanella, Alessandro

    2015-06-01

    Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. Copyright© Ferrata Storti Foundation.

  1. The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development

    DTIC Science & Technology

    2015-09-01

    for inhibiting PCa bone lesion development: 3a. Basic fibroblast growth factor (bFGF) in PC3 bone metastasis: bFGF was identified by cytokine...II receptor (TβRII) knockout (Tgfbr2 KO) mouse models. Col1creERT/Tgfbr2 KO (Col/Tgfbr2 KO), which have TGF-β signaling specific KO in fibroblasts ... fibroblasts and osteoblasts in the bone by Colcre/Tgfbr2 KO, or in the myeloid lineage cells, including osteoclasts in the bone by LysMcre/Tgfbr2 KO

  2. ATP6V1H regulates the growth and differentiation of bone marrow stromal cells.

    PubMed

    Li, Lin; Yang, Shaoqing; Zhang, Yanli; Ji, Dongrui; Jin, Zuolin; Duan, Xiaohong

    2018-05-18

    ATP6V1H encodes subunit H of vacuolar ATPase (V-ATPase) and may regulate osteoclastic function. The deficiency of ATP6V1H caused bone loss in human, mouse and zebrafish. In this report, we identified the mechanisms by which ATP6V1H regulates proliferation and differentiation of bone marrow stromal cells (BMSCs). We found that ATP6V1H was expressed in BMSCs, andAtp6v1h +/- BMSCs exhibited the lower proliferation rate, cell cycle arrest and reduced osteogenic differentiation capacity, as well as the increased adipogenic potentials. Histologic analysis confirmed less bone formation and more fatty degeneration in Atp6v1h +/- mice in the different age groups. Q-PCR analysis revealed that loss of ATP6V1H function downregulated the mRNA level of TGF-β1 receptor, and its binding molecule, subunit β of adaptor protein complex 2 (AP-2), suggesting ATP6V1H regulates the proliferation and differentiation of BMSCs by interacting with TGF-β receptor I and AP-2 complex. Copyright © 2018. Published by Elsevier Inc.

  3. A Murine Model for Human ECO Syndrome Reveals a Critical Role of Intestinal Cell Kinase in Skeletal Development.

    PubMed

    Ding, Mengmeng; Jin, Li; Xie, Lin; Park, So Hyun; Tong, Yixin; Wu, Di; Chhabra, A Bobby; Fu, Zheng; Li, Xudong

    2018-03-01

    An autosomal-recessive inactivating mutation R272Q in the human intestinal cell kinase (ICK) gene caused profound multiplex developmental defects in human endocrine-cerebro-osteodysplasia (ECO) syndrome. ECO patients exhibited a wide variety of skeletal abnormalities, yet the underlying mechanisms by which ICK regulates skeletal development remained largely unknown. The goal of this study was to understand the structural and mechanistic basis underlying skeletal anomalies caused by ICK dysfunction. Ick R272Q knock-in transgenic mouse model not only recapitulated major ECO skeletal defects such as short limbs and polydactyly but also revealed a deformed spine with defective intervertebral disk. Loss of ICK function markedly reduced mineralization in the spinal column, ribs, and long bones. Ick mutants showed a significant decrease in the proliferation zone of long bones and the number of type X collagen-expressing hypertrophic chondrocytes in the spinal column and the growth plate of long bones. These results implicate that ICK plays an important role in bone and cartilage development by promoting chondrocyte proliferation and maturation. Our findings provided new mechanistic insights into the skeletal phenotype of human ECO and ECO-like syndromes.

  4. Functional reconstruction of critical-sized load-bearing bone defects using a Sclerostin-targeting miR-210-3p-based construct to enhance osteogenic activity.

    PubMed

    Hu, Bin; Li, Yan; Wang, Mohan; Zhu, Youming; Zhou, Yong; Sui, Baiyan; Tan, Yu; Ning, Yujie; Wang, Jie; He, Jiacai; Yang, Chi; Zou, Duohong

    2018-06-10

    A considerable amount of research has focused on improving regenerative therapy strategies for repairing defects in load-bearing bones. The enhancement of tissue regeneration with microRNAs (miRNAs) is being developed because miRNAs can simultaneously regulate multiple signaling pathways in an endogenous manner. In this study, we developed a miR-210-based bone repair strategy. We identified a miRNA (miR-210-3p) that can simultaneously up-regulate the expression of multiple key osteogenic genes in vitro. This process resulted in enhanced bone formation in a subcutaneous mouse model with a miR-210-3p/poly-L-lactic acid (PLLA)/bone marrow-derived stem cell (BMSC) construct. Furthermore, we constructed a model of critical-sized load-bearing bone defects and implanted a miR-210-3p/β-tricalcium phosphate (β-TCP)/bone mesenchymal stem cell (BMSC) construct into the defect. We found that the load-bearing defect was almost fully repaired using the miR-210-3p construct. We also identified a new mechanism by which miR-210-3p regulates Sclerostin protein levels. This miRNA-based strategy may yield novel therapeutic methods for the treatment of regenerative defects in vital load-bearing bones by utilizing miRNA therapy for tissue engineering. The destroyed maxillofacial bone reconstruction is still a real challenge for maxillofacial surgeon, due to that functional bone reconstruction involved load-bearing. Base on the above problem, this paper developed a novel miR-210-3p/β-tricalcium phosphate (TCP)/bone marrow-derived stem cell (BMSC) construct (miR-210-3p/β-TCP/BMSCs), which lead to functional reconstruction of critical-size mandible bone defect. We found that the load-bearing defect was almost fully repaired using the miR-210-3p construct. In addition, we also found the mechanism of how the delivered microRNA activated the signaling pathways of endogenous stem cells, leading to the defect regeneration. This miRNA-based strategy can be used to regenerate defects in vital load-bearing bones, thus addressing a critical challenge in regenerative medicine by utilizing miRNA therapy for tissue engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Mice with cancer-induced bone pain show a marked decline in day/night activity.

    PubMed

    Majuta, Lisa A; Guedon, Jean-Marc G; Mitchell, Stefanie A T; Kuskowski, Michael A; Mantyh, Patrick W

    2017-09-01

    Cancer-induced bone pain (CIBP) is the most common type of pain with cancer. In humans, this pain can be difficult to control and highly disabling. A major problem with CIBP in humans is that it increases on weight-bearing and/or movement of a tumor-bearing bone limiting the activity and functional status of the patient. Currently, there is less data concerning whether similar negative changes in activity occur in rodent models of CIBP. To determine whether there are marked changes in activity in a rodent model of CIBP and compare this to changes in skin hypersensitivity. Osteosarcoma cells were injected and confined to 1 femur of the adult male mouse. Every 7 days, spontaneous horizontal and vertical activities were assessed over a 20-hour day and night period using automated activity boxes. Mechanical hypersensitivity of the hind paw skin was assessed using von Frey testing. As the tumor cells grew within the femur, there was a significant decline in horizontal and vertical activity during the times of the day/night when the mice are normally most active. Mice also developed significant hypersensitivity in the skin of the hind paw in the tumor-bearing limb. Even when the tumor is confined to a single load-bearing bone, CIBP drives a significant loss of activity, which increases with disease progression. Understanding the mechanisms that drive this reduction in activity may allow the development of therapies that allow CIBP patients to better maintain their activity and functional status.

  6. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    PubMed Central

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  7. Autocrine inhibition of the c-fms proto-oncogene reduces breast cancer bone metastasis assessed with in vivo dual-modality imaging.

    PubMed

    Jeffery, Justin J; Lux, Katie; Vogel, John S; Herrera, Wynetta D; Greco, Stephen; Woo, Ho-Hyung; AbuShahin, Nisreen; Pagel, Mark D; Chambers, Setsuko K

    2014-04-01

    Breast cancer cells preferentially home to the bone microenvironment, which provides a unique niche with a network of multiple bidirectional communications between host and tumor, promoting survival and growth of bone metastases. In the bone microenvironment, the c-fms proto-oncogene that encodes for the CSF-1 receptor, along with CSF-1, serves as one critical cytokine/receptor pair, functioning in paracrine and autocrine fashion. Previous studies concentrated on the effect of inhibition of host (mouse) c-fms on bone metastasis, with resulting decrease in osteolysis and bone metastases as a paracrine effect. In this report, we assessed the role of c-fms inhibition within the tumor cells (autocrine effect) in the early establishment of breast cancer cells in bone and the effects of this early c-fms inhibition on subsequent bone metastases and destruction. This study exploited a multidisciplinary approach by employing two non-invasive, in vivo imaging methods to assess the progression of bone metastases and bone destruction, in addition to ex vivo analyses using RT-PCR and histopathology. Using a mouse model of bone homing human breast cancer cells, we showed that an early one-time application of anti-human c-fms antibody delayed growth of bone metastases and bone destruction for at least 31 days as quantitatively measured by bioluminescence imaging and computed tomography, compared to controls. Thus, neutralizing human c-fms in the breast cancer cell alone decreases extent of subsequent bone metastasis formation and osteolysis. Furthermore, we are the first to show that anti-c-fms antibodies can impact early establishment of breast cancer cells in bone.

  8. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    PubMed Central

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K. H.; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A.; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L.; Sandholzer, Michael; Lisse, Thomas S.; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M.; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M.; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-01-01

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. PMID:27815347

  9. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing

    PubMed Central

    Han, Qianqian; Yang, Pishan; Wu, Yuwei; Meng, Shu; Sui, Lei; Zhang, Lan; Yu, Liming; Tang, Yin; Jiang, Hua; Xuan, Dongying; Kaplan, David L.; Kim, Sung Hoon

    2015-01-01

    Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds. PMID:25923143

  10. Platelet Dysfunction and a High Bone Mass Phenotype in a Murine Model of Platelet-Type von Willebrand Disease

    PubMed Central

    Suva, Larry J.; Hartman, Eric; Dilley, Joshua D.; Russell, Susan; Akel, Nisreen S.; Skinner, Robert A.; Hogue, William R.; Budde, Ulrich; Varughese, Kottayil I.; Kanaji, Taisuke; Ware, Jerry

    2008-01-01

    The platelet glycoprotein Ib-IX receptor binds surface-bound von Willebrand factor and supports platelet adhesion to damaged vascular surfaces. A limited number of mutations within the glycoprotein Ib-IX complex have been described that permit a structurally altered receptor to interact with soluble von Willebrand factor, and this is the molecular basis of platelet-type von Willebrand disease. We have developed and characterized a mouse model of platelet-type von Willebrand disease (G233V) and have confirmed a platelet phenotype mimicking the human disorder. The mice have a dramatic increase in splenic megakaryocytes and splenomegaly. Recent studies have demonstrated that hematopoetic cells can influence the differentiation of osteogenic cells. Thus, we examined the skeletal phenotype of mice expressing the G233V variant complex. At 6 months of age, G233V mice exhibit a high bone mass phenotype with an approximate doubling of trabecular bone volume in both the tibia and femur. Serum measures of bone resorption were significantly decreased in G233V animals. With decreased bone resorption, cortical thickness was increased, medullary area decreased, and consequently, the mechanical strength of the femur was significantly increased. Using ex vivo bone marrow cultures, osteoclast-specific staining in the G233V mutant marrow was diminished, whereas osteoblastogenesis was unaffected. These studies provide new insights into the relationship between the regulation of megakaryocytopoiesis and bone mass. PMID:18187573

  11. Polymethoxy flavonoids, nobiletin and tangeretin, prevent lipopolysaccharide-induced inflammatory bone loss in an experimental model for periodontitis.

    PubMed

    Tominari, Tsukasa; Hirata, Michiko; Matsumoto, Chiho; Inada, Masaki; Miyaura, Chisato

    2012-01-01

    Nobiletin, a polymethoxy flavonoid (PMF), inhibits systemic bone resorption and maintains bone mass in estrogen-deficient ovariectomized mice. This study examined the anti-inflammatory effects of PMFs, nobiletin, and tangeretin on lipopolysaccharide (LPS)-induced bone resorption. Nobiletin and tangeretin suppressed LPS-induced osteoclast formation and bone resorption and suppressed the receptor activator of NFκB ligand-induced osteoclastogenesis in RAW264.7 macrophages. Nobiletin clearly restored the alveolar bone mass in a mouse experimental model for periodontitis by inhibiting LPS-induced bone resorption. PMFs may therefore provide a new therapeutic approach for periodontal bone loss.

  12. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis.

    PubMed

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W; Beier, Frank; Cai, Daozhang

    2018-02-12

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. Results showed OA progressed over 10-week time-course. Gait disparity occurred only at 10-week post-surgery. Osteophyte formed at 2-week post-surgery. BMDs of DMM showed no statistical differences comparing to SHAM at 2 weeks, but BV/TV is much higher in DMM mice. Increased BMD was clearly found at 5- and 10-week post-surgery in DMM mice. TRAP staining showed increased osteoclast activity at the site of osteophyte formation of DMM joints at 5- and 10-week time points. These results showed that subchondral bone turnover might occurred earlier than 2 weeks in this mouse DMM model. Gait disparity only occurred at later stage of OA in DMM mice. Notably, patella dislocation could occur in some of the DMM mice and cause a different pattern of OA in affected knee.

  13. Systemically Transplanted Bone Marrow-derived Cells Contribute to Dental Pulp Regeneration in a Chimeric Mouse Model.

    PubMed

    Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei

    2016-02-01

    Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Therapeutic effect of androgen therapy in a mouse model of aplastic anemia produced by short telomeres

    PubMed Central

    Bär, Christian; Huber, Nicolas; Beier, Fabian; Blasco, Maria A.

    2015-01-01

    Aplastic anemia is a rare but life-threatening disorder characterized by cytopenia in at least two of the three blood lineages. A frequent feature of patients with aplastic anemia is that they have shorter telomeres than those of age-matched controls. Testosterone has been used for over half a century in the treatment of aplastic anemia. However, although remissions are frequent following hormone therapy, the molecular mechanism underlying the response to treatment has remained unknown. Here we explored the possibility that the recently described regulation of telomerase activity by sex hormones may be the mechanism responsible. To this end, we used a mouse model of aplastic anemia induced by short telomeres in the bone marrow compartment. We found that testosterone therapy results in telomerase up-regulation, improved blood counts, and a significant extension of life-span of these mice. Importantly, longitudinal follow-up studies revealed longer telomeres in peripheral blood in mice subjected to hormone treatment. Our results demonstrate that testosterone-mediated telomerase activation can attenuate or reverse aplastic anemia disease progression associated with the presence of short telomeres. PMID:26206796

  15. LRF-mediated Dll4 repression in erythroblasts is necessary for hematopoietic stem cell maintenance

    PubMed Central

    Lee, Sung-Uk; Maeda, Manami; Ishikawa, Yuichi; Li, Sierra Min; Wilson, Anne; Jubb, Adrian M.; Sakurai, Nagisa; Weng, Lihong; Fiorini, Emma; Radtke, Freddy; Yan, Minhong; MacDonald, H. Robson; Chen, Ching-Cheng

    2013-01-01

    Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in mouse embryos and are critical regulators of lymphoid lineage fate determination. However, it remains unclear how Notch regulates the balance between HSC self-renewal and differentiation in the adult bone marrow (BM). Here we report a novel mechanism that prevents HSCs from undergoing premature lymphoid differentiation in BM. Using a series of in vivo mouse models and functional HSC assays, we show that leukemia/lymphoma related factor (LRF) is necessary for HSC maintenance by functioning as an erythroid-specific repressor of Delta-like 4 (Dll4) expression. Lrf deletion in erythroblasts promoted up-regulation of Dll4 in erythroblasts, sensitizing HSCs to T-cell instructive signals in the BM. Our study reveals novel cross-talk between HSCs and erythroblasts, and sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and differentiation. PMID:23134786

  16. Adeno Associated Viral-mediated intraosseus labeling of bone marrow derived cells for CNS tracking

    PubMed Central

    Selenica, Maj-Linda B.; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B.; Nash, Kevin R.; Morgan, Dave; Gordon, Marcia N.; Lee, Daniel C.

    2016-01-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseus impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9–GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body following insult or injury. Alternatively, this method might find utility in delivering therapeutic genes for neuroinflammatory conditions. PMID:26784524

  17. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  18. Parathyroid hormone-related peptide activates and modulates TRPV1 channel in human DRG neurons.

    PubMed

    Shepherd, A J; Mickle, A D; McIlvried, L A; Gereau, R W; Mohapatra, D P

    2018-05-24

    Parathyroid hormone-related peptide (PTHrP) is associated with advanced tumor growth and metastasis, especially in breast, prostate and myeloma cancers that metastasize to bones, resulting in debilitating chronic pain conditions. Our recent studies revealed that the receptor for PTHrP, PTH1R, is expressed in mouse DRG sensory neurons, and its activation leads to flow-activation and modulation of TRPV1 channel function, resulting in peripheral heat and mechanical hypersensitivity. In order to verify the translatability of our findings in rodents to humans, we explored whether this signalling axis operates in primary human DRG sensory neurons. Analysis of gene expression data from recently reported RNA deep sequencing experiments performed on mouse and human DRGs reveals that PTH1R is expressed in DRG and tibial nerve. Furthermore, exposure of cultured human DRG neurons to PTHrP leads to slow-sustained activation of TRPV1 and modulation of capsaicin-induced channel activation. Both activation and modulation of TRPV1 by PTHrP were dependent on PKC activity. Our findings suggest that functional PTHrP/PTH1R-TRPV1 signalling exists in human DRG neurons, which could contribute to local nociceptor excitation in the vicinity of metastatic bone tumor microenvironment. © 2018 European Pain Federation - EFIC®.

  19. [Effect of the estrous cycle stage on sensitivity to pheromone 2,5-dimethylpyrazine in the house mouse Mus musculus].

    PubMed

    Daev, E V; Dukel'skaia, A V; Kazarova, V E; Fil'kina, Ia A

    2007-01-01

    Frequency of cytogenetic disturbances was estimated in mitotically dividing bone marrow cells of CBA strain female mice after the 24-h long action of pheromone 2,5-dimethylpyrazine (2,5-DMP). The stage of the estrous cycle of each animal was taken into account at the moment of the end of the pheromone action. The analysis was performed using the anatelophase method that allows evaluating frequencies of various types of disturbances--bridges, fragments, delayed chromosomes. The spontaneous level of the mitotic disturbances revealed by the anatelophase method in animals of the control group amounts to 5.4 %. Action of pheromone 2,5-dimethylpyrasine induced the mitosis disturbances detected in the dividing bone marrow cells at the anaphase-telophase stage in the females at the di- + postestrus stage. The corresponding frequency of disturbances after the pheromone action was equal to 9.2%. In the female in estrus, the mitotic disturbance level amounted 6.7%, which did not differ statistically significantly from control. It is suggested that differences in the female mouse hormonal state at different estrous cycle stages affect sensitivity to olfactory signals. Mechanisms of the revealed effect and significance of the differences in sensitivity to pheromone for reproductive processes are discussed.

  20. Role of bone marrow transplantation for correcting hemophilia A in mice

    PubMed Central

    Follenzi, Antonia; Raut, Sanj; Merlin, Simone; Sarkar, Rita

    2012-01-01

    To better understand cellular basis of hemophilia, cell types capable of producing FVIII need to be identified. We determined whether bone marrow (BM)–derived cells would produce cells capable of synthesizing and releasing FVIII by transplanting healthy mouse BM into hemophilia A mice. To track donor-derived cells, we used genetic reporters. Use of multiple coagulation assays demonstrated whether FVIII produced by discrete cell populations would correct hemophilia A. We found that animals receiving healthy BM cells survived bleeding challenge with correction of hemophilia, although donor BM-derived hepatocytes or endothelial cells were extremely rare, and these cells did not account for therapeutic benefits. By contrast, donor BM-derived mononuclear and mesenchymal stromal cells were more abundant and expressed FVIII mRNA as well as FVIII protein. Moreover, injection of healthy mouse Kupffer cells (liver macrophage/mononuclear cells), which predominantly originate from BM, or of healthy BM-derived mesenchymal stromal cells, protected hemophilia A mice from bleeding challenge with appearance of FVIII in blood. Therefore, BM transplantation corrected hemophilia A through donor-derived mononuclear cells and mesenchymal stromal cells. These insights into FVIII synthesis and production in alternative cell types will advance studies of pathophysiological mechanisms and therapeutic development in hemophilia A. PMID:22368271

  1. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE PAGES

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...

    2016-05-26

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  2. HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.

    Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less

  3. Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption.

    PubMed

    Canalis, Ernesto; Schilling, Lauren; Yee, Siu-Pok; Lee, Sun-Kyeong; Zanotti, Stefano

    2016-01-22

    Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C→T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor κB ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the γ-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice

    PubMed Central

    Walker, Emma C.; McGregor, Narelle E.; Poulton, Ingrid J.; Solano, Melissa; Pompolo, Sueli; Fernandes, Tania J.; Constable, Matthew J.; Nicholson, Geoff C.; Zhang, Jian-Guo; Nicola, Nicos A.; Gillespie, Matthew T.; Martin, T. John; Sims, Natalie A.

    2010-01-01

    Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr–/– osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer. PMID:20051625

  5. Excess TGF-β mediates muscle weakness associated with bone metastases in mice

    PubMed Central

    Reiken, Steven; Xie, Wenjun; Andersson, Daniel C.; John, Sutha; Chiechi, Antonella; Wright, Laura E.; Umanskaya, Alisa; Niewolna, Maria; Trivedi, Trupti; Charkhzarrin, Sahba; Khatiwada, Pooja; Wronska, Anetta; Haynes, Ashley; Benassi, Maria Serena; Witzmann, Frank A.; Zhen, Gehua; Wang, Xiao; Cao, Xu; Roodman, G. David; Marks, Andrew R.; Guise, Theresa A.

    2015-01-01

    Cancer-associated muscle weakness is poorly understood and there is no effective treatment. Here, we find that seven different mouse models of human osteolytic bone metastases, representing breast, lung and prostate cancers, as well as multiple myeloma exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that TGF-β, released from the bone surface as a result of metastasis-induced bone destruction upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor/calcium (Ca2+) release channel (RyR1). The oxidized RyR1 channels leaked Ca2+, resulting in lower intracellular signaling required for proper muscle contraction. We found that inhibiting RyR1 leak, TGF-β signaling, TGF-β release from bone or Nox4 all improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast cancer- or lung cancer-associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, higher levels of Nox4 protein and Nox4 binding to RyR1, and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a non-malignant metabolic bone disorder associated with increased TGF-β activity. Thus, metastasis-induced TGF-β release from bone contributes to muscle weakness by decreasing Ca2+-induced muscle force production. PMID:26457758

  6. cDNA cloning of the murine PEX gene implicated in X-linked hypophosphatemia and evidence for expression in bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, L.; Desbarats, M.; Viel, J.

    1996-08-15

    The recently identified human PEX g ene apparently encodes for a neutral endopeptidase that is mutated in patients with X-linked hypophosphatemia. The 3{prime} and 5{prime} ends of the coding region of PEX have not been cloned, nor has the tissue expression of the gene been identified. Here we report the isolation and characterization of the complete open reading frame of the mouse Pex gene and the demonstration of its expression in bone. Mouse Pex cDNA is predicted to encode a protein of 749 amino acids with 95% identity to the available human PEX sequence and significant homology to members ofmore » the membrane-bound metalloendopeptidase family. Northern blot analysis revealed a 6.6-kb transcript in bone and in cultured osteoblasts from normal mice that was not detectable in samples from the Hyp mouse, the murine homolog of human X-linked hypophosphatemia. Pex transcripts were, however, detectable in Hyp bone by RT-PCR amplification. Of particular interest, a cDNA clone from rat incisor shows 93% sequence identity to the 5{prime} end of Pex cDNA, suggesting that Pex may be expressed in another calcified tissue, the tooth. The association of impaired mineralization of bone and teeth and disturbed renal phosphate reabsorption with altered expression of Pex suggests that the Pex gene product may play a critical role in these processes. 47 refs., 2 figs., 1 tab.« less

  7. Models of tibial fracture healing in normal and Nf1-deficient mice.

    PubMed

    Schindeler, Aaron; Morse, Alyson; Harry, Lorraine; Godfrey, Craig; Mikulec, Kathy; McDonald, Michelle; Gasser, Jürg A; Little, David G

    2008-08-01

    Delayed union and nonunion are common complications associated with tibial fractures, particularly in the distal tibia. Existing mouse tibial fracture models are typically closed and middiaphyseal, and thus poorly recapitulate the prevailing conditions following surgery on a human open distal tibial fracture. This report describes our development of two open tibial fracture models in the mouse, where the bone is broken either in the tibial midshaft (mid-diaphysis) or in the distal tibia. Fractures in the distal tibial model showed delayed repair compared to fractures in the tibial midshaft. These tibial fracture models were applied to both wild-type and Nf1-deficient (Nf1+/-) mice. Bone repair has been reported to be exceptionally problematic in human NF1 patients, and these patients can also spontaneously develop tibial nonunions (known as congenital pseudarthrosis of the tibia), which are recalcitrant to even vigorous intervention. pQCT analysis confirmed no fundamental differences in cortical or cancellous bone in Nf1-deficient mouse tibiae compared to wild-type mice. Although no difference in bone healing was seen in the tibial midshaft fracture model, the healing of distal tibial fractures was found to be impaired in Nf1+/- mice. The histological features associated with nonunited Nf1+/- fractures were variable, but included delayed cartilage removal, disproportionate fibrous invasion, insufficient new bone anabolism, and excessive catabolism. These findings imply that the pathology of tibial pseudarthrosis in human NF1 is complex and likely to be multifactorial.

  8. Strontium Ranelate Reduces the Fracture Incidence in a Growing Mouse Model of Osteogenesis Imperfecta.

    PubMed

    Shi, Changgui; Hu, Bo; Guo, Lei; Cao, Peng; Tian, Ye; Ma, Jun; Chen, Yuanyuan; Wu, Huiqiao; Hu, Jinquan; Deng, Lianfu; Zhang, Ying; Yuan, Wen

    2016-05-01

    Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by brittle bones with increased fracture risk. Although current treatment options to improve bone strength in OI focus on antiresorptive bisphosphonates, controlled clinical trials suggest they have an equivocal effect on reducing fracture risk. Strontium ranelate (SrR) is a promising therapy with a dual mode of action that is capable of simultaneously maintaining bone formation and reducing bone resorption, and may be beneficial for the treatment of OI. In this study, SrR therapy was investigated to assess its effects on fracture frequency and bone mass and strength in an animal model of OI, the oim/oim mouse. Three-week-old oim/oim and wt/wt mice were treated with either SrR or vehicle (Veh) for 11 weeks. After treatment, the average number of fractures sustained by SrR-treated oim/oim mice was significantly reduced compared to Veh-treated oim/oim mice. Micro-computed tomographic (μCT) analyses of femurs showed that both trabecular and cortical bone mass were significantly improved with SrR treatment in both genotypes. SrR significantly inhibited bone resorption, whereas bone formation indices were maintained. Biomechanical testing revealed improved bone structural properties in both oim/oim and wild-type (wt/wt) mice under the treatment, whereas no significant effects on bone brittleness and material quality were observed. In conclusion, SrR was able to effectively reduce fractures in oim/oim mice by improving bone mass and strength and thus represents a potential therapy for the treatment of pediatric OI. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  9. Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development.

    PubMed

    Yan, Jianyun; Li, Jun; Hu, Jun; Zhang, Lu; Wei, Chengguo; Sultana, Nishat; Cai, Xiaoqiang; Zhang, Weijia; Cai, Chen-Leng

    2018-06-15

    Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre ( Tbx18 Cre /+ ) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 ( Smad4 f/f ) in the limbs of mice. We found that the Smad4 -deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan , in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 ( Runx2 ), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4 -deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia. © 2018 Yan et al.

  10. Bropirimine inhibits osteoclast differentiation through production of interferon-β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presencemore » of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.« less

  11. Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    PubMed Central

    Pan, Xuan; Jones, Morgan; Jiang, Jie; Zaprazna, Kristina; Yu, Duonan; Pear, Warren; Maillard, Ivan; Atchison, Michael L.

    2012-01-01

    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs. PMID:22292011

  12. Osteoblast Specific Overexpression of Human Interleukin-7 Rescues the Bone Mass Phenotype of Interleukin-7 Deficient Female Mice

    PubMed Central

    Aguila, Hector L.; Mun, Se Hwan; Kalinowski, Judith; Adams, Douglas J.; Lorenzo, Joseph A.; Lee, Sun-Kyeong

    2012-01-01

    Interleukin-7 is a critical cytokine for lymphoid development and a direct inhibitor of in vitro osteoclastogenesis in murine bone marrow cultures. To explore the role of IL-7 in bone, we generated transgenic mouse lines bearing the 2.3 Kb rat collagen 1A1 promoter driving the expression of human IL-7 specifically in osteoblasts. In addition we crossed these mice with IL-7 deficient mice to determine if the alterations in lymphopoiesis, bone mass and osteoclast formation observed in the IL-7 KO mice could be rescued by osteoblast-specific overexpression of IL-7. Here we show that mice overexpressing human IL-7 in the osteoblast lineage demonstrated increased trabecular bone volume in vivo by µCT and decreased osteoclast formation in vitro. Furthermore, targeted overexpression of IL-7 in osteoblasts rescued the osteopenic bone phenotype and B cell development of IL-7 KO mice but did not have an effect on T lymphopoiesis, which occurs in the periphery. The bone phenotypes in IL-7 KO mice and targeted IL-7 overexpressing mouse models were observed only in females. These results likely reflect both a direct inhibitory effects of IL-7 on osteoclastogenesis in vivo and gender specific differences in responses to IL-7. PMID:22258693

  13. Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects.

    PubMed

    Hermenean, Anca; Codreanu, Ada; Herman, Hildegard; Balta, Cornel; Rosu, Marcel; Mihali, Ciprian Valentin; Ivan, Alexandra; Dinescu, Sorina; Ionita, Mariana; Costache, Marieta

    2017-11-30

    Limited self-regenerating capacity of human skeleton makes the reconstruction of critical size bone defect a significant challenge for clinical practice. Aimed for regenerating bone tissues, this study was designed to investigate osteogenic differentiation, along with bone repair capacity of 3D chitosan (CHT) scaffolds enriched with graphene oxide (GO) in critical-sized mouse calvarial defect. Histopathological/histomorphometry and scanning electron microscopy(SEM) analysis of the implants revealed larger amount of new bone in the CHT/GO-filled defects compared with CHT alone (p < 0.001). When combined with GO, CHT scaffolds synergistically promoted the increase of alkaline phosphatase activity both in vitro and in vivo experiments. This enhanced osteogenesis was corroborated with increased expression of bone morphogenetic protein (BMP) and Runx-2 up to week 4 post-implantation, which showed that GO facilitates the differentiation of osteoprogenitor cells. Meanwhile, osteogenesis was promoted by GO at the late stage as well, as indicated by the up-regulation of osteopontin and osteocalcin at week 8 and overexpressed at week 18, for both markers. Our data suggest that CHT/GO biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors.

  14. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells

    PubMed Central

    Cao, Xu; Wu, Xiangwei; Frassica, Deborah; Yu, Bing; Pang, Lijuan; Xian, Lingling; Wan, Mei; Lei, Weiqi; Armour, Michael; Tryggestad, Erik; Wong, John; Wen, Chun Yi; Lu, William Weijia; Frassica, Frank J.

    2011-01-01

    Radiation therapy can result in bone injury with the development of fractures and often can lead to delayed and nonunion of bone. There is no prevention or treatment for irradiation-induced bone injury. We irradiated the distal half of the mouse left femur to study the mechanism of irradiation-induced bone injury and found that no mesenchymal stem cells (MSCs) were detected in irradiated distal femora or nonirradiated proximal femora. The MSCs in the circulation doubled at 1 week and increased fourfold after 4 wk of irradiation. The number of MSCs in the proximal femur quickly recovered, but no recovery was observed in the distal femur. The levels of free radicals were increased threefold at 1 wk and remained at this high level for 4 wk in distal femora, whereas the levels were increased at 1 wk and returned to the basal level at 4 wk in nonirradiated proximal femur. Free radicals diffuse ipsilaterally to the proximal femur through bone medullary canal. The blood vessels in the distal femora were destroyed in angiographic images, but not in the proximal femora. The osteoclasts and osteoblasts were decreased in the distal femora after irradiation, but no changes were observed in the proximal femora. The total bone volumes were not affected in proximal and distal femora. Our data indicate that irradiation produces free radicals that adversely affect the survival of MSCs in both distal and proximal femora. Irradiation injury to the vasculatures and the microenvironment affect the niches for stem cells during the recovery period. PMID:21220327

  15. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells.

    PubMed

    Cao, Xu; Wu, Xiangwei; Frassica, Deborah; Yu, Bing; Pang, Lijuan; Xian, Lingling; Wan, Mei; Lei, Weiqi; Armour, Michael; Tryggestad, Erik; Wong, John; Wen, Chun Yi; Lu, William Weijia; Frassica, Frank J

    2011-01-25

    Radiation therapy can result in bone injury with the development of fractures and often can lead to delayed and nonunion of bone. There is no prevention or treatment for irradiation-induced bone injury. We irradiated the distal half of the mouse left femur to study the mechanism of irradiation-induced bone injury and found that no mesenchymal stem cells (MSCs) were detected in irradiated distal femora or nonirradiated proximal femora. The MSCs in the circulation doubled at 1 week and increased fourfold after 4 wk of irradiation. The number of MSCs in the proximal femur quickly recovered, but no recovery was observed in the distal femur. The levels of free radicals were increased threefold at 1 wk and remained at this high level for 4 wk in distal femora, whereas the levels were increased at 1 wk and returned to the basal level at 4 wk in nonirradiated proximal femur. Free radicals diffuse ipsilaterally to the proximal femur through bone medullary canal. The blood vessels in the distal femora were destroyed in angiographic images, but not in the proximal femora. The osteoclasts and osteoblasts were decreased in the distal femora after irradiation, but no changes were observed in the proximal femora. The total bone volumes were not affected in proximal and distal femora. Our data indicate that irradiation produces free radicals that adversely affect the survival of MSCs in both distal and proximal femora. Irradiation injury to the vasculatures and the microenvironment affect the niches for stem cells during the recovery period.

  16. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model.

    PubMed

    Keeney, Michael; Chung, Michael T; Zielins, Elizabeth R; Paik, Kevin J; McArdle, Adrian; Morrison, Shane D; Ransom, Ryan C; Barbhaiya, Namrata; Atashroo, David; Jacobson, Gunilla; Zare, Richard N; Longaker, Michael T; Wan, Derrick C; Yang, Fan

    2016-08-01

    Scaffold-mediated gene delivery holds great promise for tissue regeneration. However, previous attempts to induce bone regeneration using scaffold-mediated non-viral gene delivery rarely resulted in satisfactory healing. We report a novel platform with sustained release of minicircle DNA (MC) from PLGA scaffolds to accelerate bone repair. MC was encapsulated inside PLGA scaffolds using supercritical CO2 , which showed prolonged release of MC. Skull-derived osteoblasts transfected with BMP-2 MC in vitro result in higher osteocalcin gene expression and mineralized bone formation. When implanted in a critical-size mouse calvarial defect, scaffolds containing luciferase MC lead to robust in situ protein production up to at least 60 days. Scaffold-mediated BMP-2 MC delivery leads to substantially accelerated bone repair as early as two weeks, which continues to progress over 12 weeks. This platform represents an efficient, long-term nonviral gene delivery system, and may be applicable for enhancing repair of a broad range of tissues types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2099-2107, 2016. © 2016 Wiley Periodicals, Inc.

  17. Administration of soluble activin receptor 2B increases bone and muscle mass in a mouse model of osteogenesis imperfecta

    PubMed Central

    DiGirolamo, Douglas J.; Singhal, Vandana; Chang, Xiaoli; Lee, Se-Jin; Germain-Lee, Emily L.

    2015-01-01

    Osteogenesis imperfecta (OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI, many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B (ACVR2B) in a mouse model of type III OI (oim). Treatment of 12-week-old oim mice with ACVR2B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy, wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system. PMID:26161291

  18. Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone☆

    PubMed Central

    Vanleene, Maximilien; Shefelbine, Sandra J.

    2013-01-01

    Osteogenesis imperfecta (OI) is characterized by extremely brittle bone. Currently, bisphosphonate drugs allow a decrease of fracture by inhibiting bone resorption and increasing bone mass but with possible long term side effects. Whole body mechanical vibrations (WBV) treatment may offer a promising route to stimulate bone formation in OI patients as it has exhibited health benefits on both muscle and bone mass in human and animal models. The present study has investigated the effects of WBV (45 Hz, 0.3 g, 15 minutes/days, 5 days/week) in young OI (oim) and wild type female mice from 3 to 8 weeks of age. Vibration therapy resulted in a significant increase in the cortical bone area and cortical thickness in the femur and tibia diaphysis of both vibrated oim and wild type mice compared to sham controls. Trabecular bone was not affected by vibration in the wild type mice; vibrated oim mice, however, exhibited significantly higher trabecular bone volume fraction in the proximal tibia. Femoral stiffness and yield load in three point bending were greater in the vibrated wild type mice than in sham controls, most likely attributed to the increase in femur cortical cross sectional area observed in the μCT morphology analyses. The vibrated oim mice showed a trend toward improved mechanical properties, but bending data had large standard deviations and there was no significant difference between vibrated and non-vibrated oim mice. No significant difference of the bone apposition was observed in the tibial metaphyseal trabecular bone for both the oim and wild type vibrated mice by histomorphometry analyses of calcein labels. At the mid diaphysis, the cortical bone apposition was not significantly influenced by the WBV treatment in both the endosteum and periosteum of the oim vibrated mice while a significant change is observed in the endosteum of the vibrated wild type mice. As only a weak impact in bone apposition between the vibrated and sham groups is observed in the histological sections, it is possible that WBV reduced bone resorption, resulting in a relative increase in cortical thickness. Whole body vibration appears as a potential effective and innocuous means for increasing bone formation and strength, which is particularly attractive for treating the growing skeleton of children suffering from brittle bone disease or low bone density pathologies without the long term disadvantages of current pharmacological therapies. PMID:23352925

  19. Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling.

    PubMed

    Li, Tao; Chang, Shu-Wei; Rodriguez-Florez, Naiara; Buehler, Markus J; Shefelbine, Sandra; Dao, Ming; Zeng, Kaiyang

    2016-11-01

    Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individual native collagen fibers from wildtype (+/+) and oim/oim diseased mice humeri. Our work presents direct experimental evidences that the +/+ fibers have highly organized and compact ultrastructure and corresponding ordered stiffness distribution. In contrast, oim/oim fibers have ordered but loosely packed ultrastructure with uncorrelated stiffness distribution, as well as local defects. The molecular model also demonstrates the structural and molecular packing differences between +/+ and oim/oim collagens. The molecular mutation significantly altered sub-fibril structure and mechanical property of collagen fibers. This study can give the new insight for the mechanisms and treatment of the brittle bone disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Targeting G-Protein Signaling for the Therapeutics of Prostate Tumor Bone Metastases and the Associated Chronic Bone Pain

    DTIC Science & Technology

    2015-09-01

    results in increased activity/expression of key pain-sensing receptor channels, such as TRPV1 , such that the channels are constitutively activated...Keywords: Prostate Cancer Bone Metastasis, Bone Cancer Pain, Heterotrimeric G protein betagamma subunits, G protein coupled receptors (GPCRs), TRPV1 ...vitro, as well as mediating GPCR-regulated TRPV1 channel function in cultured mouse sensory neurons (Aim 1) Major Goal/Objective 1: Determine the

  1. Targeting G-Protein Signaling for the Therapeutics of Prostate Tumor Bone Metastases and the Associated Chronic Bone Pain

    DTIC Science & Technology

    2013-07-01

    results in increased activity/expression of key pain-sensing receptor channels, such as TRPV1 , such that the channels are constitutively activated...Keywords: Prostate Cancer Bone Metastasis, Bone Cancer Pain, Heterotrimeric G protein betagamma subunits, G protein coupled receptors (GPCRs), TRPV1 ...cell growth, migration and invasion in vitro, as well as mediating GPCR-regulated TRPV1 channel function in cultured mouse sensory neurons (Aim 1

  2. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect.

    PubMed

    Kumar, Sanjay; Ponnazhagan, Selvarangan

    2012-04-01

    Although the number of mesenchymal stem cells (MSC) in the bone marrow is sufficient to maintain skeletal homeostasis, in osteopenic pathology, aggravated osteoclast activity or insufficient osteoblast numbers ensue, affecting normal bone remodeling. Most of the currently available therapies are anti-resorptive with limited osteogenic potential. Since mobilization of stem/progenitors from the BM is a prerequisite for their participation in tissue repair, amplification of endogenous stem cells may provide an alternative approach in these conditions. The present study determined the potential of MSC mobilization in vivo, using combinations of different growth factors with the CXCR4 antagonist, AMD3100, in a mouse model of segmental bone defect. Results indicated that among several factors tested IGF1 had maximum proliferative ability of MSC in vitro. Results of the in vivo studies indicated that the combination of IGF1 and AMD3100 provided significant augmentation of bone growth as determined by DXA, micro-CT and histomorphometry in mice bearing segmental fractures. Further, characterization of MSC isolated from mice treated with IGF1 and AMD3100 indicated Akt/PI3K, MEK1/2-Erk1/2 and smad2/3 as key signaling pathways mediating this effect. These data indicate the potential of in vivo stem cell mobilization as a novel alternative for bone healing. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model.

    PubMed

    Tomco, Marek; Petrovova, Eva; Giretova, Maria; Almasiova, Viera; Holovska, Katarina; Cigankova, Viera; Jenca, Andrej; Jencova, Janka; Jenca, Andrej; Boldizar, Martin; Balazs, Kosa; Medvecky, Lubomir

    2017-09-01

    Bone tissue engineering combines biomaterials with biologically active factors and cells to hold promise for reconstructing craniofacial defects. In this study the biological activity of biphasic hydroxyapatite ceramics (HA; a bone substitute that is a mixture of hydroxyapatite and β-tricalcium phosphate in fixed ratios) was characterized (1) in vitro by assessing the growth of MC3T3 mouse osteoblast lineage cells, (2) in ovo by using the chick chorioallantoic membrane (CAM) assay and (3) in an in vivo pig animal model. Biocompatibility, bioactivity, bone formation and biomaterial degradation were detected microscopically and by radiology and histology. HA ceramics alone demonstrated great biocompatibility on the CAM as well as bioactivity by increased proliferation and alkaline phosphatase secretion of mouse osteoblasts. The in vivo implantation of HA ceramics with bone marrow mesenchymal stem cells (MMSCs) showed de novo intramembranous bone healing of critical-size bone defects in the right lateral side of pig mandibular bodies after 3 and 9 weeks post-implantation. Compared with the HA ceramics without MMSCs, the progress of bone formation was slower with less-developed features. This article highlights the clinical use of microporous biphasic HA ceramics despite the unusually shaped elongated micropores with a high length/width aspect ratio (up to 20) and absence of preferable macropores (>100 µm) in bone regenerative medicine.

  4. Metabolic Acidosis Increases Intracellular Calcium in Bone Cells Through Activation of the Proton Receptor OGR1

    PubMed Central

    Frick, Kevin K; Krieger, Nancy S; Nehrke, Keith; Bushinsky, David A

    2009-01-01

    Metabolic acidosis increases urine Ca without increasing intestinal absorption, leading to bone Ca loss. It is unclear how bone cells detect the increase in proton concentration. To determine which G protein-coupled proton sensing receptors are expressed in bone, PCR was performed, and products were detected for OGR1, TDAG8, G2A, and GPR4. We tested the hypothesis that the G protein-coupled proton sensor, OGR1, is an H+-sensing receptor in bone. To determine whether acid-induced bone resorption involves OGR1, we incubated mouse calvariae in neutral pH (NTL) or acidic (MET) medium ± the OGR1 inhibitor CuCl2. CuCl2 decreased MET-induced Ca efflux. We used fluorescent imaging of perfused bone cells to determine whether MET increases Cai. Perfusion with MET induced a rapid, flow-independent, increase in Cai in individual bone cells. To determine whether transfection of OGR1 into a heterologous cell type would increase Cai in response to H+, we perfused Chinese hamster ovary (CHO) cells transfected with mouse OGR1 cDNA. Perfusion with MET induced a rapid increase in Cai in OGR1-transfected CHO cells. These data indicate that OGR1 induces an increase in Cai in response to MET and is a prime candidate for an osteoblast proton sensor. PMID:18847331

  5. Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1.

    PubMed

    Frick, Kevin K; Krieger, Nancy S; Nehrke, Keith; Bushinsky, David A

    2009-02-01

    Metabolic acidosis increases urine Ca without increasing intestinal absorption, leading to bone Ca loss. It is unclear how bone cells detect the increase in proton concentration. To determine which G protein-coupled proton sensing receptors are expressed in bone, PCR was performed, and products were detected for OGR1, TDAG8, G2A, and GPR4. We tested the hypothesis that the G protein-coupled proton sensor, OGR1, is an H(+)-sensing receptor in bone. To determine whether acid-induced bone resorption involves OGR1, we incubated mouse calvariae in neutral pH (NTL) or acidic (MET) medium +/- the OGR1 inhibitor CuCl(2). CuCl(2) decreased MET-induced Ca efflux. We used fluorescent imaging of perfused bone cells to determine whether MET increases Ca(i). Perfusion with MET induced a rapid, flow-independent, increase in Ca(i) in individual bone cells. To determine whether transfection of OGR1 into a heterologous cell type would increase Ca(i) in response to H(+), we perfused Chinese hamster ovary (CHO) cells transfected with mouse OGR1 cDNA. Perfusion with MET induced a rapid increase in Ca(i) in OGR1-transfected CHO cells. These data indicate that OGR1 induces an increase in Ca(i) in response to MET and is a prime candidate for an osteoblast proton sensor.

  6. Flexibility in the mouse middle ear: A finite element study of the frequency response

    NASA Astrophysics Data System (ADS)

    Gottlieb, Peter; Puria, Sunil

    2018-05-01

    The mammalian middle ear is comprised of three distinct ossicles, connected by joints, and suspended in an air-filled cavity. In most mammals, the ossicular joints are mobile synovial joints, which introduce flexibility into the ossicular chain. In some smaller rodents, however, these joints are less mobile, and in the mouse in particular, the malleus is additionally characterized by a large, thin plate known as the transversal lamina, which connects the manubrium to the incus-malleus joint (IMJ). We hypothesize that this feature acts as a functional joint, maintaining the benefits of a flexible ossicular chain despite a less-mobile IMJ, and tested this hypothesis with a finite element model of the mouse middle ear. The results showed that while fusing the ossicular joints had a negligible effect on sound transmission, stiffening the ossicular bone significantly reduced sound transmission, implying that bone flexibility plays a critical role in the normal function of the mouse middle ear.

  7. Therapeutic potentials of naringin on polymethylmethacrylate induced osteoclastogenesis and osteolysis, in vitro and in vivo assessments

    PubMed Central

    Li, Nianhu; Xu, Zhanwang; Wooley, Paul H; Zhang, Jianxin; Yang, Shang-You

    2014-01-01

    Wear debris associated periprosthetic osteolysis represents a major pathological process associated with the aseptic loosening of joint prostheses. Naringin is a major flavonoid identified in grapefruit. Studies have shown that naringin possesses many pharmacological properties including effects on bone metabolism. The current study evaluated the influence of naringin on wear debris induced osteoclastic bone resorption both in vitro and in vivo. The osteoclast precursor cell line RAW 264.7 was cultured and stimulated with polymethylmethacrylate (PMMA) particles followed by treatment with naringin at several doses. Tartrate resistant acid phosphatase (TRAP), calcium release, and gene expression profiles of TRAP, cathepsin K, and receptor activator of nuclear factor-kappa B were sequentially evaluated. PMMA challenged murine air pouch and the load bearing tibia titanium pin-implantation mouse models were used to evaluate the effects of naringin in controlling PMMA induced bone resorption. Histological analyses and biomechanical pullout tests were performed following the animal experimentation. The in vitro data clearly demonstrated the inhibitory effects of naringin in PMMA induced osteoclastogenesis. The naringin dose of 10 μg/mL exhibited the most significant influence on the suppression of TRAP activities. Naringin treatment also markedly decreased calcium release in the stimulated cell culture medium. The short-term air pouch mouse study revealed that local injection of naringin ameliorated the PMMA induced inflammatory tissue response and subsequent bone resorption. The long-term tibia pin-implantation mouse model study suggested that daily oral gavage of naringin at 300 mg/kg dosage for 30 days significantly alleviated the periprosthetic bone resorption. A significant increase of periprosthetic bone volume and regaining of the pin stability were found in naringin treated mice. Overall, this study suggests that naringin may serve as a potential therapeutic agent to treat wear debris associated osteolysis. PMID:24376342

  8. A novel Phex mutation in a new mouse model of hypophosphatemic rickets.

    PubMed

    Owen, Celeste; Chen, Frieda; Flenniken, Ann M; Osborne, Lucy R; Ichikawa, Shoji; Adamson, S Lee; Rossant, Janet; Aubin, Jane E

    2012-07-01

    X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies. Copyright © 2012 Wiley Periodicals, Inc.

  9. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.

    PubMed

    Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B

    2015-01-02

    Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. Published by Elsevier Ltd.

  10. In vivo and in vitro anti-tumor and anti-metastasis effects of Coriolus versicolor aqueous extract on mouse mammary 4T1 carcinoma.

    PubMed

    Luo, Ke-Wang; Yue, Grace Gar-Lee; Ko, Chun-Hay; Lee, Julia Kin-Ming; Gao, Si; Li, Long-Fei; Li, Gang; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San

    2014-01-01

    Coriolus versicolor (CV), a medicinal mushroom widely consumed in Asian countries, has been demonstrated to be effective in stimulation of immune system and inhibition of tumor growth. The present study aimed to investigate the anti-tumor and anti-metastasis effects of CV aqueous extract in mouse mammary carcinoma 4T1 cells and in 4T1-tumor bearing mouse model. Our results showed that CV aqueous extract (0.125-2 mg/ml) did not inhibit 4T1 cell proliferation while the non-cytotoxic dose of CV extract (1-2 mg/ml) significantly inhibited cell migration and invasion (p<0.05). Besides, the enzyme activities and protein levels of MMP-9 were suppressed by CV extract significantly. Animal studies showed that CV aqueous extract (1 g/kg, orally-fed daily for 4 weeks) was effective in decreasing the tumor weight by 36%, and decreased the lung metastasis by 70.8% against untreated control. Besides, micro-CT analysis of the tumor-bearing mice tibias indicated that CV extract was effective in bone protection against breast cancer-induced bone destruction as the bone volume was significantly increased. On the other hand, CV aqueous extract treatments resulted in remarkable immunomodulatory effects, which was reflected by the augmentation of IL-2, 6, 12, TNF-α and IFN-γ productions from the spleen lymphocytes of CV-treated tumor-bearing mice. In conclusion, our results demonstrated for the first time that the CV aqueous extract exhibited anti-tumor, anti-metastasis and immunomodulation effects in metastatic breast cancer mouse model, and could protect the bone from breast cancer-induced bone destruction. These findings provided scientific evidences for the clinical application of CV aqueous extract in breast cancer patients. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice

    PubMed Central

    Chai, Xiao; Li, Deguan; Cao, Xiaoli; Zhang, Yuchen; Mu, Juan; Lu, Wenyi; Xiao, Xia; Li, Chengcheng; Meng, Juanxia; Chen, Jie; Li, Qing; Wang, Jishi; Meng, Aimin; Zhao, Mingfeng

    2015-01-01

    Iron overload, caused by hereditary hemochromatosis or repeated blood transfusions in some diseases, such as beta thalassemia, bone marrow failure and myelodysplastic syndrome, can significantly induce injured bone marrow (BM) function as well as parenchyma organ dysfunctions. However, the effect of iron overload and its mechanism remain elusive. In this study, we investigated the effects of iron overload on the hematopoietic stem and progenitor cells (HSPCs) from a mouse model. Our results showed that iron overload markedly decreased the ratio and clonogenic function of murine HSPCs by the elevation of reactive oxygen species (ROS). This finding is supported by the results of NAC or DFX treatment, which reduced ROS level by inhibiting NOX4 and p38MAPK and improved the long-term and multi-lineage engrafment of iron overload HSCs after transplantation. Therefore, all of these data demonstrate that iron overload injures the hematopoiesis of BM by enhancing ROS through NOX4 and p38MAPK. This will be helpful for the treatment of iron overload in patients with hematopoietic dysfunction. PMID:25970748

  12. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases.

    PubMed

    Martin, T John

    2016-07-01

    Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects. Copyright © 2016 the American Physiological Society.

  13. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  14. Characterization of neutrophils and macrophages from ex vivo cultured murine bone marrow for morphologic maturation and functional responses by imaging flow cytometry

    PubMed Central

    Pelletier, Margery G. H.; Szymczak, Klaudia; Barbeau, Anna M.; Prata, Gianna N.; O’Fallon, Kevin S.; Gaines, Peter

    2016-01-01

    Neutrophils and macrophages differentiate from common myeloid progenitors in the bone marrow, where they undergo nuclear morphologic changes during maturation. During this process, both cell types acquire critical innate immune functions that include phagocytosis of pathogens, and for neutrophils the release of nuclear material called nuclear extracellular traps (NETs). Primary cells used to study these functions are typically purified from mature mouse tissues, but bone marrow-derived ex vivo cultures provide more abundant numbers of progenitors and functionally mature cells. Routine analyses of these cells use conventional microscopy and flow cytometry, which present limitations; microscopy is laborious and subjective, whereas flow cytometry lacks spatial resolution. Here we describe methods to generate enriched populations of neutrophils or macrophages from cryopreserved mouse bone marrow cultured ex vivo, and to use imaging flow cytometry that combines the resolution of microscopy with flow cytometry to analyze cells for morphologic features, phagocytosis, and NETosis. PMID:27663441

  15. Regulation of osteogenesis by long noncoding RNAs: An epigenetic mechanism contributing to bone formation.

    PubMed

    Tye, Coralee E; Boyd, Joseph R; Page, Natalie A; Falcone, Michelle M; Stein, Janet L; Stein, Gary S; Lian, Jane B

    2018-12-01

    Long noncoding RNAs (lncRNAs) have recently emerged as novel regulators of lineage commitment, differentiation, development, viability, and disease progression. Few studies have examined their role in osteogenesis; however, given their critical and wide-ranging roles in other tissues, lncRNAs are most likely vital regulators of osteogenesis. In this study, we extensively characterized lncRNA expression in mesenchymal cells during commitment and differentiation to the osteoblast lineage using a whole transcriptome sequencing approach (RNA-Seq). Using mouse primary mesenchymal stromal cells (mMSC), we identified 1438 annotated lncRNAs expressed during MSC differentiation, 462 of which are differentially expressed. We performed guilt-by-association analysis using lncRNA and mRNA expression profiles to identify lncRNAs influencing MSC commitment and differentiation. These findings open novel dimensions for exploring lncRNAs in regulating normal bone formation and in skeletal disorders.

  16. Acquired immunologic tolerance: with particular reference to transplantation

    PubMed Central

    Starzl, Thomas E.

    2009-01-01

    The first unequivocally successful bone marrow cell transplantation in humans was recorded in 1968 by the University of Minnesota team of Robert A. Good (Gatti et al. Lancet 2: 1366–1369, 1968). This achievement was a direct extension of mouse models of acquired immunologic tolerance that were established 15 years earlier. In contrast, organ (i.e. kidney) transplantation was accomplished precociously in humans (in 1959) before demonstrating its feasibility in any experimental model and in the absence of a defensible immunologic rationale. Due to the striking differences between the outcomes with the two kinds of procedure, the mechanisms of organ engraftment were long thought to differ from the leukocyte chimerism-associated ones of bone marrow transplantation. This and other concepts of alloengraftment and acquired tolerance have changed over time. Current concepts and their clinical implications can be understood and discussed best from the perspective provided by the life and times of Bob Good. PMID:17917005

  17. Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation

    PubMed Central

    Kwon, Ronald Y.; Meays, Diana R.; Meilan, Alexander S.; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A.

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF. PMID:22413015

  18. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation.

    PubMed

    Taya, Yuki; Ota, Yasunori; Wilkinson, Adam C; Kanazawa, Ayano; Watarai, Hiroshi; Kasai, Masataka; Nakauchi, Hiromitsu; Yamazaki, Satoshi

    2016-12-02

    A specialized bone marrow microenvironment (niche) regulates hematopoietic stem cell (HSC) self-renewal and commitment. For successful donor-HSC engraftment, the niche must be emptied via myeloablative irradiation or chemotherapy. However, myeloablation can cause severe complications and even mortality. Here we report that the essential amino acid valine is indispensable for the proliferation and maintenance of HSCs. Both mouse and human HSCs failed to proliferate when cultured in valine-depleted conditions. In mice fed a valine-restricted diet, HSC frequency fell dramatically within 1 week. Furthermore, dietary valine restriction emptied the mouse bone marrow niche and afforded donor-HSC engraftment without chemoirradiative myeloablation. These findings indicate a critical role for valine in HSC maintenance and suggest that dietary valine restriction may reduce iatrogenic complications in HSC transplantation. Copyright © 2016, American Association for the Advancement of Science.

  19. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    PubMed

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  20. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs).

    PubMed

    Hu, Xue; Li, Li; Yu, Xinyi; Zhang, Ruyi; Yan, Shujuan; Zeng, Zongyue; Shu, Yi; Zhao, Chen; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; An, Liping; Huang, Shifeng; Ji, Xiaojuan; Gong, Cheng; Yuan, Chengfu; Zhang, Linghuan; Liu, Wei; Huang, Bo; Feng, Yixiao; Zhang, Bo; Haydon, Rex C; Luu, Hue H; Reid, Russell R; Lee, Michael J; Wolf, Jennifer Moriatis; Yu, Zebo; He, Tong-Chuan

    2017-12-19

    Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo . Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine.

  1. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs)

    PubMed Central

    Hu, Xue; Li, Li; Yu, Xinyi; Zhang, Ruyi; Yan, Shujuan; Zeng, Zongyue; Shu, Yi; Zhao, Chen; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; An, Liping; Huang, Shifeng; Ji, Xiaojuan; Gong, Cheng; Yuan, Chengfu; Zhang, Linghuan; Liu, Wei; Huang, Bo; Feng, Yixiao; Zhang, Bo; Haydon, Rex C.; Luu, Hue H.; Reid, Russell R.; Lee, Michael J.; Wolf, Jennifer Moriatis; Yu, Zebo; He, Tong-Chuan

    2017-01-01

    Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo. Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine. PMID:29340096

  2. Development and characterization of a mouse floxed Bmp2 osteoblast cell line that retains osteoblast genotype and phenotype

    PubMed Central

    Wu, Li-an; Feng, Junsheng; Wang, Lynn; Mu, Yan-dong; Baker, Andrew; Donly, Kevin J.; Harris, Stephen E.; MacDougall, Mary; Chen, Shuo

    2011-01-01

    Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways. PMID:21271257

  3. Use of a computer model in the understanding of erythropoietic control mechanisms

    NASA Technical Reports Server (NTRS)

    Dunn, C. D. R.

    1978-01-01

    During an eight-week visit approximately 200 simulations using the computer model for the regulation of erythopoiesis were carries out in four general areas: with the human model simulating hypoxia and dehydration, evaluation of the simulation of dehydration using the mouse model. The experiments led to two considerations for the models. Firstly, a direct relationship between erythropoietin concentration and bone marrow sensitivity to the hormone and, secondly, a partial correction of tissue hypoxia prior to compensation by an increased hematocrit. This latter change in particular produced a better simuation of the effects of hypoxia on plasma erythropoietin concentrations.

  4. Hyperelastic "bone": A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial.

    PubMed

    Jakus, Adam E; Rutz, Alexandra L; Jordan, Sumanas W; Kannan, Abhishek; Mitchell, Sean M; Yun, Chawon; Koube, Katie D; Yoo, Sung C; Whiteley, Herbert E; Richter, Claus-Peter; Galiano, Robert D; Hsu, Wellington K; Stock, Stuart R; Hsu, Erin L; Shah, Ramille N

    2016-09-28

    Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic "bone" (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm(3)/hour) from room temperature extruded liquid inks. The resulting 3D-printed HB exhibited elastic mechanical properties (~32 to 67% strain to failure, ~4 to 11 MPa elastic modulus), was highly absorbent (50% material porosity), supported cell viability and proliferation, and induced osteogenic differentiation of bone marrow-derived human mesenchymal stem cells cultured in vitro over 4 weeks without any osteo-inducing factors in the medium. We evaluated HB in vivo in a mouse subcutaneous implant model for material biocompatibility (7 and 35 days), in a rat posterolateral spinal fusion model for new bone formation (8 weeks), and in a large, non-human primate calvarial defect case study (4 weeks). HB did not elicit a negative immune response, became vascularized, quickly integrated with surrounding tissues, and rapidly ossified and supported new bone growth without the need for added biological factors. Copyright © 2016, American Association for the Advancement of Science.

  5. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology.

    PubMed

    Lambert, Laura J; Challa, Anil K; Niu, Aidi; Zhou, Lihua; Tucholski, Janusz; Johnson, Maria S; Nagy, Tim R; Eberhardt, Alan W; Estep, Patrick N; Kesterson, Robert A; Grams, Jayleen M

    2016-10-01

    Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap), is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap) gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA), glucose tolerance testing (GTT), insulin tolerance testing (ITT), microcomputed tomography (µCT), and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research. © 2016. Published by The Company of Biologists Ltd.

  6. Ovariectomy-Induced Osteopenia Influences the Middle and Late Periods of Bone Healing in a Mouse Femoral Osteotomy Model.

    PubMed

    Pang, Jian; Ye, Meina; Gu, Xinfeng; Cao, Yuelong; Zheng, Yuxin; Guo, Hailing; Zhao, Yongfang; Zhan, Hongsheng; Shi, Yinyu

    2015-08-01

    It is known that bone healing is delayed in the presence of osteoporosis in humans. However, due to the complexities of the healing of osteoporotic fractures, animal models may be more appropriate for studying the effects of osteoporosis in more detail and for testing drugs on the fracture repair process. The purpose of this study was to investigate the influence of ovariectomy-induced osteopenia in bone healing in an open femoral osteotomy model, and to test the feasibility of this model for evaluating the healing process under osteopenic conditions. Ovariectomized (OVX) mouse models were employed to assess the effects of osteopenia on fracture healing, A mid-shaft femur osteotomy model was also established 3 weeks after ovariectomy as an osteopenic fracture group (OVX group). Femurs were then harvested at 2 weeks and 6 weeks after fracture for X-ray radiography, micro-computed tomography (micro-CT), histology, and biomechanical analysis. A sham-operated group (sham group) was used for comparison. The OVX mice had significantly lower bone volume density (BVF), volumetric bone mineral density (vBMD), and tissue mineral density (TMD) in the fracture calluses at 6 weeks (p<0.05), and similar trend was observed in 2 weeks. Additionally, larger calluses in OVX animals were observed via micro-CT and X-ray, but these did not result in better healing outcomes, as determined by biomechanical test at 6 weeks. Histological images of the healing fractures in the OVX mice found hastening of broken end resorption and delay of hard callus remodeling. The impaired biomechanical measurements in the OVX group (p<0.05) were consistent with micro-CT measurements and radiographic scoring, which also indicated delay in fracture healing of the OVX group. This study provided evidence that ovariectomy-induced osteopenia impair the middle and late bone healing process. These data also supported the validity of the mouse femoral osteotomy model in evaluating the process of bone healing under osteopenic conditions.

  7. The effect of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow‑derived mesenchymal stem cells.

    PubMed

    Javanmard, F; Azadbakht, M; Pourmoradi, M

    2016-01-01

    In this study, the role of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow mesenchymal stem cells were investigated. The cells were cultured in treatment medium containing 100 nM of staurosporine for 4 hours; then the cells were affected by hydrostatic pressure (0, 25,50, 100 mmHg). The percentage of cell viability by trypan blue staining and the percentage of cell death by Hoechst/PI differential staining were assessed. We obtained the total neurite length. Expression of β-tubulin III and GFAP (Glial fibrillary acidic protein) proteins were also analyzed by immunocytochemistry. The percentage of cell viability in treatments decreased relative to the increase in hydrostatic pressure and time (p Keywords: bone marrow mesenchymal stem cell, hydrostatic pressure, immunocytochemistry, neural differentiation, neurite length, cell differentiation.

  8. Bone Morphogenetic Protein (BMP) signaling in development and human diseases

    PubMed Central

    Wang, Richard N.; Green, Jordan; Wang, Zhongliang; Deng, Youlin; Qiao, Min; Peabody, Michael; Zhang, Qian; Ye, Jixing; Yan, Zhengjian; Denduluri, Sahitya; Idowu, Olumuyiwa; Li, Melissa; Shen, Christine; Hu, Alan; Haydon, Rex C.; Kang, Richard; Mok, James; Lee, Michael J.; Luu, Hue L.; Shi, Lewis L.

    2014-01-01

    Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling. PMID:25401122

  9. [6]-Gingerol induces bone loss in ovary intact adult mice and augments osteoclast function via the transient receptor potential vanilloid 1 channel.

    PubMed

    Khan, Kainat; Singh, Akanksha; Mittal, Monika; Sharan, Kunal; Singh, Nidhi; Dixit, Preety; Sanyal, Sabyasachi; Maurya, Rakesh; Chattopadhyay, Naibedya

    2012-12-01

    [6]-Gingerol, a major constituent of ginger, is considered to have several health beneficial effects. The effect of 6-gingerol on bone cells and skeleton of mice was investigated. The effects of 6-gingerol on mouse bone marrow macrophages and osteoblasts were studied. 6-Gingerol-stimulated osteoclast differentiation of bone marrow macrophages but had no effect on osteoblasts. Capsazepine, an inhibitor of TRPV1 (transient receptor potential vanilloid 1) channel, attenuated the pro-osteoclastogenic effect of 6-gingerol or capsaicin (an agonist of TRPV1). Similar to capsaicin, 6-gingerol stimulated Ca(2) + influx in osteoclasts. The effect of daily feeding of 6-gingerol for 5 wk on the skeleton of adult female Balb/cByJ mice was investigated. Mice treated with capsaicin and ovariectomized (OVx) mice served as controls for osteopenia. 6-Gingerol caused increase in trabecular osteoclast number, microarchitectural erosion at all trabecular sites and loss of vertebral stiffness, and these effects were comparable to capsaicin or OVx group. Osteoclast-specific serum and gene markers of 6-gingerol-treated mice were higher than the OVx group. Bone formation was unaffected by 6-gingerol. Daily feeding of 6-gingerol to skeletally mature female mice caused trabecular osteopenia, and the mechanism appeared to be activation of osteoclast formation via the TRPV1 channel. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Local administration of a hedgehog agonist accelerates fracture healing in a mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Miki; Division of Clinical Biotechnology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-0033; Hojo, Hironori

    Bone fracture healing is processed through multiple biological stages including the transition from cartilaginous callus to bony callus formation. Because of its specific, temporal and indispensable functions demonstrated by mouse genetic studies, Hedgehog (Hh) signaling is one of the most potent signaling pathways involved in these processes, but the effect of Hh-signaling activation by small compounds on the repair process had not yet been addressed. Here we examined therapeutic effects of local and one shot-administration of the Hh agonist known as smoothened agonist (SAG) on bone fracture healing in a mouse model. A quantitative analysis with three-dimensional micro-computed tomography showedmore » that SAG administration increased the size of both the cartilaginous callus and bony callus at 14 days after the surgery. A histological analysis showed that SAG administration increased the number of cells expressing a proliferation marker and a chondrocyte marker in cartilaginous callus as well as the cells expressing an osteoblast marker in bony callus. These results indicate that the SAG administration resulted in an enhancement of callus formation during bone fracture healing, which is at least in part mediated by an increase in chondrocyte proliferation in cartilaginous callus and the promotion of bone formation in bony callus. Therapeutic strategies with a SAG-mediated protocol may thus be useful for the treatment of bone fractures. - Highlights: • Local administration of a Hh agonist accelerates callus formation. • The Hh agonist administration promotes chondrocyte proliferation in the soft callus. • The Hh agonist administration increases osteoblast formation in the hard callus.« less

  11. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  12. Genetic deletion of keratin 8 corrects the altered bone formation and osteopenia in a mouse model of cystic fibrosis.

    PubMed

    Le Henaff, Carole; Faria Da Cunha, Mélanie; Hatton, Aurélie; Tondelier, Danielle; Marty, Caroline; Collet, Corinne; Zarka, Mylène; Geoffroy, Valérie; Zatloukal, Kurt; Laplantine, Emmanuel; Edelman, Aleksander; Sermet-Gaudelus, Isabelle; Marie, Pierre J

    2016-04-01

    Patients with cystic fibrosis (CF) display low bone mass and alterations in bone formation. Mice carrying the F508del genetic mutation in the cystic fibrosis conductance regulator (Cftr) gene display reduced bone formation and decreased bone mass. However, the underlying molecular mechanisms leading to these skeletal defects are unknown, which precludes the development of an efficient anti-osteoporotic therapeutic strategy. Here we report a key role for the intermediate filament protein keratin 8 (Krt8), in the osteoblast dysfunctions in F508del-Cftr mice. We found that murine and human osteoblasts express Cftr and Krt8 at low levels. Genetic studies showed that Krt8 deletion (Krt8(-/-)) in F508del-Cftr mice increased the levels of circulating markers of bone formation, corrected the expression of osteoblast phenotypic genes, promoted trabecular bone formation and improved bone mass and microarchitecture. Mechanistically, Krt8 deletion in F508del-Cftr mice corrected overactive NF-κB signaling and decreased Wnt-β-catenin signaling induced by the F508del-Cftr mutation in osteoblasts. In vitro, treatment with compound 407, which specifically disrupts the Krt8-F508del-Cftr interaction in epithelial cells, corrected the abnormal NF-κB and Wnt-β-catenin signaling and the altered phenotypic gene expression in F508del-Cftr osteoblasts. In vivo, short-term treatment with 407 corrected the altered Wnt-β-catenin signaling and bone formation in F508del-Cftr mice. Collectively, the results show that genetic or pharmacologic targeting of Krt8 leads to correction of osteoblast dysfunctions, altered bone formation and osteopenia in F508del-Cftr mice, providing a therapeutic strategy targeting the Krt8-F508del-CFTR interaction to correct the abnormal bone formation and bone loss in cystic fibrosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Cigarette Smoke Inhibits Recruitment of Bone-Marrow-Derived Stem cells to The Uterus

    PubMed Central

    Zhou, Yuping; Gan, Ye; Taylor, Hugh S.

    2011-01-01

    Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues. PMID:20955787

  14. HDAC6 deficiency or inhibition blocks FGFR3 accumulation and improves bone growth in a model of achondroplasia.

    PubMed

    Ota, Sara; Zhou, Zi-Qiang; Romero, Megan P; Yang, Guang; Hurlin, Peter J

    2016-10-01

    Mutations that cause increased and/or inappropriate activation of FGFR3 are responsible for a collection of short-limbed chondrodysplasias. These mutations can alter receptor trafficking and enhance receptor stability, leading to increased receptor accumulation and activity. Here, we show that wildtype and mutant activated forms of FGFR3 increase expression of the cytoplasmic deacetylase HDAC6 (Histone Deacetylase 6) and that FGFR3 accumulation is compromised in cells lacking HDAC6 or following treatment of fibroblasts or chondrocytes with small molecule inhibitors of HDAC6. The reduced accumulation of FGFR3 was linked to increased FGFR3 degradation that occurred through a lysosome-dependent mechanism. Using a mouse model of Thanatophoric Dysplasia Type II (TDII) we show that both HDAC6 deletion and treatment with the small molecule HDAC6 inhibitor tubacin reduced FGFR3 accumulation in the growth plate and improved endochondral bone growth. Defective endochondral growth in TDII is associated with reduced proliferation and poor hypertrophic differentiation and the improved bone growth was associated with increased chondrocyte proliferation and expansion of the differentiation compartment within the growth plate. These findings further define the mechanisms that control FGFR3 accumulation and contribute to skeletal pathology caused by mutations in FGFR3. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Mice with cancer-induced bone pain show a marked decline in day/night activity

    PubMed Central

    Majuta, Lisa A.; Guedon, Jean-Marc G.; Mitchell, Stefanie A.T.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2017-01-01

    Abstract Introduction: Cancer-induced bone pain (CIBP) is the most common type of pain with cancer. In humans, this pain can be difficult to control and highly disabling. A major problem with CIBP in humans is that it increases on weight-bearing and/or movement of a tumor-bearing bone limiting the activity and functional status of the patient. Currently, there is less data concerning whether similar negative changes in activity occur in rodent models of CIBP. Objectives: To determine whether there are marked changes in activity in a rodent model of CIBP and compare this to changes in skin hypersensitivity. Methods: Osteosarcoma cells were injected and confined to 1 femur of the adult male mouse. Every 7 days, spontaneous horizontal and vertical activities were assessed over a 20-hour day and night period using automated activity boxes. Mechanical hypersensitivity of the hind paw skin was assessed using von Frey testing. Results: As the tumor cells grew within the femur, there was a significant decline in horizontal and vertical activity during the times of the day/night when the mice are normally most active. Mice also developed significant hypersensitivity in the skin of the hind paw in the tumor-bearing limb. Conclusion: Even when the tumor is confined to a single load-bearing bone, CIBP drives a significant loss of activity, which increases with disease progression. Understanding the mechanisms that drive this reduction in activity may allow the development of therapies that allow CIBP patients to better maintain their activity and functional status. PMID:29392229

  16. Urinary Peptides As a Novel Source of T Cell Allergen Epitopes

    PubMed Central

    da Silva Antunes, Ricardo; Pham, John; McMurtrey, Curtis; Hildebrand, William H.; Phillips, Elizabeth; Mallal, Simon; Sidney, John; Busse, Paula; Peters, Bjoern; Schulten, Véronique; Sette, Alessandro

    2018-01-01

    Mouse allergy in both laboratory workers and in inner-city children is associated with allergic rhinitis and asthma, posing a serious public health concern. Urine is a major source of mouse allergens, as mice spray urine onto their surroundings, where the proteins dry up and become airborne on dust particles. Here, we tested whether oligopeptides that are abundant in mouse urine may contribute to mouse allergic T cell response. Over 1,300 distinct oligopeptides were detected by mass spectrometry analysis of the low molecular weight filtrate fraction of mouse urine (LoMo). Posttranslationally modified peptides were common, accounting for almost half of total peptides. A pool consisting of 225 unique oligopeptides of 13 residues or more in size identified within was tested for its capacity to elicit T cell reactivity in mouse allergic donors. Following 14-day in vitro stimulation of PBMCs, we detected responses in about 95% of donors tested, directed against 116 distinct peptides, predominantly associated with Th2 cytokines (IL-5). Peptides from non-urine related proteins such as epidermal growth factor, collagen, and Beta-globin accounted for the highest response (15.9, 9.1, and 8.1% of the total response, respectively). Peptides derived from major urinary proteins (MUPs), kidney androgen-regulated protein (KAP), and uromodulin were the main T cell targets from kidney or urine related sources. Further ex vivo analysis of enrichment of 4-1BB expressing cells demonstrated that LoMo pool-specific T cell reactivity can be detected directly ex vivo in mouse allergic but not in non-allergic donors. Further cytometric analysis of responding cells revealed a bone fide memory T cell phenotype and confirmed their Th2 polarization. Overall, these data suggest that mouse urine-derived oligopeptides are a novel target for mouse allergy-associated T cell responses, which may contribute to immunopathological mechanisms in mouse allergy. PMID:29755469

  17. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice.

    PubMed

    Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo.

  18. Myo-conductive and osteo-inductive free-standing polysaccharide membranes

    PubMed Central

    Caridade, Sofia G.; Monge, Claire; Almodóvar, Jorge; Guillot, Raphael; Lavaud, Jonathan; Josserand, Véronique; Coll, Jean-Luc; Mano, João F.; Picart, Catherine

    2015-01-01

    Free-standing (FS) membranes have increasing applications in the biomedical field as drug delivery systems for wound healing and tissue engineering. Here, we studied the potential of free-standing membranes made by the layer-by-layer assembly of chitosan and alginate to be used as a simple biomimetic system of the periosteum. The design of a periosteum-like membrane implies the elaboration of a thick membrane suitable for both muscle and bone formation. Our aim was to produce well defined ~50 μm thick polysaccharide membranes that could be easily manipulated, be mechanically resistant, and enable both myogenesis and osteogenesis in vitro and in vivo. The membranes were chemically crosslinked to improve their mechanical properties. Crosslinking chemistry was followed via FTIR and the mechanical properties of the membranes were assessed using dynamic mechanical analysis. The loading and release of the potent osteoinductive growth factor bone morphogenetic protein 2 (BMP-2) inside and outside of the FS membrane was followed by fluorescence spectroscopy in a physiological buffer over one month. The myogenic and osteogenic potential of the membranes in vitro was assessed using BMP-2 responsive skeletal myoblasts. Finally, their osteoinductive properties in vivo were studied in a preliminary experiment using a mouse ectopic model. Our results showed that the more crosslinked FS membranes enabled a more efficient myoblast differentiation in myotubes. In addition, we showed that a tunable amount of BMP-2 can be loaded in and subsequently released from the membranes depending on the crosslinking degree and BMP-2 initial concentration in solution. Only the more crosslinked membranes were found to be osteoinductive in vivo. These polysaccharide-based membranes have strong potential as a periosteum-mimetic scaffold for bone tissue regeneration. PMID:25575853

  19. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice.

    PubMed

    Zhang, Linlin; Terrando, Niccolò; Xu, Zhen-Zhong; Bang, Sangsu; Jordt, Sven-Eric; Maixner, William; Serhan, Charles N; Ji, Ru-Rong

    2018-01-01

    Mechanisms of pain resolution are largely unclear. Increasing evidence suggests that specialized pro-resolving mediators (SPMs), derived from fish oil docosahexaenoic acid (DHA), promote the resolution of acute inflammation and potently inhibit inflammatory and neuropathic pain. In this study, we examined the analgesic impact of DHA and DHA-derived SPMs in a mouse model of post-operative pain induced by tibial bone fracture (fPOP). Intravenous perioperative treatment with DHA (500 μg), resolvin D1 (RvD1, 500 ng) and maresin 1 (MaR1, 500 ng), 10 min and 24 h after the surgery, delayed the development of fPOP (mechanical allodynia and cold allodynia). In contrast, post-operative intrathecal (IT) administration of DHA (500 μg) 2 weeks after the surgery had no effects on established mechanical and cold allodynia. However, by direct comparison, IT post-operative treatment (500 ng) with neuroprotectin D1 (NPD1), MaR1, and D-resolvins, RvD1 and RvD5, but not RvD3 and RvD4, effectively reduced mechanical and cold allodynia. ELISA analysis showed that perioperative DHA treatment increased RvD1 levels in serum and spinal cord samples after bone fracture. Interestingly, sham surgery resulted in transient allodynia and increased RvD1 levels, suggesting a correlation of enhanced SPM levels with acute pain resolution after sham surgery. Our findings suggest that (1) perioperative treatment with DHA is effective in preventing and delaying the development of fPOP and (2) post-treatment with some SPMs can attenuate established fPOP. Our data also indicate that orthopedic surgery impairs SPM production. Thus, DHA and DHA-derived SPMs should be differentially supplemented for treating fPOP and improving recovery.

  20. Rifampin suppresses osteoclastogenesis and titanium particle-induced osteolysis via modulating RANKL signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liang; Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai; Kang, Hui

    Wear particles liberated from the surface of prostheses are considered to be main reason for osteoclast bone resorption and that extensive osteoclastogenesis leads to peri-implant osteolysis and subsequent prosthetic loosening. The aim of this study was to assess the effect of rifampin on osteoclastogenesis and titanium (Ti) particle-induced osteolysis. The Ti particle-induced osteolysis mouse calvarial model and bone marrow-derived macrophages (BMMs) were used. Rifampin, at dose of 10 or 50 mg/kg/day, was respectively given intraperitoneally for 14 days in vivo. The calvariae were removed and processed for Further histological analysis. In vitro, osteoclasts were generated from mouse BMMs with receptor activator of nuclearmore » factor-κB ligand (RANKL) and the macrophage colony stimulating factor. Rifampin at different concentrations was added to the medium. The cell viability, tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity and resorption on bone slices were analysis. Osteoclast-specific genes and RANKL-induced MAPKs signaling were tested for further study of the mechanism. Rifampin inhibited Ti-induced osteolysis and osteoclastogenesis in vivo. In vitro data indicated that rifampin suppressed osteoclast differentiation and bone resorption in a dose-dependent manner. Moreover, rifampin significantly reduced the expression of osteoclast-specific markers, including TRAP, cathepsin K, V-ATPase d2, V-ATPase a3, c-Fos, and nuclear factor of activated T cells (NFAT) c1. Further investigation revealed that rifampin inhibited osteoclast formation by specifically abrogating RANKL-induced p38 and NF-κB signaling. Rifampin had significant potential for the treatment of particle-induced peri-implant osteolysis and other diseases caused by excessive osteoclast formation and function. - Highlights: • Rifampin inhibited Ti-induced osteolysis and osteoclastogenesis in vivo. • Rifampin suppressed osteoclast differentiation and bone resorption in a dose-dependent manner. • Rifampin significantly reduced the expression of osteoclast-specific markers in vitro. • RANKL-induced p38 and NF-κB signaling may be involved behind the effects of rifampin treatment on osteoclastogenesis.« less

  1. Development of a Three-Dimensional Bone-Like Construct in a Soft Self-Assembling Peptide Matrix

    PubMed Central

    Marí-Buyé, Núria; Luque, Tomás; Navajas, Daniel

    2013-01-01

    This work describes the development of a three-dimensional (3D) model of osteogenesis using mouse preosteoblastic MC3T3-E1 cells and a soft synthetic matrix made out of self-assembling peptide nanofibers. By adjusting the matrix stiffness to very low values (around 120 Pa), cells were found to migrate within the matrix, interact forming a cell–cell network, and create a contracted and stiffer structure. Interestingly, during this process, cells spontaneously upregulate the expression of bone-related proteins such as collagen type I, bone sialoprotein, and osteocalcin, indicating that the 3D environment enhances their osteogenic potential. However, unlike MC3T3-E1 cultures in 2D, the addition of dexamethasone is required to acquire a final mature phenotype characterized by features such as matrix mineralization. Moreover, a slight increase in the hydrogel stiffness (threefold) or the addition of a cell contractility inhibitor (Rho kinase inhibitor) abrogates cell elongation, migration, and 3D culture contraction. However, this mechanical inhibition does not seem to noticeably affect the osteogenic process, at least at early culture times. This 3D bone model intends to emphasize cell–cell interactions, which have a critical role during tissue formation, by using a compliant unrestricted synthetic matrix. PMID:23157379

  2. C/EBPβ promotes BCR–ABL-mediated myeloid expansion and leukemic stem cell exhaustion

    PubMed Central

    Hayashi, Y; Hirai, H; Kamio, N; Yao, H; Yoshioka, S; Miura, Y; Ashihara, E; Fujiyama, Y; Tenen, DG; Maekawa, T

    2015-01-01

    The BCR–ABL fusion oncoprotein accelerates differentiation and proliferation of myeloid cells during the chronic phase of chronic myeloid leukemia (CP-CML). Here, the role of CCAAT/enhancer binding protein β (C/EBPβ), a regulator for ‘emergency granulopoiesis,’ in the pathogenesis of CP-CML was examined. C/EBPβ expression was upregulated in Lineage− CD34+ CD38− hematopoietic stem cells (HSCs) and myeloid progenitors isolated from bone marrow of patients with CP-CML. In EML cells, a mouse HSC line, BCR–ABL upregulated C/EBPβ, at least in part, through the activation of STAT5. Myeloid differentiation and proliferation induced by BCR–ABL was significantly impaired in C/EBPβ-deficient bone marrow cells in vitro. Mice that were transplanted with BCR–ABL-transduced C/EBPβ knockout bone marrow cells survived longer than mice that received BCR–ABL-transduced wild-type (WT) bone marrow cells. Significantly higher levels of leukemic stem cells were maintained in BCR–ABL-transduced C/EBPβ-deficient cells than in BCR–ABL-transduced WT cells. These results suggest that C/EBPβ is involved in BCR–ABL-mediated myeloid expansion. Further elucidation of the molecular mechanisms underlying the C/EBPβ-mediated stem cell loss might reveal a novel therapeutic strategy for eradication of CML stem cells. PMID:22948537

  3. DNA content determination of micronucleated polychromatic erythrocytes induced by clastogens and spindle poisons in mouse bone marrow and peripheral blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grawe, J.; Amneus, H.; Zetterberg, G.

    1993-01-01

    The frequencies and DNA distributions of micronuclei in polychromatic erythrocytes from the bone marrow and peripheral blood of mice after four different treatments were determined by flow cytometry. Polychromatic erthrocytes were detected using the fluorescent RNA stain thiazole orange, while micronuclei were detected with the DNA stain Hoechst 33342. The treatments were X-irradiation (1 Gy), cyclophosphamide (30 mg/kg), vincristine sulfphate (0.08 mg/kg), and cochicine (1 mg/kg). All treatments showed increased frequencies of micronucleated polychromatic erythrocytes at 30h after treatment in the bone marrow (colchicine 50h) and at 50h in the peripheral blood. The clostogenic agents X-irradiation and cyclophosphamide and themore » spindle poisons vincristine sulphate and cochicine could be grouped according to the fluorescent characteristics of the induced micronuclei as well as the relative frequency of small (0.5-2% if the diploid G1 DNA content) and large (2-10%) micronuclei. In the peripheral blood the relative frequency of large micronuclei was lower than in the bone marrow, indicating that they were partly eliminated before entrance into the peripheral circulation. The nature of presumed micronuclei was verified by sorting. The potential of this approach to give information on the mechanism of induction of micronuclei is discussed.« less

  4. Genetically fluorescent melanoma bone and organ metastasis models.

    PubMed

    Yang, M; Jiang, P; An, Z; Baranov, E; Li, L; Hasegawa, S; Al-Tuwaijri, M; Chishima, T; Shimada, H; Moossa, A R; Hoffman, R M

    1999-11-01

    We report here the establishment and metastatic properties of bright, highly stable, green fluorescent protein (GFP) expression transductants of the B16 mouse malignant melanoma cell line and the LOX human melanoma line. The highly fluorescent malignant melanoma cell lines allowed the visualization of skeletal and multiorgan metastases after i.v. injection of B16 cells in C57BL/6 mice and intradermal injection of LOX cells in nude mice. The melanoma cell lines were transduced with the pLEIN expression retroviral vector containing the GFP and neomycin resistance genes. Stable B16F0 and LOX clones expressing high levels of GFP were selected stepwise in vitro in levels of G418 of up to 800 microg/ml. Extensive bone and bone marrow metastases of B16F0 were visualized by GFP expression when the animals were sacrificed 3 weeks after cell implantation. Metastases for both cell lines were visualized in many organs, including the brain, lung, pleural membrane, liver, kidney, adrenal gland, lymph nodes, skeleton, muscle, and skin by GFP fluorescence. This is the first observation of experimental skeletal metastases of melanoma, which was made possible by GFP expression. These models should facilitate future studies of the mechanism and therapy of bone and multiorgan metastasis of melanoma.

  5. Osthole Promotes Bone Fracture Healing through Activation of BMP Signaling in Chondrocytes.

    PubMed

    Wang, Pinger; Ying, Jun; Luo, Cheng; Jin, Xing; Zhang, Shanxing; Xu, Taotao; Zhang, Lei; Mi, Meng; Chen, Di; Tong, Peijian; Jin, Hongting

    2017-01-01

    Osthole is a bioactive coumarin derivative and has been reported to be able to enhance bone formation and improve fracture healing. However, the molecular mechanism of Osthole in bone fracture healing has not been fully defined. In this study we determined if Osthole enhances bone fracture healing through activation of BMP2 signaling in mice. We performed unilateral open transverse tibial fracture procedure in 10-week-old C57BL/6 mice which were treated with or without Osthole. Our previous studies demonstrated that chondrocyte BMP signaling is required for bone fracture healing, in this study we also performed tibial fracture procedure in Cre-negative and Col2-Cre;Bmp2 flox/flox conditional knockout (KO) mice ( Bmp2 Col2Cre ) to determine if Osthole enhances fracture healing in a BMP2-dependent manner. Fracture callus tissues were collected and analyzed by X-ray, micro-CT (μCT), histology, histomorphometry, immunohistochemistry (IHC), biomechanical testing and quantitative gene expression analysis. In addition, mouse chondrogenic ATDC5 cells were cultured with or without Osthole and the expression levels of chondrogenic marker genes were examined. The results demonstrated that Osthole promotes bone fracture healing in wild-type (WT) or Cre - control mice. In contrast, Osthole failed to promote bone fracture healing in Bmp2 Col2Cre conditional KO mice. In the mice receiving Osthole treatment, expression of cartilage marker genes was significantly increased. We conclude that Osthole could promote bone strength and enhance fracture healing by activation of BMP2 signaling. Osthole may be used as an alternative approach in the orthopaedic clinic for the treatment of fracture healing.

  6. Osthole Promotes Bone Fracture Healing through Activation of BMP Signaling in Chondrocytes

    PubMed Central

    Wang, Pinger; Ying, Jun; Luo, Cheng; Jin, Xing; Zhang, Shanxing; Xu, Taotao; Zhang, Lei; Mi, Meng; Chen, Di; Tong, Peijian; Jin, Hongting

    2017-01-01

    Osthole is a bioactive coumarin derivative and has been reported to be able to enhance bone formation and improve fracture healing. However, the molecular mechanism of Osthole in bone fracture healing has not been fully defined. In this study we determined if Osthole enhances bone fracture healing through activation of BMP2 signaling in mice. We performed unilateral open transverse tibial fracture procedure in 10-week-old C57BL/6 mice which were treated with or without Osthole. Our previous studies demonstrated that chondrocyte BMP signaling is required for bone fracture healing, in this study we also performed tibial fracture procedure in Cre-negative and Col2-Cre;Bmp2flox/flox conditional knockout (KO) mice (Bmp2Col2Cre) to determine if Osthole enhances fracture healing in a BMP2-dependent manner. Fracture callus tissues were collected and analyzed by X-ray, micro-CT (μCT), histology, histomorphometry, immunohistochemistry (IHC), biomechanical testing and quantitative gene expression analysis. In addition, mouse chondrogenic ATDC5 cells were cultured with or without Osthole and the expression levels of chondrogenic marker genes were examined. The results demonstrated that Osthole promotes bone fracture healing in wild-type (WT) or Cre- control mice. In contrast, Osthole failed to promote bone fracture healing in Bmp2Col2Creconditional KO mice. In the mice receiving Osthole treatment, expression of cartilage marker genes was significantly increased. We conclude that Osthole could promote bone strength and enhance fracture healing by activation of BMP2 signaling. Osthole may be used as an alternative approach in the orthopaedic clinic for the treatment of fracture healing. PMID:28924381

  7. Further Analysis of the Crouzon Mouse, Effects of the FGFR2C342Y Mutation are Cranial Bone Dependent

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Wang, Estee; Hatch, Nan E.

    2013-01-01

    Crouzon syndrome is a debilitating congenital disorder involving abnormal craniofacial skeletal development caused by mutations in Fibroblast Growth Factor Receptor-2 (FGFR2). Phenotypic expression in humans exhibits an autosomal dominant pattern that commonly involves premature fusion of the coronal suture (craniosynostosis) and severe midface hypoplasia. To further investigate biologic mechanisms by which the Crouzon syndrome associated FGFR2C342Y mutation leads to abnormal craniofacial skeletal development we created congenic BALB/c FGFR2C342Y/+ mice. Here we show that BALB/c FGFR2C342Y/+ mice have a consistent craniofacial phenotype including partial fusion of the coronal and lambdoid sutures, intersphenoidal synchondrosis and multiple facial bones, with minimal fusion of other craniofacial sutures. This phenotype is similar to the classic and less severe form of Crouzon syndrome that involves significant midface hypoplasia with limited craniosynostosis. Linear and morphometric analyses demonstrate that FGFR2C342Y/+ mice on the BALB/c genetic background differ significantly in form and shape from their wild type littermates, and that in this genetic background the FGFR2C342Y mutation preferentially effects some craniofacial bones and sutures over others. Analysis of cranial bone cells indicates that the FGFR2C342Y mutation promotes aberrant osteoblast differentiation and increased apoptosis that is more severe in frontal than parietal bone cells. Additionally, FGFR2C342Y/+ frontal but not parietal bones exhibit significantly diminished bone volume and density compared to wild type mice. These results confirm that FGFR2-associated craniosynostosis occurs in association with diminished cranial bone tissue and may provide a potential biologic explanation for the clinical finding of phenotype consistency that exists between many Crouzon syndrome patients. PMID:23358860

  8. Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis.

    PubMed

    Gleitz, Hélène Fe; Kramann, Rafael; Schneider, Rebekka K

    2018-06-01

    Bone marrow fibrosis is the continuous replacement of blood-forming cells in the bone marrow with excessive scar tissue, leading to failure of the body to produce blood cells and ultimately to death. Myofibroblasts are fibrosis-driving cells and are well characterized in solid organ fibrosis, but their role and cellular origin in bone marrow fibrosis have remained obscure. Recent work has demonstrated that Gli1 + and leptin receptor + mesenchymal stromal cells are progenitors of fibrosis-causing myofibroblasts in the bone marrow. Genetic ablation or pharmacological inhibition of Gli1 + mesenchymal stromal cells ameliorated fibrosis in mouse models of myelofibrosis. Conditional deletion of the platelet-derived growth factor (PDGF) receptor-α (PDGFRA) gene (Pdgfra) and inhibition of PDGFRA by imatinib in leptin receptor + stromal cells suppressed their expansion and ameliorated bone marrow fibrosis. Understanding the cellular and molecular mechanisms in the haematopoietic stem cell niche that govern the mesenchymal stromal cell-to-myofibroblast transition and myofibroblast expansion will be critical to understand the pathogenesis of bone marrow fibrosis in both malignant and non-malignant conditions, and will guide the development of novel therapeutics. In this review, we summarize recent discoveries of mesenchymal stromal cells as part of the haematopoietic niche and as myofibroblast precursors, and discuss potential therapeutic strategies in the specific targeting of fibrotic transformation in bone marrow fibrosis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  9. Successful high-resolution animal positron emission tomography of human Ewing tumours and their metastases in a murine xenograft model.

    PubMed

    Franzius, Christiane; Hotfilder, Marc; Poremba, Christopher; Hermann, Sven; Schäfers, Klaus; Gabbert, Helmut Erich; Jürgens, Heribert; Schober, Otmar; Schäfers, Michael; Vormoor, Josef

    2006-12-01

    As primary osseous metastasis is the main adverse prognostic factor in patients with Ewing tumours, a NOD/scid mouse model for human Ewing tumour metastases has been established to examine the mechanisms of metastasis. The aim of this study was to evaluate the feasibility of diagnostic molecular imaging by small animal PET in this mouse model. Human Ewing tumour cells were transplanted into immune-deficient NOD/scid mice via s.c injection (n=17) or i.v. injection (n=17). The animals (mean weight 23.2 g) were studied 2-7 weeks after transplantation using a submillimetre resolution animal PET scanner. To assess glucose utilisation and bone metabolism, mice were scanned after intravenous injection of 9.6 MBq (mean) 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) or 9.4 MBq (mean) [(18)F]fluoride. Whole-body PET images were analysed visually and semi-quantitatively [%ID/g, tumour to non-tumour ratio (T/NT)]. Foci of pathological uptake were identified with respect to the physiological organ uptake in corresponding regions. Subcutaneously transplanted Ewing tumours demonstrated a moderately increased glucose uptake (median %ID/g 2.5; median T/NT 2.2). After i.v. transplantation, the pattern of metastasis was similar to that in patients with metastases in lung, bone and soft tissue. These metastases showed an increased FDG uptake (median %ID/g 3.6; median T/NT 2.7). Osseous metastases were additionally visible on [(18)F]fluoride PET by virtue of decreased [(18)F]fluoride uptake (osteolysis; median %ID/g 8.4; median T/NT 0.59). Metastases were confirmed immunohistologically. Diagnostic molecular imaging of Ewing tumours and their small metastases in an in vivo NOD/scid mouse model is feasible using a submillimetre resolution PET scanner.

  10. Bone Marrow Transplantation Results in Human Donor Blood Cells Acquiring and Displaying Mouse Recipient Class I MHC and CD45 Antigens on Their Surface

    PubMed Central

    Yamanaka, Nobuko; Wong, Christine J.; Gertsenstein, Marina; Casper, Robert F.; Nagy, Andras; Rogers, Ian M.

    2009-01-01

    Background Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100% of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cells and that trogocytosis is evident in non-blood cells in chimera mice. PMID:20046883

  11. Chromosomal rearrangements, phenotypic variation and modularity: a case study from a contact zone between house mouse Robertsonian races in Central Italy.

    PubMed

    Franchini, Paolo; Colangelo, Paolo; Meyer, Axel; Fruciano, Carmelo

    2016-03-01

    The Western European house mouse, Mus musculus domesticus, is well-known for the high frequency of Robertsonian fusions that have rapidly produced more than 50 karyotipic races, making it an ideal model for studying the mechanisms of chromosomal speciation. The mouse mandible is one of the traits studied most intensively to investigate the effect of Robertsonian fusions on phenotypic variation within and between populations. This complex bone structure has also been widely used to study the level of integration between different morphogenetic units. Here, with the aim of testing the effect of different karyotypic assets on the morphology of the mouse mandible and on its level of modularity, we performed morphometric analyses of mice from a contact area between two highly metacentric races in Central Italy. We found no difference in size, while the mandible shape was found to be different between the two Robertsonian races, even after accounting for the genetic relationships among individuals and geographic proximity. Our results support the existence of two modules that indicate a certain degree of evolutionary independence, but no difference in the strength of modularity between chromosomal races. Moreover, the ascending ramus showed more pronounced interpopulation/race phenotypic differences than the alveolar region, an effect that could be associated to their different polygenic architecture. This study suggests that chromosomal rearrangements play a role in the house mouse phenotypic divergence, and that the two modules of the mouse mandible are differentially affected by environmental factors and genetic makeup.

  12. Asthma progression to airway remodeling and bone marrow eosinophil responses in genetically distinct strains of mice.

    PubMed

    Hogan, Mary Beth; Piktel, Debra; Hubbs, Ann F; McPherson, Leslie E; Landreth, Kenneth S

    2008-12-01

    Patient factors that cause long-term airway remodeling are largely unidentified. This suggests that genetic differences may determine which asthmatic patients develop airway remodeling. A murine model with repeated allergen exposure leading to peribronchial fibrosis in complement factor 5 (C5)-deficient A/J mice has been used to study asthma progression. No studies have addressed the systemic effects of allergen sensitization or chronic allergen exposure on bone marrow eosinophilopoiesis in this mouse strain. To investigate bone marrow eosinophil responses during acute sensitization and chronic allergen exposure using genetically distinct mouse strains differing in persistent airway reactivity and remodeling. The C5-sufficient BALB/c and C5-deficient A/J mice were repetitively exposed to intranasal ovalbumin for 12 weeks. Subsequently, the mice were evaluated for airway eosinophilia, mucus-containing goblet cells, and peribronchial fibrosis. Both strains of mice were also acutely sensitized to ovalbumin. Bone marrow eosinophil progenitor cells and mature eosinophils were enumerated. BALB/c and A/J mice have similar bone marrow responses after acute allergen exposure, with elevations in bone marrow eosinophil progenitor cell and eosinophil numbers. After chronic allergen exposure, only C5-deficient A/J mice that developed peribronchial fibrosis exhibited bone marrow eosinophilia. BALB/c mice lacked peribronchial fibrosis and extinguished accelerated eosinophil production after long-term allergen challenge. Chronic airway remodeling after repeated allergen exposure in genetically different mice correlated with differences in long-term bone marrow eosinophilopoiesis. Preventing asthma from progressing to chronic airway remodeling with fibrosis may involve identifying genetically determined influences on bone marrow responses to chronic allergen exposure.

  13. Induction of MHC-mismatched Mouse Lung Allograft Acceptance with Combined Donor Bone Marrow: Lung Transplant using a 12-Hour Nonmyeloablative Conditioning Regimen

    PubMed Central

    Vulic, Ante; Panoskaltsis-Mortari, Angela; McDyer, John F.; Luznik, Leo

    2016-01-01

    Background Despite broad and intense conventional immunosuppression, long-term survival after lung transplantation lags behind that for other solid organ transplants, primarily because of allograft rejection. Therefore, new strategies to promote lung allograft acceptance are urgently needed. The purpose of the present study was to induce allograft tolerance with a protocol compatible with deceased donor organ utilization. Methods Using the MHC-mismatched mouse orthotopic lung transplant model, we investigated a conditioning regimen consisting of pretransplant T cell depletion, low dose total body irradiation and posttransplant (donor) bone marrow and splenocyte infusion followed by posttransplantation cyclophosphamide (PTTT-PTB/PTCy). Results Our results show that C57BL/6 recipients of BALB/c lung allografts undergoing this complete short-duration nonmyeloablative conditioning regimen had durable lung allograft acceptance. Mice that lacked 1 or more components of this regimen exhibited significant graft loss. Mechanistically, animals with lung allograft acceptance had established higher levels of donor chimerism, lymphocyte responses which were attenuated to donor antigens but maintained to third-party antigens, and clonal deletion of donor-reactive host Vβ T cells. Frequencies of Foxp3+ T regulatory cells were comparable in both surviving and rejected allografts implying that their perturbation was not a dominant cell-regulatory mechanism. Donor chimerism was indispensable for sustained tolerance, as evidenced by acute rejection of allografts in established chimeric recipients of PTTT-PTB/PTCy following a chimerism-ablating secondary recipient lymphocyte infusion. Conclusion Together, these data provide proof-of-concept for establishing lung allograft tolerance with tandem donor bone marrow transplantation (BMT) using a short-duration nonmyeloablative conditioning regimen and PTCy. PMID:27861294

  14. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis.

    PubMed

    Borbély, Éva; Botz, Bálint; Bölcskei, Kata; Kenyér, Tibor; Kereskai, László; Kiss, Tamás; Szolcsányi, János; Pintér, Erika; Csepregi, Janka Zsófia; Mócsai, Attila; Helyes, Zsuzsanna

    2015-03-01

    The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro-immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important anti-inflammatory roles at least partially through somatostatin release. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Capsaicin-sensitive sensory nerves exert complex regulatory functions in the serum-transfer mouse model of autoimmune arthritis

    PubMed Central

    Borbély, Éva; Botz, Bálint; Bölcskei, Kata; Kenyér, Tibor; Kereskai, László; Kiss, Tamás; Szolcsányi, János; Pintér, Erika; Csepregi, Janka Zsófia; Mócsai, Attila; Helyes, Zsuzsanna

    2015-01-01

    Objective The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro–immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. Methods Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. Results In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. Conclusions Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important anti-inflammatory roles at least partially through somatostatin release. PMID:25524130

  16. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    PubMed

    Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G

    2017-01-01

    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  17. MMP-8, A Breast Cancer Bone Metastasis Suppressor Gene

    DTIC Science & Technology

    2006-08-01

    new protein synthesis. This event is particularly important in situations such as tissue repair following injury . PTH and TGF-b1 stimulated LTBP-1...osteoclastogenesis inhi- bitory factor in the stimulation of osteoclast formation by parathyroid hormone in mouse bone cells. Eur J Endo - crinol 142:661–664...done to determine cross-sectional area, bone volume, and perios - teal perimeter (Ps.Pm). The endocortical sur- face was outlined, and the analysis

  18. Ablation of the Sam68 RNA Binding Protein Protects Mice from Age-Related Bone Loss

    PubMed Central

    Richard, Stéphane; Torabi, Nazi; Franco, Gladys Valverde; Tremblay, Guy A; Chen, Taiping; Vogel, Gillian; Morel, Mélanie; Cléroux, Patrick; Forget-Richard, Alexandre; Komarova, Svetlana; Tremblay, Michel L; Li, Wei; Li, Ailian; Gao, Yun Jing; Henderson, Janet E

    2005-01-01

    The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68−/− mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68−/− mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68−/− mice. Sam68−/− bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68−/− littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68−/− mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68−/− mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice. PMID:16362077

  19. Therapeutic effect of androgen therapy in a mouse model of aplastic anemia produced by short telomeres.

    PubMed

    Bär, Christian; Huber, Nicolas; Beier, Fabian; Blasco, Maria A

    2015-10-01

    Aplastic anemia is a rare but life-threatening disorder characterized by cytopenia in at least two of the three blood lineages. A frequent feature of patients with aplastic anemia is that they have shorter telomeres than those of age-matched controls. Testosterone has been used for over half a century in the treatment of aplastic anemia. However, although remissions are frequent following hormone therapy, the molecular mechanism underlying the response to treatment has remained unknown. Here we explored the possibility that the recently described regulation of telomerase activity by sex hormones may be the mechanism responsible. To this end, we used a mouse model of aplastic anemia induced by short telomeres in the bone marrow compartment. We found that testosterone therapy results in telomerase up-regulation, improved blood counts, and a significant extension of life-span of these mice. Importantly, longitudinal follow-up studies revealed longer telomeres in peripheral blood in mice subjected to hormone treatment. Our results demonstrate that testosterone-mediated telomerase activation can attenuate or reverse aplastic anemia disease progression associated with the presence of short telomeres. Copyright© Ferrata Storti Foundation.

  20. Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells

    PubMed Central

    Ezeh, Peace C.; Xu, Huan; Lauer, Fredine T.; Liu, Ke Jian; Hudson, Laurie G.; Burchiel, Scott W.

    2016-01-01

    Our previously published data show that As+3 in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As+3 metabolite, monomethylarsonous acid (MMA+3), was responsible for the observed pre-B cell toxicity caused by As+3. Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA+3 inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As+3 occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA+3, and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA+3 at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA+3. Since 2E8 cells lack the enzymes responsible for the conversion of As+3 to MMA+3 in vitro, the results of these studies suggest that As+3 induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA+3 which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells. PMID:26518055

  1. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prieto, A.M.; Santos, A.G.; Csipak, A.R.

    Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, ormore » 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract—3.9, 7.5, or 15.0 mg/kg body weight (BW)—or with casearin X—0.3, 0.25, or 1.2 mg/kg BW—after which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ► We assessed DNA protection of C. sylvestris ethanolic extract. ► We assessed DNA protection of casearin X. ► We used Tradescantia pallida micronucleus test as screening. ► We used comet assay and micronucleus test in mice. ► The compounds protected DNA against sugar cane burning pollutants.« less

  2. Bone-targeted cabazitaxel nanoparticles for metastatic prostate cancer skeletal lesions and pain.

    PubMed

    Gdowski, Andrew S; Ranjan, Amalendu; Sarker, Marjana R; Vishwanatha, Jamboor K

    2017-09-01

    The aim of this study was to develop a novel cabazitaxel bone targeted nanoparticle (NP) system for improved drug delivery to the bone microenvironment. Nanoparticles were developed using poly(D,L-lactic-co-glycolic acid) and cabazitaxel as the core with amino-bisphosphonate surface conjugation. Optimization of nanoparticle physiochemical properties, in vitro evaluation in prostate cancer cell lines and in vivo testing in an intraosseous model of metastatic prostate cancer was performed. This bone targeted cabazitaxel nanocarrier system showed significant reduction in tumor burden, while at the same time maintaining bone structure integrity and reducing pain in the mouse tumor limb. This bone microenvironment targeted nanoparticle system and clinically relevant approach of evaluation represents a promising advancement for treating bone metastatic cancer.

  3. INCREASING DURATION OF TYPE 1 DIABETES PERTURBS THE STRENGTH-STRUCTURE RELATIONSHIP AND INCREASES BRITTLENESS OF BONE

    PubMed Central

    Nyman, Jeffry S.; Even, Jesse L.; Jo, Chan-Hee; Herbert, Erik G.; Murry, Matthew R.; Cockrell, Gael E.; Wahl, Elizabeth C.; Bunn, R. Clay; Lumpkin, Charles K.; Fowlkes, John L.; Thrailkill, Kathryn M.

    2011-01-01

    Type 1 diabetes (T1DM) increases the likelihood of a fracture. Despite serious complications in the healing of fractures among those with diabetes, the underlying causes are not delineated for the effect of diabetes on the fracture resistance of bone. Therefore, in a mouse model of T1DM, we have investigated the possibility that a prolonged state of diabetes perturbs the relationship between bone strength and structure (i.e., affects tissue properties). At 10, 15, and 18 weeks following injection of streptozotocin to induce diabetes, diabetic male mice and age-matched controls were examined for measures of skeletal integrity. We assessed 1) the moment of inertia (IMIN) of the cortical bone within diaphysis, trabecular bone architecture of the metaphysis, and mineralization density of the tissue (TMD) for each compartment of the femur by microcomputed tomography and 2) biomechanical properties by three point bending test (femur) and nanoindentation (tibia). In the metaphysis, a significant decrease in trabecular bone volume fraction and trabecular TMD was apparent after 10 weeks of diabetes. For cortical bone, type 1 diabetes was associated with decreased cortical TMD, IMIN, rigidity, and peak moment as well as a lack of normal age-related increases in the biomechanical properties. However, there were only modest differences in material properties between diabetic and normal mice at both whole bone and tissue-levels. As the duration of diabetes increased, bone toughness decreased relative to control. If the sole effect of diabetes on bone strength was due to a reduction in bone size, then IMIN would be the only significant variable explaining the variance in the maximum moment. However, general linear modeling found that the relationship between peak moment and IMIN depended on whether the bone was from a diabetic mouse and the duration of diabetes. Thus, these findings suggest that the elevated fracture risk among diabetics is impacted by complex changes in tissue properties that ultimately reduce the fracture resistance of bone. PMID:21185416

  4. Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice.

    PubMed

    Wang, Wensheng; Wang, Hua; Zhou, Xichao; Li, Xing; Sun, Wen; Dellinger, Michael; Boyce, Brendan F; Xing, Lianping

    2017-05-01

    Gorham-Stout disease (GSD) is a rare bone disorder characterized by aggressive osteolysis associated with lymphatic vessel invasion within bone marrow cavities. The etiology of GSD is not known, and there is no effective therapy or animal model for the disease. Here, we investigated if lymphatic endothelial cells (LECs) affect osteoclasts (OCs) to cause a GSD osteolytic phenotype in mice. We examined the effect of a mouse LEC line on osteoclastogenesis in co-cultures. LECs significantly increased receptor activator of NF-κB ligand (RANKL)-mediated OC formation and bone resorption. LECs expressed high levels of macrophage colony-stimulating factor (M-CSF), but not RANKL, interleukin-6 (IL-6), and tumor necrosis factor (TNF). LEC-mediated OC formation and bone resorption were blocked by an M-CSF neutralizing antibody or Ki20227, an inhibitor of the M-CSF receptor, c-Fms. We injected LECs into the tibias of wild-type (WT) mice and observed massive osteolysis on X-ray and micro-CT scans. Histology showed that LEC-injected tibias had significant trabecular and cortical bone loss and increased OC numbers. M-CSF protein levels were significantly higher in serum and bone marrow plasma of mice given intra-tibial LEC injections. Immunofluorescence staining showed extensive replacement of bone and marrow by podoplanin+ LECs. Treatment of LEC-injected mice with Ki20227 significantly decreased tibial bone destruction. In addition, lymphatic vessels in a GSD bone sample were stained positively for M-CSF. Thus, LECs cause bone destruction in vivo in mice by secreting M-CSF, which promotes OC formation and activation. Blocking M-CSF signaling may represent a new therapeutic approach for treatment of patients with GSD. Furthermore, tibial injection of LECs is a useful mouse model to study GSD. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  5. Role of estrogen receptor signaling in skeletal response to leptin in female ob/ob mice.

    PubMed

    Turner, Russell T; Philbrick, Kenneth A; Kuah, Amida F; Branscum, Adam J; Iwaniec, Urszula T

    2017-06-01

    Leptin, critical in regulation of energy metabolism, is also important for normal bone growth, maturation and turnover. Compared to wild type (WT) mice, bone mass is lower in leptin-deficient ob/ob mice. Osteopenia in growing ob/ob mice is due to decreased bone accrual, and is associated with reduced longitudinal bone growth, impaired cancellous bone maturation and increased marrow adipose tissue (MAT). However, leptin deficiency also results in gonadal dysfunction, disrupting production of gonadal hormones which regulate bone growth and turnover. The present study evaluated the role of increased estrogen in mediating the effects of leptin on bone in ob/ob mice. Three-month-old female ob/ob mice were randomized into one of the 3 groups: (1) ob/ob  + vehicle (veh), (2) ob/ob  + leptin (leptin) or (3) ob/ob  + leptin and the potent estrogen receptor antagonist ICI 182,780 (leptin + ICI). Age-matched WT mice received vehicle. Leptin (40 µg/mouse, daily) and ICI (10 µg/mouse, 2×/week) were administered by subcutaneous injection for 1 month and bone analyzed by X-ray absorptiometry, microcomputed tomography and static and dynamic histomorphometry. Uterine weight did not differ between ob/ob mice and ob/ob mice receiving leptin + ICI, indicating that ICI successfully blocked the uterine response to leptin-induced increases in estrogen levels. Compared to leptin-treated ob/ob mice, ob/ob mice receiving leptin + ICI had lower uterine weight; did not differ in weight loss, MAT or bone formation rate; and had higher longitudinal bone growth rate and cancellous bone volume fraction. We conclude that increased estrogen signaling following leptin treatment is dispensable for the positive actions of leptin on bone and may attenuate leptin-induced bone growth. © 2017 Society for Endocrinology.

  6. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow

    PubMed Central

    Dong, Yifei; Arif, Arif A.; Poon, Grace F. T.; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  7. A Surgical Procedure for Resecting the Mouse Rib: A Model for Large-Scale Long Bone Repair

    PubMed Central

    Funnell, John W.; Thein, Thu Zan Tun; Mariani, Francesca V.

    2015-01-01

    This protocol introduces researchers to a new model for large-scale bone repair utilizing the mouse rib. The procedure details the following: preparation of the animal for surgery, opening the thoracic body wall, exposing the desired rib from the surrounding intercostal muscles, excising the desired section of rib without inducing a pneumothorax, and closing the incisions. Compared to the bones of the appendicular skeleton, the ribs are highly accessible. In addition, no internal or external fixator is necessary since the adjacent ribs provide a natural fixation. The surgery uses commercially available supplies, is straightforward to learn, and well-tolerated by the animal. The procedure can be carried out with or without removing the surrounding periosteum, and therefore the contribution of the periosteum to repair can be assessed. Results indicate that if the periosteum is retained, robust repair occurs in 1 - 2 months. We expect that use of this protocol will stimulate research into rib repair and that the findings will facilitate the development of new ways to stimulate bone repair in other locations around the body. PMID:25651082

  8. Dura Mater Stimulates Human Adipose-Derived Stromal Cells to Undergo Bone Formation in Mouse Calvarial Defects

    PubMed Central

    Levi, Benjamin; Nelson, Emily R.; Li, Shuli; James, Aaron W.; Hyun, Jeong S.; Montoro, Daniel T.; Lee, Min; Glotzbach, Jason P.; Commons, George W.; Longaker, Michael T.

    2015-01-01

    Human adipose-derived stromal cells (hASCs) have a proven capacity to aid in osseous repair of calvarial defects. However, the bone defect microenvironment necessary for osseous healing is not fully understood. In this study, we postulated that the cell-cell interaction between engrafted ASCs and host dura mater (DM) cells is critical for the healing of calvarial defects. hASCs were engrafted into critical sized calvarial mouse defects. The DM-hASC interaction was manipulated surgically by DM removal or by insertion of a semipermeable or nonpermeable membrane between DM and hASCs. Radiographic, histologic, and gene expression analyses were performed. Next, the hASC-DM interaction is assessed by conditioned media (CM) and coculture assays. Finally, bone morphogenetic protein (BMP) signaling from DM was investigated in vivo using novel BMP-2 and anti-BMP-2/4 slow releasing scaffolds. With intact DM, osseous healing occurs both from host DM and engrafted hASCs. Interference with the DM-hASC interaction dramatically reduced calvarial healing with abrogated BMP-2–Smad-1/5 signaling. Using CM and coculture assays, mouse DM cells stimulated hASC osteogenesis via BMP signaling. Through in vivo manipulation of the BMP-2 pathway, we found that BMP-2 plays an important role in DM stimulation of hASC osteogenesis in the context of calvarial bone healing. BMP-2 supplementation to a defect with disrupted DM allowed for bone formation in a nonhealing defect. DM is an osteogenic cell type that both participates in and stimulates osseous healing in a hASC-engrafted calvarial defect. Furthermore, DM-derived BMP-2 paracrine stimulation appears to play a key role for hASC mediated repair. PMID:21656608

  9. Enhanced cloning efficiency of mouse bone marrow macrophage progenitors correlates with increased content of CSF-1 receptor of their progeny at low oxygen tension.

    PubMed

    Flamant, Stéphane; Lebastard, Maï; Pescher, Pascale; Besmond, Claude; Milon, Geneviève; Marchal, Gilles

    2003-10-01

    Mononuclear phagocytes are located in every tissue of metazoan organisms. In this extravascular space, they are designated as macrophages and are known to sense and process many signals including the local oxygen tension (PO2), which ranges from 150 mmHg at the lung apices to around 40 mmHg in mixed venous blood and most organs, and to less than 10 mmHg in tissues where long-term and dynamic remodeling processes occur. Most tissue macrophages survive and maintain their differentiated status within an environment bathed by colony-stimulating factor (CSF)-1 through the CSF-1 receptor, encoded by the Csf1r gene. In order to investigate the mRNA expression profile of macrophages as a function of PO2, we developed an in vitro model in which monocyte-derived macrophages were generated from mouse bone marrow progenitor cells grown and maintained under low (36 mmHg) or atmospheric (142 mmHg) PO2, in the presence of L929-conditioned medium (L-CM) as a source of CSF-1. We show that CSF-1-reactive C57BL/6 bone marrow cells displayed an increased cloning efficiency under a PO2 of 36, compared with 142 mmHg. Furthermore, we provide evidence of the overexpression of both CSF-1 receptor protein and mRNA by mouse monocyte-derived macrophages generated from bone marrow under low PO2.

  10. THE EFFECT OF ANTISERUM, ALONE AND WITH HYDROCORTISONE, ON FOETAL MOUSE BONES IN CULTURE

    PubMed Central

    Fell, Honor B.; Weiss, L.

    1965-01-01

    1. The effects of normal rabbit serum and of rabbit antiserum to whole foetal mouse tissues, on the isolated limb bones of late foetal mice were studied in organ culture, and the influence of hydrocortisone on these effects was investigated. 2. Unheated normal serum caused slight loss of metachromatic material from the cartilage matrix, and some resorption of both cartilage and bone. 3. In unheated antiserum to foetal mouse tissues, the terminal cartilage was smaller and less metachromatic than in paired controls in normal serum, while osteoclasis was so intense that in many explants the bone had almost disappeared. The amount of necrosis varied with different batches of antiserum. 4. The changes produced by normal serum and antiserum could be largely prevented by heating the sera to 57°C for 45 minutes. 5. The effects could also be inhibited by the addition of hydrocortisone to the unheated sera; as little as 0.1 µg hydrocortisone per ml of medium had a well marked protective action. 6. It is suggested that (a) unheated antiserum causes a release of lysosomal enzymes with consequent breakdown of intercellular material, (b) this release is due to an indirect action on the lysosome via an increased permeability of the cell membrane, (c) hydrocortisone does not affect the antigen-antibody reaction, but inhibits the autolytic changes that normally follow this reaction, possibly by stabilising both the lysosomal and cell membranes. PMID:14276776

  11. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments.

    PubMed

    Hawkins, Edwin D; Duarte, Delfim; Akinduro, Olufolake; Khorshed, Reema A; Passaro, Diana; Nowicka, Malgorzata; Straszkowski, Lenny; Scott, Mark K; Rothery, Steve; Ruivo, Nicola; Foster, Katie; Waibel, Michaela; Johnstone, Ricky W; Harrison, Simon J; Westerman, David A; Quach, Hang; Gribben, John; Robinson, Mark D; Purton, Louise E; Bonnet, Dominique; Lo Celso, Cristina

    2016-10-27

    It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.

  12. IGF-1 Regulates Vertebral Bone Aging Through Sex-Specific and Time-Dependent Mechanisms.

    PubMed

    Ashpole, Nicole M; Herron, Jacquelyn C; Mitschelen, Matthew C; Farley, Julie A; Logan, Sreemathi; Yan, Han; Ungvari, Zoltan; Hodges, Erik L; Csiszar, Anna; Ikeno, Yuji; Humphrey, Mary Beth; Sonntag, William E

    2016-02-01

    Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, whereas others report that loss of IGF-1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igf(f/f) mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin-cyclic recombinase [Cre] mice with Igf(f/f) mice); and in early adulthood and in late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using micro-computed tomography (μCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NF-κB-ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2-fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data suggest the age-related loss of vertebral bone density in females can be reduced by modifying circulating IGF-1 levels early in life. © 2015 American Society for Bone and Mineral Research.

  13. Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFβRIII-p38MAPK-pS249/T252RB Pathway.

    PubMed

    Yu-Lee, Li-Yuan; Yu, Guoyu; Lee, Yu-Chen; Lin, Song-Chang; Pan, Jing; Pan, Tianhong; Yu, Kai-Jie; Liu, Bin; Creighton, Chad J; Rodriguez-Canales, Jaime; Villalobos, Pamela A; Wistuba, Ignacio I; de Nadal, Eulalia; Posas, Francesc; Gallick, Gary E; Lin, Sue-Hwa

    2018-06-01

    Bone metastasis from prostate cancer can occur years after prostatectomy, due to reactivation of dormant disseminated tumor cells (DTC) in the bone, yet the mechanism by which DTCs are initially induced into a dormant state in the bone remains to be elucidated. We show here that the bone microenvironment confers dormancy to C4-2B4 prostate cancer cells, as they become dormant when injected into mouse femurs but not under the skin. Live-cell imaging of dormant cells at the single-cell level revealed that conditioned medium from differentiated, but not undifferentiated, osteoblasts induced C4-2B4 cellular quiescence, suggesting that differentiated osteoblasts present locally around the tumor cells in the bone conferred dormancy to prostate cancer cells. Gene array analyses identified GDF10 and TGFβ2 among osteoblast-secreted proteins that induced quiescence of C4-2B4, C4-2b, and PC3-mm2, but not 22RV1 or BPH-1 cells, indicating prostate cancer tumor cells differ in their dormancy response. TGFβ2 and GDF10 induced dormancy through TGFβRIII to activate phospho-p38MAPK, which phosphorylates retinoblastoma (RB) at the novel N-terminal S249/T252 sites to block prostate cancer cell proliferation. Consistently, expression of dominant-negative p38MAPK in C4-2b and C4-2B4 prostate cancer cell lines abolished tumor cell dormancy both in vitro and in vivo Lower TGFβRIII expression in patients with prostate cancer correlated with increased metastatic potential and decreased survival rates. Together, our results identify a dormancy mechanism by which DTCs are induced into a dormant state through TGFβRIII-p38MAPK-pS249/pT252-RB signaling and offer a rationale for developing strategies to prevent prostate cancer recurrence in the bone. Significance: These findings provide mechanistic insights into the dormancy of metastatic prostate cancer in the bone and offer a rationale for developing strategies to prevent prostate cancer recurrence in the bone. Cancer Res; 78(11); 2911-24. ©2018 AACR . ©2018 American Association for Cancer Research.

  14. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

    PubMed Central

    Cabral, Wayne A.; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R.; Chang, Weizhong; Perosky, Joseph E.; Makareeva, Elena N.; Mertz, Edward L.; Leikin, Sergey; Tomer, Kenneth B.; Kozloff, Kenneth M.; Eyre, David R.; Yamauchi, Mitsuo; Marini, Joan C.

    2014-01-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties. PMID:24968150

  15. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    PubMed

    Cabral, Wayne A; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R; Chang, Weizhong; Perosky, Joseph E; Makareeva, Elena N; Mertz, Edward L; Leikin, Sergey; Tomer, Kenneth B; Kozloff, Kenneth M; Eyre, David R; Yamauchi, Mitsuo; Marini, Joan C

    2014-06-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.

  16. Low-intensity pulsed ultrasound stimulation promotes osteoblast differentiation through hedgehog signaling.

    PubMed

    Matsumoto, Kenichi; Shimo, Tsuyoshi; Kurio, Naito; Okui, Tatsuo; Ibaragi, Soichiro; Kunisada, Yuki; Obata, Kyoichi; Masui, Masanori; Pai, Pang; Horikiri, Yuu; Yamanaka, Nobuyuki; Takigawa, Masaharu; Sasaki, Akira

    2018-06-01

    Low-intensity pulsed ultrasound (LIPUS) has been used as an adjunct to fracture healing therapies, but the mechanisms underlying its action are not known. We reported that sonic hedgehog (SHH) signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture. Mechanical stimulation is a crucial factor in bone remodeling, and it is related to the primary cilia as a sensor of hedgehog signaling. Here we observed that LIPUS promoted callus formation in accord with Gli2-positive cells after 14 days at the mouse femur fractured site compared with a control group. An immunofluorescence analysis showed that the numbers of primary cilia and cilia/osterix double-positive osteoblasts were increased at the fracture site by LIPUS. LIPUS stimulated not only the number and the length of primary cilia, but also the levels of ciliated protein, Ift88 mRNA, and SHH, Gli1, and Gli2 in MC3T3-E1 cells. Further experiments revealed that LIPUS stimulated osteogenic differentiation in the presence of smoothened agonist (SAG) treatment. These results indicate that LIPUS stimulates osteogenic differentiation and the maturation of osteoblasts by a primary cilium-mediated activation of hedgehog signaling. © 2017 Wiley Periodicals, Inc.

  17. Protective effects of total saponins from stem and leaf of Panax ginseng against cyclophosphamide-induced genotoxicity and apoptosis in mouse bone marrow cells and peripheral lymphocyte cells.

    PubMed

    Zhang, Qiu Hua; Wu, Chun Fu; Duan, Lian; Yang, Jing Yu

    2008-01-01

    Cyclophosphamide (CP), commonly used anti-cancer, induces oxidative stress and is cytotoxic to normal cells. It is very important to choice the protective agent combined CP to reduce the side effects in cancer treatment. Ginsenosides are biological active constituents of Panax ginseng C.A. Meyer that acts as the tonic agent for the cancer patients to reduce the side effects in the clinic application. Because CP is a pro-oxidant agent and induces oxidative stress by the generation of free radicals to decrease the activities of anti-oxidant enzymes, the protective effects of the total saponins from stem and leaf of P. ginseng C.A. Meyer (TSPG) act as an anti-oxidant agent against the decreased anti-oxidant enzymes, the genotoxicity and apoptosis induced by CP was carried out. The alkaline single cell gel electrophoresis was employed to detect DNA damage; flow cytometry assay and AO/EB staining assay were employed to measure cell apoptosis; the enzymatic anti-oxidants (T-SOD, CAT and GPx) and non-enzymatic anti-oxidant (GSH) were measured by the various colorimetric methods. CP induced the significant DNA damage in mouse peripheral lymphocytes in time- and dose-dependent manners, inhibited the activities of T-SOD, GPx and CAT, and decreased the contents of GSH in mouse blood, triggered bone marrow cell apoptosis at 6 and 12h. TSPG significantly reduced CP-induced DNA damages in bone marrow cells and peripheral lymphocyte cells, antagonized CP-induced reduction of T-SOD, GPx, CAT activities and the GSH contents, decreased the bone marrow cell apoptosis induced by CP. TSPG, significantly reduced the genotoxicity of CP in bone marrow cells and peripheral lymphocyte cells, and decreased the apoptotic cell number induced by CP in bone marrow cells. The effects of TSPG on T-SOD, GPx, CAT activities and GSH contents might partially contribute to its protective effects on CP-induced cell toxicities.

  18. Inhibition effects of total flavonoids from Scutellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway

    PubMed Central

    Liu, Huihui; Guo, Shanyu

    2018-01-01

    It is abundantly clear that tumor-derived parathyroid hormone-related protein (PTHrP), receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) are central contributors in promoting osteolytic process of breast carcinoma bone metastasis. Forcusing on this molecular basis, the study was undertaken to explore the inhibition effects of total flavonoids from Scutellaria barbata D. Don (TF-SB) on human breast carcinoma bone metastasis. MDA-MB-231 cells and nude mouse models of breast cancer bone metastasis were given TF-SB in different concentrations. The proliferation, migration and invasion potentials of MDA-MB-231 cells were respectively tested. The effects of TF-SB on tumor weights and bone destruction were investigated. The mRNA and protein expression of PTHrP, OPG and RANKL were assessed by qPCR and western blot analysis. In vitro, TF-SB inhibited the proliferation, migration and invasion of MDA-MB-231 cells in a dose-dependent manner. In vivo, TF-SB prevented bone metastasis of breast cancer by decreasing the number of osteoclast cells per field in a dose-dependent manner, but not affecting tumor growth or mouse survival. Molecular analysis revealed that TF-SB controled the secretion of osteolysis-related factors PTHrP and its downstream RANKL/OPG. Together, by controlling the expression of PTHrP and its downstream OPG/RANKL, TF-SB has significant inhibition effects on breast cancer bone metastasis, which indicates a new therapeutic method. PMID:29512770

  19. The Changing Sensory and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur.

    PubMed

    Chartier, Stephane R; Mitchell, Stefanie A T; Majuta, Lisa A; Mantyh, Patrick W

    2018-02-10

    Although bone is continually being remodeled and ultimately declines with aging, little is known whether similar changes occur in the sensory and sympathetic nerve fibers that innervate bone. Here, immunohistochemistry and confocal microscopy were used to examine changes in the sensory and sympathetic nerve fibers that innervate the young (10 days post-partum), adult (3 months) and aging (24 months) C57Bl/6 mouse femur. In all three ages examined, the periosteum was the most densely innervated bone compartment. With aging, the total number of sensory and sympathetic nerve fibers clearly declines as the cambium layer of the periosteum dramatically thins. Yet even in the aging femur, there remains a dense sensory and sympathetic innervation of the periosteum. In cortical bone, sensory and sympathetic nerve fibers are largely confined to vascularized Haversian canals and while there is no significant decline in the density of sensory fibers, there was a 75% reduction in sympathetic nerve fibers in the aging vs. adult cortical bone. In contrast, in the bone marrow the overall density/unit area of both sensory and sympathetic nerve fibers appeared to remain largely unchanged across the lifespan. The preferential preservation of sensory nerve fibers suggests that even as bone itself undergoes a marked decline with age, the nociceptors that detect injury and signal skeletal pain remain relatively intact. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus.

    PubMed

    Huang, Henry; Skelly, Jordan D; Ayers, David C; Song, Jie

    2017-02-09

    Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research.

  1. Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus

    PubMed Central

    Huang, Henry; Skelly, Jordan D.; Ayers, David C.; Song, Jie

    2017-01-01

    Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research. PMID:28181577

  2. Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis.

    PubMed

    Meng, Xiangqi; Vander Ark, Alexandra; Daft, Paul; Woodford, Erica; Wang, Jie; Madaj, Zachary; Li, Xiaohong

    2018-04-01

    TGF-β plays a central role in prostate cancer (PCa) bone metastasis, and it is crucial to understand the bone cell-specific role of TGF-β signaling in this process. Thus, we used knockout (KO) mouse models having deletion of the Tgfbr2 gene specifically in osteoblasts (Tgfbr2 Col1CreERT KO) or in osteoclasts (Tgfbr2 LysMCre KO). We found that PCa-induced bone lesion development was promoted in the Tgfbr2 Col1CreERT KO mice, but was inhibited in the Tgfbr2 LysMCre KO mice, relative to their respective control Tgfbr2 FloxE2 littermates. Since metastatic PCa cells attach to osteoblasts when colonized in the bone microenvironment, we focused on the mechanistic studies using the Tgfbr2 Col1CreERT KO mouse model. We found that bFGF was upregulated in osteoblasts from PC3-injected tibiae of Tgfbr2 Col1CreERT KO mice and correlated with increased tumor cell proliferation, angiogenesis, amounts of cancer-associated fibroblasts and osteoclasts. In vitro studies showed that osteoblastogenesis was inhibited, osteoclastogenesis was stimulated, but PC3 viability was not affected, by bFGF treatments. Lastly, the increased PC3-induced bone lesions in Tgfbr2 Col1CreERT KO mice were significantly attenuated by blocking bFGF using neutralizing antibody, suggesting bFGF is a promising target inhibiting bone metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Mousepox detected in a research facility: case report and failure of mouse antibody production testing to identify Ectromelia virus in contaminated mouse serum.

    PubMed

    Labelle, Philippe; Hahn, Nina E; Fraser, Jenelle K; Kendall, Lonnie V; Ziman, Melanie; James, Edward; Shastri, Nilabh; Griffey, Stephen M

    2009-04-01

    An outbreak of mousepox in a research institution was caused by Ectromelia-contaminated mouse serum that had been used for bone marrow cell culture and the cells subsequently injected into the footpads of mice. The disease initially was diagnosed by identification of gross and microscopic lesions typical for Ectromelia infection, including foci of necrosis in the liver and spleen and eosinophilic intracytoplasmic inclusion bodies in the skin. The source of infection was determined by PCR analysis to be serum obtained from a commercial vendor. To determine whether viral growth in tissue culture was required to induce viral infection, 36 mice (BALB/cJ, C57BL/6J) were experimentally exposed intraperitoneally, intradermally (footpad), or intranasally to contaminated serum or bone marrow cell cultures using the contaminated serum in the culture medium. Mice were euthanized when clinical signs developed or after 12 wk. Necropsy, PCR of spleen, and serum ELISA were performed on all mice. Mice injected with cell cultures and their cage contacts developed mousepox, antibodies to Ectromelia, and lesions, whereas mice injected with serum without cells did not. Mouse antibody production, a tool commonly used to screen biologic materials for viral contamination, failed to detect active Ectromelia contamination in mouse serum.

  4. Critical-Size Calvarial Bone Defects Healing in a Mouse Model with Silk Scaffolds and SATB2- Modified iPSCs

    PubMed Central

    Ye, Jin-Hai; Xu, Yuan-Jin; Gao, Jun; Yan, Shi-Guo; Zhao, Jun; Tu, Qisheng; Zhang, Jin; Duan, Xue-Jing; Sommer, Cesar A.; Mostoslavsky, Gustavo; Kaplan, David; Wu, Yu-Nong; Zhang, Chen-Ping; Wang, Lin; Chen, Jake

    2011-01-01

    Induced pluripotent stem cells (iPSCs) can differentiate into mineralizing cells and thus have a great potential in application in engineered bone substitutes with bioactive scaffolds in regeneration medicine. In the current study we characterized and demonstrated the pluripotency and osteogenic differentiation of mouse iPSCs. To enhance the osteogenic differentiation of iPSCs, we then transduced the iPSCs with the potent transcription factor, nuclear matrix protein SATB2. We observed that in SATB2-overexpressing iPSCs there were increased mineral nodule formation and elevated mRNA levels of key osteogenic genes, osterix (OSX), Runx2, bone sialoprotein (BSP) and osteocalcin (OCN). Moreover, the mRNA levels of HoxA2 was reduced after SATB2 overexpression in iPSCs. The SATB2-overexpressing iPSCs were then combined with silk scaffolds and transplanted into critical-size calvarial bone defects created in nude mice. Five weeks post-surgery, radiological and micro-CT analysis revealed enhanced new bone formation in calvarial defects in SATB2 group. Histological analysis also showed increased new bone formation and mineralization in the SATB2 group. In conclusion, the results demonstrate that SATB2 facilitates the differentiation of iPSCs towards osteoblast-lineage cells by repressing HoxA2 and augmenting the functions of the osteoblast determinants Runx2, BSP and OCN. PMID:21492931

  5. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165).

    PubMed

    Keeney, Michael; van den Beucken, Jeroen J J P; van der Kraan, Peter M; Jansen, John A; Pandit, Abhay

    2010-04-01

    Collagen/calcium phosphate scaffolds have been used for bone reconstruction due to their inherent similarities to the bone extracellular matrix. Calcium phosphate alone has also been used as a non-viral vector for gene delivery. The aim of this study was to determine the capability of a collagen/calcium phosphate scaffold to deliver naked plasmid DNA and mediate transfection in vivo. The second goal of the study was to deliver a plasmid encoding vascular endothelial growth factor(165) (pVEGF(165)) to promote angiogenesis, and hence bone formation, in a mouse intra-femoral model. The delivery of naked plasmid DNA resulted in a 7.6-fold increase in mRNA levels of beta-Galactosidase compared to the delivery of plasmid DNA complexed with a partially degraded PAMAM dendrimer (dPAMAM) in a subcutaneous murine model. When implanted in a muirne intra-femoral model, the delivery of pVEGF(165) resulted in a 2-fold increase in bone volume at the defect site relative to control scaffolds without pVEGF(165). It was concluded that a collagen/calcium phosphate scaffold can mediate transfection without the use of additional transfection vectors and can promote bone formation in a mouse model via the delivery of pVEGF(165). 2009 Elsevier Ltd. All rights reserved.

  6. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia.

    PubMed

    Bär, Christian; Povedano, Juan Manuel; Serrano, Rosa; Benitez-Buelga, Carlos; Popkes, Miriam; Formentini, Ivan; Bobadilla, Maria; Bosch, Fatima; Blasco, Maria A

    2016-04-07

    Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomerase Tert gene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- and Tert-deficient mice). We find that a high dose of AAV9-Tert targets the bone marrow compartment, including hematopoietic stem cells. AAV9-Tert treatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres. © 2016 by The American Society of Hematology.

  7. Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation

    PubMed Central

    Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro

    2017-01-01

    Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3-E1 osteoblastic cells and osteoclast-like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST-1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that mangiferin significantly increased the mRNA level of runt-related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate-resistant acid phosphatase-positive multinuclear cells. RT-PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast-associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3-E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes. PMID:28627701

  8. Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation.

    PubMed

    Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro

    2017-08-01

    Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3‑E1 osteoblastic cells and osteoclast‑like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST‑1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription‑polymerase chain reaction (RT‑PCR) demonstrated that mangiferin significantly increased the mRNA level of runt‑related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate‑resistant acid phosphatase‑positive multinuclear cells. RT‑PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast‑associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3‑E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes.

  9. Transplanted Umbilical Cord Mesenchymal Stem Cells Modify the In Vivo Microenvironment Enhancing Angiogenesis and Leading to Bone Regeneration

    PubMed Central

    Todeschi, Maria Rosa; El Backly, Rania; Capelli, Chiara; Daga, Antonio; Patrone, Eugenio; Introna, Martino; Cancedda, Ranieri

    2015-01-01

    Umbilical cord mesenchymal stem cells (UC-MSCs) show properties similar to bone marrow mesenchymal stem cells (BM-MSCs), although controversial data exist regarding their osteogenic potential. We prepared clinical-grade UC-MSCs from Wharton's Jelly and we investigated if UC-MSCs could be used as substitutes for BM-MSCs in muscoloskeletal regeneration as a more readily available and functional source of MSCs. UC-MSCs were loaded onto scaffolds and implanted subcutaneously (ectopically) and in critical-sized calvarial defects (orthotopically) in mice. For live cell-tracking experiments, UC-MSCs were first transduced with the luciferase gene. Angiogenic properties of UC-MSCs were tested using the mouse metatarsal angiogenesis assay. Cell secretomes were screened for the presence of various cytokines using an array assay. Analysis of implanted scaffolds showed that UC-MSCs, contrary to BM-MSCs, remained detectable in the implants for 3 weeks at most and did not induce bone formation in an ectopic location. Instead, they induced a significant increase of blood vessel ingrowth. In agreement with these observations, UC-MSC-conditioned medium presented a distinct and stronger proinflammatory/chemotactic cytokine profile than BM-MSCs and a significantly enhanced angiogenic activity. When UC-MSCs were orthotopically transplanted in a calvarial defect, they promoted increased bone formation as well as BM-MSCs. However, at variance with BM-MSCs, the new bone was deposited through the activity of stimulated host cells, highlighting the importance of the microenvironment on determining cell commitment and response. Therefore, we propose, as therapy for bone lesions, the use of allogeneic UC-MSCs by not depositing bone matrix directly, but acting through the activation of endogenous repair mechanisms. PMID:25685989

  10. Inhibition of Breast Cancer-lnduced Bone Pain, Metastasis, and Osteolysis in Nude Mice by LOVAZA and DHA Fatty Acids

    DTIC Science & Technology

    2012-10-01

    ASIC3, TGAGAGCCACCAGCTTACCT/ACATGTCCTCAAGGGAGTGG (30 cycles); mouse TRPV1 , GTGACCCTCTTGGTGGAGAA/ CTTCAGTGTGGGGTGGAGTT (30 cycles), mouse GAPDH...densitometry assisted by the image analysis software MetaMorph Image ( xx). Sizes are as follows: ASIC1a 506bp, ASCI1b 563bp, ASCI3 245pb, TRPV1

  11. The 18 kDa Translocator Protein (Peripheral Benzodiazepine Receptor) Expression in the Bone of Normal, Osteoprotegerin or Low Calcium Diet Treated Mice

    PubMed Central

    Kam, Winnie Wai-Ying; Meikle, Steven R.; Dunstan, Colin R.; Banati, Richard B.

    2012-01-01

    The presence of the translocator protein (TSPO), previously named as the mitochondrial or peripheral benzodiazepine receptor, in bone cells was studied in vitro and in situ using RT-qPCR, and receptor autoradiography using the selective TSPO ligand PK11195. In vitro, the TSPO is highly expressed in osteoblastic and osteoclastic cells. In situ, constitutive expression of TSPO is found in bone marrow and trabecular bone, e.g., spongiosa. Mice with a reduction of bone turnover induced by a 4-day treatment of osteoprotegerin reduces [3H]PK11195 binding in the spongiosa (320±128 Bq.mg−1, 499±106 Bq.mg−1 in saline-treated controls). In contrast, mice with an increase in bone turnover caused by a 4-day low calcium diet increases [3H]PK11195 binding in the spongiosa (615±90 Bq.mg−1). Further, our study includes technical feasibility data on [18F]fluoride microPET imaging of rodent bone with altered turnover. Despite [18F]fluoride having high uptake, the in vivo signal differences were small. Using a phantom model, we describe the spillover effect and partial volume loss that affect the quantitative microPET imaging of the small bone structures in experimental mouse models. In summary, we demonstrate the expression of TSPO in small rodent bone tissues, including osteoblasts and osteoclasts. A trend increase in TSPO expression was observed in the spongiosa from low to high bone turnover conditions. However, despite the potential utility of TSPO expression as an in vivo biomarker of bone turnover in experimental rodent models, our small animal PET imaging data using [18F]fluoride show that even under the condition of a good biological signal-to-noise ratio and high tracer uptake, the currently achievable instrument sensitivity and spatial resolution is unlikely to be sufficient to detect subtle differences in small structures, such as mouse bone. PMID:22295097

  12. [Study of migration and distribution of bone marrow cells transplanted animals with B16 melanoma ].

    PubMed

    Poveshchenko, A F; Solovieva, A O; Zubareva, K E; Strunkin, D N; Gricyk, O B; Poveshchenko, O V; Shurlygina, A V; Konenkov, V I

    2017-01-01

    Purpose. Reveal features migration and distribution of syngeneic bone marrow cells (BMC) and subpopulations (MSC) after transplantation into the recipient carrier B16 melanoma bodies. Methods. We used mouse male and female C57BL/6 mice. Induction of Tumor Growth: B16 melanoma cells implanted subcutaneously into right hind paw of female C57BL/6 mice at a dose of 2.5 x 105 cells / mouse. migration study in vivo distribution and BMC and MSC was performed using genetic markers - Y-chromosome specific sequence line male C57Bl/6 syngeneic intravenous transplantation in females using the polymerase chain reaction (PCR) in real time on Authorized Termal Cycler - Light Cycler 480 II / 96 (Roche). Introduction suspension of unseparated bone marrow cells, mesenchymal stem cells from donor to recipient male mice (syngeneic recipient female C57BL/6), followed by isolation of recipients of organs was performed at regular intervals, then of organ recipients isolated DNA. Results. It was shown that bone marrow cells positive for Y-chromosome in migrate lymphoid (lymph nodes, spleen, bone marrow) or in non-lymphoid organs (liver, heart, brain, skin) syngeneic recipients. In addition to the migration of cells from the bone marrow to other organs, there is a way back migration of cells from the circulation to the bone marrow. B16 melanoma stimulates the migration of transplanted MSCs and BMC in bone marrow. It is found that tumor growth enhanced migration of transplanted bone marrow cells, including populations of MSCs in the bone marrow. In the early stages of tumor formation MSC migration activity higher than the BMC. In the later stages of tumor formation undivided population of bone marrow cells migrate to the intense swelling compared with a population of MSCs. Conclusion. The possibility of using bone marrow MSCs for targeted therapy of tumor diseases, because migration of MSCs in tumor tissue can be used to effectively deliver anticancer drugs.

  13. RBP-J-Regulated miR-182 Promotes TNF-α-Induced Osteoclastogenesis.

    PubMed

    Miller, Christine H; Smith, Sinead M; Elguindy, Mahmoud; Zhang, Tuo; Xiang, Jenny Z; Hu, Xiaoyu; Ivashkiv, Lionel B; Zhao, Baohong

    2016-06-15

    Increased osteoclastogenesis is responsible for osteolysis, which is a severe consequence of inflammatory diseases associated with bone destruction, such as rheumatoid arthritis and periodontitis. The mechanisms that limit osteoclastogenesis under inflammatory conditions are largely unknown. We previously identified transcription factor RBP-J as a key negative regulator that restrains TNF-α-induced osteoclastogenesis and inflammatory bone resorption. In this study, we tested whether RBP-J suppresses inflammatory osteoclastogenesis by regulating the expression of microRNAs (miRNAs) important for this process. Using high-throughput sequencing of miRNAs, we obtained the first, to our knowledge, genome-wide profile of miRNA expression induced by TNF-α in mouse bone marrow-derived macrophages/osteoclast precursors during inflammatory osteoclastogenesis. Furthermore, we identified miR-182 as a novel miRNA that promotes inflammatory osteoclastogenesis driven by TNF-α and whose expression is suppressed by RBP-J. Downregulation of miR-182 dramatically suppressed the enhanced osteoclastogenesis program induced by TNF-α in RBP-J-deficient cells. Complementary loss- and gain-of-function approaches showed that miR-182 is a positive regulator of osteoclastogenic transcription factors NFATc1 and B lymphocyte-induced maturation protein-1. Moreover, we identified that direct miR-182 targets, Foxo3 and Maml1, play important inhibitory roles in TNF-α-mediated osteoclastogenesis. Thus, RBP-J-regulated miR-182 promotes TNF-α-induced osteoclastogenesis via inhibition of Foxo3 and Maml1. Suppression of miR-182 by RBP-J serves as an important mechanism that restrains TNF-α-induced osteoclastogenesis. Our results provide a novel miRNA-mediated mechanism by which RBP-J inhibits osteoclastogenesis and suggest that targeting of the newly described RBP-J-miR-182-Foxo3/Maml1 axis may represent an effective therapeutic approach to suppress inflammatory osteoclastogenesis and bone resorption. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively activemore » mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.« less

  15. The effect of dipeptidyl peptidase-IV inhibition on bone in a mouse model of type 2 diabetes

    PubMed Central

    Gallagher, Emily Jane; Sun, Hui; Kornhauser, Caroline; Tobin-Hess, Aviva; Epstein, Sol; Yakar, Shoshana; LeRoith, Derek

    2017-01-01

    Background Individuals with type 2 diabetes (T2D) are at greater risk of bone fractures than those without diabetes. Certain oral diabetic medications may further increase the risk of fracture. Dipeptidyl peptidase-IV (DPP-IV) inhibitors are incretin-based therapies that are being increasingly used for the management of T2D. It has been hypothesized that these agents may reduce fracture risk in those with T2D. In this study, we used a mouse model of T2D to examine the effects of the DPP-IV inhibitor, MK-0626, on bone. Methods Male wild type (WT) and diabetic muscle-lysine-arginine (MKR) mice were treated with MK-0626, pioglitazone, alendronate or vehicle. The effects of treatment with MK-0626 on bone microarchitecture and turnover were compared with treatment with pioglitazone, alendronate and vehicle. Osteoblast differentiation was determined by alkaline phosphatase staining of bone marrow cells from WT and MKR mice after treatment with pioglitazone, MK-0626 or phosphate buffered saline. Results We found that MK-0626 had neutral effects on cortical and trabecular bone in diabetic mice. Pioglitazone had detrimental effects on the trabecular bone of WT but not of diabetic mice. Alendronate caused improvements in cortical and trabecular bone architecture in diabetic and WT mice. MK-0626 did not alter osteoblast differentiation, but pioglitazone impaired osteoblast differentiation in vitro. Conclusions Overall, the DPP-IV inhibitor, MK-0626, had no adverse effects on bone in an animal model of T2D or directly on osteoblasts in culture. These findings are reassuring as DPP-IV inhibitors are being widely used to treat patients with T2D who are already at an increased risk of fractures. PMID:24023014

  16. Transgenic Expression of Osteoactivin/gpnmb Enhances Bone Formation In Vivo and Osteoprogenitor Differentiation Ex Vivo.

    PubMed

    Frara, Nagat; Abdelmagid, Samir M; Sondag, Gregory R; Moussa, Fouad M; Yingling, Vanessa R; Owen, Thomas A; Popoff, Steven N; Barbe, Mary F; Safadi, Fayez F

    2016-01-01

    Initial identification of osteoactivin (OA)/glycoprotein non-melanoma clone B (gpnmb) was demonstrated in an osteopetrotic rat model, where OA expression was increased threefold in mutant bones, compared to normal. OA mRNA and protein expression increase during active bone regeneration post-fracture, and primary rat osteoblasts show increased OA expression during differentiation in vitro. To further examine OA/gpnmb as an osteoinductive agent, we characterized the skeletal phenotype of transgenic mouse overexpressing OA/gpnmb under the CMV-promoter (OA-Tg). Western blot analysis showed increased OA/gpnmb in OA-Tg osteoblasts, compared to wild-type (WT). In OA-Tg mouse femurs versus WT littermates, micro-CT analysis showed increased trabecular bone volume and thickness, and cortical bone thickness; histomorphometry showed increased osteoblast numbers, bone formation and mineral apposition rates in OA-Tg mice; and biomechanical testing showed higher peak moment and stiffness. Given that OA/gpnmb is also over-expressed in osteoclasts in OA-Tg mice, we evaluated bone resorption by ELISA and histomorphometry, and observed decreased serum CTX-1 and RANK-L, and decreased osteoclast numbers in OA-Tg, compared to WT mice, indicating decreased bone remodeling in OA-Tg mice. The proliferation rate of OA-Tg osteoblasts in vitro was higher, compared to WT, as was alkaline phosphatase staining and activity, the latter indicating enhanced differentiation of OA-Tg osteoprogenitors. Quantitative RT-PCR analysis showed increased TGF-β1 and TGF-β receptors I and II expression in OA-Tg osteoblasts, compared to WT. Together, these data suggest that OA overexpression has an osteoinductive effect on bone mass in vivo and stimulates osteoprogenitor differentiation ex vivo. © 2015 Wiley Periodicals, Inc.

  17. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth.

    PubMed

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-08-21

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.

  18. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth

    PubMed Central

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-01-01

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment. PMID:26029998

  19. Transplantation Immunity in the Isologous Mouse Radiation Chimaera

    PubMed Central

    Bridges, J. B.; Loutit, J. F.; Micklem, H. S.

    1960-01-01

    The survival of skin homo- and heterografts on isologous CBA mouse chimaeras has been investigated. Homografts usually persist for considerably longer than on normal unirradiated mice. Immunization of the host against the appropriate foreign antigens before irradiation neither reduces nor increases the duration of this persistence. When an irradiated non-immune host is restored with bone marrow from an immunized donor, a measure of immunity is transferred. If adult spleen cells from normal or immunized donors are added to the restorative inoculum, strongly antigenic foreign skins are shed with something like normal rapidity, but weakly antigenic skins may be retained for 100 days or more, and even indefinitely. Heterografts do not enjoy a span of survival comparable with that of homografts. These findings are discussed, and it is concluded that two factors are of importance in the prolongation of graft survival: (1) A weakening of the mechanism by which antigens are recognized as foreign, (2) an overall central depression of the immune response. ImagesPLATE IPLATE IIPLATE III PMID:13804388

  20. IGF-1 REGULATES VERTEBRAL BONE AGING THROUGH SEX-SPECIFIC AND TIME-DEPENDENT MECHANISMS

    PubMed Central

    Ashpole, Nicole M; Herron, Jacquelyn C; Mitschelen, Matthew C; Farley, Julie A; Logan, Sreemathi; Yan, Han; Ungvari, Zoltan; Hodges, Erik L.; Csiszar, Anna; Ikeno, Yuji; Humphrey, Mary Beth; Sonntag, William E

    2016-01-01

    Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin-like growth factor (IGF-1). Studies have suggested that the reduction in IGF-1 compromises healthspan, while others report that loss of IGF-1 is beneficial as it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF-1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF-1 on vertebral bone aging in male and female Igff/f mice. IGF-1 was reduced at multiple specific time points during the mouse lifespan- early in postnatal development (crossing albumin-Cre mice with Igff/f mice), or early adulthood, and late adulthood using hepatic-specific viral vectors (AAV8-TBG-Cre). Vertebrae bone structure was analyzed at 27 months of age using microCT and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age-related reductions in vertebral bone structure. In male mice, reduction of circulating IGF-1 induced at any age did not diminish vertebral bone loss. Interestingly, early-life loss of IGF-1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early-life IGF-1-deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor-activator of NFkB-ligand levels in circulation. Within 3 months of a loss of IGF-1, there was a 2.2 fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF-1. Together, these data suggest the age-related loss of vertebral bone density in females can be reduced by modifying circulating IGF-1 levels early in life. PMID:26260312

  1. Factors that affect postnatal bone growth retardation in the twitcher murine model of Krabbe disease.

    PubMed

    Contreras, Miguel Agustin; Ries, William Louis; Shanmugarajan, Srinivasan; Arboleda, Gonzalo; Singh, Inderjit; Singh, Avtar Kaur

    2010-01-01

    Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast-osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Modulation of O6-alkylating agent induced clastogenicity by enhanced DNA repair capacity of bone marrow cells.

    PubMed

    Chinnasamy, N; Fairbairn, L J; Laher, J; Willington, M A; Rafferty, J A

    1998-08-07

    The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.

  3. Effects of epidermal growth factor on bone formation and resorption in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marie, P.J.; Hott, M.; Perheentupa, J.

    1990-02-01

    The effects of mouse epidermal growth factor (EGF) on bone formation and resorption were examined in male mice. EGF administration (2-200 ng.g-1.day-1 ip for 7 days) induced a dose-dependent rise in plasma EGF levels that remained within physiological range. Histomorphometric analysis of caudal vertebrae showed that EGF (20 and 200 ng.g-1.day-1) reduced the endosteal matrix and mineral appositional rates after 5 days of treatment as measured by double (3H)proline labeling and double tetracycline labeling, respectively. This effect was transitory and was not observed after 7 days of EGF administration. EGF administered for 7 days induced a dose-dependent increase in themore » periosteal osteoblastic and tetracycline double-labeled surfaces. At high dosage (200 ng.g-1.day-1) EGF administration increased the osteoclastic surface and the number of acid phosphatase-stained osteoclasts, although plasma calcium remained normal. The results show that EGF administration at physiological doses induces distinct effects on endosteal and periosteal bone formation and that the effects are dependent on EGF dosage and duration of treatment. This study indicates that EGF at physiological dosage stimulates periosteal bone formation and increases endosteal bone resorption in the growing mouse.« less

  4. Osteocalcin carboxylation is not associated with body weight or percent fat changes during weight loss in post menopausal women

    USDA-ARS?s Scientific Manuscript database

    Osteocalcin (OC) is a vitamin K-dependent bone protein used as a marker of bone formation. Mouse models have demonstrated a role for the uncarboxylated form of OC (ucOC) in energy metabolism, including energy expenditure and adiposity, but human data are equivocal. To determine the associations betw...

  5. Osteocalcin carboxylation is not associated with body weight or percent fat changes during weight loss in post menopausal women

    USDA-ARS?s Scientific Manuscript database

    Osteocalcin (OC) is a vitamin K dependent bone protein used as a marker of bone formation. Mouse models have demonstrated a role for the uncarboxylated form of OC (ucOC) in energy metabolism, including energy expenditure and adiposity, but human data are equivocal. To determine the associations betw...

  6. Effect of Levonorgestrel (NORPLANT) on the Immune Regulation of Bone Morphogenesis in Calvarial Cultures from the Laboratory Mouse (Mus muscularis).

    DTIC Science & Technology

    1995-10-01

    continually releases a synthetic progestin, levonorgestrel , for five years. In order to assess the impact of levonorgestrel on bone cells, murine calvarial...cell cultures were harvested, grown to confluence and treated with levonorgestrel , progesterone and estrogen. The majority of the cells grown in these

  7. Development of an Autologous Macrophage-Based Adoptive Gene Transfer Strategy to Treat Posttraumatic Osteoarthritis (PTOA) and Osteoarithritis (OA)

    DTIC Science & Technology

    2014-09-01

    mouse. Clear evidence for intra- articular fractures, existence of substantial subchondral bone erosion at the surface of articular plate, and formation...of bone spurs (small growths called osteophytes ) on the edges is seen in the PTOA joint but not on the intact contralateral knee joint. This

  8. Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1+/- mice.

    PubMed

    Bai, Shanshan; Li, Dong; Xu, Liang; Duan, Huichuan; Yuan, Jie; Wei, Min

    2018-04-17

    Saethre-Chotzen syndrome is an autosomal dominantly inherited disorder caused by mutations in the twist family basic helix-loop-helix transcription factor 1 (TWIST1) gene. Surgical procedures are frequently required to reduce morphological and functional defects in patients with Saethre-Chotzen syndrome. Therefore, the development of noninvasive procedures to treat Saethre-Chotzen syndrome is critical. We identified that periostin, which is an extracellular matrix protein that plays an important role in both bone and connective tissues, is downregulated in craniosynostosis patients. We aimed to verify the effects of different concentrations (0, 50, 100, and 200 μg/l) of recombinant mouse periostin in Twist1 +/- mice (a mouse model of Saethre-Chotzen syndrome) coronal suture cells in vitro and in vivo. Cell proliferation, migration, and osteogenic differentiation were observed and detected. Twist1 +/- mice were also injected with recombinant mouse periostin to verify the treatment effects. Cell Counting Kit-8 results showed that recombinant mouse periostin inhibited the proliferation of suture-derived cells in a time- and concentration-dependent manner. Cell migration was also suppressed when treated with recombinant mouse periostin. Real-time quantitative PCR and Western blotting results suggested that messenger ribonucleic acid and protein expression of alkaline phosphatase, bone sialoprotein, collagen type I, and osteocalcin were all downregulated after treatment with recombinant mouse periostin. However, the expression of Wnt-3a, Wnt-1, and β-catenin were upregulated. The in vivo results demonstrated that periostin-treated Twist1 +/- mice showed patent coronal sutures in comparison with non-treated Twist1 +/- mice which have coronal craniosynostosis. Our results suggest that recombinant mouse periostin can inhibit coronal suture cell proliferation and migration and suppress osteogenic differentiation of suture-derived cells via Wnt canonical signaling, as well as ameliorate coronal suture fusion in Twist1 +/- mice.

  9. Protective effect of hawthorn extract against genotoxicity induced by cyclophosphamide in mouse bone marrow cells.

    PubMed

    Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Abadi, Atefeh Jahan

    2008-01-01

    The preventive effect of hawthorn (Crataegus microphylla) fruit extract was investigated in mouse bone marrow cells against genotoxicity induced by cyclophosphamide. Mice were orally (gavages) pretreated with solutions of hawthorn extract which was prepared at five different doses (25, 50, 100, 200 and 400mg/kg b.w.) for seven consecutive days. Mice were injected intraperitoneally on the seventh day with cyclophosphamide (50mg/kg b.w.) and killed after 24h for the evaluation of micronucleated polychromatic erythrocytes (MnPCEs) and the ratio of PCE/(PCE+NCE) (polychromatic erythrocyte/polychromatic erythrocyte+normochromatic erythrocyte). All of five doses of extract significantly reduced MnPCEs induced by cyclophosphamide (P<0.0001). Hawthorn extract at dose 100mg/kg b.w. reduced MnPCEs 2.5 time and also completely normalized PCE/(PCE+NCE) ratio. Hawthorn extract exhibited concentration-dependent antioxidant activity on 1,1-diphenyl-2-picryl hydrazyl free radical. Hawthorn contains high amounts of phenolic compounds; the HPLC analysis showed that it contained chlorogenic acid, epicatechin and hyperoside. It is obvious that hawthorn, particularly flavonoids constituents with antioxidative activity, reduced the oxidative stress and genotoxicity induced by cyclophosphamide in mouse bone marrow cells. Copyright © 2007 Elsevier B.V. All rights reserved.

  10. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.

    PubMed

    Tetteh, G; Khan, A S; Delaine-Smith, R M; Reilly, G C; Rehman, I U

    2014-11-01

    Polyurethane (PU) is a promising polymer to support bone-matrix producing cells due to its durability and mechanical resistance. In this study two types of medical grade poly-ether urethanes Z3A1 and Z9A1 and PU-Hydroxyapatite (PU-HA) composites were investigated for their ability to act as a scaffold for tissue engineered bone. PU dissolved in varying concentrations of dimethylformamide (DMF) and tetrahydrofuran (THF) solvents were electrospun to attain scaffolds with randomly orientated non-woven fibres. Bioactive polymeric composite scaffolds were created using 15 wt% Z3A1 in a 70/30 DMF/THF PU solution and incorporating micro- or nano-sized HA particles in a ratio of 3:1 respectively, whilst a 25 wt% Z9A1 PU solution was doped in ratio of 5:1. Chemical properties of the resulting composites were evaluated by FTIR and physical properties by SEM. Tensile mechanical testing was carried out on all electrospun scaffolds. MLO-A5 osteoblastic mouse cells and human embryonic mesenchymal progenitor cells, hES-MPs were seeded on the scaffolds to test their biocompatibility and ability to support mineralised matrix production over a 28 day culture period. Cell viability was assayed by MTT and calcium and collagen deposition by Sirius red and alizarin red respectively. SEM images of both electrospun PU scaffolds and PU-HA composite scaffolds showed differences in fibre morphology with changes in solvent combinations and size of HA particles. Inclusion of THF eliminated the presence of beads in fibres that were present in scaffolds fabricated with 100% DMF solvent, and resulted in fibres with a more uniform morphology and thicker diameters. Mechanical testing demonstrated that the Young׳s Modulus and yield strength was lower at higher THF concentrations. Inclusion of both sizes of HA particles in PU-HA solutions reinforced the scaffolds leading to higher mechanical properties, whilst FTIR characterisation confirmed the presence of HA in all composite scaffolds. Although all scaffolds supported proliferation of both cell types and deposition of calcified matrix, PU-HA composite fibres containing nano-HA enabled the highest cell viability and collagen deposition. These scaffolds have the potential to support bone matrix formation for bone tissue engineering. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Infrared imaging microscopy of bone: Illustrations from a mouse model of Fabry disease

    PubMed Central

    Boskey, Adele L.; Goldberg, Michel; Kulkarni, Ashok; Gomez, Santiago

    2006-01-01

    Bone is a complex tissue whose composition and properties vary with age, sex, diet, tissue type, health and disease. In this review, we demonstrate how infrared spectroscopy and infrared spectroscopic imaging can be applied to the study of these variations. A specific example of mice with Fabry disease (a lipid storage disease) is presented in which it is demonstrated that the bones of these young animals, while showing typical spatial variation in mineral content, mineral crystal size, and collagen maturity, do not differ from the bones of age- and sex-matched wild type animals. PMID:16697974

  12. Infrared imaging microscopy of bone: illustrations from a mouse model of Fabry disease.

    PubMed

    Boskey, Adele L; Goldberg, Michel; Kulkarni, Ashok; Gomez, Santiago

    2006-07-01

    Bone is a complex tissue whose composition and properties vary with age, sex, diet, tissue type, health and disease. In this review, we demonstrate how infrared spectroscopy and infrared spectroscopic imaging can be applied to the study of these variations. A specific example of mice with Fabry disease (a lipid storage disease) is presented in which it is demonstrated that the bones of these young animals, while showing typical spatial variation in mineral content, mineral crystal size, and collagen maturity, do not differ from the bones of age- and sex-matched wild type animals.

  13. Atmospheric Oxygen Inhibits Growth and Differentiation of Marrow-Derived Mouse Mesenchymal Stem Cells via a p53 Dependent Mechanism: Implications for Long-Term Culture Expansion

    PubMed Central

    Boregowda, Siddaraju; Krishnappa, Veena; Chambers, Jeremy; LoGrasso, Phillip V.; Lai, Wen-Tzu; Ortiz, Luis A.; Phinney, Donald G.

    2013-01-01

    Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that emerge from bone marrow cultures following long-term (months) expansion in atmospheric oxygen. Herein, we demonstrate that exposure to atmospheric oxygen rapidly induced p53, TOP2A and BAX expression and mitochondrial ROS generation in primary mouse MSCs resulting in oxidative stress, reduced cell viability and inhibition of cell proliferation. Alternatively, procurement and culture in 5% oxygen supported more prolific expansion of the CD45−ve/CD44+ve cell fraction in marrow, produced increased MSC yields following immuno-depletion, and supported sustained MSC growth resulting in a 2300-fold increase in cumulative cell yield by 4th passage. MSCs cultured in 5% oxygen also exhibited enhanced tri-lineage differentiation. The oxygen-induced stress response was dependent upon p53 since siRNA mediated knockdown of p53 in wild type cells or exposure of p53−/− MSCs to atmospheric oxygen failed to induce ROS generation, reduce viability, or arrest cell growth. These data indicate that long-term culture expansion of mouse MSCs in atmospheric oxygen selects for clones with absent or impaired p53 function, which allows cells to escape oxygen-induced growth inhibition. In contrast, expansion in 5% oxygen generates large numbers of primary mouse MSCs that retain sensitivity to atmospheric oxygen, and therefore a functional p53 protein, even after long-term expansion in vitro. PMID:22367737

  14. Applications of transgenics in studies of bone sialoprotein.

    PubMed

    Zhang, Jin; Tu, Qisheng; Chen, Jake

    2009-07-01

    Bone sialoprotein (BSP) is a major non-collagenous protein in mineralizing connective tissues such as dentin, cementum and calcified cartilage tissues. As a member of the Small Integrin-Binding Ligand, N-linked Glycoprotein (SIBLING) gene family of glycoproteins, BSP is involved in regulating hydroxyapatite crystal formation in bones and teeth, and has long been used as a marker gene for osteogenic differentiation. In the most recent decade, new discoveries in BSP gene expression and regulation, bone remodeling, bone metastasis, and bone tissue engineering have been achieved with the help of transgenic mice. In this review, we discuss these new discoveries obtained from the literatures and from our own laboratory, which were derived from the use of transgenic mouse mutants related to BSP gene or its promoter activity.

  15. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant

    PubMed Central

    SONG, NINGXIA; GAO, LEI; QIU, HUIYING; HUANG, CHONGMEI; CHENG, HUI; ZHOU, HONG; LV, SHUQING; CHEN, LI; WANG, JIANMIN

    2015-01-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft-versus-host disease (aGVHD). However, the role of MSCs in graft-versus-leukemia remains to be determined. In the present study, we co-cultured C57BL/6 mouse bone marrow (BM)-derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit-8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)-10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies. PMID:25901937

  16. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant.

    PubMed

    Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin

    2015-07-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.

  17. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver.

    PubMed

    Masia, Ricard; Krause, Daniela S; Yellen, Gary

    2015-02-01

    Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K(+)-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K(+) concentration in a Nernstian fashion, as expected for a K(+)-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba(2+), Cs(+), and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner. Copyright © 2015 the American Physiological Society.

  18. Role of TAF12 in the Increased VDR Activity in Paget’s Disease of Bone

    DTIC Science & Technology

    2014-10-01

    DRIP205) and VDR interacting with the histone acetyltransferases (SRC1, CBBP etc) that control entry and activity of RNA polymerase II for TAF12...bone volume fraction (BV/TV, %), trabecular number (Tb.N, N /mm2), trabecular thickness (Tb.Th, mm), and trabecular bone spacing (Tb.Sp, mm). Cortical...mean SD ( n ¼ 4); p< 0.01, significantly different from OCLs formed with the same treatment in WT mouse cultures. (B) OCL formation by treatment of

  19. REAL-TIME INTRAVITAL IMAGING ESTABLISHES TUMOUR-ASSOCIATED MACROPHAGES AS THE EXTRASKELETAL TARGET OF BISPHOSPHONATE ACTION IN CANCER

    PubMed Central

    Junankar, Simon; Shay, Gemma; Jurczyluk, Julie; Ali, Naveid; Down, Jenny; Pocock, Nicholas; Parker, Andrew; Nguyen, Akira; Sun, Shuting; Kashemirov, Boris; McKenna, Charles E.; Croucher, Peter I.; Swarbrick, Alexander; Weilbaecher, Katherine; Phan, Tri Giang; Rogers, Michael J.

    2014-01-01

    Recent clinical trials have shown that bisphosphonate drugs improve breast cancer patient survival independent of their anti-resorptive effects on the skeleton. However, since bisphosphonates bind rapidly to bone mineral, the exact mechanisms of their anti-tumour action, particularly on cells outside of bone, remain unknown. Here we used real-time intravital two-photon microscopy to show extensive leakage of fluorescent bisphosphonate from the vasculature in 4T1 mouse mammary tumours, where it initially binds to areas of small, granular microcalcifications that are engulfed by tumour-associated macrophages (TAMs), but not tumour cells. Importantly, we also observed uptake of radiolabeled bisphosphonate in the primary breast tumour of a patient and showed the resected tumour to be infiltrated with TAMs and to contain similar granular microcalcifications. These data represent the first compelling in vivo evidence that bisphosphonates can target cells in tumours outside the skeleton and that their anti-tumour activity is likely to be mediated via TAMs. PMID:25312016

  20. Excessive amounts of mu heavy chain block B-cell development.

    PubMed

    Zhu, Lingqiao; Chang, Cheong-Hee; Dunnick, Wesley

    2011-09-01

    Antigen-independent B-cell development occurs in several stages that depend on the expression of Ig heavy and light chain. We identified a line of mice that lacked mature B cells in the spleen. This mouse line carried approximately 11 copies of a transgene of the murine heavy chain constant region locus, and B-lineage cells expressed excessive amounts of the intracellular μ heavy chain. B-cell development failed in the bone marrow at the pro/pre B-cell transition, and examination of other lines with various copy numbers of the same transgene suggested that deficiencies in B-cell development increased with increased transgene copy number. Expression of a transgenic (Tg) light chain along with the Tg μ heavy chain led to minimal rescue of B-cell development in the bone marrow and B cells in the spleen. There are several potential mechanisms for the death of pro/pre B cells as a consequence of excess heavy chain expression.

Top