Science.gov

Sample records for mouse cardiomyocyte injury

  1. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    PubMed Central

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  2. Isolation and Culture of Neonatal Mouse Cardiomyocytes

    PubMed Central

    Ehler, Elisabeth; Moore-Morris, Thomas; Lange, Stephan

    2013-01-01

    Cultured neonatal cardiomyocytes have long been used to study myofibrillogenesis and myofibrillar functions. Cultured cardiomyocytes allow for easy investigation and manipulation of biochemical pathways, and their effect on the biomechanical properties of spontaneously beating cardiomyocytes. The following 2-day protocol describes the isolation and culture of neonatal mouse cardiomyocytes. We show how to easily dissect hearts from neonates, dissociate the cardiac tissue and enrich cardiomyocytes from the cardiac cell-population. We discuss the usage of different enzyme mixes for cell-dissociation, and their effects on cell-viability. The isolated cardiomyocytes can be subsequently used for a variety of morphological, electrophysiological, biochemical, cell-biological or biomechanical assays. We optimized the protocol for robustness and reproducibility, by using only commercially available solutions and enzyme mixes that show little lot-to-lot variability. We also address common problems associated with the isolation and culture of cardiomyocytes, and offer a variety of options for the optimization of isolation and culture conditions. PMID:24056408

  3. Standardized bioenergetic profiling of adult mouse cardiomyocytes.

    PubMed

    Readnower, Ryan D; Brainard, Robert E; Hill, Bradford G; Jones, Steven P

    2012-12-18

    Mitochondria are at the crux of life and death and as such have become ideal targets of intervention in cardiovascular disease. Generally, current methods to measure mitochondrial dysfunction rely on working with the isolated organelle and fail to incorporate mitochondrial function in a cellular context. Extracellular flux methodology has been particularly advantageous in this respect; however, certain primary cell types, such as adult cardiac myocytes, have been difficult to standardize with this technology. Here, we describe methods for using extracellular flux (XF) analysis to measure mitochondrial bioenergetics in isolated, intact, adult mouse cardiomyocytes (ACMs). Following isolation, ACMs were seeded overnight onto laminin-coated (20 μg/ml) microplates, which resulted in high attachment efficiency. After establishing seeding density, we found that a commonly used assay medium (containing a supraphysiological concentration of pyruvate at 1 mmol/l) produced a maximal bioenergetic response. After performing a pyruvate dose-response, we determined that pyruvate titrated to 0.1 mmol/l was optimal for examining alternative substrate oxidation. Methods for measuring fatty acid oxidation were established. These methods lay the framework using XF analysis to profile metabolism of ACMs and will likely augment our ability to understand mitochondrial dysfunction in heart failure and acute myocardial ischemia. This platform could easily be extended to models of diabetes or other metabolic defects.

  4. HL-1 mouse cardiomyocyte injury and death after simulated ischemia and reperfusion: roles of pH, Ca2+-independent phospholipase A2, and Na+/H+ exchange.

    PubMed

    Andersen, Ann-Dorit; Poulsen, Kristian Arild; Lambert, Ian H; Pedersen, Stine Falsig

    2009-05-01

    The Ca(2+)-independent phospholipase A(2) VI (iPLA(2)-VI) and the Na(+)/H(+) exchanger isoform 1 (NHE1) are highly pH-sensitive proteins that exert both protective and detrimental effects in cardiac ischemia-reperfusion. Here, we investigated the role of extracellular pH (pH(o)) in ischemia-reperfusion injury and death and in regulation and function of iPLA(2)-VI and NHE1 under these conditions. HL-1 cardiomyocytes were exposed to simulated ischemia (SI; 0.5% O(2), 8 mM K(+), and 20 mM lactate) at pH(o) 6.0 and 7.4, with or without 4 or 8 h of reperfusion (SI/R). Cytochrome c release and caspase-3 activation were reduced after acidic compared with neutral SI, whereas necrotic death, estimated as glucose-6-phosphate dehydrogenase release, was similar in the two conditions. Inhibition of iPLA(2)-VI activity by bromoenol lactone (BEL) elicited cardiomyocyte necrosis during normoxia and after acidic, yet not after neutral, SI. The isoform-selective enantiomers R- and S-BEL both mimicked the effect of racemic BEL after acidic SI. In contrast, inhibition of NHE activity by EIPA had no significant effect on necrosis after SI. Both neutral and acidic SI were associated with a reversible loss of F-actin and cortactin integrity. Inhibition of iPLA(2)-VI disrupted F-actin, cortactin, and mitochondrial integrity, whereas inhibition of NHE slightly reduced stress fiber content. iPLA(2)-VIA and NHE1 mRNA levels were reduced during SI and upregulated in a pH(o)-dependent manner during SI/R. This also affected the subcellular localization of iPLA(2)-VIA. Thus, the mode of cell death and the roles and regulation of iPLA(2)-VI and NHE1 are at least in part determined by the pH(o) during SI. In addition to having clinically relevant implications, these findings can in part explain the contradictory results obtained from previous studies of iPLA(2)-VIA and NHE1 during cardiac I/R.

  5. Excitation–Contraction Coupling of the Mouse Embryonic Cardiomyocyte

    PubMed Central

    Rapila, Risto; Korhonen, Topi; Tavi, Pasi

    2008-01-01

    In the mammalian embryo, the primitive tubular heart starts beating during the first trimester of gestation. These early heartbeats originate from calcium-induced contractions of the developing heart muscle cells. To explain the initiation of this activity, two ideas have been presented. One hypothesis supports the role of spontaneously activated voltage-gated calcium channels, whereas the other emphasizes the role of Ca2+ release from intracellular stores initiating spontaneous intracellular calcium oscillations. We show with experiments that both of these mechanisms coexist and operate in mouse cardiomyocytes during embryonic days 9–11. Further, we characterize how inositol-3-phosphate receptors regulate the frequency of the sarcoplasmic reticulum calcium oscillations and thus the heartbeats. This study provides a novel view of the regulation of embryonic cardiomyocyte activity, explaining the functional versatility of developing cardiomyocytes and the origin and regulation of the embryonic heartbeat. PMID:18794377

  6. Excitation-contraction coupling of the mouse embryonic cardiomyocyte.

    PubMed

    Rapila, Risto; Korhonen, Topi; Tavi, Pasi

    2008-10-01

    In the mammalian embryo, the primitive tubular heart starts beating during the first trimester of gestation. These early heartbeats originate from calcium-induced contractions of the developing heart muscle cells. To explain the initiation of this activity, two ideas have been presented. One hypothesis supports the role of spontaneously activated voltage-gated calcium channels, whereas the other emphasizes the role of Ca(2+) release from intracellular stores initiating spontaneous intracellular calcium oscillations. We show with experiments that both of these mechanisms coexist and operate in mouse cardiomyocytes during embryonic days 9-11. Further, we characterize how inositol-3-phosphate receptors regulate the frequency of the sarcoplasmic reticulum calcium oscillations and thus the heartbeats. This study provides a novel view of the regulation of embryonic cardiomyocyte activity, explaining the functional versatility of developing cardiomyocytes and the origin and regulation of the embryonic heartbeat.

  7. Resveratrol promotes differentiation of mouse embryonic stem cells to cardiomyocytes.

    PubMed

    Ding, Hong; Xu, Xin; Qin, Xian; Yang, Chengjian; Feng, Qiuting

    2016-08-01

    Embryonic stem cells (ESCs) are capable to differentiate into cardiomyocytes, with the potential to treat cardiovascular diseases. However, directed differentiation is still a challenge faced by scientists. As a natural substance in grapes, resveratrol (RV) is important for cardiovascular protection. The studies of RV and its effects on ESC differentiation have potential clinical applications. Using mouse embryonic stem cells (mESCs), we investigated the effects of different concentrations of RV (5, 10, 20, 50, and 100 μmol/L) exposure on mESCs viability, expression levels of cardiac marker genes in embryoid bodies (EBs) derived from mESCs, expression levels of maturity indicative cardiac markers in cardiomyocytes derived from mESCs, and the beating properties of EBs. About 10 μmol/L of RV showed no toxicity on cell viability and was the optimal concentration to promote mESC differentiation, induce mESC differentiation to cardiomyocytes, and gain the beating properties of EBs. RV can successfully direct the differentiation of mESCs into cardiomyocytes, shedding light on its future applications to treat cardiovascular diseases. © 2016 John Wiley & Sons Ltd.

  8. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails.

    PubMed

    Fu, Yanbin; Huang, Chenwen; Xu, Xinxiu; Gu, Haifeng; Ye, Youqiong; Jiang, Cizhong; Qiu, Zilong; Xie, Xin

    2015-09-01

    The direct conversion, or transdifferentiation, of non-cardiac cells into cardiomyocytes by forced expression of transcription factors and microRNAs provides promising approaches for cardiac regeneration. However, genetic manipulations raise safety concerns and are thus not desirable in most clinical applications. The discovery of full chemically induced pluripotent stem cells suggest the possibility of replacing transcription factors with chemical cocktails. Here, we report the generation of automatically beating cardiomyocyte-like cells from mouse fibroblasts using only chemical cocktails. These chemical-induced cardiomyocyte-like cells (CiCMs) express cardiomyocyte-specific markers, exhibit sarcomeric organization, and possess typical cardiac calcium flux and electrophysiological features. Genetic lineage tracing confirms the fibroblast origin of these CiCMs. Further studies show the generation of CiCMs passes through a cardiac progenitor stage instead of a pluripotent stage. Bypassing the use of viral-derived factors, this proof of concept study lays a foundation for in vivo cardiac transdifferentiation with pharmacological agents and possibly safer treatment of heart failure.

  9. Silencing cardiomyocyte TLR4 reduces injury following hypoxia.

    PubMed

    Avlas, Orna; Srara, Smadar; Shainberg, Asher; Aravot, Dan; Hochhauser, Edith

    2016-11-01

    Toll-like receptor 4 (TLR4), the receptor for lipopolysaccharide (LPS) of gram-negative pathogens expressed in the heart, is activated by several endogenous ligands associated with tissue injury in response to myocardial infarction (MI). The aim of this study was to investigate the involvement of TLR4 signaling in cardiomyocytes dysfunction following hypoxia (90min) using multiple methodologies such as knocking down TLR4 and small interfering RNA (siTLR4). Cardiomyocytes of C57Bl/6 mice (WT) subjected to hypoxic stress showed increased cardiac release of LDH, HMGB1, IκB, TNF-α and myocardial apoptotic and necrotic markers (BAX, PI) compared to TLR4 knock out mice (TLR4KO). Treating these cardiomyocytes with siRNA against TLR4 decreased the damage markers (LDH, IκB, TNF-α). TLR4 silencing during hypoxic stress resulted in the activation of the p-AKT and p-GSK3β (by ∼25%). The latter is an indicator that there is a reduction of mitochondrial permeability transition pore (mPTP) opening following hypoxic myocardial induced injury leading to preserved mitochondrial membrane potential. Silencing TLR4 in cardiomyocytes improved cell survival following hypoxic injury through activation of the AKT/GSK3β pathway, reduced inflammatory and apoptotic signals. These findings suggest that TLR4 may serve as a potential target in the treatment of ischemic myocardial injury. Moreover, RNA interfering targeting TLR4 expression represents a therapeutic strategy.

  10. Resveratrol protects adult cardiomyocytes against oxidative stress mediated cell injury.

    PubMed

    Movahed, A; Yu, L; Thandapilly, S J; Louis, X L; Netticadan, T

    2012-11-15

    Recent studies from our laboratory have showed that resveratrol, a polyphenol found predominantly in grapes rendered strong cardioprotection in animal models of heart disease. The cardioprotection which was observed was primarily associated with the ability of resveratrol to reduce oxidative stress in these models. The aim of the current study was to corroborate the role of resveratrol as an inhibitor of oxidative stress and explore the underlying mechanisms of its action in heart disease. For this purpose, we used a cell model of oxidative stress, the hydrogen peroxide (H(2)O(2)) exposed adult rat cardiomyocytes, which was treated with and without resveratrol (30 μM); cardiomyocytes which were not exposed to resveratrol served as controls. Cell injury, cell death and oxidative stress measurements as well as the activities of the major endogenous antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were carried out in control and H(2)O(2) exposed cardiomyocytes, treated with and without resveratrol. Pharmacological blockade using specific blockers of the antioxidant enzymes were used to confirm their role in mediating resveratrol action in H(2)O(2) exposed cardiomyocytes. The status of H(2)O(2) and antioxidant enzymes in serum samples from spontaneously hypertensive rats (SHR) treated with and without resveratrol (2.5 mg/kg body weight) was also examined. Our results showed significant cell injury and death in H(2)O(2) exposed cardiomyocytes which was prevented upon resveratrol treatment. SOD and CAT activities were decreased in H(2)O(2) exposed adult rat cardiomyocytes; treatment with resveratrol significantly prevented this reduction. However, GPx activity was not altered in the H(2)O(2) exposed cardiomyocytes in comparison to controls. Pharmacological blockade of SOD and/or CAT prevented the beneficial effect of resveratrol. In SHR, H(2)O(2) levels were increased, but CAT activity was decreased, while SOD remained unchanged

  11. Lycopene Protects against Hypoxia/Reoxygenation-Induced Apoptosis by Preventing Mitochondrial Dysfunction in Primary Neonatal Mouse Cardiomyocytes

    PubMed Central

    Yue, Rongchuan; Hu, Houxiang; Yiu, Kai Hang; Luo, Tao; Zhou, Zhou; Xu, Lei; Zhang, Shuang; Li, Ke; Yu, Zhengping

    2012-01-01

    Background Hypoxia/reoxygenation(H/R)-induced apoptosis of cardiomyocytes plays an important role in myocardial injury. Lycopene is a potent antioxidant carotenoid that has been shown to have protective properties on cardiovascular system. The aim of the present study is to investigate the potential for lycopene to protect the cardiomyocytes exposed to H/R. Moreover, the effect on mitochondrial function upon lycopene exposure was assessed. Methods and Findings Primary cardiomyocytes were isolated from neonatal mouse and established an in vitro model of H/R which resembles ischemia/reperfusion in vivo. The pretreatment of cardiomyocytes with 5 µM lycopene significantly reduced the extent of apoptosis detected by TUNEL assays. To further study the mechanism underlying the benefits of lycopene, interactions between lycopene and the process of mitochondria-mediated apoptosis were examined. Lycopene pretreatment of cardiomyocytes suppressed the activation of the mitochondrial permeability transition pore (mPTP) by reducing the intracellular reactive oxygen species (ROS) levels and inhibiting the increase of malondialdehyde (MDA) levels caused by H/R. Moreover, the loss of mitochondrial membrane potential, a decline in cellular ATP levels, a reduction in the amount of cytochrome c translocated to the cytoplasm and caspase-3 activation were observed in lycopene-treated cultures. Conclusion The present results suggested that lycopene possesses great pharmacological potential in protecting against H/R-induced apoptosis. Importantly, the protective effects of lycopene may be attributed to its roles in improving mitochondrial function in H/R-treated cardiomyocytes. PMID:23226382

  12. Green tea protects cytoskeleton from oxidative injury in cardiomyocytes.

    PubMed

    Pagnotta, Eleonora; Calonghi, Natalia; Hrelia, Silvana; Masotti, Lanfranco; Biagi, Pierluigi; Angeloni, Cristina

    2006-12-27

    Cardiac ischemia/reperfusion injury results in oxidative stress and poor physiological recovery. Episodes of hypoxia/reoxygenation (H/R) cause some subtle functional and structural alterations in sarcolemma, mithocondria, sarcoplasmic reticulum, nucleus, as well as cytoskeleton. In this report, by using cultured rat cardiomyocytes and laser confocal microscopy we have verified the possibility to counteract cytoskeleton alterations induced by H/R with the supplementation of an antioxidant agent, a green tea extract (GTE), and compared its effects to those of alpha-tocopherol. Moreover the effects of GTE on cell viability and cytosolic antioxidant activity have been evaluated. H/R induced myocardial damage occurs as histological alterations such as degeneration and disorganization of the cytoskeleton and loss of structural integrity of the nucleus. GTE supplementation increases cytosolic antioxidant activity and shows protective effects on cardiomyocyte cytoarchitecture and viability.

  13. Spinal cord injury causes systolic dysfunction and cardiomyocyte atrophy.

    PubMed

    Squair, Jordan W; DeVeau, Kathryn M; Harman, Kathryn A; Poormasjedi-Meibod, Malihe-Sadat; Hayes, Brian; Liu, Jie; Magnuson, David S K; Krassioukov, Andrei V; West, Christopher R

    2017-06-09

    Individuals with spinal cord injury (SCI) have been shown to exhibit systolic, and to a lesser extent, diastolic cardiac dysfunction. However, previous reports of cardiac dysfunction in this population are confounded by the changing loading conditions after SCI and as such, whether cardiac dysfunction per se is present is still unknown. Therefore, our aim was to establish if load-independent cardiac dysfunction is present after SCI, to understand the functional cardiac response to SCI, and to explore the changes within the cellular milieu of the myocardium. Here, we applied in vivo echocardiography and LV pressure-volume catheterization with Dobutamine infusions to our Wistar rodent model of cardiac dysfunction five weeks following high (T2) thoracic contusion SCI, whilst also examining the morphological and transcriptional alterations of cardiomyocytes. We found that SCI significantly impairs systolic function independent of loading conditions (End-systolic elastance in Control: 1.35 ± 0.15; SCI: 0.65 ± 0.19 mmHg/µl). The reduction in contractile indices is accompanied by a reduction in width and length of cardiomyocytes as well as alterations in the left-ventricular extracellular matrix. Importantly, we demonstrate that the reduction in the rate (dP/dtmax) of LV pressure rise can be offset with beta-adrenergic stimulation, thereby experimentally implicating the loss of descending sympatho-excitatory control of the heart as a principle cause of left-ventricular dysfunction in SCI. Our data provide evidence that SCI induces systolic cardiac dysfunction independent of loading conditions and concomitant cardiomyocyte atrophy that may be underpinned by changes in the genes regulating the cardiac extracellular matrix.

  14. Lights on for HIF-1α: genetically enhanced mouse cardiomyocytes for heart tissue imaging.

    PubMed

    Hesse, Amke R; Levent, Elif; Zieseniss, Anke; Tiburcy, Malte; Zimmermann, Wolfram H; Katschinski, Dörthe M

    2014-01-01

    The hypoxia inducible factor-1 (HIF-1) is a suitable marker for tissue oxygenation. We intended to develop cardiomyocytes (CMs) expressing the oxygen-dependent degradation domain of HIF-1α fused to the firefly luciferase (ODD-Luc) followed by proof-of-concept for its applicability in the assessment of heart muscle oxygenation. We first generated embryonic stem cell (ESC) lines (ODD-Luc ESCs) from a Tg ROSA26 ODD-Luc/+ mouse. Subsequent CMs selection was facilitated by stable integration of an antibiotic resistance expressed under the control of the αMHC promoter. ODD-Luc ESCs showed a strong Luc-signal within 1 h of hypoxia (1% oxygen), which coincided with endogenous HIF-1α. Engineered heart muscle (EHM) constructed with ODD-Luc CMs confirmed the utility of the model to sense hypoxia, and monitor reoxygenation also in a multicellular heart muscle model. Pharmacologically induced inotropy/chronotropy under isoprenaline resulted in enhanced Luc-signal suggesting enhanced oxygen consumption, leading to notable myocardial hypoxia. ODD-Luc-CMs can be used to monitor dynamic changes of cardiomyocyte oxygenation in living heart muscle samples. We provide proof-of-concept for pharmacologically induced myocardial interventions and envision applications of the developed model in drug screens and fundamental studies of ischemia/reperfusion injury. © 2014 S. Karger AG, Basel.

  15. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes.

    PubMed

    Huang, Zhouqing; Han, Zhihua; Ye, Bozhi; Dai, Zhenyu; Shan, Peiren; Lu, Zhongqiu; Dai, Kezhi; Wang, Changqian; Huang, Weijian

    2015-09-05

    Ischemia/reperfusion (I/R)-induced autophagy increases the severity of cardiomyocyte injury. The aim of this study was to investigate the effects of berberine, a natural extract from Rhizoma coptidis, on the I/R-induced excessive autophagy in in vitro and in vivo models. Autophagy was increased both in H9c2 myocytes during hypoxia/reoxygenation (H/R) injury and in mouse hearts exposed to I/R. And the expression level of p-AMPK and p-mTORC2 (Ser2481) were increased during H/R period. In addition, the increased autophagy level was correlated with reduced cell survival in H9c2 myocytes and increased infarct size in mouse hearts. However, berberine treatment significantly enhanced the H/R-induced cell viability and reduced I/R-induced myocardial infarct size, which was accompanied by improved cardiac function. The beneficial effect of berberine is associated with inhibiting the cellular autophagy level, due to decreasing the expression level of autophagy-related proteins such as SIRT1, BNIP3, and Beclin-1. Furthermore, both the level of p-AMPK and p-mTORC2 (Ser2481) in H9c2 myocytes exposed to H/R were decreased by berberine. In summary, berberine protects myocytes during I/R injury through suppressing autophagy activation. Therefore, berberine may be a promising agent for treating I/R-induced cardiac myocyte injury.

  16. Hypoxia Enhances Direct Reprogramming of Mouse Fibroblasts to Cardiomyocyte-Like Cells.

    PubMed

    Wang, Yanyan; Shi, Shujun; Liu, Huiwen; Meng, Li

    2016-02-01

    Recent work has shown that mouse and human fibroblasts can be reprogrammed to cardiomyocyte-like cells with a combination of transcription factors. Current research has focused on improving the efficiency and mechanisms for fibroblast reprogramming. Previously, it has been reported that hypoxia enhances fibroblast cell reprogramming to pluripotent stem cells. In this study, we observed that 6 h of hypoxic conditions (2% oxygen) on newborn mouse dermal fibroblasts can improve the efficiency of reprogramming to cardiomyocyte-like cells. Expression of cardiac-related genes and proteins increased at 4 weeks after transfer of three transcription factors (Gata4/Mef2c/Tbx5 [GMT]). However, beating cardiomyocyte cells were not detected. The epigenetic mechanism of hypoxia-induced fibroblast reprogramming to cardiomyocyte cells requires further study.

  17. Resveratrol protects the loss of connexin 43 induced by ethanol exposure in neonatal mouse cardiomyocytes.

    PubMed

    Tu, Su; Cao, Fu-Tao; Fan, Xiao-Chun; Yang, Cheng-Jian

    2017-06-01

    Excessive alcohol consumption provides risk to cardiomyopathy with unknown mechanisms. Resveratrol, a plant polyphenol, is widely reported for its cardiovascular benefits, while its effect on alcohol-induced impairments in cardiomyocytes largely remains unknown. Effects of resveratrol on the cardiomyocytes under ethanol insult were studied in vitro. Ethanol exposure in mouse neonatal cardiomyocytes increased cell death and induced a specific loss of tight junction protein, connexin 43. In spite of adverse effects at higher concentrations, resveratrol at 10 μM improved cell viability of cardiomyocytes in the presence of a deleterious dose of ethanol. Importantly, the co-treatment of resveratrol with ethanol exhibited the restoration of connexin 43 protein. Further assays showed that these effects were likely associated with the antioxidative actions of resveratrol, and correlated with the alleviation of MAP kinase activation in cultured cardiomyocytes in response to ethanol. Our data suggests a novel mechanism of cardiomyocyte cell loss under ethanol exposure and provides new evidence of protective effects of resveratrol in the cardiomyocytes.

  18. Integrins protect cardiomyocytes from ischemia/reperfusion injury

    PubMed Central

    Okada, Hideshi; Lai, N. Chin; Kawaraguchi, Yoshitaka; Liao, Peter; Copps, Jeffrey; Sugano, Yasuo; Okada-Maeda, Sunaho; Banerjee, Indroneal; Schilling, Jan M.; Gingras, Alexandre R.; Asfaw, Elizabeth K.; Suarez, Jorge; Kang, Seok-Min; Perkins, Guy A.; Au, Carol G.; Israeli-Rosenberg, Sharon; Manso, Ana Maria; Liu, Zheng; Milner, Derek J.; Kaufman, Stephen J.; Patel, Hemal H.; Roth, David M.; Hammond, H. Kirk; Taylor, Susan S.; Dillmann, Wolfgang H.; Goldhaber, Joshua I.; Ross, Robert S.

    2013-01-01

    Ischemic damage is recognized to cause cardiomyocyte (CM) death and myocardial dysfunction, but the role of cell-matrix interactions and integrins in this process has not been extensively studied. Expression of α7β1D integrin, the dominant integrin in normal adult CMs, increases during ischemia/reperfusion (I/R), while deficiency of β1 integrins increases ischemic damage. We hypothesized that the forced overexpression of integrins on the CM would offer protection from I/R injury. Tg mice with CM-specific overexpression of integrin α7β1D exposed to I/R had a substantial reduction in infarct size compared with that of α5β1D-overexpressing mice and WT littermate controls. Using isolated CMs, we found that α7β1D preserved mitochondrial membrane potential during hypoxia/reoxygenation (H/R) injury via inhibition of mitochondrial Ca2+ overload but did not alter H/R effects on oxidative stress. Therefore, we assessed Ca2+ handling proteins in the CM and found that β1D integrin colocalized with ryanodine receptor 2 (RyR2) in CM T-tubules, complexed with RyR2 in human and rat heart, and specifically bound to RyR2 amino acids 165–175. Integrins stabilized the RyR2 interdomain interaction, and this stabilization required integrin receptor binding to its ECM ligand. These data suggest that α7β1D integrin modifies Ca2+ regulatory pathways and offers a means to protect the myocardium from ischemic injury. PMID:24091324

  19. Stable, Covalent Attachment of Laminin to Microposts Improves the Contractility of Mouse Neonatal Cardiomyocytes

    PubMed Central

    2015-01-01

    The mechanical output of contracting cardiomyocytes, the muscle cells of the heart, relates to healthy and disease states of the heart. Culturing cardiomyocytes on arrays of elastomeric microposts can enable inexpensive and high-throughput studies of heart disease at the single-cell level. However, cardiomyocytes weakly adhere to these microposts, which limits the possibility of using biomechanical assays of single cardiomyocytes to study heart disease. We hypothesized that a stable covalent attachment of laminin to the surface of microposts improves cardiomyocyte contractility. We cultured cells on polydimethylsiloxane microposts with laminin covalently bonded with the organosilanes 3-glycidoxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane with glutaraldehyde. We measured displacement of microposts induced by the contractility of mouse neonatal cardiomyocytes, which attach better than mature cardiomyocytes to substrates. We observed time-dependent changes in contractile parameters such as micropost deformation, contractility rates, contraction and relaxation speeds, and the times of contractions. These parameters were affected by the density of laminin on microposts and by the stability of laminin binding to micropost surfaces. Organosilane-mediated binding resulted in higher laminin surface density and laminin binding stability. 3-glycidoxypropyltrimethoxysilane provided the highest laminin density but did not provide stable protein binding with time. Higher surface protein binding stability and strength were observed with 3-aminopropyltriethoxysilane with glutaraldehyde. In cultured cardiomyocytes, contractility rate, contraction speeds, and contraction time increased with higher laminin stability. Given these variations in contractile function, we conclude that binding of laminin to microposts via 3-aminopropyltriethoxysilane with glutaraldehyde improves contractility observed by an increase in beating rate and contraction speed as it occurs during the

  20. Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes.

    PubMed

    Ribeiro, Alexandre J S; Zaleta-Rivera, Kathia; Ashley, Euan A; Pruitt, Beth L

    2014-09-10

    The mechanical output of contracting cardiomyocytes, the muscle cells of the heart, relates to healthy and disease states of the heart. Culturing cardiomyocytes on arrays of elastomeric microposts can enable inexpensive and high-throughput studies of heart disease at the single-cell level. However, cardiomyocytes weakly adhere to these microposts, which limits the possibility of using biomechanical assays of single cardiomyocytes to study heart disease. We hypothesized that a stable covalent attachment of laminin to the surface of microposts improves cardiomyocyte contractility. We cultured cells on polydimethylsiloxane microposts with laminin covalently bonded with the organosilanes 3-glycidoxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane with glutaraldehyde. We measured displacement of microposts induced by the contractility of mouse neonatal cardiomyocytes, which attach better than mature cardiomyocytes to substrates. We observed time-dependent changes in contractile parameters such as micropost deformation, contractility rates, contraction and relaxation speeds, and the times of contractions. These parameters were affected by the density of laminin on microposts and by the stability of laminin binding to micropost surfaces. Organosilane-mediated binding resulted in higher laminin surface density and laminin binding stability. 3-glycidoxypropyltrimethoxysilane provided the highest laminin density but did not provide stable protein binding with time. Higher surface protein binding stability and strength were observed with 3-aminopropyltriethoxysilane with glutaraldehyde. In cultured cardiomyocytes, contractility rate, contraction speeds, and contraction time increased with higher laminin stability. Given these variations in contractile function, we conclude that binding of laminin to microposts via 3-aminopropyltriethoxysilane with glutaraldehyde improves contractility observed by an increase in beating rate and contraction speed as it occurs during the

  1. Mathematical model of mouse embryonic cardiomyocyte excitation-contraction coupling.

    PubMed

    Korhonen, Topi; Rapila, Risto; Tavi, Pasi

    2008-10-01

    Excitation-contraction (E-C) coupling is the mechanism that connects the electrical excitation with cardiomyocyte contraction. Embryonic cardiomyocytes are not only capable of generating action potential (AP)-induced Ca(2+) signals and contractions (E-C coupling), but they also can induce spontaneous pacemaking activity. The spontaneous activity originates from spontaneous Ca(2+) releases from the sarcoplasmic reticulum (SR), which trigger APs via the Na(+)/Ca(2+) exchanger (NCX). In the AP-driven mode, an external stimulus triggers an AP and activates voltage-activated Ca(2+) intrusion to the cell. These complex and unique features of the embryonic cardiomyocyte pacemaking and E-C coupling have never been assessed with mathematical modeling. Here, we suggest a novel mathematical model explaining how both of these mechanisms can coexist in the same embryonic cardiomyocytes. In addition to experimentally characterized ion currents, the model includes novel heterogeneous cytosolic Ca(2+) dynamics and oscillatory SR Ca(2+) handling. The model reproduces faithfully the experimentally observed fundamental features of both E-C coupling and pacemaking. We further validate our model by simulating the effect of genetic modifications on the hyperpolarization-activated current, NCX, and the SR Ca(2+) buffer protein calreticulin. In these simulations, the model produces a similar functional alteration to that observed previously in the genetically engineered mice, and thus provides mechanistic explanations for the cardiac phenotypes of these animals. In general, this study presents the first model explaining the underlying cellular mechanism for the origin and the regulation of the heartbeat in early embryonic cardiomyocytes.

  2. Mathematical Model of Mouse Embryonic Cardiomyocyte Excitation–Contraction Coupling

    PubMed Central

    Korhonen, Topi; Rapila, Risto; Tavi, Pasi

    2008-01-01

    Excitation–contraction (E–C) coupling is the mechanism that connects the electrical excitation with cardiomyocyte contraction. Embryonic cardiomyocytes are not only capable of generating action potential (AP)-induced Ca2+ signals and contractions (E–C coupling), but they also can induce spontaneous pacemaking activity. The spontaneous activity originates from spontaneous Ca2+ releases from the sarcoplasmic reticulum (SR), which trigger APs via the Na+/Ca2+ exchanger (NCX). In the AP-driven mode, an external stimulus triggers an AP and activates voltage-activated Ca2+ intrusion to the cell. These complex and unique features of the embryonic cardiomyocyte pacemaking and E–C coupling have never been assessed with mathematical modeling. Here, we suggest a novel mathematical model explaining how both of these mechanisms can coexist in the same embryonic cardiomyocytes. In addition to experimentally characterized ion currents, the model includes novel heterogeneous cytosolic Ca2+ dynamics and oscillatory SR Ca2+ handling. The model reproduces faithfully the experimentally observed fundamental features of both E–C coupling and pacemaking. We further validate our model by simulating the effect of genetic modifications on the hyperpolarization-activated current, NCX, and the SR Ca2+ buffer protein calreticulin. In these simulations, the model produces a similar functional alteration to that observed previously in the genetically engineered mice, and thus provides mechanistic explanations for the cardiac phenotypes of these animals. In general, this study presents the first model explaining the underlying cellular mechanism for the origin and the regulation of the heartbeat in early embryonic cardiomyocytes. PMID:18794378

  3. Autophagy protects cardiomyocytes from the myocardial ischaemia-reperfusion injury through the clearance of CLP36

    PubMed Central

    Li, Shiguo; Liu, Chao; Gu, Lei; Wang, Lina; Shang, Yongliang; Liu, Qiong; Wan, Junyi; Shi, Jian; Wang, Fang; Xu, Zhiliang; Ji, Guangju

    2016-01-01

    Cardiovascular disease (CVD) is the leading cause of the death worldwide. An increasing number of studies have found that autophagy is involved in the progression or prevention of CVD. However, the precise mechanism of autophagy in CVD, especially the myocardial ischaemia-reperfusion injury (MI/R injury), is unclear and controversial. Here, we show that the cardiomyocyte-specific disruption of autophagy by conditional knockout of Atg7 leads to severe contractile dysfunction, myofibrillar disarray and vacuolar cardiomyocytes. A negative cytoskeleton organization regulator, CLP36, was found to be accumulated in Atg7-deficient cardiomyocytes. The cardiomyocyte-specific knockout of Atg7 aggravates the MI/R injury with cardiac hypertrophy, contractile dysfunction, myofibrillar disarray and severe cardiac fibrosis, most probably due to CLP36 accumulation in cardiomyocytes. Altogether, this work reveals autophagy may protect cardiomyocytes from the MI/R injury through the clearance of CLP36, and these findings define a novel relationship between autophagy and the regulation of stress fibre in heart. PMID:27512143

  4. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    SciTech Connect

    Abu-Issa, Radwan

    2015-01-24

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development.

  5. Effects of caulophine on caffeine-induced cellular injury and calcium homeostasis in rat cardiomyocytes.

    PubMed

    Si, Kai-Wei; Liu, Jun-Tian; He, Lang-Chong; Li, Xi-Kuan; Gou, Wei; Liu, Chuan-Hao; Li, Xiao-Qi

    2010-12-01

    Caulophine is a novel fluorenone alkaloid isolated from the radix of Caulophyllum robustum Maxim. Caulophine showed high affinity for the rat myocardial cell membrane as assessed by cell membrane chromatography, suggesting that the compound may exert bioactivity in the heart. It is known that calcium plays an important role in the pathogenesis of ischaemic heart disease, and caffeine can cause calcium overload in cardiomyocytes by inducing calcium release from the sarcoplasmic reticulum. Therefore, the present study evaluated the effects of caulophine on caffeine-induced injury and calcium homeostasis in cardiomyocytes. Cardiomyocytes were pre-treated with caulophine before exposure to caffeine or potassium chloride (KCl). Cell viability was assayed using the MTT method, and lactate dehydrogenase (LDH) and malondialdehyde (MDA) were measured spectrophotometrically. Caulophine-pre-treated cardiomyocytes were incubated with Fluo-3/AM, and then caffeine or KCl was used to induce Ca(2+) overload. The total intracellular Ca(2+) concentration was measured by flow cytometry. Fluorescence densities of single cardiomyocytes were detected using a confocal microscope. Caulophine increased the viability of caffeine-injured cardiomyocytes and decreased LDH activity and MDA level in cardiomyocytes. Furthermore, caulophine significantly decreased the total intracellular free Ca(2+) concentration and intracellular calcium release in cardiomyocytes in response to caffeine. However, the same concentrations of caulophine did not affect KCl-induced calcium influx. Our results suggest that caulophine protects cardiomyocytes from caffeine-induced injury as a result of calcium antagonism. This finding provides a basis for further study and development of caulophine as a new calcium antagonist for treating ischaemic cardiovascular diseases.

  6. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development.

    PubMed

    Abu-Issa, Radwan

    2015-01-24

    Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell-cell and/or cellmatrix adhesion during cardiac development.

  7. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy

    PubMed Central

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E.; Puppala, Dheeraj; Armoundas, Antonis A.; Hindle, Allyson; Bloch, Kenneth D.; Buys, Emmanuel S.; Scherrer-Crosbie, Marielle

    2015-01-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1−/−) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1−/− mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1−/− mice. UCP1−/− mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1−/− mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1−/− BAT transplanted to either UCP1−/− or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1−/− mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1−/− mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. PMID:25968336

  8. Resveratrol Attenuates Ischemia/Reperfusion Injury in Neonatal Cardiomyocytes and Its Underlying Mechanism

    PubMed Central

    Li, Juan; Guo, Hai-Tao; Fan, Rong; Cui, Yan; Wang, Yue-Min; Yue, Shu-Qiang; Pei, Jian-Ming

    2012-01-01

    This study was designed to investigate whether Resveratrol (Res) could be a prophylactic factor in the prevention of I/R injury and to shed light on its underlying mechanism. Primary culture of neonatal rat cardiomyocytes were randomly distributed into three groups: the normal group (cultured cardiomyocytes were in normal conditions), the I/R group (cultured cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion), and the Res+I/R group (100 µmol/L Res was administered before cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion). To test the extent of cardiomyocyte injury, several indices were detected including cell viability, LDH activity, Na+-K+-ATPase and Ca2+-ATPase activity. To test apoptotic cell death, caspase-3 activity and the expression of Bcl-2/Bax were detected. To explore the underlying mechanism, several inhibitors, intracellular calcium, SOD activity and MDA content were used to identify some key molecules involved. Res increased cell viability, Na+-K+-ATPase and Ca2+-ATPase activity, Bcl-2 expression, and SOD level. While LDH activity, capase-3 activity, Bax expression, intracellular calcium and MDA content were decreased by Res. And the effect of Res was blocked completely by either L-NAME (an eNOS inhibitor) or MB (a cGMP inhibitor), and partly by either DS (a PKC inhibitor) or Glybenclamide (a KATP inhibitor). Our results suggest that Res attenuates I/R injury in cardiomyocytes by preventing cell apoptosis, decreasing LDH release and increasing ATPase activity. NO, cGMP, PKC and KATP may play an important role in the protective role of Res. Moreover, Res enhances the capacity of anti-oxygen free radical and alleviates intracellular calcium overload in cardiomyocytes. PMID:23284668

  9. Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism.

    PubMed

    Shen, Min; Wu, Rui-Xin; Zhao, Lei; Li, Juan; Guo, Hai-Tao; Fan, Rong; Cui, Yan; Wang, Yue-Min; Yue, Shu-Qiang; Pei, Jian-Ming

    2012-01-01

    This study was designed to investigate whether Resveratrol (Res) could be a prophylactic factor in the prevention of I/R injury and to shed light on its underlying mechanism. Primary culture of neonatal rat cardiomyocytes were randomly distributed into three groups: the normal group (cultured cardiomyocytes were in normal conditions), the I/R group (cultured cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion), and the Res+I/R group (100 µmol/L Res was administered before cardiomyocytes were subjected to 2 h simulated ischemia followed by 4 h reperfusion). To test the extent of cardiomyocyte injury, several indices were detected including cell viability, LDH activity, Na(+)-K(+)-ATPase and Ca(2+)-ATPase activity. To test apoptotic cell death, caspase-3 activity and the expression of Bcl-2/Bax were detected. To explore the underlying mechanism, several inhibitors, intracellular calcium, SOD activity and MDA content were used to identify some key molecules involved. Res increased cell viability, Na(+)-K(+)-ATPase and Ca(2+)-ATPase activity, Bcl-2 expression, and SOD level. While LDH activity, capase-3 activity, Bax expression, intracellular calcium and MDA content were decreased by Res. And the effect of Res was blocked completely by either L-NAME (an eNOS inhibitor) or MB (a cGMP inhibitor), and partly by either DS (a PKC inhibitor) or Glybenclamide (a K(ATP) inhibitor). Our results suggest that Res attenuates I/R injury in cardiomyocytes by preventing cell apoptosis, decreasing LDH release and increasing ATPase activity. NO, cGMP, PKC and K(ATP) may play an important role in the protective role of Res. Moreover, Res enhances the capacity of anti-oxygen free radical and alleviates intracellular calcium overload in cardiomyocytes.

  10. Acute Pre-/Post-Treatment with 8th Day SOD-Like Supreme (a Free Radical Scavenging Health Product) Protects against Oxidant-Induced Injury in Cultured Cardiomyocytes and Hepatocytes In Vitro as Well as in Mouse Myocardium and Liver In Vivo.

    PubMed

    Leong, Pou Kuan; Chen, Jihang; Chan, Wing Man; Leung, Hoi Yan; Chan, Lincoln; Ko, Kam Ming

    2017-04-10

    8th Day superoxide dismutase (SOD)-Like Supreme (SOD-Like Supreme, a free radical scavenging health product) is an antioxidant-enriched fermentation preparation with free radical scavenging properties. In the present study, the cellular/tissue protective actions of SOD-Like Supreme against menadione toxicity in cultured H9c2 cardiomyocytes and in AML12 hepatocytes as well as oxidant-induced injury in the mouse myocardium and liver were investigated. SOD-Like Supreme was found to possess potent free radical scavenging activity in vitro as assessed by an oxygen radical absorbance capacity assay. Incubation with SOD-Like Supreme (0.5-3% (v/v)) was shown to protect against menadione-induced toxicity in H9c2 and AML12 cells, as evidenced by increases in cell viability. The ability of SOD-Like Supreme to protect against menadione cytotoxicity was associated with an elevation in the cellular reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in menadione-challenged cells. Consistent with the cell-based studies, pre-/post-treatment with SOD-Like Supreme (0.69 and 2.06 mL/kg, three intermittent doses per day for two consecutive days) was found to protect against isoproterenol-induced myocardial injury and carbon tetrachloride hepatotoxicity in mice. The cardio/hepatoprotection afforded by SOD-Like Supreme was also paralleled by increases in myocardial/hepatic mitochondrial GSH/GSSG ratios in the SOD-Like Supreme-treated/oxidant-challenged mice. In conclusion, incubation/treatment with SOD-Like Supreme was found to protect against oxidant-induced injury in vitro and in vivo, presumably by virtue of its free radical scavenging activity.

  11. Arsenic trioxide alters the differentiation of mouse embryonic stem cell into cardiomyocytes.

    PubMed

    Rebuzzini, Paola; Cebral, Elisa; Fassina, Lorenzo; Alberto Redi, Carlo; Zuccotti, Maurizio; Garagna, Silvia

    2015-10-08

    Chronic arsenic exposure is associated with increased morbidity and mortality for cardiovascular diseases. Arsenic increases myocardial infarction mortality in young adulthood, suggesting that exposure during foetal life correlates with cardiac alterations emerging later. Here, we investigated the mechanisms of arsenic trioxide (ATO) cardiomyocytes disruption during their differentiation from mouse embryonic stem cells. Throughout 15 days of differentiation in the presence of ATO (0.1, 0.5, 1.0 μM) we analysed: the expression of i) marker genes of mesoderm (day 4), myofibrillogenic commitment (day 7) and post-natal-like cardiomyocytes (day 15); ii) sarcomeric proteins and their organisation; iii) Connexin 43 and iv) the kinematics contractile properties of syncytia. The higher the dose used, the earlier the stage of differentiation affected (mesoderm commitment, 1.0 μM). At 0.5 or 1.0 μM the expression of cardiomyocyte marker genes is altered. Even at 0.1 μM, ATO leads to reduction and skewed ratio of sarcomeric proteins and to a rarefied distribution of Connexin 43 cardiac junctions. These alterations contribute to the dysruption of the sarcomere and syncytium organisation and to the impairment of kinematic parameters of cardiomyocyte function. This study contributes insights into the mechanistic comprehension of cardiac diseases caused by in utero arsenic exposure.

  12. Arsenic trioxide alters the differentiation of mouse embryonic stem cell into cardiomyocytes

    PubMed Central

    Rebuzzini, Paola; Cebral, Elisa; Fassina, Lorenzo; Alberto Redi, Carlo; Zuccotti, Maurizio; Garagna, Silvia

    2015-01-01

    Chronic arsenic exposure is associated with increased morbidity and mortality for cardiovascular diseases. Arsenic increases myocardial infarction mortality in young adulthood, suggesting that exposure during foetal life correlates with cardiac alterations emerging later. Here, we investigated the mechanisms of arsenic trioxide (ATO) cardiomyocytes disruption during their differentiation from mouse embryonic stem cells. Throughout 15 days of differentiation in the presence of ATO (0.1, 0.5, 1.0 μM) we analysed: the expression of i) marker genes of mesoderm (day 4), myofibrillogenic commitment (day 7) and post-natal-like cardiomyocytes (day 15); ii) sarcomeric proteins and their organisation; iii) Connexin 43 and iv) the kinematics contractile properties of syncytia. The higher the dose used, the earlier the stage of differentiation affected (mesoderm commitment, 1.0 μM). At 0.5 or 1.0 μM the expression of cardiomyocyte marker genes is altered. Even at 0.1 μM, ATO leads to reduction and skewed ratio of sarcomeric proteins and to a rarefied distribution of Connexin 43 cardiac junctions. These alterations contribute to the dysruption of the sarcomere and syncytium organisation and to the impairment of kinematic parameters of cardiomyocyte function. This study contributes insights into the mechanistic comprehension of cardiac diseases caused by in utero arsenic exposure. PMID:26447599

  13. Androgen receptor is expressed in mouse cardiomyocytes at prenatal and early postnatal developmental stages.

    PubMed

    Pedernera, Enrique; Gómora, María José; Meneses, Iván; De Ita, Marlon; Méndez, Carmen

    2017-08-14

    Previous studies show that androgens are involved in hypertrophy and excitability of cardiomyocytes and that their effects are mediated through their receptor. The aim of this study was to evaluate the presence of androgen receptor (AR) in mouse heart during prenatal and early postnatal stages. The expression of AR and related genes, alpha myosin heavy chain -Myh6-, beta myosin heavy chain -Myh7- and atrial natriuretic factor -Nppa- was simultaneously evaluated by semiquantitative RT-PCR. AR was also detected by immunohistochemistry. Androgen receptor mRNA was detected in hearts from 10.5 days post coitum to 16 postnatal days. A higher expression of AR mRNA in atria compared to ventricles was observed in neonatal mouse. A positive correlation between mRNA levels of AR and Nppa was observed in mouse heart at early postnatal development. Androgen receptor expression is similar in males and females during cardiac development. Finally, androgen receptor protein was observed by immunohistochemistry in myocardial cells of atria and ventricles from 12.5 days onwards and restricted after 16.5 days post-coitum to nuclei of cardiomyocytes. Present results provide evidence that androgen receptor is expressed from prenatal stages in mouse heart, supporting the proposition that androgens could be involved in mammalian heart development.

  14. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    SciTech Connect

    Cao, Xueming; Chen, Aihua Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  15. Sevoflurane postconditioning attenuates cardiomyocyte hypoxia/reoxygenation injury via restoring mitochondrial morphology

    PubMed Central

    Yu, Jin; Wu, Jianjiang; Xie, Peng; Maimaitili, Yiliyaer; Wang, Jiang; Xia, Zhengyuan; Gao, Feng; Zhang, Xing

    2016-01-01

    Background Anesthetic postconditioning is a cellular protective approach whereby exposure to a volatile anesthetic renders a tissue more resistant to subsequent ischemic/reperfusion event. Sevoflurane postconditioning (SPostC) has been shown to exert cardioprotection against ischemia/reperfusion injury, but the underlying mechanism is unclear. We hypothesized that SPostC protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury by maintaining/restoring mitochondrial morphological integrity, a critical determinant of cell fate. Methods Primary cultures of neonatal rat cardiomyocytes (NCMs) were subjected to H/R injury (3 h of hypoxia followed by 3 h reoxygenation). Intervention with SPostC (2.4% sevoflurane) was administered for 15 min upon the onset of reoxygenation. Cell viability, Lactate dehydrogenase (LDH) level, cell death, mitochondrial morphology, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening were assessed after intervention. Mitochondrial fusion and fission regulating proteins (Drp1, Fis1, Mfn1, Mfn2 and Opa1) were assessed by immunofluorescence staining and western blotting was performed to determine the level of protein expression. Results Cardiomyocyte H/R injury resulted in significant increases in LDH release and cell death that were concomitant with reduced cell viability and reduced mitochondrial interconnectivity (mean area/perimeter ratio) and mitochondrial elongation, and with reduced mitochondrial membrane potential and increased mPTP opening. All the above changes were significantly attenuated by SPostC. Furthermore, H/R resulted in significant reductions in mitochondrial fusion proteins Mfn1, Mfn2 and Opa1 and significant enhancement of fission proteins Drp1 and Fis1. SPostC significantly enhanced Mfn2 and Opa1 and reduced Drp1, without significant impact on Mfn1 and Fis1. Conclusions Sevoflurane postconditioning attenuates cardiomyocytes hypoxia/reoxygenation injury (HRI) by restoring

  16. FACS-Based Isolation, Propagation and Characterization of Mouse Embryonic Cardiomyocytes Based on VCAM-1 Surface Marker Expression

    PubMed Central

    Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K.; Jovinge, Stefan

    2013-01-01

    Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes. PMID:24386094

  17. FACS-based isolation, propagation and characterization of mouse embryonic cardiomyocytes based on VCAM-1 surface marker expression.

    PubMed

    Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K; Jovinge, Stefan

    2013-01-01

    Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes.

  18. CDK9 and its repressor LARP7 modulate cardiomyocyte proliferation and response to injury in the zebrafish heart

    PubMed Central

    Matrone, Gianfranco; Wilson, Kathryn S.; Maqsood, Sana; Mullins, John J.; Tucker, Carl S.; Denvir, Martin A.

    2015-01-01

    ABSTRACT Cyclin dependent kinase (Cdk)9 acts through the positive transcription elongation factor-b (P-TEFb) complex to activate and expand transcription through RNA polymerase II. It has also been shown to regulate cardiomyocyte hypertrophy, with recent evidence linking it to cardiomyocyte proliferation. We hypothesised that modification of CDK9 activity could both impair and enhance the cardiac response to injury by modifying cardiomyocyte proliferation. Cdk9 expression and activity were inhibited in the zebrafish (Danio rerio) embryo. We show that dephosphorylation of residue Ser2 on the C-terminal domain of RNA polymerase II is associated with impaired cardiac structure and function, and cardiomyocyte proliferation and also results in impaired functional recovery following cardiac laser injury. In contrast, de-repression of Cdk9 activity, through knockdown of La-related protein (Larp7) increases phosphorylation of Ser2 in RNA polymerase II and increases cardiomyocyte proliferation. Larp7 knockdown rescued the structural and functional phenotype associated with knockdown of Cdk9. The balance of Cdk9 and Larp7 plays a key role in cardiomyocyte proliferation and response to injury. Larp7 represents a potentially novel therapeutic target to promote cardiomyocyte proliferation and recovery from injury. PMID:26542022

  19. Hyperoside protects against hypoxia/reoxygenation induced injury in cardiomyocytes by suppressing the Bnip3 expression.

    PubMed

    Xiao, Rui; Xiang, An-Li; Pang, Hong-Bo; Liu, Ke-Qiang

    2017-09-20

    Role of hyperoside in protecting cardiomyocytes from ischemia/reperfusion induced injury has been proved. However, possible protecting mechanisms remain unclear. To fix the problem, an essential pro-apoptotic protein Bnip3 was studied in our experiments. Neonatal rat cardiomyocytes were used and submitted to hypoxia for 8h followed by reoxygenation for 2h to simulate the ischemia/reperfusion injury. Hypoxia/reoxygenation(H/R) induced damage to cardiomyocytes and the protective effect of hyperoside were examined by means of MTT assay. H/R-induced apoptosis was assessed by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling(TUNEL) and DNA Ladder assay. mRNA expression of Bnip3 was determined by use of quantitative real-time reverse transcription polymerase chain reaction assay. Protein levels of Bnip3, Bax, Bcl-2 and cleaved caspase-3 were examined using western-blot assay. Our results showed that H/R caused great damage to cardiomyocytes, upregulated the protein expressions of Bnip3, Bax, cleaved caspase3, and decreased the expression of the anti-apoptotic protein of Bcl-2. Whereas, compared with the H/R group, a decrease in activities of Bnip3, Bax, cleaved caspase3, and a promoting expression of Bcl-2 were detected in the H/R goup pretreated with hyperoside. It was concluded in our study that H/R-induced apoptotic effect in cardiomyocytes could be attenuated by hyperoside, and the protective role of hyperoside, if not completely, could be partly through the suppression of the pro-apoptotic gene Bnip3. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Moderate ethanol administration accentuates cardiomyocyte contractile dysfunction and mitochondrial injury in high fat diet-induced obesity.

    PubMed

    Yuan, Fang; Lei, Yonghong; Wang, Qiurong; Esberg, Lucy B; Huang, Zaixing; Scott, Glenda I; Li, Xue; Ren, Jun

    2015-03-18

    Light to moderate drinking confers cardioprotection although it remains unclear with regards to the role of moderate drinking on cardiac function in obesity. This study was designed to examine the impact of moderate ethanol intake on myocardial function in high fat diet intake-induced obesity and the mechanism(s) involved with a focus on mitochondrial integrity. C57BL/6 mice were fed low or high fat diet for 16 weeks prior to ethanol challenge (1g/kg/d for 3 days). Cardiac contractile function, intracellular Ca(2+) homeostasis, myocardial histology, and mitochondrial integrity [aconitase activity and the mitochondrial proteins SOD1, UCP-2 and PPARγ coactivator 1α (PGC-1α)] were assessed 24h after the final ethanol challenge. Fat diet intake compromised cardiomyocyte contractile and intracellular Ca(2+) properties (depressed peak shortening and maximal velocities of shortening/relengthening, prolonged duration of relengthening, dampened intracellular Ca(2+) rise and clearance without affecting duration of shortening). Although moderate ethanol challenge failed to alter cardiomyocyte mechanical property under low fat diet intake, it accentuated high fat diet intake-induced changes in cardiomyocyte contractile function and intracellular Ca(2+) handling. Moderate ethanol challenge failed to affect fat diet intake-induced cardiac hypertrophy as evidenced by H&E staining. High fat diet intake reduced myocardial aconitase activity, downregulated levels of mitochondrial protein UCP-2, PGC-1α, SOD1 and interrupted intracellular Ca(2+) regulatory proteins, the effect of which was augmented by moderate ethanol challenge. Neither high fat diet intake nor moderate ethanol challenge affected protein or mRNA levels as well as phosphorylation of Akt and GSK3β in mouse hearts. Taken together, our data revealed that moderate ethanol challenge accentuated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies as well as mitochondrial injury. Copyright

  1. Induced expression of Fndc5 significantly increased cardiomyocyte differentiation rate of mouse embryonic stem cells.

    PubMed

    Rabiee, Farzaneh; Forouzanfar, Mahboobeh; Ghazvini Zadegan, Faezeh; Tanhaei, Somayeh; Ghaedi, Kamran; Motovali Bashi, Majid; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2014-11-10

    Fibronectin type III domain-containing 5 protein (Fndc5) is an exercise hormone and its transcript profile in mouse showed high degree of expression in heart, skeletal muscle and brain. Our previous studies indicated a significant increase (approximately 10 fold) in mRNA level of Fndc5 when embryonic stem cells were differentiated into beating bodies. As a step closer to identify the involvement of Fndc5 in the process of cardiomyocyte differentiation, we generated a stably inducible transduced mouse embryonic stem cell (mESC) line that overexpressed Fndc5 following Doxycycline induction. Our results indicated that the overexpression of Fndc5 during spontaneous cardiac differentiation significantly increased not only at RNA levels for mesodermal markers but also at the transcriptional levels for cardiac progenitor and cardiac genes. These data suggest that Fndc5 may be involved in cardiomyocyte differentiation. Therefore, a new hope will be arisen for potential application of this myokine for regeneration of damaged cardiac tissues especially in cardiac failure.

  2. Heart extracellular matrix supports cardiomyocyte differentiation of mouse embryonic stem cells

    PubMed Central

    Higuchi, Sayaka; Lin, Qingsong; Wang, Jigang; Lim, Teck Kwang; Joshi, Shashikant B.; Anand, Ganesh Srinivasan; Chung, Maxey C.M.; Sheetz, Michael P.; Fujita, Hideaki

    2017-01-01

    We have evaluated the effect of heart extracellular matrix (ECM) on the cardiomyocyte differentiation of mouse embryonic stem cells (ES cells) using de-cellularized heart tissue. Several lines of evidence indicate that ECM plays significant roles in cell proliferation, cell death and differentiation, but role of ECM possessing a 3D structure in differentiation has not been studied in detail. We found that there are substantial differences in the quantitative protein profiles of ECM in SDS-treated heart tissue compared to that of liver tissue, as assessed by iTRAQ™ quantitative proteomics analysis. When mouse ES cells were cultured on thin (60 μm) sections of de-cellularized tissue, the expression of cardiac myosin heavy chain (cMHC) and cardiac troponin I (cTnI) was high in ES cells cultured on heart ECM compared with those cultured on liver ECM. In addition, the protein expression of cMHC and cTnI was detected in cells on heart ECM after 2 weeks, which was not detectable in cells on liver ECM. These results indicate that heart ECM plays a critical role in the cardiomyocyte differentiation of ES cells. We propose that tissue-specific ECM induced cell lineage specification through mechano-transduction mediated by the structure, elasticity and components of ECM. PMID:23168383

  3. Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury

    PubMed Central

    Pálóczi, János; Varga, Zoltán V.; Szebényi, Kornélia; Sarkadi, Balázs; Madonna, Rosalinda; De Caterina, Raffaele; Csont, Tamás; Eschenhagen, Thomas; Ferdinandy, Péter; Görbe, Anikó

    2016-01-01

    Background and Aims. Human embryonic stem cell- (hESC-) derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP) in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days) and then on more differentiated cardiomyocytes (6 + 24 days), both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP) (10−7, 10−6, and 10−5 M), BNP (10−9, 10−8, and 10−7 M), and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10−5 M). Results. SNAP (10−6, 10−5 M) significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10−6 M) also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms. PMID:27403231

  4. Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury.

    PubMed

    Pálóczi, János; Varga, Zoltán V; Apáti, Ágota; Szebényi, Kornélia; Sarkadi, Balázs; Madonna, Rosalinda; De Caterina, Raffaele; Csont, Tamás; Eschenhagen, Thomas; Ferdinandy, Péter; Görbe, Anikó

    2016-01-01

    Background and Aims. Human embryonic stem cell- (hESC-) derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP) in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days) and then on more differentiated cardiomyocytes (6 + 24 days), both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP) (10(-7), 10(-6), and 10(-5) M), BNP (10(-9), 10(-8), and 10(-7) M), and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10(-5) M). Results. SNAP (10(-6), 10(-5) M) significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10(-6) M) also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms.

  5. Labdane diterpenes protect against anoxia/reperfusion injury in cardiomyocytes: involvement of AKT activation

    PubMed Central

    Cuadrado, I; Fernández-Velasco, M; Boscá, L; de las Heras, B

    2011-01-01

    Several labdane diterpenes exert anti-inflammatory and cytoprotective actions; therefore, we have investigated whether these molecules protect cardiomyocytes in an anoxia/reperfusion (A/R) model, establishing the molecular mechanisms involved in the process. The cardioprotective activity of three diterpenes (T1, T2 and T3) was studied in the H9c2 cell line and in isolated rat cardiomyocyte subjected to A/R injury. In both cases, treatment with diterpenes T1 and T2 protected from A/R-induced apoptosis, as deduced by a decrease in the percentage of apoptotic and caspase-3 active positive cells, a decrease in the Bcl-2/Bax ratio and an increase in the expression of antiapoptotic proteins. Analysis of cell survival signaling pathways showed that diterpenes T1 and T2 added after A/R increased phospho-AKT and phospho-ERK 1/2 levels. These cardioprotective effects were lost when AKT activity was pharmacologically inhibited. Moreover, the labdane-induced cardioprotection involves activation of AMPK, suggesting a role for energy homeostasis in their mechanism of action. Labdane diterpenes (T1 and T2) also exerted cardioprotective effects against A/R-induced injury in isolated cardiomyocytes and the mechanisms involved activation of specific survival signals (PI3K/AKT pathways, ERK1/2 and AMPK) and inhibition of apoptosis. PMID:22071634

  6. Liraglutide directly protects cardiomyocytes against reperfusion injury possibly via modulation of intracellular calcium homeostasis

    PubMed Central

    Hu, Shun-Ying; Zhang, Ying; Zhu, Ping-Jun; Zhou, Hao; Chen, Yun-Dai

    2017-01-01

    Background Liraglutide is glucagon-like peptide-1 receptor agonist for treating patients with type 2 diabetes mellitus. Our previous studies have demonstrated that liraglutide protects cardiac function through improving endothelial function in patients with acute myocardial infarction undergoing percutaneous coronary intervention. The present study will investigate whether liraglutide can perform direct protective effects on cardiomyocytes against reperfusion injury. Methods In vitro experiments were performed using H9C2 cells and neonatal rat ventricular cadiomyocytes undergoing simulative hypoxia/reoxygenation (H/R) induction. Cardiomyocytes apoptosis was detected by fluorescence TUNEL. Mitochondrial membrane potential (ΔΨm) and intracellular reactive oxygen species (ROS) was assessed by JC-1 and DHE, respectively. Fura-2/AM was used to measure intracellular Ca2+ concentration and calcium transient. Immunofluorescence staining was used to assess the expression level of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a). In vivo experiments, myocardial apoptosis and expression of SERCA2a were detected by colorimetric TUNEL and by immunofluorescence staining, respectively. Results In vitro liraglutide inhibited cardiomyotes apoptosis against H/R. ΔΨm of cardiomyocytes was higher in liraglutide group than H/R group. H/R increased ROS production in H9C2 cells which was attenuated by liraglutide. Liraglutide significantly lowered Ca2+ overload and improved calcium transient compared with H/R group. Immunofluorescence staining results showed liraglutide promoted SERCA2a expression which was decreased in H/R group. In ischemia/reperfusion rat hearts, apoptosis was significantly attenuated and SERCA2a expression was increased by liraglutide compared with H/R group. Conclusions Liraglutide can directly protect cardiomyocytes against reperfusion injury which is possibly through modulation of intracellular calcium homeostasis. PMID:28270843

  7. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT

    SciTech Connect

    Pavone, Luigi Michele Spina, Anna; Lo Muto, Roberta; Santoro, Dionea; Mastellone, Vincenzo; Avallone, Luigi

    2008-12-12

    Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT{sup Cre/+};ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventricle and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.

  8. The influence of agent delivery mode on cardiomyocyte injury induced by myocardial contrast echocardiography in rats.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Armstrong, William F

    2005-09-01

    Myocardial contrast echocardiography (MCE) can induce bioeffects in rat hearts by local activation of the contrast agent gas bodies. This study was designed to examine the influence of agent delivery mode on the magnitude of cardiomyocyte injury. A total of 69 hairless rats were anesthetized and mounted vertically in a water bath. Evans blue dye was injected as vital stain for cardiomyocyte injury. Definity contrast agent was diluted in saline and injected via tail vein at 20 or 80 microL/kg in bolus or infusion mode. In 12 rats, 0.57 mg/kg dipyridamole was given to simulate a stress test. MCE in a short axis view with 1:4 or 1:16 ECG triggering was performed at 1.5 MHz for 5 or 20 min. The peak rarefactional pressure amplitude was set to 1.1 or 2.0 MPa. Premature beats were counted from the ECG record. Evans blue fluorescent cells were counted on frozen sections from the center of the scan plane of heart samples obtained 24 h postMCE. Infusion of the contrast agent led to more cardiomyocyte injury than did bolus injection. Dipyridamole stress also increased the effect. Varying the infusion rate or trigger interval was less important than the overall dosage during scanning. Exposure at 1.1 MPa and 80 microL/kg yielded significant cell killing relative to shams. Premature beats generally followed the same trends as cell injury, except that lower infusion rates tended to increase this effect. Contrast agent delivery mode, as well as dose and peak rarefactional pressure amplitude, has a significant influence on the bioeffects potential of MCE.

  9. Protective effects of IL28RA siRNA on cardiomyocytes in hypoxia/reoxygenation injury.

    PubMed

    Gong, Ge; Li, Yanyan; Yang, Xinxing; Geng, Hongyu; Lu, Xinzheng; Wang, Liansheng; Yang, Zhijian

    2017-09-01

    We demonstrate the protective effects of the siRNA-mediated inhibition of the interleukin-28 receptor alpha (IL28RA) subunit on cardiomyocytes in hypoxia/reoxygenation (H/R) injury and explore the associated mechanism. After designing and synthesizing three pairs of siRNA that effectively reduced IL28RA gene expression in vitro (siRNA-6158, siRNA-6160, and siRNA-6162), primary neonatal rat cardiomyocytes were transfected using a liposome transfection method. Six groups were included based on the siRNA that was used and the treatment simulating reperfusion injury: control group, H/R group, H/R+negative control group, H/R+siRNA-6158 group, H/R+siRNA-6160 group, and H/R+siRNA-6162 group. Cell survival and apoptosis rates were measured along with lactate dehydrogenase levels in the cell culture supernatant. Protein levels of IL28RA, phosphatidylinositol 3-kinase, catalytic subunit gamma (PI3KCG), Bcl-2, Bax, and ß-actin were also measured. The H/R+siRNA-6158 and H/R+siRNA-6160 groups had significantly higher survival rates and increased PI3KCG-to-ß-actin and Bcl-2-to-Bax ratios than the the H/R and H/R+negative control groups (p<0.05). The H/R+siRNA-6158 and H/R+siRNA-6160 groups also exhibited reduced rates of apoptosis and reduced IL28RA-to-ß-actin ratios (p<0.05). No significant difference was observed among the H/R+siRNA-6162, H/R, and H/R+negative control groups. IL28RA siRNA-6158 and -6160 were able to protect cardiomyocytes from H/R injury by inhibiting apoptosis. This strategy of inhibiting IL28RA gene expression may reduce reperfusion injury in the treatment of patients with acute myocardial infarction.

  10. Krp1 (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes

    SciTech Connect

    Greenberg, Cynthia C.; Connelly, Patricia S.; Daniels, Mathew P.; Horowits, Robert

    2008-03-10

    Krp1, also called sarcosin, is a cardiac and skeletal muscle kelch repeat protein hypothesized to promote the assembly of myofibrils, the contractile organelles of striated muscles, through interaction with N-RAP and actin. To elucidate its role, endogenous Krp1 was studied in primary embryonic mouse cardiomyocytes. While immunofluorescence showed punctate Krp1 distribution throughout the cell, detergent extraction revealed a significant pool of Krp1 associated with cytoskeletal elements. Reduction of Krp1 expression with siRNA resulted in specific inhibition of myofibril accumulation with no effect on cell spreading. Immunostaining analysis and electron microscopy revealed that cardiomyocytes lacking Krp1 contained sarcomeric proteins with longitudinal periodicities similar to mature myofibrils, but fibrils remained thin and separated. These thin myofibrils were degraded by a scission mechanism distinct from the myofibril disassembly pathway observed during cell division in the developing heart. The data are consistent with a model in which Krp1 promotes lateral fusion of adjacent thin fibrils into mature, wide myofibrils and contribute insight into mechanisms of myofibrillogenesis and disassembly.

  11. Dimethyl sulfoxide attenuates hydrogen peroxide-induced injury in cardiomyocytes via heme oxygenase-1.

    PubMed

    Man, Wang; Ming, Ding; Fang, Du; Chao, Liang; Jing, Cang

    2014-06-01

    The antioxidant property of dimethyl sulfoxide (DMSO) was formerly attributed to its direct effects. Our former study showed that DMSO is able to induce heme oxygenase-1 (HO-1) expression in endothelial cells, which is a potent antioxidant enzyme. In this study, we hypothesized that the antioxidant effects of DMSO in cardiomyocytes are mediated or partially mediated by increased HO-1 expression. Therefore, we investigated whether DMSO exerts protective effects against H2 O2 -induced oxidative damage in cardiomyocytes, and whether HO-1 is involved in DMSO-imparted protective effects, and we also explore the underlying mechanism of DMSO-induced HO-1 expression. Our study demonstrated that DMSO pretreatment showed a cytoprotective effect against H2 O2 -induced oxidative damage (impaired cell viability, increased apopototic cells rate and caspase-3 level, and increased release of LDH and CK) and this process is partially mediated by HO-1 upregulation. Furthermore, our data showed that the activation of p38 MAPK and Nrf2 translocation are involved in the HO-1 upregulation induced by DMSO. This study reports for the first time that the cytoprotective effect of DMSO in cardiomyocytes is partially mediated by HO-1, which may further explain the mechanisms by which DMSO exerts cardioprotection on H2 O2 injury. J. Cell. Biochem. 115: 1159-1165, 2014. © 2013 Wiley Periodicals, Inc.

  12. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes

    PubMed Central

    Mattera, Rosanna; Benvenuto, Monica; Giganti, Maria Gabriella; Tresoldi, Ilaria; Pluchinotta, Francesca Romana; Bergante, Sonia; Tettamanti, Guido; Masuelli, Laura; Manzari, Vittorio; Modesti, Andrea; Bei, Roberto

    2017-01-01

    Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress. PMID:28531112

  13. Zinc pyrithione salvages reperfusion injury by inhibiting NADPH oxidase activation in cardiomyocytes.

    PubMed

    Kasi, Viswanath; Bodiga, Sreedhar; Kommuguri, Upendra Nadh; Sankuru, Suneetha; Bodiga, Vijaya Lakshmi

    2011-07-01

    Zinc pyrithione (ZPT), has a strong anti-apoptotic effect when administered just before reperfusion. Because oxidative stress has been proposed to contribute to myocardial reperfusion injury, we tested whether ZPT can reduce the production of reactive oxygen species during reoxygenation in cultured neonatal rat cardiac myocytes and evaluated the role of NADPH oxidase in hypoxia/reoxygenation (H/R) injury. The cells were subjected to 8h of simulated ischemia, followed by either 30 min or 16 h of reoxygenation. ZPT when started just before reoxygenation significantly reduced superoxide generation, LDH release and improved cell survival compared to H/R. Attenuation of the ROS production by ZPT paralleled its capacity to prevent pyknotic nuclei formation. In addition, ZPT reversed the H/R-induced expression of NOX2 and p47(phox) phosphorylation indicating that ZPT directly protects cardiomyocytes from reperfusion injury by a mechanism that attenuates NADPH oxidase mediated intracellular oxidative stress.

  14. Restoration of sirt1 function by pterostilbene attenuates hypoxia-reoxygenation injury in cardiomyocytes.

    PubMed

    Guo, Yan; Zhang, Li; Li, Feng; Hu, Chang-Ping; Zhang, Zheng

    2016-04-05

    Restoration of blood supply to ischemic myocardium causes cardiomyocyte damage, a process known as ischemia-reperfusion injury. Excess reactive oxygen species and intracellular calcium contribute to cell damage but the involvement of sirt1, a versatile protein deacetylase in reperfusion-induced cell damage remains unknown. Here, we found that hypoxia-reoxygenation, an in vitro model of ischemia-reperfusion injury, induced H9c2 cardiomyocyte apoptosis as revealed by caspase-3 assay, Hoechst 33258 staining, flow cytometric analysis and JC-1 staining. Molecular docking analysis showed that, pterostilbene, a natural dimethyl ether derivative of resveratrol, binds to the enzymatic active pocket of sirt1. Importantly, application of pterostilbene at low concentrations of 0.1-3.0 μM rescued H9c2 cells from apoptosis, an effect comparable with resveratrol at 20 μM. Mechanistically, pterostilbene exerted its cardioprotective effects via 1) stimulation of sirt1 activity, since pretreatment of H9c2 cells with splitomicin, an antagonist of sirt1, removed the effects of pterostilbene, and 2) enhancement of sirt1 expression. Therefore, the present study demonstrates that activation of sitr1 during ischemia-reperfusion is cardioprotective and that the natural compound-pterostilbene-could be used therapeutically to alleviate ischemia-reperfusion injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. LncRNA260-specific siRNA targeting IL28RA gene inhibit cardiomyocytes hypoxic/reoxygenation injury.

    PubMed

    Gong, Ge; Yang, Xin-Xing; Li, Yanyan; Geng, Hong-Yu; Yang, Zhi-Jian; Wang, Lian-Sheng; Kim, Hyun Jun; Lu, Xin-Zheng

    2017-08-01

    The interleukin 28 receptor alpha (IL28RA) gene was indicated to be associated with apoptosis. However, it was not clear whether long non-coding RNA 260 (lncRNA 260)-specific siRNA targeting IL28RA gene could inhibit hypoxic reoxygenation (H/R) cardiomyocytes injury or not. To explore the mechanisms underlying the protective effects of lncRNA260-specific siRNA-mediated inhibition of IL28RA from H/R injury in cardiomyocytes, the current research was performed. The primary neonatal rat cardiomyocytes were transfected with three different pairs of siRNA specific to lncRNA260 targeting IL28RA gene and then were undergone with the conditions simulating H/R injury. All three groups of cardiomyocytes treated with lncRNA260-specific siRNA experienced significantly decreased levels of lactate dehydrogenase activity and apoptosis rate relative to the non-treatment and negative control groups (P<0.05), also expressed reduced levels of IL28RA, and increased levels of PI3KCG and Bcl-2/Bax (P<0.05). The lncRNA260-specific siRNA may reduce cardiomyocyte apoptosis associated with H/R injury by decreasing levels of the IL28RA gene product and thus activating the PI3K/AKT signaling pathway.

  16. Antiphospholipid antibodies enhance rat neonatal cardiomyocyte apoptosis in an in vitro hypoxia/reoxygenation injury model via p38 MAPK

    PubMed Central

    Bourke, Lauren T; McDonnell, Thomas; McCormick, James; Pericleous, Charis; Ripoll, Vera M; Giles, Ian; Rahman, Anisur; Stephanou, Anastasis; Ioannou, Yiannis

    2017-01-01

    A significant amount of myocardial damage during a myocardial infarction (MI) occurs during the reperfusion stage, termed ischaemia/reperfusion (I/R) injury, and accounts for up to 50% of total infarcted tissue post-MI. During the reperfusion phase, a complex interplay of multiple pathways and mechanisms is activated, which ultimately leads to cell death, primarily through apoptosis. There is some evidence from a lupus mouse model that lupus IgG, specifically the antiphospholipid (aPL) antibody subset, is pathogenic in mesenteric I/R injury. Furthermore, it has previously been shown that the immunodominant epitope for the majority of circulating pathogenic aPLs resides in the N-terminal domain I (DI) of beta-2 glycoprotein I (β2GPI). This study describes the enhanced pathogenic effect of purified IgG derived from patients with lupus and/or the antiphospholipid syndrome in a cardiomyocyte H/R in vitro model. Furthermore, we have demonstrated a pathogenic role for aPL containing samples, mediated via aPL–β2GPI interactions, resulting in activation of the pro-apoptotic p38 MAPK pathway. This was shown to be inhibited using a recombinant human peptide of domain I of β2GPI in the fluid phase, suggesting that the pathogenic anti-β2GPI antibodies in this in vitro model target this domain. PMID:28079888

  17. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro

    PubMed Central

    Zheng, Bei; Wang, Jiadan; Tang, Leilei; Tan, Chao; Zhao, Zhe; Xiao, Yi; Ge, Renshan; Zhu, Danyan

    2017-01-01

    Rictor is a key regulatory/structural subunit of the mammalian target of rapamycin complex 2 (mTORC2) and is required for phosphorylation of Akt at serine 473. It plays an important role in cell survival, actin cytoskeleton organization and other processes in embryogenesis. However, the role of Rictor/mTORC2 in the embryonic cardiac differentiation has been uncovered. In the present study, we examined a possible link between Rictor expression and cardiomyocyte differentiation of the mouse embryonic stem (mES) cells. Knockdown of Rictor by shRNA significantly reduced the phosphorylation of Akt at serine 473 followed by a decrease in cardiomyocyte differentiation detected by beating embryoid bodies. The protein levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein) and α-Actinin (cardiomyocyte biomarker) decreased in Rictor knockdown group during cardiogenesis. Furthermore, knockdown of Rictor specifically inhibited the ventricular-like cells differentiation of mES cells with reduced level of ventricular-specific protein, MLC-2v. Meanwhile, patch-clamp analysis revealed that shRNA-Rictor significantly increased the number of cardiomyocytes with abnormal electrophysiology. In addition, the expressions and distribution patterns of cell-cell junction proteins (Cx43/Desmoplakin/N-cadherin) were also affected in shRNA-Rictor cardiomyocytes. Taken together, the results demonstrated that Rictor/mTORC2 might play an important role in the cardiomyocyte differentiation of mES cells. Knockdown of Rictor resulted in inhibiting ventricular-like myocytes differentiation and induced arrhythmias symptom, which was accompanied by interfering the expression and distribution patterns of cell-cell junction proteins. Rictor/mTORC2 might become a new target for regulating cardiomyocyte differentiation and a useful reference for application of the induced pluripotent stem cells. PMID:28123351

  18. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    PubMed Central

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. PMID:25834424

  19. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.

    PubMed

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation.

  20. Astragaloside IV protects cardiomyocytes from anoxia/reoxygenation injury by upregulating the expression of Hes1 protein.

    PubMed

    Huang, Huang; Lai, Songqing; Wan, Qing; Qi, Wanghong; Liu, Jichun

    2016-05-01

    Astragaloside IV (ASI), a traditional Chinese medicine, is a main active ingredient of Astragalus membranaceus. Many clinical studies have found that ASI protects cardiomyocytes in cardiovascular diseases, but the underlying mechanisms remain obscure. The aim of this study was to investigate the molecular mechanisms responsible for the protective effects of ASI in cardiomyocytes from anoxia/reoxygenation (A/R) injury. According to the previous studies, we hypothesized that the cardioprotective effects of ASI against A/R injury might be associated with Notch1/Hes1 signaling pathway. In this study, neonatal rat primary cardiomyocytes were preconditioned with ASI prior to A/R injury. Our results showed that ASI effectively increased the cell viability, decreased the content of MDA, decreased the activities of CPK and LDH, increased the activities of GSH-Px and SOD, and reduced the reactive oxygen species (ROS) generation and the loss of mitochondrial membrane potential (Δψm). ASI inhibited the mitochondrial permeability transition pore (mPTP) opening and activation of caspase-3, and finally decreased the cell apoptosis in cardiomyocytes. Furthermore, ASI upregulated Hes1 protein expression. However, pretreatment with DAPT, a Notch1 inhibitor, effectively attenuated the cardioprotective effects of ASI against A/R injury, except MDA, SOD, GSH-Px, and the ROS generation. Taken together, we demonstrated that ASI could protect against A/R injury via the Notch1/Hes1 signaling pathway.

  1. Protective Effects of Low-Frequency Magnetic Fields on Cardiomyocytes from Ischemia Reperfusion Injury via ROS and NO/ONOO−

    PubMed Central

    Ma, Sai; Zhang, Zhengxun; Yi, Fu; Wang, Yabin; Zhang, Xiaotian; Li, Xiujuan; Yuan, Yuan; Cao, Feng

    2013-01-01

    Background. Cardiac ischemia reperfusion (I/R) injury is associated with overproduction of reactive oxygen species (ROS). Low frequency pulse magnetic fields (LFMFs) have been reported to decrease ROS generation in endothelial cells. Whether LFMFs could assert protective effects on myocardial from I/R injury via ROS regulation remains unclear. Methods. To simulate in vivo cardiac I/R injury, neonatal rat cardiomyocytes were subjected to hypoxia reoxygenation (H/R) with or without exposure to LFMFs. Cell viability, apoptosis index, ROS generation (including O2− and ONOO−), and NO production were measured in control, H/R, and H/R + LFMF groups, respectively. Results. H/R injury resulted in cardiomyocytes apoptosis and decreased cell viability, whereas exposure to LFMFs before or after H/R injury significantly inhibited apoptosis and improved cell viability (P < 0.05). LFMFs treatment could suppress ROS (including O2− and ONOO−) generation induced by H/R injury, combined with decreased NADPH oxidase activity. In addition, LFMFs elevated NO production and enhanced NO/ONOO− balance in cardiomyocytes, and this protective effect was via the phosphorylation of endothelial nitric oxide synthase (eNOS). Conclusion. LFMFs could protect myocardium against I/R injury via regulating ROS generation and NO/ONOO− balance. LFMFs treatment might serve as a promising strategy for cardiac I/R injury. PMID:24312697

  2. Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling.

    PubMed

    Yu, Zhi-Bin; Wei, Hongguang; Jin, J-P

    2012-07-01

    Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213-C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97-H105, 2010). Here we characterized Ca(2+)-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca(2+) was unchanged, but the peak Ca(2+) transient was lowered and the durations of Ca(2+) rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca(2+) transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca(2+), resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences.

  3. Small Interfering RNA Targeting Mitochondrial Calcium Uniporter Improves Cardiomyocyte Cell Viability in Hypoxia/Reoxygenation Injury by Reducing Calcium Overload

    PubMed Central

    Oropeza-Almazán, Yuriana; Vázquez-Garza, Eduardo; Chapoy-Villanueva, Héctor; Torre-Amione, Guillermo

    2017-01-01

    Intracellular Ca2+ mishandling is an underlying mechanism in hypoxia/reoxygenation (H/R) injury that results in mitochondrial dysfunction and cardiomyocytes death. These events are mediated by mitochondrial Ca2+ (mCa2+) overload that is facilitated by the mitochondrial calcium uniporter (MCU) channel. Along this line, we evaluated the effect of siRNA-targeting MCU in cardiomyocytes subjected to H/R injury. First, cardiomyocytes treated with siRNA demonstrated a reduction of MCU expression by 67%, which resulted in significant decrease in mitochondrial Ca2+ transport. siRNA treated cardiomyocytes showed decreased mitochondrial permeability pore opening and oxidative stress trigger by Ca2+ overload. Furthermore, after H/R injury MCU silencing decreased necrosis and apoptosis levels by 30% and 50%, respectively, and resulted in reduction in caspases 3/7, 9, and 8 activity. Our findings are consistent with previous conclusions that demonstrate that MCU activity is partly responsible for cellular injury induced by H/R and support the concept of utilizing siRNA-targeting MCU as a potential therapeutic strategy. PMID:28337252

  4. The Influence of Copper (Cu) Deficiency in a Cardiomyocyte Cell Model (HL-1 Cell) of Ischemia/Reperfusion Injury

    USDA-ARS?s Scientific Manuscript database

    Mitochondria are important mediators of cell death and this study examines whether mitochondrial dysfunction caused by Cu deprivation promotes cell death in a cell culture model for ischemia/reperfusion injury in cardiomyocytes. HL-1 cells (kindly donated by Dr. William C. Claycomb, LSU Health Scien...

  5. MicroRNA-122 regulates caspase-8 and promotes the apoptosis of mouse cardiomyocytes

    PubMed Central

    Zhang, Z.W.; Li, H.; Chen, S.S.; Li, Y.; Cui, Z.Y.; Ma, J.

    2017-01-01

    Cardiomyocyte apoptosis plays key roles in the pathogenesis of heart diseases such as myocardial infarction. MicroRNAs are important regulators of gene expression, which are also involved in the regulation of cardiomyocyte apoptosis. However, cardiomyocyte apoptosis regulated by microRNA (miR)-122 is largely unexplored. The aim of this study focused on the role of miR-122 in cardiomyocyte apoptosis. Cardiomyocytes were isolated from neonatal mice and primarily cultured. MiR-122 mimic and inhibitor were transfected to cardiomyocytes and verified by qRT-PCR. Cell viability and apoptosis post-transfection were assessed by MTT assay and flow cytometry, respectively. Changes in expression of caspase-8 were quantified by qRT-PCR and western blot. Results showed that miR-122 mimic and inhibitor successfully induced changes in miR-122 levels in cultured cardiomyocytes (P<0.01). MiR-122 overexpression suppressed viability and promoted apoptosis of cardiomyocytes (P<0.05), and miR-122 knockdown promoted cell viability and inhibited apoptosis (P<0.05). The mRNA and protein levels of caspase-8 were elevated by miR-122 overexpression (P<0.01) and reduced by miR-122 knockdown (P<0.001). These results suggest an inductive role of miR-122 in cardiomyocyte apoptosis, which may be related to its regulation on caspase-8. PMID:28177059

  6. ALDH2 Inhibition Potentiates High Glucose Stress-Induced Injury in Cultured Cardiomyocytes

    PubMed Central

    Deshpande, Mandar

    2016-01-01

    Aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 isozymes. They are present in various organs and involved in metabolizing aldehydes that are biologically generated. For instance, ALDH2, a cardiac mitochondrial ALDH isozyme, is known to detoxify 4-hydroxy-2-nonenal, a reactive aldehyde produced upon lipid peroxidation in diabetic conditions. We hypothesized that inhibition of ALDH leads to the accumulation of unmetabolized 4HNE and consequently exacerbates injury in cells subjected to high glucose stress. H9C2 cardiomyocyte cell lines were pretreated with 10 μM disulfiram (DSF), an inhibitor of ALDH2 or vehicle (DMSO) for 2 hours, and then subjected to high glucose stress {33 mM D-glucose (HG) or 33 mM D-mannitol as an osmotic control (Ctrl)} for 24 hrs. The decrease in ALDH2 activity with DSF pretreatment was higher in HG group when compared to Ctrl group. Increased 4HNE adduct formation with DSF pretreatment was higher in HG group compared to Ctrl group. Pretreatment with DSF leads to potentiated HG-induced cell death in cultured H9C2 cardiomyocytes by lowering mitochondrial membrane potential. Our results indicate that ALDH2 activity is important in preventing high glucose induced cellular dysfunction. PMID:27882330

  7. Prevention of export of anoxia/reoxygenation injury from ischemic to nonischemic cardiomyocytes via inhibition of endocytosis.

    PubMed

    Khaidakov, Magomed; Mercanti, Federico; Wang, Xianwei; Ding, Zufeng; Dai, Yao; Romeo, Francesco; Sawamura, Tatsuya; Mehta, Jawahar L

    2014-06-15

    Myocardial infarct size is determined by the death of nonischemic border zone cardiomyocytes caused by export of injury signals from the infarct zone. The countermeasures to limit infarct size, therefore, should be aimed at nonselective blockade of most, if not all, injury signals from entering nonischemic cells. To test whether inhibition of endocytosis might limit infarct size, HL-1 cardiomyocytes were subjected to anoxia (6 h) and reoxygenation (1 h). Anoxic and reoxygenated cells showed a multifold increase in mitochondrial ROS production accompanied with upregulation of scavenger receptors lectin-like oxidized low-density lipoprotein receptor-1 and CD36 and stimulation of stress signals, including NADPH oxidase subunit p22(phox), SOD2, and beclin-1. Incubation of healthy cardiomyocytes in media from anoxic and reoxygenated cells (conditioned media) resulted in qualitatively similar responses, including increase in the generation of mitochondrial ROS, p22(phox), SOD2, and beclin-1. Anoxia and reoxygenation caused collapse of clathrin-mediated endocytosis and stimulation of macropinocytosis, whereas in cultures exposed to conditioned media, the activity of endocytosis was uniformly higher. Conditioned media also significantly aggravated cytotoxic effects of TNF-α and angiotensin II, and suppression of endocytosis reversed these trends, resulting in an overall increase of metabolic activity. Moreover, inhibition of endocytosis prevented binding of oxidized cellular fragments with greater efficiency than targeted neutralization of the scavenger receptor lectin-like oxidized low-density lipoprotein receptor-1. Many of the observations in HL-1 cardiomyocytes were confirmed in primary cardiomyocyte cultures. Our data suggest that endocytosis is upregulated in border zone cardiomyocytes, and inhibition of endocytosis may be an effective approach to prevent export of injury signals from the infarct zone.

  8. Role of nonmuscle myosin IIB and N-RAP in cell spreading and myofibril assembly in primary mouse cardiomyocytes.

    PubMed

    Lu, Shajia; Horowits, Robert

    2008-09-01

    We investigated the role of nonmuscle myosin heavy chain (NMHC) IIB in cultured embryonic mouse cardiomyocytes by specific knockdown using RNA interference. NMHC IIB protein levels decreased 90% compared with mock-transfected cells by 3 days post transfection. NMHC IIB knockdown resulted in a slow decrease in N-RAP protein levels over 6 days with no change in N-RAP transcript levels. N-RAP is a scaffold for alpha-actinin and actin assembly during myofibrillogenesis, and we quantitated myofibril accumulation by morphometric analysis of alpha-actinin organization. Between 3 and 6 days, NMHC IIB knockdown was accompanied by the abolishment of cardiomyocyte spreading. During this period the rate of myofibril accumulation steadily decreased, correlating with the slowly decreasing levels of N-RAP. Between 6 and 8 days NMHC IIB and N-RAP protein levels recovered, and cardiomyocyte spreading and myofibril accumulation resumed. Inhibition of proteasome function using MG132 led to accumulation of excess N-RAP, and the secondary decrease in N-RAP that otherwise accompanied NMHC IIB knockdown was abolished. The results show that NMHC IIB knockdown led to decreased N-RAP levels through proteasome-mediated degradation. Furthermore, these proteins have distinct functional roles, with NMHC IIB playing a role in cardiomyocyte spreading and N-RAP functioning in myofibril assembly.

  9. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration.

    PubMed

    Patterson, Michaela; Barske, Lindsey; Van Handel, Ben; Rau, Christoph D; Gan, Peiheng; Sharma, Avneesh; Parikh, Shan; Denholtz, Matt; Huang, Ying; Yamaguchi, Yukiko; Shen, Hua; Allayee, Hooman; Crump, J Gage; Force, Thomas I; Lien, Ching-Ling; Makita, Takako; Lusis, Aldons J; Kumar, S Ram; Sucov, Henry M

    2017-09-01

    Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.

  10. Dioxin Exposure Disrupts the Differentiation of Mouse Embryonic Stem Cells into Cardiomyocytes

    PubMed Central

    Wang, Ying; Fan, Yunxia; Puga, Alvaro

    2010-01-01

    Experimental exposure of fish, birds, and rodents to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) causes multiple Ah receptor–mediated developmental abnormalities, an observation consistent with compelling evidence in human populations that TCDD exposure is responsible for a significant incidence of birth defects. To characterize molecular mechanisms that might explain the developmental effects of dioxin, we have studied the consequences of TCDD exposure on the differentiation of mouse embryonic stem (ES) cells in culture and on the expression of genes, including those coding for homeodomain containing transcription factors, with a role in progression of tissue differentiation and embryonic identity during development. We find that TCDD treatment causes expression changes in a number of homeobox genes concomitant with Ah receptor recruitment to the promoters of many of these genes, whether under naïve or dioxin-activated conditions. TCDD exposure also derails temporal expression trajectories of developmentally regulated genes in a wide diversity of differentiation pathways, including genes with functions in neural and cardiovascular development, self-renewal, hematopoiesis and mesenchymal lineage specification, and Notch and Wnt pathways. Among these, we find that TCDD represses the expression of the cardiac development–specific Nkx2.5 homeobox transcription factor, of cardiac troponin-T and of α- and β-myosin heavy chains, inhibiting the formation of beating cardiomyocytes, a characteristic phenotype of differentiating mouse ES cells in culture. These data identify potential pathways for dioxin to act as a developmental teratogen, possibly critical to cardiovascular development and disease, and provide molecular targets that may help us understand the molecular basis of Ah receptor–mediated developmental toxicity. PMID:20130022

  11. Dioxin exposure disrupts the differentiation of mouse embryonic stem cells into cardiomyocytes.

    PubMed

    Wang, Ying; Fan, Yunxia; Puga, Alvaro

    2010-05-01

    Experimental exposure of fish, birds, and rodents to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) causes multiple Ah receptor-mediated developmental abnormalities, an observation consistent with compelling evidence in human populations that TCDD exposure is responsible for a significant incidence of birth defects. To characterize molecular mechanisms that might explain the developmental effects of dioxin, we have studied the consequences of TCDD exposure on the differentiation of mouse embryonic stem (ES) cells in culture and on the expression of genes, including those coding for homeodomain containing transcription factors, with a role in progression of tissue differentiation and embryonic identity during development. We find that TCDD treatment causes expression changes in a number of homeobox genes concomitant with Ah receptor recruitment to the promoters of many of these genes, whether under naïve or dioxin-activated conditions. TCDD exposure also derails temporal expression trajectories of developmentally regulated genes in a wide diversity of differentiation pathways, including genes with functions in neural and cardiovascular development, self-renewal, hematopoiesis and mesenchymal lineage specification, and Notch and Wnt pathways. Among these, we find that TCDD represses the expression of the cardiac development-specific Nkx2.5 homeobox transcription factor, of cardiac troponin-T and of alpha- and beta-myosin heavy chains, inhibiting the formation of beating cardiomyocytes, a characteristic phenotype of differentiating mouse ES cells in culture. These data identify potential pathways for dioxin to act as a developmental teratogen, possibly critical to cardiovascular development and disease, and provide molecular targets that may help us understand the molecular basis of Ah receptor-mediated developmental toxicity.

  12. Cinnamaldehyde inhibits L-type calcium channels in mouse ventricular cardiomyocytes and vascular smooth muscle cells.

    PubMed

    Alvarez-Collazo, Julio; Alonso-Carbajo, Lucía; López-Medina, Ana I; Alpizar, Yeranddy A; Tajada, Sendoa; Nilius, Bernd; Voets, Thomas; López-López, José Ramón; Talavera, Karel; Pérez-García, María Teresa; Alvarez, Julio L

    2014-11-01

    Cinnamaldehyde (CA), a major component of cinnamon, is known to have important actions in the cardiovascular system, including vasorelaxation and decrease in blood pressure. Although CA-induced activation of the chemosensory cation channel TRPA1 seems to be involved in these phenomena, it has been shown that genetic ablation of Trpa1 is insufficient to abolish CA effects. Here, we confirm that CA relaxes rat aortic rings and report that it has negative inotropic and chronotropic effects on isolated mouse hearts. Considering the major role of L-type Ca(2+) channels in the control of the vascular tone and cardiac contraction, we used whole-cell patch-clamp to test whether CA affects L-type Ca(2+) currents in mouse ventricular cardiomyocytes (VCM, with Ca(2+) as charge carrier) and in mesenteric artery smooth muscle cells (VSMC, with Ba(2+) as charge carrier). We found that CA inhibited L-type currents in both cell types in a concentration-dependent manner, with little voltage-dependent effects. However, CA was more potent in VCM than in VSMC and caused opposite effects on the rate of inactivation. We found these divergences to be at least in part due to the use of different charge carriers. We conclude that CA inhibits L-type Ca(2+) channels and that this effect may contribute to its vasorelaxing action. Importantly, our results demonstrate that TRPA1 is not a specific target of CA and indicate that the inhibition of voltage-gated Ca(2+) channels should be taken into account when using CA to probe the pathophysiological roles of TRPA1.

  13. Resveratrol attenuates acute hypoxic injury in cardiomyocytes: correlation with inhibition of iNOS-NO signaling pathway.

    PubMed

    Wang, Shijun; Qian, Yiming; Gong, Dandan; Zhang, Yingyu; Fan, Yu

    2011-10-09

    To investigate the effect of resveratrol on hypoxia-induced cardiomyocytes injury and its potential mechanism. Cell injury was evaluated by supernatant lactate dehydrogenase (LDH) assay and cell viability. NO production in cardiomyocytes were assessed by Griess reagent, expressions of inducible nitric oxide synthase (iNOS) and hypoxia-inducible factor 1 (HIF-1α) were determined reverse transcription polymerase chain reaction (RT-PCR). HIF-1α protein was determined by Western blot. Hypoxia increased LDH release, decreased cell viability. Pretreatment with resveratrol (10, 25, and 50μM) decreased LDH release and increased cell viability. Resveratrol suppressed the mRNA expression of iNOS as well as NO production in hypoxia-induced cardiomyocytes. Consistent with the inhibitory effect on iNOS protein expression, resveratrol inhibited iNOS mRNA expression. Resveratrol also inhibited HIF-1α mRNA expression. These results suggested that resveratrol attenuates acute hypoxic injury in cardiomyocytes, and the mechanism might be associated with inhibition of iNOS-NO signaling pathway via HIF-1α. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. All-Trans Retinoic Acid Ameliorates Myocardial Ischemia/Reperfusion Injury by Reducing Cardiomyocyte Apoptosis.

    PubMed

    Zhu, Zhengbin; Zhu, Jinzhou; Zhao, Xiaoran; Yang, Ke; Lu, Lin; Zhang, Fengru; Shen, Weifeng; Zhang, Ruiyan

    2015-01-01

    Myocardial ischemia/reperfusion (I/R) injury interferes with the restoration of blood flow to ischemic myocardium. Oxidative stress-elicited apoptosis has been reported to contribute to I/R injury. All-trans retinoic acid (ATRA) has anti-apoptotic activity as previously reported. Here, we investigated the effects and the mechanism of action of ATRA on myocardial I/R injury both in vivo and in vitro. In vivo, ATRA reduced the size of the infarcted area (17.81±1.05% vs. 24.41±1.03%, P<0.05) and rescued cardiac function loss (ejection fraction 46.42±6.76% vs. 37.18±4.63%, P<0.05) after I/R injury. Flow-cytometric analysis and TUNEL assay demonstrated that the protective role of ATRA on myocardial I/R injury was related to its anti-apoptotic effects. The anti-apoptotic effects of ATRA were associated with partial inhibition of reactive oxygen species (ROS) production and significantly less phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, JNK, and ERK. Western blot analysis also revealed that ATRA pre-treatment increased a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) expression (0.65 ± 0.20 vs. 0.41±0.02 in vivo) and reduced the level of receptor for advanced glycation end-products (RAGE) (0.38 ± 0.17 vs. 0.52 ± 0.11 in vivo). Concomitantly, the protective role of ATRA on I/R injury was not observed in RAGE-KO mice. The current results indicated that ATRA could prevent myocardial injury and reduced cardiomyocyte apoptosis after I/R effectively. One possible mechanism underlying these effects is that ATRA could increase ADAM10 expression and thus cleave RAGE, which is the main receptor up-stream of MAPKs in myocardial I/R injury, resulting in the down-regulation of MAPK signaling and protective role on myocardial I/R injury.

  15. Saffron extracts alleviate cardiomyocytes injury induced by doxorubicin and ischemia-reperfusion in vitro.

    PubMed

    Chahine, Nathalie; Nader, Moni; Duca, Laurent; Martiny, Laurent; Chahine, Ramez

    2016-01-01

    Doxorubicin (DOX), a highly active chemotherapeutic drug, faces limitations in clinical application due to severe cardiotoxic effects (mainly through increased oxidative stress). Therefore, its effect is exacerbated in subjects with ischemic heart disease. We have recently reported that saffron extract (SAF), a natural compound mainly consisting of safranal and corcins, exerts a protective effect against DOX oxidative cytotoxicity in isolated rabbit hearts. Here, we aimed to investigate whether SAF exerts cardioprotection against combined ischemia-reperfusion (I/R) and DOX toxicity in H9c2 cardiomyocytes. H9c2 were subjected to simulated I/R, with or without DOX treatment at reperfusion, in the presence or absence of SAF prior to ischemia or at reperfusion. We evaluated the effects of these treatments by MTT, LDH and western blot analysis. Apoptosis was assessed by Hoechst 33258 staining, tetramethyl rhodamine methyl ester fluorescence and caspase activity. The results showed that I/R and DOX significantly decreased cardiomyocytes viability, inhibited reperfusion injury salvage kinase cardioprotective pathway, reduced contractile proteins (α-Actinine, Troponine C and MLC), increased caspase-3 expression and induced loss of mitochondrial membrane potential. These effects were remarkably inhibited by treatment with SAF (10 μg/mL) at reperfusion. SAF activated AKT/P70S6K and ERK1/2, restored contractile proteins expression, inhibited mitochondrial permeability transition pore and decreased caspase-3 activity. In conclusion, our findings indicate that SAF treatment exerted cardioprotection against I/R and DOX toxicity by reducing oxidative stress (LDH assay). Thereby, SAF offers a potential novel antioxidant therapeutic strategy to counteract I/R and DOX cardiotoxicity, paving the way for future clinical trials.

  16. Sublethal Caspase Activation Promotes Generation of Cardiomyocytes from Embryonic Stem Cells

    PubMed Central

    Österholm, Cecilia; Wang, Heng; Beltrán-Rodríguez, Antonio; Varas-Godoy, Manuel; Månsson-Broberg, Agneta; Uhlén, Per; Simon, András; Grinnemo, Karl-Henrik

    2015-01-01

    Generation of new cardiomyocytes is critical for cardiac repair following myocardial injury, but which kind of stimuli is most important for cardiomyocyte regeneration is still unclear. Here we explore if apoptotic stimuli, manifested through caspase activation, influences cardiac progenitor up-regulation and cardiomyocyte differentiation. Using mouse embryonic stem cells as a cellular model, we show that sublethal activation of caspases increases the yield of cardiomyocytes while concurrently promoting the proliferation and differentiation of c-Kit+/α-actininlow cardiac progenitor cells. A broad-spectrum caspase inhibitor blocked these effects. In addition, the caspase inhibitor reversed the mRNA expression of genes expressed in cardiomyocytes and their precursors. Our study demonstrates that sublethal caspase-activation has an important role in cardiomyocyte differentiation and may have significant implications for promoting cardiac regeneration after myocardial injury involving exogenous or endogenous cell sources. PMID:25763592

  17. Subthreshold nitric oxide synthase inhibition improves synergistic effects of subthreshold MMP-2/MLCK-mediated cardiomyocyte protection from hypoxic injury.

    PubMed

    Bil-Lula, Iwona; Lin, Han-Bin; Biały, Dariusz; Wawrzyńska, Magdalena; Diebel, Lucas; Sawicka, Jolanta; Woźniak, Mieczyslaw; Sawicki, Grzegorz

    2016-06-01

    Injury of myocardium during ischaemia/reperfusion (I/R) is a complex and multifactorial process involving uncontrolled protein phosphorylation, nitration/nitrosylation by increased production of nitric oxide and accelerated contractile protein degradation by matrix metalloproteinase-2 (MMP-2). It has been shown that simultaneous inhibition of MMP-2 with doxycycline (Doxy) and myosin light chain kinase (MLCK) with ML-7 at subthreshold concentrations protects the heart from contractile dysfunction triggered by I/R in a synergistic manner. In this study, we showed that additional co-administration of nitric oxide synthase (NOS) inhibitor (1400W or L-NAME) in subthreshold concentrations improves this synergistic protection in the model of hypoxia-reoxygenation (H-R)-induced contractile dysfunction of cardiomyocytes. Isolated cardiomyocytes were subjected to 3 min. of hypoxia and 20 min. of reoxygenation in the presence or absence of the inhibitor cocktails. Contractility of cardiomyocytes was expressed as myocyte peak shortening. Inhibition of MMP-2 by Doxy (25-100 μM), MLCK by ML-7 (0.5-5 μM) and NOS by L-NAME (25-100 μM) or 1400W (25-100 μM) protected myocyte contractility after H-R in a concentration-dependent manner. Inhibition of these activities resulted in full recovery of cardiomyocyte contractility after H-R at the level of highest single-drug concentration. The combination of subthreshold concentrations of NOS, MMP-2 and MLCK inhibitors fully protected cardiomyocyte contractility and MLC1 from degradation by MMP-2. The observed protection with addition of L-NAME or 1400W was better than previously reported combination of ML-7 and Doxy. The results of this study suggest that addition of NOS inhibitor to the mixture of inhibitors is better strategy for protecting cardiomyocyte contractility.

  18. HDAC Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy

    PubMed Central

    Xie, Min; Kong, Yongli; Tan, Wei; May, Herman; Battiprolu, Pavan K.; Pedrozo, Zully; Wang, Zhao; Morales, Cyndi; Luo, Xiang; Cho, Geoffrey; Jiang, Nan; Jessen, Michael E.; Warner, John J.; Lavandero, Sergio; Gillette, Thomas G.; Turer, Aslan T.; Hill, Joseph A.

    2014-01-01

    Background Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that SAHA, a histone deacetylase (HDAC) inhibitor FDA-approved for cancer treatment, will blunt reperfusion injury. Methods and Results Twenty-one rabbits were randomized into 3 groups: a) vehicle control, b) SAHA pretreatment (one day prior and at surgery), and c) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (I/R, 30min coronary ligation, 24h reperfusion). Additionally cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated I/R (sI/R) to probe mechanism. SAHA reduced infarct (those reduction inhibitor, SAHA, infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during I/R occur, at least in part, through induction of autophagic flux. assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to sI/R, SAHA pretreatment reduced cell death by 40%. This eduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects. Conclusions The FDS-approved anti-cancer HDAC inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during I/R occur, at least in part, through induction of autophagic flux. PMID:24396039

  19. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy.

    PubMed

    Xie, Min; Kong, Yongli; Tan, Wei; May, Herman; Battiprolu, Pavan K; Pedrozo, Zully; Wang, Zhao V; Morales, Cyndi; Luo, Xiang; Cho, Geoffrey; Jiang, Nan; Jessen, Michael E; Warner, John J; Lavandero, Sergio; Gillette, Thomas G; Turer, Aslan T; Hill, Joseph A

    2014-03-11

    Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury. Twenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects. The US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.

  20. Mitochondrial Toxicity of Perfluorooctane Sulfonate in Mouse Embryonic Stem Cell-Derived Cardiomyocytes.

    PubMed

    Tang, Lei-Lei; Wang, Jia-Dan; Xu, Ting-Ting; Zhao, Zhe; Zheng, Jia-Jie; Ge, Ren-Shan; Zhu, Dan-Yan

    2017-03-10

    Perfluorooctane sulfonate (PFOS) is a persistent organic contaminant that may cause cardiotoxicity in animals and humans. However, little is known about the underlying mechanism by which it affects the organelle toxicity in cardiomyocytes during the cardiogenesis. Our previous proteomic study showed that differences of protein expression mainly existed in mitochondria of cardiomyocytes differentiated from embryonic stem (ES) cells after exposure to PFOS. Here, we focused on mitochondrial toxicity of PFOS in ES cell-derived cardiomyocytes. The cardiomyogenesis from ES cells in vitro was inhibited, and the expression of L-type Ca(2+) channel (LTCC) was decreased to interrupt [Ca(2+)]c transient amplitude in cardiomyocytes after PFOS treatment. Transmission electron microscope revealed that swollen mitochondrion with vacuole in PFOS-treated cells. Meanwhile, mitochondrial transmembrane potential (ΔYm) was declined and ATP production was lowered. These changes were related to the increased EGFR phosphorylation, activated Rictor signaling, then mediated HK2 binding to mitochondrial membrane. Furthermore, PFOS reduced the interaction of IP3R-Grp75-VDAC and accumulated intracellular fatty acids by activating Rictor, thereby attenuating PGC-1a and Mfn2 expressions, then destroying mitochondria-associated endoplasmic reticulum membrane (MAM), which resulted in the decrease of [Ca(2+)]mito transient amplitude triggered by ATP. In conclusion, mitochondrial structure damages and abnormal Ca(2+) shuttle were the important aspects in PFOS-induced cardiomyocytes toxicity from ES cells by activating Rictor signaling pathway.

  1. Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury.

    PubMed

    Zepeda, Ramiro; Kuzmicic, Jovan; Parra, Valentina; Troncoso, Rodrigo; Pennanen, Christian; Riquelme, Jaime A; Pedrozo, Zully; Chiong, Mario; Sánchez, Gina; Lavandero, Sergio

    2014-06-01

    Mitochondria are key organelles for ATP production in cardiomyocytes, which is regulated by processes of fission and fusion. We hypothesized that the mitochondria fusion protein dynamin-related protein 1 (Drp1) inhibition, attenuates ischemia-reperfusion (I/R) injury through modifications in mitochondrial metabolism. Rats were subjected to I/R through coronary artery ligation, and isolated cardiomyocytes were treated with an ischemia-mimicking solution. In vivo, cardiac function, myocardial infarction area, and mitochondrial morphology were determined, whereas in vitro, viability, mitochondrial membrane potential, intracellular ATP levels, and oxygen consumption rate (OCR) were assessed. In both models, an adenovirus expressing Drp1 dominant-negative K38A (Drp1K38A) was used to induce Drp1 loss-of-function. Our results showed that I/R stimulated mitochondrial fission. Myocardial infarction size and cell death induced by I/R were significantly reduced, whereas cardiac function after I/R was improved in Drp1K38A-treated rats compared with controls. Drp1K38A-transduced cardiomyocytes showed lower OCR with no decrease in intracellular ATP levels, and on I/R, a larger decrease in OCR with a smaller reduction in intracellular ATP level was observed. However, proton leak-associated oxygen consumption was comparatively higher in Drp1K38A-treated cardiomyocytes, suggesting a protective mitochondrial uncoupling effect against I/R. Collectively, our results show that Drp1 inhibition triggers cardioprotection by reducing mitochondrial metabolism during I/R.

  2. Conditional deletion of cardiomyocyte peroxisome proliferator-activated receptor γ enhances myocardial ischemia-reperfusion injury in mice.

    PubMed

    Hobson, Michael J; Hake, Paul W; O'Connor, Michael; Schulte, Christine; Moore, Victoria; James, Jeanne M; Piraino, Giovanna; Zingarelli, Basilia

    2014-01-01

    The nuclear transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is a key regulator of the inflammatory response to an array of biologic insults. We have previously demonstrated that PPARγ ligands reduce myocardial ischemia-reperfusion injury in rodents. In the current study, we directly determined the role of cardiomyocyte PPARγ in ischemia-reperfusion injury, using a model of conditional cardiomyocyte-specific deletion of PPARγ in vivo. In mice, α-myosin heavy chain-restricted Cre-mediated PPARγ deficiency was induced by tamoxifen treatment (30 mg/kg intraperitoneally) for 4 days (PPARγ mice), whereas controls included mice treated with the oil diluent vehicle (PPARγ mice). Western blot and histochemical analyses confirmed that expression of PPARγ protein was abolished in cardiomyocytes of mice treated with tamoxifen, but not with vehicle. After tamoxifen or vehicle treatment, animals were subjected to 30-min ligation of the left anterior descending coronary artery followed by 2-h reperfusion. In PPARγ mice, myocardial ischemia and reperfusion induced extensive myocardial damage, which was associated with elevated tissue activity of myeloperoxidase, indicating infiltration of neutrophils, and elevated plasma levels of troponin I when compared with PPARγ mice. Upon echocardiographic analysis, PPARγ mice also demonstrated ventricular dilatation and systolic dysfunction. Plasma levels of the proinflammatory cytokines interleukin 1β and interleukin 6 were higher in PPARγ mice when compared with PPARγ mice. These pathological events in PPARγ mice were associated with enhanced nuclear factor κB DNA binding in the infarcted hearts. Thus, our data suggest that cardiomyocyte PPARγ is a crucial protective receptor and may prevent reperfusion injury by modulating mechanisms of inflammation.

  3. Mouse embryonic stem cells irradiated with γ-rays differentiate into cardiomyocytes but with altered contractile properties.

    PubMed

    Rebuzzini, Paola; Fassina, Lorenzo; Mulas, Francesca; Bellazzi, Riccardo; Redi, Carlo Alberto; Di Liberto, Riccardo; Magenes, Giovanni; Adjaye, James; Zuccotti, Maurizio; Garagna, Silvia

    2013-08-30

    Embryonic stem cells (ESCs) for their derivation from the inner cell mass of a blastocyst represent a valuable in vitro model to investigate the effects of ionizing radiation on early embryonic cellular response. Following irradiation, both human and mouse ESCs (mESCs) maintain their pluripotent status and the capacity to differentiate into embryoid bodies and to form teratomas. Although informative of the maintenance of a pluripotent status, these studies never investigated the capability of irradiated ESCs to form specific differentiated phenotypes. Here, for the first time, 5Gy-irradiated mESCs were differentiated into cardiomyocytes, thus allowing the analysis of the long-term effects of ionizing radiations on the differentiation potential of a pluripotent stem cell population. On treated mESCs, 96h after irradiation, a genome-wide expression analysis was first performed in order to determine whether the treatment influenced gene expression of the surviving mESCs. Microarrays analysis showed that only 186 genes were differentially expressed in treated mESCs compared to control cells; a quarter of these genes were involved in cellular differentiation, with three main gene networks emerging, including cardiogenesis. Based on these results, we differentiated irradiated mESCs into cardiomyocytes. On day 5, 8 and 12 of differentiation, treated cells showed a significant alteration (qRT-PCR) of the expression of marker genes (Gata-4, Nkx-2.5, Tnnc1 and Alpk3) when compared to control cells. At day 15 of differentiation, although the organization of sarcomeric α-actinin and troponin T proteins appeared similar in cardiomyocytes differentiated from either mock or treated cells, the video evaluation of the kinematics and dynamics of the beating cardiac syncytium evidenced altered contractile properties of cardiomyocytes derived from irradiated mESCs. This alteration correlated with significant reduction of Connexin 43 foci. Our results indicate that mESCs populations

  4. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes.

    PubMed

    Xiang, Rui; Lei, Han; Chen, Mianzhi; Li, Qinwei; Sun, Huan; Ai, Jianzhong; Chen, Tielin; Wang, Honglian; Fang, Yin; Zhou, Qin

    2012-02-01

    MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3' untranslated regions (3'UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3'UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3'UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

  5. The Growth Hormone Secretagogue Hexarelin Protects Rat Cardiomyocytes From in vivo Ischemia/Reperfusion Injury Through Interleukin-1 Signaling Pathway.

    PubMed

    Huang, Jiannan; Li, Yi; Zhang, Juan; Liu, Yusheng; Lu, Qinghua

    2017-04-06

    Hexarelin, a synthetic growth hormone-releasing peptide, has been proven to possess cardioprotective actions through its binding to the growth hormone secretagogue receptor (GHSR) 1a and the non-GHSR receptor CD36. However, its effect on myocardial ischemia/reperfusion (I/R) injury has not been fully clarified in vivo. We aimed to determine whether hexarelin treatment could protect cardiomyocytes from I/R injury and to examine the underlying mechanisms. In vivo hearts of male SD rats underwent 30 minutes of ischemia by left coronary artery ligation followed by reperfusion. The rats were then treated subcutaneously twice daily with hexarelin [100 μg/kg·day], ghrelin [400 μg/ kg·day], or saline for 7 days. Echocardiography, malondialdehyde detection, and histochemical staining were performed after treatment. In addition, Western blot was used to examine the expression levels of IL-1β, IL-1Ra, and IL-1RI. Our study showed that hexarelin treatment improved cardiac systolic function, decreased malondialdehyde production, and increased the number of surviving cardiomyocytes. The beneficial effects of hexarelin treatment were slightly superior to those of equimolar ghrelin treatment. We meanwhile confirmed that hexarelin induced down-regulation of IL-1β expression and up-regulation of IL-1Ra expression in I/R myocardium, which could be neutralized by the GHSR antagonist [D-Lys3]-growth hormone releasing peptide-6 ([D-Lys3]-GHRP-6). These findings suggest that hexarelin protects in vivo cardiomyocytes from I/R injury partly by modification of the IL-1 signaling pathway through the activation of cardiac GHSR1a receptors.

  6. The red wine antioxidant resveratrol prevents cardiomyocyte injury following ischemia-reperfusion via multiple sites and mechanisms.

    PubMed

    Goh, Siew Simg C; Woodman, Owen L; Pepe, Salvatore; Cao, Anh H; Qin, Chengxue; Ritchie, Rebecca H

    2007-01-01

    The objective was a comprehensive investigation of the mechanisms and sites of resveratrol cardioprotection during and following ischemia-reperfusion (I-R) injury, and to determine whether direct preservation of cardiomyocytes is an important site of cardioprotection. We now provide the first definitive evidence that resveratrol specifically protects cardiomyocytes from I-R injury via a combination of suppression of superoxide levels and activation of potassium channels. This protection is apparent whether resveratrol is present for the full duration of the insult or only on recovery. In addition, resveratrol improved postischemic recovery of left ventricular contractile function, attenuated myocardial injury, and increased myocardial activation of the survival kinase Akt in the intact heart. Furthermore, resveratrol elicited direct concentration-dependent protective actions on the vasculature (vasorelaxation, superoxide suppression) and enhanced endothelium-dependent vasodilatation. Resveratrol thus targets a number of consequences of myocardial I-R, including release of reactive oxygen species, loss of recovery of contractile function, and impaired endothelium-dependent vasodilatation. Previous evidence indicates that resveratrol elicits potent preconditioning in the heart. Given that myocardial ischemic events are often unpredictable in humans, the findings that resveratrol protection is also evident when administered during and/or after the insult adds new dimensions to the clinical potential of resveratrol.

  7. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury.

    PubMed

    Cao, Zhuoxiao; Li, Yunbo

    2004-04-05

    Resveratrol is known to be protective against oxidative cardiovascular disorders. However, the underlying mechanisms remain unclear. This study was undertaken to determine if resveratrol could increase endogenous antioxidants and phase 2 enzymes in cardiomyocytes, and if such increased cellular defenses could provide protection against oxidative and electrophilic cell injury. Incubation of cardiac H9C2 cells with low micromolar resveratrol resulted in a significant induction of a scope of cellular antioxidants and phase 2 enzymes in a concentration- and/or time-dependent fashion. To investigate the protective effects of the resveratrol-induced cellular defenses on oxidative and electrophilic cell injury, H9C2 cells were first incubated with resveratrol, and then exposed to xanthine oxidase (XO)/xanthine, 4-hydroxy-2-nonenal or doxorubicin. We observed that resveratrol pretreatment afforded a marked protection against the above agent-mediated cytotoxicity in H9C2 cells. Moreover, the resveratrol pretreatment led to a great reduction in XO/xanthine-induced intracellular accumulation of ROS. Taken together, this study demonstrates that resveratrol induces antioxidants and phase 2 enzymes in cardiomyocytes, which is accompanied by increased resistance to oxidative and electrophilic cell injury.

  8. Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation injury through AMPK/eNOS/PGC-1α signaling pathway

    PubMed Central

    Hu, Liang; Zhou, Lu; Wu, Xiaowei; Liu, Chao; Fan, Yue; Li, Qingping

    2014-01-01

    Objective: AMP-activated protein kinase (AMPK) is an important regulator of multiple cellular pathways in the setting of energetic stress. Whether AMPK plays a critical role in hypoxic preconditioning (HPC), protecting cardiomyocytes against hypoxia reoxygenation (H/R) injury remains uncertain. Methods: H9c2 cells were preconditioned by exposing to 10 min of hypoxia and 30 min of reoxygenation. Then, the preconditioned and non-preconditioned cardiomyocytes were exposed to 90 min of hypoxia followed by 120 min of reoxygenation. Results: HPC protected H9c2 cells against H/R injury, the AMPK inhibitor or eNOS inhibitor abolished the effect of HPC. Compared with H/R group, HPC significantly increased the expression of p-AMPK (Thr172). HPC also markedly increased p-eNOS (Ser1177) expression, which was abolished by AMPK inhibition. HPC significantly increased PGC-1α expression, which were nullified by AMPK inhibition or eNOS inhibition. HPC attenuated the oxidative stress by increasing the SOD activity and decreasing the MDA and ROS level, which were abolished by AMPK inhibition or eNOS inhibition. Interestingly, the AMPK activator metformin mimicked the effects of HPC in part. Conclusions: These results indicated that HPC protects H9c2 cells against H/R injury by reducing oxidative stress partly via AMPK/eNOS/PGC-1α signaling pathway. PMID:25550773

  9. Molecular Signature of Mineralocorticoid Receptor Signaling in Cardiomyocytes: From Cultured Cells to Mouse Heart

    PubMed Central

    Latouche, Celine; Sainte-Marie, Yannis; Steenman, Marja; Castro Chaves, Paulo; Naray-Fejes-Toth, Aniko; Fejes-Toth, Geza; Farman, Nicolette; Jaisser, Frederic

    2010-01-01

    Excess mineralocorticoid signaling is deleterious for cardiovascular functions, as demonstrated by the beneficial effects of mineralocorticoid receptor (MR) antagonism on morbidity and mortality in patients with heart failure. However, the understanding of signaling pathways after MR activation in the heart remains limited. We performed transcriptomic analyses in the heart of double-transgenic mice with conditional, cardiomyocyte-specific, overexpression of the MR (MRcardio mice) or the glucocorticoid receptor (GR; GRcardio mice). Some of the genes induced in MRcardio mice were selected for comparative evaluation (real time PCR) in vivo in the heart of mice and ex vivo in the MR-expressing cardiomyocyte H9C2 cell line after aldosterone or corticosterone treatment. We demonstrate that chronic MR overexpression in the heart results in a limited number of induced (n = 24) and repressed (n = 22) genes compared with their control littermates. These genes are specifically modulated by MR because there is limited overlap (three induced, four repressed) with the genes that are regulated in the heart of GRcardio mice (compared with control mice: 70 induced, 73 repressed). Interestingly, some MR-induced genes that are up-regulated in vivo in mice are also induced by 24-h aldosterone treatment in H9C2 cells, such as plasminogen activator inhibitor 1 and Serpina-3 (α1-antichymotrypsin). The signaling pathways that are affected by long-term activation of MR may be of particular interest to design novel therapeutic targets in cardiac diseases. PMID:20591974

  10. Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis.

    PubMed

    Deng, Long; Hong, Tao; Lin, Jinyi; Ding, Suling; Huang, Zheyong; Chen, Jinmiao; Jia, Jianguo; Zou, Yunzeng; Wang, Timothy C; Yang, Xiangdong; Ge, Junbo

    2015-08-17

    Histamine is a biogenic amine that is widely distributed and has multiple functions, but the role it plays in acute myocardial infarction (AMI) remains unclear. In this study, we investigated the origin and contribution of endogenous histamine to AMI. Histidine decarboxylase (HDC) is the unique enzyme responsible for histamine generation. Using HDC-EGFP bacterial artificial chromosome (BAC) transgenic mice in which EGFP expression is controlled by the HDC promoter, we identified HDC expression primarily in CD11b(+)Gr-1(+) immature myeloid cells (IMCs) that markedly increase in the early stages of AMI. Deficiency of histamine in HDC knockout mice (HDC(-/-)) reduced cardiac function and exacerbated the injury of infarcted heart. Furthermore, administering either an H1 receptor antagonist (pyrilamine) or an H2 receptor antagonist (cimetidine) demonstrated a protective effect of histamine against myocardial injury. The results of in vivo and in vitro assays showed that histamine deficiency promotes the apoptosis of cardiomyocytes and inhibits macrophage infiltration. In conclusion, CD11b(+)Gr-1(+) IMCs are the predominant HDC-expressing sites in AMI, and histamine plays a protective role in the process of AMI through inhibition of cardiomyocyte apoptosis and facilitation of macrophage infiltration.

  11. Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography.

    PubMed

    Biehl, Jesse K; Yamanaka, Satoshi; Desai, Tejal A; Boheler, Kenneth R; Russell, Brenda

    2009-08-01

    The niche in which stem cells reside and differentiate is a complex physicochemical microenvironment that regulates cell function. The role played by three-dimensional physical contours was studied on cell progeny derived from mouse embryonic stem cells using microtopographies created on PDMS (poly-dimethyl-siloxane) membranes. While markers of differentiation were not affected, the proliferation of heterogeneous mouse embryonic stem cell-derived progeny was attenuated by 15 microm-, but not 5 microm-high microprojections. This reduction was reversed by Rho kinase and myosin light chain kinase inhibition, which diminishes the tension generating ability of stress fibers. Purified cardiomyocytes derived from embryonic stem cells also showed significant blunting of proliferation and increased beating rates compared with cells grown on flat substrates. Thus, proliferation of stem cell-derived progeny appears to be regulated by microtopography through tension-generation of contractility in the third-dimension. These results emphasize the importance of topographic cues in the modulation of stem cell progeny behavior.

  12. The cardiomyocyte lineage is critical for optimization of stem cell therapy in a mouse model of myocardial infarction.

    PubMed

    Adler, Eric D; Chen, Vincent C; Bystrup, Anne; Kaplan, Aaron D; Giovannone, Steven; Briley-Saebo, Karen; Young, Wilson; Kattman, Steve; Mani, Venkatesh; Laflamme, Michael; Zhu, Wei-Zhong; Fayad, Zahi; Keller, Gordon

    2010-04-01

    We recently described a murine embryonic stem cell (ESC) line engineered to express the activated Notch 4 receptor in a tetracycline (doxcycline; Dox) regulated fashion (tet-notch4 ESCs). Notch 4 induction in Flk1(+) hematopoietic and vascular progenitors from this line respecified them to a cardiovascular fate. We reasoned that these cells would be ideal for evaluating the contribution of the cardiomyocyte and vascular lineages to the functional improvement noted following stem cell transplantation in infarcted hearts. Flk-1(+) Tet-notch4 cells from d 3 embryoid bodies exposed to doxycycline (Dox(+)) were compared to uninduced (Dox(-)) Flk-1(+) cells. Mice underwent transplantation of 5 x 10(5) Dox(+) cells, Dox(-)cells, or an equal volume of serum-free medium after surgically induced myocardial infarction. The mean ejection fraction was 59 + or - 15, 46 + or - 17, and 39 + or - 13% in the Dox(+), Dox(-), and serum-free medium groups, respectively (P<0.05 for the differences among all 3 groups). Immunohistochemistry of hearts injected with Dox(+) grafts expressed myocardial and vascular markers, whereas grafts of Dox(-) cells expressed primarily vascular markers. We conclude that cardiovascular progenitors are more effective than vascular progenitors in improving function after myocardial infarction. The transplantation of appropriate cell types is critical for maximizing the benefit of cardiovascular cell therapy.-Adler, E. D., Chen, V. C., Bystrup, A., Kaplan, A. D., Giovannone, S., Briley-Saebo, K., Young, W., Kattman, S., Mani, V., Laflamme, M., Zhu, W.-Z., Fayad, Z., Keller, G. The cardiomyocyte lineage is critical for optimization of stem cell therapy in a mouse model of myocardial infarction.

  13. STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction.

    PubMed

    Rajasingh, Johnson; Bord, Evelyn; Hamada, Hiromichi; Lambers, Erin; Qin, Gangjian; Losordo, Douglas W; Kishore, Raj

    2007-10-26

    Pluripotent embryonic stem (ES) cell therapy may be an attractive source for postinfarction myocardial repair and regeneration. However, the specific stimuli and signal pathways that may control ES cell-mediated cardiomyogenesis remains to be completely defined. The aim of the present study was to investigate (1) the effect and underlying signal transduction pathways of leukemia inhibitory factor (LIF) and bone-morphogenic protein-2 (BMP-2)-induced mouse ES cell (mES-D3 line) differentiation into cardiomyocytes (CMC) and (2) the efficacy of CMC precommitted mES cells for functional and anatomical cardiac repair in surgically-induced mouse acute myocardial infarction (AMI) model. Various doses of LIF and BMP-2 and their inhibitors or blocking antibodies were tested for mES differentiation to CMC in vitro. CMC differentiation was assessed by mRNA and protein expression of CMC-specific markers, Connexin-43, CTI, CTT, Mef2c, Tbx5, Nkx2.5, GATA-4, and alphaMHC. LIF and BMP-2 synergistically induced the expression of CMC markers as early as 2 to 4 days in culture. Signaling studies identified STAT3 and MAP kinase (ERK1/2) as specific signaling components of LIF+BMP-2-mediated CMC differentiation. Inhibition of either STAT3 or MAPK activation by specific inhibitors drastically suppressed LIF+BMP-2-mediated CMC differentiation. Moreover, in mouse AMI, transplantation of lentivirus-GFP-transduced, LIF+BMP-2 precommitted mES cells, improved post-MI left ventricular functions, and enhanced capillary density. Transplanted cells engrafted in myocardium and differentiated into CMC and endothelial cells. Our data suggest that LIF and BMP-2 may synergistically enhance CMC differentiation of transplanted stem cells. Thus augmentation of LIF/BMP-2 downstream signaling components or cell type specific precommitment may facilitate the effects of ES cell-based therapies for post-MI myocardial repair and regeneration.

  14. 1,5-Disubstituted benzimidazoles that direct cardiomyocyte differentiation from mouse embryonic stem cells

    PubMed Central

    Okolotowicz, Karl J.; Bushway, Paul; Lanier, Marion; Gilley, Cynthia; Cynthia, Mark; Cashman, John R.

    2016-01-01

    Cardiomyopathy is the leading cause of death worldwide. Despite progress in medical treatments, heart transplantation is one of the only current options for those with infarcted heart muscle. Stem cell differentiation technology may afford cell-based therapeutics that may lead to the generation of new, healthy heart muscle cells from undifferentiated stem cells. Our approach is to use small molecules to stimulate stem cell differentiation. Herein, we describe a novel class of 1,5-disubstituted benzimidazoles that induce differentiation of stem cells into cardiac cells. We report on the evaluation in vitro for cardiomyocyte differentiation and describe structure–activity relationship results that led to molecules with drug-like properties. The results of this study show the promise of small molecules to direct stem cell lineage commitment, to probe signaling pathways and to develop compounds for the stimulation of stem cells to repair damaged heart tissue. PMID:26278027

  15. MiR-146b protects cardiomyocytes injury in myocardial ischemia/reperfusion by targeting Smad4

    PubMed Central

    Di, Yun-Feng; Li, De-Cai; Shen, Yan-Qing; Wang, Chun-Lei; Zhang, Da-Yong; Shang, An-Quan; Hu, Teng

    2017-01-01

    MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, have been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia-/reperfusion-induced cardiac injury. In the present study, we report on the role of miR-146b in myocardial I/R injury and the underlying cardio-protective mechanism. Antagomir-146b was used to explore the effects of miR-146b on cardiac ischemia/reperfusion injury (30 min ischemia followed by 180 min reperfusion). As predicted, miR-146b overexpression significantly reduced the infarct size and cardiomyocytes apoptosis and release of creatine kinase and lactate dehydrogenase. In addition, miR-146b attenuated H9c2 cell apoptosis. Furthermore, Smad4 was predicted and verified as a potential miR-146b target using bioinformatics and luciferase assay. In summary, this study demonstrated that miR-146b plays a critical protective role in cardiac ischemic injury and may provide a new therapeutic approach for the treatment of myocardial I/R injury.

  16. Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-κB signaling pathway.

    PubMed

    Zhang, Cui; Lin, Guosheng; Wan, Weiguo; Li, Xuyon; Zeng, Bin; Yang, Bo; Huang, Congxin

    2012-04-01

    Previous studies indicate resveratrol pretreatment can protect cardiomyocytes. However, it is largely unknown whether resveratrol protects cardiomyocytes when applied at reperfusion. The purpose of this study was to investigate whether resveratrol given at reoxygenation could protect cardiomyocytes under the anoxia/reoxygenation (A/R) condition and to examine the underlying mechanism. In this study, primary cultures of neonatal rat cardiomyocytes were randomly distributed into three groups: control group, A/R group (cultured cardiomyocytes were subjected to 3 h anoxia followed by 2 h reoxygenation), and the resveratrol group (cardiomyocytes were subjected to 3 h anoxia/2 h reoxygenation, and 5, 10 or 20 µM resveratrol was applied 5 min after reoxygenation). In order to evaluate cardiomyocyte damage, cell viability, lactate dehydrogenase (LDH) release, caspase-3 activity, and apoptosis were analyzed by the cell counting kit (CCK)-8 assay, colorimetric method and flow cytometry, respectively. The mRNA and protein expression of Toll-like receptor 4 (TLR4) were detected by quantitative real-time PCR and western blot analysis. Nuclear factor-κB (NF-κB) p65 protein and I-κBα protein levels were also examined by western blot analysis. The levels of proinflammatory cytokines in the culture medium were assessed by enzyme-linked immunosorbent assay. We found that resveratrol prevented a reduction in cell viability, decreased the amount of LDH release, attenuated apoptotic cells and decreased caspase-3 activity induced by A/R in cardiomyocytes. Furthermore, resveratrol treatment significantly attenuated the TLR4 expression, inhibited NF-κB activation and reduced the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β caused by A/R injury in the culture medium. Treatment with resveratrol shortly after the onset of reoxygenation improves cell survival and attenuates A/R-induced inflammatory response. This protection mechanism is possibly related to the TLR4

  17. Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-κB signaling pathway

    PubMed Central

    ZHANG, CUI; LIN, GUOSHENG; WAN, WEIGUO; LI, XUYON; ZENG, BIN; YANG, BO; HUANG, CONGXIN

    2012-01-01

    Previous studies indicate resveratrol pretreatment can protect cardiomyocytes. However, it is largely unknown whether resveratrol protects cardiomyocytes when applied at reperfusion. The purpose of this study was to investigate whether resveratrol given at reoxygenation could protect cardiomyocytes under the anoxia/reoxygenation (A/R) condition and to examine the underlying mechanism. In this study, primary cultures of neonatal rat cardiomyocytes were randomly distributed into three groups: control group, A/R group (cultured cardiomyocytes were subjected to 3 h anoxia followed by 2 h reoxygenation), and the resveratrol group (cardiomyocytes were subjected to 3 h anoxia/2 h reoxygenation, and 5, 10 or 20 μM resveratrol was applied 5 min after reoxygenation). In order to evaluate cardiomyocyte damage, cell viability, lactate dehydrogenase (LDH) release, caspase-3 activity, and apoptosis were analyzed by the cell counting kit (CCK)-8 assay, colorimetric method and flow cytometry, respectively. The mRNA and protein expression of Toll-like receptor 4 (TLR4) were detected by quantitative real-time PCR and western blot analysis. Nuclear factor-κB (NF-κB) p65 protein and I-κBα protein levels were also examined by western blot analysis. The levels of proinflammatory cytokines in the culture medium were assessed by enzyme-linked immunosorbent assay. We found that resveratrol prevented a reduction in cell viability, decreased the amount of LDH release, attenuated apoptotic cells and decreased caspase-3 activity induced by A/R in cardiomyocytes. Furthermore, resveratrol treatment significantly attenuated the TLR4 expression, inhibited NF-κB activation and reduced the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β caused by A/R injury in the culture medium. Treatment with resveratrol shortly after the onset of reoxygenation improves cell survival and attenuates A/R-induced inflammatory response. This protection mechanism is possibly related to the TLR4

  18. Similar to Spironolactone, Oxymatrine Is Protective in Aldosterone-Induced Cardiomyocyte Injury via Inhibition of Calpain and Apoptosis-Inducing Factor Signaling

    PubMed Central

    Xiao, Ting-Ting; Wang, Yuan-Yuan; Zhang, Yan; Bai, Cong-Hui; Shen, Xiang-Chun

    2014-01-01

    Accumulating evidence indicates that oxymatrine (OMT) possesses variously pharmacological properties, especially on the cardiovascular system. We previously demonstrated that activated calpain/apoptosis-inducing factor (AIF)-mediated pathway was the key molecular mechanism in aldosterone (ALD) induces cardiomyocytes apoptosis. In the present study, we extended the experimentation by investigating the effect of OMT on cardiomyocytes exposed to ALD, as compared to spironolactone (Spiro), a classical ALD receptor antagonist. Cardiomyocytes were pre-incubated with OMT, Spiro or vehicle for 1 h, and then, cardiomyocytes were exposed to ALD 24 h. The cell injury was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) leakage ratio. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, annexin V/PI staining, and relative caspase-3 activity assay. Furthermore, expression of pro-apoptotic proteins including truncated Bid (tBid), calpain and AIF were evaluated by western blot analysis. ALD stimulation increased cardiomyocytes apoptosis, caspase-3 activity and protein expression of calpain, tBid and AIF in the cytosol (p<0.05). Pre-incubated with cardiomyocytes injury and increased caspase-3 activity were significantly attenuated (p<0.05). Furthermore, OMT suppressed ALD-induced high expression of calpain and AIF. And these effects of OMT could be comparable to Spiro. These findings indicated that OMT might be a potential cardioprotective-agent against excessive ALD-induced cardiotoxicity, at least in part, mediated through inhibition of calpain/AIF signaling. PMID:24551180

  19. Macrophage Colony-Stimulating Factor Improves Cardiac Function after Ischemic Injury by Inducing Vascular Endothelial Growth Factor Production and Survival of Cardiomyocytes

    PubMed Central

    Okazaki, Tatsuma; Ebihara, Satoru; Asada, Masanori; Yamanda, Shinsuke; Saijo, Yoshifumi; Shiraishi, Yasuyuki; Ebihara, Takae; Niu, Kaijun; Mei, He; Arai, Hiroyuki; Yambe, Tomoyuki

    2007-01-01

    Macrophage colony-stimulating factor (M-CSF), known as a hematopoietic growth factor, induces vascular endothelial growth factor (VEGF) production from skeletal muscles. However, the effects of M-CSF on cardiomyocytes have not been reported. Here, we show M-CSF increases VEGF production from cardiomyocytes, protects cardiomyocytes and myotubes from cell death, and improves cardiac function after ischemic injury. In mice, M-CSF increased VEGF production in hearts and in freshly isolated cardiomyocytes, which showed M-CSF receptor expression. In rat cell line H9c2 cardiomyocytes and myotubes, M-CSF induced VEGF production via the Akt signaling pathway, and M-CSF pretreatment protected these cells from H2O2-induced cell death. M-CSF activated Akt and extracellular signal-regulated kinase signaling pathways and up-regulated downstream anti-apoptotic Bcl-xL expression in these cells. Using goats as a large animal model of myocardial infarction, we found that M-CSF treatment after the onset of myocardial infarction by permanent coronary artery ligation promoted angiogenesis in ischemic hearts but did not reduce the infarct area. M-CSF pretreatment of the goat myocardial infarction model by coronary artery occlusion-reperfusion improved cardiac function, as assessed by hemodynamic parameters and echocardiography. These results suggest M-CSF might be a novel therapeutic agent for ischemic heart disease. PMID:17717142

  20. Na+-induced Ca2+ influx through reverse mode of Na+-Ca2+ exchanger in mouse ventricular cardiomyocyte.

    PubMed

    Yan, Zhen-Yu; Ban, Tao; Fan, Yao; Chen, Wei-Ran; Sun, Hong-Li; Chen, Hanying; Qiao, Quo-Fen; Li, Bai-Yan

    2015-09-15

    Dobutamine is commonly used for clinical management of heart failure and its pharmacological effects have long been investigated as inotropics via β-receptor activation. However, there is no electrophysiological evidence if dobutamine contributes inotropic action due at least partially to the reverse mode of Na+-Ca2+ exchanger (NCX) activation. Action potential (AP), voltage-gated Na+ (INa), Ca2+ (ICa), and K+ (Ito and IK1) currents were observed using whole-cell patch technique before and after dobutamine in ventricular cardiomyocytes isolated from adult mouse hearts. Another sets of observation were also performed with Kb-r7943 or in the solution without [Ca2+]o. Dobutamine (0.1-1.0 μM) significantly enhanced the AP depolarization with prolongation of AP duration (APD) in a concentration-dependent fashion. The density of INa was also increased concentration-dependently without alternation of voltage-dependent steady-status of activation and inactivation, reactivation as well. Whereas, the activities for ICa, Ito, and IK1 were not changed by dobutamine. Intriguingly, the dobutamine-mediated changes in AP repolarization were abolished by 3 μM Kb-r7943 pretreatment or by simply removing [Ca2+]o without affecting accelerated depolarization. Additionally, the ratio of APD50/APD90 was not significantly altered in the presence of dobutamine, implying that effective refractory period was remain unchanged. This novel finding provides evidence that dobutamine upregulates of voltage-gated Na+ channel function and Na+ influx-induced activation of the reverse mode of NCX, suggesting that dobutamine may not only accelerate ventricular contraction via fast depolarization but also cause Ca2+ influx, which contributes its positive inotropic effect synergistically with β-receptor activation without increasing the arrhythmogenetic risk.

  1. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation

    PubMed Central

    Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania

    2016-01-01

    The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc−/−) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc−/− newborns but rescued in G3 Terc−/−/p21−/− mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915

  2. Generation of an inducible, cardiomyocyte-specific transgenic mouse model with PPAR β/δ overexpression.

    PubMed

    Kim, Teayoun; Zhelyabovska, Olga; Liu, Jian; Yang, Qinglin

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) consist of three subtypes, each displaying distinctive tissue distribution. In general, the three PPAR subtypes exert overlapping function in transcriptional regulation of lipid metabolism. However, each PPAR subtype possesses distinctive functions in different tissues dependent on their expression abundance, endogenous ligands, and the PPAR coregulators in a specific tissue. Transgenesis is an invaluable technique in defining the in vivo function of a particular gene and its protein. Cre/LoxP-mediated gene targeting has been extensively used to explore the tissue-specific function of PPARs. While this tissue-specific loss-of-function approach is extremely useful in determining the essential role of a PPAR, the tissue-specific gain-of-function approach is another important technique used to understand the effects of PPAR activation in a particular tissue. Transgenic overexpression of PPAR in a specific tissue has been used. However, this conventional technique requires generating the transgenic models individually for each target tissue. In this chapter, we describe the methodology for a more efficient generation of transgenic mouse models with a constitutively active form of PPARβ/δ in different tissues.

  3. Use of a neonatal rat system as a bioincubator to generate adult-like mature cardiomyocytes from human and mouse pluripotent stem cells.

    PubMed

    Cho, Gun-Sik; Tampakakis, Emmanouil; Andersen, Peter; Kwon, Chulan

    2017-10-01

    Pluripotent stem cells (PSCs), including induced PSCs, hold great potential for personalized disease modeling, drug testing and cell-based therapeutics. However, cells differentiated from PSCs remain immature in a dish, and thus there are serious caveats to their use in modeling adult-onset diseases such as cardiomyopathies and Alzheimer's disease. By taking advantage of knowledge gained about mammalian development and from bioinformatics analyses, we recently developed a neonatal rat system that enables maturation of PSC-derived cardiomyocytes into cardiomyocytes analogous to those seen in adult animals. Here we describe a detailed protocol that describes how to initiate the in vitro differentiation of mouse and human PSCs into cardiac progenitor cells, followed by intramyocardial delivery of the progenitor cells into neonatal rat hearts, in vivo incubation and analysis. The entire process takes ∼6 weeks, and the resulting cardiomyocytes can be analyzed for morphology, function and gene expression. The neonatal system provides a valuable tool for understanding the maturation and pathogenesis of adult human heart muscle cells, and this concept may be expanded to maturing other PSC-derived cell types, including those containing mutations that lead to the development of diseases in the adult.

  4. 9-Phenanthrol and flufenamic acid inhibit calcium oscillations in HL-1 mouse cardiomyocytes.

    PubMed

    Burt, Rees; Graves, Bridget M; Gao, Ming; Li, Chaunfu; Williams, David L; Fregoso, Santiago P; Hoover, Donald B; Li, Ying; Wright, Gary L; Wondergem, Robert

    2013-09-01

    It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a "Ca2+ clock" controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca(2+)-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130-150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.

  5. 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade.

    PubMed

    Zhao, Mingyi; Zhu, Ping; Fujino, Masayuki; Nishio, Yoshiaki; Chen, Jimei; Ito, Hidenori; Takahashi, Kiwamu; Nakajima, Motowo; Tanaka, Tohru; Zhao, Lingling; Zhuang, Jian; Li, Xiao-Kang

    2016-10-28

    Hypoxia causes cardiac disease via oxidative stress and mitochondrial dysfunction. 5-Aminolevulinic acid in combination with sodium ferrous citrate (ALA/SFC) has been shown to up-regulate heme oxygenase-1 (HO-1) and decrease macrophage infiltration and renal cell apoptosis in renal ischemia injury mice. However, its underlying mechanism remains largely unknown. The aim of this study was to investigate whether ALA/SFC could protect cardiomyocytes from hypoxia-induced apoptosis by autophagy via HO-1 signaling. Murine atrial cardiomyocyte HL-1 cells were pretreated with ALA/SFC and then exposed to hypoxia. ALA/SFC pretreatment significantly attenuated hypoxia-induced cardiomyocyte apoptosis, reactive oxygen species production, and mitochondrial injury, while it increased cell viability and autophagy levels. HO-1 expression by ALA/SFC was associated with up-regulation and nuclear translocation of Nrf-2, whereas Nrf-2 siRNA dramatically reduced HO-1 expression. ERK1/2, p38, and SAPK/JNK pathways were activated by ALA/SFC and their specific inhibitors significantly reduced ALA/SFC-mediated HO-1 upregulation. Silencing of either Nrf-2 or HO-1and LY294002, inhibitor of autophagy, abolished the protective ability of ALA/AFC against hypoxia-induced injury and reduced ALA/SFC-induced autophagy. Taken together, our data suggest that ALA/SFC induces autophagy via activation of MAPK/Nrf-2/HO-1 signaling pathway to protect cardiomyocytes from hypoxia-induced apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. VDAC1 deacetylation is involved in the protective effects of resveratrol against mitochondria-mediated apoptosis in cardiomyocytes subjected to anoxia/reoxygenation injury.

    PubMed

    Tong, Zhihong; Xie, Yongyan; He, Ming; Ma, Wen; Zhou, Yue; Lai, Songqing; Meng, Yan; Liao, Zhangping

    2017-08-18

    We have recently demonstrated that Voltage-dependent anion channel 1 (VDAC1), a protein located in the mitochondrial outer membrane, is involved in the effects of resveratrol on the mitochondrial permeability transition pore (mPTP). However, the underlying mechanism of action remains to be elucidated. In the present study, we demonstrated that resveratrol promoted VDAC1 deacetylation in cardiomyocytes in response to anoxia/reoxygenation (A/R) injury. Moreover, silent information regulator of transcription 1 (SIRT1), a NAD(+)-dependent class III histone deacetylase, was up-regulated after pretreatment with resveratrol. Cells that were treated with Ex527, a specific inhibitor of SIRT1, showed a reduction in both SIRT1 expression and VDAC1 deacetylation, indicating that the deacetylation effect of resveratrol on VDAC1 is mediated by SIRT1. Furthermore, the ability deacetylated VDAC1 to bind to Bax was decreased after pretreatment with resveratrol, whereas Bcl-2 expression changed in the opposite direction. As a result, opening of the mPTP was restrained, the mitochondrial membrane potential was reserved, and cytochrome c release was inhibited, which subsequently decreased cardiomyocyte apoptosis. However, the cardioprotective effects observed after treatment of resveratrol could be abrogated by Ex527. In conclusion, resveratrol induces deacetylation of VDAC1 by SIRT1, thereby preventing mitochondria-mediated apoptosis in cardiomyocytes upon A/R injury. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    PubMed

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.

  8. Inhibition of the Cardiomyocyte-Specific Kinase TNNI3K Limits Oxidative Stress, Injury, and Adverse Remodeling in the Ischemic Heart

    PubMed Central

    Vagnozzi, Ronald J.; Gatto, Gregory J.; Kallander, Lara S.; Hoffman, Nicholas E.; Mallilankaraman, Karthik; Ballard, Victoria L. T.; Lawhorn, Brian G.; Stoy, Patrick; Philp, Joanne; Graves, Alan P.; Naito, Yoshiro; Lepore, John J.; Gao, Erhe; Madesh, Muniswamy; Force, Thomas

    2015-01-01

    Percutaneous coronary intervention is first-line therapy for acute coronary syndromes (ACS) but can promote cardiomyocyte death and cardiac dysfunction via reperfusion injury, a phenomenon driven in large part by oxidative stress. Therapies to limit this progression have proven elusive, with no major classes of new agents since the development of anti-platelets/anti-thrombotics. We report that cardiac troponin I–interacting kinase (TNNI3K), a cardiomyocyte-specific kinase, promotes ischemia/reperfusion injury, oxidative stress, and myocyte death. TNNI3K-mediated injury occurs through increased mitochondrial superoxide production and impaired mitochondrial function and is largely dependent on p38 mitogen-activated protein kinase (MAPK) activation. We developed a series of small-molecule TNNI3K inhibitors that reduce mitochondrial-derived superoxide generation, p38 activation, and infarct size when delivered at reperfusion to mimic clinical intervention. TNNI3K inhibition also preserves cardiac function and limits chronic adverse remodeling. Our findings demonstrate that TNNI3K modulates reperfusion injury in the ischemic heart and is a tractable therapeutic target for ACS. Pharmacologic TNNI3K inhibition would be cardiac-selective, preventing potential adverse effects of systemic kinase inhibition. PMID:24132636

  9. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo

    PubMed Central

    Yu, Haijie; Shi, Liye; Qi, Guoxian; Zhao, Shijie; Gao, Yuan; Li, Yuzhe

    2016-01-01

    Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia–reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation–reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IκB-α phosphorylation and nuclear factor (NF)-κB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-κB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury. PMID:27313532

  10. Cardiomyocyte­-specific expression of the nuclear matrix protein, CIZ1, stimulates production of mono-nucleated cells with an extended window of proliferation in the postnatal mouse heart

    PubMed Central

    Bageghni, Sumia A.; Frentzou, Georgia A.; Drinkhill, Mark J.; Mansfield, William; Coverley, Dawn

    2017-01-01

    ABSTRACT Myocardial injury in mammals leads to heart failure through pathological cardiac remodelling that includes hypertrophy, fibrosis and ventricular dilatation. Central to this is inability of the mammalian cardiomyocyte to self-renew due to entering a quiescent state after birth. Modulation of the cardiomyocyte cell-cycle after injury is therefore a target mechanism to limit damage and potentiate repair and regeneration. Here, we show that cardiomyocyte-specific over-expression of the nuclear-matrix­-associated DNA replication protein, CIZ1, extends their window of proliferation during cardiac development, delaying onset of terminal differentiation without compromising function. CIZ1-expressing hearts are enlarged, but the cardiomyocytes are smaller with an overall increase in number, correlating with increased DNA replication after birth and retention of an increased proportion of mono-nucleated cardiomyocytes into adulthood. Furthermore, these CIZ1 induced changes in the heart reduce the impact of myocardial injury, identifying CIZ1 as a putative therapeutic target for cardiac repair. PMID:27934662

  11. Effect of intracellular lipid droplets on cytosolic Ca2+ and cell death during ischaemia–reperfusion injury in cardiomyocytes

    PubMed Central

    Barba, Ignasi; Chavarria, Laia; Ruiz-Meana, Marisol; Mirabet, Maribel; Agulló, Esperanza; Garcia-Dorado, David

    2009-01-01

    Lipid droplets (LD) consist of accumulations of triacylglycerols and have been proposed to be markers of ischaemic but viable tissue. Previous studies have described the presence of LD in myocardium surviving an acute coronary occlusion. We investigated whether LD may be protective against cell death secondary to ischaemia–reperfusion injury. The addition of oleate–bovine serum albumin complex to freshly isolated adult rat cardiomyocytes or to HL-1 cells resulted in the accumulation of intracellular LD detectable by fluorescence microscopy, flow cytometry and 1H-nuclear magnetic resonance spectroscopy. Simulated ischaemia–reperfusion of HL-1 cells (respiratory inhibition at pH 6.4 followed by 30 min of reperfusion) resulted in significant cell death (29.7 ± 2.6% of total lactate dehydrogenase release). However, cell death was significantly attenuated in cells containing LD (40% reduction in LDH release compared with control cells, P= 0.02). The magnitude of LD accumulation was inversely correlated (r2= 0.68, P= 0.0003) with cell death. The protection associated with intracellular LD was not a direct effect of the fatty acids used to induce their formation, because oleate added 30 min before ischaemia, during ischaemia or during reperfusion did not form LD and did not protect against cell death. Increasing the concentration of free oleate during reperfusion progressively decreased the protection afforded by LD. HL-1 cells labelled with fluo-4, a Ca2+-sensitive fluorochrome, fluorescence within LD areas increased more throughout simulated ischaemia and reperfusion than in the cytosolic LD-free areas of the same cells. As a consequence, cells with LD showed less cytosolic Ca2+ overload than control cells. These results suggest that LD exert a protective effect during ischaemia–reperfusion by sequestering free fatty acids and Ca2+. PMID:19188253

  12. Blockade of hypoxia-reoxygenation-mediated collagen type I expression and MMP activity by overexpression of TGF-beta1 delivered by AAV in mouse cardiomyocytes.

    PubMed

    Hu, Chang-Ping; Dandapat, Abhijit; Liu, Yong; Hermonat, Paul L; Mehta, Jawahar L

    2007-09-01

    Transforming growth factor (TGF)-beta(1) is one of the most pleiotropic and multifunctional peptides known. While the cardioprotective effect of TGF-beta(1) during ischemia is well known, the specific role of TGF-beta(1) in altering the cardiac remodeling process remains unclear. This study was designed to examine the regulation of hypoxia-reoxygenation-mediated collagen type I expression and activity of matrix metalloproteinases (MMPs) by overexpression of TGF-beta(1) in cultured HL-1 mouse cardiomyocytes. TGF-beta(1) was overexpressed in cardiomyocytes by transfection with adeno-associated virus (AAV)/TGF-beta(1)(Latent) or with AAV/TGF-beta(1)(ACT) (active TGF-beta(1)). Twenty-four hours of hypoxia followed by 3 h of reoxygenation (H-R) markedly enhanced (pro)collagen type I expression and activity of MMPs concomitant with an increase in reactive oxygen species (ROS) release and LOX-1 expression. Overexpression of TGF-beta(1) reduced these alterations induced by H-R. TGF-beta(1) overexpression also blocked H-R-mediated p38 and p44/42 MAPK activation. Transfection with AAV/TGF-beta(1)(ACT) was superior to that with AAV/TGF-beta(1)(Latent). These data for the first time demonstrate that H-R induces signals for cardiac remodeling in cardiomyocytes and TGF-beta(1) can modulate, possibly via antioxidant mechanism, these signals. These findings contribute to further understanding of the role of TGF-beta(1) in the cardiac remodeling process.

  13. Ah Receptor Activation by Dioxin Disrupts Activin, BMP, and WNT Signals During the Early Differentiation of Mouse Embryonic Stem Cells and Inhibits Cardiomyocyte Functions

    PubMed Central

    Wang, Qin; Kurita, Hisaka; Carreira, Vinicius; Ko, Chia-I; Fan, Yunxia; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Puga, Alvaro

    2016-01-01

    The AHR is a ligand-activated transcription factor that mediates gene-environment interactions. Genome-wide expression profiling during differentiation of mouse ES cells into cardiomyocytes showed that AHR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin; Dioxin (TCDD), its prototypical ligand, disrupted the expression of multiple homeobox transcription factors and inhibited cardiomyocyte contractility. Here we treated ES cells with TCDD at daily differentiation intervals to investigate whether TCDD-induced loss of contractility had a developmental window of sensitivity. Surprisingly, contractility was an AHR-dependent TCDD target solely between differentiation days 0 and 3 during the period of panmesoderm development, when TCDD also disrupted expression of genes in the TGFβ/BMP2/4 and wingless-type MMTV integration site (WNT)signaling pathways, suppressed the secretion of bone morphogenetic protein (BMP4), WNT3a, and WNT5a and elevated the secretion of Activin A, as determined by ELISA of the secreted proteins in the culture medium. Supplementing the culture medium with BMP4, WNT3a, or WNT5a during the first 3 days of differentiation successfully countered TCDD-induced impairment of contractility, while anti-WNT3a, or anti-WNT5a antibodies or continuous Noggin (a BMP4 antagonist) or Activin A treatment inhibited the contractile phenotype. In Ahr+/+, but not in Ahr−/− ES cells, TCDD treatment significantly increased mitochondrial copy number, suggestive of mitochondrial stress and remodeling. Sustained AHR activation during ES cell differentiation appears to disrupt the expression of signals critical to the ontogeny of cardiac mesoderm and cause the loss of contractility in the resulting cardiomyocyte lineage. PMID:26572662

  14. Ah Receptor Activation by Dioxin Disrupts Activin, BMP, and WNT Signals During the Early Differentiation of Mouse Embryonic Stem Cells and Inhibits Cardiomyocyte Functions.

    PubMed

    Wang, Qin; Kurita, Hisaka; Carreira, Vinicius; Ko, Chia-I; Fan, Yunxia; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Puga, Alvaro

    2016-02-01

    The AHR is a ligand-activated transcription factor that mediates gene-environment interactions. Genome-wide expression profiling during differentiation of mouse ES cells into cardiomyocytes showed that AHR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin; Dioxin (TCDD), its prototypical ligand, disrupted the expression of multiple homeobox transcription factors and inhibited cardiomyocyte contractility. Here we treated ES cells with TCDD at daily differentiation intervals to investigate whether TCDD-induced loss of contractility had a developmental window of sensitivity. Surprisingly, contractility was an AHR-dependent TCDD target solely between differentiation days 0 and 3 during the period of panmesoderm development, when TCDD also disrupted expression of genes in the TGFβ/BMP2/4 and wingless-type MMTV integration site (WNT)signaling pathways, suppressed the secretion of bone morphogenetic protein (BMP4), WNT3a, and WNT5a and elevated the secretion of Activin A, as determined by ELISA of the secreted proteins in the culture medium. Supplementing the culture medium with BMP4, WNT3a, or WNT5a during the first 3 days of differentiation successfully countered TCDD-induced impairment of contractility, while anti-WNT3a, or anti-WNT5a antibodies or continuous Noggin (a BMP4 antagonist) or Activin A treatment inhibited the contractile phenotype. In Ahr(+/+), but not in Ahr(-) (/) (-) ES cells, TCDD treatment significantly increased mitochondrial copy number, suggestive of mitochondrial stress and remodeling. Sustained AHR activation during ES cell differentiation appears to disrupt the expression of signals critical to the ontogeny of cardiac mesoderm and cause the loss of contractility in the resulting cardiomyocyte lineage.

  15. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    PubMed

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

  16. Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1α in a FOXO3-dependent mechanism

    PubMed Central

    Cho, Siyoung; Cho, Miook; Kim, Juewon; Kaeberlein, Matt; Lee, Sang Jun; Suh, Yousin

    2015-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a master regulator of hypoxic response and has been a prime therapeutic target for ischemia/reperfusion (I/R)-derived myocardial dysfunction and tissue damage. There is also increasing evidence that HIF-1 plays a central role in regulating aging, both through interactions with key longevity factors including Sirtuins and mTOR, as well as by directly promoting longevity in Caenorhabditis elegans. We investigated a novel function and the underlying mechanism of syringaresinol, a lignan compound, in modulation of HIF-1 and protection against cellular damage and death in a cardiomyocyte model of I/R injury. Syringaresinol caused destabilization of HIF-1α following H/R and then protected against hypoxia/reoxygenation (H/R)-induced cellular damage, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Knock-down of FOXO3 by specific siRNAs completely abolished the ability of syringaresinol to inhibit HIF-1 stabilization and apoptosis caused by H/R. Syringaresinol stimulated the nuclear localization and activity of FOXO3 leading to increased expression of antioxidant genes and decreased levels of reactive oxygen species (ROS) following H/R. Our results provide a new mechanistic insight into a functional role of syringaresinol against H/R-induced cardiomyocyte injury and death. The degradation of HIF-1α through activation of FOXO3 is a potential therapeutic strategy for ischemia-related diseases. PMID:25415049

  17. Astragalus polysaccharide restores autophagic flux and improves cardiomyocyte function in doxorubicin-induced cardiotoxicity

    PubMed Central

    Cao, Yuan; Shen, Tao; Huang, Xiuqing; Lin, Yajun; Chen, Beidong; Pang, Jing; Li, Guoping; Wang, Que; Zohrabian, Sylvia; Duan, Chao; Ruan, Yang; Man, Yong; Wang, Shu; Li, Jian

    2017-01-01

    Doxorubicin (adriamycin), an anthracycline antibiotic, is commonly used to treat many types of solid and hematological malignancies. Unfortunately, clinical usage of doxorubicin is limited due to the associated acute and chronic cardiotoxicity. Previous studies demonstrated that Astragalus polysaccharide (APS), the extracts of Astragalus membranaceus, had strong anti-tumor activities and anti-inflammatory effects. However, whether APS could mitigate chemotherapy-induced cardiotoxicity is unclear thus far. We used a doxorubicin-induced neonatal rat cardiomyocyte injury model and a mouse heart failure model to explore the function of APS. GFP-LC3 adenovirus-mediated autophagic vesicle assays, GFP and RFP tandemly tagged LC3 (tfLC3) assays and Western blot analyses were performed to analyze the cell function and cell signaling changes following APS treatment in cardiomyocytes. First, doxorubicin treatment led to C57BL/6J mouse heart failure and increased cardiomyocyte apoptosis, with a disturbed cell autophagic flux. Second, APS restored autophagy in doxorubicin-treated primary neonatal rat ventricular myocytes and in the doxorubicin-induced heart failure mouse model. Third, APS attenuated doxorubicin-induced heart injury by regulating the AMPK/mTOR pathway. The mTOR inhibitor rapamycin significantly abrogated the protective effect of APS. These results suggest that doxorubicin could induce heart failure by disturbing cardiomyocyte autophagic flux, which may cause excessive cell apoptosis. APS could restore normal autophagic flux, ameliorating doxorubicin-induced cardiotoxicity by regulating the AMPK/mTOR pathway. PMID:27902477

  18. Static magnetic fields increase cardiomyocyte differentiation of Flk-1+ cells derived from mouse embryonic stem cells via Ca2+ influx and ROS production.

    PubMed

    Bekhite, Mohamed M; Figulla, Hans-Reiner; Sauer, Heinrich; Wartenberg, Maria

    2013-08-10

    To investigate the effects of static magnetic fields (MFs) on cardiomyogenesis of mouse embryonic stem (ES) cell-derived embryoid bodies and Flk-1(+) cardiac progenitor cells and to assess the impact of cytosolic calcium [Ca(2+)]c and reactive oxygen species (ROS). Embryoid bodies and ES cell-derived Flk-1(+) cardiovascular progenitor cells were exposed to static MFs. The expression of cardiac genes was evaluated by RT-PCR; sarcomeric structures were assessed by immunohistochemistry; intracellular ROS and [Ca(2+)]c of ES cells were examined by H2DCF-DA- and fluo-4-based microfluorometry. Treatment of embryoid bodies with MFs dose-dependent increased the number of contracting foci and cardiac areas as well as mRNA expression of the cardiac genes MLC2a, MLC2v, α-MHC and β-MHC. In Flk-1(+) cells MFs (1 mT) elevated both [Ca(2+)]c and ROS, increased expression of the cardiogenic transcription factors Nkx-2.5 and GATA-4 as well as cardiac genes. This effect was due to Ca(2+) influx, since extracellular Ca(2+) chelation abrogated ROS production and MF-induced cardiomyogenesis. Furthermore absence of extracellular calcium impaired sarcomere structures. Neither the phospholipase C inhibitor U73122 nor thapsigargin inhibited MF-induced increase in [Ca(2+)]c excluding involvement of intracellular calcium stores. ROS were generated through NAD(P)H oxidase, since NOX-4 but not NOX-1 and NOX-2 mRNA was upregulated upon MF exposure. Ablation of NOX-4 by sh-RNA and treatment with the NAD(P)H oxidase inhibitor diphenylen iodonium (DPI) totally abolished MF-induced cardiomyogenesis. The ability of static MFs to enhance cardiomyocyte differentiation of ES cells allows high throughput generation of cardiomyocytes without pharmacological or genetic modification. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Thioredoxin-2 protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy and apoptosis in H9c2 cardiomyocytes

    PubMed Central

    Li, Yan-Yan; Xiang, Yin; Zhang, Song; Wang, Yan; Yang, Jie; Liu, Wei; Xue, Feng-Tai

    2017-01-01

    The aim of this study is to examine the role of thioredoxin-2 (Trx2) in autophagy and apoptosis during myocardial ischemia-reperfusion (I/R) injury in vitro. We employed the oxygen-glucose deprivation and reperfusion (OGD/R) model of H9c2 cells and used lentiviral infection to overexpress Trx2. H9c2 cell viability and injury assays were conducted using a Cell Counting Kit-8 (CCK-8) and alactate dehydrogenase (LDH) kit. The effects of Trx2 on autophagy and apoptosis were measured by transmission electron microscopy (TEM), western blot, and flow cytometry. Our results showed that the expression of Trx2 was significantly decreased at reperfusion 6 h after OGD 12 h treatment. Trx2 overexpression inhibited autophagy in H9c2 cells subjected to OGD/R. As the underlying mechanisms, both Akt kinase/the mammalian target of rapamycin (Akt/mTOR) and AMP-activated protein kinase (AMPK)/mTOR signaling pathways were involved in the regulation of Trx2 during autophagy, which was also mediated by reactive oxygen species (ROS). 3-methyladenine (3-MA), an inhibitor of autophagy, not only suppressed OGD/R-induced autophagy but also decreased apoptosis. As a classical autophagy sensitizer, rapamycin (Rapa) augmented autophagy as well as apoptosis. Additionally, we further demonstrated that Trx2 could alleviate OGD/R-induced apoptosis via mitochondrion-mediated intrinsic apoptotic pathway. In summary, our data indicated that Trx2 protects cardiomyocytes under OGD/R by inhibiting autophagy and apoptosis. Trx2 may be a crucial regulatory protein during I/R-induced cardiomyocyte injury and death. PMID:28386372

  20. Danshen-Enhanced Cardioprotective Effect of Cardioplegia on Ischemia Reperfusion Injury in a Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Model.

    PubMed

    Wei, Wei; Liu, Yiwei; Zhang, Qiang; Wang, Yangming; Zhang, Xiaoling; Zhang, Hao

    2017-05-01

    Myocardial ischemia-reperfusion (I/R) injury is unavoidable during cardioplegic arrest and open-heart surgery. Danshen is one of the most popular traditional herbal medicines in China, which has entered the Food and Drug Administration-approved phase III clinical trial. This study was aimed to develop a human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) model to mimic I/R injury and evaluate the cardioprotective effect of regular cardioplegic solution with Danshen. hiPSC-CMs were cultured with the crystalloid cardioplegic solution (Thomas group) and Thomas solution with 2 or 10 µg/mL Danshen (Thomas plus Danshen groups). The cells under normoxic culture condition served as baseline group. Then, the cells were placed in a modular incubator chamber. After 45 min hypoxia and 3 h reoxygenation, hiPSC-CMs subjected to hypoxia/reoxygenation resulted in a sharp increase of reactive oxygen species (ROS) content in Thomas group versus baseline group. Compared with the Thomas group, ROS accumulation was significant suppressed in Thomas plus Danshen groups, which might result from elevating the content of glutathione and enhanced activities of superoxide dismutase and glutathione peroxidase. The enhanced L-type Ca(2+) current in hiPSC-CMs after I/R injury was also significantly decreased by Danshen, and meanwhile intracellular Ca(2+) level was reduced and calcium overload was suppressed. Thomas plus Danshen groups also presented less irregular transients and lower apoptosis rates. As a result, Danshen could improve antioxidant and calcium handling in cardiomyocytes during I/R and lead to reduced arrhythmia events and apoptosis rates. hiPSC-CMs model offered a platform for the future translational study of the cardioplegia. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    PubMed

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  2. Increased susceptibility to structural acute kidney injury in a mouse model of presymptomatic cardiomyopathy.

    PubMed

    Pleasant, LaTawnya; Ma, Qing; Devarajan, Mahima; Parameswaran, Priyanka; Drake, Keri; Siroky, Brian; Shay-Winkler, Kritton; Robbins, Jeffrey; Devarajan, Prasad

    2017-09-01

    The early events that signal renal dysfunction in presymptomatic heart failure are unclear. We tested the hypothesis that functional and mechanistic changes occur in the kidney that precede the development of symptomatic heart failure. We employed a transgenic mouse model with cardiomyocyte-specific overexpression of mutant α-B-crystallin that develops slowly progressive cardiomyopathy. Presymptomatic transgenic mice displayed an increase in serum creatinine (1.17 ± 0.34 vs. wild type 0.65 ± 0.16 mg/dl, P < 0.05) and in urinary neutrophil gelatinase-associated lipocalin (NGAL; 278.92 ± 176.24 vs. wild type 49.11 ± 22.79 ng/ml, P < 0.05) but no renal fibrosis. Presymptomatic transgenic mouse kidneys exhibited a twofold upregulation of the Ren1 gene, marked overexpression of renin protein in the tubules, and a worsened response to ischemia-reperfusion injury based on serum creatinine (2.77 ± 0.66 in transgenic mice vs. 2.01 ± 0.58 mg/dl in wild type, P < 0.05), urine NGAL (9,198.79 ± 3,799.52 in transgenic mice vs. 3,252.94 ± 2,420.36 ng/ml in wild type, P < 0.05), tubule dilation score (3.4 ± 0.5 in transgenic mice vs. 2.6 ± 0.5 in wild type, P < 0.05), tubule cast score (3.2 ± 0.4 in transgenic mice vs. 2.5 ± 0.5 in wild type, P < 0.05), and TdT-mediated dUTP nick-end labeling (TUNEL)-positive nuclei (10.1 ± 2.1 in the transgenic group vs. 5.7 ± 1.6 per 100 cells counted in wild type, P < 0.01). Our findings indicate functional renal impairment, urinary biomarker elevations, and induction of renin gene and protein expression in the kidney that occur in early presymptomatic heart failure, which increase the susceptibility to subsequent acute kidney injury. Copyright © 2017 the American Physiological Society.

  3. Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway.

    PubMed

    Wang, Xiaowu; Yuan, Binbin; Dong, Wenpeng; Yang, Bo; Yang, Yongchao; Lin, Xi; Gong, Gu

    2015-05-01

    Exposure to humid heat stress leads to the initiation of serious physiological dysfunction that may result in heat-related diseases, including heat stroke, heat cramp, heat exhaustion, and even death. Increasing evidences have shown that the humid heat stress-induced dysfunction of the cardiovascular system was accompanied with severe cardiomyocyte injury; however, the precise mechanism of heat stress-induced injury of cardiomyocyte remains unknown. In the present study, we hypothesized that humid heat stress promoted oxidative stress through the activation of angiotensin II (Ang II) in cardiomyocytes. To test our hypothesis, we established mouse models of humid heat stress. Using the animal models, we found that Ang II levels in serum were significantly up-regulated and that the Ang II receptor AT1 was increased in cardiomyocytes. The antioxidant ability in plasma and heart tissues which was detected by the ferric reducing/antioxidant power assay was also decreased with the increased ROS production under humid heat stress, as was the expression of antioxidant genes (SOD2, HO-1, GPx). Furthermore, we demonstrated that the Ang II receptor antagonist, valsartan, effectively relieved oxidative stress, blocked Ang II signaling pathway and suppressed cardiomyocyte apoptosis induced by humid heat stress. In addition, overexpression of antioxidant genes reversed cardiomyocyte apoptosis induced by Ang II. Overall, these results implied that humid heat stress increased oxidative stress and caused apoptosis of cardiomyocytes through the Ang II signaling pathway. Thus, targeting the Ang II signaling pathway may provide a promising approach for the prevention and treatment of cardiovascular diseases caused by humid heat stress.

  4. Resveratrol exerts protective effects on anoxia/reoxygenation injury in cardiomyocytes via miR-34a/Sirt1 signaling pathway.

    PubMed

    Yang, B; Ma, S; Wang, Y-B; Xu, B; Zhao, H; He, Y-Y; Li, C-W; Zhang, J; Cao, Y-K; Feng, Q-Z

    2016-06-01

    In this study, we investigated the regulation of resveratrol (RV) on miR-34a alteration due to ARI and further studied the involvement of miR-34a/Sirt1 signaling pathway in ROS generation and cell survival after ARI. In-vitro anoxia and reoxygenation injury (ARI) model based on rat heart-derived H9c2 cells was established. The expression of miR-34a and Sirt1 in H9c2 cells with or without RV pretreatment was measured. Flow cytometric analysis of intracellular reactive oxygen species (ROS) generation, CCK-8 assay of cell viability and Western blot analysis of active caspase-3 expression were performed to study the role of miR-34a/Sirt1 signaling pathway in RV modulated ARI injury protection. Pretreatment with RV substantially restored Sirt1 expression in cardiomyocytes in a dose-dependent manner in the in-vitro ARI model. MiR-34a level was significantly increased due to ARI. But pretreatment with RV significantly suppressed its upregulation. MiR-34a overexpression significantly reduced the effect of RV on restoring Sirt1 expression in ARI. Both miR-34a overexpression and Sirt1 knockdown significantly reduced the effect of RV on reducing ROS generation and also abrogated the effect of RV on enhancing cell viability and reducing cell apoptosis. The present study demonstrated that RV has a suppressive effect on miR-34a upregulation in ARI and the miR-34a/Sirt1 axis is an important signaling pathway modulating the protective effect of RV on cardiomyocytes in ARI. Nonetheless, future in vivo studies are required to validate this mechanism.

  5. Extracellular vesicles-mediated transfer of miR-208a/b exaggerate hypoxia/reoxygenation injury in cardiomyocytes by reducing QKI expression.

    PubMed

    Wang, Feng; Yuan, Yuxiang; Yang, Pirong; Li, Xia

    2017-03-10

    In this study, we tested the hypothesis that extracellular vesicles (EVs)-mediated transfer of miR-208a/b can exacerbate apoptosis of cardiomyocytes (CMs) induced by hypoxia/reoxygenation (H/R) injury by reducing the expression of the RNA-binding protein Quaking (QKI). EVs were isolated from culture medium of hypoxic H9c2 cells (EVs-H). In in vitro H9c2 cell model, the EVs-H could be taken up by normoxic CMs and exacerbated cell apoptosis induced by H/R injury. In addition, miR-208a and miR-208b were enriched in EVs-H. Suppression of miR-208a and miR-208b loading significantly suppressed the detrimental effect of EVs-H on H/R injury in H9c2 cells. Inhibition of endogenous miR-208a and miR-208b restored QKI5 and QKI6 after H/R treatment. Dual-luciferase assay confirmed direct bindings between miR-208a/b and QKI 3'UTR. Functionally, QKI5 overexpression significantly suppressed H/R-induced CM apoptosis and suppressed the enhancing effect of EVs-H on CM apoptosis. Therefore, we infer that EVs-mediated transfer of miR-208a/b can exaggerate H/R injury in CMs by reducing QKI expression. This represents a previously unrecognized pathway of H/R injury in CMs.

  6. Sauchinone augments cardiomyocyte viability by enhancing autophagy proteins -PI3K, ERK(1/2), AMPK and Beclin-1 during early ischemia-reperfusion injury in vitro

    PubMed Central

    Thapalia, Bisharad Anil; Zhou, Zhen; Lin, Xianhe

    2016-01-01

    Background. Sauchinone has proved its anti-oxidant and anti-inflammatory properties in various animal tissues. This study sought to illustrate its regulatory nature on autophagy associated proteins (PI3K, ERK1/2, AMPK, and Beclin-1) during early cardiomyocyte ischemia and subsequent reperfusion. Methods. Cultured cardiomyocytes were subjected to simulated Ischemia/reperfusion with and without Sauchinone pretreatment and also in the presence of autophagy inhibitor (3-MA). Colorimetric analysis of CCK-8, LDH antibody assay as well as Western blot analysis were performed to observe the expressions of LC3B (II) and Beclin-1 protein (markers of autophagy), autophagy proteins (PI3K, ERK1/2 and AMPK) and apoptotic proteins (Bax and Bcl-2) and the results were quantified into their grey values and subjected to statistical analysis. Results. Sauchinone demonstrated cell survival enhancing properties with increase in CCK-8 (SD = 0.553±0.012) and decrease in LDH (SD = 0.183±0.054) expressions, both of which were best observed at test dose of 20 µmol/L. At this dose, there was increment in cellular autophagy as demonstrated by peaking of autophagy markers LC3B-II (p<0.05) and Beclin-1 (p<0.05) with strong correlations (r = 0.99). Similarly, the autophagy proteins, compared to control and I/R model, also showed a significant increased level with PI3K (p<0.0001), total p-ERK1/2 (p<0.0001) and p-AMPKα (p<0.0001). Simultaneously, a decrease in expressions of pro-apoptotic molecules Bax (r = 0.989, p<0.0001) with increment of in the anti-apoptotic protein Bcl-2 (r = 0.996, p<0.0001) was observed. The observed effects on cell density, viability and autophagy was abrogated in presence of 3-MA. Conclusions. Sauchinone enhances cell survival by promoting autophagy and inhibiting apoptosis in cardiomyocytes during early stages of Ischemia/reperfusion injury. PMID:27508047

  7. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  8. The effects of age and resveratrol on the hypoxic preconditioning protection against hypoxia-reperfusion injury: studies in rat hearts and human cardiomyocytes.

    PubMed

    Zheng, Hong; Guo, Hai; Hong, Yi; Zheng, Fen; Wang, Jiang

    2015-09-01

    The loss of effectiveness of ischaemic preconditioning in protecting old hearts from ischaemia/reperfusion damage is thought to be due to low sirtuin 1 levels in old hearts. We sought to determine whether resveratrol (RES), an activator of sirtuin 1, would restore this protection to that seen with ischaemic preconditioning in young hearts. A Langendorff heart perfusion model was established in 80 old and 80 adult rats to test the effects of hypoxic preconditioning (HPC) and/or RES on preventing hypoxia-reperfusion (H/R) injury. The effects were further tested by comparing the effects of HPC and RES on cell survival rate and lactate dehydrogenase (LDH) in cardiomyocytes from 15 old and 15 young humans. The HPC + RES group performed better in both adult and old groups than the corresponding H/R, HPC and RES groups, causing ∼50% in the adult and 40% in the old group restoration of left ventricular developed pressure and ∼90% in the adult and 80% in the old group restoration of dp/dtmax. HPC and RES each reduced apoptosis in both groups. The HPC + RES treatment showed an additive benefit in reducing apoptosis in the adult group but not in the old group. In H/R-treated young and old human cardiomyocytes, cell survival and LDH level were significantly improved in the RES + HPC group compared with the HPC group. This study showed that RES lessened the ageing effect and enhanced the cardioprotective effect of HPC in older individuals. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  9. Cobalt protoporphyrin pretreatment protects human embryonic stem cell-derived cardiomyocytes from hypoxia/reoxygenation injury in vitro and increases graft size and vascularization in vivo.

    PubMed

    Luo, Jun; Weaver, Matthew S; Cao, Baohong; Dennis, James E; Van Biber, Benjamin; Laflamme, Michael A; Allen, Margaret D

    2014-06-01

    Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can regenerate infarcted myocardium. However, when implanted into acutely infarcted hearts, few cells survive the first week postimplant. To improve early graft survival, hESC-CMs were pretreated with cobalt protoporphyrin (CoPP), a transcriptional activator of cytoprotective heme oxygenase-1 (HO-1). When hESC-CMs were challenged with an in vitro hypoxia/reoxygenation injury, mimicking cell transplantation into an ischemic site, survival was significantly greater among cells pretreated with CoPP versus phosphate-buffered saline (PBS)-pretreated controls. Compared with PBS-pretreated cells, CoPP-pretreated hESC-CM preparations exhibited higher levels of HO-1 expression, Akt phosphorylation, and vascular endothelial growth factor production, with reduced apoptosis, and a 30% decrease in intracellular reactive oxygen species. For in vivo translation, 1 × 10(7) hESC-CMs were pretreated ex vivo with CoPP or PBS and then injected intramyocardially into rat hearts immediately following acute infarction (permanent coronary ligation). At 1 week, hESC-CM content, assessed by quantitative polymerase chain reaction for human Alu sequences, was 17-fold higher in hearts receiving CoPP- than PBS-pretreated cells. On histomorphometry, cardiomyocyte graft size was 2.6-fold larger in hearts receiving CoPP- than PBS-pretreated cells, occupying up to 12% of the ventricular area. Vascular density of host-perfused human-derived capillaries was significantly greater in grafts composed of CoPP- than PBS-pretreated cells. Taken together, these experiments demonstrate that ex vivo pretreatment of hESC-CMs with a single dose of CoPP before intramyocardial implantation more than doubled resulting graft size and improved early graft vascularization in acutely infarcted hearts. These findings open the door for delivery of these, or other, stem cells during acute interventional therapy following myocardial infarction or ischemia.

  10. Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover

    PubMed Central

    Richardson, Gavin D.

    2016-01-01

    Although it is accepted that the heart has a limited potential to regenerate cardiomyocytes following injury and that low levels of cardiomyocyte turnover occur during normal ageing, quantification of these events remains challenging. This is in part due to the rarity of the process and the fact that multiple cellular sources contribute to myocardial maintenance. Furthermore, DNA duplication within cardiomyocytes often leads to a polyploid cardiomyocyte and only rarely leads to new cardiomyocytes by cellular division. In order to accurately quantify cardiomyocyte turnover discrimination between these processes is essential. The protocol described here employs long term nucleoside labeling in order to label all nuclei which have arisen as a result of DNA replication and cardiomyocyte nuclei identified by utilizing nuclei isolation and subsequent PCM1 immunolabeling. Together this allows the accurate and sensitive identification of the nucleoside labeling of the cardiomyocyte nuclei population. Furthermore, 4′,6-diamidino-2-phenylindole labeling and analysis of nuclei ploidy, enables the discrimination of neo-cardiomyocyte nuclei from nuclei which have incorporated nucleoside during polyploidization. Although this method cannot control for cardiomyocyte binucleation, it allows a rapid and robust quantification of neo-cardiomyocyte nuclei while accounting for polyploidization. This method has a number of downstream applications including assessing the potential therapeutics to enhance cardiomyocyte regeneration or investigating the effects of cardiac disease on cardiomyocyte turnover and ploidy. This technique is also compatible with additional downstream immunohistological techniques, allowing quantification of nucleoside incorporation in all cardiac cell types. PMID:27285379

  11. Contribution of mast cells to injury mechanisms in a mouse model of pediatric traumatic brain injury.

    PubMed

    Moretti, Raffaella; Chhor, Vibol; Bettati, Donatella; Banino, Elena; De Lucia, Silvana; Le Charpentier, Tifenn; Lebon, Sophie; Schwendimann, Leslie; Pansiot, Julien; Rasika, Sowmyalakshmi; Degos, Vincent; Titomanlio, Luigi; Gressens, Pierre; Fleiss, Bobbi

    2016-12-01

    The cognitive and behavioral deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than injuries to the adult brain. Understanding this developmental sensitivity is critical because children under 4 years of age of sustain TBI more frequently than any other age group. One of the first events after TBI is the infiltration and degranulation of mast cells (MCs) in the brain, releasing a range of immunomodulatory substances; inhibition of these cells is neuroprotective in other types of neonatal brain injury. This study investigates for the first time the role of MCs in mediating injury in a P7 mouse model of pediatric contusion-induced TBI. We show that various neural cell types express histamine receptors and that histamine exacerbates excitotoxic cell death in primary cultured neurons. Cromoglycate, an inhibitor of MC degranulation, altered the inflammatory phenotype of microglia activated by TBI, reversing several changes but accentuating others, when administered before TBI. However, without regard to the time of cromoglycate administration, inhibiting MC degranulation did not affect cell loss, as evaluated by ventricular dilatation or cleaved caspase-3 labeling, or the density of activated microglia, neurons, or myelin. In double-heterozygous cKit mutant mice lacking MCs, this overall lack of effect was confirmed. These results suggest that the role of MCs in this model of pediatric TBI is restricted to subtle effects and that they are unlikely to be viable neurotherapeutic targets. © 2016 Wiley Periodicals, Inc.

  12. Intravenous Sphingosylphosphorylcholine Protects Ischemic and Postischemic Myocardial Tissue in a Mouse Model of Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Herzog, Christine; Schmitz, Martina; Levkau, Bodo; Herrgott, Ilka; Mersmann, Jan; Larmann, Jan; Johanning, Kai; Winterhalter, Michael; Chun, Jerold; Müller, Frank Ulrich; Echtermeyer, Frank; Hildebrand, Reinhard; Theilmeier, Gregor

    2010-01-01

    HDL, through sphingosine-1-phosphate (S1P), exerts direct cardioprotective effects on ischemic myocardium. It remains unclear whether other HDL-associated sphingophospholipids have similar effects. We therefore examined if HDL-associated sphingosylphosphorylcholine (SPC) reduces infarct size in a mouse model of transient myocardial ischemia/reperfusion. Intravenously administered SPC dose-dependently reduced infarct size after 30 minutes of myocardial ischemia and 24 hours reperfusion compared to controls. Infarct size was also reduced by postischemic, therapeutical administration of SPC. Immunohistochemistry revealed reduced polymorphonuclear neutrophil recruitment to the infarcted area after SPC treatment, and apoptosis was attenuated as measured by TUNEL. In vitro, SPC inhibited leukocyte adhesion to TNFα-activated endothelial cells and protected rat neonatal cardiomyocytes from apoptosis. S1P3 was identified as the lysophospholipid receptor mediating the cardioprotection by SPC, since its effect was completely absent in S1P3-deficient mice. We conclude that HDL-associated SPC directly protects against myocardial reperfusion injury in vivo via the S1P3 receptor. PMID:21274265

  13. Five new triterpenoidal saponins from the roots of Ilex cornuta and their protective effects against H₂O₂-induced cardiomyocytes injury.

    PubMed

    Wang, Wenlian; Zhao, Jianping; Li, Shanshan; Lu, Yuchen; Liu, Yanli; Xu, Qiongming; Li, Xiaoran; Khan, Ikhlas A; Yang, Shilin

    2014-12-01

    Five new ursane-type triterpenoidal saponins (1-5), together with five known ones (6-10), were isolated from the EtOH extract of the roots of Ilex cornuta. The structures of saponins 1-5 were elucidated as 19α-hydroxyurs-12-en-28-oic acid 3β-O-β-D-glucuronopyranoside (1), 19α-hydroxyurs-12-en-28-oic acid 3β-O-β-D-glucuronopyranoside-6-O-ethyl ester (2), 19α-hydroxyurs-12-en-28-oic acid 3β-O-α-L-arabinopyranosyl-(1→2)-β-D-glucuronopyranoside (3), 3β-O-[α-L-arabinopyranosyl-(1→2)-β-D-glucuronopyranosyl]-19α-hydroxyurs-12-en-28-oic acid 28-O-β-D-glucopyranosyl ester (4) and 3β-O-[α-L-arabinopyranosyl-(1→2)-β-D-glucuronopyranoside-6-O-methyl ester]-19α-hydroxyurs-12-en-28-oic acid 28-O-β-D-glucopyranosyl ester (5), on the basis of spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D and 2D NMR) and chemical reactions. Protective effects of compounds 1-10 against H₂O₂-induced H9c2 cardiomyocyte injury were tested. Compounds 1-5, 7, and 10 showed cell-protective effects. Among them compound 5 exhibited the highest activity. No significant DPPH radical scavenging activity was observed for compounds 1-10.

  14. Migration of cardiomyocytes is essential for heart regeneration in zebrafish.

    PubMed

    Itou, Junji; Oishi, Isao; Kawakami, Hiroko; Glass, Tiffany J; Richter, Jenna; Johnson, Austin; Lund, Troy C; Kawakami, Yasuhiko

    2012-11-01

    Adult zebrafish possess a significant ability to regenerate injured heart tissue through proliferation of pre-existing cardiomyocytes, which contrasts with the inability of mammals to do so after the immediate postnatal period. Zebrafish therefore provide a model system in which to study how an injured heart can be repaired. However, it remains unknown what important processes cardiomyocytes are involved in other than partial de-differentiation and proliferation. Here we show that migration of cardiomyocytes to the injury site is essential for heart regeneration. Ventricular amputation induced expression of cxcl12a and cxcr4b, genes encoding a chemokine ligand and its receptor. We found that cxcl12a was expressed in the epicardial tissue and that Cxcr4 was expressed in cardiomyocytes. We show that pharmacological blocking of Cxcr4 function as well as genetic loss of cxcr4b function causes failure to regenerate the heart after ventricular resection. Cardiomyocyte proliferation was not affected but a large portion of proliferating cardiomyocytes remained localized outside the injury site. A photoconvertible fluorescent reporter-based cardiomyocyte-tracing assay demonstrates that cardiomyocytes migrated into the injury site in control hearts but that migration was inhibited in the Cxcr4-blocked hearts. By contrast, the epicardial cells and vascular endothelial cells were not affected by blocking Cxcr4 function. Our data show that the migration of cardiomyocytes into the injury site is regulated independently of proliferation, and that coordination of both processes is necessary for heart regeneration.

  15. Fine oil combustion particle bioavailable constituents induce molecular profiles of oxidative stress, altered function, and cellular injury in cardiomyocytes.

    PubMed

    Knuckles, Travis L; Dreher, Kevin L

    2007-11-01

    Epidemiological studies have shown a positive association between exposure to air particulate matter (PM) pollution and adverse cardiovascular health effects in susceptible subpopulations such as those with pre-existing cardiovascular disease. The mechanism(s) through which pulmonary deposited PM, particularly fine PM2.5, PM with mass median aerodynamic diameter <2.5 microm, affects the cardiovascular system is currently not known and remains a major focus of investigation. In the present study, the transcriptosome and transcription factor proteome were examined in rat neonatal cardiomyocyte (RCM) cultures, following an acute exposure to bioavailable constituents of PM2.5 oil combustion particles designated residual oil fly ash leachate (ROFA-L). Out of 3924 genes examined, 38 genes were suppressed and 44 genes were induced following a 1-h exposure to 3.5 microg/ml of a particle-free leachate of ROFA (ROFA-L). Genomic alterations in pathways related to IGF-1, VEGF, IL-2, PI3/AKT, cardiovascular disease, and free radical scavenging, among others, were detected 1 h postexposure to ROFA-L. Global gene expression was altered in a manner consistent with cardiac myocyte electrophysiological remodeling, cellular oxidative stress, and apoptosis. ROFA-L altered the transcription factor proteome by suppressing activity of 24 and activating 40 transcription factors out of a total of 149. Genomic alterations were found to correlate with changes in transcription factor proteome. These acute changes indicate pathological molecular alterations, which may lead to possible chronic alterations to the cardiac myocyte. These data also potentially relate underlying cardiovascular effects from occupational exposure to ROFA and identify how particles from specific emission sources may mediate ambient PM cardiac effects.

  16. A Proliferative Burst During Preadolescence Establishes the Final Cardiomyocyte Number

    PubMed Central

    Naqvi, Nawazish; Li, Ming; Calvert, John W.; Tejada, Thor; Lambert, Jonathan P.; Wu, Jianxin; Kesteven, Scott H.; Holman, Sara R.; Matsuda, Torahiro; Lovelock, Joshua D.; Howard, Wesley W.; Iismaa, Siiri E.; Chan, Andrea Y.; Crawford, Brian H.; Wagner, Mary B.; Martin, David I. K.; Lefer, David J.; Graham, Robert M.; Husain, Ahsan

    2014-01-01

    SUMMARY It is widely believed that perinatal cardiomyocyte terminal differentiation blocks cytokinesis, thereby causing binucleation and limiting regenerative repair after injury. This suggests that heart growth should occur entirely by cardiomyocyte hypertrophy during preadolescence when, in mice, cardiac mass increases many-fold over a few weeks. Here we show thata thyroid hormone surge activates the IGF-1/IGF1-R/Akt pathway on postnatal day-15andinitiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes. This proliferation increases cardiomyocyte numbers by ~40%, causing a major disparity between heart and cardiomyocyte growth. Also, the response to cardiac injury at postnatal day15 is intermediate between that observed at postnatal day-2 and -21, further suggesting persistence of cardiomyocyte proliferative capacity beyond the perinatal period. If replicated in humans, this may allow novel regenerative therapies for heart diseases. PMID:24813607

  17. A proliferative burst during preadolescence establishes the final cardiomyocyte number.

    PubMed

    Naqvi, Nawazish; Li, Ming; Calvert, John W; Tejada, Thor; Lambert, Jonathan P; Wu, Jianxin; Kesteven, Scott H; Holman, Sara R; Matsuda, Torahiro; Lovelock, Joshua D; Howard, Wesley W; Iismaa, Siiri E; Chan, Andrea Y; Crawford, Brian H; Wagner, Mary B; Martin, David I K; Lefer, David J; Graham, Robert M; Husain, Ahsan

    2014-05-08

    It is widely believed that perinatal cardiomyocyte terminal differentiation blocks cytokinesis, thereby causing binucleation and limiting regenerative repair after injury. This suggests that heart growth should occur entirely by cardiomyocyte hypertrophy during preadolescence when, in mice, cardiac mass increases many-fold over a few weeks. Here, we show that a thyroid hormone surge activates the IGF-1/IGF-1-R/Akt pathway on postnatal day 15 and initiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes. This proliferation increases cardiomyocyte numbers by ~40%, causing a major disparity between heart and cardiomyocyte growth. Also, the response to cardiac injury at postnatal day 15 is intermediate between that observed at postnatal days 2 and 21, further suggesting persistence of cardiomyocyte proliferative capacity beyond the perinatal period. If replicated in humans, this may allow novel regenerative therapies for heart diseases.

  18. The Impact of Circulating Mitochondrial DNA on Cardiomyocyte Apoptosis and Myocardial Injury After TLR4 Activation in Experimental Autoimmune Myocarditis.

    PubMed

    Wu, Bangwei; Ni, Huanchun; Li, Jian; Zhuang, Xinyu; Zhang, Jinjin; Qi, Zhiyong; Chen, Qiying; Wen, Zhichao; Shi, Haiming; Luo, Xinping; Jin, Bo

    2017-01-01

    Mitochondrial DNA (mtDNA), acting as a newly found 'danger-associated molecular patterns' (DAMPs), is released into circulation upon tissue injury and performs as a considerable activator of inflammation and immune response. However, the role of circulating mtDNA in experimental autoimmune myocarditis (EAM) as well as Toll like receptor4 (TLR4) mediated cardiac inflammation and injury remains unknown. A model of EAM was established in BALB/c mice by immunization with porcine cardiac myosin. Lipopolysaccharide (LPS) was used to stimulate TLR4 activation in EAM mice and H9C2 cells. LPS stimulation significantly aggravated cardiac inflammation and tissue injury in EAM, as demonstrated by increased myocardium inflammatory cell infiltration, and up-regulated inflammatory cytokines and troponin I(TnI) level in serum. Circulating mtDNA level was increased in EAM and TLR4 activation led to a greater elevation, which may be related to Reactive oxygen species (ROS) stress involved mtDNA damage characterized by reduced mtDNA copy number in myocardium tissue. In addition, the expression of Toll like receptor9 (TLR9), a ligand of mtDNA, was significantly up-regulated in the myocardium of EAM and EAM LPS group; meanwhile, TLR9 inhibition by ODN 2088 caused an inhibited apoptosis in LPS treated H9C2 cells. Moreover, in EAM and EAM LPS group, simultaneously giving ODN 2088 treatment significantly ameliorated cardiac inflammation and tissue injury compared with untreated group. Increased circulating mtDNA combined with upregulated TLR9 expression may corporately play a role in EAM as well as TLR4 activation mediated cardiac inflammation and injury. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. MiR-21 Protected Cardiomyocytes against Doxorubicin-Induced Apoptosis by Targeting BTG2

    PubMed Central

    Tong, Zhongyi; Jiang, Bimei; Wu, Yanyang; Liu, Yanjuan; Li, Yuanbin; Gao, Min; Jiang, Yu; Lv, Qinglan; Xiao, Xianzhong

    2015-01-01

    Doxorubicin (DOX) is an anthracycline drug with a wide spectrum of antineoplastic activities. However, it causes cardiac cytotoxicity, and this limits its clinical applications. MicroRNA-21 (miR-21) plays a vital role in regulating cell proliferation and apoptosis. While miR-21 is preferentially expressed in adult cardiomyocytes and involved in cardiac development and heart disease, little is known regarding its biological functions in responding to DOX-induced cardiac cytotoxicity. In this study, the effects of DOX on mouse cardiac function and the expression of miR-21 were examined in both mouse heart tissues and rat H9C2 cardiomyocytes. The results showed that the cardiac functions were more aggravated in chronic DOX injury mice compared with acute DOX-injury mice; DOX treatment significantly increased miR-21 expression in both mouse heart tissue and H9C2 cells. Over-expression of miR-21 attenuated DOX-induced apoptosis in cardiamyocytes whereas knocking down its expression increased DOX-induced apoptosis. These gain- and loss- of function experiments showed that B cell translocation gene 2 (BTG2) was a target of miR-21. The expression of BTG2 was significantly decreased both in myocardium and H9C2 cells treated with DOX. The present study has revealed that miR-21 protects mouse myocardium and H9C2 cells against DOX-induced cardiotoxicity probably by targeting BTG2. PMID:26132560

  20. Oxidant-induced cardiomyocyte injury: identification of the cytoprotective effect of a dopamine 1 receptor agonist using a cell-based high-throughput assay.

    PubMed

    Gerö, Domokos; Módis, Katalin; Nagy, Nóra; Szoleczky, Petra; Tóth, Zoltán Dóri; Dormán, György; Szabó, Csaba

    2007-11-01

    Myocyte injury due to myocardial reperfusion injury plays a crucial role in the pathogenesis of acute myocardial infarction even after successful coronary revascularization. Identification of compounds that reduce reperfusion-associated myocyte death is important. Therefore, we developed an in vitro model of myocardial reperfusion injury in H9c2 rat cardiomyocytes and applied a cell-based high-throughput approach to screen a standard library of pharmacologically active compounds (LOPAC) in order to identify drugs with cardioprotective effects. Oxidative stress was induced with hydrogen peroxide (H2O2) treatment, which resulted in approximately 50% reduction in cell viability. Test compounds were added at a 3-microM final concentration as a pretreatment or in a delayed fashion (30 min after the peroxide challenge in order to imitate pharmacological treatment following angioplasty). Cells were cultured for 3 or 24 h. Viability was quantitated with the methylthiazolyldiphenyl-tetrazolium bromide method. Cytotoxicity and cytoprotection were also evaluated by measuring the lactate dehydrogenase activity in the cell culture supernatant. The screening identified a number of compounds with cytoprotective action, including molecules that are known to interfere with components of DNA repair and cell cycle progression, e.g. poly(ADP-ribose) polymerase (PARP) inhibitors, topoisomerase inhibitors, and cyclin dependent kinase inhibitors, or reduce energy consumption by interfering with cardiac myofilament function. A number of dopamine D1 receptor agonists also provided significant cytoprotection at 3 h, but only three of them showed a similar effect at 24 h: chloro- and bromo-APB and chloro-PB hydrobromide. Chloro-APB hydrobromide significantly reduced peroxide-induced PARP activation in the myocytes independently of its action on dopamine D1 receptors, but lacked PARP inhibitor capacity in a cell-free PARP assay system. In conclusion, the pattern of cytoprotective drugs

  1. Printing-induced cell injury evaluation during laser printing of 3T3 mouse fibroblasts.

    PubMed

    Zhang, Zhengyi; Chai, Wenxuan; Xiong, Ruitong; Zhou, Lei; Huang, Yong

    2017-06-20

    Three-dimensional bioprinting has emerged as a promising solution for the freeform fabrication of living cellular constructs, which can be used for tissue/organ transplantation and tissue models. During bioprinting, some living cells are unavoidably injured and may become necrotic or apoptotic cells. This study aims to investigate the printing-induced cell injury and evaluates injury types of post-printing cells using the annexin V/7-aminoactinomycin D and FAM-DEVD-FMK/propidium iodide assays during laser printing of NIH 3T3 mouse fibroblasts. As observed, the percentage of post-printing early apoptotic mouse fibroblasts increases with the incubation time, indicating that post-printing apoptotic mouse fibroblasts have different initiation lag times of apoptosis due to different levels of mechanical stress exerted during laser printing. Post-printing necrotic mouse fibroblasts can be detected immediately after printing, while post-printing early apoptotic mouse fibroblasts need time to develop into a late apoptotic stage. The minimum time needed for post-printing early apoptotic mouse fibroblasts to complete their apoptosis pathway and transition into late apoptotic mouse fibroblasts is from 4 h to 5 h post-printing. The resulting knowledge of the evolution of different apoptotic post-printing mouse fibroblasts will help better design future experiments to quantitatively determine, model, and mitigate the post-printing cell injury based on molecular signal pathway modeling.

  2. AMP-activated protein kinase-dependent autophagy mediated the protective effect of sonic hedgehog pathway on oxygen glucose deprivation-induced injury of cardiomyocytes.

    PubMed

    Xiao, Qing; Yang, Ya; Qin, Yuan; He, Yan-Hua; Chen, Kui-Xiang; Zhu, Jian-Wei; Zhang, Gui-Ping; Luo, Jian-Dong

    2015-02-13

    Sonic hedgehog (Shh) pathway has been reported to protect cardiomyocytes in myocardial infarction (MI), but the underlying mechanism is not clear. Here, we provide evidence that Shh pathway induces cardiomyocytes survival through AMP-activated protein kinase-dependent autophagy. Shh pathway agonist SAG increased the expression of LC3-II, and induced the formation of autophagosomes in cultured H9c2 cardiomyocytes under oxygen glucose deprivation (OGD) 1 h and 4 h. Moreover, SAG induced a profound AMP-activated protein kinase (AMPK) activation, and then directly phosphorylated and activated the downstream autophagy initiator Ulk1, independent of the autophagy suppressor mammalian target of rapamycin (mTOR) complex 1. Taken together, our results have shown that Shh activates AMPK-dependent autophagy in cardiomyocytes under OGD, suggesting a role of autophagy in Shh-induced cellular protection.

  3. Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/reoxygenation injury induced by S1P postconditioning.

    PubMed

    Wang, Yuqing; Wang, Dongfei; Zhang, Lizhi; Ye, Fangyu; Li, Mengmeng; Wen, Ke

    2016-08-05

    This experiment was designed to explore the protection of sphingosine1-phosphate (S1P) postconditioning on rat myocardial cells injured by hypoxia/reoxygenation acting via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signal pathway. The data showed that S1P could significantly increase cell viability, lower the rate of apoptosis, decrease the content of lactate dehydrogenase (LDH) and caspase3 activity in the culture medium, increase the activity of total superoxide dismutase (T-SOD) and manganese superoxide dismutase (Mn-SOD), reduce the loss of mitochondrial membrane potential and the fluorescence intensity of intracellular calcium, as well as increase the phosphorylation of JAK2 and STAT3 in comparison with the H/R group. When the JAK inhibitor AG490 or the STAT inhibitor stattic were added, the effects of S1P were inhibited. Our date shows that S1P protects H9c2 cells from hypoxia/reoxygenation injury and that the protection by S1P was inhibited by AG490 and stattic. Therefore S1P protects H9c2 cells against hypoxia/reoxygenation injury via the JAK-STAT pathway.

  4. Mast Cell Protease 5 Mediates Ischemia-Reperfusion Injury of Mouse Skeletal Muscle1

    PubMed Central

    Abonia, J. Pablo; Friend, Daniel S.; Austen, William G.; Moore, Francis D.; Carroll, Michael C.; Chan, Rodney; Afnan, Jalil; Humbles, Alison; Gerard, Craig; Knight, Pamela; Kanaoka, Yoshihide; Yasuda, Shinsuke; Morokawa, Nasa; Austen, K. Frank; Stevens, Richard L.; Gurish, Michael F.

    2010-01-01

    Ischemia with subsequent reperfusion (IR) injury is a significant clinical problem that occurs after physical and surgical trauma, myocardial infarction, and organ transplantation. IR injury of mouse skeletal muscle depends on the presence of both natural IgM and an intact C pathway. Disruption of the skeletal muscle architecture and permeability also requires mast cell (MC) participation, as revealed by the fact that IR injury is markedly reduced in c-kit defective, MC-deficient mouse strains. In this study, we sought to identify the pathobiologic MC products expressed in IR injury using transgenic mouse strains with normal MC development, except for the lack of a particular MC-derived mediator. Histologic analysis of skeletal muscle from BALB/c and C57BL/6 mice revealed a strong positive correlation (R2 = 0.85) between the extent of IR injury and the level of MC degranulation. Linkage between C activation and MC degranulation was demonstrated in mice lacking C4, in which only limited MC degranulation and muscle injury were apparent. No reduction in injury was observed in transgenic mice lacking leukotriene C4 synthase, hemopoietic PGD2 synthase, N-deacetylase/N-sulfotransferase-2 (enzyme involved in heparin biosynthesis), or mouse MC protease (mMCP) 1. In contrast, muscle injury was significantly attenuated in mMCP-5-null mice. The MCs that reside in skeletal muscle contain abundant amounts of mMCP-5 which is the serine protease that is most similar in sequence to human MC chymase. We now report a cytotoxic activity associated with a MC-specific protease and demonstrate that mMCP-5 is critical for irreversible IR injury of skeletal muscle. PMID:15905575

  5. Mast cell protease 5 mediates ischemia-reperfusion injury of mouse skeletal muscle.

    PubMed

    Abonia, J Pablo; Friend, Daniel S; Austen, William G; Moore, Francis D; Carroll, Michael C; Chan, Rodney; Afnan, Jalil; Humbles, Alison; Gerard, Craig; Knight, Pamela; Kanaoka, Yoshihide; Yasuda, Shinsuke; Morokawa, Nasa; Austen, K Frank; Stevens, Richard L; Gurish, Michael F

    2005-06-01

    Ischemia with subsequent reperfusion (IR) injury is a significant clinical problem that occurs after physical and surgical trauma, myocardial infarction, and organ transplantation. IR injury of mouse skeletal muscle depends on the presence of both natural IgM and an intact C pathway. Disruption of the skeletal muscle architecture and permeability also requires mast cell (MC) participation, as revealed by the fact that IR injury is markedly reduced in c-kit defective, MC-deficient mouse strains. In this study, we sought to identify the pathobiologic MC products expressed in IR injury using transgenic mouse strains with normal MC development, except for the lack of a particular MC-derived mediator. Histologic analysis of skeletal muscle from BALB/c and C57BL/6 mice revealed a strong positive correlation (R(2) = 0.85) between the extent of IR injury and the level of MC degranulation. Linkage between C activation and MC degranulation was demonstrated in mice lacking C4, in which only limited MC degranulation and muscle injury were apparent. No reduction in injury was observed in transgenic mice lacking leukotriene C(4) synthase, hemopoietic PGD(2) synthase, N-deacetylase/N-sulfotransferase-2 (enzyme involved in heparin biosynthesis), or mouse MC protease (mMCP) 1. In contrast, muscle injury was significantly attenuated in mMCP-5-null mice. The MCs that reside in skeletal muscle contain abundant amounts of mMCP-5 which is the serine protease that is most similar in sequence to human MC chymase. We now report a cytotoxic activity associated with a MC-specific protease and demonstrate that mMCP-5 is critical for irreversible IR injury of skeletal muscle.

  6. GATA4 regulates Fgf16 to promote heart repair after injury.

    PubMed

    Yu, Wei; Huang, Xiuzhen; Tian, Xueying; Zhang, Hui; He, Lingjuan; Wang, Yue; Nie, Yu; Hu, Shengshou; Lin, Zhiqiang; Zhou, Bin; Pu, William; Lui, Kathy O; Zhou, Bin

    2016-03-15

    Although the mammalian heart can regenerate during the neonatal stage, this endogenous regenerative capacity is lost with age. Importantly, replication of cardiomyocytes has been found to be the key mechanism responsible for neonatal cardiac regeneration. Unraveling the transcriptional regulatory network for inducing cardiomyocyte replication will, therefore, be crucial for the development of novel therapies to drive cardiac repair after injury. Here, we investigated whether the key cardiac transcription factor GATA4 is required for neonatal mouse heart regeneration. Using the neonatal mouse heart cryoinjury and apical resection models with an inducible loss of GATA4 specifically in cardiomyocytes, we found severely depressed ventricular function in the Gata4-ablated mice (mutant) after injury. This was accompanied by reduced cardiomyocyte replication. In addition, the mutant hearts displayed impaired coronary angiogenesis and increased hypertrophy and fibrosis after injury. Mechanistically, we found that the paracrine factor FGF16 was significantly reduced in the mutant hearts after injury compared with littermate controls and was directly regulated by GATA4. Cardiac-specific overexpression of FGF16 via adeno-associated virus subtype 9 (AAV9) in the mutant hearts partially rescued the cryoinjury-induced cardiac hypertrophy, promoted cardiomyocyte replication and improved heart function after injury. Altogether, our data demonstrate that GATA4 is required for neonatal heart regeneration through regulation of Fgf16, suggesting that paracrine factors could be of potential use in promoting myocardial repair. © 2016. Published by The Company of Biologists Ltd.

  7. A mouse model of weight-drop closed head injury: emphasis on cognitive and neurological deficiency.

    PubMed

    Khalin, Igor; Jamari, Nor Laili Azua; Razak, Nadiawati Bt Abdul; Hasain, Zubaidah Bt; Nor, Mohd Asri Bin Mohd; Zainudin, Mohd Hakimi Bin Ahmad; Omar, Ainsah Bt; Alyautdin, Renad

    2016-04-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in individuals worldwide. Producing a clinically relevant TBI model in small-sized animals remains fairly challenging. For good screening of potential therapeutics, which are effective in the treatment of TBI, animal models of TBI should be established and standardized. In this study, we established mouse models of closed head injury using the Shohami weight-drop method with some modifications concerning cognitive deficiency assessment and provided a detailed description of the severe TBI animal model. We found that 250 g falling weight from 2 cm height produced severe closed head injury in C57BL/6 male mice. Cognitive disorders in mice with severe closed head injury could be detected using passive avoidance test on day 7 after injury. Findings from this study indicate that weight-drop injury animal models are suitable for further screening of brain neuroprotectants and potentially are similar to those seen in human TBI.

  8. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death

    PubMed Central

    Aurora, Arin B.; Mahmoud, Ahmed I.; Luo, Xiang; Johnson, Brett A.; van Rooij, Eva; Matsuzaki, Satoshi; Humphries, Kenneth M.; Hill, Joseph A.; Bassel-Duby, Rhonda; Sadek, Hesham A.; Olson, Eric N.

    2012-01-01

    Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca2+ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca2+ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca2+ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca2+ influx; and to repression of several downstream effectors of Ca2+ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca2+ homeostasis and survival during cardiac injury. PMID:22426211

  9. A novel mouse model of cutaneous radiation injury.

    PubMed

    Thanik, Vishal D; Chang, Christopher C; Zoumalan, Richard A; Lerman, Oren Z; Allen, Robert J; Nguyen, Phuong D; Warren, Stephen M; Coleman, Sydney R; Hazen, Alexes

    2011-02-01

    Radiation therapy is a cornerstone of oncologic treatment. Skin tolerance is often the limiting factor in radiotherapy. To study these issues and create modalities for intervention, the authors developed a novel murine model of cutaneous radiation injury. The dorsal skin was isolated using a low-pressure clamp and irradiated. Mice were followed for 8 weeks with serial photography and laser Doppler analysis. Sequential skin biopsy specimens were taken and examined histologically. Tensiometry was performed and Young's modulus calculated. High-dose radiation isolated to dorsal skin causes progressive changes in skin perfusion, resulting in dermal thickening, fibrosis, persistent alopecia, and sometimes ulceration. There is increased dermal Smad3 expression, and decreased elasticity and bursting strength. This model of cutaneous radiation injury delivers reproducible localized effects, mimicking the injury pattern seen in human subjects. This technique can be used to study radiation-induced injury to evaluate preventative and therapeutic strategies for these clinical issues.

  10. A novel mouse model of aortic valve stenosis induced by direct wire injury.

    PubMed

    Honda, Shintaro; Miyamoto, Takuya; Watanabe, Tetsu; Narumi, Taro; Kadowaki, Shinpei; Honda, Yuki; Otaki, Yoichiro; Hasegawa, Hiromasa; Netsu, Shunsuke; Funayama, Akira; Ishino, Mitsunori; Nishiyama, Satoshi; Takahashi, Hiroki; Arimoto, Takanori; Shishido, Tetsuro; Miyashita, Takehiko; Kubota, Isao

    2014-02-01

    The response-to-tissue-injury theory is currently the favorite paradigm to investigate valve pathology. To the best of our knowledge, there are currently no in vivo valve injury models. There are few calcific aortic valve stenosis (AVS) models that develop hemodynamically significant stenosis. Here, we investigated the effect of direct mechanical injury on aortic valves in vivo and developed a novel mouse model of calcific AVS. Aortic valve injury was created by inserting and moving a spring guidewire under echocardiographic guidance into the left ventricle of male C57/BL6 mice via right common carotid artery. Serial echocardiographic measurements revealed that aortic velocity was increased 1 week after injury and persistently increased until 16 weeks after injury. AVS mice showed a higher heart weight/body weight ratio and decreased left ventricular fractioning shortening 4 weeks after injury, compared with sham mice. We found remarkable proliferation of valve leaflets 4 weeks after injury. Proliferative valves showed increased production of reactive oxygen species and expression of inflammatory cytokines and osteochondrogenic factors. Alizarin red staining showed valvular calcification 12 weeks after injury. We report a novel calcific AVS model to support the response-to-tissue-injury theory. This model may be a valuable tool for analyzing the mechanism of AVS and assessing therapeutic options.

  11. Hierarchical organization of the hemostatic response to penetrating injuries in the mouse macrovasculature.

    PubMed

    Welsh, J D; Poventud-Fuentes, I; Sampietro, S; Diamond, S L; Stalker, T J; Brass, L F

    2017-03-01

    Essentials Methods were developed to image the hemostatic response in mouse femoral arteries in real time. Penetrating injuries produced thrombi consisting primarily of platelets. Similar to arterioles, a core-shell architecture of platelet activation occurs in the femoral artery. Differences from arterioles included slower platelet activation and reduced thrombin dependence.

  12. A mouse model of human repetitive mild traumatic brain injury

    PubMed Central

    Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

  13. A mouse model of human repetitive mild traumatic brain injury.

    PubMed

    Kane, Michael J; Angoa-Pérez, Mariana; Briggs, Denise I; Viano, David C; Kreipke, Christian W; Kuhn, Donald M

    2012-01-15

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 min. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel.

  14. Pluripotent Stem Cell Derived Cardiomyocytes for Cardiac Repair

    PubMed Central

    Lundy, Scott D.; Gantz, Jay A.; Pagan, Chelsea M.; Filice, Dominic; Laflamme, Michael A.

    2014-01-01

    Opinion Statement The adult mammalian heart has limited capacity for generation, so a major injury such as a myocardial infarction results in the permanent loss of up to one billion cardiomyocytes. The field of cardiac cell therapy aims to replace these lost contractile units with de novo cardiomyocytes to restore lost systolic function and prevent progression to heart failure. Arguably the ideal cell for this application is the human cardiomyocyte itself, which can electromechanically couple with host myocardium and contribute active systolic force. Pluripotent stem cells from both human embryonic or induced pluripotent lineages are attractive sources for cardiomyocytes, and preclinical investigation of these cells is in progress. Recent work has focused on efficient generation and purification of cardiomyocytes, tissue engineering efforts, and examining the consequences of cell transplantation from mechanical, vascular, and electrical standpoints. Here we discuss historical and contemporary aspects of pluripotent stem cell-based cardiac cell therapy, with an emphasis on recent preclinical studies with translational goals. PMID:24838687

  15. A Novel Mouse Model of Penetrating Brain Injury

    PubMed Central

    Cernak, Ibolja; Wing, Ian D.; Davidsson, Johan; Plantman, Stefan

    2014-01-01

    Penetrating traumatic brain injury (pTBI) has been difficult to model in small laboratory animals, such as rats or mice. Previously, we have established a non-fatal, rat model for pTBI using a modified air-rifle that accelerates a pellet, which hits a small probe that then penetrates the experimental animal’s brain. Knockout and transgenic strains of mice offer attractive tools to study biological reactions induced by TBI. Hence, in the present study, we adapted and modified our model to be used with mice. The technical characterization of the impact device included depth and speed of impact, as well as dimensions of the temporary cavity formed in a brain surrogate material after impact. Biologically, we have focused on three distinct levels of severity (mild, moderate, and severe), and characterized the acute phase response to injury in terms of tissue destruction, neural degeneration, and gliosis. Functional outcome was assessed by measuring bodyweight and motor performance on rotarod. The results showed that this model is capable of reproducing major morphological and neurological changes of pTBI; as such, we recommend its utilization in research studies aiming to unravel the biological events underlying injury and regeneration after pTBI. PMID:25374559

  16. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  17. NF-kB activation as a biomarker of light injury using a transgenic mouse model

    NASA Astrophysics Data System (ADS)

    Pocock, Ginger M.; Boretsky, Adam; Wang, Heuy-Ching; Golden, Dallas; Gupta, Praveena; Vargas, Gracie; Oliver, Jeffrey W.; Motamedi, Massoud

    2012-03-01

    The spatial and temporal activation of NF-kB (p65) was monitored in the retina of a transgenic mouse model (cis-NFkB-EGFP) in vivo after receiving varying grades of laser induced thermal injury in one eye. Baseline images of the retinas from 26 mice were collected prior to injury and up to five months post-exposure using a Heidelberg Spectralis HRA confocal scanning laser ophthalmoscope (cSLO) with a spectral domain optical coherence tomographer (SDOCT). Injured and control eyes were enucleated at discrete time points following laser exposure for cryosectioning to determine localization of NF-kB dependent enhanced green fluorescent protein (EGFP) reporter gene expression within the retina using fluorescence microscopy. In addition, EGFP basal expression in brain and retinal tissue from the cis-NFkB-EGFP was characterized using two-photon imaging. Regions of the retina exposed to threshold and supra-threshold laser damage evaluated using fluorescence cSLO showed increased EGFP fluorescence localized to the exposed region for a duration that was dependent upon the degree of injury. Fluorescence microscopy of threshold damage revealed EGFP localized to the outer nuclear region and retinal pigment epithelial layer. Basal expression of EGFP imaged using two-photon microscopy was heterogeneously distributed throughout brain tissue and confined to the inner retina. Results show cis-NF-kB-EGFP reporter mouse can be used for in vivo studies of light induced injury to the retina and possibly brain injury.

  18. Building and re-building the heart by cardiomyocyte proliferation

    PubMed Central

    Foglia, Matthew J.; Poss, Kenneth D.

    2016-01-01

    The adult human heart does not regenerate significant amounts of lost tissue after injury. Rather than making new, functional muscle, human hearts are prone to scarring and hypertrophy, which can often lead to fatal arrhythmias and heart failure. The most-cited basis of this ineffective cardiac regeneration in mammals is the low proliferative capacity of adult cardiomyocytes. However, mammalian cardiomyocytes can avidly proliferate during fetal and neonatal development, and both adult zebrafish and neonatal mice can regenerate cardiac muscle after injury, suggesting that latent regenerative potential exists. Dissecting the cellular and molecular mechanisms that promote cardiomyocyte proliferation throughout life, deciphering why proliferative capacity normally dissipates in adult mammals, and deriving means to boost this capacity are primary goals in cardiovascular research. Here, we review our current understanding of how cardiomyocyte proliferation is regulated during heart development and regeneration. PMID:26932668

  19. Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells via Toll-like receptor 7 signaling.

    PubMed

    Feng, Yan; Chen, Hongliang; Cai, Jiayan; Zou, Lin; Yan, Dan; Xu, Ganqiong; Li, Dan; Chao, Wei

    2015-10-30

    We have recently reported that extracellular RNA (exRNA) released from necrotic cells induces cytokine production in cardiomyocytes and immune cells and contributes to myocardial ischemia/reperfusion injury. However, the signaling mechanism by which exRNA exhibits its pro-inflammatory effect is unknown. Here we hypothesize that exRNA directly induces inflammation through specific Toll-like receptors (TLRs). To test the hypothesis, we treated rat neonatal cardiomyocytes, mouse bone marrow-derived macrophages (BMDM), or mouse neutrophils with RNA (2.5-10 μg/ml) isolated from rat cardiomyocytes or the hearts from mouse, rat, and human. We found that cellular RNA induced production of several cytokines such as macrophage inflammatory protein-2 (MIP-2), ILs, TNFα, and the effect was completely diminished by RNase, but not DNase. The RNA-induced cytokine production was partially inhibited in cells treated with TLR7 antagonist or genetically deficient in TLR7. Deletion of myeloid differentiation primary response protein 88 (MyD88), a downstream adapter of TLRs including TLR7, abolished the RNA-induced MIP-2 production. Surprisingly, genetic deletion of TLR3 had no impact on the RNA-induced MIP-2 response. Importantly, extracellular RNA released from damaged cardiomyocytes also induced cytokine production. Finally, mice treated with 50 μg of RNA intraperitoneal injection exhibited acute peritonitis as evidenced by marked neutrophil and monocyte migration into the peritoneal space. Together, these data demonstrate that exRNA of cardiac origin exhibits a potent pro-inflammatory property in vitro and in vivo and that exRNA induces cytokine production through TLR7-MyD88 signaling.

  20. Epiplakin attenuates experimental mouse liver injury by chaperoning keratin reorganization

    PubMed Central

    Szabo, Sandra; Wögenstein, Karl L.; Österreicher, Christoph H.; Guldiken, Nurdan; Chen, Yu; Doler, Carina; Wiche, Gerhard; Boor, Peter; Haybaeck, Johannes; Strnad, Pavel; Fuchs, Peter

    2015-01-01

    Background & Aims Epiplakin is a member of the plakin protein family and exclusively expressed in epithelial tissues where it binds to keratins. Epiplakin-deficient (Eppk1−/−) mice displayed no obvious spontaneous phenotype, but their keratinocytes showed a faster keratin network breakdown in response to stress. The role of epiplakin in the stressed liver remained to be elucidated. Methods Wild-type (WT) and Eppk1−/− mice were subjected to common bile duct ligation (CBDL) or fed with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. The importance of epiplakin during keratin reorganization was assessed in primary hepatocytes. Results Our experiments revealed that epiplakin is expressed in hepatocytes and cholangiocytes, and binds to keratin 8 (K8) and K18 via multiple domains. In several liver stress models epiplakin and K8 genes displayed identical expression patterns and transgenic K8 overexpression resulted in elevated hepatic epiplakin levels. After CBDL and DDC treatment, Eppk1−/− mice developed a more pronounced liver injury and their livers contained larger amounts of hepatocellular keratin granules, indicating impaired disease-induced keratin network reorganization. In line with these findings, primary Eppk1−/− hepatocytes showed increased formation of keratin aggregates after treatment with the phosphatase inhibitor okadaic acid, a phenotype which was rescued by the chemical chaperone trimethylamine N-oxide (TMAO). Finally, transfection experiments revealed that Eppk1−/− primary hepatocytes were less able to tolerate forced K8 overexpression and that TMAO treatment rescued this phenotype. Conclusion Our data indicate that epiplakin plays a protective role during experimental liver injuries by chaperoning disease-induced keratin reorganization. PMID:25617501

  1. Evolving approaches to heart regeneration by therapeutic stimulation of resident cardiomyocyte cell cycle

    PubMed Central

    Turan, Raife Dilek; Aslan, Galip Servet; Yücel, Doğacan; Döğer, Remziye; Kocabaş, Fatih

    2016-01-01

    Heart has long been considered a terminally differentiated organ. Recent studies, however, have suggested that there is a modest degree of cardiomyocyte (CM) turnover in adult mammalian heart, albeit not sufficient for replacement of lost CMs following cardiac injuries. Cardiac regeneration studies in various model organisms including zebrafish, newt, and more recently in neonatal mouse, have demonstrated that CM dedifferentiation and concomitant proliferation play important roles in replacement of lost CMs and restoration of cardiac contractility. Further studies with neonatal cardiac regeneration mouse model suggested that major source of new CMs is existing CMs, with the possibility of involvement of cardiac stem cells. Numerous studies have now been conducted on induction of cardiac regeneration and have identified various cardiogenic factors, cardiogenic micro ribonucleic acid and cardiogenic small molecules. This report is a review of studies regarding generation of CM and prospects for application. PMID:27872447

  2. A 2 week routine stretching programme did not prevent contraction-induced injury in mouse muscle.

    PubMed

    Black, Jonathon D J; Freeman, Marcus; Stevens, E Don

    2002-10-01

    Most athletes stretch as part of their training regimen and it is commonly believed that this practice prevents muscle injury. We tested this belief using an animal model, in situ mouse extensor digitorum longus (EDL) muscle. One lower hindlimb was slowly stretched for 1 min on alternate days for 12 days; the other leg served as a control. The mouse was lightly anaesthetized during the stretching protocol (isofluorane). Both legs were tested in situ by measuring maximum isometric force and maximum work before and after an eccentric contraction that was designed to cause a contraction-induced injury. The difference between a contraction before and after (i.e. the deficit) was used as a measure of damage caused by the eccentric contraction. There was a threshold for force deficit at a peak to peak eccentric excursion amplitude of 19.5 % (i.e. L(o) +/- 9.75 %, where L(o) is muscle length at peak isometric force). There was a significant increase in force deficit, work deficit, and curve shift with an increase in eccentric excursion amplitude above the threshold. There was no statistical difference in the force deficit, work deficit, or curve shift between the stretched leg and the control leg (P > 0.05). A routine stretching programme, at least at the intensities employed in this experiment, did not prevent contraction-induced injury in the in situ mouse EDL muscle.

  3. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  4. A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage

    PubMed Central

    Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E.; Rex, Tonia S.

    2012-01-01

    We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positioned to measure output pressures at the location where the mouse eye would be placed. Mice were exposed to one of three blast pressures (23.6, 26.4, or 30.4psi). Gross pathology, intraocular pressure, optical coherence tomography, and visual acuity were assessed 0, 3, 7, 14, and 28 days after exposure. Contralateral eyes and non-blast exposed mice were used as controls. We detected increased damage with increased pressures and a shift in the damage profile over time. Gross pathology included corneal edema, corneal abrasions, and optic nerve avulsion. Retinal damage was detected by optical coherence tomography and a deficit in visual acuity was detected by optokinetics. Our findings are comparable to those identified in Veterans of the recent wars with closed eye injuries as a result of blast exposure. In summary, this is a relatively simple system that creates injuries with features similar to those seen in patients with ocular blast trauma. This is an important new model for testing the short-term and long-term spectrum of closed globe blast injuries and potential therapeutic interventions. PMID:22504073

  5. Functional expression and regulation of hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in mouse iPS cell-derived cardiomyocytes after UTF1 -neo selection.

    PubMed

    Semmler, Judith; Lehmann, Martin; Pfannkuche, Kurt; Reppel, Michael; Hescheler, Jürgen; Nguemo, Filomain

    2014-01-01

    In vitro reprogramming of somatic cells holds great potential to serve as an autologous source of cells for tissue repair. However, major difficulties in achieving this potential include obtaining homogeneous and stable cells for transplantation. High electrical activity of cells such as cardiomyocytes (CMs) is crucial for both, safety and efficiency of cell replacement therapy. Moreover, the function of the cardiac pacemaker is controlled by the activities of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here we have examined changes in HCN gene expression and function during cardiomyogenesis. We differentiated murine iPS cells selected by an undifferentiated transcription factor 1 (UTF1) -promoter-driven G418 resistance to CMs in vitro and characterized them by RT-PCR, immunocytochemistry, and electrophysiology. As key cardiac markers alpha-actinin and cardiac troponin T could be identified in derived CMs. Immunocytochemical staining of CMs showed the presence of all HCN subunits (HCN1-4). Electrophysiology experiments revealed developmental changes of action potentials and If currents as well as functional hormonal regulation and sensitivity to If channel blockers. We conclude that iPS cells derived from UTF-selection give rise to functional CMs in vitro, with established hormonal regulation pathways and functionally expressed If current in a development-dependent manner; and have all phenotypes with the pacemaker as predominant subtype. This might be of great importance for transplantation purposes. © 2014 S. Karger AG, Basel.

  6. Cardiomyocyte-specific overexpression of an active form of Rac predisposes the heart to increased myocardial stunning and ischemia-reperfusion injury

    PubMed Central

    Talukder, M. A. Hassan; Elnakish, Mohammad T.; Yang, Fuchun; Nishijima, Yoshinori; Alhaj, Mazin A.; Velayutham, Murugesan; Hassanain, Hamdy H.

    2013-01-01

    The GTP-binding protein Rac regulates diverse cellular functions including activation of NADPH oxidase, a major source of superoxide production (O2·−). Rac1-mediated NADPH oxidase activation is increased after myocardial infarction (MI) and heart failure both in animals and humans; however, the impact of increased myocardial Rac on impending ischemia-reperfusion (I/R) is unknown. A novel transgenic mouse model with cardiac-specific overexpression of constitutively active mutant form of Zea maize Rac D (ZmRacD) gene has been reported with increased myocardial Rac-GTPase activity and O2·− generation. The goal of the present study was to determine signaling pathways related to increased myocardial ZmRacD and to what extent hearts with increased ZmRacD proteins are susceptible to I/R injury. The effect of myocardial I/R was examined in young adult wild-type (WT) and ZmRacD transgenic (TG) mice. In vitro reversible myocardial I/R for postischemic cardiac function and in vivo regional myocardial I/R for MI were performed. Following 20-min global ischemia and 45-min reperfusion, postischemic cardiac contractile function and heart rate were significantly reduced in TG hearts compared with WT hearts. Importantly, acute regional myocardial I/R (30-min ischemia and 24-h reperfusion) caused significantly larger MI in TG mice compared with WT mice. Western blot analysis of cardiac homogenates revealed that increased myocardial ZmRacD gene expression is associated with concomitant increased levels of NADPH oxidase subunit gp91phox, O2·−, and P21-activated kinase. Thus these findings provide direct evidence that increased levels of active myocardial Rac renders the heart susceptible to increased postischemic contractile dysfunction and MI following acute I/R. PMID:23161879

  7. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model.

    PubMed

    Alexander, Kylie A; Chang, Ming K; Maylin, Erin R; Kohler, Thomas; Müller, Ralph; Wu, Andy C; Van Rooijen, Nico; Sweet, Matthew J; Hume, David A; Raggatt, Liza J; Pettit, Allison R

    2011-07-01

    Bone-lining tissues contain a population of resident macrophages termed osteomacs that interact with osteoblasts in vivo and control mineralization in vitro. The role of osteomacs in bone repair was investigated using a mouse tibial bone injury model that heals primarily through intramembranous ossification and progresses through all major phases of stabilized fracture repair. Immunohistochemical studies revealed that at least two macrophage populations, F4/80(+) Mac-2(-/low) TRACP(-) osteomacs and F4/80(+) Mac-2(hi) TRACP(-) inflammatory macrophages, were present within the bone injury site and persisted throughout the healing time course. In vivo depletion of osteomacs/macrophages (either using the Mafia transgenic mouse model or clodronate liposome delivery) or osteoclasts (recombinant osteoprotegerin treatment) established that osteomacs were required for deposition of collagen type 1(+) (CT1(+)) matrix and bone mineralization in the tibial injury model, as assessed by quantitative immunohistology and micro-computed tomography. Conversely, administration of the macrophage growth factor colony-stimulating factor 1 (CSF-1) increased the number of osteomacs/macrophages at the injury site significantly with a concurrent increase in new CT1(+) matrix deposition and enhanced mineralization. This study establishes osteomacs as participants in intramembranous bone healing and as targets for primary anabolic bone therapies. Copyright © 2011 American Society for Bone and Mineral Research.

  8. Plasminogen activator inhibitor-1 in acute hyperoxic mouse lung injury.

    PubMed Central

    Barazzone, C; Belin, D; Piguet, P F; Vassalli, J D; Sappino, A P

    1996-01-01

    Hyperoxia-induced lung disease is associated with prominent intraalveolar fibrin deposition. Fibrin turnover is tightly regulated by the concerted action of proteases and antiproteases, and inhibition of plasmin-mediated proteolysis could account for fibrin accumulation in lung alveoli. We show here that lungs of mice exposed to hyperoxia overproduce plasminogen activator inhibitor-1 (PAI-1), and that PAI-1 upregulation impairs fibrinolytic activity in the alveolar compartment. To explore whether increased PAI-1 production is a causal or only a correlative event for impaired intraalveolar fibrinolysis and the development of hyaline membrane disease, we studied mice genetically deficient in PAI-1. We found that these mice fail to develop intraalveolar fibrin deposits in response to hyperoxia and that they are more resistant to the lethal effects of hyperoxic stress. These observations provide clear and novel evidence for the pathogenic contribution of PAI-1 in the development of hyaline membrane disease. They identify PAI-1 as a major deleterious mediator of hyperoxic lung injury. PMID:8981909

  9. A mouse model of weight-drop closed head injury: emphasis on cognitive and neurological deficiency

    PubMed Central

    Khalin, Igor; Jamari, Nor Laili Azua; Razak, Nadiawati Bt Abdul; Hasain, Zubaidah Bt; Nor, Mohd Asri bin Mohd; Zainudin, Mohd Hakimi bin Ahmad; Omar, Ainsah Bt; Alyautdin, Renad

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in individuals worldwide. Producing a clinically relevant TBI model in small-sized animals remains fairly challenging. For good screening of potential therapeutics, which are effective in the treatment of TBI, animal models of TBI should be established and standardized. In this study, we established mouse models of closed head injury using the Shohami weight-drop method with some modifications concerning cognitive deficiency assessment and provided a detailed description of the severe TBI animal model. We found that 250 g falling weight from 2 cm height produced severe closed head injury in C57BL/6 male mice. Cognitive disorders in mice with severe closed head injury could be detected using passive avoidance test on day 7 after injury. Findings from this study indicate that weight-drop injury animal models are suitable for further screening of brain neuroprotectants and potentially are similar to those seen in human TBI. PMID:27212925

  10. Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes.

    PubMed

    Trivedi, Purvi C; Bartlett, Jordan J; Perez, Lester J; Brunt, Keith R; Legare, Jean Francois; Hassan, Ansar; Kienesberger, Petra C; Pulinilkunnil, Thomas

    2016-12-01

    Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Recombinant erythropoietin is neuroprotective in a novel mouse oxidative injury model.

    PubMed

    Juul, Sandra E; McPherson, Ronald J; Bammler, Theodor K; Wilkerson, Jasmine; Beyer, Richard P; Farin, Federico M

    2008-01-01

    To identify neuroprotective changes in gene expression, we developed a neonatal mouse model of moderate to severe oxidative brain injury and hypothesized that recombinant erythropoietin (rEpo) would decrease the expression of proapoptotic and proinflammatory genes 24 and 48 h, respectively, after injury and increase the expression of neurogenic and angiogenic genes 168 h after injury. Postnatal day 10 BALB-c mice underwent sham surgery or right common carotid artery occlusion followed by alternating hypoxia and hyperoxia and were then treated with rEpo (5,000 U/kg s.c.) or saline (vehicle) daily for up to three doses. At death, gross brain injury was assessed, then hippocampus, cortex, and thalamus were isolated for RNA or protein extraction. Microarray analysis, real-time polymerase chain reaction, and Bio-Plex suspension array system validation were performed. rEpo decreased both incidence and severity of brain injury (median injury score 3 vs. 0, p < 0.0001) and reduced the injury-induced increases in interleukin-1alpha and interleukin-6 gene expression (p < 0.001), with corresponding effects on protein translation. Similarly, the expression of caspase-1, caspase-4, and caspase-6 and of p53 was increased by brain injury at 24 h, but mitigated by rEpo (p < 0.01). The interleukin-10 expression was higher in the rEpo-treated animals. Apoptotic and proinflammatory gene expression persisted for 168 h. There was no increase in angiogenic gene expression at the time points studied.

  12. Increase in Cardiac Ischemia-Reperfusion Injuries in Opa1+/- Mouse Model

    PubMed Central

    Fauconnier, Jérémy; Cellier, Laura; Tamareille, Sophie; Gharib, Abdallah; Chevrollier, Arnaud; Loufrani, Laurent; Grenier, Céline; Kamel, Rima; Sarzi, Emmanuelle; Lacampagne, Alain; Ovize, Michel; Henrion, Daniel; Reynier, Pascal; Lenaers, Guy; Mirebeau-Prunier, Delphine

    2016-01-01

    Background Recent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain. Objectives To investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries. Methods and Results We examined mice exhibiting Opa1delTTAG mutations (Opa1+/-), showing 70% Opa1 protein expression in the myocardium as compared to their wild-type (WT) littermates. Cardiac left-ventricular systolic function assessed by means of echocardiography was observed to be similar in 3-month-old WT and Opa1+/- mice. After subjection to I/R, infarct size was significantly greater in Opa1+/- than in WTs both in vivo (43.2±4.1% vs. 28.4±3.5%, respectively; p<0.01) and ex vivo (71.1±3.2% vs. 59.6±8.5%, respectively; p<0.05). No difference was observed in the expression of other main fission/fusion protein, oxidative phosphorylation, apoptotic markers, or mitochondrial permeability transition pore (mPTP) function. Analysis of calcium transients in isolated ventricular cardiomyocytes demonstrated a lower sarcoplasmic reticulum Ca2+ uptake, whereas cytosolic Ca2+ removal from the Na+/Ca2+ exchanger (NCX) was increased, whilst SERCA2a, phospholamban, and NCX protein expression levels were unaffected in Opa1+/- compared to WT mice. Simultaneous whole-cell patch-clamp recordings of mitochondrial Ca2+ movements and ventricular action potential (AP) showed impairment of dynamic mitochondrial Ca2+ uptake and a marked increase in the AP late repolarization phase in conjunction with greater occurrence of arrhythmia in Opa1+/- mice. Conclusion Opa1 deficiency was associated with increased sensitivity to I/R, imbalance in dynamic mitochondrial Ca2+ uptake, and subsequent increase in NCX activity. PMID:27723783

  13. Liver transplantation in the mouse: Insights into liver immunobiology, tissue injury, and allograft tolerance.

    PubMed

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A; Thomson, Angus W

    2016-04-01

    The surgically demanding mouse orthotopic liver transplant model was first described in 1991. It has proved to be a powerful research tool for the investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction, and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, because the mouse genome is well characterized and there is much greater availability of both genetically modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice have provided valuable mechanistic insights into the immunobiology and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in the regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/immune-mediated events in the hepatic environment and systemically. In conclusion, orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology, and allograft tolerance that may result in therapeutic innovation in the liver and in the treatment of other diseases.

  14. Liver Transplantation in the Mouse: Insights Into Liver Immunobiology, Tissue Injury and Allograft Tolerance

    PubMed Central

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A.; Thomson, Angus W.

    2016-01-01

    The surgically-demanding mouse orthotopic liver transplant model was first described in 1991. It has proved a powerful research tool for investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, since the mouse genome is well-characterized and there is much greater availability of both genetically-modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice has provided valuable mechanistic insights into the immuno- and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/ immune-mediated events in the hepatic environment and systemically. Conclusion: Orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology and allograft tolerance that may result in therapeutic innovation in liver and other diseases. PMID:26709949

  15. Enhanced progenitor cell recruitment and endothelial repair after selective endothelial injury of the mouse kidney.

    PubMed

    Hohenstein, Bernd; Kuo, Mei-Chuan; Addabbo, Francesco; Yasuda, Kaoru; Ratliff, Brian; Schwarzenberger, Claudia; Eckardt, Kai-Uwe; Hugo, Christian P M; Goligorsky, Michael S

    2010-06-01

    Primary and/or secondary injury of the renal microvascular endothelium is a common finding in various renal diseases. Besides well-known endothelial repair mechanisms, including endothelial cell (EC) proliferation and migration, homing of extrinsic cells such as endothelial progenitor cells (EPC) and hematopoietic stem cells (HSC) has been shown in various organs and may contribute to microvascular repair. However, these mechanisms have so far not been studied after selective microvascular injury in the kidney. The present study investigated the time course of EPC and HSC stimulation and homing following induction of selective EC injury in the mouse kidney along with various angiogenic factors potentially involved in EC repair and progenitor cell stimulation. Erythropoietin was used to stimulate progenitor cells in a therapeutic approach. We found that selective EC injury leads to a marked stimulation of EPCs, HSCs, and various angiogenic factors to orchestrate microvascular repair. Angiogenic factors started to increase as early as 30 min after disease induction. Progenitor cells could be first detected in the circulation and the spleen before they selectively homed to the diseased kidney. Injection of a high dose of erythropoietin 2 h after disease induction markedly attenuated vascular injury through nonhemodynamic mechanisms, possibly involving vascular endothelial growth factor release.

  16. The protein PprI provides protection against radiation injury in human and mouse cells

    PubMed Central

    Shi, Yi; Wu, Wei; Qiao, Huiping; Yue, Ling; Ren, Lili; Zhang, Shuyu; Yang, Wei; Yang, Zhanshan

    2016-01-01

    Severe acute radiation injuries are both very lethal and exceptionally difficult to treat. Though the radioresistant bacterium D. radiodurans was first characterized in 1956, genes and proteins key to its radioprotection have not yet to be applied in radiation injury therapy for humans. In this work, we express the D. radiodurans protein PprI in Pichia pastoris yeast cells transfected with the designed vector plasmid pHBM905A-pprI. We then treat human umbilical endothelial vein cells and BALB/c mouse cells with the yeast-derived PprI and elucidate the radioprotective effects the protein provides upon gamma irradiation. We see that PprI significantly increases the survival rate, antioxidant viability, and DNA-repair capacity in irradiated cells and decreases concomitant apoptosis rates and counts of damage-indicative γH2AX foci. Furthermore, we find that PprI reduces mortality and enhances bone marrow cell clone formation and white blood cell and platelet counts in irradiated mice. PprI also seems to alleviate pathological injuries to multiple organs and improve antioxidant viability in some tissues. Our results thus suggest that PprI has crucial radioprotective effects on irradiated human and mouse cells. PMID:27222438

  17. Injurious Effects of Emodin on Maturation of Mouse Oocytes, Fertilization and Fetal Development via Apoptosis

    PubMed Central

    Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung

    2012-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20–40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process. PMID:23203041

  18. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes.

    PubMed

    Zhou, Huanyu; Dickson, Matthew E; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N

    2015-09-22

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique.

  19. Early biomarkers of doxorubicin-induced heart injury in a mouse model

    SciTech Connect

    Desai, Varsha G.; Kwekel, Joshua C.; Vijay, Vikrant; Moland, Carrie L.; Herman, Eugene H.; Lee, Taewon; Han, Tao; Lewis, Sherry M.; Davis, Kelly J.; Muskhelishvili, Levan; Kerr, Susan; Fuscoe, James C.

    2014-12-01

    Cardiac troponins, which are used as myocardial injury markers, are released in plasma only after tissue damage has occurred. Therefore, there is a need for identification of biomarkers of earlier events in cardiac injury to limit the extent of damage. To accomplish this, expression profiling of 1179 unique microRNAs (miRNAs) was performed in a chronic cardiotoxicity mouse model developed in our laboratory. Male B6C3F{sub 1} mice were injected intravenously with 3 mg/kg doxorubicin (DOX; an anti-cancer drug), or saline once a week for 2, 3, 4, 6, and 8 weeks, resulting in cumulative DOX doses of 6, 9, 12, 18, and 24 mg/kg, respectively. Mice were euthanized a week after the last dose. Cardiac injury was evidenced in mice exposed to 18 mg/kg and higher cumulative DOX dose whereas examination of hearts by light microscopy revealed cardiac lesions at 24 mg/kg DOX. Also, 24 miRNAs were differentially expressed in mouse hearts, with the expression of 1, 1, 2, 8, and 21 miRNAs altered at 6, 9, 12, 18, and 24 mg/kg DOX, respectively. A pro-apoptotic miR-34a was the only miRNA that was up-regulated at all cumulative DOX doses and showed a significant dose-related response. Up-regulation of miR-34a at 6 mg/kg DOX may suggest apoptosis as an early molecular change in the hearts of DOX-treated mice. At 12 mg/kg DOX, up-regulation of miR-34a was associated with down-regulation of hypertrophy-related miR-150; changes observed before cardiac injury. These findings may lead to the development of biomarkers of earlier events in DOX-induced cardiotoxicity that occur before the release of cardiac troponins. - Highlights: • Upregulation of miR-34a before doxorubicin-induced cardiac tissue injury • Apoptosis might be an early event in mouse heart during doxorubicin treatment. • Expression of miR-150 declined before doxorubicin-induced cardiac tissue injury.

  20. Role of microglia in a mouse model of paediatric traumatic brain injury.

    PubMed

    Chhor, Vibol; Moretti, Raffaella; Le Charpentier, Tifenn; Sigaut, Stephanie; Lebon, Sophie; Schwendimann, Leslie; Oré, Marie-Virginie; Zuiani, Chiara; Milan, Valentina; Josserand, Julien; Vontell, Regina; Pansiot, Julien; Degos, Vincent; Ikonomidou, Chrysanthy; Titomanlio, Luigi; Hagberg, Henrik; Gressens, Pierre; Fleiss, Bobbi

    2016-11-04

    The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.

  1. Regional susceptibility to stress-induced intestinal injury in the mouse.

    PubMed

    Novosad, Veronica L; Richards, Jennifer L; Phillips, Neil A; King, Michelle A; Clanton, Thomas L

    2013-09-15

    Injury to the intestinal mucosa is a life-threatening problem in a variety of clinical disorders, including hemorrhagic shock, trauma, burn, pancreatitis, and heat stroke. The susceptibility to injury of different regions of intestine in these disorders is not well understood. We compared histological injury across the small intestine in two in vivo mouse models of injury, hemorrhagic shock (30% loss of blood volume) and heat stroke (peak core temperature 42.4°C). In both injury models, areas near the duodenum showed significantly greater mucosal injury and reductions in villus height. To determine if these effects were dependent on circulating factors, experiments were performed on isolated intestinal segments to test for permeability to 4-kDa FITC-dextran. The segments were exposed to hyperthermia (42°C for 90 min), moderate simulated ischemia (Po2 ∼30 Torr, Pco2 ∼60 Torr, pH 7.1), severe ischemia (Po2 ∼20 Torr, Pco2 ∼80 Torr, pH 6.9), or severe hypoxia (Po2 ∼0 Torr, Pco2 ∼35 Torr) for 90 min, and each group was compared with sham controls. All treatments resulted in marked elevations in permeability within segments near the duodenum. In severe hypoxia or hyperthermia, permeability was also moderately elevated in the jejunum and ileum; in moderate or severe ischemia, permeability was unaffected in these regions. The results demonstrate increased susceptibility of proximal regions of the small intestine to acute stress-induced damage, irrespective of circulating factors. The predominant injury in the duodenum may impact the pattern of acute inflammatory responses arising from breach of the intestinal barrier, and such knowledge may be useful for designing therapeutic strategies.

  2. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart

    PubMed Central

    Edin, Matthew L.; Wang, ZhongJing; Bradbury, J. Alyce; Graves, Joan P.; Lih, Fred B.; DeGraff, Laura M.; Foley, Julie F.; Torphy, Robert; Ronnekleiv, Oline K.; Tomer, Kenneth B.; Lee, Craig R.; Zeldin, Darryl C.

    2011-01-01

    Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC-CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte- vs. endothelial-derived EETs or compared the effects of different CYP epoxygenase isoforms in the ischemic heart. We generated transgenic mice with increased endothelial EET biosynthesis (Tie2-CYP2C8 Tr and Tie2-CYP2J2 Tr) or EET hydrolysis (Tie2-sEH Tr). Compared to wild-type (WT), αMHC-CYP2J2 Tr hearts showed increased recovery of left ventricular developed pressure (LVDP) and decreased infarct size after I/R. In contrast, LVDP recovery and infarct size were unchanged in Tie2-CYP2J2 Tr and Tie2-sEH Tr hearts. Surprisingly, compared to WT, Tie2-CYP2C8 Tr hearts had significantly reduced LVDP recovery (from 21 to 14%) and increased infarct size after I/R (from 51 to 61%). Tie2-CYP2C8 Tr hearts also exhibited increased reactive oxygen species (ROS) generation, dihydroxyoctadecenoic acid (DiHOME) formation, and coronary resistance after I/R. ROS scavengers and CYP2C8 inhibition reversed the detrimental effects of CYP2C8 expression in Tie2-CYP2C8 Tr hearts. Treatment of WT hearts with 250 nM 9,10-DiHOME decreased LVDP recovery compared to vehicle (16 vs. 31%, respectively) and increased coronary resistance after I/R. These data demonstrate that increased ROS generation and enhanced DiHOME synthesis by endothelial CYP2C8 impair functional recovery and mask the beneficial effects of increased EET production following I/R.—Edin, M. L., Wang, Z. J., Bradbury, J. A., Graves, J. P., Lih, F. B., DeGraff, L. M., Foley, J. F., Torphy, R., Ronnekleiv, O. K., Tomer, K. B., Lee, C. R., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse

  3. Temporally-Patterned Deep Brain Stimulation in a Mouse Model of Multiple Traumatic Brain Injury

    PubMed Central

    Tabansky, Inna; Quinkert, Amy Wells; Rahman, Nadera; Muller, Salomon Zev; Löfgren, Jesper; Rudling, Johan; Goodman, Alyssa; Wang, Yingping; Pfaff, Donald W.

    2014-01-01

    We report that mice with closed-head multiple traumatic brain injury (TBI) show a decrease in the motoric aspects of generalized arousal, as measured by automated, quantitative behavioral assays. Further, we found that temporally-patterned deep brain stimulation (DBS) can increase generalized arousal and spontaneous motor activity in this mouse model of TBI. This arousal increase is input-pattern-dependent, as changing the temporal pattern of DBS can modulate its effect on motor activity. Finally, an extensive examination of mouse behavioral capacities, looking for deficits in this model of TBI, suggest that the strongest effects of TBI in this model are found in the initiation of any kind of movement. PMID:25072520

  4. A Cytochrome P450-Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes.

    PubMed

    Miyakawa, Kazuhisa; Albee, Ryan; Letzig, Lynda G; Lehner, Andreas F; Scott, Michael A; Buchweitz, John P; James, Laura P; Ganey, Patricia E; Roth, Robert A

    2015-08-01

    Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0-14 mM), but eliminated cytotoxicity only at small concentrations (≦5 mM), indicating the presence of a P450-independent mechanism at larger APAP concentrations. P450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations. p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P450-dependent mechanism that operates at concentrations of APAP ≦ 5 mM and a P450-independent mechanism that predominates at larger concentrations and is slower in onset. p-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies.

  5. Fractalkine Depresses Cardiomyocyte Contractility

    PubMed Central

    Taube, David; Xu, Jiang; Yang, Xiao-Ping; Undrovinas, Albertas; Peterson, Edward; Harding, Pamela

    2013-01-01

    Background Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. Methods Fractalkine was measured in LV of 28–32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation. Results LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. Conclusions Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium. PMID:23936109

  6. Fractalkine depresses cardiomyocyte contractility.

    PubMed

    Taube, David; Xu, Jiang; Yang, Xiao-Ping; Undrovinas, Albertas; Peterson, Edward; Harding, Pamela

    2013-01-01

    Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO) exhibit reduced cardiac function. Gene array on left ventricles (LV) showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium. Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT) by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM) from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso) stimulation. LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+) transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery. Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  7. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro

    NASA Astrophysics Data System (ADS)

    Radaszkiewicz, Katarzyna Anna; Sýkorová, Dominika; Karas, Pavel; Kudová, Jana; Kohút, Lukáš; Binó, Lucia; Večeřa, Josef; Víteček, Jan; Kubala, Lukáš; Pacherník, Jiří

    2016-02-01

    The analysis of digital video output enables the non-invasive screening of various active biological processes. For the monitoring and computing of the beating parameters of cardiomyocytes in vitro, CB Analyser (cardiomyocyte beating analyser) software was developed. This software is based on image analysis of the video recording of beating cardiomyocytes. CB Analyser was tested using cardiomyocytes derived from mouse embryonic stem cells at different stages of cardiomyogenesis. We observed that during differentiation (from day 18), the beat peak width decreased, which corresponded to the increased speed of an individual pulse. However, the beating frequency did not change. Further, the effects of epinephrine modulating mature cardiomyocyte functions were tested to validate the CB Analyser analysis. In conclusion, data show that CB Analyser is a useful tool for evaluating the functions of both developing and mature cardiomyocytes under various conditions in vitro.

  8. Lin28a protects against hypoxia/reoxygenation induced cardiomyocytes apoptosis by alleviating mitochondrial dysfunction under high glucose/high fat conditions.

    PubMed

    Zhang, Mingming; Niu, Xiaolin; Hu, Jianqiang; Yuan, Yuan; Sun, Shuhong; Wang, Jiaxing; Yu, Wenjun; Wang, Chen; Sun, Dongdong; Wang, Haichang

    2014-01-01

    The aim of the present study was to investigate the role of Lin28a in protecting against hypoxia/reoxygenation (H/R)-induced cardiomyocytes apoptosis under high glucose/high fat (HG/HF) conditions. Primary cardiomyocytes which were isolated from neonatal mouse were randomized to be treated with lentivirus carrying Lin28a siRNA, Lin28acDNA 72 h before H/R (9 h/2 h). Cardiomyocytes biomarkers release (LDH and CK), cardiomyocytes apoptosis, mitochondria biogenesis and morphology, intracellular reactive oxygen species (ROS) production, ATP content and inflammatory cytokines levels after H/R injury in high glucose/high fat conditions were compared between groups. The target proteins of Lin28a were examined by western blot analysis. Our results revealed that Lin28a cDNA transfection (overexpression) significantly inhibited cardiomyocyte apoptotic index, improved mitochondria biogenesis, increased ATP production and reduced ROS production as compared with the H/R group in HG/HF conditions. Lin28a siRNA transfection (knockdown) rendered the cardiomyocytes more susceptible to H/R injury as evidenced by increased apoptotic index, impaired mitochondrial biogenesis, decreased ATP production and increased ROS level. Interestingly, these effects of Lin28a were blocked by pretreatment with the PI3K inhibitor wortmannin. Lin28a overexpression increased, while Lin28a knockdown inhibited IGF1R, Nrf-1, Tfam, p-IRS-1, p-Akt, p-mTOR, p-p70s6k, p-AMPK expression levels after H/R injury in HG/HF conditions. Moreover, pretreatment with wortmannin abolished the effects of Lin28a on the expression levels of p-AKT, p-mTOR, p-p70s6k, p-AMPK. The present results suggest that Lin28a inhibits cardiomyocytes apoptosis by enhancing mitochondrial biogenesis and function under high glucose/high fat conditions. The mechanism responsible for the effects of Lin28a is associated with the PI3K/Akt dependent pathway.

  9. Lin28a Protects against Hypoxia/Reoxygenation Induced Cardiomyocytes Apoptosis by Alleviating Mitochondrial Dysfunction under High Glucose/High Fat Conditions

    PubMed Central

    Hu, Jianqiang; Yuan, Yuan; Sun, Shuhong; Wang, Jiaxing; Yu, Wenjun; Wang, Chen; Sun, Dongdong; Wang, Haichang

    2014-01-01

    Aim The aim of the present study was to investigate the role of Lin28a in protecting against hypoxia/reoxygenation (H/R)-induced cardiomyocytes apoptosis under high glucose/high fat (HG/HF) conditions. Methods Primary cardiomyocytes which were isolated from neonatal mouse were randomized to be treated with lentivirus carrying Lin28a siRNA, Lin28acDNA 72 h before H/R (9 h/2 h). Cardiomyocytes biomarkers release (LDH and CK), cardiomyocytes apoptosis, mitochondria biogenesis and morphology, intracellular reactive oxygen species (ROS) production, ATP content and inflammatory cytokines levels after H/R injury in high glucose/high fat conditions were compared between groups. The target proteins of Lin28a were examined by western blot analysis. Results Our results revealed that Lin28a cDNA transfection (overexpression) significantly inhibited cardiomyocyte apoptotic index, improved mitochondria biogenesis, increased ATP production and reduced ROS production as compared with the H/R group in HG/HF conditions. Lin28a siRNA transfection (knockdown) rendered the cardiomyocytes more susceptible to H/R injury as evidenced by increased apoptotic index, impaired mitochondrial biogenesis, decreased ATP production and increased ROS level. Interestingly, these effects of Lin28a were blocked by pretreatment with the PI3K inhibitor wortmannin. Lin28a overexpression increased, while Lin28a knockdown inhibited IGF1R, Nrf-1, Tfam, p-IRS-1, p-Akt, p-mTOR, p-p70s6k, p-AMPK expression levels after H/R injury in HG/HF conditions. Moreover, pretreatment with wortmannin abolished the effects of Lin28a on the expression levels of p-AKT, p-mTOR, p-p70s6k, p-AMPK. Conclusions The present results suggest that Lin28a inhibits cardiomyocytes apoptosis by enhancing mitochondrial biogenesis and function under high glucose/high fat conditions. The mechanism responsible for the effects of Lin28a is associated with the PI3K/Akt dependent pathway. PMID:25313561

  10. Heparanase Mediates Intestinal Inflammation and Injury in a Mouse Model of Sepsis.

    PubMed

    Chen, Song; He, Ying; Hu, Ziwei; Lu, Siyu; Yin, Xiaohan; Ma, Xiaochun; Lv, Chuanzhu; Jin, Guiyun

    2017-04-01

    Heparanase, a heparan sulfate (HS)-specific endoglycosidase, plays an important role in inflammation and mediates acute pulmonary and renal injuries during sepsis. To explore its role in septic intestinal injury, a non-anticoagulant heparanase inhibitor, N-desulfated/re- N-acetylated heparin (NAH), was administrated to a mouse sepsis model induced by cecal ligation and puncture (CLP). Immunohistochemical staining revealed massive shedding of HS from the intestinal mucosal surfaces after CLP, and effective inhibition of heparanase by NAH was confirmed by markedly reduced HS shedding. Following CLP, intestinal expression of heparanase was increased, whereas pretreatment with NAH reduced the sepsis-induced upregulation of heparanase expression. Meanwhile, CLP led to shedding of syndecan-1 and upregulated expression of proteases such as matrix metalloprotease-9 and urokinase-type plasminogen activator in the intestine, whereas NAH markedly suppressed syndecan-1 shedding and protease upregulation following CLP. In addition, pretreatment with NAH attenuated intestinal injury, inhibited neutrophil infiltration and suppressed the production of inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6) in the intestine during sepsis, and it also significantly reduced the elevation of inflammatory cytokines in the serum 24 hr after CLP. Our findings demonstrate that the activation of intestinal heparanase contributes to intestinal injury during early sepsis by facilitating the destruction of mucosal epithelial glycocalyx and promoting inflammatory responses.

  11. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  12. Hepcidin protects against lipopolysaccharide-induced liver injury in a mouse model of obstructive jaundice.

    PubMed

    Huang, Ying-Hsien; Yang, Ya-Ling; Tiao, Mao-Meng; Kuo, Ho-Chang; Huang, Li-Tung; Chuang, Jiin-Haur

    2012-06-01

    Obstructive jaundice (OJ) increases the risk of liver injury and sepsis, leading to increased mortality. Cholestatic liver injury is associated with a downregulation of hepcidin expression levels. In fact, hepcidin has an important antimicrobial effect, especially against Escherichia coli. It is unknown whether supplementing recombinant hepcidin is effective in alleviating cholestasis-induced liver injury and mortality in mice with superimposed sepsis. A mouse model of cholestasis was developed using extrahepatic bile duct ligation for 3 days. In addition, sepsis due to E. coli 0111:B4 lipopolysaccharide (LPS) was induced in the model. The serum levels of total bilirubin, AST, ALT, and LDH and the mRNA levels of IL-1β, TNF-α, and MCP-1 in the liver were significantly higher in the OJ mice receiving LPS than in the sham-operated mice receiving LPS. Compared to the OJ mice receiving LPS, the hepcidin-pretreated OJ mice receiving LPS showed a significant decrease in the above mentioned parameters, as well as a reversal in the downregulation of LC3B-II and upregulation of cleaved caspase-3; this, in turn, led to significantly decreased lethality in 24h. In conclusion, these results indicate that hepcidin pretreatment significantly reduced hepatic proinflammatory cytokine expression and liver injury, leading to reduced early lethality in OJ mice receiving LPS. Enhanced autophagy and reduced apoptosis may account for the protective effects of hepcidin.

  13. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    PubMed

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  14. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains.

    PubMed

    Basso, D Michele; Fisher, Lesley C; Anderson, Aileen J; Jakeman, Lyn B; McTigue, Dana M; Popovich, Phillip G

    2006-05-01

    Genetically engineered mice are used extensively to examine molecular responses to spinal cord injury (SCI). Inherent strain differences may confound behavioral outcomes; therefore, behavioral characterization of several strains after SCI is warranted. The Basso, Beattie, Bresnahan Locomotor Rating Scale (BBB) for rats has been widely used for SCI mice, but may not accurately reflect their unique recovery pattern. This study's purpose was to develop a valid locomotor rating scale for mice and to identify strain differences in locomotor recovery after SCI. We examined C57BL/6, C57BL/10, B10.PL, BALB/c, and C57BL/6x129S6 F1 strains for 42 days after mild, moderate, and severe contusive SCI or transection of the mid thoracic spinal cord. Contusions were created using the Ohio State University electromagnetic SCI device which is a displacement-driven model, and the Infinite Horizon device, which is a force-driven model. Attributes and rankings for the Basso Mouse Scale for Locomotion (BMS) were determined from frequency analyses of seven locomotor categories. Mouse recovery differed from rats for coordination, paw position and trunk instability. Disagreement occurred across six expert raters using BBB (p < 0.05) but not BMS to assess the same mice. BMS detected significant differences in locomotor outcomes between severe contusion and transection (p < 0.05) and SCI severity gradations resulting from displacement variations of only 0.1 mm (p < 0.05). BMS demonstrated significant face, predictive and concurrent validity. Novice BMS raters with training scored within 0.5 points of experts and demonstrated high reliability (0.92-0.99). The BMS is a sensitive, valid and reliable locomotor measure in SCI mice. BMS revealed significantly higher recovery in C57BL/10, B10.PL and F1 than the C57BL/6 and BALB/c strains after moderate SCI (p < 0.05). The differing behavioral response to SCI suggests inherent genetic factors significantly impact locomotor recovery and must be

  15. Modeling oxygen requirements in ischemic cardiomyocytes.

    PubMed

    McDougal, Anthony D; Dewey, C Forbes

    2017-07-14

    Heart disease remains the leading cause of death globally. Although reperfusion following myocardial ischemia can prevent death by restoring nutrient flow, ischemia/reperfusion injury can cause significant heart damage. The mechanisms that drive ischemia/reperfusion injury are not well understood; currently, few methods can predict the state of the cardiac muscle cell and its metabolic conditions during ischemia. Here, we explored the energetic sustainability of cardiomyocytes, using a model for cellular metabolism to predict the levels of ATP following hypoxia. We modeled glycolytic metabolism with a system of coupled ordinary differential equations describing the individual metabolic reactions within the cardiomyocyte over time. Reduced oxygen levels and ATP consumption rates were simulated to characterize metabolite responses to ischemia. By tracking biochemical species within the cell, our model enables prediction of the cell's condition up to the moment of reperfusion. The simulations revealed a distinct transition between energetically sustainable and unsustainable ATP concentrations for various energetic demands. Our model illustrates how even low oxygen concentrations allow the cell to perform essential functions. We found that the oxygen level required for a sustainable level of ATP increases roughly linearly with the ATP consumption rate. An extracellular O2 concentration of ∼0.007 mm could supply basic energy needs in non-beating cardiomyocytes, suggesting that increased collateral circulation may provide an important source of oxygen to sustain the cardiomyocyte during extended ischemia. Our model provides a time-dependent framework for studying various intervention strategies to change the outcome of reperfusion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors

    PubMed Central

    Ieda, Masaki; Fu, Ji-Dong; Delgado-Olguin, Paul; Vedantham, Vasanth; Hayashi, Yohei; Bruneau, Benoit G.; Srivastava, Deepak

    2010-01-01

    SUMMARY The reprogramming of fibroblasts to induced pluripotent stem (iPS) cells raises the possibility that a somatic cell could be reprogrammed to an alternative differentiated fate without first becoming a stem/progenitor cell. A large pool of fibroblasts exists in the post-natal heart, yet no single “master regulator” of direct cardiac reprogramming has been identified. Here, we report that a combination of three developmental transcription factors (i.e., Gata4, Mef2c and Tbx5) rapidly and efficiently reprogrammed post-natal cardiac or dermal fibroblasts directly into differentiated cardiomyocyte-like cells. Induced cardiomyocytes expressed cardiac-specific markers, had a global gene expression profile similar to cardiomyocytes, and contracted spontaneously. Fibroblasts transplanted into mouse hearts one day after transduction of the three factors also differentiated into cardiomyocyte-like cells. These findings demonstrate that functional cardiomyocytes can be directly reprogrammed from differentiated somatic cells by defined factors. Reprogramming of endogenous or explanted fibroblasts might provide a source of cardiomyocytes for regenerative approaches. PMID:20691899

  17. MMI-0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via MK2 inhibition

    PubMed Central

    Xu, Lei; Yates, Cecelia C.; Lockyer, Pamela; Xie, Liang; Bevilacqua, Ariana; He, Jun; Lander, Cynthia; Patterson, Cam; Willis, Monte

    2014-01-01

    The cell-permeant peptide inhibitor of MAPKAP kinase 2 (MK2), MMI-0100, inhibits MK2 and downstream fibrosis and inflammation. Recent studies have demonstrated that MMI-0100 reduces intimal hyperplasia in a mouse vein graft model, pulmonary fibrosis in a murine bleomycin-induced model and development of adhesions in conjunction with abdominal surgery. MK2 is critical to the pathogenesis of ischemic heart injury as MK2 −/− mice are resistant to ischemic remodeling. Therefore, we tested the hypothesis that inhibiting MK2 with MMI-0100 would protect the heart after acute myocardial infarction (AMI) in vivo. AMI was induced by placing a permanent LAD coronary ligation. When MMI-0100 peptide was given 30 minutes after permanent LAD coronary artery ligation, the resulting fibrosis was reduced/prevented ~50% at a 2 week time point, with a corresponding improvement in cardiac function and decrease in left ventricular dilation. In cultured cardiomyocytes and fibroblasts, MMI-0100 inhibited MK2 to reduce cardiomyocyte caspase 3/7 activity, while enhancing primary cardiac fibroblast caspase 3/7 activity, which may explain MMI-0100’s salvage of cardiac function and anti-fibrotic effects in vivo. These findings suggest that therapeutic inhibition of MK2 after acute MI, using rationally-designed cell-permeant peptides, inhibits cardiac fibrosis and maintains cardiac function by mechanisms that involve inhibiting cardiomyocyte apoptosis, while enhancing primary cardiac fibroblast cell death. PMID:25257914

  18. [Effect of PON1 overexpression on mouse diaphragmatic muscle cells injury caused by acute dichlorvos poisoning].

    PubMed

    Wu, Bin; Wang, Fei; Zhou, Jue; Hou, Yuehui; Hong, Guangliang; Zhao, Guangju; Ge, Yun; Liu, Yao; Qiu, Qiaomeng; Lu, Zhongqiu

    2015-09-22

    To investigate the effect of paraoxonase1 (PON1) overexpression on mouse diaphragmatic muscle cells injury caused by acute dichlorvos poisoning. Mouse diaphragmatic muscle cells were cultured routinely and infected with overexpression lentivirus. Cells were divided into normal control group, DDVP group, LV-GFP + DDVP group, LV-PON1 + DDVP group. Cell viability was determined by CCK-8 assay. Flow cytometry was used to detect cell apoptosis. The mRNA and protein expression of PON1 and Nrf2 in mouse diaphragmatic muscle cells was measured by RT-PCR and Western blot. Enzyme-linked immunosorbent assay was used to determine levels of acetyl cholinesterase (AchE), heme oxygenase 1 (HO-1) and quinone oxidoreductase-1 (NQO-1) in mouse diaphragmatic muscle cells. The activity of superoxide dismutase (SOD) and catalase (CAT) as well as malondialdehyde (MDA) content in cells was measured by chemical colorimetry. After induced by 0, 80, 160, 320, 640 µmol/L DDVP for 24 hours, the viability of mouse diaphragmatic muscle cells was (100 ± 3.82)%, (82.13 ± 2.60)%, (53.57 ± 5.05)%, (30.77 ± 3.30)%, (14.20 ± 2.19)% respectively, changing in a concentration-dependent manner (P < 0.05). After induced by 160 µmol/L DDVP for 0, 6, 12, 24 hours, the viability of mouse diaphragmatic muscle cells was (100.17 ± 2.74)%, (76.13 ± 6.01)%, (66.53 ± 3.55)%, (53.57 ± 5.05)%, changing in a time-dependent manner (P < 0.05). The PON1 protein level in LV-PON1 group was higher than that of blank control group (0.370 ± 0.015 vs 0.232 ± 0.004, 0.197 ± 0.015 vs 0.037 ± 0.003, P < 0.05). The cell viability of LV-PON1 group is higher than that of DDVP group at different time point after induction of DDVP (P < 0.05). After induced by DDVP for 24 hours, the cell apoptosis rate and MDA content in LV-PON1 group were lower than those of DDVP group (P < 0.05). While levels of AchE, PON1 and Nrf2 protein expression, SOD and CAT, HO-1 and NQO-1 were higher than those of DDVP group (P < 0.05). The

  19. Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth

    SciTech Connect

    Tane, Shoji; Okayama, Hitomi; Ikenishi, Aiko; Amemiya, Yuki; Nakayama, Keiichi I.; Takeuchi, Takashi

    2015-10-16

    Mammalian cardiomyocytes actively proliferate during embryonic stages, following which they exit their cell cycle after birth, and the exit is maintained. Previously, we showed that two inhibitory systems (the G1-phase inhibitory system: repression of cyclin D1 expression; the M-phase inhibitory system: inhibition of CDK1 activation) maintain the cell cycle exit of mouse adult cardiomyocytes. We also showed that two CDK inhibitors (CKIs), p21{sup Cip1} and p27{sup Kip1}, regulate the cell cycle exit in a portion of postnatal cardiomyocytes. It remains unknown whether the two inhibitory systems are involved in the cell cycle exit of postnatal cardiomyocytes and whether p21{sup Cip1} and p27{sup Kip1} also inhibit entry to M-phase. Here, we showed that more than 40% of cardiomyocytes entered an additional cell cycle by induction of cyclin D1 expression at postnatal stages, but M-phase entry was inhibited in the majority of cardiomyocytes. Marked cell cycle progression and endoreplication were observed in cardiomyocytes of p21{sup Cip1} knockout mice at 4 weeks of age. In addition, tri- and tetranucleated cardiomyocytes increased significantly in p21{sup Cip1} knockout mice. These data showed that the G1-phase inhibitory system and two CKIs (p21{sup Cip1} and p27{sup Kip1}) inhibit entry to an additional cell cycle in postnatal cardiomyocytes, and that the M-phase inhibitory system and p21{sup Cip1} inhibit M-phase entry of cardiomyocytes which have entered the additional cell cycle. - Highlights: • Many postnatal cardiomyocytes entered an additional cell cycle by cyclin D1 induction. • The majority of cardiomyocytes could not enter M-phase after cyclin D1 induction. • Cell cycle progressed markedly in p21{sup Cip1} knockout mice after postnatal day 14. • Tri- and tetranucleated cardiomyocytes increased in p21{sup Cip1} knockout mice.

  20. Myocardial contrast echocardiography to assess perfusion in a mouse model of ischemia/reperfusion injury

    NASA Astrophysics Data System (ADS)

    Hossack, John A.; Li, Yinbo; Christensen, Jonathan P.; Yang, Zequan; French, Brent A.

    2004-04-01

    Noninvasive approaches for measuring anatomical and physiological changes resulting from myocardial ischemia / reperfusion injury in the mouse heart have significant value since the mouse provides a practical, low-cost model for modeling human heart disease. In this work, perfusion was assessed before, during and after an induced closed- chest, coronary ischemic event. Ultrasound contrast agent, similar to MP1950, in a saline suspension, was injected via cannulated carotid artery as a bolus and imaged using a Siemens Sequoia 512 scanner and a 15L8 intraoperative transducer operating in second harmonic imaging mode. Image sequences were transferred from the scanner to a PC for analysis. Regions of interest were defined in septal and anterior segments of the myocardium. During the ischemic event, when perfusion was diminished in the anterior segment, mean video intensity in the affected segment was reduced by one half. Furthermore, following reperfusion, hyperemia (enhanced blood flow) was observed in the anterior segment. Specifically, the mean video intensity in the affected segment was increased by approximately 50% over the original baseline level prior to ischemia. Following the approach of Kaul et al., [1], gamma variate curves were fitted to the time varying level of mean video intensity. This foundation suggests the possibility of quantifying myocardial blood flow in ischemic regions of a mouse heart using automated analysis of contrast image data sets. An improved approach to perfusion assessment using the destruction-reperfusion approach [2] is also presented.

  1. Regulatory T cells exhibit neuroprotective effect in a mouse model of traumatic brain injury

    PubMed Central

    Yu, Yunhu; Cao, Fang; Ran, Qishan; Sun, Xiaochuan

    2016-01-01

    Traumatic brain injury (TBI) is a major health and socioeconomic problem as it is associated with high rates of mortality and morbidity worldwide. Regulatory T cells (Tregs) have been reported to reduce inflammatory response in several diseases, including myasthenia gravis, viral myocarditis and cerebral infarction. The present study investigated the role of Tregs in mediating neuro-protective effects in a mouse model of TBI. Initially, Treg levels were determined, and compared between the controlled cortical impact (CCI) model for moderate TBI and the sham group, by using flow cytometry and ELISA. Afterwards, the number of Tregs was upregulated (by injection) and downregulated (by depletion), respectively, to elucidate the effect of Tregs in the presence of an inflammatory reaction and a deficient neurological function and consequently, in the prognosis of TBI in the mouse. The expression of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6)] and anti-inflammatory cytokines [IL-10, transforming growth factor (TGF)-β] in blood and brain tissues was also measured in the five groups: Μice receiving a saline injection, mice experiencing Treg depletion, small-dose (SD Tregs, 1.25×105), and mice receiving different doses of Tregs: Moderate-dose (MD Tregs, 2.5×105) and large-dose (LD Tregs, 5×105), using ELISA and PCR. Co-cultures of Tregs and microglia were performed to evaluate the expression of pro-inflammatory cytokines and observe the interaction between the two types of cells. The regulation patterns in JNK-NF-κB pathway by Tregs were also evaluated by western blot analysis. Treg levels were significantly reduced in TBI mouse group on the 3rd day after TBI (P<0.05). In the mouse model of TBI, the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) was enhanced, while the expression of anti-inflammatory cytokines (IL-10, TGF-β) was reduced (P<0.05). Tregs exhibited a suppressive effect on inflammatory reactions

  2. Regulatory T cells exhibit neuroprotective effect in a mouse model of traumatic brain injury.

    PubMed

    Yu, Yunhu; Cao, Fang; Ran, Qishan; Sun, Xiaochuan

    2016-12-01

    Traumatic brain injury (TBI) is a major health and socioeconomic problem as it is associated with high rates of mortality and morbidity worldwide. Regulatory T cells (Tregs) have been reported to reduce inflammatory response in several diseases, including myasthenia gravis, viral myocarditis and cerebral infarction. The present study investigated the role of Tregs in mediating neuro‑protective effects in a mouse model of TBI. Initially, Treg levels were determined, and compared between the controlled cortical impact (CCI) model for moderate TBI and the sham group, by using flow cytometry and ELISA. Afterwards, the number of Tregs was upregulated (by injection) and downregulated (by depletion), respectively, to elucidate the effect of Tregs in the presence of an inflammatory reaction and a deficient neurological function and consequently, in the prognosis of TBI in the mouse. The expression of pro‑inflammatory cytokines [tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6)] and anti‑inflammatory cytokines [IL‑10, transforming growth factor (TGF)‑β] in blood and brain tissues was also measured in the five groups: Μice receiving a saline injection, mice experiencing Treg depletion, small‑dose (SD Tregs, 1.25x105), and mice receiving different doses of Tregs: Moderate‑dose (MD Tregs, 2.5x105) and large‑dose (LD Tregs, 5x105), using ELISA and PCR. Co‑cultures of Tregs and microglia were performed to evaluate the expression of pro‑inflammatory cytokines and observe the interaction between the two types of cells. The regulation patterns in JNK‑NF‑κB pathway by Tregs were also evaluated by western blot analysis. Treg levels were significantly reduced in TBI mouse group on the 3rd day after TBI (P<0.05). In the mouse model of TBI, the expression of pro‑inflammatory cytokines (TNF‑α, IL‑1β, IL‑6) was enhanced, while the expression of anti‑inflammatory cytokines (IL‑10, TGF‑β) was reduced (P<0.05). Tregs exhibited a

  3. Interleukin-11 protects mouse liver from warm ischemia/reperfusion (WI/Rp) injury.

    PubMed

    Yu, Jianjun; Feng, Zhiwen; Tan, Longwei; Pu, Liyong; Kong, Lianbao

    2016-11-01

    IL-11 is a multifunctional cytokine that belongs to the IL-6 family. Previous studies have demonstrated that IL-11 has underlying anti-inflammatory and anti-apoptotic properties. In this study, we evaluated the potential effects of IL-11 on mouse liver WI/Rp injury. For in vivo experiments, mice were randomly divided into four main experimental groups (n=5 each): (1) normal group - anesthesia; (2) sham group- laparotomy; (3) I/R group- liver WI/Rp; and (4) IL-11 pretreatment (500μg/kg, tail vein injection) group- administration of RhIL-11 2h before liver WI/Rp induced in the same manner as in group 3. For in vitro experiments, cells were divided into two groups: (1) H/R group- H/R; and (2) IL-11 pretreatment group- pretreatment with RhIL-11 (2μg/mL for 12h) before the induction of H/R. For both groups, three periods of reoxygenation were examined (2h, 6h, and 12h). In the in vivo experiments, IL-11 protected mouse livers from WI/Rp by reducing liver enzyme levels and cellular degeneration. In the in vitro experiments, IL-11 significantly reduced hepatocyte apoptosis. In both the in vivo and in vitro experiments, IL-11 pre-treatment significantly reduced the expression of TNF-α and IL-1β. In addition, NF-κB, a target of IL-11, was suppressed in macrophages after IL-11 pre-treatment. Pre-treatment with IL-11 protects mouse livers from WI/Rp injury by suppressing NF-kB activity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Kokiko-Cochran, Olga; Ransohoff, Lena; Veenstra, Mike; Lee, Sungho; Saber, Maha; Sikora, Matt; Teknipp, Ryan; Xu, Guixiang; Bemiller, Shane; Wilson, Gina; Crish, Samuel; Bhaskar, Kiran; Lee, Yu-Shang; Ransohoff, Richard M.

    2016-01-01

    Abstract Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator. PMID:26414955

  5. Muscle Stem Cell Activation in a Mouse Model of Rotator Cuff Injury.

    PubMed

    Davies, Michael R; Garcia, Steven; Tamaki, Stanley; Liu, Xuhui; Lee, Solomon; Jose, Anthony; Pomerantz, Jason H; Feeley, Brian T

    2017-08-08

    Rotator cuff (RC) tears are frequently complicated by muscle atrophy. Muscle stem cells (MuSCs) repair damaged myofibers following injury, but their role in the prevention or pathogenesis of atrophy following RC tears remains undefined. We hypothesized that the RC MuSC population would be affected by supraspinatus (SS) and infraspinatus (IS) tendon transection (TT) compared to uninjured muscle in a mouse model of RC tear. C57BL6/J mice underwent unilateral SS and IS TT and contralateral sham surgery. At 3, 8, or 14 weeks after injury, mice were euthanized and SS and IS were harvested for FACS sorting of CD31-/CD45-/Sca1-/ITGa7 + /VCAM+ MuSCs or histological analysis. Ki-67+ MuSCs from injured muscle increased 3.4 fold at 3 weeks (p = 0.03) and 8.1 fold at 8 weeks (p = 0.04) following TT injury, but returned to baseline by 14 weeks (p = 0.91). Myod1 remained upregulated 3.3 fold at 3 weeks (p = 0.03) and 2.0 fold at 14 weeks (p = 0.0003), respectively. Myofiber cross-sectional area was decreased at both 3 and 14 weeks after injury, but the number of MuSCs per fiber remained relatively constant at 3 (p = 0.3) and 14 (p = 0.6) weeks after TT. In this study, we characterized the longitudinal effect of RC tendon injury on the MuSC population in supraspinatus and infraspinatus muscles. MuSCs are transiently activated, and are not depleted, in spite of persistent muscle atrophy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Microwave & Magnetic (M2) Proteomics of a Mouse Model of Mild Traumatic Brain Injury

    PubMed Central

    Evans, Teresa M.; Van Remmen, Holly; Purkar, Anjali; Mahesula, Swetha; Gelfond, J AL; Sabia, Marian; Qi, Wenbo; Lin, Ai-Ling; Jaramillo, Carlos A.; Haskins, William E.

    2014-01-01

    Short-term increases in oxidative stress and decreases in motor function, including debilitating effects on balance and motor control, can occur following primary mild traumatic brain injuries (mTBI). However, the long-term effects on motor unit impairment and integrity as well as the molecular mechanisms underlying secondary injuries are poorly understood. We hypothesized that changes in central nervous system-specific protein (CSP) expression might correlate to these long-term effects. To test our hypothesis, we longitudinally assessed a closed-skull mTBI mouse model, vs. sham control, at 1, 7, 30, and 120 days post-injury. Motor impairment was determined by rotarod and grip strength performance measures, while motor unit integrity was determined using electromyography. Relative protein expression was determined by microwave & magnetic (M2) proteomics of ipsilateral brain tissue, as previously described. Isoprostane measurements were performed to confirm a primary oxidative stress response. Decoding the relative expression of 476 ± 56 top-ranked proteins for each specimen revealed statistically significant changes in the expression of two well-known CSPs at 1, 7 and 30 days post-injury: P < 0.001 for myelin basic protein (MBP) and P < 0.05 for myelin associated glycoprotein (MAG). This was confirmed by Western blot. Moreover, MAG, αII-spectrin (SPNA2) and neurofilament light (NEFL) expression at 30 days post-injury were directly related to grip strength (P < 0.05). While higher-powered studies of larger cohorts merit further investigation, this study supports the proof-of-concept that M2 proteomics is a rapid method to quantify putative protein biomarkers and therapeutic targets of mTBI and suggests the feasibility of CSP expression correlations to long-term effects on motor impairment. PMID:26157646

  7. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease.

    PubMed

    Kokiko-Cochran, Olga; Ransohoff, Lena; Veenstra, Mike; Lee, Sungho; Saber, Maha; Sikora, Matt; Teknipp, Ryan; Xu, Guixiang; Bemiller, Shane; Wilson, Gina; Crish, Samuel; Bhaskar, Kiran; Lee, Yu-Shang; Ransohoff, Richard M; Lamb, Bruce T

    2016-04-01

    Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator.

  8. Hepatocyte Tissue Factor Contributes to the Hypercoagulable State in a Mouse Model of Chronic Liver Injury

    PubMed Central

    Rautou, Pierre-Emmanuel; Tatsumi, Kohei; Antoniak, Silvio; Owens, A. Phillip; Sparkenbaugh, Erica; Holle, Lori A.; Wolberg, Alisa S.; Kopec, Anna K.; Pawlinski, Rafal; Luyendyk, James P.; Mackman, Nigel

    2015-01-01

    Summary Background & Aims Patients with chronic liver disease and cirrhosis have a dysregulated coagulation system and are prone to thrombosis. The basis for this hypercoagulable state is not completely understood. Tissue factor (TF) is the primary initiator of coagulation in vivo. Patients with cirrhosis have increased TF activity in white blood cells and circulating microparticles. The aim of our study was to determine the contribution of TF to the hypercoagulable state in a mouse model of chronic liver injury. Methods We measured levels of TF activity in the liver, white blood cells and circulating microparticles, and a marker of activation of coagulation [thrombinantithrombin complexes (TATc)] in the plasma of mice subjected to bile duct ligation for 12 days. We used wild-type mice, mice with a global TF deficiency (low TF mice), and mice deficient for TF in either myeloid cells (TFflox/flox, LysMCre mice) or in hepatocytes (TFflox/flox, AlbCre). Results Wild-type mice with liver injury had increased levels of white blood cell, microparticle TF activity and TATc compared to sham mice. Low TF mice and mice lacking TF in hepatocytes had reduced levels of TF in the liver and in microparticles and exhibited reduced activation of coagulation without a change in liver fibrosis. In contrast, mice lacking TF in myeloid cells had reduced white blood cell TF but no change in microparticle TF activity or TATc. Conclusions Hepatocyte TF activates coagulation in a mouse model of chronic liver injury. TF may contribute to the hypercoagulable state associated with chronic liver diseases in patients. PMID:26325534

  9. Inflammatory and epithelial responses in mouse strains that differ in sensitivity to hyperoxic injury.

    PubMed

    Johnston, C J; Stripp, B R; Piedbeouf, B; Wright, T W; Mango, G W; Reed, C K; Finkelstein, J N

    1998-01-01

    The pulmonary response to various toxicants including bleomycin, ozone, ionizing radiation, and hyperoxia is highly variable among mouse strains. The current study tests the hypothesis that at a similar stage of injury, regardless of strain, expression of inflammatory cytokine and epithelial marker genes would be similar, indicating a common pathway of injury progression. Three strains of mice, C57B1/6J, 129/J, and C3H/HeJ, ranging from sensitive to resistant, were exposed to > 95% O2 for varying times. Ribonuclease protection was used to quantify changes in cytokine mRNA. Despite differences in the kinetics, each strain demonstrated similar hyperoxia-induced changes in the abundance of interleukin (IL)-6, IL-1 beta, IL-3, and tumor neucrosis factor (TNF)-alpha. For each strain, death was accompanied by similar increases in cytokine mRNAs above steady-state control levels. Other inflammatory cytokines, including IL-1 alpha, IL-4, and interferon (IFN)-gamma, were unaltered in all strains at all times. In situ hybridization analysis of the epithelial markers, surfactant protein B (SPB), and clara cell secretory protein (CCSP) at the time of proinflammatory induction showed a similar pattern of expression in all strains. Increased SPB was detected in bronchiolar epithelium, while the number of type II cells expressing this message declined. Both the number of cells expressing CCSP as well as abundance per cell declined. These results suggest that although differences in acute sensitivity to hyperoxia exist between mouse strains, once initiated, acute epithelial cell injury and associated inflammatory changes follow the same pattern in all strains.

  10. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes.

    PubMed

    Mouzon, Benoit; Chaytow, Helena; Crynen, Gogce; Bachmeier, Corbin; Stewart, Janice; Mullan, Michael; Stewart, William; Crawford, Fiona

    2012-12-10

    Concussion or mild traumatic brain injury (mTBI) represents the most common type of brain injury. However, in contrast with moderate or severe injury, there are currently few non-invasive experimental studies that investigate the cumulative effects of repetitive mTBI using rodent models. Here we describe and compare the behavioral and pathological consequences in a mouse model of single (s-mTBI) or repetitive injury (r-mTBI, five injuries given at 48 h intervals) administered by an electromagnetic controlled impactor. Our results reveal that a single mTBI is associated with transient motor and cognitive deficits as demonstrated by rotarod and the Barnes Maze respectively, whereas r-mTBI results in more significant deficits in both paradigms. Histology revealed no overt cell loss in the hippocampus, although a reactive gliosis did emerge in hippocampal sector CA1 and in the deeper cortical layers beneath the injury site in repetitively injured animals, where evidence of focal injury also was observed in the brainstem and cerebellum. Axonal injury, manifest as amyloid precursor protein immunoreactive axonal profiles, was present in the corpus callosum of both injury groups, though more evident in the r-mTBI animals. Our data demonstrate that this mouse model of mTBI is reproducible, simple, and noninvasive, with behavioral impairment after a single injury and increasing deficits after multiple injuries accompanied by increased focal and diffuse pathology. As such, this model may serve as a suitable platform with which to explore repetitive mTBI relevant to human brain injury.

  11. Developing better mouse models to study cisplatin-induced kidney injury.

    PubMed

    Sharp, Cierra N; Siskind, Leah J

    2017-10-01

    Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury. Copyright © 2017 the American Physiological Society.

  12. MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy.

    PubMed

    Bobadilla, Míriam; Sáinz, Neira; Rodriguez, José Antonio; Abizanda, Gloria; Orbe, Josune; de Martino, Alba; García Verdugo, José Manuel; Páramo, José A; Prósper, Felipe; Pérez-Ruiz, Ana

    2014-02-01

    Matrix metalloproteinases (MMPs), a family of endopeptidases that are involved in the degradation of extracellular matrix components, have been implicated in skeletal muscle regeneration. Among the MMPs, MMP-2 and MMP-9 are upregulated in Duchenne muscular dystrophy (DMD), a fatal X-linked muscle disorder. However, inhibition or overexpression of specific MMPs in a mouse model of DMD (mdx) has yielded mixed results regarding disease progression, depending on the MMP studied. Here, we have examined the role of MMP-10 in muscle regeneration during injury and muscular dystrophy. We found that skeletal muscle increases MMP-10 protein expression in response to damage (notexin) or disease (mdx mice), suggesting its role in muscle regeneration. In addition, we found that MMP-10-deficient muscles displayed impaired recruitment of endothelial cells, reduced levels of extracellular matrix proteins, diminished collagen deposition, and decreased fiber size, which collectively contributed to delayed muscle regeneration after injury. Also, MMP-10 knockout in mdx mice led to a deteriorated dystrophic phenotype. Moreover, MMP-10 mRNA silencing in injured muscles (wild-type and mdx) reduced muscle regeneration, while addition of recombinant human MMP-10 accelerated muscle repair, suggesting that MMP-10 is required for efficient muscle regeneration. Furthermore, our data suggest that MMP-10-mediated muscle repair is associated with VEGF/Akt signaling. Thus, our findings indicate that MMP-10 is critical for skeletal muscle maintenance and regeneration during injury and disease. © AlphaMed Press.

  13. A Mouse Model for Fetal Maternal Stem Cell Transfer During Ischemic Cardiac Injury

    PubMed Central

    Kara, Rina J.; Bolli, Paola; Matsunaga, Iwao; Tanweer, Omar; Altman, Perry; Chaudhry, Hina W.

    2012-01-01

    Fetal cells enter the maternal circulation during pregnancies and can persist in blood and tissues for decades, creating a state of physiologic microchimerism. Microchimerism refers to acquisition of cells from another individual and can be due to bi-directional cell traffic between mother and fetus during pregnancy. Peripartum cardiomyopathy, a rare cardiac disorder associated with high mortality rates has the highest recovery rate amongst all etiologies of heart failure although the reason is unknown. Collectively, these observations led us to hypothesize that fetal cells enter the maternal circulation and may be recruited to the sites of myocardial disease or injury. The ability to genetically modify mice makes them an ideal system for studying the phenomenon of microchimerism in cardiac disease. Described here is a mouse model for ischemic cardiac injury during pregnancy designed to study microchimerism. Wild-type virgin female mice mated with eGFP male mice underwent ligation of the left anterior descending artery to induce a myocardial infarction at gestation day 12. We demonstrate the selective homing of eGFP cells to the site of cardiac injury without such homing to nonfinjured tissues suggesting the presence of precise signals sensed by fetal cells enabling them to target diseased myocardium specifically. PMID:22883609

  14. Reperfusion injury intensifies the adaptive human T cell alloresponse in a human-mouse chimeric artery model.

    PubMed

    Yi, Tai; Fogal, Birgit; Hao, Zhengrong; Tobiasova, Zuzana; Wang, Chen; Rao, Deepak A; Al-Lamki, Rafia S; Kirkiles-Smith, Nancy C; Kulkarni, Sanjay; Bradley, John R; Bothwell, Alfred L M; Sessa, William C; Tellides, George; Pober, Jordan S

    2012-02-01

    Perioperative nonimmune injuries to an allograft can decrease graft survival. We have developed a model for studying this process using human materials. Human artery segments were transplanted as infrarenal aortic interposition grafts into an immunodeficient mouse host, allowed to "heal in" for 30 days, and then retransplanted into a second mouse host. To induce a reperfusion injury, the healed-in artery segments were incubated for 3 hours under hypoxic conditions ex vivo before retransplantation. To induce immunologic rejection, the animals receiving the retransplanted artery segment were adoptively transferred with human peripheral blood mononuclear cells or purified T cells from a donor allogeneic to the artery 1 week before surgery. To compare rejection of injured versus healthy tissues, these manipulations were combined. Results were analyzed ex vivo by histology, morphometry, immunohistochemistry, and mRNA quantitation or in vivo by ultrasound. Our results showed that reperfusion injury, which otherwise heals with minimal sequelae, intensifies the degree of allogeneic T cell-mediated injury to human artery segments. We developed a new human-mouse chimeric model demonstrating interactions of reperfusion injury and alloimmunity using human cells and tissues that may be adapted to study other forms of nonimmune injury and other types of adaptive immune responses.

  15. Baicalin Attenuates IL-17-Mediated Acetaminophen-Induced Liver Injury in a Mouse Model

    PubMed Central

    Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao

    2016-01-01

    Background IL-17 has been shown to be involved in liver inflammatory disorders in both mice and humans. Baicalin (BA), a major compound extracted from traditional herb medicine (Scutellariae radix), has potent hepatoprotective properties. Previous study showed that BA inhibits IL-17-mediated lymphocyte adhesion and downregulates joint inflammation. The aim of this study is to investigate the role of IL-17 in the hepatoprotective effects of BA in an acetaminophen (APAP)-induced liver injury mouse model. Methods Eight weeks male C57BL/6 (B6) mice were used for this study. Mice received intraperitoneal hepatotoxic injection of APAP (300 mg/kg) and after 30 min of injection, the mice were treated with BA at a concentration of 30 mg/kg. After 16 h of treatment, mice were killed. Blood samples and liver tissues were harvested for analysis of liver injury parameters. Results APAP overdose significantly increased the serum alanine transferase (ALT) levels, hepatic activities of myeloperoxidase (MPO), expression of cytokines (TNF-α, IL-6, and IL-17), and malondialdehyde (MDA) activity when compared with the control animals. BA treatment after APAP administration significantly attenuated the elevation of these parameters in APAP-induced liver injury mice. Furthermore, BA treatment could also decrease hepatic IL-17-producing γδT cells recruitment, which was induced after APAP overdose. Conclusion Our data suggested that baicalin treatment could effectively decrease APAP-induced liver injury in part through attenuation of hepatic IL-17 expression. These results indicate that baicalin is a potential hepatoprotective agent. PMID:27855209

  16. Hyperthermia induces injury to the intestinal mucosa in the mouse: evidence for an oxidative stress mechanism

    PubMed Central

    Oliver, S. R.; Phillips, N. A.; Novosad, V. L.; Bakos, M. P.; Talbert, E. E.

    2012-01-01

    Loss of the intestinal barrier is critical to the clinical course of heat illness, but the underlying mechanisms are still poorly understood. We tested the hypothesis that conditions characteristic of mild heatstroke in mice are associated with injury to the epithelial lining of the intestinal tract and comprise a critical component of barrier dysfunction. Anesthetized mice were gavaged with 4 kDa FITC-dextran (FD-4) and exposed to increasing core temperatures, briefly reaching 42.4°C, followed by 30 min recovery. Arterial samples were collected to measure FD-4 concentration in plasma (in vivo gastrointestinal permeability). The small intestines were then removed to measure histological evidence of injury. Hyperthermia resulted in a ≈2.5-fold elevation in plasma FD-4 and was always associated with significant histological evidence of injury to the epithelial lining compared with matched controls, particularly in the duodenum. When isolated intestinal segments from control animals were exposed to ≥41.5°C, marked increases in permeability were observed within 60 min. These changes were associated with release of lactate dehydrogenase, evidence of protein oxidation via carbonyl formation and histological damage. Coincubation with N-acetylcysteine protected in vitro permeability during hyperthermia and reduced histological damage and protein oxidation. Chelation of intracellular Ca2+ to block tight junction opening during 41.5°C exposure failed to reduce the permeability of in vitro segments. The results demonstrate that hyperthermia exposure in mouse intestine, at temperatures at or below those necessary to induce mild heatstroke, cause rapid and substantial injury to the intestinal lining that may be attributed, in part, to oxidative stress. PMID:22237593

  17. Anti-CD31 delays platelet adhesion/aggregation at sites of endothelial injury in mouse cerebral arterioles.

    PubMed Central

    Rosenblum, W. I.; Murata, S.; Nelson, G. H.; Werner, P. K.; Ranken, R.; Harmon, R. C.

    1994-01-01

    The arterioles on the surface of the mouse brain (pial arterioles) were observed by in vivo microscopy. A focus of minor endothelial damage was produced in a single pial arteriole in each mouse by briefly exposing the site to a helium neon laser after an intravenous injection of Evans blue. Mice were injected 10 minutes before injury with a monoclonal antibody (MAb) to mouse CD31, also known as platelet endothelial cell adhesion molecule. This treatment doubled (P < .01) the time required for the laser to produce a recognizable platelet aggregate. In additional experiments, an MAb to mouse CD61 and an MAb to mouse intercellular adhesion molecule 1 had no effect. The data support previous observations indicating that platelet adhesion/aggregation in this model is induced by endothelial injury without exposure of basal lamina. The data are consistent with the hypothesis that the endothelial injury exposes or activates a platelet endothelial cell adhesion molecule on the endothelium which is blocked by the MAb directed against CD31. This may be the first demonstration of an effect of an anti-platelet endothelial cell adhesion molecule on platelet endothelial cell adhesion molecule on platelet adhesion/aggregation in vivo. PMID:8030753

  18. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    SciTech Connect

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  19. Generation of a tamoxifen inducible Tnnt2MerCreMer knock-in mouse model for cardiac studies.

    PubMed

    Yan, Jianyun; Sultana, Nishat; Zhang, Lu; Park, David S; Shekhar, Akshay; Hu, Jun; Bu, Lei; Cai, Chen-Leng

    2015-06-01

    Tnnt2, encoding thin-filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2(MerCreMer/+)) knock-in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock-in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2(MerCreMer/+) mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre-LoxP technology. The Tnnt2(MerCreMer/+) mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury.

  20. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice

    PubMed Central

    Diwan, Abhinav; Krenz, Maike; Syed, Faisal M.; Wansapura, Janaka; Ren, Xiaoping; Koesters, Andrew G.; Li, Hairong; Kirshenbaum, Lorrie A.; Hahn, Harvey S.; Robbins, Jeffrey; Jones, W. Keith; Dorn, Gerald W.

    2007-01-01

    Following myocardial infarction, nonischemic myocyte death results in infarct expansion, myocardial loss, and ventricular dysfunction. Here, we demonstrate that a specific proapoptotic gene, Bnip3, minimizes ventricular remodeling in the mouse, despite having no effect on early or late infarct size. We evaluated the effects of ablating Bnip3 on cardiomyocyte death, infarct size, and ventricular remodeling after surgical ischemia/reperfusion (IR) injury in mice. Immediately following IR, no significant differences were observed between Bnip3–/– and WT mice. However, at 2 days after IR, apoptosis was diminished in Bnip3–/– periinfarct and remote myocardium, and at 3 weeks after IR, Bnip3–/– mice exhibited preserved LV systolic performance, diminished LV dilation, and decreased ventricular sphericalization. These results suggest myocardial salvage by inhibition of apoptosis. Forced cardiac expression of Bnip3 increased cardiomyocyte apoptosis in unstressed mice, causing progressive LV dilation and diminished systolic function. Conditional Bnip3 overexpression prior to coronary ligation increased apoptosis and infarct size. These studies identify postischemic apoptosis by myocardial Bnip3 as a major determinant of ventricular remodeling in the infarcted heart, suggesting that Bnip3 may be an attractive therapeutic target. PMID:17909626

  1. Magnetic resonance microscopy of spinal cord injury in mouse using a miniaturized implantable RF coil.

    PubMed

    Bilgen, Mehmet

    2007-01-15

    A magnetic resonance neuroimaging method is described for high-resolution imaging of spinal cord injury in live mouse. The method is based on a specially designed radio frequency coil system formed by a combination of an implantable coil and an external volume coil. The implantable coil is a 5 mm x 10 mm rectangular design with a 9.1 pF capacitor and 22 gauge copper wire and optimal for surgical implantation over the cervical or thoracic spine. The external volume coil is a standard birdcage resonator. The coils are inductively overcoupled for imaging the spinal cord at 9.4 T magnetic field strength. The inductive overcoupling provides flexibility in tuning the resonant frequency and matching the impedance of the implanted coil remotely using the tuning and matching capabilities of the volume coil. After describing the implementation of the imaging setup, in vivo data are gathered to demonstrate the imaging performance of the coil system and the feasibility of performing MR microscopy on injured mouse spinal cord.

  2. Protective effect of 4,4'-diaminodiphenylsulfone against paraquat-induced mouse lung injury.

    PubMed

    Cho, Sung Chun; Rhim, Ji Heon; Choi, Hae Ri; Son, Young Hoon; Lee, Seok Jin; Song, Kye Yong; Park, Sang Chul

    2011-09-30

    Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species. Additionally, in in vitro experiments using non-phagocytic human fibroblasts, we found that DDS effectively counteracted the toxicity of paraquat (PQ). In the present study, we extended our work to test the protective effect of DDS against PQ in vivo using a mouse lung injury model. Oral administration of DDS to mice significantly attenuated the lung tissue damage caused by subsequent administration of PQ. Moreover, DDS reduced the local expression of mRNA transcripts encoding inflammation-related molecules, including endothelin-1 (ET-1), macrophage inflammatory protein-1α (MIP-1α), and transforming growth factor-β (TGF-β). In addition, DDS decreased the PQ-induced expression of NADPH oxidase mRNA and activation of protein kinase Cμ (PKCμ). DDS treatment also decreased the PQ-induced generation of superoxide anions in mouse lung fibroblasts. Taken together, these data suggest the novel efficacy of DDS as an effective protective agent against oxidative stress-induced tissue damages.

  3. Ca2+ paradox injury mediated through TRPC channels in mouse ventricular myocytes.

    PubMed

    Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi

    2010-12-01

    BACKGROUND AND PURPOSE The Ca(2+) paradox is an important phenomenon associated with Ca(2+) overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca(2+) paradox. EXPERIMENTAL APPROACH Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope. KEY RESULTS The Ca(2+) paradox was readily evoked by restoration of the extracellular Ca(2+) following 10-20 min of nominally Ca(2+)-free superfusion. The Ca(2+) paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd(3+), La(3+)) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca(2+) content, assessed by caffeine application, gradually declined during Ca(2+)-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca(2+) leak by tetracaine prevented Ca(2+) paradox. The Na(+) /Ca(2+) exchange (NCX) blocker KB-R7943 significantly inhibited Ca(2+) paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca(2+) restoration. The SR Ca(2+) content was better preserved during Ca(2+) depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes. CONCLUSIONS AND IMPLICATIONS These results provide evidence that (i) the Ca(2+) paradox is primarily mediated by Ca(2+) entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca(2+) depletion; and (ii) reverse mode NCX contributes little to the Ca(2+) paradox, whereas inhibition of NCX during Ca(2+) depletion improves SR Ca(2+) loading, and is associated with reduced incidence of Ca(2+) paradox in mouse ventricular myocytes. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  4. Ca2+ paradox injury mediated through TRPC channels in mouse ventricular myocytes

    PubMed Central

    Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi

    2010-01-01

    BACKGROUND AND PURPOSE The Ca2+ paradox is an important phenomenon associated with Ca2+ overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca2+ paradox. EXPERIMENTAL APPROACH Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope. KEY RESULTS The Ca2+ paradox was readily evoked by restoration of the extracellular Ca2+ following 10–20 min of nominally Ca2+-free superfusion. The Ca2+ paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd3+, La3+) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca2+ content, assessed by caffeine application, gradually declined during Ca2+-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca2+ leak by tetracaine prevented Ca2+ paradox. The Na+/Ca2+ exchange (NCX) blocker KB-R7943 significantly inhibited Ca2+ paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca2+ restoration. The SR Ca2+ content was better preserved during Ca2+ depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes. CONCLUSIONS AND IMPLICATIONS These results provide evidence that (i) the Ca2+ paradox is primarily mediated by Ca2+ entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca2+ depletion; and (ii) reverse mode NCX contributes little to the Ca2+ paradox, whereas inhibition of NCX during Ca2+ depletion improves SR Ca2+ loading, and is associated with reduced incidence of Ca2+ paradox in mouse ventricular myocytes. PMID:20718730

  5. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose.

    PubMed

    Zhang, Zi-feng; Fan, Shao-hua; Zheng, Yuan-lin; Lu, Jun; Wu, Dong-mei; Shan, Qun; Hu, Bin

    2009-09-09

    Troxerutin, a trihydroxyethylated derivative of rutin, has been well-demonstrated to exert hepatoprotective properties. In the present study, we attempted to explore whether the antioxidant and anti-inflammatory mechanisms were involved in troxerutin-mediated protection from D-gal-induced liver injury. The effects of troxerutin on liver lipid peroxidation, antioxidant enzymatic activities, and the expression of inflammatory mediator were investigated in D-gal-treated mice. The results showed that troxerutin largely attenuated the D-gal-induced TBARS content increase and also markedly renewed the activities of Cu, Zn-SOD, CAT, and GPx in the livers of D-gal-treated mice. Furthermore, troxerutin inhibited the upregulation of the expression of NF-kappaB p65, iNOS, and COX-2 induced by D-gal. D-Gal-induced tissue architecture changes and serum ALT and AST increases were effectively suppressed by troxerutin. In conclusion, these results suggested that troxerutin could protect the mouse liver from D-gal-induced injury by attenuating lipid peroxidation, renewing the activities of antioxidant enzymes and suppressing inflammatory response. This study provided novel insights into the mechanisms of troxerutin in the protection of the liver.

  6. Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury.

    PubMed

    Guo, Dongjun; Zeng, Linghui; Brody, David L; Wong, Michael

    2013-01-01

    Posttraumatic epilepsy is a major source of disability following traumatic brain injury (TBI) and a common cause of medically-intractable epilepsy. Previous attempts to prevent the development of posttraumatic epilepsy with treatments administered immediately following TBI have failed. Recently, the mammalian target of rapamycin complex 1 (mTORC1) pathway has been implicated in mechanisms of epileptogenesis and the mTORC1 inhibitor, rapamycin, has been proposed to have antiepileptogenic effects in preventing some types of epilepsy. In this study, we have tested the hypothesis that rapamycin has antiepileptogenic actions in preventing the development of posttraumatic epilepsy in an animal model of TBI. A detailed characterization of posttraumatic epilepsy in the mouse controlled cortical impact model was first performed using continuous video-EEG monitoring for 16 weeks following TBI. Controlled cortical impact injury caused immediate hyperactivation of the mTORC1 pathway lasting at least one week, which was reversed by rapamycin treatment. Rapamycin decreased neuronal degeneration and mossy fiber sprouting, although the effect on mossy fiber sprouting was reversible after stopping rapamycin and did not directly correlate with inhibition of epileptogenesis. Most posttraumatic seizures occurred greater than 10 weeks after TBI, and rapamycin treatment for one month after TBI decreased the seizure frequency and rate of developing posttraumatic epilepsy during the entire 16 week monitoring session. These results suggest that rapamycin may represent a rational treatment for preventing posttraumatic epilepsy in patients with TBI.

  7. Systemic Administration of Induced Neural Stem Cells Regulates Complement Activation in Mouse Closed Head Injury Models

    PubMed Central

    Gao, Mou; Dong, Qin; Yao, Hui; Lu, Yingzhou; Ji, Xinchao; Zou, Mingming; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Complement activation plays important roles in the pathogenesis of central nervous system (CNS) diseases. Patients face neurological disorders due to the development of complement activation, which contributes to cell apoptosis, brain edema, blood-brain barrier dysfunction and inflammatory infiltration. We previously reported that induced neural stem cells (iNSCs) can promote neurological functional recovery in closed head injury (CHI) animals. Remarkably, we discovered that local iNSC grafts have the potential to modulate CNS inflammation post-CHI. In this study, we aimed to explore the role of systemically delivered iNSCs in complement activation following CNS injury. Our data showed that iNSC grafts decreased the levels of sera C3a and C5a and down-regulated the expression of C3d, C9, active Caspase-3 and Bax in the brain, kidney and lung tissues of CHI mice. Furthermore, iNSC grafts decreased the levels of C3d+/NeuN+, C5b-9+/NeuN+, C3d+/Map2+ and C5b-9+/Map2+ neurons in the injured cortices of CHI mice. Subsequently, we explored the mechanisms underlying these effects. With flow cytometry analysis, we observed a dramatic increase in complement receptor type 1-related protein y (Crry) expression in iNSCs after CHI mouse serum treatment. Moreover, both in vitro and in vivo loss-of-function studies revealed that iNSCs could modulate complement activation via Crry expression. PMID:28383046

  8. Signaling through hepatocyte vasopressin receptor 1 protects mouse liver from ischemia-reperfusion injury

    PubMed Central

    Jiang, Jingbo; Ma, Tonghui; Lin, Xiaozhu; Jiang, Liping; Cheng, Jilin; Tao, Ran

    2016-01-01

    Terlipressin has been used extensively in the management of certain complications associated with end-stage liver diseases (ESLDs). In our pilot study, terlipressin treatment showed beneficial effects on liver function in patients with decompensated cirrhosis, however whether it plays a role in liver ischemia-reperfusion injury (IRI) remains unknown. Using a mouse nonlethal hepatic IR model, we found terlipressin administration significantly ameliorated IR-induced liver apoptosis, necrosis and inflammation. Furthermore, despite its known effect on visceral vasoconstriction, hemodynamic evaluation of murine hepatic tissue after IR revealed no change of overall hepatic blood flow after terlipressin treatment. Further studies identified the upregulation of vasopressin receptor 1 (V1R) expression on hepatocytes upon IR. In isolated hepatocyte hypoxia/reoxygenation model, the active component of terlipressin, lysine vasopressin, conferred hepatocytes resistant to oxidative stress-induced apoptosis. Mechanistic studies revealed the V1R engagement activated the Wnt/β-catenin/FoxO3a/AKT pathway, which subsequently circumvented the proapoptotic events, thus ameliorated hepatocyte apoptosis. Furthermore, genetic knockdown of V1R expression in hepatocyte cell lines or blockade of this signaling pathway abrogated such protective effect. Conclusion: These data highlight the functional importance of the hepatocyte V1R/Wnt/β-catenin/FoxO3a/AKT pathway in protecting liver from oxidative stress-induced injury. PMID:27713143

  9. IL-1 receptor blockade prevents fetal cortical brain injury but not preterm birth in a mouse model of inflammation-induced preterm birth and perinatal brain injury.

    PubMed

    Leitner, Kirstin; Al Shammary, Mofeedah; McLane, Michael; Johnston, Michael V; Elovitz, Michal A; Burd, Irina

    2014-05-01

    Exposure to intrauterine inflammation, associated with preterm birth, has been linked to a devastating spectrum of neurobehavioral disorders. Mechanisms of this injury are unknown. Using a mouse model of intrauterine inflammation, we have observed a disruption of fetal neuronal morphology along with a marked elevation of interleukin (IL)-1β in the fetal brain and placenta. In this study, we hypothesized that IL-1 plays a key role in perinatal brain injury. Utilizing a mouse model of inflammation-induced preterm birth, we investigated the role of IL-1 in fetal cortical injury as well as preterm birth. In these studies, dams received systemic treatment with IL-1 receptor antagonist prior to administration of intrauterine inflammation. Systemic maternal antagonism of IL-1 improved fetal cortical neuronal injury associated with the exposure to intrauterine inflammation, without affecting the phenotype of preterm birth. IL-1 receptor antagonist blocked activation of neuronal nitric oxide synthase in perinatal cortex, a key enzyme implicated in neurotoxicity. Our data suggest that fetal cortical brain injury and preterm birth may occur by divergent mechanisms. Furthermore, our studies indicate maternal administration of IL-1 receptor antagonist (IL-1RA) blocked neuronal nitric oxide synthase activation observed in the brain cortex and, we speculate, that this alteration in activation leads to demonstrated decreased neurotoxicity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Macrophage recruitment and epithelial repair following hair cell injury in the mouse utricle.

    PubMed

    Kaur, Tejbeer; Hirose, Keiko; Rubel, Edwin W; Warchol, Mark E

    2015-01-01

    The sensory organs of the inner ear possess resident populations of macrophages, but the function of those cells is poorly understood. In many tissues, macrophages participate in the removal of cellular debris after injury and can also promote tissue repair. The present study examined injury-evoked macrophage activity in the mouse utricle. Experiments used transgenic mice in which the gene for the human diphtheria toxin receptor (huDTR) was inserted under regulation of the Pou4f3 promoter. Hair cells in such mice can be selectively lesioned by systemic treatment with diphtheria toxin (DT). In order to visualize macrophages, Pou4f3-huDTR mice were crossed with a second transgenic line, in which one or both copies of the gene for the fractalkine receptor CX3CR1 were replaced with a gene for GFP. Such mice expressed GFP in all macrophages, and mice that were CX3CR1(GFP/GFP) lacked the necessary receptor for fractalkine signaling. Treatment with DT resulted in the death of ∼70% of utricular hair cells within 7 days, which was accompanied by increased numbers of macrophages within the utricular sensory epithelium. Many of these macrophages appeared to be actively engulfing hair cell debris, indicating that macrophages participate in the process of 'corpse removal' in the mammalian vestibular organs. However, we observed no apparent differences in injury-evoked macrophage numbers in the utricles of CX3CR1(+/GFP) mice vs. CX3CR1(GFP/GFP) mice, suggesting that fractalkine signaling is not necessary for macrophage recruitment in these sensory organs. Finally, we found that repair of sensory epithelia at short times after DT-induced hair cell lesions was mediated by relatively thin cables of F-actin. After 56 days recovery, however, all cell-cell junctions were characterized by very thick actin cables.

  11. NG2 cell response in the CNP-EGFP mouse after contusive spinal cord injury

    PubMed Central

    Lytle, Judith M.; Chittajallu, Ramesh; Wrathall, Jean R.; Gallo, Vittorio

    2009-01-01

    NG2+ cells in the adult CNS are a heterogeneous population. The extent to which the subpopulation of NG2+ cells that function as oligodendrocyte progenitor cells (OPCs) respond to spinal cord injury (SCI) and recapitulate their normal developmental progression remains unclear. We used the CNP-EGFP mouse, in which oligodendrocyte lineage cells express EGFP, to study NG2+ cells in the normal and injured spinal cord. In white matter of uninjured mice, bipolar EGFP+NG2+ cells and multipolar EGFPnegNG2+ cells were identified. After SCI, EGFP+NG2+ cell proliferation in residual white matter peaked at 3 days post injury (DPI) rostral to the epicenter, while EGFPnegNG2+ cell proliferation peaked at 7 DPI at the epicenter. The expression of transcription factors Olig2, Sox10 and Sox17, and the basic electrophysiological membrane parameters and potassium current phenotype of the EGFP+NG2+ population after injury were consistent with those of proliferative OPCs during development. EGFPnegNG2+ cells did not express transcription factors involved in oligodendrogenesis. EGFP+CC1+ oligodendrocytes at 6 weeks included cells that incorporated BrdU during the peak of EGFP+NG2+ cell proliferation. EGFPnegCC1+ oligodendrocytes were never observed. Treatment with glial growth factor 2 and fibroblast growth factor 2 enhanced oligodendrogenesis and increased the number of EGFPnegNG2+ cells. Therefore, based on EGFP and transcription factor expression, spatio-temporal proliferation patterns, and response to growth factors, two populations of NG2+ cells can be identified that react to SCI. The EGFP+NG2+ cells undergo cellular and physiological changes in response to SCI that are similar to those that occur in early postnatal NG2+ cells during developmental oligodendrogenesis. PMID:18756526

  12. Drinking citrus fruit juice inhibits vascular remodeling in cuff-induced vascular injury mouse model.

    PubMed

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI.

  13. Drinking Citrus Fruit Juice Inhibits Vascular Remodeling in Cuff-Induced Vascular Injury Mouse Model

    PubMed Central

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-no, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI. PMID:25692290

  14. IV injection of polystyrene beads for mouse model of sepsis causes severe glomerular injury.

    PubMed

    Arima, Hajime; Hirate, Hiroyuki; Sugiura, Takeshi; Suzuki, Shugo; Takahashi, Satoru; Sobue, Kazuya

    2014-01-01

    Infusion fluids may be contaminated with different types of particulates that are a potential health hazard. Particulates larger than microvessels may cause an embolism by mechanical blockage and inflammation; however, it has been reported that particulates smaller than capillary diameter are relatively safe. Against such a background, one report showed that polystyrene beads smaller than capillary diameter decreased tissue perfusion in ischemia-reperfusion injury. This report suggested that polystyrene beads from 1.5- to 6-μm diameter (dia.) may have unfavorable effects after pretreatment. Here, we investigated whether injection of polystyrene beads (3- and 6-μm dia.) as an artificial contaminant of intravenous fluid after lipopolysaccharide (LPS) injection affected mortality and organ damage in mice. Mice were divided into four groups and injected: polystyrene beads only, LPS only, polystyrene beads 30 min after LPS, or saline. A survival study, histology, blood examination, and urine examination were performed. The survival rate after LPS and polystyrene bead (6-μm dia.) injection was significantly lower than that of the other three groups. In the kidney sections, injured glomeruli were significantly higher with LPS and polystyrene bead injection than that of the other three groups. LPS and polystyrene bead injection decreased the glomerular filtration rate and led to renal failure. Inflammatory reactions induced with LPS were not significantly different between with or without polystyrene beads. Polystyrene beads were found in urine after LPS and polystyrene bead injection. Injection of polystyrene beads after LPS injection enhanced glomerular structural injury and caused renal function injury in a mouse sepsis model.

  15. Cardiomyopathy reverses with recovery of liver injury, cholestasis and cholanemia in mouse model of biliary fibrosis

    PubMed Central

    Desai, Moreshwar. S.; Eblimit, Zeena; Thevananther, Sundararajah; Kosters, Astrid; Moore, David. D; Penny, Daniel J.; Karpen, Saul J.

    2014-01-01

    Background Triggers and exacerbants of cirrhotic cardiomyopathy (CC) are poorly understood, limiting treatment options in patients with chronic liver diseases. Liver transplantation alone reverses some features of CC, but the physiology behind this effect has never been studied. Aims We aimed to determine whether reversal of liver injury and fibrosis in mouse affects cardiac parameters. The second aim was to determine whether cardiomyopathy can be induced by specifically increasing systemic bile acid (BA) levels. Methods 6–8 week old male C57BL6J mice were fed either chow (n=5) or 3, 5-diethoxycarbonyl-1, 4-dihydroxychollidine (DDC) (n=10) for 3 weeks. At the end of 3 weeks, half the mice in the DDC fed group were randomized to chow (the reversed [REV] group). Serial ECHOs and electrocardiographic analysis was conducted weekly for 6 weeks followed by liver tissue and serum studies. Hearts were analyzed for key components of function and cell signaling. Cardiac physiologic and molecular parameters were similarly analyzed in Abcb11−/− mice (n=5/grp) fed 0.5% cholic acid supplemented diet for 1 week. Results Mice in the REV group showed normalization of biochemical markers of liver injury with resolution of electrocardiographic and ECHO aberrations. Catecholamine resistance seen in DDC group resolved in the REV group. Cardiac recovery was accompanied by normalization of cardiac troponin-T2 as well as resolution of cardiac stress response at RNA level. Cardiovascular physiologic and molecular parameters correlated with degree of cholanemia. Cardiomyopathy was reproduced in cholanemic BA fed Abcb11−/− mice. Conclusions Cardiomyopathy resolves with resolution of liver injury, is associated with cholanemia, and can be induced by BA feeding. PMID:24330504

  16. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  17. CXCL12 Gene Therapy Ameliorates Ischemia-Induced White Matter Injury in Mouse Brain.

    PubMed

    Li, Yaning; Tang, Guanghui; Liu, Yanqun; He, Xiaosong; Huang, Jun; Lin, Xiaojie; Zhang, Zhijun; Yang, Guo-Yuan; Wang, Yongting

    2015-10-01

    Remyelination is an important repair process after ischemic stroke-induced white matter injury. It often fails because of the insufficient recruitment of oligodendrocyte progenitor cells (OPCs) to the demyelinated site or the inefficient differentiation of OPCs to oligodendrocytes. We investigated whether CXCL12 gene therapy promoted remyelination after middle cerebral artery occlusion in adult mice. The results showed that CXCL12 gene therapy at 1 week after ischemia could protect myelin sheath integrity in the perifocal region, increase the number of platelet-derived growth factor receptor-α (PDGFRα)-positive and PDGFRα/bromodeoxyuridine-double positive OPCs in the subventricular zone, and further enhance their migration to the ischemic lesion area. Coadministration of AMD3100, the antagonist for CXCL12 receptor CXCR4, eliminated the beneficial effect of CXCL12 on myelin sheath integrity and negatively influenced OPC proliferation and migration. At 5 weeks after ischemia, CXCR4 was found on the PDGFRα- and/or neuron/glia type 2 (NG2)-positive OPCs but not on the myelin basic protein-positive mature myelin sheaths, and CXCR7 was only expressed on the mature myelin sheath in the ischemic mouse brain. Our data indicated that CXCL12 gene therapy effectively protected white matter and promoted its repair after ischemic injury. The treatment at 1 week after ischemia is effective, suggesting that this strategy has a longer therapeutic time window than the treatments currently available. This study has demonstrated for the first time that CXCL12 gene therapy significantly ameliorates brain ischemia-induced white matter injury and promotes oligodendrocyte progenitor cell proliferation in the subventricular zone and migration to the perifocal area in the ischemic mouse brain. Additional data showed that CXCR4 receptor plays an important role during the proliferation and migration of oligodendrocyte progenitor cells, and CXCR7 might play a role during maturation. In

  18. Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy

    PubMed Central

    Kooij, Viola; Viswanathan, Meera C.; Lee, Dong I.; Rainer, Peter P.; Schmidt, William; Kronert, William A.; Harding, Sian E.; Kass, David A.; Bernstein, Sanford I.; Van Eyk, Jennifer E.; Cammarato, Anthony

    2016-01-01

    Aims Heart failure is often preceded by cardiac hypertrophy, which is characterized by increased cell size, altered protein abundance, and actin cytoskeletal reorganization. Profilin is a well-conserved, ubiquitously expressed, multifunctional actin-binding protein, and its role in cardiomyocytes is largely unknown. Given its involvement in vascular hypertrophy, we aimed to test the hypothesis that profilin-1 is a key mediator of cardiomyocyte-specific hypertrophic remodelling. Methods and results Profilin-1 was elevated in multiple mouse models of hypertrophy, and a cardiomyocyte-specific increase of profilin in Drosophila resulted in significantly larger heart tube dimensions. Moreover, adenovirus-mediated overexpression of profilin-1 in neonatal rat ventricular myocytes (NRVMs) induced a hypertrophic response, measured by increased myocyte size and gene expression. Profilin-1 silencing suppressed the response in NRVMs stimulated with phenylephrine or endothelin-1. Mechanistically, we found that profilin-1 regulates hypertrophy, in part, through activation of the ERK1/2 signalling cascade. Confocal microscopy showed that profilin localized to the Z-line of Drosophila myofibrils under normal conditions and accumulated near the M-line when overexpressed. Elevated profilin levels resulted in elongated sarcomeres, myofibrillar disorganization, and sarcomeric disarray, which correlated with impaired muscle function. Conclusion Our results identify novel roles for profilin as an important mediator of cardiomyocyte hypertrophy. We show that overexpression of profilin is sufficient to induce cardiomyocyte hypertrophy and sarcomeric remodelling, and silencing of profilin attenuates the hypertrophic response. PMID:26956799

  19. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium.

    PubMed

    Wang, Yingjie; Zhang, Lan; Li, Yongjun; Chen, Lijuan; Wang, Xiaolong; Guo, Wei; Zhang, Xue; Qin, Gangjian; He, Sheng-hu; Zimmerman, Arthur; Liu, Yutao; Kim, Il-man; Weintraub, Neal L; Tang, Yaoliang

    2015-08-01

    Induced pluripotent stem cells (iPS) exhibit enhanced survival and proliferation in ischemic tissues. However, the therapeutic application of iPS cells is limited by their tumorigenic potential. We hypothesized that iPS cells can transmit cytoprotective signals to cardiomyocytes via exosomes/microvesicles. Exosomes/microvesicles secreted from mouse cardiac fibroblast (CF)-derived iPS cells (iPS-exo) were purified from conditioned medium and confirmed by electron micrograph, size distribution and zeta potential by particle tracking analyzer and protein expression of the exosome markers CD63 and Tsg101. We observed that exosomes are at low zeta potential, and easily aggregate. Temperature affects zeta potential (-14 to -15 mV at 23 °C vs -24 mV at 37 °C). The uptake of iPS-exo protects H9C2 cells against H2O2-induced oxidative stress by inhibiting caspase 3/7 activation (P < 0.05, n = 6). Importantly, iPS-exo treatment can protect against myocardial ischemia/reperfusion (MIR) injury via intramyocardial injection into mouse ischemic myocardium before reperfusion. Furthermore, iPS-exo deliver cardioprotective miRNAs, including nanog-regulated miR-21 and HIF-1α-regulated miR-210, to H9C2 cardiomyocytes in vitro. Exosomes/microvesicles secreted by iPS cells are very effective at transmitting cytoprotective signals to cardiomyocytes in the setting of MIR. iPS-exo thus represents novel biological nanoparticles that offer the benefits of iPS cell therapy without the risk of tumorigenicity and can potentially serve as an "off-the-shelf" therapy to rescue ischemic cardiomyocytes in conditions such as MIR. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. Human liver chimeric mouse model based on diphtheria toxin-induced liver injury

    PubMed Central

    Ren, Xiao-Nan; Ren, Rong-Rong; Yang, Hua; Qin, Bo-Yin; Peng, Xiu-Hua; Chen, Li-Xiang; Li, Shun; Yuan, Meng-Jiao; Wang, Chao; Zhou, Xiao-Hui

    2017-01-01

    AIM To establish an inducible liver injury mouse model and transplant human hepatocytes to obtain liver-humanized mice. METHODS We crossed three mouse strains, including albumin (Alb)-cre transgenic mice, inducible diphtheria toxin receptor (DTR) transgenic mice and severe combined immune deficient (SCID)-beige mice, to create Alb-cre/DTR/SCID-beige (ADSB) mice, which coincidentally harbor Alb-cre and DTR transgenes and are immunodeficient. As the Cre expression is driven by the liver-specific promoter Alb (encoding ALB), the DTR stop signal flanked by two loxP sites can be deleted in the ADSB mice, resulting in DTR expression in the liver. ADSB mice aged 8-10 wk were injected intraperitoneally (i.p.) with diphtheria toxin (DT) and liver damage was assessed by serum alanine aminotransferase (ALT) level. Two days later, mouse livers were sampled for histological analysis, and human hepatocytes were transplanted into the livers on the same day. A human ALB enzyme-linked immunosorbent assay was performed 7, 14, 21 and 28 d after transplantation. Human CD68 immunohistochemistry was performed 30 and 90 d after transplantation. RESULTS We crossed Alb-cre with DTR and SCID-beige mice to obtain ADSB mice. These mice were found to have liver damage 4 d after i.p. injection of 2.5 ng/g bodyweight DT. Bodyweight began to decrease on day 2, increased on day 7, and was lowest on day 4 (range, 10.5%-13.4%). Serum ALT activity began to increase on day 2 and reached a peak value of 289.7 ± 16.2 IU/mL on day 4, then returned to background values on day 7. After transplantation of human liver cells, peripheral blood human ALB level was 1580 ± 454.8 ng/mL (range, 750.2-3064.9 ng/mL) after 28 d and Kupffer cells were present in the liver at 30 d in ADSB mice. CONCLUSION Human hepatocytes were successfully repopulated in the livers of ADSB mice. The inducible mouse model of humanized liver in ADSB mice may have functional applications, such as hepatocyte transplantation, hepatic

  1. Cardiomyocyte Hypertrophy in Arrhythmogenic Cardiomyopathy.

    PubMed

    Gerçek, Mustafa; Gerçek, Muhammed; Kant, Sebastian; Simsekyilmaz, Sakine; Kassner, Astrid; Milting, Hendrik; Liehn, Elisa A; Leube, Rudolf E; Krusche, Claudia A

    2017-04-01

    Arrhythmogenic cardiomyopathy (AC) is a hereditary disease leading to sudden cardiac death or heart failure. AC pathology is characterized by cardiomyocyte loss and replacement fibrosis. Our goal was to determine whether cardiomyocytes respond to AC progression by pathological hypertrophy. To this end, we examined tissue samples from AC patients with end-stage heart failure and tissue samples that were collected at different disease stages from desmoglein 2-mutant mice, a well characterized AC model. We find that cardiomyocyte diameters are significantly increased in right ventricles of AC patients. Increased mRNA expression of the cardiac stress marker natriuretic peptide B is also observed in the right ventricle of AC patients. Elevated myosin heavy chain 7 mRNA expression is detected in left ventricles. In desmoglein 2-mutant mice, cardiomyocyte diameters are normal during the concealed disease phase but increase significantly after acute disease onset on cardiomyocyte death and fibrotic myocardial remodeling. Hypertrophy progresses further during the chronic disease stage. In parallel, mRNA expression of myosin heavy chain 7 and natriuretic peptide B is up-regulated in both ventricles with right ventricular preference. Calcineurin/nuclear factor of activated T cells (Nfat) signaling, which is linked to pathological hypertrophy, is observed during AC progression, as evidenced by Nfatc2 and Nfatc3 mRNA in cardiomyocytes and increased mRNA of the Nfat target regulator of calcineurin 1. Taken together, we demonstrate that pathological hypertrophy occurs in AC and is secondary to cardiomyocyte loss and cardiac remodeling.

  2. Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection

    PubMed Central

    Yajima, Toshitaka

    2011-01-01

    Virus infection can inflict significant damage on cardiomyocytes through direct injury and secondary immune reactions, leading to myocarditis and dilated cardiomyopathy. While viral myocarditis or cardiomyopathy is a complication of systemic infection of cardiotropic viruses, most individuals infected with the viruses do not develop significant cardiac disease. However, some individuals proceed to develop severe virus-mediated heart disease. Recent studies have shown that viral infection of cardiomyocytes is required for the development of myocarditis and subsequent cardiomyopathy. This suggests that viral infection of cardiomyocytes can be an important step that determines the pathogenesis of viral myocarditis during systemic infection. Accordingly, this article focuses on potential defense mechanisms within the cardiomyocyte against virus infection. Understanding of the cardiomyocyte defense against invading viruses may give us novel insights into the pathophysiology of viral myocarditis, and enable us to develop innovative strategies of diagnosis and treatment for this challenging clinical entity. PMID:21585262

  3. Protective role of silymarin in a mouse model of renal Ischemia-Reperfusion injury.

    PubMed

    Tan, Jian; Hu, Jianpeng; He, Yonghui; Cui, Feilun

    2015-10-31

    We investigated the mechanism of action of silymarin in a mouse model of renal ischemia-reperfusion injury (I/R) to ascertain its role in the treatment of I/R injury. Twenty-four C57BL/6 male mice were divided randomly into three groups: control (sham); ischemia-reperfusion (I/R); silymarin + ischemia-reperfusion (silymarin + I/R). In sham mice, an abdominal incision was made, followed by dissection of the bilateral renal pedicle, with no further cross-clamping of arteries. Silymarin + I/R mice were administered 100 mg/kg silymarin daily for 7 consecutive days before surgery, whereas I/R mice were administered (i.g.) 0.9 % saline + 0.1 % (v/v) ethanol daily for 7 consecutive days before surgery. Silymarin + I/R and I/R mice were subjected to renal ischemia to induce acute kidney injury after 45-min clamping of bilateral renal arteries. Serum levels of creatinine and blood urea nitrogen levels were measured. Periodic acid-Schiff (PAS) staining was undertaken to detect damaged renal tissue. Myeloperoxidase (MPO) activity and immunofluorescent detection of CD68 expression was undertaken for each group. Levels of inflammatory cytokines secreted by renal tissue were monitored by ELISA. Apoptosis was detected by TUNEL staining. Expression of cleaved-caspase-3, Bcl-2 and Bax was detected by western blotting. Serum creatinine and blood urea nitrogen levels were elevated in silymarin + I/R and I/R groups compared with sham mice (p < 0.05), whereas those in the I/R group were significantly higher than in the silymarin + I/R group (p < 0.05). Number of damaged renal tubule cells and apoptotic cells in sham and silymarin + I/R groups was significantly lower than in I/R mice. MPO activity and secretion of inflammatory cytokines in silymarin + I/R and I/R groups was reduced (p < 0.05), and CD68 expression in silymarin + I/R mice was lower than in I/R mice (p < 0.05). Expression of cleaved-caspase-3 and Bax in the I/R group

  4. Naturally Engineered Maturation of Cardiomyocytes

    PubMed Central

    Scuderi, Gaetano J.; Butcher, Jonathan

    2017-01-01

    Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte maturation. This

  5. A kidney injury molecule‐1 (Kim‐1) gene reporter in a mouse artificial chromosome: the responsiveness to cisplatin toxicity in immortalized mouse kidney S3 cells

    PubMed Central

    Kokura, Kenji; Kuromi, Yasushi; Endo, Takeshi; Anzai, Naohiko; Kazuki, Yasuhiro; Oshimura, Mitsuo

    2016-01-01

    Abstract Background Kidney injury molecule‐1 (Kim‐1) has been validated as a urinary biomarker for acute and chronic renal damage. The expression of Kim‐1 mRNA is also activated by acute kidney injury induced by cisplatin in rodents and humans. To date, the measurement of Kim‐1 expression has not fully allowed the detection of in vitro cisplatin nephrotoxicity in immortalized culture cells, such as human kidney‐2 cells and immortalized proximal tubular epithelial cells. Methods We measured the augmentation of Kim‐1 mRNA expression after the addition of cisplatin using immortalized S3 cells established from the kidneys of transgenic mice harboring temperature‐sensitive large T antigen from Simian virus 40. Results A mouse Kim‐1 gene luciferase reporter in conjunction with an Hprt gene reporter detected cisplatin‐induced nephrotoxicity in S3 cells. These two reporter genes were contained in a mouse artificial chromosome, and two luciferases that emitted different wavelengths were used to monitor the respective gene expression. However, the Kim‐1 reporter gene failed to respond to cisplatin in A9 fibroblast cells that contained the same reporter mouse artificial chromosome, suggesting cell type‐specificity for activation of the reporter. Conclusions We report the feasibility of measuring in vitro cisplatin nephrotoxicity using a Kim‐1 reporter gene in S3 cells. PMID:27591740

  6. Thermomineral water promotes axonal sprouting but does not reduce glial scar formation in a mouse model of spinal cord injury

    PubMed Central

    Aleksić, Dubravka; Aksić, Milan; Divac, Nevena; Radonjić, Vidosava; Filipović, Branislav; Jakovčevski, Igor

    2014-01-01

    Thermomineral water from the Atomic Spa Gornja Trepča has been used for a century in the treatment of neurologic disease. The thermomineral water contains microelements, including lithium and magnesium, which show neural regeneration-promoting effects after central nervous system injury. In this study, we investigated the effects of oral intake of thermomineral water from the Atomic Spa Gornja Trepča on nerve regeneration in a 3-month-old mouse model of spinal cord injury. The mice receiving oral intake of thermomineral water showed better locomotor recovery than those without administration of thermomineral water at 8 and 12 weeks after lower thoracic spinal cord compression. At 12 weeks after injury, sprouting of catecholaminergic axons was better in mice that drank thermomineral water than in those without administration of thermomineral water, but there was no difference in glial reaction to injury between mice with and without administration of thermomineral water. These findings suggest that thermomineral water can promote the nerve regeneration but cannot reduce glial scar formation in a mouse model of spinal cord injury. PMID:25657739

  7. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man

    PubMed Central

    Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.

    2016-01-01

    Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987

  8. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.

    PubMed

    Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M

    2016-07-01

    Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.

  9. Metformin protects against hyperglycemia-induced cardiomyocytes injury by inhibiting the expressions of receptor for advanced glycation end products and high mobility group box 1 protein.

    PubMed

    Zhang, Ting; Hu, Xiaorong; Cai, Yuli; Yi, Bo; Wen, Zhongyuan

    2014-03-01

    Metformin (MET), an anti-diabetic oral drug with antioxidant properties, has been proved to provide cardioprotective effects in patients with diabetic disease. However, the mechanism is unclear. This study aimd to investigate the effects of MET on the expressions of receptor for advanced glycation end products (RAGE) and high mobility group box 1 protein (HMGB1) in hyperglycemia-treated neonatal rat ventricular myocytes. Cardiocytes were prepared and cultured with high glucose and different concentrations of MET. The expressions of RAGE and HMGB1 were evaluated by Western blot analysis. The superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), lactate dehydrogenase (LDH) and creatine kinase (CK) were measured. After 12 h-incubation, MET significantly inhibited the increase of MDA, TNF-α, LDH and CK levels induced by high glucose, especially at the 5 × 10(-5) to 10(-4 )mol/L concentrations while inhibiting the decrease of SOD level. Meanwhile, RAGE and HMGB1 expression were significantly increased induced by hyperglycaemia for 24 h (P < 0.05). MET inhibited the expressions of RAGE and HMGB1 in a dose-dependent manner, especially at the 5 × 10(-5) to 10(-4 )mol/L concentrations (P < 0.05). In conclusion, our study suggested that MET could reduce hyperglycemia-induced cardiocytes injury by inhibiting the expressions of RAGE and HMGB1.

  10. Sphingosine kinase 2 mediates cerebral preconditioning and protects mouse brain against ischemic injury

    PubMed Central

    Yung, Lai Ming; Wei, Ying; Qin, Tao; Wang, Yumei; Smith, Charles; Waeber, Christian

    2011-01-01

    Background and purpose Cerebral preconditioning provides insights into endogenous mechanisms that protect the brain from ischemic injury. Hypoxia and the anesthetic isoflurane are powerful preconditioning agents. Recent data show that sphingosine 1-phosphate (S1P) receptor stimulation improves outcome in rodent models of stroke. Endogenous S1P levels are controlled by the expression and activity of sphingosine kinases (SPK). We hypothesize that SPK up-regulation mediates preconditioning induced by isoflurane and hypoxia and reduces ischemic injury. Methods Male wild-type C57BL/J, SPK1−/− and SPK2−/− mice were exposed to isoflurane (IsoPC) or hypoxia preconditioning (HPC) before transient middle cerebral artery occlusion. Infarct volume and neurological outcome were measured 24 hours later. SPK inhibitors (SKI-II and ABC294640) were used to test the involvement of SPK2. Expressions of SPK1, SPK2 and HIF1α were determined. Primary cultures of mouse cortical neurons were exposed to isoflurane before glutamate- or hydrogen peroxide-induced cell death. Results IsoPC and HPC significantly reduced infarct volume and improved neurological outcome in wild-type and SPK1−/− mice, but not in SPK2−/− mice. Pretreatment with SKI-II or ABC294640 abolished the IsoPC-induced tolerance. Western blot showed a rapid and sustained increase in SPK2 level, whereas SPK1 level was similar between preconditioned mice and controls. HIF1α was up-regulated in wild-type IsoPC mice, but not in SPK2−/−. IsoPC protected primary neurons against cell death, which was abolished in ABC294640-treated cells. Conclusions Applying genetic and pharmacological approaches, we demonstrate that neuronal SPK2 isoform plays an important role in cerebral preconditioning. PMID:21980199

  11. Protective Effect of Quercetin on the Development of Preimplantation Mouse Embryos against Hydrogen Peroxide-Induced Oxidative Injury

    PubMed Central

    Zhang, Qin-hua; Yan, Zhi-guang; Liang, Hong-xing; Chai, Wei-ran; Yan, Zheng; Kuang, Yan-ping; Qi, Cong

    2014-01-01

    Quercetin, a plant-derived flavonoid in Chinese herbs, fruits and wine, displays antioxidant properties in many pathological processes associated with oxidative stress. However, the effect of quercetin on the development of preimplantation embryos under oxidative stress is unclear. The present study sought to determine the protective effect and underlying mechanism of action of quercetin against hydrogen peroxide (H2O2)-induced oxidative injury in mouse zygotes. H2O2 treatment impaired the development of mouse zygotes in vitro, decreasing the rates of blastocyst formation and hatched, and increasing the fragmentation, apoptosis and retardation in blastocysts. Quercetin strongly protected zygotes from H2O2-induced oxidative injury by decreasing the reactive oxygen species level, maintaining mitochondrial function and modulating total antioxidant capability, the activity of the enzymatic antioxidants, including glutathione peroxidase and catalase activity to keep the cellular redox environment. Additionally, quercetin had no effect on the level of glutathione, the main non-enzymatic antioxidant in embryos. PMID:24586844

  12. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations.

    PubMed

    Leone, Marina; Magadum, Ajit; Engel, Felix B

    2015-10-01

    The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major goal in experimental medicine is to elucidate the molecular mechanisms underlying the regenerative capacity of these species. A wide variety of experiments have demonstrated that naturally occurring heart regeneration relies on cardiomyocyte proliferation. Thus, major efforts have been invested to induce proliferation of mammalian cardiomyocytes in order to improve cardiac function after injury or to protect the heart from further functional deterioration. In this review, we describe and analyze methods currently used to evaluate cardiomyocyte proliferation. In addition, we summarize the literature on naturally occurring heart regeneration. Our analysis highlights that newt and zebrafish heart regeneration relies on factors that are also utilized in cardiomyocyte proliferation during mammalian fetal development. Most of these factors have, however, failed to induce adult mammalian cardiomyocyte proliferation. Finally, our analysis of mammalian neonatal heart regeneration indicates experiments that could resolve conflicting results in the literature, such as binucleation assays and clonal analysis. Collectively, cardiac regeneration based on cardiomyocyte proliferation is a promising approach for improving adult human cardiac function after injury, but it is important to elucidate the mechanisms arresting mammalian cardiomyocyte proliferation after birth and to utilize better assays to determine formation of new muscle mass.

  13. Lipopolysaccharide-induced inflammation aggravates irradiation-induced injury to the young mouse brain.

    PubMed

    Roughton, Karolina; Andreasson, Ulf; Blomgren, Klas; Kalm, Marie

    2013-01-01

    Radiotherapy is an effective treatment strategy in the treatment of brain tumors, but it is also a major cause of long-term complications, especially in survivors of pediatric brain tumors. Cognitive decline caused by cranial radiotherapy is thought, at least partly, to depend on injury to stem and progenitor cells in the dentate gyrus of the hippocampus. This study investigated the effects of lipopolysaccharide (LPS)-induced inflammation at the time of irradiation (IR) in the growing mouse brain. A single injection of LPS (0.3 mg/kg) was administered 24 h prior to cranial IR of 14-day-old male mice. LPS pretreatment increased the levels of the chemokine CCL2 and the cytokine IL-1β in the brain by 440 and 560%, respectively, compared to IR alone. IR disrupted hippocampal neurogenesis and the growth of the dentate gyrus, and the mice pretreated with LPS displayed an even more pronounced lack of growth than the vehicle-treated group 2 months after IR. The density of microglia was not affected, but LPS-pretreated mice displayed 48% fewer bromodeoxyuridine-positive cells and 43% fewer doublecortin-positive cells in the granule cell layer 2 months after IR compared with the vehicle-treated group. In conclusion, an ongoing inflammation in the brain at the time of IR further enhanced the IR-induced loss of neurogenesis, and may aggravate future cognitive deficits in patients treated with cranial radiotherapy.

  14. Chitooligosaccharide Inhibits Scar Formation and Enhances Functional Recovery in a Mouse Model of Sciatic Nerve Injury.

    PubMed

    Hou, Hongping; Zhang, Lihai; Ye, Zuguang; Li, Jianrong; Lian, Zijian; Chen, Chao; He, Rong; Peng, Bo; Xu, Qihua; Zhang, Guangping; Gan, Wenbiao; Tang, Peifu

    2016-05-01

    Chitooligosaccharide (COS) has been shown to induce fibroblast apoptosis, indicating that it could be used as a material to inhibit scar formation. In the present study, we used a mouse model of sciatic nerve injury (SNI) to determine the role of COS in scar inhibition and functional recovery. The animals were divided into three groups: SNI, SNI + vehicle, and SNI + COS group. We performed a series of functional and histological examinations at ctrl, 0 min, 14 days, and 42 days, including behavioral recovery, percentage of regenerating axons, degree of scar formation, vascular changes, type I and type III collagen ratio, and percentage of demyelinated axons. The SNI + COS group exhibited better recovery of sensory and motor function and less scar formation. Two-photon microscopy showed that the percentage of regenerating axons was highest in the SNI + COS group at 14 and 42 days. Our results suggested that COS can inhibit scar formation and enhance functional recovery by inducing fibroblast death, altering the proportion of different vascular diameters, changing the ratio of type I/type III collagen, and reducing the percentage of demyelinated axons. COS might be a useful drug in the treatment of SNI to reduce scar formation, but additional research is required to clarify the relevant molecular pathways.

  15. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  16. Expression of glucocorticoid-induced leucine zipper (GILZ) in cardiomyocytes.

    PubMed

    Aguilar, David C; Strom, Josh; Xu, Beibei; Kappeler, Kyle; Chen, Qin M

    2013-06-01

    Glucocorticoids (GCs) are frequently prescribed pharmacological agents most notably for their immunosuppressive effects. Endogenous GCs mediate biological processes such as energy metabolism and tissue development. At the cellular level, GCs bind to the glucocorticoid receptor (GR), a cytosolic protein that translocates to the nuclei and functions to alter transcription upon ligand binding. Among a long list of genes activated by GCs is the glucocorticoid-induced leucine zipper (GILZ). GC-induced GILZ expression has been well established in lymphocytes and mediates GC-induced apoptosis. Unlike lymphocytes, cardiomyocytes respond to GCs by gaining resistance against apoptosis. We determined GILZ expression in cardiomyocytes in vivo and in vitro. Expression of GILZ in mouse hearts as a result of GC administration was confirmed by Western blot analyses. GCs induced dose- and time-dependent elevation of GILZ expression in primary cultured rat cardiomyocytes, with dexamethasone (Dex) as low as 0.1 μM being effective. Time course analysis indicated that GILZ protein levels increased at 8 h and peaked at 48 h after exposure to 1 μM Dex. H9c2(2-1) cell line showed a similar response of GILZ induction by Dex as primary cultured rat cardiomyocytes, providing a convenient model for studying the biological significance of GILZ expression. With corticosterone (CT), an endogenous form of corticosteroids in rodents, 0.1-2.5 μM was found to induce GILZ in H9c2(2-1) cells. Time course analysis with 1 μM CT indicated induction of GILZ at 6 h with peak expression at 18 h. Inhibition of the GR by mifepristone led to blunting of GILZ induction by GCs. Our data demonstrate GILZ induction in cardiomyocytes both in vivo and in vitro by GCs, pointing to H9c2(2-1) cells as a valid model for studying the biological function of GILZ in cardiomyocytes.

  17. Expression of Glucocorticoid Induced Leucine Zipper (GILZ) in Cardiomyocytes

    PubMed Central

    Aguilar, David C.; Strom, Josh; Xu, Beibei; Kappeler, Kyle; Chen, Qin M.

    2014-01-01

    Glucocorticoids (GCs) are frequently prescribed pharmacological agents most notably for their immunosuppressive effects. Endogenous GCs mediate biological processes such as energy metabolism and tissue development. At the cellular level, GCs bind to the Glucocorticoid Receptor (GR), a cytosolic protein that translocates to the nuclei and functions to alter transcription upon ligand binding. Amongst a long list of genes activated by GCs is the Glucocorticoid Induced Leucine Zipper (GILZ). GC induced GILZ expression has been well established in lymphocytes and mediates GC induced apoptosis. Unlike lymphocytes, cardiomyocytes respond to GCs by gaining resistance against apoptosis. We determined GILZ expression in cardiomyocytes in vivo and in vitro. Expression of GILZ in mouse hearts as a result of GC administration was confirmed by Western blot analyses. GCs induced dose and time dependent elevation of GILZ expression in primary cultured rat cardiomyocytes, with dexamethasone (Dex) as low as 0.1 M being effective. Time course analysis indicated that GILZ protein levels increased at 8 hr and peaked at 48 hr after exposure to 1 M Dex. H9c2(2-1) cell line showed a similar response of GILZ induction by Dex as primary cultured rat cardiomyocytes, providing a convenient model for studying the biological significance of GILZ expression. With corticosterone (CT), an endogenous form of corticosteroids in rodents, 0.1–2.5 M was found to induce GILZ in H9c2(2-1) cells. Time course analysis with 1 M CT indicated induction of GILZ at 6 hr with peak expression at 18 hr. Inhibition of the GR by mifepristone led to blunting of GILZ induction by GCs. Our data demonstrate GILZ induction in cardiomyocytes both in vivo and in vitro by GCs, pointing to H9c2(2-1) cells as a valid model for studying the biological function of GILZ in cardiomyocytes. PMID:23090754

  18. Muscle-on-chip: An in vitro model for donor-host cardiomyocyte coupling.

    PubMed

    Dierickx, Pieterjan; Van Laake, Linda W

    2016-02-15

    A key aspect of cardiac cell-based therapy is the proper integration of newly formed cardiomyocytes into the remnant myocardium after injury. In this issue, Aratyn-Schaus et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201508026) describe an in vitro model for heterogeneous cardiomyocyte coupling in which force transmission between cells can be measured. © 2016 Dierickx and Van Laake.

  19. A novel acute lethal liver injury mouse model with visualization of NF-κB activity for treatment of severe acute liver injury

    PubMed Central

    Liao, Huanjin; Cai, Jun; Zhang, Lifang; Peng, Yanxia; Wu, Ping; Xie, Tong; Pan, Qingjun

    2017-01-01

    Acute lethal inflammation, especially that related to liver injury, is an important clinical issue. To date, however, there is no model that can be used to assess this serious condition. This study was designed to establish a novel lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute lethal liver injury model in nuclear factor-κB (NF-κB) transgenic mice. The results show that a high dose of LPS (500 μg/kg) plus D-GalN (800 mg/kg) successfully established a novel mouse model of acute lethal liver injury with a lifespan of 8-10 h. Significantly increased NF-κB activity, detected with an in vivo imaging system (IVIS), peaked at approximately 4 h post-LPS/D-GalN challenge in NF-κB transgenic mice. Moreover, the serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1 were significantly increased and peaked at approximately 4 h post-i.p. injection of LPS/D-GalN. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) also sharply increased. Correlation analyses showed that NF-κB activity was significantly correlated with serum levels of ALT and AST. The mouse model livers showed marked congestion and hemorrhage, and hematoxylin and eosin (H&E) staining confirmed the destruction of the lobular structure and severe hepatocyte necrosis and hemorrhage. None of these changes were observed in the control mice. In summary, a novel LPS/D-GalN-induced acute lethal liver injury model with visualization of NF-κB activity was established in NF-κB transgenic mice. This model will provide the technology for developing new therapeutic strategies for treatment of severe acute liver injury complicated by endotoxemia or septicemia. PMID:28386325

  20. Defining an Analytic Framework to Evaluate Quantitative MRI Markers of Traumatic Axonal Injury: Preliminary Results in a Mouse Closed Head Injury Model

    PubMed Central

    Sadeghi, N.; Namjoshi, D.; Irfanoglu, M. O.; Wellington, C.; Diaz-Arrastia, R.

    2017-01-01

    Diffuse axonal injury (DAI) is a hallmark of traumatic brain injury (TBI) pathology. Recently, the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA) was developed to generate an experimental model of DAI in a mouse. The characterization of DAI using diffusion tensor magnetic resonance imaging (MRI; diffusion tensor imaging, DTI) may provide a useful set of outcome measures for preclinical and clinical studies. The objective of this study was to identify the complex neurobiological underpinnings of DTI features following DAI using a comprehensive and quantitative evaluation of DTI and histopathology in the CHIMERA mouse model. A consistent neuroanatomical pattern of pathology in specific white matter tracts was identified across ex vivo DTI maps and photomicrographs of histology. These observations were confirmed by voxelwise and regional analysis of DTI maps, demonstrating reduced fractional anisotropy (FA) in distinct regions such as the optic tract. Similar regions were identified by quantitative histology and exhibited axonal damage as well as robust gliosis. Additional analysis using a machine-learning algorithm was performed to identify regions and metrics important for injury classification in a manner free from potential user bias. This analysis found that diffusion metrics were able to identify injured brains almost with the same degree of accuracy as the histology metrics. Good agreement between regions detected as abnormal by histology and MRI was also found. The findings of this work elucidate the complexity of cellular changes that give rise to imaging abnormalities and provide a comprehensive and quantitative evaluation of the relative importance of DTI and histological measures to detect brain injury. PMID:28966972

  1. Burn Injury Leads to Increased Long-Term Susceptibility to Respiratory Infection in both Mouse Models and Population Studies.

    PubMed

    Fear, Vanessa S; Boyd, James H; Rea, Suzanne; Wood, Fiona M; Duke, Janine M; Fear, Mark W

    2017-01-01

    Burn injury initiates an acute inflammatory response that subsequently drives wound repair. However, acute disruption to the immune response is also common, leading to susceptibility to sepsis and increased morbidity and mortality. Despite increased understanding of the impact of burn injury on the immune system in the acute phase, little is known about long-term consequences of burn injury on immune function. This study was established to determine whether burn injury has long-term clinical impacts on patients' immune responses. Using a population-based retrospective longitudinal study and linked hospital morbidity and death data from Western Australia, comparative rates of hospitalisation for respiratory infections in burn patients and a non-injured comparator cohort were assessed. In addition, a mouse model of non-severe burn injury was also used in which viral respiratory infection was induced at 4 weeks post-injury using a mouse modified version of the Influenza A virus (H3NN; A/mem/71-a). The burn injured cohort contained 14893 adult patients from 1980-2012 after removal of those patients with evidence of smoke inhalation or injury to the respiratory tract. During the study follow-up study a total of 2,884 and 2,625 respiratory infection hospital admissions for the burn and uninjured cohorts, respectively, were identified. After adjusting for covariates, the burn cohort experienced significantly elevated admission rates for influenza and viral pneumonia (IRR, 95%CI: 1.73, 1.27-2.36), bacterial pneumonia (IRR, 95%CI: 2.05, 1.85-2.27) and for other types of upper and lower respiratory infections (IRR, 95% CI: 2.38, 2.09-2.71). In the mouse study an increased viral titre was observed after burn injury, accompanied by a reduced CD8 response and increased NK and NKT cells in the draining lymph nodes. This data suggests burn patients are at long-term increased risk of infection due to sustained modulation of the immune response.

  2. Burn Injury Leads to Increased Long-Term Susceptibility to Respiratory Infection in both Mouse Models and Population Studies

    PubMed Central

    Fear, Vanessa S.; Boyd, James H.; Rea, Suzanne; Wood, Fiona M.

    2017-01-01

    Background Burn injury initiates an acute inflammatory response that subsequently drives wound repair. However, acute disruption to the immune response is also common, leading to susceptibility to sepsis and increased morbidity and mortality. Despite increased understanding of the impact of burn injury on the immune system in the acute phase, little is known about long-term consequences of burn injury on immune function. This study was established to determine whether burn injury has long-term clinical impacts on patients’ immune responses. Methods Using a population-based retrospective longitudinal study and linked hospital morbidity and death data from Western Australia, comparative rates of hospitalisation for respiratory infections in burn patients and a non-injured comparator cohort were assessed. In addition, a mouse model of non-severe burn injury was also used in which viral respiratory infection was induced at 4 weeks post-injury using a mouse modified version of the Influenza A virus (H3NN; A/mem/71-a). Results and conclusions The burn injured cohort contained 14893 adult patients from 1980–2012 after removal of those patients with evidence of smoke inhalation or injury to the respiratory tract. During the study follow-up study a total of 2,884 and 2,625 respiratory infection hospital admissions for the burn and uninjured cohorts, respectively, were identified. After adjusting for covariates, the burn cohort experienced significantly elevated admission rates for influenza and viral pneumonia (IRR, 95%CI: 1.73, 1.27–2.36), bacterial pneumonia (IRR, 95%CI: 2.05, 1.85–2.27) and for other types of upper and lower respiratory infections (IRR, 95% CI: 2.38, 2.09–2.71). In the mouse study an increased viral titre was observed after burn injury, accompanied by a reduced CD8 response and increased NK and NKT cells in the draining lymph nodes. This data suggests burn patients are at long-term increased risk of infection due to sustained modulation of the

  3. Microarray analysis of high-dose recombinant erythropoietin treatment of unilateral brain injury in neonatal mouse hippocampus.

    PubMed

    Juul, Sandra E; Beyer, Richard P; Bammler, Theo K; McPherson, Ronald J; Wilkerson, Jasmine; Farin, Federico M

    2009-05-01

    Recombinant human erythropoietin (rEpo) is neuroprotective in neonatal models of brain injury. Proposed mechanisms of neuroprotection include activation of gene pathways that decrease oxidative injury, inflammation, and apoptosis, while increasing vasculogenesis and neurogenesis. To determine the effects of rEpo on gene expression in 10-d-old BALB-c mice with unilateral brain injury, we compared microarrays from the hippocampi of brain-injured pups treated with saline or rEpo to similarly treated sham animals. Total RNA was extracted 24 h after brain injury and analyzed using Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. We identified sex-specific differences in hippocampal gene expression after brain injury and after high-dose rEpo treatment using single-gene and gene set analysis. Although high-dose rEpo had minimal effects on hippocampal gene expression in shams, at 24-h post brain injury, high-dose rEpo treatment significantly decreased the proinflammatory and antiapoptotic response noted in saline-treated brain-injured comparison animals.

  4. Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways

    PubMed Central

    Crippa, Stefania; Nemir, Mohamed; Ounzain, Samir; Ibberson, Mark; Berthonneche, Corinne; Sarre, Alexandre; Boisset, Gaëlle; Maison, Damien; Harshman, Keith; Xenarios, Ioannis; Diviani, Dario; Schorderet, Daniel; Pedrazzini, Thierry

    2016-01-01

    Aims The adult mammalian heart has poor regenerative capacity. In contrast, the zebrafish heart retains a robust capacity for regeneration into adulthood. These distinct responses are consequences of a differential utilization of evolutionary-conserved gene regulatory networks in the damaged heart. To systematically identify miRNA-dependent networks controlling cardiac repair following injury, we performed comparative gene and miRNA profiling of the cardiac transcriptome in adult mice and zebrafish. Methods and results Using an integrated approach, we show that 45 miRNA-dependent networks, involved in critical biological pathways, are differentially modulated in the injured zebrafish vs. mouse hearts. We study, more particularly, the miR-26a-dependent response. Therefore, miR-26a is down-regulated in the fish heart after injury, whereas its expression remains constant in the mouse heart. Targets of miR-26a involve activators of the cell cycle and Ezh2, a component of the polycomb repressive complex 2 (PRC2). Importantly, PRC2 exerts repressive functions on negative regulators of the cell cycle. In cultured neonatal cardiomyocytes, inhibition of miR-26a stimulates, therefore, cardiomyocyte proliferation. Accordingly, miR-26a knockdown prolongs the proliferative window of cardiomyocytes in the post-natal mouse heart. Conclusions This novel strategy identifies a series of miRNAs and associated pathways, in particular miR-26a, which represent attractive therapeutic targets for inducing repair in the injured heart. PMID:26857418

  5. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease.

    PubMed

    Davis, Richard P; Casini, Simona; van den Berg, Cathelijne W; Hoekstra, Maaike; Remme, Carol Ann; Dambrot, Cheryl; Salvatori, Daniela; Oostwaard, Dorien Ward-van; Wilde, Arthur A M; Bezzina, Connie R; Verkerk, Arie O; Freund, Christian; Mummery, Christine L

    2012-06-26

    Pluripotent stem cells (PSCs) offer a new paradigm for modeling genetic cardiac diseases, but it is unclear whether mouse and human PSCs can truly model both gain- and loss-of-function genetic disorders affecting the Na(+) current (I(Na)) because of the immaturity of the PSC-derived cardiomyocytes. To address this issue, we generated multiple PSC lines containing a Na(+) channel mutation causing a cardiac Na(+) channel overlap syndrome. Induced PSC (iPSC) lines were generated from mice carrying the Scn5a(1798insD/+) (Scn5a-het) mutation. These mouse iPSCs, along with wild-type mouse iPSCs, were compared with the targeted mouse embryonic stem cell line used to generate the mutant mice and with the wild-type mouse embryonic stem cell line. Patch-clamp experiments showed that the Scn5a-het cardiomyocytes had a significant decrease in I(Na) density and a larger persistent I(Na) compared with Scn5a-wt cardiomyocytes. Action potential measurements showed a reduced upstroke velocity and longer action potential duration in Scn5a-het myocytes. These characteristics recapitulated findings from primary cardiomyocytes isolated directly from adult Scn5a-het mice. Finally, iPSCs were generated from a patient with the equivalent SCN5A(1795insD/+) mutation. Patch-clamp measurements on the derivative cardiomyocytes revealed changes similar to those in the mouse PSC-derived cardiomyocytes. Here, we demonstrate that both embryonic stem cell- and iPSC-derived cardiomyocytes can recapitulate the characteristics of a combined gain- and loss-of-function Na(+) channel mutation and that the electrophysiological immaturity of PSC-derived cardiomyocytes does not preclude their use as an accurate model for cardiac Na(+) channel disease.

  6. Endothelial injury in a transforming growth factor β-dependent mouse model of scleroderma induces pulmonary arterial hypertension.

    PubMed

    Derrett-Smith, Emma C; Dooley, Audrey; Gilbane, Adrian J; Trinder, Sarah L; Khan, Korsa; Baliga, Reshma; Holmes, Alan M; Hobbs, Adrian J; Abraham, David; Denton, Christopher P

    2013-11-01

    To delineate the constitutive pulmonary vascular phenotype of the TβRIIΔk-fib mouse model of scleroderma, and to selectively induce pulmonary endothelial cell injury using vascular endothelial growth factor (VEGF) inhibition to develop a model with features characteristic of pulmonary arterial hypertension (PAH). The TβRIIΔk-fib mouse strain expresses a kinase-deficient transforming growth factor β (TGFβ) receptor type II driven by a fibroblast-specific promoter, leading to ligand-dependent up-regulation of TGFβ signaling, and replicates key fibrotic features of scleroderma. Structural, biochemical, and functional assessments of pulmonary vessels, including in vivo hemodynamic studies, were performed before and following VEGF inhibition, which induced pulmonary endothelial cell apoptosis. These assessments included biochemical analysis of the TGFβ and VEGF signaling axes in tissue sections and explanted smooth muscle cells. In the TβRIIΔk-fib mouse strain, a constitutive pulmonary vasculopathy with medial thickening, a perivascular proliferating chronic inflammatory cell infiltrate, and mildly elevated pulmonary artery pressure resembled the well-described chronic hypoxia model of pulmonary hypertension. Following administration of SU5416, the pulmonary vascular phenotype was more florid, with pulmonary arteriolar luminal obliteration by apoptosis-resistant proliferating endothelial cells. These changes resulted in right ventricular hypertrophy, confirming hemodynamically significant PAH. Altered expression of TGFβ and VEGF ligand and receptor was consistent with a scleroderma phenotype. In this study, we replicated key features of systemic sclerosis-related PAH in a mouse model. Our results suggest that pulmonary endothelial cell injury in a genetically susceptible mouse strain triggers this complication and support the underlying role of functional interplay between TGFβ and VEGF, which provides insight into the pathogenesis of this disease. Copyright

  7. Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development.

    PubMed

    Li, Jieli; Liu, Yang; Jin, Yixin; Wang, Rui; Wang, Jian; Lu, Sarah; VanBuren, Vincent; Dostal, David E; Zhang, Shenyuan L; Peng, Xu

    2017-01-15

    Cdc42 is a member of the Rho GTPase family and functions as a molecular switch in regulating cell migration, proliferation, differentiation and survival. However, the role of Cdc42 in heart development remains largely unknown. To determine the function of Cdc42 in heart formation, we have generated a Cdc42 cardiomyocyte knockout (CCKO) mouse line by crossing Cdc42 flox mice with myosin light chain (MLC) 2a-Cre mice. The inactivation of Cdc42 in embryonic cardiomyocytes induced lethality after embryonic day 12.5. Histological analysis of CCKO embryos showed cardiac developmental defects that included thin ventricular walls and ventricular septum defects. Microarray and real-time PCR data also revealed that the expression level of p21 was significantly increased and cyclin B1 was dramatically decreased, suggesting that Cdc42 is required for cardiomyocyte proliferation. Phosphorylated Histone H3 staining confirmed that the inactivation of Cdc42 inhibited cardiomyocytes proliferation. In addition, transmission electron microscope studies showed disorganized sarcomere structure and disruption of cell-cell contact among cardiomyocytes in CCKO hearts. Accordingly, we found that the distribution of N-cadherin/β-Catenin in CCKO cardiomyocytes was impaired. Taken together, our data indicate that Cdc42 is essential for cardiomyocyte proliferation, sarcomere organization and cell-cell adhesion during heart development. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Local Ca2+ releases enable rapid heart rates in developing cardiomyocytes

    PubMed Central

    Korhonen, Topi; Rapila, Risto; Ronkainen, Veli-Pekka; Koivumäki, Jussi T; Tavi, Pasi

    2010-01-01

    The ability to generate homogeneous intracellular Ca2+ oscillations at high frequency is the basis of the rhythmic contractions of mammalian cardiac myocytes. While the specific mechanisms and structures enabling homogeneous high-frequency Ca2+ signals in adult cardiomyocytes are well characterized, it is not known how these kind of Ca2+ signals are produced in developing cardiomyocytes. Here we investigated the mechanisms reducing spatial and temporal heterogeneity of cytosolic Ca2+ signals in mouse embryonic ventricular cardiomyocytes. We show that in developing cardiomyocytes the propagating Ca2+ signals are amplified in cytosol by local Ca2+ releases. Local releases are based on regular 3-D sarcoplasmic reticulum (SR) structures containing SR Ca2+ uptake ATPases (SERCA) and Ca2+ release channels (ryanodine receptors, RyRs) at regular intervals throughout the cytosol. By evoking [Ca2+]i-induced Ca2+ sparks, the local release sites promote a 3-fold increase in the cytosolic Ca2+ propagation speed. We further demonstrate by mathematical modelling that without these local release sites the developing cardiomyocytes lose their ability to generate homogeneous global Ca2+ signals at a sufficiently high frequency. The mechanism described here is robust and indispensable for normal mammalian cardiomyocyte function from the first heartbeats during the early embryonic phase till terminal differentiation after birth. These results suggest that local cytosolic Ca2+ releases are indispensable for normal cardiomyocyte development and function of developing heart. PMID:20211983

  9. Local Ca2+ releases enable rapid heart rates in developing cardiomyocytes.

    PubMed

    Korhonen, Topi; Rapila, Risto; Ronkainen, Veli-Pekka; Koivumäki, Jussi T; Tavi, Pasi

    2010-05-01

    The ability to generate homogeneous intracellular Ca(2+) oscillations at high frequency is the basis of the rhythmic contractions of mammalian cardiac myocytes. While the specific mechanisms and structures enabling homogeneous high-frequency Ca(2+) signals in adult cardiomyocytes are well characterized, it is not known how these kind of Ca(2+) signals are produced in developing cardiomyocytes. Here we investigated the mechanisms reducing spatial and temporal heterogeneity of cytosolic Ca(2+) signals in mouse embryonic ventricular cardiomyocytes. We show that in developing cardiomyocytes the propagating Ca(2+) signals are amplified in cytosol by local Ca(2+) releases. Local releases are based on regular 3-D sarcoplasmic reticulum (SR) structures containing SR Ca(2+) uptake ATPases (SERCA) and Ca(2+) release channels (ryanodine receptors, RyRs) at regular intervals throughout the cytosol. By evoking [Ca(2+)](i)-induced Ca(2+) sparks, the local release sites promote a 3-fold increase in the cytosolic Ca(2+) propagation speed. We further demonstrate by mathematical modelling that without these local release sites the developing cardiomyocytes lose their ability to generate homogeneous global Ca(2+) signals at a sufficiently high frequency. The mechanism described here is robust and indispensable for normal mammalian cardiomyocyte function from the first heartbeats during the early embryonic phase till terminal differentiation after birth. These results suggest that local cytosolic Ca(2+) releases are indispensable for normal cardiomyocyte development and function of developing heart.

  10. Alterations of lung microbiota in a mouse model of LPS-induced lung injury

    PubMed Central

    Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A.; Birukov, Konstantin G.

    2015-01-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3–V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents. PMID:25957290

  11. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.

  12. Berberine Inhibits Doxorubicin-Triggered Cardiomyocyte Apoptosis via Attenuating Mitochondrial Dysfunction and Increasing Bcl-2 Expression

    PubMed Central

    Lv, Xiuxiu; Yu, Xiaohui; Wang, Yiyang; Wang, Faqiang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Qi, Renbin; Wang, Huadong

    2012-01-01

    Cardiomyocyte apoptosis is an important event in doxorubicin (DOX)-induced cardiac injury. The aim of the present study was to investigate the protection of berberine (Ber) against DOX- triggered cardiomyocyte apoptosis in neonatal rat cardiomyocytes and rats. In neonatal rat cardiomyocytes, Ber attenuated DOX-induced cellular injury and apoptosis in a dose-dependent manner. However, Ber has no significant effect on viability of MCF-7 breast cancer cells treated with DOX. Ber reduced caspase-3 and caspase-9, but not caspase-8 activity in DOX-treated cardiomyocytes. Furthermore, Ber decreased adenosine monophosphate-activated protein kinase α (AMPKα) and p53 phosphorylation at 2 h, cytosolic cytochrome c and mitochondrial Bax levels and increased Bcl-2 level at 6 h in DOX-stimulated cardiomyocytes. Pretreatment with compound C, an AMPK inhibitor, also suppressed p53 phosphorylation and apoptosis in DOX-treated cardiomyocytes. DOX stimulation for 30 min led to a loss of mitochondrial membrane potential and a rise in the AMP/ATP ratio. Ber markedly reduced DOX-induced mitochondrial membrane potential loss and an increase in the AMP/ATP ratio at 1 h and 2 h post DOX exposure. In in vivo experiments, Ber significantly improved survival, increased stroke volume and attenuated myocardial injury in DOX-challenged rats. TUNEL and Western blot assays showed that Ber not only decreased myocardial apoptosis, caspase-3 activation, AMPKα and p53 phosphorylation, but also increased Bcl-2 expression in myocardium of rats exposed to DOX for 84 h. These findings indicate that Ber attenuates DOX-induced cardiomyocyte apoptosis via protecting mitochondria, inhibiting an increase in the AMP/ATP ratio and AMPKα phosphorylation as well as elevating Bcl-2 expression, which offer a novel mechanism responsible for protection of Ber against DOX-induced cardiomyopathy. PMID:23077597

  13. Pine Oil Effects on Chemical and Thermal Injury in Mice and Cultured Mouse Dorsal Root Ganglion Neurons

    PubMed Central

    Clark, SP; Bollag, WB; Westlund, KN; Ma, F; Falls, G; Xie, D; Johnson, M; Isales, CM; Bhattacharyya, MH

    2013-01-01

    A commercial resin-based pine oil derived from Pinus palustris and Pinus elliottii was the major focus of this investigation. Extracts of pine resins, needles and bark are folk medicines commonly used to treat skin ailments, including burns. The American Burn Association estimates that 500,000 people with burn injuries receive medical treatment each year; one-half of US burn victims are children, most with scald burns. This systematic study was initiated as follow-up to personal anecdotal evidence acquired over more than 10 years by MH Bhattacharyya regarding pine oil’s efficacy for treating burns. The results demonstrate that pine oil counteracted dermal inflammation in both a mouse ear model of contact irritant-induced dermal inflammation and a 2nd degree scald burn to the mouse paw. Furthermore, pine oil significantly counteracted the tactile allodynia and soft tissue injury caused by the scald burn. In mouse dorsal root ganglion (DRG) neuronal cultures, pine oil added to the medium blocked ATP-activated, but not capsaicin-activated, pain pathways, demonstrating specificity. These results together support the hypothesis that a pine-oil-based treatment can be developed to provide effective in-home care for 2nd degree burns. PMID:23595692

  14. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model.

    PubMed

    Mak, J; Jablonski, C L; Leonard, C A; Dunn, J F; Raharjo, E; Matyas, J R; Biernaskie, J; Krawetz, R J

    2016-03-17

    Controversy remains whether articular cartilage has an endogenous stem/progenitor cell population, since its poor healing capacity after injury can lead to diseases such as osteoarthritis. In the joint environment there are mesenchymal stem/progenitor cells (MSCs) in the synovial membrane and synovial fluid that can differentiate into cartilage, but it is still under debate if these cells contribute to cartilage repair in vivo. In this study, we isolated a Sca-1 positive, chondrogenesis capable population of mouse synovial MSCs from C57BL6 and MRL/MpJ "super-healer" strains. Intra-articular injection of Sca-1 + GFP + synovial cells from C57BL6 or MRL/MpJ into C57BL6 mice following cartilage injury led to increased cartilage repair by 4 weeks after injury. GFP expression was detected in the injury site at 2 weeks, but not 4 weeks after injury. These results suggest that synovial stem/progenitor cells, regardless of strain background, have beneficial effects when injected into an injured joint. MSCs derived from MRL/MpJ mice did not promote an increased repair capacity compared to MSCs derived from non-healing C57BL6 controls; however, MRL/MpJ MSCs were observed within the defect area at the time points examined, while C57BL6 MSCs were not.

  15. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer's disease mouse model.

    PubMed

    Washington, Patricia M; Morffy, Nicholas; Parsadanian, Maia; Zapple, David N; Burns, Mark P

    2014-01-01

    Soluble amyloid-beta (Aβ) oligomers are hypothesized to be the pathogenic species in Alzheimer's disease (AD), and increased levels of oligomers in the brain subsequent to traumatic brain injury (TBI) may exacerbate secondary injury pathways and underlie increased risk of developing AD in later life. To determine whether TBI causes Aβ aggregation and oligomerization in the brain, we exposed triple transgenic AD model mice to controlled cortical impact injury and measured levels of soluble, insoluble, and oligomeric Aβ by enzyme-linked immunosorbent assay (ELISA) at 1, 3, and 7 days postinjury. TBI rapidly increased levels of both soluble and insoluble Aβ40 and Aβ42 in the injured cortex at 1 day postinjury. We confirmed previous findings that identified damaged axons as a major site of Aβ accumulation using both immunohistochemistry and biochemistry. We also report that soluble Aβ oligomers were significantly increased in the injured cortex, as demonstrated by both ELISA and Western blot. Interestingly, the mouse brain is able to rapidly clear trauma-induced Aβ, with both soluble and insoluble Aβ species returning to sham levels by 7 days postinjury. In conclusion, we demonstrate that TBI causes acute accumulation and aggregation of Aβ in the brain, including the formation of low- and high-molecular-weight Aβ oligomers. The formation and aggregation of Aβ into toxic species acutely after injury may play a role in secondary injury cascades after trauma and, chronically, may contribute to increased risk of developing AD in later life.

  16. Experimental Traumatic Brain Injury Induces Rapid Aggregation and Oligomerization of Amyloid-Beta in an Alzheimer's Disease Mouse Model

    PubMed Central

    Washington, Patricia M.; Morffy, Nicholas; Parsadanian, Maia; Zapple, David N.

    2014-01-01

    Abstract Soluble amyloid-beta (Aβ) oligomers are hypothesized to be the pathogenic species in Alzheimer's disease (AD), and increased levels of oligomers in the brain subsequent to traumatic brain injury (TBI) may exacerbate secondary injury pathways and underlie increased risk of developing AD in later life. To determine whether TBI causes Aβ aggregation and oligomerization in the brain, we exposed triple transgenic AD model mice to controlled cortical impact injury and measured levels of soluble, insoluble, and oligomeric Aβ by enzyme-linked immunosorbent assay (ELISA) at 1, 3, and 7 days postinjury. TBI rapidly increased levels of both soluble and insoluble Aβ40 and Aβ42 in the injured cortex at 1 day postinjury. We confirmed previous findings that identified damaged axons as a major site of Aβ accumulation using both immunohistochemistry and biochemistry. We also report that soluble Aβ oligomers were significantly increased in the injured cortex, as demonstrated by both ELISA and Western blot. Interestingly, the mouse brain is able to rapidly clear trauma-induced Aβ, with both soluble and insoluble Aβ species returning to sham levels by 7 days postinjury. In conclusion, we demonstrate that TBI causes acute accumulation and aggregation of Aβ in the brain, including the formation of low- and high-molecular-weight Aβ oligomers. The formation and aggregation of Aβ into toxic species acutely after injury may play a role in secondary injury cascades after trauma and, chronically, may contribute to increased risk of developing AD in later life. PMID:24050316

  17. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model

    PubMed Central

    Mak, J.; Jablonski, C. L.; Leonard, C. A.; Dunn, J. F.; Raharjo, E.; Matyas, J. R.; Biernaskie, J.; Krawetz, R. J.

    2016-01-01

    Controversy remains whether articular cartilage has an endogenous stem/progenitor cell population, since its poor healing capacity after injury can lead to diseases such as osteoarthritis. In the joint environment there are mesenchymal stem/progenitor cells (MSCs) in the synovial membrane and synovial fluid that can differentiate into cartilage, but it is still under debate if these cells contribute to cartilage repair in vivo. In this study, we isolated a Sca-1 positive, chondrogenesis capable population of mouse synovial MSCs from C57BL6 and MRL/MpJ “super-healer” strains. Intra-articular injection of Sca-1 + GFP + synovial cells from C57BL6 or MRL/MpJ into C57BL6 mice following cartilage injury led to increased cartilage repair by 4 weeks after injury. GFP expression was detected in the injury site at 2 weeks, but not 4 weeks after injury. These results suggest that synovial stem/progenitor cells, regardless of strain background, have beneficial effects when injected into an injured joint. MSCs derived from MRL/MpJ mice did not promote an increased repair capacity compared to MSCs derived from non-healing C57BL6 controls; however, MRL/MpJ MSCs were observed within the defect area at the time points examined, while C57BL6 MSCs were not. PMID:26983696

  18. Proteomic analysis of the dorsal spinal cord in the mouse model of spared nerve injury-induced neuropathic pain.

    PubMed

    Park, Eun-Sung; Ahn, Jung-Mo; Jeon, Sang-Min; Cho, Hee-Jung; Chung, Ki-Myung; Cho, Je-Yoel; Youn, Dong-Ho

    2017-09-03

    Peripheral nerve injury often causes neuropathic pain and is associated with changes in the expression of numerous proteins in the dorsal horn of the spinal cord. To date, proteomic analysis method has been used to simultaneously analyze hundreds or thousands of proteins differentially expressed in the dorsal horn of the spinal cord in rats or dorsal root ganglion of rats with certain type of peripheral nerve injury. However, a proteomic study using a mouse model of neuropathic pain could be attempted because of abundant protein database and the availability of transgenic mice. In this study, whole proteins were extracted from the ipsilateral dorsal half of the 4(th)-6(th) lumbar spinal cord in a mouse model of spared nerve injury (SNI)-induced neuropathic pain. In-gel digests of the proteins size-separated on a polyacrylamide gel were subjected to reverse-phase liquid-chromatography coupled with electrospray ionization ion trap tandem mass spectrometry (MS/MS). After identifying proteins, the data were analyzed with subtractive proteomics using ProtAn, an in-house analytic program. Consequently, 15 downregulated and 35 upregulated proteins were identified in SNI mice. The identified proteins may contribute to the maintenance of neuropathic pain, and may provide new or valuable information in the discovery of new therapeutic targets for neuropathic pain.

  19. Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo.

    PubMed

    Abe, Yuta; Hines, Ian N; Zibari, Gazi; Pavlick, Kevin; Gray, Laura; Kitagawa, Yuko; Grisham, Matthew B

    2009-01-01

    The mouse model of liver ischemia and reperfusion injury has proven to be valuable for our understanding of the role that reactive oxygen and nitrogen metabolites play in postischemic tissue injury. This methods paper provides a detailed protocol for inducing partial liver ischemia followed by reperfusion. Liver ischemia is induced in anesthetized mice by cross-clamping the hepatic artery and portal vein for varying lengths of time, resulting in deprivation of blood flow to approximately 70% of the liver. Restoration of blood flow to the ischemic lobes enhances superoxide production concomitant with a rapid and marked decrease in the bioavailability of nitric oxide, resulting in alterations in the redox state of the liver in favor of a more oxidative environment. This hepatocellular oxidative stress induces the activation of oxidant-sensitive transcription factors followed by the upregulation of proinflammatory cytokines and mediators that ultimately lead to liver injury. This model can be induced in any strain or sex of mouse and requires 1-2 months of practice to become proficient in the surgery and animal manipulation. The roles of various reactive metabolites of oxygen and nitrogen may be evaluated using genetically engineered mice as well as selective molecular, cellular, and/or pharmacological agents.

  20. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    PubMed Central

    Chen, Yan; Guo, Wenjie; Li, Wenjuan; Cheng, Meng; Hu, Ying; Xu, Wenming

    2016-01-01

    Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. PMID:27872858

  1. Preservation of cardiomyocytes from the adult heart.

    PubMed

    Abi-Gerges, Najah; Pointon, Amy; Pullen, Georgia F; Morton, Michael J; Oldman, Karen L; Armstrong, Duncan; Valentin, Jean-Pierre; Pollard, Christopher E

    2013-11-01

    Cardiomyocytes represent one of the most useful models to conduct cardiac research. A single adult heart yields millions of cardiomyocytes, but these cells do not survive for long after isolation. We aimed to determine whether inhibition of myosin II ATPase that is essential for muscle contraction may preserve fully differentiated adult cardiomyocytes. Using inhibitors of the myosin II ATPase, blebbistatin and N-benzyl-p-toluene sulphonamide (BTS), we preserved freshly isolated fully differentiated adult primary cardiomyocytes that were stored at a refrigerated temperature. Specifically, preserved cardiomyocytes stayed viable for a 2-week period with a stable expression of cardiac genes and retained the expression of key markers characteristic of cardiomyocytes. Furthermore, voltage-clamp, action potential, calcium transient and contractility studies confirmed that the preserved cardiomyocytes are comparable to freshly isolated cells. Long-term exposure of preserved cardiomyocytes to four tyrosine kinase inhibitors, sunitinib malate, dasatinib, sorafenib tosylate and imatinib mesylate, revealed their potential to induce cardiac toxicity that was manifested with a decrease in contractility and induction of cell death, but this toxicity was not observed in acute experiments conducted over the time course amenable to freshly prepared cardiomyocytes. This study introduces the concept that the inhibition of myosin II ATPase safeguards the structure and function of fully differentiated adult cardiomyocytes. The fact that these preserved cardiomyocytes can be used for numerous days after preparation makes them a robust and versatile tool in cardiac research and allows the investigation of long-term exposure to novel drugs on cardiomyocyte function. © 2013.

  2. Lasting retinal injury in a mouse model of blast-induced trauma

    USDA-ARS?s Scientific Manuscript database

    Traumatic brain injury (TBI) due to blast exposure is currently the most prevalent of war injuries. While secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure has been reported among survivors of explosions, but with limited understanding of the resulti...

  3. High Uric Acid Induces Insulin Resistance in Cardiomyocytes In Vitro and In Vivo

    PubMed Central

    Zhi, Li; Yuzhang, Zhu; Tianliang, Huang; Hisatome, Ichiro; Yamamoto, Tetsuya; Jidong, Cheng

    2016-01-01

    Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA) affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS) production. Western blot analysis was used to examine the levels of insulin receptor (IR), phosphorylated insulin receptor substrate 1 (IRS1, Ser307) and phospho-Akt (Ser473). We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307) and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307) response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307) and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease. PMID:26836389

  4. Comparison Analysis of Dysregulated LncRNA Profile in Mouse Plasma and Liver after Hepatic Ischemia/Reperfusion Injury.

    PubMed

    Chen, Zhenzhen; Luo, Yanjin; Yang, Weili; Ding, Liwei; Wang, Junpei; Tu, Jian; Geng, Bin; Cui, Qinghua; Yang, Jichun

    2015-01-01

    Long noncoding RNAs (LncRNAs) have been believed to be the major transcripts in various tissues and organs, and may play important roles in regulation of many biological processes. The current study determined the LncRNA profile in mouse plasma after liver ischemia/reperfusion injury (IRI) using microarray technology. Microarray assays revealed that 64 LncRNAs were upregulated, and 244 LncRNAs were downregulated in the plasma of liver IRI mouse. Among these dysregulated plasma LncRNAs, 59-61% were intergenic, 22-25% were antisense overlap, 8-12% were sense overlap and 6-7% were bidirectional. Ten dysregulated plasma LncRNAs were validated by quantitative PCR assays, confirming the accuracy of microarray analysis result. Comparison analysis between dysregulated plasma and liver LncRNA profile after liver IRI revealed that among the 308 dysregulated plasma LncRNAs, 245 LncRNAs were present in the liver, but remained unchanged. In contrast, among the 98 dysregulated liver LncRNAs after IRI, only 19 were present in the plasma, but remained unchanged. LncRNA AK139328 had been previously reported to be upregulated in the liver after IRI, and silencing of hepatic AK139328 ameliorated liver IRI. Both microarray and RT-PCR analyses failed to detect the presence of AK139328 in mouse plasma. In summary, the current study compared the difference between dysregulated LncRNA profile in mouse plasma and liver after liver IRI, and suggested that a group of dysregulated plasma LncRNAs have the potential of becoming novel biomarkers for evaluation of ischemic liver injury.

  5. A Cytochrome P450–Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes

    PubMed Central

    Miyakawa, Kazuhisa; Albee, Ryan; Letzig, Lynda G.; Lehner, Andreas F.; Scott, Michael A.; Buchweitz, John P.; James, Laura P.; Ganey, Patricia E.

    2015-01-01

    Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0–14 mM), but eliminated cytotoxicity only at small concentrations (≦5 mM), indicating the presence of a P450-independent mechanism at larger APAP concentrations. P450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations. p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P450-dependent mechanism that operates at concentrations of APAP ≦ 5 mM and a P450-independent mechanism that predominates at larger concentrations and is slower in onset. p-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies. PMID:26065700

  6. Assessment of edema volume in skin upon injury in a mouse ear model with optical coherence tomography

    PubMed Central

    Qin, Wan

    2017-01-01

    Accurate measurement of edema volume is essential for the investigation of tissue response and recovery following a traumatic injury. The measurements must be noninvasive and repetitive over time so as to monitor tissue response throughout the healing process. Such techniques are particularly necessary for the evaluation of therapeutics that are currently in development to suppress or prevent edema formation. In this study, we propose to use optical coherence tomography (OCT) technique to image and quantify edema in a mouse ear model where the injury is induced by a superficial-thickness burn. Extraction of edema volume is achieved by an attenuation compensation algorithm performed on the three-dimensional OCT images, followed by two segmentation procedures. In addition to edema volume, the segmentation method also enables accurate thickness mapping of edematous tissue, which is an important characteristic of the external symptoms of edema. To the best of our knowledge, this is the first method for noninvasively measuring absolute edema volume. PMID:27282161

  7. Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury.

    PubMed

    Bennett, Rachel E; Brody, David L

    2014-10-01

    The pathological processes that lead to long-term consequences of multiple concussions are unclear. Primary mechanical damage to axons during concussion is likely to contribute to dysfunction. Secondary damage has been hypothesized to be induced or exacerbated by inflammation. The main inflammatory cells in the brain are microglia, a type of macrophage. This research sought to determine the contribution of microglia to axon degeneration after repetitive closed-skull traumatic brain injury (rcTBI) using CD11b-TK (thymidine kinase) mice, a valganciclovir-inducible model of macrophage depletion. Low-dose (1 mg/mL) valganciclovir was found to reduce the microglial population in the corpus callosum and external capsule by 35% after rcTBI in CD11b-TK mice. At both acute (7 days) and subacute (21 days) time points after rcTBI, reduction of the microglial population did not alter the extent of axon injury as visualized by silver staining. Further reduction of the microglial population by 56%, using an intermediate dose (10 mg/mL), also did not alter the extent of silver staining, amyloid precursor protein accumulation, neurofilament labeling, or axon injury evident by electron microscopy at 7 days postinjury. Longer treatment of CD11b-TK mice with intermediate dose and treatment for 14 days with high-dose (50 mg/mL) valganciclovir were both found to be toxic in this injury model. Altogether, these data are most consistent with the idea that microglia do not contribute to acute axon degeneration after multiple concussive injuries. The possibility of longer-term effects on axon structure or function cannot be ruled out. Nonetheless, alternative strategies directly targeting injury to axons may be a more beneficial approach to concussion treatment than targeting secondary processes of microglial-driven inflammation.

  8. Improving outcomes of acute kidney injury using mouse renal progenitor cells alone or in combination with erythropoietin or suramin.

    PubMed

    Han, Xiao; Zhao, Li; Lu, Guodong; Ge, Junke; Zhao, Yalin; Zu, Shulu; Yuan, Mingzhen; Liu, Yuqiang; Kong, Feng; Xiao, Zhiying; Zhao, Shengtian

    2013-06-18

    So far, no effective therapy is available for acute kidney injury (AKI), a common and serious complication with high morbidity and mortality. Interest has recently been focused on the potential therapeutic effect of mouse adult renal progenitor cells (MRPC), erythropoietin (EPO) and suramin in the recovery of ischemia-induced AKI. The aim of the present study is to compare MRPC with MRPC/EPO or MRPC/suramin concomitantly in the treatment of a mouse model of ischemia/reperfusion (I/R) AKI. MRPC were isolated from adult C57BL/6-gfp mice. Male C57BL/6 mice (eight-weeks old, n = 72) were used for the I/R AKI model. Serum creatinine (Cr), blood urea nitrogen (BUN) and renal histology were detected in MRPC-, MRPC/EPO-, MRPC/suramin- and PBS-treated I/R AKI mice. E-cadherin, CD34 and GFP protein expression was assessed by immunohistochemical assay. MRPC exhibited characteristics consistent with renal stem cells. The features of MRPC were manifested by Pax-2, Oct-4, vimentin, α-smooth muscle actin positive, and E-cadherin negative, distinguished from mesenchymal stem cells (MSC) by expression of CD34 and Sca-1. The plasticity of MRPC was shown by the ability to differentiate into osteoblasts and lipocytes in vitro. Injection of MRPC, especially MRPC/EPO and MRPC/suramin in I/R AKI mice attenuated renal damage with a decrease of the necrotic injury, peak plasma Cr and BUN. Furthermore, seven days after the injury, MRPC/EPO or MRPC/suramin formed more CD34(+) and E-cadherin+ cells than MRPC alone. These results suggest that MRPC, in particular MRPC/EPO or MRPC/suramin, promote renal repair after injury and may be a promising therapeutic strategy.

  9. Injury Leads to the Appearance of Cells with Characteristics of Both Microglia and Astrocytes in Mouse and Human Brain.

    PubMed

    Wilhelmsson, Ulrika; Andersson, Daniel; de Pablo, Yolanda; Pekny, Roy; Ståhlberg, Anders; Mulder, Jan; Mitsios, Nicholas; Hortobágyi, Tibor; Pekny, Milos; Pekna, Marcela

    2017-06-01

    Microglia and astrocytes have been considered until now as cells with very distinct identities. Here, we assessed the heterogeneity within microglia/monocyte cell population in mouse hippocampus and determined their response to injury, by using single-cell gene expression profiling of cells isolated from uninjured and deafferented hippocampus. We found that in individual cells, microglial markers Cx3cr1, Aif1, Itgam, and Cd68 were co-expressed. Interestingly, injury led to the co-expression of the astrocyte marker Gfap in a subpopulation of Cx3cr1-expressing cells from both the injured and contralesional hippocampus. Cells co-expressing astrocyte and microglia markers were also detected in the in vitro LPS activation/injury model and in sections from human brain affected by stroke, Alzheimer's disease, and Lewy body dementia. Our findings indicate that injury and chronic neurodegeneration lead to the appearance of cells that share molecular characteristics of both microglia and astrocytes, 2 cell types with distinct embryologic origin and function. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy

    PubMed Central

    Huang, Shuai; Zou, Xiao; Zhu, Jie-Ning; Fu, Yong-Heng; Lin, Qiu-Xiong; Liang, Ye-You; Deng, Chun-Yu; Kuang, Su-Juan; Zhang, Meng-Zhen; Liao, Yu-Lin; Zheng, Xi-Long; Yu, Xi-Yong; Shan, Zhi-Xin

    2015-01-01

    Cyclins/retinoblastoma protein (pRb) pathway participates in cardiomyocyte hypertrophy. MicroRNAs (miRNAs), the endogenous small non-coding RNAs, were recognized to play significant roles in cardiac hypertrophy. But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy. This study investigates the potential role of microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy. An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC), and in a mouse with transverse aortic constriction (TAC) and in a mouse with subcutaneous injection of phenylephrine (PE) respectively. In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte and based on Ang-II-induced neonatal mouse ventricular cardiomyocyte respectively. We demonstrated that miR-16 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats and mice. Overexpression of miR-16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes, and inhibition of miR-16 induced a hypertrophic phenotype in cardiomyocytes. Expressions of cyclins D1, D2 and E1, and the phosphorylated pRb were increased in hypertrophic myocardium and hypertrophic cardiomyocytes, but could be reversed by enforced expression of miR-16. Cyclins D1, D2 and E1, not pRb, were further validated to be modulated post-transcriptionally by miR-16. In addition, the signal transducer and activator of transcription-3 and c-Myc were activated during myocardial hypertrophy, and inhibitions of them prevented miR-16 attenuation. Therefore, attenuation of miR-16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2 and E1, and activating cyclin/Rb pathway, revealing that miR-16 might be a target to manage cardiac hypertrophy. PMID:25583328

  11. Nitroxide stable radicals protect beating cardiomyocytes against oxidative damage

    SciTech Connect

    Samuni, A.; Winkelsberg, D.; Pinson, A.; Hahn, S.M.; Mitchell, J.B.; Russo, A. )

    1991-05-01

    The protective effect of stable nitroxide radicals against oxidative damage was studied using cardiomyocyte cultures obtained from newborn rats. Monolayered cardiomyocytes were exposed to H{sub 2}O{sub 2} and the effect on spontaneous beating and leakage of LDH was determined. Hydrogen peroxide irreversibly blocked rhythmic beating and resulted in a significant membrane injury as shown by release of LDH. The injury was prevented by catalase which removes H{sub 2}O{sub 2} and by cell-permeable, metal-chelating agents such as desferrioxamine or bipyridine. In contrast, reagents which are excluded from the cell such as superoxide dismutase or DTPA did not protect the cells against H{sub 2}O{sub 2}. Five- and six-membered ring, stable nitroxide radicals which have previously been shown to chemically act as low-molecular weight, membrane-permeable, SOD-mimetic compounds provided full protection. The nitroxides prevented leakage of LDH and preserved normal cardiomyocyte contractility, presumably by intercepting intracellular O{sub 2}-radicals. Alternatively, protection may result through nitroxides reacting with reduced transition metal ions or by detoxifying secondary organic radicals.

  12. Mouse CD4+ CD25+ T regulatory cells are protected from autologous complement mediated injury by Crry and CD59

    PubMed Central

    Li, Qing; Nacion, Kristine; Bu, Hong; Lin, Feng

    2009-01-01

    Self cells depend on surface complement regulators to protect them from autologous complement-mediated attack. CD4+CD25+foxp3+ T regulatory (Treg) cells are critical in maintaining immune homeostasis, however, which complement regulators are expressed on them and how they are protected from autologous complement attack remains unknown. We report here that mouse Treg cells express virtually no DAF or CR1. Instead, all of them express Crry and approximately half of them express CD59. Both Crry-/- and CD59-/- Treg cells exhibit greater complement mediated injury than WT Treg cells. These results clarify the status of cell surface complement regulators on mouse Treg cells and indicate that both Crry and CD59 are required to protect Treg cells from autologous complement-mediated injury. Additionally, these data also argue that different from previous assumption, at least in mice, CD4+CD25+foxp3+ Treg cells are not homogenous and could be further divided into subgroups based on CD59 expression. PMID:19281793

  13. Mouse CD4+ CD25+ T regulatory cells are protected from autologous complement mediated injury by Crry and CD59.

    PubMed

    Li, Qing; Nacion, Kristine; Bu, Hong; Lin, Feng

    2009-04-24

    Self cells depend on surface complement regulators to protect them from autologous complement mediated attack. CD4(+)CD25(+)foxp3(+) T regulatory (Treg) cells are critical in maintaining immune homeostasis, however, which complement regulators are expressed on them and how they are protected from autologous complement attack remains unknown. We report here that mouse Treg cells express virtually no DAF or CR1. Instead, all of them express Crry and approximately half of them express CD59. Both Crry(-/-) and CD59(-/-) Treg cells exhibit greater complement mediated injury than WT Treg cells. These results clarify the status of cell surface complement regulators on mouse Treg cells and indicate that both Crry and CD59 are required to protect Treg cells from autologous complement mediated injury. Additionally, these data also argue that different from previous assumption, at least in mice, CD4(+)CD25(+)foxp3(+) Treg cells are not homogenous and could be further divided into subgroups based on CD59 expression.

  14. The antifibrinolytic drug tranexamic acid reduces liver injury and fibrosis in a mouse model of chronic bile duct injury.

    PubMed

    Joshi, Nikita; Kopec, Anna K; Towery, Keara; Williams, Kurt J; Luyendyk, James P

    2014-06-01

    Hepatic fibrin deposition has been shown to inhibit hepatocellular injury in mice exposed to the bile duct toxicant α-naphthylisothiocyanate (ANIT). Degradation of fibrin clots by fibrinolysis controls the duration and extent of tissue fibrin deposition. Thus, we sought to determine the effect of treatment with the antifibrinolytic drug tranexamic acid (TA) and plasminogen activator inhibitor-1 (PAI-1) deficiency on ANIT-induced liver injury and fibrosis in mice. Plasmin-dependent lysis of fibrin clots was impaired in plasma from mice treated with TA (1200 mg/kg i.p., administered twice daily). Prophylactic TA administration reduced hepatic inflammation and hepatocellular necrosis in mice fed a diet containing 0.025% ANIT for 2 weeks. Hepatic type 1 collagen mRNA expression and deposition increased markedly in livers of mice fed ANIT diet for 4 weeks. To determine whether TA treatment could inhibit this progression of liver fibrosis, mice were fed ANIT diet for 4 weeks and treated with TA for the last 2 weeks. Interestingly, TA treatment largely prevented increased deposition of type 1 collagen in livers of mice fed ANIT diet for 4 weeks. In contrast, biliary hyperplasia/inflammation and liver fibrosis were significantly increased in PAI-1(-/-) mice fed ANIT diet for 4 weeks. Overall, the results indicate that fibrinolytic activity contributes to ANIT diet-induced liver injury and fibrosis in mice. In addition, these proof-of-principle studies suggest the possibility that therapeutic intervention with an antifibrinolytic drug could form a novel strategy to prevent or reduce liver injury and fibrosis in patients with liver disease.

  15. [Recovery of movement after spinal cord injury in DO11.10 transgenic mouse].

    PubMed

    Wang, Hui; Guo, Jun; Zhao, Yu; Bian, Gan-lan; Liu, Fang-fang; Yu, Cai-yong; Feng, Rui; Ju, Gong; Wang, Jian

    2010-03-01

    To analysis the role of T lymphocytes in spinal cord regeneration by comparing the recovery of movement and the morphological changes of injury area between BALB/c and DO11.10 transgenic mice. Producing a crush injury model of spinal cord with special forceps. Analyze the changes of spinal cord injury area with H&E and GFAP, CD11b and lymphocytic immunohistochemical staining. Evaluate the recovery of movement function with Basso-Beattie-Bresnahan (BBB) locomotion testing system at 0, 7, 14 and 21 day post-injury (dpi). There were thicker and fastened glial scar at 21 dpi in the BALB/c mice but not in DO11.10 mice. The number of macrophages/microglia infiltrated in spinal cord injury area were more in DO11.10 than that in BALB/c mice at 14 dpi. The numbers of T lymphocytes infiltrated in spinal cord injury area were less in DO11.10 than that in BALB/c mice at 21 dpi. In addition, compare to BALB/c mice, the locomotion movement recovery of DO11.10 mice were much more significant within 3 weeks after spinal cord injury by BBB scoring system. The infiltrated autoimmune activation T lymphocytes which specifically react to neural antigens are not beneficial to recovery of movement after spinal cord injury in mice.

  16. 64CuCl2 PET/CT imaging of mouse muscular injury induced by electroporation

    PubMed Central

    Xie, Fang; Cai, Huawei; Peng, Fangyu

    2017-01-01

    Skeletal muscle injury is common in body injuries suffered in sports and car accidents. Development of new tracers is significant for assessing muscular injury with positron emission tomography/computed tomography (PET/CT) and monitoring repair of muscle injury in response to treatment. Copper is required for wound healing and increased copper ions were detected in the soft tissue of wound in rodents and human. Based on the recent finding of increased 64Cu uptake in the traumatic brain injury, this study aimed to explore use of 64CuCl2 as a radiotracer for molecular imaging of muscular injury using PET/CT. Focally increased 64Cu uptake by the injured muscular tissue (5.4 ± 1.2% ID/g) was detected in the C57BL/6 mice with electroporation-induced skeletal muscle injury by PET/CT after intravenous injection of 64CuCl2 as a tracer, compared to low 64Cu uptake associated with muscular inflammation induced by intramuscular injection of lipopolysaccharides (0.82 ± 0.26% ID/g, P < 0.01) or physiological 64Cu uptake of the non-injured muscular tissues (0.78 ± 0.20% ID/g, P < 0.01). The findings support further investigation of 64CuCl2 as a new radiotracer for molecular imaging of skeletal muscle injury using PET/CT. PMID:28123866

  17. Injury effects of ginkgolide B on maturation of mouse oocytes, fertilization, and fetal development in vitro and in vivo.

    PubMed

    Shiao, Nion-Heng; Chan, Wen-Hsiung

    2009-07-10

    Ginkgolide B (GKB), the major active component of Ginkgo biloba extracts, exerts both stimulatory and inhibitory effects on apoptotic signaling. Previous studies by our group demonstrated that ginkgolide treatment of mouse blastocysts induces apoptosis, decreases cell number, hinders early postimplantation blastocyst development, and increases early-stage blastocyst death. Here, we further investigate the effects of GKB on oocyte maturation, and subsequent pre- and postimplantation development in vitro and in vivo. In our experiments, GKB induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with 1-6 microM GKB during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased placental and fetal weights. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 3-6 microM GKB led to decreased oocyte maturation and in vitro fertilization, as well as early embryo developmental injury, specifically, inhibition of development to the blastocyst stage in vivo. To our knowledge, this is the first study to investigate the impact of GKB on maturation of mouse oocytes, fertilization, and sequential embryonic development.

  18. A Mouse Model of Hyperproliferative Human Epithelium Validated by Keratin Profiling Shows an Aberrant Cytoskeletal Response to Injury.

    PubMed

    Zhussupbekova, Samal; Sinha, Rohit; Kuo, Paula; Lambert, Paul F; Frazer, Ian H; Tuong, Zewen K

    2016-07-01

    A validated animal model would assist with research on the immunological consequences of the chronic expression of stress keratins KRT6, KRT16, and KRT17, as observed in human pre-malignant hyperproliferative epithelium. Here we examine keratin gene expression profile in skin from mice expressing the E7 oncoprotein of HPV16 (K14E7) demonstrating persistently hyperproliferative epithelium, in nontransgenic mouse skin, and in hyperproliferative actinic keratosis lesions from human skin. We demonstrate that K14E7 mouse skin overexpresses stress keratins in a similar manner to human actinic keratoses, that overexpression is a consequence of epithelial hyperproliferation induced by E7, and that overexpression further increases in response to injury. As stress keratins modify local immunity and epithelial cell function and differentiation, the K14E7 mouse model should permit study of how continued overexpression of stress keratins impacts on epithelial tumor development and on local innate and adaptive immunity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. The in-vivo monitoring method for traumatic brain injury of mouse based on near-infrared light intensity

    NASA Astrophysics Data System (ADS)

    Li, Weitao; Wang, Xuena; Qian, Zhiyu; Xie, Jieru; Liu, Xing

    2012-02-01

    A system based on near-infrared light intensity was used to monitor mouse model of traumatic brain injury (TBI) noninvasively. The measurement system was controlled by microcontroller. Light from a 760/850nm dual-wavelength light emitting diode was coupled to a 0.6-mm-diameter optical fiber. The collection fibers were coupled to optoelectronic detectors, which were placed in the different distance from the source fiber. The system consisted of a constant current bias, a circuit lock-in amplifier (including band pass filter, lock-in amplifier, and low pass filter), a PCI 6240 data acquisition card and a multi-core-processor computer. The modified Lambert Beer law was used to calculate the concentration of ΔHbO2 and ΔHb. The sensitivity matrix was defined to evaluate the region of effective detection of optical probe. Five groups of TBI mouse models were built by Feeney's free-falling method. The data measured by system show after TBI the concentration of ΔHbO2 decreased and that of ΔHb increased. It can be concluded that the system can be used to monitor the changes of TBI of mouse non-invasively.

  20. Cardiomyocyte-specific ablation of CD36 improves post-ischemic functional recovery.

    PubMed

    Nagendran, Jeevan; Pulinilkunnil, Thomas; Kienesberger, Petra C; Sung, Miranda M; Fung, David; Febbraio, Maria; Dyck, Jason R B

    2013-10-01

    Although pre-clinical evidence has suggested that partial inhibition of myocardial fatty acid oxidation (FAO) and subsequent switch to greater glucose oxidation for ATP production can prevent ischemia/reperfusion injury, controversy about this approach persists. For example, mice with germline deletion of the FA transporter CD36, exhibited either impaired or unchanged post-ischemic functional recovery despite a 40-60% reduction in FAO rates. Because there are limitations to cardiac studies utilizing whole body CD36 knockout (totalCD36KO) mice, we have now generated an inducible and cardiomyocyte-specific CD36 KO (icCD36KO) mouse to better address the role of cardiomyocyte CD36 and its regulation of FAO and post-ischemic functional recovery. Four to six weeks following CD36 ablation, hearts from icCD36KO mice had significantly decreased FA uptake compared to controls, which was paralleled by significant reductions in intramyocardial triacylglycerol content. Analysis of cardiac energy metabolism using ex vivo working heart perfusions showed that reduced FAO rates were compensated by enhanced glucose oxidation in the hearts from icCD36KO mice. In contrast to the totalCD36KO mice, hearts from icCD36KO mice exhibited significantly improved functional recovery following ischemia/reperfusion (18min of global no-flow ischemia followed by 40min of aerobic reperfusion). This improved recovery was associated with lower calculated proton production prior to and following ischemia compared to controls. Moreover, the amount of ATP generated relative to cardiac work was significantly lower in the hearts from icCD36KO mice compared to controls, indicating significantly increased cardiac efficiency in the hearts from icCD36KO mice. These data provide genetic evidence that reduced FAO as a result of diminished CD36-mediated FA uptake improves post-ischemic cardiac efficiency and functional recovery. As such, targeting cardiomyocyte FA uptake and FAO via inhibition of CD36 in the

  1. Mouse closed head injury model induced by a weight-drop device.

    PubMed

    Flierl, Michael A; Stahel, Philip F; Beauchamp, Kathryn M; Morgan, Steven J; Smith, Wade R; Shohami, Esther

    2009-01-01

    Traumatic brain injury represents the leading cause of death in young individuals. Various animal models have been developed to mimic human closed head injury (CHI). Widely used models induce head injury by lateral fluid percussion, a controlled cortical impact or impact acceleration. The presented model induces a CHI by a standardized weight-drop device inducing a focal blunt injury over an intact skull without pre-injury manipulations. The resulting impact triggers a profound neuroinflammatory response within the intrathecal compartment with high consistency and reproducibility, leading to neurological impairment and breakdown of the blood-brain barrier. In this protocol, we define standardized procedures for inducing CHI in mice and determine various severity grades of CHI through modulation of the weight falling height. In experienced hands, this CHI model can be carried out in as little as 30 s per animal, with additional time required for subsequent posttraumatic analysis and data collection.

  2. Intravital Imaging of Axonal Interactions with Microglia and Macrophages in a Mouse Dorsal Column Crush Injury

    PubMed Central

    Evans, Teresa A.; Barkauskas, Deborah S.; Myers, Jay T.; Huang, Alex Y.

    2014-01-01

    Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column. Here, we describe methods for distinguishing macrophages from microglia in the CNS using an irradiation bone marrow chimera to obtain animals in which only macrophages or microglia are labeled with a genetically encoded green fluorescent protein. We also describe a injury model that crushes the dorsal column of the spinal cord, thereby producing a simple, easily accessible, rectangular lesion that is easily visualized in an animal through a laminectomy. Furthermore, we will outline procedures to sequentially image the animals at the anatomical site of injury for the study of cellular interactions during the first few days to weeks after injury. PMID:25489963

  3. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors.

    PubMed

    Lorber, Barbara; Berry, Martin; Logan, Ann

    2005-04-01

    In the present study the effects of lens injury on retinal ganglion cell axon/neurite re-growth were investigated in adult mice. In vivo, lens injury promoted successful regeneration of retinal ganglion cell axons past the optic nerve lesion site, concomitant with the invasion of macrophages into the eye and the presence of activated retinal astrocytes/Muller cells. In vitro, retinal ganglion cells from lens-lesioned mice grew significantly longer neurites than those from intact mice, which correlated with the presence of enhanced numbers of activated retinal astrocytes/Muller cells. Co-culture of retinal ganglion cells from intact mice with macrophage-rich lesioned lens/vitreous body led to increased neurite lengths compared with co-culture with macrophage-free intact lens/vitreous body, pointing to a neurotrophic effect of macrophages. Furthermore, retinal ganglion cells from mice that had no lens injury but had received intravitreal Zymosan injections to stimulate macrophage invasion into the eye grew significantly longer neurites compared with controls, as did retinal ganglion cells from intact mice co-cultured with macrophage-rich vitreous body from Zymosan-treated mice. The intact lens, but not the intact vitreous body, exerted a neurotrophic effect on retinal ganglion cell neurite outgrowth, suggesting that lens-derived neurotrophic factor(s) conspire with those derived from macrophages in lens injury-stimulated axon regeneration. Together, these results show that lens injury promotes retinal ganglion cell axon regeneration/neurite outgrowth in adult mice, an observation with important implications for axon regeneration studies in transgenic mouse models.

  4. Heme oxygenase-1 deficiency promotes the development of necrotizing enterocolitis-like intestinal injury in a newborn mouse model.

    PubMed

    Schulz, Stephanie; Wong, Ronald J; Jang, Kyu Yun; Kalish, Flora; Chisholm, Karen M; Zhao, Hui; Vreman, Hendrik J; Sylvester, Karl G; Stevenson, David K

    2013-06-01

    Necrotizing enterocolitis (NEC) is typified by mucosal destruction, which subsequently can lead to intestinal necrosis. Prematurity, enteral feeding, and bacterial colonization are the main risk factors and, combined with other stressors, can cause increased intestinal permeability, injury, and an exaggerated inflammatory response. Heme oxygenase-1 (HO-1) mediates intestinal protection due to anti-inflammatory, antioxidative, and antiapoptotic effects of its products carbon monoxide, biliverdin, and bilirubin. This study investigates a possible role of HO-1 in the pathogenesis of NEC using a newborn mouse model. We induced NEC-like intestinal injury in 7-day-old HO-1 heterozygous (HO-1 Het, Hmox1(+/-)) and wild-type (Wt, Hmox1(+/+)) mice by gavage feeding and hypoxic exposures. Control (Con) pups of both genotypes were dam-fed. Intestines of HO-1 Het Con pups appeared predisposed to injury, with higher histological damage scores, more TUNEL-positive cells, and a significant reduction in muscularis externa thickness compared with Wt Con pups. The increase in HO activity after HO-1 induction by the substrate heme or by hypoxic stress was significantly impaired in HO-1 Het pups. After induction of intestinal injury, HO-1 Het pups displayed significantly higher NEC incidence (78 vs. 43%), mortality (83 vs. 54%), and median scores (2.5 vs. 1.5) than Wt NEC pups. PCR array analyses revealed increased expressions of IL-1β, P-selectin, matrix metallopeptidase 2, collagen type XVIII-α1, serpine 1, and others in NEC-induced HO-1 Het ileal and jejunal tissues. We conclude that a partial HO-1 deficiency promotes experimental NEC-like intestinal injury, possibly mediated by exaggerated inflammation and disruption in tissue repair.

  5. Regression of Copper-Deficient Heart Hypertrophy: Reduction in the Size of Hypertrophic Cardiomyocytes

    USDA-ARS?s Scientific Manuscript database

    Dietary copper deficiency causes cardiac hypertrophy and its transition to heart failure in a mouse model. Copper repletion results in a rapid regression of cardiac hypertrophy and prevention of heart failure. The present study was undertaken to understand dynamic changes of cardiomyocytes in the hy...

  6. Hawthorn (Crataegus monogyna Jacq.) extract exhibits atropine-sensitive activity in a cultured cardiomyocyte assay.

    PubMed

    Salehi, Satin; Long, Shannon R; Proteau, Philip J; Filtz, Theresa M

    2009-01-01

    Hawthorn (Crataegus spp.) plant extract is used as a herbal alternative medicine for the prevention and treatment of various cardiovascular diseases. Recently, it was shown that hawthorn extract preparations caused negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay, independent of beta-adrenergic receptor blockade. The aim of this study was to further characterize the effect of hawthorn extract to decrease the contraction rate of cultured cardiomyocytes. To test the hypothesis that hawthorn is acting via muscarinic receptors, the effect of hawthorn extract on atrial versus ventricular cardiomyocytes in culture was evaluated. As would be expected for activation of muscarinic receptors, hawthorn extract had a greater effect in atrial cells. Atrial and/or ventricular cardiomyocytes were then treated with hawthorn extract in the presence of atropine or himbacine. Changes in the contraction rate of cultured cardiomyocytes revealed that both muscarinic antagonists significantly attenuated the negative chronotropic activity of hawthorn extract. Using quinuclidinyl benzilate, L-[benzylic-4,4'-(3)H] ([(3)H]-QNB) as a radioligand antagonist, the effect of a partially purified hawthorn extract fraction to inhibit muscarinic receptor binding was quantified. Hawthorn extract fraction 3 dose-dependently inhibited [(3)H]-QNB binding to mouse heart membranes. Taken together, these findings suggest that decreased contraction frequency by hawthorn extracts in neonatal murine cardiomyocytes may be mediated via muscarinic receptor activation.

  7. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections

    PubMed Central

    Bensley, Jonathan Guy; De Matteo, Robert; Harding, Richard; Black, Mary Jane

    2016-01-01

    Quantitative assessment of myocardial development and disease requires accurate measurement of cardiomyocyte volume, nuclearity (nuclei per cell), and ploidy (genome copies per cell). Current methods require enzymatically isolating cells, which excludes the use of archived tissue, or serial sectioning. We describe a method of analysis that permits the direct simultaneous measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. To demonstrate the utility of our technique, heart tissue was obtained from four species (rat, mouse, rabbit, sheep) at up to three life stages: prenatal, weaning and adulthood. Thick (40 μm) paraffin sections were stained with Wheat Germ Agglutinin-Alexa Fluor 488 to visualise cell membranes, and DAPI (4′,6-diamidino-2-phenylindole) to visualise nuclei and measure ploidy. Previous methods have been restricted to thin sections (2–10 μm) and offer an incomplete picture of cardiomyocytes. Using confocal microscopy and three-dimensional image analysis software (Imaris Version 8.2, Bitplane AG, Switzerland), cardiomyocyte volume, nuclearity, and ploidy were measured. This method of staining and analysis of cardiomyocytes enables accurate morphometric measurements in thick histological sections, thus unlocking the potential of archived tissue. Our novel time-efficient method permits the entire cardiomyocyte to be visualised directly in 3D, eliminating the need for precise alignment of serial sections. PMID:27048757

  8. Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections

    NASA Astrophysics Data System (ADS)

    Bensley, Jonathan Guy; de Matteo, Robert; Harding, Richard; Black, Mary Jane

    2016-04-01

    Quantitative assessment of myocardial development and disease requires accurate measurement of cardiomyocyte volume, nuclearity (nuclei per cell), and ploidy (genome copies per cell). Current methods require enzymatically isolating cells, which excludes the use of archived tissue, or serial sectioning. We describe a method of analysis that permits the direct simultaneous measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. To demonstrate the utility of our technique, heart tissue was obtained from four species (rat, mouse, rabbit, sheep) at up to three life stages: prenatal, weaning and adulthood. Thick (40 μm) paraffin sections were stained with Wheat Germ Agglutinin-Alexa Fluor 488 to visualise cell membranes, and DAPI (4‧,6-diamidino-2-phenylindole) to visualise nuclei and measure ploidy. Previous methods have been restricted to thin sections (2–10 μm) and offer an incomplete picture of cardiomyocytes. Using confocal microscopy and three-dimensional image analysis software (Imaris Version 8.2, Bitplane AG, Switzerland), cardiomyocyte volume, nuclearity, and ploidy were measured. This method of staining and analysis of cardiomyocytes enables accurate morphometric measurements in thick histological sections, thus unlocking the potential of archived tissue. Our novel time-efficient method permits the entire cardiomyocyte to be visualised directly in 3D, eliminating the need for precise alignment of serial sections.

  9. Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system

    PubMed Central

    Zhu, Huanqi; Scharnhorst, Kelsey S.; Stieg, Adam Z.; Gimzewski, James K.; Minami, Itsunari; Nakatsuji, Norio; Nakano, Haruko; Nakano, Atsushi

    2017-01-01

    Stem cell-derived cardiomyocytes provide a promising tool for human developmental biology, regenerative therapies, disease modeling, and drug discovery. As human pluripotent stem cell-derived cardiomyocytes remain functionally fetal-type, close monitoring of electrophysiological maturation is critical for their further application to biology and translation. However, to date, electrophysiological analyses of stem cell-derived cardiomyocytes has largely been limited by biologically undefined factors including 3D nature of embryoid body, sera from animals, and the feeder cells isolated from mouse. Large variability in the aforementioned systems leads to uncontrollable and irreproducible results, making conclusive studies difficult. In this report, a chemically-defined differentiation regimen and a monolayer cell culture technique was combined with multielectrode arrays for accurate, real-time, and flexible measurement of electrophysiological parameters in translation-ready human cardiomyocytes. Consistent with their natural counterpart, amplitude and dV/dtmax of field potential progressively increased during the course of maturation. Monolayer culture allowed for the identification of pacemaking cells using the multielectrode array platform and thereby the estimation of conduction velocity, which gradually increased during the differentiation of cardiomyocytes. Thus, the electrophysiological maturation of the human pluripotent stem cell-derived cardiomyocytes in our system recapitulates in vivo development. This system provides a versatile biological tool to analyze human heart development, disease mechanisms, and the efficacy/toxicity of chemicals. PMID:28266620

  10. Cardiomyocyte-specific ablation of CD36 accelerates the progression from compensated cardiac hypertrophy to heart failure.

    PubMed

    Sung, Miranda M; Byrne, Nikole J; Kim, Ty T; Levasseur, Jody; Masson, Grant; Boisvenue, Jamie J; Febbraio, Maria; Dyck, Jason R B

    2017-03-01

    Previous studies have shown that loss of CD36 protects the heart from dysfunction induced by pressure overload in the presence of diet-induced insulin resistance and/or obesity. The beneficial effects of CD36 ablation in this context are mediated by preventing excessive cardiac fatty acid (FA) entry and reducing lipotoxic injury. However, whether or not the loss of CD36 can prevent pressure overload-induced cardiac dysfunction in the absence of chronic exposure to high circulating FAs is presently unknown. To address this, we utilized a tamoxifen-inducible cardiomyocyte-specific CD36 knockout (icCD36KO) mouse and genetically deleted CD36 in adulthood. Control mice (CD36 floxed/floxed mice) and icCD36KO mice were treated with tamoxifen and subsequently subjected to transverse aortic constriction (TAC) surgery to generate pressure overload-induced cardiac hypertrophy. Consistent with CD36 mediating a significant proportion of FA entry into the cardiomyocyte and subsequent FA utilization for ATP production, hearts from icCD36KO mice were metabolically inefficient and displayed signs of energetic stress, including activation of the energetic stress kinase, AMPK. In addition, impaired energetics in icCD36KO mice contributed to a rapid progression from compensated hypertrophy to heart failure. However, icCD36KO mice fed a medium-chain FA diet, whereby medium-chain FAs can enter into the cardiomyocyte independent from CD36, were protected from TAC-induced heart failure. Together these data suggest that limiting FA uptake and partial inhibition of FA oxidation in the heart via CD36 ablation may be detrimental for the compensated hypertrophic heart in the absence of sufficiently elevated circulating FAs to provide an adequate energy source.NEW & NOTEWORTHY Limiting CD36-mediated fatty acid uptake in the setting of obesity and/or insulin resistance protects the heart from cardiac hypertrophy and dysfunction. However, cardiomyocyte-specific CD36 ablation in the absence of

  11. The myelopoietic effects of a Serratia marcescens-derived biologic response modifier in a mouse model of thermal injury.

    PubMed

    Peterson, V M; Rundus, C H; Reinoehl, P J; Schroeter, S R; McCall, C A; Bartle, E J

    1992-04-01

    The proliferative defects observed in phagocytic stem cells after major thermal injuries may be caused by an inadequate production of colony-stimulating factors (CSFs), a family of hemopoietic cytokines necessary for the production and function of granulocytes and monocytes. In this study a biologic response modifier (S-BRM) consisting of sized vesicles derived from the cell membrane and ribosomes of Serratia marcescens was investigated in a mouse model of thermal injury to determine its ability to augment postburn myelopoiesis. Treatment of burned mice with S-BRM was well tolerated and was associated with statistically significant increases in absolute numbers of circulating granulocytes and monocytes compared with burned mice receiving saline solution. In addition, the size of the splenic myeloid stem cell compartment, as measured by granulocyte-macrophage stem cell colony formation in soft agar, was markedly expanded. Finally, plasma levels of CSF were increased significantly in burned mice receiving S-BRM but were not elevated in burned littermates treated with saline solution. These data suggest that production of CSF is suboptimal after thermal injury and S-BRM is capable of up-regulating postburn myelopoiesis by causing the release of CSF into the systemic circulation.

  12. Inhibitory effects of prior low-dose x-irradiation on ischemia-reperfusion injury in mouse paw.

    PubMed

    Kataoka, Takahiro; Mizuguchi, Yuko; Yoshimoto, Masaaki; Taguchi, Takehito; Yamaoka, Kiyonori

    2007-11-01

    We have reported that low-dose, unlike high-dose, irradiation enhanced antioxidation function and reduced oxidative damage. On the other hand, ischemia-reperfusion injury is induced by reactive oxygen species. In this study, we examined the inhibitory effects of prior low-dose X-irradiation on ischemia-reperfusion injury in mouse paw. BALB/c mice were irradiated by sham or 0.5 Gy of X-ray. At 4 hrs after irradiation, the left hind leg was bound 10 times with a rubber ring for 0.5, 1, or 2 hrs and the paw thickness was measured. Results show that the paw swelling thickness by ischemia for 0.5 hr was lower than that for 2 hrs. At 1 hr after reperfusion from ischemia for 1 hr, superoxide dismutase activity in serum was increased in those mice which received 0.5 Gy irradiation and in the case of the ischemia for 0.5 or 1 hr, the paw swelling thicknesses were inhibited by 0.5 Gy irradiation. In addition, interstitial edema in those mice which received 0.5 Gy irradiation was less than that in the mice which underwent by sham irradiation. These findings suggest that the ischemia-reperfusion injury is inhibited by the enhancement of antioxidation function by 0.5 Gy irradiation.

  13. PD-L1 Blockade Attenuated Sepsis-Induced Liver Injury in a Mouse Cecal Ligation and Puncture Model

    PubMed Central

    Bao, Rui; Zhu, Jiali; Wang, Jiafeng; Li, Jinbao

    2013-01-01

    Liver plays a major role in hypermetabolism and produces acute phase proteins during systemic inflammatory response syndrome and it is of vital importance in host defense and bacteria clearance. Our previous studies indicated that programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) are crucial modulators of host immune responses during sepsis. Our current study was designed to investigate the role of PD-L1 in sepsis-induced liver injury by a mouse cecal ligation and puncture (CLP) model. Our results indicated that there was a significant increase of PD-L1 expression in liver after CLP challenge compared to sham-operated controls, in terms of levels of mRNA transcription and immunohistochemistry. Anti-PD-L1 antibody significantly alleviated the morphology of liver injury in CLP mice. Anti-PD-L1 antibody administration decreased ALT and AST release in CLP mice, decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 mRNA in liver after sepsis challenge. Thus, anti-PD-L1 antibody might have a therapeutic potential in attenuating liver injury in sepsis. PMID:24324295

  14. A New Transgenic Mouse Model for Studying the Neurotoxicity of Spermine Oxidase Dosage in the Response to Excitotoxic Injury

    PubMed Central

    Cervelli, Manuela; Bellavia, Gabriella; D'Amelio, Marcello; Cavallucci, Virve; Moreno, Sandra; Berger, Joachim; Nardacci, Roberta; Marcoli, Manuela; Maura, Guido; Piacentini, Mauro; Amendola, Roberto; Cecconi, Francesco; Mariottini, Paolo

    2013-01-01

    Spermine oxidase is a FAD-containing enzyme involved in polyamines catabolism, selectively oxidizing spermine to produce H2O2, spermidine, and 3-aminopropanal. Spermine oxidase is highly expressed in the mouse brain and plays a key role in regulating the levels of spermine, which is involved in protein synthesis, cell division and cell growth. Spermine is normally released by neurons at synaptic sites where it exerts a neuromodulatory function, by specifically interacting with different types of ion channels, and with ionotropic glutamate receptors. In order to get an insight into the neurobiological roles of spermine oxidase and spermine, we have deregulated spermine oxidase gene expression producing and characterizing the transgenic mouse model JoSMOrec, conditionally overexpressing the enzyme in the neocortex. We have investigated the effects of spermine oxidase overexpression in the mouse neocortex by transcript accumulation, immunohistochemical analysis, enzymatic assays and polyamine content in young and aged animals. Transgenic JoSMOrec mice showed in the neocortex a higher H2O2 production in respect to Wild-Type controls, indicating an increase of oxidative stress due to SMO overexpression. Moreover, the response of transgenic mice to excitotoxic brain injury, induced by kainic acid injection, was evaluated by analysing the behavioural phenotype, the immunodistribution of neural cell populations, and the ultrastructural features of neocortical neurons. Spermine oxidase overexpression and the consequently altered polyamine levels in the neocortex affects the cytoarchitecture in the adult and aging brain, as well as after neurotoxic insult. It resulted that the transgenic JoSMOrec mouse line is more sensitive to KA than Wild-Type mice, indicating an important role of spermine oxidase during excitotoxicity. These results provide novel evidences of the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. PMID

  15. In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury

    NASA Astrophysics Data System (ADS)

    Xu, Zhun; Zhu, Quing; Wang, Lihong V.

    2011-06-01

    For the first time, we have implemented photoacoustic tomography (PAT) to image the water content of an edema in vivo. We produced and imaged a cold-induced cerebral edema transcranially, then obtained blood vessel and water accumulation images at 610 and 975 nm, respectively. We tracked the changes at 12, 24, and 36 h after the cold injury. The blood volume decreased after the cold injury, and the maximum area of edema was observed 24 h after the cold injury. We validated PAT of the water content of the edema through magnetic Resonance Imaging and the water spectrum from the spectrophotometric measurement.

  16. A p53-based genetic tracing system to follow postnatal cardiomyocyte expansion in heart regeneration.

    PubMed

    Xiao, Qi; Zhang, Guoxin; Wang, Huijuan; Chen, Lai; Lu, Shuangshuang; Pan, Dejing; Liu, Geng; Yang, Zhongzhou

    2017-02-15

    In the field of heart regeneration, the proliferative potential of cardiomyocytes in postnatal mice is under intense investigation. However, solely relying on immunostaining of proliferation markers, the long-term proliferation dynamics and potential of the cardiomyocytes cannot be readily addressed. Previously, we found that a p53 promoter-driving reporter predominantly marked the proliferating lineages in mice. Here, we established a p53-based genetic tracing system to investigate postnatal cardiomyocyte proliferation and heart regeneration. By selectively tracing proliferative cardiomyocytes, a differential pattern of clonal expansion in p53(+) cardiac myocytes was revealed in neonatal, adolescent and adult stages. In addition, the percentage of p53(+) lineage cardiomyocytes increased continuously in the first month. Furthermore, these cells rapidly responded to heart injury and greatly contributed to the replenished myocardium. Therefore, this study reveals complex proliferating dynamics in postnatal cardiomyocytes and heart repair, and provides a novel genetic tracing strategy for studying postnatal cardiac turnover and regeneration. © 2017. Published by The Company of Biologists Ltd.

  17. Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes.

    PubMed

    Sharma, Alok; Nguyen, Hieu; Geng, Cuiyu; Hinman, Melissa N; Luo, Guangbin; Lou, Hua

    2014-11-18

    In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modifications. Specifically, the regulation occurs through changes in calcium-responsive kinase activities that lead to alterations in histone modifications and subsequent changes in the transcriptional elongation rate and exon skipping. We demonstrate that increased intracellular calcium levels lead to histone hyperacetylation along the body of the genes containing calcium-responsive alternative exons by disrupting the histone deacetylase-to-histone acetyltransferase balance in the nucleus. Consequently, the RNA polymerase II elongation rate increases significantly on those genes, resulting in skipping of the alternative exons. These studies reveal a mechanism by which calcium-level changes in cardiomyocytes impact on the output of gene expression through altering alternative pre-mRNA splicing patterns.

  18. MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma

    PubMed Central

    2011-01-01

    Background Glutamergic excitotoxicity has been shown to play a deleterious role in the pathophysiology of spinal cord injury (SCI). The aim of this study was to investigate the neuroprotective effect of dizocilpine maleate, MK801 (2 mg/Kg, 30 min and 6 hours after injury) in a mice model of SCI. The spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. Results Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration and apoptosis. In this study we clearly demonstrated that administration of MK801 attenuated all inflammatory parameters. In fact 24 hours after injury, the degree of spinal cord inflammation and tissue injury (evaluated as histological score), infiltration of neutrophils, NF-κB activation, iNOS, cytokines levels (TNF-α and IL-1β), neurotrophin expression were markedly reduced by MK801 treatment. Moreover, in a separate set of experiments, we have demonstrated that MK801 treatment significantly improved the recovery of locomotory function. Conclusions Blockade of NMDA by MK801 lends support to the potential importance of NMDA antagonists as therapeutic agents in the treatment of acute spinal cord injury. PMID:21492450

  19. Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains

    PubMed Central

    Chen, Rongjun; Gutberlet, Marcel; Jang, Mi-Sun; Meier, Martin; Mengel, Michael; Hartung, Dagmar; Wacker, Frank; Rong, Song; Hueper, Katja

    2017-01-01

    Purpose The purpose was to characterize acute kidney injury (AKI) in C57BL/6 (B6)- and 129/Sv (Sv)-mice by noninvasive measurement of renal perfusion and tissue edema using functional MRI. Methods Different severities of AKI were induced in B6- and Sv-mice by renal ischemia reperfusion injury (IRI). Unilateral clamping of the renal pedicle for 35 min (moderate AKI) or 45 min (severe AKI) was done. MRI (7-Tesla) was performed 1, 7 and 28 days after surgery using a flow alternating inversion recovery (FAIR) arterial spin labeling (ASL) sequence. Maps of perfusion and T1-relaxation time were calculated. Relative MRI-parameters of the IRI kidney compared to the contralateral not-clipped kidney were compared between AKI severities and between mouse strains using unpaired t-tests. In addition, fibrosis was assessed by Masson Trichrome and collagen IV staining. Results After moderate AKI relative perfusion impairment was significantly higher in B6- than in Sv-mice at d7 (55±7% vs. 82±8%, p<0.05) and d28 (76±7% vs. 102±3%, p<0.01). T1-values increased in the early phase after AKI in both mouse strains. T1-increase was more severe after prolonged ischemia times of 45 min compared to 35 min in both mouse strains, measured in the renal cortex and outer stripe of outer medulla. Kidney volume loss (compared to the contralateral kidney) occurred already after 7 days but proceeded markedly towards 4 weeks in severe AKI. Early renal perfusion impairment was predictive for later kidney volume loss. The progression to chronic kidney disease (CKD) in the severe AKI model was similar in both mouse strains as revealed by histology. Conclusion Quantification of renal perfusion and tissue edema by functional MRI allows characterization of strain differences upon AKI. Renal perfusion impairment was stronger in B6- compared to Sv-animals following moderate AKI. Prolonged ischemia times were associated with more severe perfusion impairment and edema formation in the early phase and

  20. Consistent injury to medium spiny neurons and white matter in the mouse striatum after prolonged transient global cerebral ischemia.

    PubMed

    Yoshioka, Hideyuki; Niizuma, Kuniyasu; Katsu, Masataka; Sakata, Hiroyuki; Okami, Nobuya; Chan, Pak H

    2011-04-01

    A reproducible transient global cerebral ischemia (tGCI) mouse model has not been fully established. Although striatal neurons and white matter are recognized to be vulnerable to ischemia, their injury after tGCI in mice has not been elucidated. The purpose of this study was to evaluate injuries to striatal neurons and white matter after tGCI in C57BL/6 mice, and to develop a reproducible tGCI model. Male C57BL/6 mice were subjected to tGCI by bilateral common carotid artery occlusion (BCCAO). Mice whose cortical cerebral blood flow after BCCAO decreased to less than 13% of the pre-ischemic value were used. Histological analysis showed that at 3 days after 22 min of BCCAO, striatal neurons were injured more consistently than those in other brain regions. Quantitative analysis of cytochrome c release into the cytosol and DNA fragmentation in the striatum showed consistent injury to the striatum. Immunohistochemistry and Western blot analysis revealed that DARPP-32-positive medium spiny neurons, the majority of striatal neurons, were the most vulnerable among the striatal neuronal subpopulations. The striatum (especially medium spiny neurons) was susceptible to oxidative stress after tGCI, which is probably one of the mechanisms of vulnerability. SMI-32 immunostaining showed that white matter in the striatum was also consistently injured 3 days after 22 min of BCCAO. We thus suggest that this is a tGCI model using C57BL/6 mice that consistently produces neuronal and white matter injury in the striatum by a simple technique. This model can be highly applicable for elucidating molecular mechanisms in the brain after global ischemia.

  1. Long-Term Cognitive Impairments and Pathological Alterations in a Mouse Model of Repetitive Mild Traumatic Brain Injury

    PubMed Central

    Luo, Jian; Nguyen, Andy; Villeda, Saul; Zhang, Hui; Ding, Zhaoqing; Lindsey, Derek; Bieri, Gregor; Castellano, Joseph M.; Beaupre, Gary S.; Wyss-Coray, Tony

    2014-01-01

    Mild traumatic brain injury (mTBI, also referred to as concussion) accounts for the majority of all traumatic brain injuries. The consequences of repetitive mTBI have become of particular concern for individuals engaged in certain sports or in military operations. Many mTBI patients suffer long-lasting neurobehavioral impairments. In order to expedite pre-clinical research and therapy development, there is a need for animal models that reflect the long-term cognitive and pathological features seen in patients. In the present study, we developed and characterized a mouse model of repetitive mTBI, induced onto the closed head over the left frontal hemisphere with an electromagnetic stereotaxic impact device. Using GFAP-luciferase bioluminescence reporter mice that provide a readout of astrocyte activation, we observed an increase in bioluminescence relative to the force delivered by the impactor after single impact and cumulative effects of repetitive mTBI. Using the injury parameters established in the reporter mice, we induced a repetitive mTBI in wild-type C57BL/6J mice and characterized the long-term outcome. Animals received repetitive mTBI showed a significant impairment in spatial learning and memory when tested at 2 and 6 months after injury. A robust astrogliosis and increased p-Tau immunoreactivity were observed upon post-mortem pathological examinations. These findings are consistent with the deficits and pathology associated with mTBI in humans and support the use of this model to evaluate potential therapeutic approaches. PMID:24550885

  2. The AMPK Agonist PT1 and mTOR Inhibitor 3HOI-BA-01 Protect Cardiomyocytes After Ischemia Through Induction of Autophagy.

    PubMed

    Huang, Ling; Dai, Kai; Chen, Manhua; Zhou, Wenping; Wang, Xiaoling; Chen, Jing; Zhou, Wei

    2016-01-01

    Myocardial ischemia has become one of the main causes of sudden cardiac death worldwide. Autophagy has been demonstrated to protect cardiomyocytes from ischemia/reperfusion (I/R)-induced damage. A novel small molecule compound 2-Chloro-5-[[5-[[5-(4,5-Dimethyl-2-nitrophenyl)-2-furanyl]methylene]-4,5-dihydro-4-oxo-2-thiazolyl]amino]benzoic acid (PT1) has been previously shown to specifically activate 5'-adenosine monophosphate-activated protein kinase (AMPK). Because AMPK activation effectively induces autophagy, we tested the protective efficacy of PT1 on cardiomyocytes after oxygen glucose deprivation/reoxygenation (OGD/R) in vitro. Mouse neonatal cardiomyocytes were treated with PT1 after OGD/R. 3-[4-(1,3-benzodioxol-5-yl)-2-oxo-3-buten-1-yl]-3-hydroxy-1,3-dihydro-2H-indol-2-one (3HOI-BA-01), a novel small compound showing potent inhibitory effect on mammalian target of rapamycin (mTOR) activation, was also tested for its cardioprotective effect, based on the established relationship between mTOR signaling and autophagy. Cell survival and autophagy-related signal pathways were examined after treatment with these agents. Our data indicate that both PT1 and 3HOI-BA-01 enhance cell survival after OGD/R. As expected, both PT1 and 3HOI-BA-01 induced autophagy in cardiomyocytes through activating AMPK pathway and inhibiting mTOR signaling, respectively. Induction of autophagy by PT1 and 3HOI-BA-01 was responsible for their cardioprotective effect, since inhibition of autophagy abolished the protective efficacy. Furthermore, simultaneous administration of PT1 and 3HOI-BA-01 profoundly upregulated autophagy after OGD/R and significantly promoted survival of cardiomyocytes. In vivo administration of PT1 and 3HOI-BA-01 in a murine myocardial (I/R injury model remarkably reduced infarct size and induced autophagy. Taken together, our research suggests that PT1 and 3HOI-BA-01 could be promising therapeutic agents for myocardial ischemia. © The Author(s) 2015.

  3. Dysferlin Deficiency and the Development of Cardiomyopathy in a Mouse Model of Limb-Girdle Muscular Dystrophy 2B

    PubMed Central

    Chase, Thomas H.; Cox, Gregory A.; Burzenski, Lisa; Foreman, Oded; Shultz, Leonard D.

    2009-01-01

    Limb-girdle muscular dystrophy 2B, Miyoshi myopathy, and distal myopathy of anterior tibialis are severely debilitating muscular dystrophies caused by genetically determined dysferlin deficiency. In these muscular dystrophies, it is the repair, not the structure, of the plasma membrane that is impaired. Though much is known about the effects of dysferlin deficiency in skeletal muscle, little is known about the role of dysferlin in maintenance of cardiomyocytes. Recent evidence suggests that dysferlin deficiency affects cardiac muscle, leading to cardiomyopathy when stressed. However, neither the morphological location of dysferlin in the cardiomyocyte nor the progression of the disease with age are known. In this study, we examined a mouse model of dysferlinopathy using light and electron microscopy as well as echocardiography and conscious electrocardiography. We determined that dysferlin is normally localized to the intercalated disk and sarcoplasm of the cardiomyocytes. In the absence of dysferlin, cardiomyocyte membrane damage occurs and is localized to the intercalated disk and sarcoplasm. This damage results in transient functional deficits at 10 months of age, but, unlike in skeletal muscle, the cell injury is sublethal and causes only mild cardiomyopathy even at advanced ages. PMID:19875504

  4. Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes.

    PubMed

    Beiert, Thomas; Bruegmann, Tobias; Sasse, Philipp

    2014-06-01

    Investigation of Gq signalling with pharmacological agonists of Gq-coupled receptors lacks spatio-temporal precision. The aim of this study was to establish melanopsin, a light-sensitive Gq-coupled receptor, as a new tool for the investigation of spatial and temporal effects of Gq stimulation on pacemaking in cardiomyocytes at an early developmental stage. A vector for ubiquitous expression of melanopsin was tested in HEK293FT cells, which showed light-induced production of inositol-1,4,5-trisphosphate and elevation of intracellular Ca(2+) concentration. Mouse embryonic stem cells were stably transfected with this plasmid and differentiated into spontaneously beating embryoid bodies (EBs). Cardiomyocytes within EBs showed melanopsin expression and illumination (60 s, 308.5 nW/mm(2), 470 nm) of EBs increased beating rate within 10.2 ± 1.7 s to 317.1 ± 16.3% of baseline frequency. Illumination as short as 5 s was sufficient for generating the maximal frequency response. After termination of illumination, baseline frequency was reached with a decay constant of 27.1 ± 2.5 s. The light-induced acceleration of beating frequency showed a sigmoid dependence on light intensity with a half maximal effective light intensity of 41.7 nW/mm(2). Interestingly, EBs showed a high rate of irregular contractions after termination of high-intensity illumination. Local Gq activation by illumination of a small region in a functional syncytium of cardiomyocytes led to pacemaker activity within the illuminated area. Light-induced Gq activation in melanopsin-expressing cardiomyocytes increases beating rate and generates local pacemaker activity. We propose that melanopsin is a powerful optogenetic tool for the investigation of spatial and temporal aspects of Gq signalling in cardiovascular research. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  5. p62/SQSTM1 Plays a Protective Role in Oxidative Injury of Steatotic Liver in a Mouse Hepatectomy Model

    PubMed Central

    Haga, Sanae; Ozawa, Takeaki; Yamada, Yuma; Morita, Naoki; Nagashima, Izuru; Inoue, Hiroshi; Inaba, Yuka; Noda, Natsumi; Abe, Riichiro; Umezawa, Kazuo

    2014-01-01

    Abstract Aims: Liver injury and regeneration involve complicated processes and are affected by various physio-pathological factors. We investigated the mechanisms of steatosis-associated liver injury and delayed regeneration in a mouse model of partial hepatectomy. Results: Initial regeneration of the steatotic liver was significantly delayed after hepatectomy. Although hepatocyte proliferation was not significantly suppressed, severe liver injury with oxidative stress (OS) occurred immediately after hepatectomy in the steatotic liver. Fas-ligand (FasL)/Fas expression was upregulated in the steatotic liver, whereas the expression of antioxidant and anti-apoptotic molecules (catalase/MnSOD/Ref-1 and Bcl-2/Bcl-xL/FLIP, respectively) and p62/SQSTM1, a steatosis-associated protein, was downregulated. Interestingly, pro-survival Akt was not activated in response to hepatectomy, although it was sufficiently expressed even before hepatectomy. Suppression of p62/SQSTM1 increased FasL/Fas expression and reduced nuclear factor erythroid 2-related factor-2 (Nrf-2)-dependent antioxidant response elements activity and antioxidant responses in steatotic and nonsteatotic hepatocytes. Exogenously added FasL induced severe cellular OS and necrosis/apoptosis in steatotic hepatocytes, with only the necrosis being inhibited by pretreatment with antioxidants, suggesting that FasL/Fas-induced OS mainly leads to necrosis. Furthermore, p62/SQSTM1 re-expression in the steatotic liver markedly reduced liver injury and improved liver regeneration. Innovation: This study is the first which demonstrates that reduced expression of p62/SQSTM1 plays a crucial role in posthepatectomy acute injury and delayed regeneration of steatotic liver, mainly via redox-dependent mechanisms. Conclusion: In the steatotic liver, reduced expression of p62/SQSTM1 induced FasL/Fas overexpression and suppressed antioxidant genes, mainly through Nrf-2 inactivation, which, along with the hypo-responsiveness of Akt

  6. [Effect of thalidomide in a mouse model of paraquat-induced acute lung injury and the underlying mechanisms].

    PubMed

    Zhao, Guangju; Cai, Xiaoxia; She, Xingrong; Li, Dong; Hong, Guangliang; Wu, Bin; Li, Mengfang; Lu, Zhongqiu

    2014-11-01

    To investigate the effects of thalidomide in a mouse model of paraquat-induced acute lung injury and the mechanisms underlying the properties of thalidomide. Male ICR mice were randomly allocated into four groups: nomal control group (n = 30), thalidomide control group (n = 30), paraquat poisioning group (n = 30) and thalidomide treatment group (n = 90). Mice were sacrificed at 1d, 3d and 7d after paraquat poisioning. The level of (MDA) malondialdehyde, Superoxidedi-smutase (SOD) and glutathione (GSH) in the lung tissue were measuerd by chemical colorimetry. The expression of Nrf2 mRNA was determined by RT-PCR; Nuclear protein Nrf2 was abserved by Western blotting; Pathological changes of lung tissue were observed under light microscope by HE stain; the lung apoptosis cells were detected by TUNEL. The levels of MDA, SOD and the expressions Nrf2 mRNA and protein Nrf2 in lung tissue were all markedly increased in mice of paraquat poisioning group than those in nomal group at 1 d, 3 d, 7 d. In contrast, the levels of GSH were decreaseel (P<0.05). Compared with paraquat poisioning group, the pulmonary SOD, Nrf2 mRNA and protein were increased and the lung wet dry ratio were all significantly decreased in mice of THD treatment group at 1 d, 3 d, 7 d (P<0.05). THD alleviated the pulmonary damage in the lightmicroscope at 3d after paraquat poisioning. The apoptosis index was markedly decreased in THD treatment groups comparing to paraquat piosioning group (P<0.05). Lipid peroxide damage was one of the mechanisms of paraquat poisioning, thalidomide could attenuate paraquat-induced acute lung injury and its mechanism may be activating the Nrf2-ARE signaling pathway to protect mouse from Lipid peroxide damage.

  7. New reliable scoring system, Toyama mouse score, to evaluate locomotor function following spinal cord injury in mice.

    PubMed

    Shigyo, Michiko; Tanabe, Norio; Kuboyama, Tomoharu; Choi, Song-Hyen; Tohda, Chihiro

    2014-06-03

    Among the variety of methods used to evaluate locomotor function following a spinal cord injury (SCI), the Basso Mouse Scale score (BMS) has been widely used for mice. However, the BMS mainly focuses on hindlimb movement rather than on graded changes in body support ability. In addition, some of the scoring methods include double or triple criteria within a single score, which likely leads to an increase in the deviation within the data. Therefore we aimed to establish a new scoring method reliable and easy to perform in mice with SCI. Our Toyama Mouse Score (TMS) was established by rearranging and simplifying the BMS score and combining it with the Body Support Scale score (BSS). The TMS reflects changes in both body support ability and hindlimb movement. The definition of single score is made by combing multiple criteria in the BMS. The ambiguity was improved in the TMS. Using contusive SCI mice, hindlimb function was measured using the TMS, BMS and BSS systems. The TMS could distinguish changes in hindlimb movements that were evaluated as the same score by the BMS. An analysis of the coefficient of variation (CV) of score points recorded for 11 days revealed that the CV for the TMS was significantly lower than the CV obtained using the BMS. A variation in intra evaluators was lower in the TMS than in the BMS. These results suggest that the TMS may be useful as a new reliable method for scoring locomotor function for SCI models.

  8. Dual Modulation of the Mitochondrial Permeability Transition Pore and Redox Signaling Synergistically Promotes Cardiomyocyte Differentiation From Pluripotent Stem Cells

    PubMed Central

    Cho, Sung Woo; Park, Jin‐Sung; Heo, Hye Jin; Park, Sang‐Wook; Song, Sukhyun; Kim, Injune; Han, Yong‐Mahn; Yamashita, Jun K.; Youm, Jae Boum; Han, Jin; Koh, Gou Young

    2014-01-01

    Background Cardiomyocytes that differentiate from pluripotent stem cells (PSCs) provide a crucial cellular resource for cardiac regeneration. The mechanisms of mitochondrial metabolic and redox regulation for efficient cardiomyocyte differentiation are, however, still poorly understood. Here, we show that inhibition of the mitochondrial permeability transition pore (mPTP) by Cyclosporin A (CsA) promotes cardiomyocyte differentiation from PSCs. Methods and Results We induced cardiomyocyte differentiation from mouse and human PSCs and examined the effect of CsA on the differentiation process. The cardiomyogenic effect of CsA mainly resulted from mPTP inhibition rather than from calcineurin inhibition. The mPTP inhibitor NIM811, which does not have an inhibitory effect on calcineurin, promoted cardiomyocyte differentiation as much as CsA did, but calcineurin inhibitor FK506 only slightly increased cardiomyocyte differentiation. CsA‐treated cells showed an increase in mitochondrial calcium, mitochondrial membrane potential, oxygen consumption rate, ATP level, and expression of genes related to mitochondrial function. Furthermore, inhibition of mitochondrial oxidative metabolism reduced the cardiomyogenic effect of CsA while antioxidant treatment augmented the cardiomyogenic effect of CsA. Conclusions Our data show that mPTP inhibition by CsA alters mitochondrial oxidative metabolism and redox signaling, which leads to differentiation of functional cardiomyocytes from PSCs. PMID:24627421

  9. Enrichment of live unlabelled cardiomyocytes from heterogeneous cell populations using manipulation of cell settling velocity by magnetic field

    PubMed Central

    Sofla, Aarash; Cirkovic, Bojana; Hsieh, Anne; Miklas, Jason W.; Filipovic, Nenad; Radisic, Milica

    2013-01-01

    The majority of available cardiomyocyte markers are intercellular proteins, limiting our ability to enrich live cardiomyocytes from heterogeneous cell preparations in the absence of genetic labeling. Here, we describe enrichment of live cardiomyocytes from the hearts of adult mice in a label-free microfluidic approach. The separation device consisted of a vertical column (15 mm long, 700 μm diameter), placed between permanent magnets resulting in a field strength of 1.23 T. To concentrate the field at the column wall, the column was wrapped with 69 μm diameter nickel wire. Before passing the cells through the column, the cardiomyocytes in the cell suspension had been rendered paramagnetic by treatment of the adult mouse heart cell preparation with sodium nitrite (2.5 mM) for 20 min on ice. The cell suspension was loaded into the vertical column from the top and upon settling, the non-myocytes were removed by the upward flow from the column. The cardiomyocytes were then collected from the column by applying a higher flow rate (144 μl/min). We found that by applying a separation flow rate of 4.2 μl/min in the first step, we can enrich live adult cardiomyocytes to 93% ± 2% in a label-free manner. The cardiomyocytes maintained viability immediately after separation and upon 24 h in culture. PMID:24404002

  10. A systems genetics approach identifies Trp53inp2 as a link between cardiomyocyte glucose utilization and hypertrophic response.

    PubMed

    Seldin, Marcus M; Kim, Eric D; Romay, Milagros C; Li, Shen; Rau, Christoph D; Wang, Jessica J; Krishnan, Karthickeyan Chella; Wang, Yibin; Deb, Arjun; Lusis, Aldons J

    2017-04-01

    Cardiac failure has been widely associated with an increase in glucose utilization. The aim of our study was to identify factors that mechanistically bridge this link between hyperglycemia and heart failure. Here, we screened the Hybrid Mouse Diversity Panel (HMDP) for substrate-specific cardiomyocyte candidates based on heart transcriptional profile and circulating nutrients. Next, we utilized an in vitro model of rat cardiomyocytes to demonstrate that the gene expression changes were in direct response to substrate abundance. After overlaying candidates of interest with a separate HMDP study evaluating isoproterenol-induced heart failure, we chose to focus on the gene Trp53inp2 as a cardiomyocyte glucose utilization-specific factor. Trp53inp2 gene knockdown in rat cardiomyocytes reduced expression and protein abundance of key glycolytic enzymes. This resulted in reduction of both glucose uptake and glycogen content in cardiomyocytes stimulated with isoproterenol. Furthermore, this reduction effectively blunted the capacity of glucose and isoprotereonol to synergistically induce hypertrophic gene expression and cell size expansion. We conclude that Trp53inp2 serves as regulator of cardiomyocyte glycolytic activity and can consequently regulate hypertrophic response in the context of elevated glucose content.NEW & NOTEWORTHY Here, we apply a novel method for screening transcripts based on a substrate-specific expression pattern to identify Trp53inp2 as an induced cardiomyocyte glucose utilization factor. We further show that reducing expression of the gene could effectively blunt hypertrophic response in the context of elevated glucose content. Copyright © 2017 the American Physiological Society.

  11. Enhanced currents through L-type calcium channels in cardiomyocytes disturb the electrophysiology of the dystrophic heart

    PubMed Central

    Obermair, Gerald J.; Cervenka, Rene; Dang, Xuan B.; Lukacs, Peter; Kummer, Stefan; Bittner, Reginald E.; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2016-01-01

    Duchenne muscular dystrophy (DMD), induced by mutations in the gene encoding for the cytoskeletal protein dystrophin, is an inherited disease characterized by progressive muscle weakness. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with cardiac complications. These include cardiomyopathy development and cardiac arrhythmias. The current understanding of the pathomechanisms in the heart is very limited, but recent research indicates that dysfunctional ion channels in dystrophic cardiomyocytes play a role. The aim of the present study was to characterize abnormalities in L-type calcium channel function in adult dystrophic ventricular cardiomyocytes. By using the whole cell patch clamp technique, the properties of currents through calcium channels in ventricular cardiomyocytes isolated from the hearts of normal and dystrophic adult mice were compared. Besides the commonly used dystrophin-deficient mdx mouse model for human DMD, we also used mdx-utr mice which are both dystrophin- and utrophin-deficient. We found that calcium channel currents were significantly increased, and channel inactivation was reduced in dystrophic cardiomyocytes. Both effects enhance the calcium influx during an action potential (AP). Whereas the AP in dystrophic mouse cardiomyocytes was nearly normal, implementation of the enhanced dystrophic calcium conductance in a computer model of a human ventricular cardiomyocyte considerably prolonged the AP. Finally, the described dystrophic calcium channel abnormalities entailed alterations in the electrocardiograms of dystrophic mice. We conclude that gain of function in cardiac L-type calcium channels may disturb the electrophysiology of the dystrophic heart and thereby cause arrhythmias. PMID:24337461

  12. Enhanced currents through L-type calcium channels in cardiomyocytes disturb the electrophysiology of the dystrophic heart.

    PubMed

    Koenig, Xaver; Rubi, Lena; Obermair, Gerald J; Cervenka, Rene; Dang, Xuan B; Lukacs, Peter; Kummer, Stefan; Bittner, Reginald E; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2014-02-15

    Duchenne muscular dystrophy (DMD), induced by mutations in the gene encoding for the cytoskeletal protein dystrophin, is an inherited disease characterized by progressive muscle weakness. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with cardiac complications. These include cardiomyopathy development and cardiac arrhythmias. The current understanding of the pathomechanisms in the heart is very limited, but recent research indicates that dysfunctional ion channels in dystrophic cardiomyocytes play a role. The aim of the present study was to characterize abnormalities in L-type calcium channel function in adult dystrophic ventricular cardiomyocytes. By using the whole cell patch-clamp technique, the properties of currents through calcium channels in ventricular cardiomyocytes isolated from the hearts of normal and dystrophic adult mice were compared. Besides the commonly used dystrophin-deficient mdx mouse model for human DMD, we also used mdx-utr mice, which are both dystrophin- and utrophin-deficient. We found that calcium channel currents were significantly increased, and channel inactivation was reduced in dystrophic cardiomyocytes. Both effects enhance the calcium influx during an action potential (AP). Whereas the AP in dystrophic mouse cardiomyocytes was nearly normal, implementation of the enhanced dystrophic calcium conductance in a computer model of a human ventricular cardiomyocyte considerably prolonged the AP. Finally, the described dystrophic calcium channel abnormalities entailed alterations in the electrocardiograms of dystrophic mice. We conclude that gain of function in cardiac L-type calcium channels may disturb the electrophysiology of the dystrophic heart and thereby cause arrhythmias.

  13. Temporal MRI characterization, neurobiochemical and neurobehavioral changes in a mouse repetitive concussive head injury model

    PubMed Central

    Yang, Zhihui; Wang, Ping; Morgan, Drake; Lin, Dan; Pan, Jianchun; Lin, Fan; Strang, Kevin H.; Selig, Tyler M.; Perez, Pablo D.; Febo, Marcelo; Chang, Binggong; Rubenstein, Richard; Wang, Kevin K.W.

    2015-01-01

    Single and repeated sports-related mild traumatic brain injury (mTBI), also referred to as concussion, can result in chronic post-concussive syndrome (PCS), neuropsychological and cognitive deficits, or chronic traumatic encephalopathy (CTE). However PCS is often difficult to diagnose using routine clinical, neuroimaging or laboratory evaluations, while CTE currently only can be definitively diagnosed postmortem. We sought to develop an animal model to simulate human repetitive concussive head injury for systematic study. In this study, mice received single or multiple head impacts by a stereotaxic impact device with a custom-made rubber tip-fitted impactor. Dynamic changes in MRI, neurobiochemical markers (Tau hyperphosphorylation and glia activation in brain tissues) and neurobehavioral functions such as anxiety, depression, motor function and cognitive function at various acute/subacute (1-7 day post-injury) and chronic (14-60 days post-injury) time points were examined. To explore the potential biomarkers of rCHI, serum levels of total Tau (T-Tau) and phosphorylated Tau (P-Tau) were also monitored at various time points. Our results show temporal dynamics of MRI consistent with structural perturbation in the acute phase and neurobiochemical changes (P-Tau and GFAP induction) in the subacute and chronic phase as well as development of chronic neurobehavioral changes, which resemble those observed in mTBI patients. PMID:26058556

  14. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury.

    PubMed

    Jeffrey-Gauthier, Renaud; Piché, Mathieu; Leblond, Hugues

    2017-09-17

    Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of complete SCI. Lower limb kinematics during treadmill training was assessed before and after complete SCI at T8 (2, 7, 14, 21 and 28days post-injury). Locomotor recovery was compared in 4 groups of CD1 mice: control spinal mice; spinal mice with daily locomotor training; spinal mice with lumbar muscle inflammation (Complete Freund's Adjuvant (CFA) injection); and spinal mice with locomotor training and CFA. On day 28, H-reflex excitability and its inhibition at high-frequency stimulation (frequency-dependent depression: FDD) were compared between groups, all of which showed locomotor recovery. Recovery was enhanced by training, whereas lumbar muscle inflammation hindered these effects (knee angular excursion and paw drag: p's<0.05). In addition, lumbar muscle inflammation impaired hind limb coupling during locomotion (p<0.05) throughout recovery. Also, H-reflex disinhibition was prevented by training, with or without CFA injection (p's<0.05). Altogether, these results indicate that back muscle inflammation modulates spinally mediated locomotor recovery in mice with complete SCI, in part, by reducing adaptive changes induced by training. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. A Novel Mouse Model to Study Image-Guided, Radiation-Induced Intestinal Injury and Preclinical Screening of Radioprotectors.

    PubMed

    Verginadis, Ioannis I; Kanade, Rahul; Bell, Brett; Koduri, Sravya; Ben-Josef, Edgar; Koumenis, Constantinos

    2017-02-15

    Radiation is an important treatment modality for gastrointestinal tumors, but intestinal injury is a common side effect. Here we describe a physiologically relevant model for studying the molecular determinants of radiation-induced intestinal damage and testing novel radioprotectors. The model employs a radiopaque marker implanted into the surface of the mouse jejunum, serving as a fiducial marker for precise radiation targeting. Mice were imaged with Cone-Beam CT (CBCT) and irradiated (IR) to the marked area using the Small Animal Radiation Research Platform (SARRP). IR-induced damage was acute but reversible and largely restricted to the area of the marker, leaving the surrounding tissues intact. Although whole gut irradiation with these doses caused lethal GI syndrome, focal (5 mm) radiation of the intestine did not cause any weight loss or lethality. However, fibrosis and collagen deposition 4 months post-IR indicated chronic intestinal damage. A separate cohort of mice was treated daily with curcumin, a clinically tested radioprotector, prior to and post-IR. Curcumin-treated mice showed significant decreases in both local and systemic inflammatory cytokine levels and in fibrosis, suggesting it is an effective radioprotector of the intestine. Our results indicate that this model, which emulates clinically relevant intestinal radiation-induced injury, can be used to assess radioprotectors prior to testing in the clinic. Cancer Res; 77(4); 908-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding.

    PubMed

    Tian, Fengwei; Chi, Feifei; Wang, Gang; Liu, Xiaoming; Zhang, Qiuxiang; Chen, Yongquan; Zhang, Hao; Chen, Wei

    2015-12-01

    Lactobacillus rhamnosus CCFM1107 was screened for high antioxidative activity from 55 lactobacilli. The present study attempted to explore the protective properties of L. rhamnosus CCFM1107 in alcoholic liver injury. A mouse model was induced by orally feeding alcohol when simultaneously treated with L. rhamnosus CCFM1107, the drug Hu-Gan- Pian (HGP), L. rhamnosus GG (LGG), and L. plantarum CCFM1112 for 3 months. Biochemical analysis was performed for both serum and liver homogenate. Detailed intestinal flora and histological analyses were also carried out. Our results indicated that the administration of L. rhamnosus CCFM1107 significantly inhibited the increase in the levels of serum aminotransferase and endotoxin, as well as the levels of triglyceride (TG) and cholesterol (CHO) in the serum and in the liver. Glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were elevated while the levels of malondialdehyde (MDA) were decreased. The enteric dysbiosis caused by alcohol was restored by increasing the numbers of both lactobacilli and bifidobacteria and decreasing the numbers of both enterococci and enterobacter. Histological analysis confirmed the protective effect of L. rhamnosus CCFM1107. Compared with the other lactobacilli and to the drug Hu-Gan-Pian, there is a high chance that L. rhamnosus CCFM1107 provides protective effects on alcoholic liver injury by reducing oxidative stress and restoring the intestinal flora.

  17. Biphalin protects against cognitive deficits in a mouse model of mild traumatic brain injury (mTBI).

    PubMed

    Lesniak, Anna; Pick, Chaim G; Misicka, Aleksandra; Lipkowski, Andrzej W; Sacharczuk, Mariusz

    2016-02-01

    Traumatic brain injury (TBI) is often a result of traffic accidents, contact sports or battlefield explosions. A mild form of traumatic brain injury (mTBI) is frequently underestimated, as the immediate physical symptoms decrease rapidly and conventional neuroimaging studies often do not show visible evidence of brain lesions. However, cognitive impairments persist for weeks, months or even years after the incident. Endogenous opioids were documented to play a role in thmodulation of mTBI pathology, whereas exogenous opioids were shown to possess neuroprotective properties. In the present study, biphalin, a dimeric enkephalin analog, improved cognitive performance in the Morris Water Maze and Novel Object Recognition tests in a mouse weight-drop model of mTBI. The effect of a single systemic injection of 10 mg/kg biphalin immediately after trauma was reversed by naltrexone, suggesting an opioid receptor-mediated mechanism. Biphalin also reduced cortical and hippocampal neurodegeneration, as shown by silver staining. Our data indicates that opioid receptor activation by biphalin may provide neuroprotection of post-traumatic neurodegeneration processes and may protect against memory impairments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis.

    PubMed

    Hirsova, Petra; Ibrahim, Samar H; Bronk, Steven F; Yagita, Hideo; Gores, Gregory J

    2013-01-01

    Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol) diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.

  19. Delayed Treatment with Lidocaine Reduces Mouse Microglial Cell Injury and Cytokine Production After Stimulation with Lipopolysaccharide and Interferon γ

    PubMed Central

    Jeong, Hae-Jeong; Lin, Daowei; Li, Liaoliao; Zuo, Zhiyi

    2012-01-01

    Background Neuroinflammation is an important pathological process for almost all acquired neurological diseases. Microglial cells play a critical role in neuroinflammation. We determined whether lidocaine, a local anesthetic with antiinflammatory property, protected microglial cells and attenuated cytokine production from activated microglial cells. Methods Mouse microglial cultures were incubated with or without 1 µg/ml lipopolysaccharide and 10 U/ml interferon γ (IFNγ) for 24 h in the presence or absence of lidocaine for 1 h started at 2, 3 or 4 h after the onset of lipopolysaccharide and IFNγ stimulation. Lactate dehydrogenase release and cytokine production were determined after the cells were stimulated by lipopolysaccharide and IFNγ for 24 h. Results Lidocaine dose-dependently reduced lipopolysaccharide and IFNγ-induced microglial cell injury as measured by lactate dehydrogenase release. This effect was apparent with lidocaine at 2 µg/ml (30.3 ± 5.8 and 23.1 ± 9.7%, respectively, for stimulation alone and the stimulation in the presence of lidocaine, n = 18, P = 0.025). Lidocaine applied at 2, 3 or 4 h after the onset of lipopolysaccharide and IFNγ stimulation reduced the cell injury. This lidocaine effect was not affected by the mitochondrial KATP channel inhibitor 5-hydroxydecanoate. Similar to lidocaine, QX314, a permanently charged lidocaine analog that usually does not permeate through the plasma membrane, reduced lipopolysaccharide and IFNγ-induced microglial cell injury. QX314 also attenuated the stimulation-induced interleukin-1β production. Conclusions Delayed treatment with lidocaine protects microglial cells and reduces cytokine production from these cells. These effects may involve action site(s) on the cell surface. PMID:22253275

  20. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes

    PubMed Central

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-01-01

    ABSTRACT Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current IK1, which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential IK1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that IK1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels. PMID:27560040

  1. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.

    PubMed

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-03-04

    Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current IK1, which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential IK1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that IK1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.

  2. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry.

    PubMed

    Traister, Alexandra; Lu, Mingliang; Coles, John G; Maynes, Jason T

    2016-06-01

    Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  3. Proteolysis regulates cardiomyocyte maturation and tissue integration

    PubMed Central

    Fukuda, Ryuichi; Gunawan, Felix; Beisaw, Arica; Jimenez-Amilburu, Vanesa; Maischein, Hans-Martin; Kostin, Sawa; Kawakami, Koichi; Stainier, Didier Y. R.

    2017-01-01

    Tissue integrity is critical for organ formation and function. During heart development, cardiomyocytes differentiate and integrate to form a coherent tissue that contracts synchronously. However, the molecular mechanisms regulating cardiac tissue integrity are poorly understood. Here we show that proteolysis, via the E3 ubiquitin ligase ASB2, regulates cardiomyocyte maturation and tissue integrity. Cardiomyocytes in asb2b zebrafish mutants fail to terminally differentiate, resulting in reduced cardiac contractility and output. Mosaic analyses reveal a cell-autonomous requirement for Asb2b in cardiomyocytes for their integration as asb2b mutant cardiomyocytes are unable to meld into wild-type myocardial tissue. In vitro and in vivo data indicate that ASB2 negatively regulates TCF3, a bHLH transcription factor. TCF3 must be degraded for cardiomyocyte maturation, as TCF3 gain-of-function causes a number of phenotypes associated with cardiomyocyte dedifferentiation. Overall, our results show that proteolysis has an important role in cardiomyocyte maturation and the formation of a coherent myocardial tissue. PMID:28211472

  4. Joint loads resulting in ACL rupture: Effects of age, sex, and body mass on injury load and mode of failure in a mouse model.

    PubMed

    Blaker, Carina L; Little, Christopher B; Clarke, Elizabeth C

    2016-09-07

    Anterior cruciate ligament (ACL) tears are a common knee injury with a known but poorly understood association with secondary joint injuries and post-traumatic osteoarthritis (OA). Female sex and age are known risk factors for ACL injury but these variables are rarely explored in mouse models of injury. This study aimed to further characterize a non-surgical ACL injury model to determine its clinical relevance across a wider range of mouse specifications. Cadaveric and anesthetized C57BL/6 mice (9-52 weeks of age) underwent joint loading to investigate the effects of age, sex, and body mass on ACL injury mechanisms. The ACL injury load (whole joint load required to rupture the ACL) was measured from force-displacement data, and mode of failure was assessed using micro-dissection and histology. ACL injury load was found to increase with body mass and age (p < 0.001) but age was not significant when controlling for mass. Sex had no effect. In contrast, the mode of ACL failure varied with both age and sex groups. Avulsion fractures (complete or mixed with mid-substance tears) were common in all age groups but the proportion of mixed and mid-substance failures increased with age. Females were more likely than males to have a major avulsion relative to a mid-substance tear (p < 0.01). This data compliments studies in human cadaveric knees, and provides a basis for determining the severity of joint injury relative to a major ACL tear in mice, and for selecting joint loading conditions in future experiments using this model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  5. Cytoprotective and Cytotoxic Effects of Rice Bran Extracts in Rat H9c2(2-1) Cardiomyocytes

    PubMed Central

    Tan, Xian Wen; Bhave, Mrinal; Fong, Alan Yean Yip; Matsuura, Eiji; Kobayashi, Kazuko; Shen, Lian Hua; Hwang, Siaw San

    2016-01-01

    This study was aimed at preliminarily assessing the cytoprotective and antioxidative effects of rice bran extracts (RBEs) from a Sarawak local rice variety (local name: “BJLN”) and a commercial rice variety, “MR219,” on oxidative stress in rat H9c2(2-1) cardiomyocytes. The cardiomyocytes were incubated with different concentrations of RBE and hydrogen peroxide (H2O2), respectively, to identify their respective IC50 values and safe dose ranges. Two nonlethal and close-to-IC50 doses of RBE were selected to evaluate their respective effects on H2O2 induced oxidative stress in cardiomyocytes. Both RBEs showed dose-dependent cytotoxicity effects on cardiomyocytes. H2O2 induction of cardiomyocytes pretreated with RBE further revealed the dose-dependent cytoprotective and antioxidative effects of RBE via an increase in IC50 values of H2O2. Preliminary analyses of induction effects of RBE and H2O2 on cellular antioxidant enzyme, catalase (CAT), also revealed their potential in regulating these activities and expression profile of related gene on oxidative stress in cardiomyocytes. Pretreated cardiomyocytes significantly upregulated the enzymatic activity and expression level of CAT under the exposure of H2O2 induced oxidative stress. This preliminary study has demonstrated the potential antioxidant effects of RBE in alleviating H2O2-mediated oxidative injuries via upregulation in enzymatic activities and expression levels of CAT. PMID:27239253

  6. Longitudinal evaluation of mouse hind limb bone loss after spinal cord injury using novel, in vivo, methodology.

    PubMed

    McManus, Madonna M; Grill, Raymond J

    2011-12-07

    Spinal cord injury (SCI) is often accompanied by osteoporosis in the sublesional regions of the pelvis and lower extremities, leading to a higher frequency of fractures. As these fractures often occur in regions that have lost normal sensory function, the patient is at a greater risk of fracture-dependent pathologies, including death. SCI-dependent loss in both bone mineral density (BMD, grams/cm2) and bone mineral content (BMC, grams) has been attributed to mechanical disuse, aberrant neuronal signaling and hormonal changes. The use of rodent models of SCI-induced osteoporosis can provide invaluable information regarding the mechanisms underlying the development of osteoporosis following SCI as well as a test environment for the generation of new therapies. Mouse models of SCI are of great interest as they permit a reductionist approach to mechanism-based assessment through the use of null and transgenic mice. While such models have provided important data, there is still a need for minimally-invasive, reliable, reproducible, and quantifiable methods in determining the extent of bone loss following SCI, particularly over time and within the same cohort of experimental animals, to improve diagnosis, treatment methods, and/or prevention of SCI-induced osteoporosis. An ideal method for measuring bone density in rodents would allow multiple, sequential (over time) exposures to low-levels of X-ray radiation. This study describes the use of a new whole-animal scanner, the IVIS Lumina XR (Caliper Instruments) that can be used to provide low-energy (1-3 milligray (mGy)) high-resolution, high-magnification X-ray images of mouse hind limb bones over time following SCI. Significant bone density loss was seen in the tibiae of mice by 10 days post-spinal transection when compared to uninjured, age-matched control (naïve) mice (13% decrease, p < 0.0005). Loss of bone density in the distal femur was also detectable by day 10 post-SCI, while a loss of density in the proximal

  7. Evidence for Cardiomyocyte Renewal in Humans

    SciTech Connect

    Bergmann, O; Bhardwaj, R D; Bernard, S; Zdunek, S; Barnabe-Heider, F; Walsh, S; Zupicich, J; Alkass, K; Buchholz, B A; Druid, H; Jovinge, S; Frisen, J

    2008-10-14

    It has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 20 to 0.3% at the age of 75. Less than 50% of cardiomyocytes are exchanged during a normal lifespan. The capacity to generate cardiomyocytes in the adult human heart suggests that it may be rational to work towards the development of therapeutic strategies aiming to stimulate this process in cardiac pathologies.

  8. Evidence for cardiomyocyte renewal in humans.

    PubMed

    Bergmann, Olaf; Bhardwaj, Ratan D; Bernard, Samuel; Zdunek, Sofia; Barnabé-Heider, Fanie; Walsh, Stuart; Zupicich, Joel; Alkass, Kanar; Buchholz, Bruce A; Druid, Henrik; Jovinge, Stefan; Frisén, Jonas

    2009-04-03

    It has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of carbon-14, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 25 to 0.45% at the age of 75. Fewer than 50% of cardiomyocytes are exchanged during a normal life span. The capacity to generate cardiomyocytes in the adult human heart suggests that it may be rational to work toward the development of therapeutic strategies aimed at stimulating this process in cardiac pathologies.

  9. Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy.

    PubMed

    Papait, Roberto; Serio, Simone; Pagiatakis, Christina; Rusconi, Francesca; Carullo, Pierluigi; Mazzola, Marta; Salvarani, Nicolò; Miragoli, Michele; Condorelli, Gianluigi

    2017-09-26

    Correct gene expression programming of the cardiomyocyte underlies the normal functioning of the heart. Alterations to this can lead to the loss of cardiac homeostasis, triggering heart dysfunction. Although the role of some histone methyltransferases in establishing the transcriptional program of postnatal cardiomyocytes during heart development has been shown, the function of this class of epigenetic enzymes is largely unexplored in the adult heart. In this study, we investigated the role of G9a/Ehmt2, a histone methyltransferase that defines a repressive epigenetic signature, in defining the transcriptional program for cardiomyocyte homeostasis and cardiac hypertrophy. We investigated the function of G9a in normal and stressed cardiomyocytes with the use of a conditional, cardiac-specific G9a knockout mouse, a specific G9a inhibitor, and high-throughput approaches for the study of the epigenome (chromatin immunoprecipitation sequencing) and transcriptome (RNA sequencing); traditional methods were used to assess cardiac function and cardiovascular disease. We found that G9a is required for cardiomyocyte homeostasis in the adult heart by mediating the repression of key genes regulating cardiomyocyte function via dimethylation of H3 lysine 9 and interaction with enhancer of zeste homolog 2, the catalytic subunit of polycomb repressive complex 2, and MEF2C-dependent gene expression by forming a complex with this transcription factor. The G9a-MEF2C complex was found to be required also for the maintenance of heterochromatin needed for the silencing of developmental genes in the adult heart. Moreover, G9a promoted cardiac hypertrophy by repressing antihypertrophic genes. Taken together, our findings demonstrate that G9a orchestrates critical epigenetic changes in cardiomyocytes in physiological and pathological conditions, thereby providing novel therapeutic avenues for cardiac pathologies associated with dysregulation of these mechanisms. © 2017 American Heart

  10. Preventive effect of rosiglitazone on liver injury in a mouse model of decompression sickness.

    PubMed

    Peng, Bin; Chen, Miao-Miao; Jiang, Zheng-Lin; Li, Xia; Wang, Guo-Hua; Xu, Li-Hua

    2017-03-01

    Severe decompression sickness (DCS) is a multi-organ injury. This study investigated the preventive effects of rosiglitazone on liver injury following rapid decompression in mice and examined the underlying mechanisms. Mice were randomly divided into four groups: a control group, vehicle group, and rosiglitazone (5 and 10 mg·kg⁻¹) groups, the latter three being exposed to a pressure of 911 kPa. Haematoxylin and eosin staining, plasma levels of alanine transaminase (ALT), aspartate transaminase (AST) and lactate dehydrogenase and blood cell counts were used to evaluate liver injury at 30 min after rapid decompression. The expression of endothelial and inducible nitric oxide synthase (iNOS) and its phosphorylation were measured to uncover the underlying molecular mechanisms. A significant increase in plasma ALT, red blood cells and platelets, and a decrease in neutrophils were observed in the vehicle group. Furthermore, the expression of iNOS, E-selectin and the total level of NO in hepatic tissue, and soluble E-selectin in the plasma were significantly elevated in the vehicle group. Rosiglitazone pre-treatment prevented the increases in ALT (and AST), soluble E-selectin concentration, red blood cells and platelet counts. Moreover, rosiglitazone reduced over-expression of iNOS and the NO level, prevented the fall in neutrophil count and promoted the phosphorylation of iNOS in the liver. Pre-treatment with rosiglitazone ameliorated liver injury from severe DCS. This preventive effect may be partly mediated by stimulating endothelial NO production, improving endothelial function and limiting inflammatory processes.

  11. Rebamipide ameliorates radiation-induced intestinal injury in a mouse model.

    PubMed

    Shim, Sehwan; Jang, Hyo-Sun; Myung, Hyun-Wook; Myung, Jae Kyung; Kang, Jin-Kyu; Kim, Min-Jung; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Park, Sunhoo

    2017-08-15

    Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. Radiation exposure produces an uncontrolled inflammatory cascade and epithelial cell loss leading to impaired epithelial barrier function. The goal of this study was to determine the effect of rebamipide on regeneration of the intestinal epithelia after radiation injury. The abdomens of C57BL/6 mice were exposed to 13Gy of irradiation (IR) and then the mice were treated with rebamipide. Upon IR, intestinal epithelia were destroyed structurally at the microscopic level and bacterial translocation was increased. The intestinal damage reached a maximum level on day 6 post-IR and intestinal regeneration occurred thereafter. We found that rebamipide significantly ameliorated radiation-induced intestinal injury. In mice treated with rebamipide after IR, intestinal barrier function recovered and expression of the tight junction components of the intestinal barrier were upregulated. Rebamipide administration reduced radiation-induced intestinal mucosal injury. The levels of proinflammatory cytokines and matrix metallopeptidase 9 (MMP9) were significantly reduced upon rebamipide administration. Intestinal cell proliferation and β-catenin expression also increased upon rebamipide administration. These data demonstrate that rebamipide reverses impairment of the intestinal barrier by increasing intestinal cell proliferation and attenuating the inflammatory response by inhibiting MMP9 and proinflammatory cytokine expression in a murine model of radiation-induced enteritis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tauroursodeoxycholic Acid Attenuates Renal Tubular Injury in a Mouse Model of Type 2 Diabetes

    PubMed Central

    Zhang, Jing; Fan, Ying; Zeng, Chuchu; He, Li; Wang, Niansong

    2016-01-01

    Renal tubular injury is a critical factor in the pathogenesis of diabetic nephropathy (DN). Endoplasmic reticulum (ER) stress is involved in diabetic nephropathy. Tauroursodeoxycholic acid (TUDCA) is an effective inhibitor of ER stress. Here, we investigated the role of TUDCA in the progression of tubular injury in DN. For eight weeks, being treated with TUDCA at 250 mg/kg intraperitoneal injection (i.p.) twice a day, diabetic db/db mice had significantly reduced blood glucose, albuminuria and attenuated renal histopathology. These changes were associated with a significant decreased expression of ER stress markers. At the same time, diabetic db/db mice had more TUNEL-positive nuclei in the renal tubule, which were attenuated by TUDCA treatment, along with decreases in ER stress–associated apoptotic markers in the kidneys. In summary, the effect of TUDCA on tubular injury, in part, is associated with inhibition of ER stress in the kidneys of diabetic db/db mice. TUDCA shows potential as a therapeutic target for the prevention and treatment of DN. PMID:27669287

  13. The Immune Response to Skin Trauma Is Dependent on the Etiology of Injury in a Mouse Model of Burn and Excision.

    PubMed

    Valvis, Samantha M; Waithman, Jason; Wood, Fiona M; Fear, Mark W; Fear, Vanessa S

    2015-08-01

    Skin trauma has many different causes including incision, blunt force, and burn. All of these traumas trigger an immune response. However, it is currently unclear whether the immune response is specific to the etiology of the injury. This study was established to determine whether the immune response to excision and burn injury of equivalent extent was the same. Using a mouse model of a full-thickness 19 mm diameter excision or 19 mm diameter full-thickness burn injury, we examined the innate immune response at the level of serum cytokine induction, whole-blood lymphocyte populations, dendritic cell function/phenotype, and the ensuing adaptive immune responses of CD4 and CD8 T-cell populations. Strikingly, both the innate and adaptive immune system responses differed between the burn and excision injuries. Acute cytokine induction was faster and different in profile to that of excision injury, leading to changes in systemic monocyte and neutrophil levels. Differences in the immune profile between burn and excision were also noted up to day 84 post injury, suggesting that the etiology of injury leads to sustained changes in the response. This may in part underlie clinical observations of differences in patient morbidity and mortality in response to different skin injury types.

  14. mTORC1 and mTORC2 play different roles in regulating cardiomyocyte differentiation from embryonic stem cells.

    PubMed

    Zheng, Bei; Wang, Jiadan; Tang, Leilei; Shi, Jiana; Zhu, Danyan

    2017-01-01

    Mammalian target of rapamycin (mTOR) is a serine/threonine kinase and functions through two distinct complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2), with their key components Raptor and Rictor, to play crucial roles in cellular survival and growth. However, the roles of mTORC1 and mTORC2 in regulating cardiomyocyte differentiation from mouse embryonic stem (mES) cells are not clear. In this study, we performed Raptor or Rictor knockdown experiments to investigate the roles of mTORC1 and mTORC2 in cardiomyocyte differentiation. Ablation of Raptor markedly increased the number of cardiomyocytes derived from mES cells with well-organized myofilaments. Expression levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein), and α-Actinin (cardiomyocyte marker) were increased in Raptor knockdown cells. In contrast, loss of Rictor prevented cardiomyocyte differentiation. The dual ablation of Raptor and Rictor also decreased the number of cardiomyocytes. The two complexes exerted a regulatory mechanism in such a manner that knockdown of Raptor/mTORC1 resulted in a decreased phosphorylation of Rictor (Thr1135), which subsequently activated Rictor/mTORC2 in the differentiation of mES cells into cardiomyocytes. In conclusion, mTORC1 and mTORC2 played different roles in cardiomyocyte differentiation from mES cells in vitro. The activation of Rictor/mTORC2 was critical for facilitating cardiomyocyte differentiation from mES cells. Thus, this complex may be a promising target for regulating myocardial differentiation from embryonic stem cells or induced pluripotent stem cells.

  15. Refined approach for quantification of in vivo ischemia-reperfusion injury in the mouse heart

    PubMed Central

    Medway, Debra J.; Schulz-Menger, Jeanette; Schneider, Jurgen E.; Neubauer, Stefan; Lygate, Craig A.

    2009-01-01

    Cardiac ischemia-reperfusion experiments in the mouse are important in vivo models of human disease. Infarct size is a particularly important scientific readout as virtually all cardiocirculatory pathways are affected by it. Therefore, such measurements must be exact and valid. The histological analysis, however, remains technically challenging, and the resulting quality is often unsatisfactory. For this report we have scrutinized each step involved in standard double-staining histology. We have tested published approaches and challenged their practicality. As a result, we propose an improved and streamlined protocol, which consistently yields high-quality histology, thereby minimizing experimental noise and group sizes. PMID:19820193

  16. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy

    PubMed Central

    Bang, Claudia; Batkai, Sandor; Dangwal, Seema; Gupta, Shashi Kumar; Foinquinos, Ariana; Holzmann, Angelika; Just, Annette; Remke, Janet; Zimmer, Karina; Zeug, Andre; Ponimaskin, Evgeni; Schmiedl, Andreas; Yin, Xiaoke; Mayr, Manuel; Halder, Rashi; Fischer, Andre; Engelhardt, Stefan; Wei, Yuanyuan; Schober, Andreas; Fiedler, Jan; Thum, Thomas

    2014-01-01

    In response to stress, the heart undergoes extensive cardiac remodeling that results in cardiac fibrosis and pathological growth of cardiomyocytes (hypertrophy), which contribute to heart failure. Alterations in microRNA (miRNA) levels are associated with dysfunctional gene expression profiles associated with many cardiovascular disease conditions; however, miRNAs have emerged recently as paracrine signaling mediators. Thus, we investigated a potential paracrine miRNA crosstalk between cardiac fibroblasts and cardiomyocytes and found that cardiac fibroblasts secrete miRNA-enriched exosomes. Surprisingly, evaluation of the miRNA content of cardiac fibroblast–derived exosomes revealed a relatively high abundance of many miRNA passenger strands (“star” miRNAs), which normally undergo intracellular degradation. Using confocal imaging and coculture assays, we identified fibroblast exosomal–derived miR-21_3p (miR-21*) as a potent paracrine-acting RNA molecule that induces cardiomyocyte hypertrophy. Proteome profiling identified sorbin and SH3 domain-containing protein 2 (SORBS2) and PDZ and LIM domain 5 (PDLIM5) as miR-21* targets, and silencing SORBS2 or PDLIM5 in cardiomyocytes induced hypertrophy. Pharmacological inhibition of miR-21* in a mouse model of Ang II–induced cardiac hypertrophy attenuated pathology. These findings demonstrate that cardiac fibroblasts secrete star miRNA–enriched exosomes and identify fibroblast-derived miR-21* as a paracrine signaling mediator of cardiomyocyte hypertrophy that has potential as a therapeutic target. PMID:24743145

  17. VEGF-C and aortic cardiomyocytes guide coronary artery stem development

    PubMed Central

    Chen, Heidi I.; Poduri, Aruna; Numi, Harri; Kivela, Riikka; Saharinen, Pipsa; McKay, Andrew S.; Raftrey, Brian; Churko, Jared; Tian, Xueying; Zhou, Bin; Wu, Joseph C.; Alitalo, Kari; Red-Horse, Kristy

    2014-01-01

    Coronary arteries (CAs) stem from the aorta at 2 highly stereotyped locations, deviations from which can cause myocardial ischemia and death. CA stems form during embryogenesis when peritruncal blood vessels encircle the cardiac outflow tract and invade the aorta, but the underlying patterning mechanisms are poorly understood. Here, using murine models, we demonstrated that VEGF-C–deficient hearts have severely hypoplastic peritruncal vessels, resulting in delayed and abnormally positioned CA stems. We observed that VEGF-C is widely expressed in the outflow tract, while cardiomyocytes develop specifically within the aorta at stem sites where they surround maturing CAs in both mouse and human hearts. Mice heterozygous for islet 1 (Isl1) exhibited decreased aortic cardiomyocytes and abnormally low CA stems. In hearts with outflow tract rotation defects, misplaced stems were associated with shifted aortic cardiomyocytes, and myocardium induced ectopic connections with the pulmonary artery in culture. These data support a model in which CA stem development first requires VEGF-C to stimulate vessel growth around the outflow tract. Then, aortic cardiomyocytes facilitate interactions between peritruncal vessels and the aorta. Derangement of either step can lead to mispatterned CA stems. Studying this niche for cardiomyocyte development, and its relationship with CAs, has the potential to identify methods for stimulating vascular regrowth as a treatment for cardiovascular disease. PMID:25271623

  18. Prostaglandin E₂ promotes post-infarction cardiomyocyte replenishment by endogenous stem cells.

    PubMed

    Hsueh, Ying-Chang; Wu, Jasmine M F; Yu, Chun-Keung; Wu, Kenneth K; Hsieh, Patrick C H

    2014-04-01

    Although self-renewal ability of adult mammalian heart has been reported, few pharmacological treatments are known to promote cardiomyocyte regeneration after injury. In this study, we demonstrate that the critical period of stem/progenitor cell-mediated cardiomyocyte replenishment is initiated within 7 days and saturates on day 10 post-infarction. Moreover, blocking the inflammatory reaction with COX-2 inhibitors may also reduce the capability of endogenous stem/progenitor cells to repopulate lost cells. Injection of the COX-2 product PGE2 enhances cardiomyocyte replenishment in young mice and recovers cell renewal through attenuating TGF-β1 signaling in aged mice. Further analyses suggest that cardiac stem cells are PGE2-responsive and that PGE2 may regulate stem cell activity directly through the EP2 receptor or indirectly by modulating its micro-environment in vivo. Our findings provide evidence that PGE2 holds great potential for cardiac regeneration.

  19. Activation of NOD1 by DAP contributes to myocardial ischemia/reperfusion injury via multiple signaling pathways.

    PubMed

    Yang, Hui; Li, Nan; Song, Li-Na; Wang, Lei; Tian, Cui; Tang, Chao-Shu; Du, Jie; Li, Hui-Hua; Yu, Xiao-Hong; Wang, Hong-Xia

    2015-04-01

    NOD1 is a member of nucleotide-binding oligomerization domain-like receptors family that participates in many inflammatory processes. Previous studies demonstrated that NOD1 plays an important role in inflammatory cardiovascular diseases. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. The present study investigate whether NOD1 is involved in the pathogenesis of mouse myocardial I/R injury and the underlying mechanisms. Administration of NOD1 ligand (DAP) significantly enhanced myocardial I/R injury, as demonstrated by increased infarct size, the number of TUNEL-positive nuclei, caspase-3 activity, the infiltration of Mac-2- and IL-6-positive cells as compared with untreated heart or cardiomyocytes after I/R injury. In contrast, knockdown of NOD1 by siRNA markedly attenuated mimetic I/R induced cardiomyocyte apoptosis in vitro, indicating that NOD1 enhanced myocardial I/R injury partially through direct heart effects. These effects were partially associated with activation of JNK, p38 MAPK and NF-κB signaling pathways. Taken together, these results provide the first evidence that activation of intracellular sensor NOD1 enhances myocardial I/R injury and may provide novel therapeutic target for ameliorating the ischemic heart diseases.

  20. Neonatal tissue injury reduces the intrinsic excitability of adult mouse superficial dorsal horn neurons.

    PubMed

    Li, J; Baccei, M L

    2014-01-03

    Tissue damage during the neonatal period evokes long-lasting changes in nociceptive processing within the adult spinal cord which contribute to persistent alterations in pain sensitivity. However, it remains unclear if the observed modifications in neuronal activity within the mature superficial dorsal horn (SDH) following early injury reflect shifts in the intrinsic membrane properties of these cells. Therefore, the present study was undertaken to identify the effects of neonatal surgical injury on the intrinsic excitability of both GABAergic and presumed glutamatergic neurons within lamina II of the adult SDH using in vitro patch clamp recordings from spinal cord slices prepared from glutamic acid decarboxylase-green fluorescent protein (Gad-GFP) mice. The results demonstrate that hindpaw surgical incision at postnatal day (P) 3 altered the passive membrane properties of both Gad-GFP and adjacent, non-GFP neurons in the mature SDH, as evidenced by decreased membrane resistance and more negative resting potentials in comparison to naïve littermate controls. This was accompanied by a reduction in the prevalence of spontaneous activity within the GABAergic population. Both Gad-GFP and non-GFP neurons displayed a significant elevation in rheobase and decreased instantaneous firing frequency after incision, suggesting that early tissue damage lowers the intrinsic membrane excitability of adult SDH neurons. Isolation of inward-rectifying K(+) (K(ir)) currents revealed that neonatal incision significantly increased K(ir) conductance near physiological membrane potentials in GABAergic, but not glutamatergic, lamina II neurons. Overall, these findings suggest that neonatal tissue injury causes a long-term dampening of intrinsic firing across the general population of lamina II interneurons, but the underlying ionic mechanisms may be cell-type specific. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Acceleration of diabetic renal injury in the superoxide dismutase knockout mouse: effects of tempol.

    PubMed

    DeRubertis, Frederick R; Craven, Patricia A; Melhem, Mona F

    2007-09-01

    Indices of renal injury and oxidative stress were examined in mice with deficiency of cytosolic Cu(2+)/Zn(2+) superoxide dismutase (SOD1-/-, KO) and their wild-type (WT) littermates with streptozotocin-induced diabetes. After 5 weeks of diabetes, KO diabetic (D) but not WT-D mice developed marked albuminuria, increases in glomerular content of transforming growth factor beta, collagen alpha1(IV), and nitrotyrosine, and higher glomerular superoxide compared with corresponding values in nondiabetics. After 5 months of diabetes, increases in these parameters, mesangial matrix expansion, renal cortical malondialdehyde content, and severity of tubulointerstitial injury were all significantly greater, whereas cortical glutathione was lower, in KO-D than in WT-D. In contrast to WT-D, after 4 weeks of diabetes, KO-D mice did not develop the increase in inulin clearance (C(In)) characteristic of early diabetes. The nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methylester suppressed C(In) in WT-D, but had no effect on C(In) in KO-D. Treatment of KO-D with the SOD mimetic tempol for 4 weeks suppressed albuminuria, increases in glomerular transforming growth factor beta, collagen alpha1(IV), nitrotyrosine, and glomerular superoxide, and concurrently increased C(In). The latter action of tempol in KO-D was blocked by the N(omega)-nitro-l-arginine methylester. The findings provide support for a role for superoxide and its metabolism by SOD1 in the pathogenesis of renal injury in diabetes in vivo, and implicate increased interaction of superoxide with nitric oxide as a pathogenetic factor.

  2. Neuroglobin Overexpression Improves Sensorimotor Outcomes in a Mouse Model of Traumatic Brain Injury

    PubMed Central

    Taylor, Jordan M.; Kelley, Brian; Gregory, Eugene J.; Berman, Nancy E.J.

    2014-01-01

    There is a significant need for novel treatments that will improve traumatic brain injury (TBI) outcomes. One potential neuroprotective mechanism is to increase oxygen binding proteins such as neuroglobin. Neuroglobin has a high affinity for oxygen, is an effective free radical scavenger, and is neuroprotective within the brain following hypoxia and ischemia. The purpose of this study was to determine whether neuroglobin overexpression improves sensorimotor outcomes following TBI in transgenic neuroglobin overexpressing (NGB) mice. Additional study aims were to determine if and when an endogenous neuroglobin response occurred following TBI in wild-type (WT) mice, and in what brain regions and cell types the response occurred. Controlled cortical impact (CCI) was performed in adult (5 month) C57/BL6 WT mice, and NGB mice constitutively overexpressing neuroglobin via the chicken beta actin promoter coupled with the cytomegalovirus distal enhancer. The gridwalk task was used for sensorimotor testing of both WT and NGB mice, prior to injury, and at 2, 3, and 7 days post-TBI. NGB mice displayed significant reductions in the average number of foot faults per minute walking at 2, 3, and 7 days post-TBI when compared to WT mice at each time point. Neuroglobin mRNA expression was assessed in the injured cortex of WT mice prior to injury, and at 1, 3, 7, and 14 days post-TBI using quantitative real time polymerase chain reaction (qRT-PCR). Neuroglobin mRNA was significantly increased at 7 days post-TBI. Immunostaining showed neuroglobin primarily localized to neurons and glial cells in the injured cortex and ipsilateral hippocampus of WT mice, while neuroglobin was present in all brain regions of NGB mice at 7 days post-TBI. These results showed that overexpression of neuroglobin reduced sensorimotor deficits following TBI, and that an endogenous increase in neuroglobin expression occurs during the subacute period. Increasing neuroglobin expression through novel therapeutic

  3. Macrophages mediate lung inflammation in a mouse model of ischemic acute kidney injury

    PubMed Central

    Altmann, Christopher; Andres-Hernando, Ana; McMahan, Rachel H.; Ahuja, Nilesh; He, Zhibin; Rivard, Chris J.; Edelstein, Charles Louis; Barthel, Lea; Janssen, William J.

    2012-01-01

    Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping (AKI) was performed in three experimental settings: 1) systemic macrophage depletion via diphtheria toxin (DT) injection to CD11b-DTR transgenic mice, 2) DT injection to wild-type mice, and 3) alveolar macrophage depletion via intratracheal (IT) liposome-encapsulated clodronate (LEC) administration to wild-type mice. In mice with AKI and systemic macrophage depletion (CD11b-DTR transgenic administered DT) vs. vehicle-treated AKI, blood monocytes and lung interstitial macrophages were reduced, renal function was similar, serum IL-6 was increased, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In wild-type mice with AKI administered DT vs. vehicle, serum IL-6 was increased. In mice with AKI and alveolar macrophage depletion (IT-LEC) vs. AKI with normal alveolar macrophage content, blood monocytes and lung interstitial macrophages were similar, alveolar macrophages were reduced, renal function was similar, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In conclusion, administration of DT in AKI is proinflammatory, limiting the use of the DTR-transgenic model to study systemic effects of AKI. Mice with AKI and either systemic mononuclear phagocyte depletion or alveolar macrophage depletion had reduced lung inflammation and lung CXCL1, but increased lung capillary leak; thus, mononuclear phagocytes mediate lung inflammation, but they protect against lung capillary leak after ischemic AKI. Since macrophage activation and chemokine production are key events in the development of acute

  4. The neuroprotective effect of salubrinal in a mouse model of traumatic brain injury.

    PubMed

    Rubovitch, Vardit; Barak, Shani; Rachmany, Lital; Goldstein, Renana Baratz; Zilberstein, Yael; Pick, Chaim G

    2015-03-01

    We have previously reported that mild traumatic brain injury (mTBI) induced cognitive deficits as well as apoptotic changes in the brains of mice. Apoptosis may be caused by severe, prolonged accumulation of misfolded proteins, and protein aggregation in the endoplasmic reticulum (ER stress). In an additional study, we have reported that mTBI activated the pro-apoptotic arm of the integrated stress response (ISR). The main goal of the present study was to test the involvement of the adaptive eIF2α/ATF4 pathway in mTBI-affected brains. Head injury was induced with a noninvasive, closed-head weight drop (30 g) to ICR mice. Salubrinal, the selective phosphatase inhibitor of p-eIF2α, was injected immediately and 24 h after mTBI (1 mg/kg, ip). Y-maze and novel object recognition tests to assess spatial and visual memories, respectively, were conducted either 7 or 30 days post-trauma. Salubrinal administration significantly improved memory deficits following mTBI. Slaubrinal also prevented the elevation of degenerating neurons and the reduction of mature neurons in the cortex (as seen by immunofluorescent staining with Fluoro-Jade-B and NeuN antibodies, 72 h and 1 week post-mTBI, respectively). Western blot analysis revealed that salubrinal prevented the significant reduction in eIF2α and ATF4 phosphorylation in mTBI brains 72 h post-injury. Immunofluorescence staining revealed that although the reduction in p-eIF2α did not reach significance, salubrinal administration elevated it dramatically. Our results show that targeting the translational/adaptive arm of the ISR with salubrinal may serve as a therapeutic strategy for brain damage.

  5. [Pulmonary apoptosis and necrosis in hyperoxia-induced acute mouse lung injury].

    PubMed

    Zhang, Xiang-feng; Foda, Hussein D

    2004-07-01

    To investigate the pathways to cell death in hyperoxia-induced lung injury and the functional significance of apoptosis in vivo in response to hyperoxia. Seventy-two mice were exposed in sealed cages > 98% oxygen (for 24 - 72 h) or room air, and the severity of lung injury and epithelium sloughing was evaluated. The extent and location of apoptosis in injured lung tissues were studied by terminal transferase dUTP end labeling assay (TUNEL), reverse transcript-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; the hyperoxic stress resulted in marked epithelium sloughing. TUNEL assay exhibited increased apoptosis index both in alveolar epithelial cells and bronchial epithelial cells in sections from mice after 48 h hyperoxia compared with their control group (0.51 +/- 0.10, 0.46 +/- 0.08 verse 0.04 +/- 0.02, 0.02 +/- 0.01). This was accompanied by increased expression of caspase-3 mRNA in lung tissues after 48 h hyperoxia compared with their control group (0.53 +/- 0.09 verse 0.34 +/- 0.07), the expression was higher at 72 h of hyperoxia (0.60 +/- 0.08). Immunohistochemistry study showed caspase-3 protein was located in cytoplasm and nuclei of airway epithelial cells, alveolar epithelial cells and macrophage in hyperoxia mice. The expression of caspase-3 protein in airway epithelium significantly increased at 24 h of hyperoxia compared with their control group (41.62 +/- 3.46 verse 15.86 +/- 1.84), the expression level was highest at 72 h of hyperoxia (55.24 +/- 6.80). Both apoptosis and necrosis contribute to cell death during hyperoxia. Apoptosis plays an important role in alveolar damage and cell death from hyperoxia.

  6. Hepatic NK cell-mediated hypersensitivity to ConA-induced liver injury in mouse liver expressing hepatitis C virus polyprotein.

    PubMed

    Fu, Qiuxia; Yan, Shaoduo; Wang, Licui; Duan, Xiangguo; Wang, Lei; Wang, Yue; Wu, Tao; Wang, Xiaohui; An, Jie; Zhang, Yulong; Zhou, Qianqian; Zhan, Linsheng

    2016-08-04

    The role of hepatic NK cells in the pathogenesis of HCV-associated hepatic failure is incompletely understood. In this study, we investigated the effect of HCV on ConA-induced immunological hepatic injury and the influence of HCV on hepatic NK cell activation in the liver after ConA administration. An immunocompetent HCV mouse model that encodes the entire viral polyprotein in a liver-specific manner based on hydrodynamic injection and φC31o integrase was used to study the role of hepatic NK cells. Interestingly, the frequency of hepatic NK cells was reduced in HCV mice, whereas the levels of other intrahepatic lymphocytes remained unaltered. Next, we investigated whether the reduction in NK cells within HCV mouse livers might elicit an effect on immune-mediated liver injury. HCV mice were subjected to acute liver injury models upon ConA administration. We observed that HCV mice developed more severe ConA-induced immune-mediated hepatitis, which was dependent on the accumulated intrahepatic NK cells. Our results indicated that after the administration of ConA, NK cells not only mediated liver injury through the production of immunoregulatory cytokines (IFN-γ, TNF-α and perforin) with direct antiviral activity, but they also killed target cells directly through the TRAIL/DR5 and NKG2D/NKG2D ligand signaling pathway in HCV mice. Our findings suggest a critical role for NK cells in oversensitive liver injury during chronic HCV infection.

  7. SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes.

    PubMed

    Becatti, Matteo; Taddei, Niccolò; Cecchi, Cristina; Nassi, Niccolò; Nassi, Paolo Antonio; Fiorillo, Claudia

    2012-07-01

    SIRT1, an ubiquitous NAD(+)-dependent deacetylase that plays a role in biological processes such as longevity and stress response, is significantly activated in response to reactive oxygen species (ROS) production. Resveratrol (Resv), an important activator of SIRT1, has been shown to exert major health benefits in diseases associated with oxidative stress. In ischemia-reperfusion (IR) injury, a major role has been attributed to the mitogen-activated protein kinase (MAPK) pathway, which is upregulated in response to a variety of stress stimuli, including oxidative stress. In neonatal rat ventricular cardiomyocytes subjected to simulated IR, the effect of Resv-induced SIRT1 activation and the relationships with the MAPK pathway were investigated. Resv-induced SIRT1 overexpression protected cardiomyocytes from oxidative injury, mitochondrial dysfunction, and cell death induced by IR. For the first time, we demonstrate that SIRT1 overexpression positively affects the MAPK pathway-via Akt/ASK1 signaling-by reducing p38 and JNK phosphorylation and increasing ERK phosphorylation. These results reveal a new protective mechanism elicited by Resv-induced SIRT1 activation in IR tissues and suggest novel potential therapeutic targets to manage IR-induced cardiac dysfunction.

  8. Single-cell transcriptome and epigenomic reprogramming of cardiomyocyte-derived cardiac progenitor cells

    PubMed Central

    Chen, Xin; Chakravarty, Tushar; Zhang, Yiqiang; Li, Xiaojin; Zhong, Jiang F.; Wang, Charles

    2016-01-01

    The molecular basis underlying the dedifferentiation of mammalian adult cardiomyocytes (ACMs) into myocyte-derived cardiac progenitor cells (mCPCs) during cardiac tissue regeneration is poorly understood. We present data integrating single-cell transcriptome and whole-genome DNA methylome analyses of mouse mCPCs to understand the epigenomic reprogramming governing their intrinsic cellular plasticity. Compared to parental cardiomyocytes, mCPCs display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlating well with the methylome, our single-cell transcriptomic data show that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implanting mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. This dataset suggests that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. Understanding cardiomyocyte epigenomic reprogramming may enable the design of future clinical therapies that induce cardiac regeneration, and prevent heart failure. PMID:27622691

  9. Visualization of Cell Cycle Variations and Determination of Nucleation in Postnatal Cardiomyocytes.

    PubMed

    Raulf, Alexandra; Voeltz, Nadine; Korzus, Daniel; Fleischmann, Bernd K; Hesse, Michael

    2017-02-24

    Cardiomyocytes are prone to variations of the cell cycle, such as endoreduplication (continuing rounds of DNA synthesis without karyokinesis and cytokinesis) and acytokinetic mitosis (karyokinesis but no cytokinesis). Such atypical cell cycle variations result in polyploid and multinucleated cells rather than in cell division. Therefore, to determine cardiac turnover and regeneration, it is of crucial importance to correctly identify cardiomyocyte nuclei, the number of nuclei per cell, and their cell cycle status. This is especially true for the use of nuclear markers for identifying cell cycle activity, such as thymidine analogues Ki-67, PCNA, or pHH3. Here, we present methods for recognizing cardiomyocytes and their nuclearity and for determining their cell cycle activity. We use two published transgenic systems: the Myh6-H2B-mCh transgenic mouse line, for the unequivocal identification of cardiomyocyte nuclei, and the CAG-eGFP-anillin mouse line, for distinguishing cell division from cell cycle variations. Combined together, these two systems ease the study of cardiac regeneration and plasticity.

  10. Stanniocalcin-1 Protects a Mouse Model from Renal Ischemia-Reperfusion Injury by Affecting ROS-Mediated Multiple Signaling Pathways

    PubMed Central

    Liu, Dajun; Shang, Huiping; Liu, Ying

    2016-01-01

    Stanniocalcin-1 (STC-1) protects against renal ischemia-reperfusion injury (RIRI). However, the molecular mechanisms remain widely unknown. STC-1 inhibits reactive oxygen species (ROS), whereas most ROS-mediated pathways are associated with ischemic injury. Therefore, to explore the mechanism, the effects of STC-1 on ROS-medicated pathways were studied. Non-traumatic vascular clamps were used to establish RIRI mouse models. The serum levels of STC-1, interleukin-6 (IL-6), interferon (IFN) γ, P53, and capase-3 were measured by ELISA kits. Superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by fluorescence spectrofluorometer. All these molecules changed significantly in a RIRI model mouse when compared with those in a sham control. Kidney cells were isolated from sham and model mice. STC-1 was overexpressed or knockout in these kidney cells. The molecules in ROS-medicated pathways were measured by real-time quantitative PCR and Western blot. The results showed that STC-1 is an effective ROS scavenger. The serum levels of STC-1, MDA and SOD activity were increased while the serum levels of IL-6, iIFN-γ, P53, and capase-3 were decreased in a model group when compared with a sham control (p < 0.05). Furthermore, the levels of STC-1,p53, phosphorylated mitogen-activated protein kinase kinase (p-MEKK-1), c-Jun N-terminal kinase (p-JNK), extracellular signal-regulated kinase (p-ERK), IkB kinase (p-IKK), nuclear factor (NF) κB, apoptosis signal-regulating kinase 1 (ASK-1) and caspase-3 changed significantly in kidney cells isolated from a RIRI model when compared to those isolated from a sham control (p < 0.05). Meanwhile, STC-1 overexpression or silence caused significant changes of the levels of these ROS-mediated molecules. Therefore, STC-1 maybe improve anti-inflammation, anti-oxidant and anti-apoptosis activities by affecting ROS-mediated pathways, especially the phospho-modifications of the respective proteins, resulting in the increase of SOD and

  11. Manganese Superoxide Dismutase Protects against 6-Hydroxydopamine Injury in Mouse Brains*

    PubMed Central

    Callio, Jason; Oury, Tim D.; Chu, Charleen T.

    2007-01-01

    Dopaminergic neurons of the substantia nigra are susceptible to toxin-based insults. Intrastriatal injection of 6-hydroxydopamine results in selective toxicity to these neurons. A mechanistic role for reactive oxygen species is supported by observations that antioxidants confer protection from 6-hydroxydopamine. Although cell culture studies have suggested extracellular or nonmitochondrial mechanisms in 6-hydroxydopamine toxicity, the compartmentalization of oxidative injury mechanisms is incompletely defined in vivo. Transgenic mice overexpressing mitochondrial manganese superoxide dismutase or extracellular superoxide dismutase received unilateral intrastriatal injections of 6-hydroxydopamine. Mice that overexpress manganese superoxide dismutase showed significantly smaller striatal lesions than littermate controls. There were no differences in nonspecific striatal injury associated with contralateral vehicle injection. Manganese superoxide dismutase overexpression also protected against loss of neuronal cell bodies in the substantia nigra. In contrast, mice overexpressing extracellular superoxide dismutase showed no protection from 6-hydroxydopamine toxicity in either brain region. Protection of the nigrostriatal system by overexpression of manganese super-oxide dismutase supports a role for mitochondrially derived superoxide in 6-hydroxydopamine toxicity. Mitochondrial oxidative stress appears to be a common mechanism among diverse models of Parkinson disease, whether involving toxins, mutated genes, or cybrid cells containing patient mitochondria. Antioxidant therapies that target this subcellular compartment may prove promising. PMID:15755737

  12. Some cell kinetic effects of combined injury with ionizing radiation and cyclophosphamide on mouse bladder urothelium.

    PubMed

    Reitan, J B

    1985-01-01

    Cyclophosphamide was given intraperitoneally to groups of eight female mice 48 h after local electron irradiation to the bladder with 0, 10 and 20 Gy respectively. The reactions in the urothelium were monitored by histology, incorporation of tritiated thymidine and flow cytometry. A wave of increased thymidine incorporation combined with an increase in the proportion of diploid S-phase cells was seen in the unirradiated bladders 24 h after the drug treatment, followed by normalization after 1 week. This response was significantly less pronounced in the irradiated animals. In the unirradiated animals a similar wave characterized by an increased proportion of octaploid cells was also seen, but this wave occurred later in the irradiated animals. Severe injury was observed in the rectum of the 20 Gy-irradiated animals. Irradiation prior to drug treatment led to only small effects, but a decreased ability for regenerative DNA synthesis after drug injury seems to persist. This affects both proliferation and the building up of polyploidy.

  13. Transplantation of Mouse Embryonic Stem Cells into the Cochlea of an Auditory-Neuropathy Animal Model: Effects of Timing after Injury

    PubMed Central

    Schulte, Bradley A.; Goddard, John C.; Hedrick, Michelle; Schulte, Jason B.; Wei, Ling; Schmiedt, Richard A.

    2008-01-01

    Application of ouabain to the round window membrane of the gerbil selectively induces the death of most spiral ganglion neurons and thus provides an excellent model for investigating the survival and differentiation of embryonic stem cells (ESCs) introduced into the inner ear. In this study, mouse ESCs were pretreated with a neural-induction protocol and transplanted into Rosenthal’s canal (RC), perilymph, or endolymph of Mongolian gerbils either 1–3 days (early post-injury transplant group) or 7 days or longer (late post-injury transplant group) after ouabain injury. Overall, ESC survival in RC and perilymphatic spaces was significantly greater in the early post-injury microenvironment as compared to the later post-injury condition. Viable clusters of ESCs within RC and perilymphatic spaces appeared to be associated with neovascularization in the early post-injury group. A small number of ESCs transplanted within RC stained for mature neuronal or glial cell markers. ESCs introduced into perilymph survived in several locations, but most differentiated into glia-like cells. ESCs transplanted into endolymph survived poorly if at all. These experiments demonstrate that there is an optimal time window for engraftment and survival of ESCs that occurs in the early post-injury period. PMID:18449604

  14. Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A.

    PubMed

    Michinaga, Shotaro; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Minami, Shizuho; Kimura, Akimasa; Hatanaka, Shunichi; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Koyama, Yutaka

    2015-09-01

    Brain edema is a potentially fatal pathological state that often occurs after brain injuries such as ischemia and trauma. However, therapeutic agents that fundamentally treat brain edema have not yet been established. We previously found that endothelin ETB receptor antagonists attenuate the formation and maintenance of vasogenic brain edema after cold injury in mice. In this study, the effects of ETB antagonists on matrixmetalloproteinase (MMP)9 and vascular endothelial growth factor (VEGF)-A expression were examined in the cold injury model. Cold injury was performed in the left brain of male ddY mice (5-6 weeks old) for the induction of vasogenic edema. Expression of MMP9 and VEGF-A mRNA in the mouse cerebrum was increased by cold injury. Immunohistochemical observations showed that the MMP9 and VEGF-A were mainly produced in reactive astrocytes in the damaged cerebrum. Intracerebroventricular administration of BQ788 (10 μg) or IRL-2500 (10 μg) (selective ETB antagonists) attenuated brain edema and disruption of the blood-brain barrier after cold injury. BQ788 and IRL-2500 reversed the cold injury-induced increases in MMP9 and VEGF-A expression. The induction of reactive astrocytes producing MMP9 and VEGF-A in the damaged cerebrum was attenuated by BQ788 and IRL-2500. These results suggest that attenuations of astrocytic MMP9 and VEGF-A expression by ETB antagonists may be involved in the amelioration of vasogenic brain edema.

  15. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury.

    PubMed

    Tzekov, Radouil; Dawson, Clint; Orlando, Megan; Mouzon, Benoit; Reed, Jon; Evans, James; Crynen, Gogce; Mullan, Michael; Crawford, Fiona

    2016-01-01

    Repetitive mild traumatic brain injury (r-mTBI) results in neuropathological and biochemical consequences in the human visual system. Using a recently developed mouse model of r-mTBI, with control mice receiving repetitive anesthesia alone (r-sham) we assessed the effects on the retina and optic nerve using histology, immunohistochemistry, proteomic and lipidomic analyses at 3 weeks post injury. Retina tissue was used to determine retinal ganglion cell (RGC) number, while optic nerve tissue was examined for cellularity, myelin content, protein and lipid changes. Increased cellularity and areas of demyelination were clearly detectable in optic nerves in r-mTBI, but not in r-sham. These changes were accompanied by a ~25% decrease in the total number of Brn3a-positive RGCs. Proteomic analysis of the optic nerves demonstrated various changes consistent with a negative effect of r-mTBI on major cellular processes like depolymerization of microtubules, disassembly of filaments and loss of neurons, manifested by decrease of several proteins, including neurofilaments (NEFH, NEFM, NEFL), tubulin (TUBB2A, TUBA4A), microtubule-associated proteins (MAP1A, MAP1B), collagen (COL6A1, COL6A3) and increased expression of other proteins, including heat shock proteins (HSP90B1, HSPB1), APOE and cathepsin D. Lipidomic analysis showed quantitative changes in a number of phospholipid species, including a significant increase in the total amount of lysophosphatidylcholine (LPC), including the molecular species 16:0, a known demyelinating agent. The overall amount of some ether phospholipids, like ether LPC, ether phosphatidylcholine and ether lysophosphatidylethanolamine were also increased, while the majority of individual molecular species of ester phospholipids, like phosphatidylcholine and phosphatidylethanolamine, were decreased. Results from the biochemical analysis correlate well with changes detected by histological and immunohistochemical methods and indicate the involvement of

  16. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury

    PubMed Central

    Tzekov, Radouil; Dawson, Clint; Orlando, Megan; Mouzon, Benoit; Reed, Jon; Evans, James; Crynen, Gogce; Mullan, Michael; Crawford, Fiona

    2016-01-01

    Repetitive mild traumatic brain injury (r-mTBI) results in neuropathological and biochemical consequences in the human visual system. Using a recently developed mouse model of r-mTBI, with control mice receiving repetitive anesthesia alone (r-sham) we assessed the effects on the retina and optic nerve using histology, immunohistochemistry, proteomic and lipidomic analyses at 3 weeks post injury. Retina tissue was used to determine retinal ganglion cell (RGC) number, while optic nerve tissue was examined for cellularity, myelin content, protein and lipid changes. Increased cellularity and areas of demyelination were clearly detectable in optic nerves in r-mTBI, but not in r-sham. These changes were accompanied by a ~25% decrease in the total number of Brn3a-positive RGCs. Proteomic analysis of the optic nerves demonstrated various changes consistent with a negative effect of r-mTBI on major cellular processes like depolymerization of microtubules, disassembly of filaments and loss of neurons, manifested by decrease of several proteins, including neurofilaments (NEFH, NEFM, NEFL), tubulin (TUBB2A, TUBA4A), microtubule-associated proteins (MAP1A, MAP1B), collagen (COL6A1, COL6A3) and increased expression of other proteins, including heat shock proteins (HSP90B1, HSPB1), APOE and cathepsin D. Lipidomic analysis showed quantitative changes in a number of phospholipid species, including a significant increase in the total amount of lysophosphatidylcholine (LPC), including the molecular species 16:0, a known demyelinating agent. The overall amount of some ether phospholipids, like ether LPC, ether phosphatidylcholine and ether lysophosphatidylethanolamine were also increased, while the majority of individual molecular species of ester phospholipids, like phosphatidylcholine and phosphatidylethanolamine, were decreased. Results from the biochemical analysis correlate well with changes detected by histological and immunohistochemical methods and indicate the involvement of

  17. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury

    PubMed Central

    2013-01-01

    Background Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Methods Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). Results For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. Conclusions The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity. PMID:24256698

  18. The Spectrum of Neurobehavioral Sequelae after Repetitive Mild Traumatic Brain Injury: A Novel Mouse Model of Chronic Traumatic Encephalopathy

    PubMed Central

    Plog, Benjamin A.; Dayawansa, Samantha; Chen, Michael; Dashnaw, Matthew L.; Czerniecka, Katarzyna; Walker, Corey T.; Viterise, Tyler; Hyrien, Ollivier; Iliff, Jeffrey J.; Deane, Rashid; Nedergaard, Maiken; Huang, Jason H.

    2014-01-01

    Abstract There has been an increased focus on the neurological sequelae of repetitive mild traumatic brain injury (TBI), particularly neurodegenerative syndromes, such as chronic traumatic encephalopathy (CTE); however, no animal model exists that captures the behavioral spectrum of this phenomenon. We sought to develop an animal model of CTE. Our novel model is a modification and fusion of two of the most popular models of TBI and allows for controlled closed-head impacts to unanesthetized mice. Two-hundred and eighty 12-week-old mice were divided into control, single mild TBI (mTBI), and repetitive mTBI groups. Repetitive mTBI mice received six concussive impacts daily for 7 days. Behavior was assessed at various time points. Neurological Severity Score (NSS) was computed and vestibulomotor function tested with the wire grip test (WGT). Cognitive function was assessed with the Morris water maze (MWM), anxiety/risk-taking behavior with the elevated plus maze, and depression-like behavior with the forced swim/tail suspension tests. Sleep electroencephalogram/electromyography studies were performed at 1 month. NSS was elevated, compared to controls, in both TBI groups and improved over time. Repetitive mTBI mice demonstrated transient vestibulomotor deficits on WGT. Repetitive mTBI mice also demonstrated deficits in MWM testing. Both mTBI groups demonstrated increased anxiety at 2 weeks, but repetitive mTBI mice developed increased risk-taking behaviors at 1 month that persist at 6 months. Repetitive mTBI mice exhibit depression-like behavior at 1 month. Both groups demonstrate sleep disturbances. We describe the neurological sequelae of repetitive mTBI in a novel mouse model, which resemble several of the neuropsychiatric behaviors observed clinically in patients sustaining repetitive mild head injury. PMID:24766454

  19. Palmitoylethanolamide Reduces Neuropsychiatric Behaviors by Restoring Cortical Electrophysiological Activity in a Mouse Model of Mild Traumatic Brain Injury

    PubMed Central

    Guida, Francesca; Boccella, Serena; Iannotta, Monica; De Gregorio, Danilo; Giordano, Catia; Belardo, Carmela; Romano, Rosaria; Palazzo, Enza; Scafuro, Maria A.; Serra, Nicola; de Novellis, Vito; Rossi, Francesco; Maione, Sabatino; Luongo, Livio

    2017-01-01

    Traumatic brain injury (TBI) represents a major public health problem, which is associated with neurological dysfunction. In severe or moderate cases of TBI, in addition to its high mortality rate, subjects may encounter diverse behavioral dysfunctions. Previous reports suggest that an association between TBI and chronic pain syndromes tends to be more common in patients with mild forms of brain injury. Despite causing minimal brain damage, mild TBI (mTBI) often leads to persistent psychologically debilitating symptoms, which can include anxiety, various forms of memory and learning deficits, and depression. At present, no effective treatment options are available for these symptoms, and little is known about the complex cellular activity affecting neuronal activity that occurs in response to TBI during its late phase. Here, we used a mouse model to investigate the effect of Palmitoylethanolamide (PEA) on both the sensorial and neuropsychiatric dysfunctions associated with mTBI through behavioral, electrophysiological, and biomolecular approaches. Fourteen-day mTBI mice developed anxious, aggressive, and reckless behavior, whilst depressive-like behavior and impaired social interactions were observed from the 60th day onward. Altered behavior was associated with changes in interleukin 1 beta (IL-1β) expression levels and neuronal firing activity in the medial prefrontal cortex. Compared with vehicle, PEA restored the behavioral phenotype and partially normalized the biochemical and functional changes occurring at the supraspinal level. In conclusion, our findings reveal some of the supraspinal modifications responsible for the behavioral alterations associated with mTBI and suggest PEA as a pharmacological tool to ameliorate neurological dysfunction induced by the trauma. PMID:28321191

  20. Palmitoylethanolamide Reduces Neuropsychiatric Behaviors by Restoring Cortical Electrophysiological Activity in a Mouse Model of Mild Traumatic Brain Injury.

    PubMed

    Guida, Francesca; Boccella, Serena; Iannotta, Monica; De Gregorio, Danilo; Giordano, Catia; Belardo, Carmela; Romano, Rosaria; Palazzo, Enza; Scafuro, Maria A; Serra, Nicola; de Novellis, Vito; Rossi, Francesco; Maione, Sabatino; Luongo, Livio

    2017-01-01

    Traumatic brain injury (TBI) represents a major public health problem, which is associated with neurological dysfunction. In severe or moderate cases of TBI, in addition to its high mortality rate, subjects may encounter diverse behavioral dysfunctions. Previous reports suggest that an association between TBI and chronic pain syndromes tends to be more common in patients with mild forms of brain injury. Despite causing minimal brain damage, mild TBI (mTBI) often leads to persistent psychologically debilitating symptoms, which can include anxiety, various forms of memory and learning deficits, and depression. At present, no effective treatment options are available for these symptoms, and little is known about the complex cellular activity affecting neuronal activity that occurs in response to TBI during its late phase. Here, we used a mouse model to investigate the effect of Palmitoylethanolamide (PEA) on both the sensorial and neuropsychiatric dysfunctions associated with mTBI through behavioral, electrophysiological, and biomolecular approaches. Fourteen-day mTBI mice developed anxious, aggressive, and reckless behavior, whilst depressive-like behavior and impaired social interactions were observed from the 60th day onward. Altered behavior was associated with changes in interleukin 1 beta (IL-1β) expression levels and neuronal firing activity in the medial prefrontal cortex. Compared with vehicle, PEA restored the behavioral phenotype and partially normalized the biochemical and functional changes occurring at the supraspinal level. In conclusion, our findings reveal some of the supraspinal modifications responsible for the behavioral alterations associated with mTBI and suggest PEA as a pharmacological tool to ameliorate neurological dysfunction induced by the trauma.

  1. Optical Detection of Early Damage in Retinal Ganglion Cells in a Mouse Model of Partial Optic Nerve Crush Injury

    PubMed Central

    Yi, Ji; Puyang, Zhen; Feng, Liang; Duan, Lian; Liang, Peiji; Backman, Vadim; Liu, Xiaorong; Zhang, Hao F.

    2016-01-01

    Purpose Elastic light backscattering spectroscopy (ELBS) has exquisite sensitivity to the ultrastructural properties of tissue and thus has been applied to detect various diseases associated with ultrastructural alterations in their early stages. This study aims to test whether ELBS can detect early damage in retinal ganglion cells (RGCs). Methods We used a mouse model of partial optic nerve crush (pONC) to induce rapid RGC death. We confirmed RGC loss by axon counting and characterized the changes in retinal morphology by optical coherence tomography (OCT) and in retinal function by full-field electroretinogram (ERG), respectively. To quantify the ultrastructural properties, elastic backscattering spectroscopic analysis was implemented in the wavelength-dependent images recorded by reflectance confocal microscopy. Results At 3 days post-pONC injury, no significant change was found in the thickness of the RGC layer or in the mean amplitude of the oscillatory potentials measured by OCT and ERG, respectively; however, we did observe a significantly decreased number of axons compared with the controls. At 3 days post-pONC, we used ELBS to calculate the ultrastructural marker (D), the shape factor quantifying the shape of the local mass density correlation functions. It was significantly reduced in the crushed eyes compared with the controls, indicating the ultrastructural fragmentation in the crushed eyes. Conclusions Elastic light backscattering spectroscopy detected ultrastructural neuronal damage in RGCs following the pONC injury when OCT and ERG tests appeared normal. Our study suggests a potential clinical method for detecting early neuronal damage prior to anatomical alterations in the nerve fiber and ganglion cell layers. PMID:27784071

  2. The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy.

    PubMed

    Petraglia, Anthony L; Plog, Benjamin A; Dayawansa, Samantha; Chen, Michael; Dashnaw, Matthew L; Czerniecka, Katarzyna; Walker, Corey T; Viterise, Tyler; Hyrien, Ollivier; Iliff, Jeffrey J; Deane, Rashid; Nedergaard, Maiken; Huang, Jason H

    2014-07-01

    There has been an increased focus on the neurological sequelae of repetitive mild traumatic brain injury (TBI), particularly neurodegenerative syndromes, such as chronic traumatic encephalopathy (CTE); however, no animal model exists that captures the behavioral spectrum of this phenomenon. We sought to develop an animal model of CTE. Our novel model is a modification and fusion of two of the most popular models of TBI and allows for controlled closed-head impacts to unanesthetized mice. Two-hundred and eighty 12-week-old mice were divided into control, single mild TBI (mTBI), and repetitive mTBI groups. Repetitive mTBI mice received six concussive impacts daily for 7 days. Behavior was assessed at various time points. Neurological Severity Score (NSS) was computed and vestibulomotor function tested with the wire grip test (WGT). Cognitive function was assessed with the Morris water maze (MWM), anxiety/risk-taking behavior with the elevated plus maze, and depression-like behavior with the forced swim/tail suspension tests. Sleep electroencephalogram/electromyography studies were performed at 1 month. NSS was elevated, compared to controls, in both TBI groups and improved over time. Repetitive mTBI mice demonstrated transient vestibulomotor deficits on WGT. Repetitive mTBI mice also demonstrated deficits in MWM testing. Both mTBI groups demonstrated increased anxiety at 2 weeks, but repetitive mTBI mice developed increased risk-taking behaviors at 1 month that persist at 6 months. Repetitive mTBI mice exhibit depression-like behavior at 1 month. Both groups demonstrate sleep disturbances. We describe the neurological sequelae of repetitive mTBI in a novel mouse model, which resemble several of the neuropsychiatric behaviors observed clinically in patients sustaining repetitive mild head injury.

  3. Regulation of cardiomyocyte autophagy by calcium.

    PubMed

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy.

  4. Tolerance to ischaemic injury in remodelled mouse hearts: less ischaemic glycogenolysis and preserved metabolic efficiency

    PubMed Central

    Masoud, Waleed G.T.; Abo Al-Rob, Osama; Yang, Yang; Lopaschuk, Gary D.; Clanachan, Alexander S.

    2015-01-01

    Aims Post-infarction remodelled failing hearts have reduced metabolic efficiency. Paradoxically, they have increased tolerance to further ischaemic injury. This study was designed to investigate the metabolic mechanisms that may contribute to this phenomenon and to examine the relationship between ischaemic tolerance and metabolic efficiency during post-ischaemic reperfusion. Methods and results Male C57BL/6 mice were subjected to coronary artery ligation (CAL) or SHAM surgery. After 4 weeks, in vivo mechanical function was assessed by echocardiography, and then isolated working hearts were perfused in this sequence: 45 min aerobic, 15 min global no-flow ischaemia, and 30 min aerobic reperfusion. Left ventricular (LV) function, metabolic rates, and metabolic efficiency were measured. Relative to SHAM, both in vivo and in vitro CAL hearts had depressed cardiac function under aerobic conditions (45 and 36%, respectively), but they had a greater recovery of LV function during post-ischaemic reperfusion (67 vs. 49%, P < 0.05). While metabolic efficiency (LV work per ATP produced) was 50% lower during reperfusion of SHAM hearts, metabolic efficiency in CAL hearts did not decrease. During ischaemia, glycogenolysis was 28% lower in CAL hearts, indicative of lower ischaemic proton production. There were no differences in mitochondrial abundance, calcium handling proteins, or key metabolic enzymes. Conclusion Compared with SHAM, remodelled CAL hearts are more tolerant to ischaemic injury and undergo no further deterioration of metabolic efficiency during reperfusion. Less glycogen utilization in CAL hearts during ischaemia may contribute to increased ischaemic tolerance by limiting ischaemic proton production that may improve ion homeostasis during early reperfusion. PMID:26150203

  5. Trichloroethylene exposure reduces liver injury in a mouse model of primary biliary cholangitis.

    PubMed

    Ray, Jessica L; Kopec, Anna K; Joshi, Nikita; Cline-Fedewa, Holly; Lash, Lawrence H; Williams, Kurt J; Leung, Patrick S; Gershwin, M Eric; Luyendyk, James P

    2017-01-23

    Trichloroethylene (TCE) is a persistent environmental contaminant proposed to contribute to autoimmune disease. Experimental studies in lupus-prone MRL(+/+) mice have suggested that TCE exposure can trigger autoimmune hepatitis. The vast majority of studies examining the connection between TCE and autoimmunity utilize this model, and the impact of TCE exposure in other established models of autoimmune liver disease is not known. We tested the hypothesis that TCE exposure exacerbates experimental hepatic autoimmunity in dominant negative transforming growth factor beta receptor type II (dnTGFBRII) mice, which develop serological and histological features resembling human primary biliary cholangitis. Female 8-week-old wild-type and dnTGFBRII mice were exposed to TCE (0.5 mg/ml) or vehicle (1% ethoxylated castor oil) in the drinking water for 12 or 22 weeks. Liver histopathology in 20- and 30-week-old wild-type mice was unremarkable irrespective of treatment. Mild portal inflammation was observed in vehicle-exposed 20-week-old dnTGFBRII mice and was not exacerbated by TCE exposure. Vehicle-exposed 30-week-old dnTGFBRII mice developed anti-mitochondrial antibodies, marked hepatic inflammation with necrosis, and hepatic accumulation of both B and T lymphocytes. To our surprise, TCE exposure dramatically reduced hepatic parenchymal inflammation and injury in 30-week-old dnTGFBRII mice, reflected by changes in hepatic proinflammatory gene expression, serum chemistry, and histopathology. Interestingly, TCE did not affect hepatic B cell accumulation or induction of the anti-inflammatory cytokine IL10. These data indicate that TCE exposure reduces autoimmune liver injury in female dnTGFBRII mice and suggests that the precise effect of environmental chemicals in autoimmunity depends on the experimental model.

  6. Development of a novel mouse model of amodiaquine-induced liver injury with a delayed onset.

    PubMed

    Metushi, Imir G; Cai, Ping; Dervovic, Dzana; Liu, Feng; Lobach, Alexandra; Nakagawa, Tetsuya; Uetrecht, Jack

    2015-01-01

    Amodiaquine (AQ) treatment is associated with a high incidence of idiosyncratic drug-induced liver injury (IDILI) and agranulocytosis. Evidence suggests that AQ-induced IDILI is immune mediated. A significant impediment to mechanistic studies of IDILI is the lack of valid animal models. This study reports the first animal model of IDILI with characteristics similar to mild IDILI in humans. Treatment of female C57BL/6 mice with AQ led to liver injury with delayed onset, which resolved despite continued treatment. Covalent binding of AQ was detected in the liver, which was greater in female than in male mice, and higher in the liver than in other organs. Covalent binding in the liver was maximal by Day 3, which did not explain the delayed onset of alanine aminotransferase (ALT) elevation. However, coincident with the elevated serum ALT, infiltration of liver and splenic mononuclear cells and activation of CD8 T-cells within the liver were identified. By Week 7, when ALT levels had returned close to normal, down-regulation of several inflammatory cytokines and up-regulation of PD-1 on T-cells suggested induction of immune tolerance. Treatment of Rag1(-/-) mice with AQ resulted in higher ALT activities than C57BL/6 mice, which suggested that the adaptive immune response was responsible for immune tolerance. In contrast, depletion of NK cells significantly attenuated the increase in ALT, which implied a role for NK cells in mild AQ-induced IDILI. This is the first example of a delayed-onset animal model of IDILI that appears to be immune-mediated.

  7. Hepatogenic differentiation from human adipose-derived stem cells and application for mouse acute liver injury.

    PubMed

    Guo, De-Liang; Wang, Zhi-Gang; Xiong, Liang-Kun; Pan, Le-Yu; Zhu, Qian; Yuan, Yu-Feng; Liu, Zhi-Su

    2017-03-01

    Adipose-derived stem cells (ADSCs) derived from adipose tissue have the capacity to differentiate into endodermal, mesoderm, and ectodermal cell lineages in vitro, which are an ideal engraft in tissue-engineered repair. In this study, human ADSCs were isolated from subcutaneous fat. The markers of ADSCs, CD13, CD71, CD73, CD90, CD105, CD166, CYP3A4, and ALB were detected by immunofluorescence assays. Human ADSCs were cultured in a specific hepatogenesis differentiation medium containing HGF, bFGF, nicotinamide, ITS, and oncostatin M for hepatogenic differentiation. The hepatocyte markers were analyzed using immunofluorescence and real-time PCR after dramatic changes in morphology. Hepatocytes derived from ADSCs or ADSCs were transplanted into the mice of liver injury for observation cells colonization and therapy in liver tissue. The result demonstrated that human ADSCs were positive for the CD13, CD71, CD73, CD90, CD105, and CD166 but negative for hepatocyte markers, ALB and CYP3A4. After hepatogenic differentiation, the hepatocytes were positive for liver special markers, gene expression level showed a time-lapse increase with induction time. Human ADSCs or ADSCs-derived hepatocyte injected into the vein could improve liver function repair and functionally rescue the CCl4-treated mice with liver injury, but the ADSCs transplantation was better than ADSCs-derived hepatocyte transplantation. In conclusion, our research shows that a population of hepatocyte can be specifically generated from human ADSCs and that cells may allow for participation in tissue-repair.

  8. A Mouse Model of Blast-Induced mild Traumatic Brain Injury

    PubMed Central

    Rubovitch, Vardit; Ten-Bosch, Meital; Zohar, Ofer; Harrison, Catherine R.; Tempel-Brami, Catherine; Stein, Elliot; Hoffer, Barry J.; Balaban, Carey D.; Schreiber, Shaul; Chiu, Wen-Ta; Pick, Chaim G.

    2011-01-01

    Improvised explosive devices (IEDs) are one of the main causes for casualties among civilians and military personnel in the present war against terror. Mild traumatic brain injury from IEDs induces various degrees of cognitive, emotional and behavioral disturbances but knowledge of the exact brain pathophysiology following exposure to blast is poorly understood. The study was aimed at establishing a murine model for a mild BI-TBI that isolates low-level blast pressure effects to the brain without systemic injuries. An open-field explosives detonation was used to replicate, as closely as possible, low-level blast trauma in the battlefield or at a terror-attack site. No alterations in basic neurological assessment or brain gross pathology were found acutely in the blast-exposed mice. At 7 days post blast, cognitive and behavioral tests revealed significantly decreased performance at both 4 and 7 meters distance from the blast (5.5 and 2.5 PSI, respectively). At 30 days post-blast, clear differences were found in animals at both distances in the object recognition test, and in the 7 m group in the Y maze test. Using MRI, T1 weighted images showed an increased BBB permeability one month post-blast. DTI analysis showed an increase in fractional anisotropy (FA) and a decrease in radial diffusivity. These changes correlated with sites of up-regulation of manganese superoxide dismutase 2 in neurons and CXC-motif chemokine receptor 3 around blood vessels in fiber tracts. These results may represent brain axonal and myelin abnormalities. Cellular and biochemical studies are underway in order to further correlate the blast-induced cognitive and behavioral changes and to identify possible underlying mechanisms that may help develop treatment- and neuroprotective modalities. PMID:21946269

  9. The genetic basis of strain-dependent differences in the early phase of radiation injury in mouse lung

    SciTech Connect

    Franko, A.J.; Sharplin, J.; Ward, W.F.; Hinz, J.M. )

    1991-06-01

    Substantial differences between mouse strains have been reported in the lesions present in the lung during the early phase of radiation injury. Some strains show only classical pneumonitis, while other strains develop substantial fibrosis and hyaline membranes which contribute appreciably to respiratory insufficiency, in addition to pneumonitis. Other strains are intermediate between these extremes. These differences correlate with intrinsic differences in activities of lung plasminogen activator and angiotensin converting enzyme. The genetic basis of these differences was assessed by examining histologically the early reaction in lungs of seven murine hybrids available commercially after whole-thorax irradiation. Crosses between fibrosing and nonfibrosing parents were uniformly nonfibrosing, and crosses between fibrosing and intermediate parents were uniformly intermediate. No evidence of sex linkage was seen. Thus the phenotype in which fibrosis is found is controlled by autosomal recessive determinants. Strains prone to radiation-induced pulmonary fibrosis and hyaline membranes exhibited intrinsically lower activities of lung plasminogen activator and angiotensin converting enzyme than either the nonfibrosing strains or the nonfibrosing hybrid crosses. The median time of death of the hybrids was genetically determined primarily by the longest-lived parent regardless of the types of lesions expressed.

  10. PTEN-β-Catenin Signaling Modulates Regulatory T Cells and Inflammatory Responses in Mouse Liver Ischemia and Reperfusion Injury.

    PubMed

    Zhu, Qiang; Li, Changyong; Wang, Kunpeng; Yue, Shi; Jiang, Longfeng; Ke, Michael; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhang, Feng; Lu, Ling; Ke, Bibo

    2017-02-02

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays an important role in regulating T cell activation during inflammatory response. Activation of β-catenin is crucial for maintaining immune homeostasis. This study investigates the functional roles and molecular mechanisms by which PTEN-β-catenin signaling promotes regulatory T cell (Treg) induction in a mouse model of liver ischemia and reperfusion injury (IRI). We found that mice with myeloid specific PTEN knockout (PTEN(M-KO) ) exhibited reduced liver damage as evidenced by decreased levels of serum ALT, intrahepatic macrophage trafficking, and pro-inflammatory mediators compared to the PTEN-proficient (PTEN(FL/FL) ) controls. Disruption of myeloid PTEN activated β-catenin, which in turn promoted PPARγ-mediated Jagged-1/Notch signaling and induced Foxp3(+) Tregs while inhibiting Th17 cells. However, blocking of Notch signaling by inhibiting γ-secretase reversed myeloid PTEN deficiency-mediated protection in IR-triggered liver inflammation with reduced Foxp3(+) and increased RORγt-mediated IL-17A expression in ischemic livers. Moreover, knockdown of β-catenin or PPARγ in PTEN-deficient macrophages inhibited Jagged-1/Notch activation and reduced Foxp3(+) Treg induction, leading to increased proinflammatory mediators in macrophage/T cell co-cultures. In conclusion, our findings demonstrate that PTEN-β-catenin signaling is a novel regulator involved in modulating Treg development and provides a potential therapeutic target in liver IRI. This article is protected by copyright. All rights reserved.

  11. Gene-Expression Changes in Cerium Chloride-Induced Injury of Mouse Hippocampus

    PubMed Central

    Sheng, Lei; Zhu, Liyuan; Guan, Ning; Gui, Suxin; Sang, Xuezi; Zhao, Xiaoyang; Sun, Qingqing; Wang, Ling; Cheng, Jie; Hu, Renping; Hong, Fashui

    2013-01-01

    Cerium is widely used in many aspects of modern society, including agriculture, industry and medicine. It has been demonstrated to enter the ecological environment, is then transferred to humans through food chains, and causes toxic actions in several organs including the brain of animals. However, the neurotoxic molecular mechanisms are not clearly understood. In this study, mice were exposed to 0.5, 1, and 2 mg/kg BW cerium chloride (CeCl3) for 90 consecutive days, and their learning and memory ability as well as hippocampal gene expression profile were investigated. Our findings suggested that exposure to CeCl3 led to hippocampal lesions, apoptosis, oxidative stress and impairment of spatial recognition memory. Furthermore, microarray data showed marked alterations in the expression of 154 genes involved in learning and memory, immunity and inflammation, signal transduction, apoptosis and response to stress in the 2 mg/kg CeCl3 exposed hippocampi. Specifically, the significant up-regulation of Axud1, Cdc37, and Ube2v1 caused severe apoptosis, and great suppression of Adcy8, Fos, and Slc5a7 expression led to impairment of mouse cognitive ability. Therefore, Axud1, Cdc37, Ube2v1, Adcy8, Fos, and Slc5a7 may be potential biomarkers of hippocampal toxicity caused by CeCl3 exposure. PMID:23573234

  12. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    SciTech Connect

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2014-07-01

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, and 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.

  13. Diminished Autophagy Limits Cardiac Injury in Mouse Models of Type 1 Diabetes*

    PubMed Central

    Xu, Xianmin; Kobayashi, Satoru; Chen, Kai; Timm, Derek; Volden, Paul; Huang, Yuan; Gulick, James; Yue, Zhenyu; Robbins, Jeffrey; Epstein, Paul N.; Liang, Qiangrong

    2013-01-01

    Cardiac autophagy is inhibited in type 1 diabetes. However, it remains unknown if the reduced autophagy contributes to the pathogenesis of diabetic cardiomyopathy. We addressed this question using mouse models with gain- and loss-of-autophagy. Autophagic flux was inhibited in diabetic hearts when measured at multiple time points after diabetes induction by streptozotocin as assessed by protein levels of microtubule-associated protein light chain 3 form 2 (LC3-II) or GFP-LC3 puncta in the absence and presence of the lysosome inhibitor bafilomycin A1. Autophagy in diabetic hearts was further reduced in beclin 1- or Atg16-deficient mice but was restored partially or completely by overexpression of beclin 1 to different levels. Surprisingly, diabetes-induced cardiac damage was substantially attenuated in beclin 1- and Atg16-deficient mice as shown by improved cardiac function as well as reduced levels of oxidative stress, interstitial fibrosis, and myocyte apoptosis. In contrast, diabetic cardiac damage was dose-dependently exacerbated by beclin 1 overexpression. The cardioprotective effects of autophagy deficiency were reproduced in OVE26 diabetic mice. These effects were associated with partially restored mitophagy and increased expression and mitochondrial localization of Rab9, an essential regulator of a non-canonical alternative autophagic pathway. Together, these findings demonstrate that the diminished autophagy is an adaptive response that limits cardiac dysfunction in type 1 diabetes, presumably through up-regulation of alternative autophagy and mitophagy. PMID:23658055

  14. Lentiviral vector PLV-PI3KCG gene transfer inhibits hypoxic cardiomyocytes apoptosis

    PubMed Central

    Li, Yan-Yan; Zhang, Hui; Lu, Xin-Zheng

    2015-01-01

    The PI3K/Akt signal pathway was suggested to be associated with apoptosis. However, it was still unclear whether activated PI3K/Akt signaling pathway could inhibit hypoxic cardiomyocytes apoptosis. In this research, the recombinant PI3KCG lentiviral vector plasmid (PLV-PI3KCG) was constructed and transfected into neonatal rat hypoxia/reoxygenation (H/R) injury cardiomyocytes models which were randomly divided into five groups as the normal control group, H/R group, HR empty plasmid group (HRE group), HR PLV-PI3KCG transfection preconditioning group (HRP group), and HR PLV-PI3KCG transfection + LY294002 group (HRPL group). Compared with the H/R, HRE and HRPL groups, the cardiomyocytes beat frequency and survival rate in the HRP group were significantly increased (P<0.05) and the released LDH were significantly decreased (P<0.05). The Bcl-2/Bax ratio was significantly lower in H/R, HRE and HRPL groups than that in HRP group (P<0.05). Activated PI3K/Akt signaling pathway could play a protection role in the cardiomyocytes H/R injury process which could be inhibited by LY294002. PMID:26884933

  15. Interleukin-37 ameliorates myocardial ischaemia/reperfusion injury in mice

    PubMed Central

    Wu, B; Meng, K; Ji, Q; Cheng, M; Yu, K; Zhao, X; Tony, H; Liu, Y; Zhou, Y; Chang, C; Zhong, Y; Zhu, Z; Zhang, W; Mao, X; Zeng, Q

    2014-01-01

    Innate immune and inflammatory responses are involved in myocardial ischaemia/reperfusion (I/R) injury. Interleukin (IL)-37 is a newly identified member of the IL-1 family, and functions as a fundamental inhibitor of innate immunity and inflammation. However, its role in myocardial I/R injury remains unknown. I/R or sham operations were performed on male C57BL/6J mice. I/R mice received an injection of recombinant human IL-37 or vehicle, immediately before reperfusion. Compared with vehicle treatment, mice treated with IL-37 showed an obvious amelioration of the I/R injury, as demonstrated by reduced infarct size, decreased cardiac troponin T level and improved cardiac function. This protective effect was associated with the ability of IL-37 to suppress production of proinflammatory cytokines, chemokines and neutrophil infiltration, which together contributed to a decrease in cardiomyocyte apoptosis and reactive oxygen species (ROS) generation. In addition, we found that IL-37 inhibited the up-regulation of Toll-like receptor (TLR)-4 expression and nuclear factor kappa B (NF-kB) activation after I/R, while increasing the anti-inflammatory IL-10 level. Moreover, the administration of anti-IL-10R antibody abolished the protective effects of IL-37 in I/R injury. In-vitro experiments further demonstrated that IL-37 protected cardiomyocytes from apoptosis under I/R condition, and suppressed the migration ability of neutrophils towards the chemokine LIX. In conclusion, IL-37 plays a protective role against mouse myocardial I/R injury, offering a promising therapeutic medium for myocardial I/R injury. PMID:24527881

  16. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury

    PubMed Central

    Weinreuter, Martin; Kreusser, Michael M; Beckendorf, Jan; Schreiter, Friederike C; Leuschner, Florian; Lehmann, Lorenz H; Hofmann, Kai P; Rostosky, Julia S; Diemert, Nathalie; Xu, Chang; Volz, Hans Christian; Jungmann, Andreas; Nickel, Alexander; Sticht, Carsten; Gretz, Norbert; Maack, Christoph; Schneider, Michael D; Gröne, Hermann-Josef; Müller, Oliver J; Katus, Hugo A; Backs, Johannes

    2014-01-01

    CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes. PMID:25193973

  17. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury.

    PubMed

    Weinreuter, Martin; Kreusser, Michael M; Beckendorf, Jan; Schreiter, Friederike C; Leuschner, Florian; Lehmann, Lorenz H; Hofmann, Kai P; Rostosky, Julia S; Diemert, Nathalie; Xu, Chang; Volz, Hans Christian; Jungmann, Andreas; Nickel, Alexander; Sticht, Carsten; Gretz, Norbert; Maack, Christoph; Schneider, Michael D; Gröne, Hermann-Josef; Müller, Oliver J; Katus, Hugo A; Backs, Johannes

    2014-10-01

    CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury

    PubMed Central

    Brosius Lutz, Amanda; Sloan, Steven A.; Carson, Glenn A.; Zhou, Lu; Lovelett, Emilie; Posada, Sean; Zuchero, J. Bradley; Barres, Ben A.

    2017-01-01

    Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system’s remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury. PMID:28874532

  19. Dexmedetomidine attenuates acute lung injury induced by lipopolysaccharide in mouse through inhibition of MAPK pathway.

    PubMed

    Xu, Yingzhen; Zhang, Ruyi; Li, Chunli; Yin, Xue; Lv, Changjun; Wang, Yaoqi; Zhao, Wenxiang; Zhang, Xiuli

    2015-10-01

    Dexmedetomidine (Dex) is widely used for sedation in intensive care units and can be used as an adjunct to anesthetics. Previous studies have demonstrated that Dex has anti-inflammatory property. In this study, we aim to explore the potential therapeutic effects and mechanisms of Dex on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. To induce ALI, mice were intraperitoneally injected with LPS, while Dex was treated 1 h before LPS injection. The inflammation of lung tissues was evaluated by HE stain, and bronchoalveolar lavage fluid (BALF) was obtained after 6 h to measure protein concentrations. We also used an enzyme-linked immunosorbent assay to detect the secretion levels of proinflammatory cytokines in the serum. Western blotting method was adopted to observe changes in mitogen-activated protein kinases and downstream nuclear transcription factors. The results showed that pretreatment with Dex considerably reduced neutrophil infiltration and pulmonary edema, and significantly reduced protein concentrations in the BALF, as well as suppressed LPS-induced elevation of proinflammatory cytokines (TNF-α and IL-1β) in the serum. In addition, we observed that the molecular mechanism of Dex-mediated anti-inflammation is associated with decreasing phosphorylation of MKK4, MMK3/6, ERK1/2, p38MAPK, and JNK, and diminishing activation of Elk-1, c-Jun, and ATF-2. Dex could attenuate ALI induced by LPS in mice, and this effect may be mediated through the inhibition of MAPK pathway.

  20. A method to establish a mouse model of bone marrow microenvironment injury.

    PubMed

    Cheng, Wenzhe; Ge, Quanhu; Wan, Longfei; Wang, Xiaoyi; Chen, Xueling; Wu, Xiangwei

    2017-06-13

    A normal bone marrow microenvironment plays a very important role in the normal functioning of hematopoietic stem cells. Once disturbed, this microenvironment can become favorable for the occurrence of blood disorders, cancers, and other diseases. Therefore, further studies on the bone marrow microenvironment should be performed to reveal regulatory and stem cell fate determination mechanisms and promote the development of bone marrow transplantation, tissue repair and regenerative medicine, and other fields. A small animal model for further research is also urgently needed. In this study, an electric shock device was designed to elicit a femur bone marrow microenvironment injury in mice. A wire was inserted into the distal femur but not into the proximal femur, and the bone marrow microenvironment was evidently damaged by application of 100 ± 10 V for 1.5 ± 0.5 min; mortality, however, was low in the mice. Gross observation, hematoxylin and eosin staining, immunohistochemistry, bright-field microscopy, and micro-CT scanning were also conducted. A large number of new blood capillaries and sinusoids appeared in the injured distal femur after 2 weeks. The capillaries in the injured femur disappeared after 4 weeks, and mature blood vessels were scattered throughout the injured area. Red blood cells disappeared, and the cellular structure and trabecular bone were better than those observed 2 weeks previously. Thus, we developed a simply operated, accurate, reliable, and easily controlled small animal model as a good technical platform to examine angiogenesis and segmentation damage in the bone marrow microenvironment.

  1. Protective effect of Jolkinolide B on LPS-induced mouse acute lung injury.

    PubMed

    Yang, Hailing; Li, Yan; Huo, Pengfei; Li, Xiao-Ou; Kong, Daliang; Mu, Wei; Fang, Wei; Li, Lingxia; Liu, Ning; Fang, Ling; Li, Hongjun; He, Chengyan

    2015-05-01

    Jolkinolide B (JB), an ent-abietane diterpenoid, isolated from the dried root of Euphorbia fischeriana, has been reported to have potent anti-tumor and anti-inflammatory activities. However, the effects of JB on acute lung injury (ALI) and underlying molecular mechanisms have not been investigated. The present study aimed to investigate the effect of JB on lipopolysaccharide (LPS)-induced ALI. Male C57BL/6 mice were pretreated with dexamethasone or JB 1h before intranasal instillation of LPS. The results showed that JB markedly attenuated LPS-induced histological alterations, lung edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity as well as the production of TNF-α, IL-6 and IL-1β. Furthermore, JB also significantly inhibited LPS-induced the degradation of IκBα and phosphorylation of NF-κB p65 and MAPK. Therefore, our study provides the first line of evidence that pretreatment of JB has a protective effect on LPS-induced ALI in mice. The anti-inflammatory mechanism of JB may be attributed to its suppression of NF-κB and MAPK activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A Major Effect QTL on Chromosome 18 for Noise Injury to the Mouse Cochlear Lateral Wall

    PubMed Central

    Ohlemiller, Kevin K.; Rosen, Allyson D.; Gagnon, Patricia M.

    2009-01-01

    We recently demonstrated a striking difference among inbred mouse strains in the effects of a single noise exposure, whereby CBA/J and CBA/CaJ (CBA) mice show moderate reversible reduction in the endocochlear potential (EP) while C57BL/6J (B6) mice do not (Ohlemiller, K.K., Gagnon, P.M. 2007. Genetic dependence of cochlear cells and structures injured by noise. Hearing Res. 224, 34-50). Acute EP reduction in CBA was reliably associated with characteristic pathology of the spiral ligament and stria vascularis, both immediately after noise and 8 weeks later. Analysis of B6×CBA F1 hybrid mice indicated that EP reduction and its anatomic correlates are co-inherited in an autosomal dominant manner. Further analysis of N2 mice resulting from the backcross of F1 hybrids to B6 mice led us to suggest that the EP reduction phenotype principally reflects the influence of a small number of quantitative trait loci (QTLs). Here we report the results of QTL mapping of the EP reduction phenotype in CBA/J using 106 N2 mice from a (CBA×B6) × B6 backcross. Correlation of acute post-noise EP with 135 markers distributed throughout the genome revealed a single major effect QTL on chromosome 18 (12.5 cM, LOD 3.57) (Nirep, for Noise-induced reduction in EP QTL), and two marginally significant QTLs on chromosomes 5 and 16 (LOD 1.43 and 1.73, respectively). Our results underscore that fact that different cochlear structures may possess different susceptibilities to noise through the influence of non-overlapping genes. While Nirep and similar-acting QTLs do not appear to influence the extent of permanent hearing loss from a single noise exposure, they could reduce the homeostatic ‘reserve’ of the lateral wall in protracted or continual exposures, and thereby influence long term threshold stability. PMID:19913606

  3. Injected matrix stimulates myogenesis and regeneration of mouse skeletal muscle after ischaemic injury.

    PubMed

    Kuraitis, D; Ebadi, D; Zhang, P; Rizzuto, E; Vulesevic, B; Padavan, D T; Al Madhoun, A; McEwan, K A; Sofrenovic, T; Nicholson, K; Whitman, S C; Mesana, T G; Skerjanc, I S; Musarò, A; Ruel, M; Suuronen, E J

    2012-09-12

    Biomaterial-guided regeneration represents a novel approach for the treatment of myopathies. Revascularisation and the intramuscular extracellular matrix are important factors in stimulating myogenesis and regenerating muscle damaged by ischaemia. In this study, we used an injectable collagen matrix, enhanced with sialyl LewisX (sLeX), to guide skeletal muscle differentiation and regeneration. The elastic properties of collagen and sLeX-collagen matrices were similar to those of skeletal muscle, and culture of pluripotent mESCs on the matrices promoted their differentiation into myocyte-like cells expressing Pax3, MHC3, myogenin and Myf5. The regenerative properties of matrices were evaluated in ischaemic mouse hind-limbs. Treatment with the sLeX-matrix augmented the production of myogenic-mediated factors insulin-like growth factor (IGF)-1, and IGF binding protein-2 and -5 after 3 days. This was followed by muscle regeneration, including a greater number of regenerating myofibres and increased transcription of Six1, M-cadherin, myogenin and Myf5 after 10 days. Simultaneously, the sLeX-matrix promoted increased mobilisation and engraftment of bone marrow-derived progenitor cells, the development of larger arterioles and the restoration of tissue perfusion. Both matrix treatments tended to reduce maximal forces of ischaemic solei muscles, but sLeX-matrix lessened this loss of force and also prevented muscle fatigue. Only sLeX-matrix treatment improved mobility of mice on a treadmill. Together, these results suggest a novel approach for regenerative myogenesis, whereby treatment only with a matrix, which possesses an inherent ability to guide myogenic differentiation of pluripotent stem cells, can enhance the endogenous vascular and myogenic regeneration of skeletal muscle, thus holding promise for future clinical use.

  4. Redox mechanisms of cardiomyocyte mitochondrial protection

    PubMed Central

    Bartz, Raquel R.; Suliman, Hagir B.; Piantadosi, Claude A.

    2015-01-01

    Oxidative and nitrosative stress are primary contributors to the loss of myocardial tissue in insults ranging from ischemia/reperfusion injury from coronary artery disease and heart transplantation to sepsis-induced myocardial dysfunction and drug-induced myocardial damage. This cell damage caused by oxidative and nitrosative stress leads to mitochondrial protein, DNA, and lipid modifications, which inhibits energy production and contractile function, potentially leading to cell necrosis and/or apoptosis. However, cardiomyocytes have evolved an elegant set of redox-sensitive mechanisms that respond to and contain oxidative and nitrosative damage. These responses include the rapid induction of antioxidant enzymes, mitochondrial DNA repair mechanisms, selective mitochondrial autophagy (mitophagy), and mitochondrial biogenesis. Coordinated cytoplasmic to nuclear cell-signaling and mitochondrial transcriptional responses to the presence of elevated cytoplasmic oxidant production, e.g., H2O2, allows nuclear translocation of the Nfe2l2 transcription factor and up-regulation of downstream cytoprotective genes such as heme oxygenase-1 which generates physiologic signals, such as CO that up-regulates Nfe212 gene transcription. Simultaneously, a number of other DNA binding transcription factors are expressed and/or activated under redox control, such as Nuclear Respiratory Factor-1 (NRF-1), and lead to the induction of genes involved in both intracellular and mitochondria-specific repair mechanisms. The same insults, particularly those related to vascular stress and inflammation also produce elevated levels of nitric oxide, which also has mitochondrial protein thiol-protective functions and induces mitochondrial biogenesis through cyclic GMP-dependent and perhaps other pathways. This brief review provides an overview of these pathways and interconnected cardiac repair mechanisms. PMID:26578967

  5. Closed Head Injury in an Age-Related Alzheimer Mouse Model Leads to an Altered Neuroinflammatory Response and Persistent Cognitive Impairment

    PubMed Central

    Webster, Scott J.; Van Eldik, Linda J.; Watterson, D. Martin

    2015-01-01

    Epidemiological studies have associated increased risk of Alzheimer's disease (AD)-related clinical symptoms with a medical history of head injury. Currently, little is known about pathophysiology mechanisms linked to this association. Persistent neuroinflammation is one outcome observed in patients after a single head injury. Neuroinflammation is also present early in relevant brain regions during AD pathology progression. In addition, previous mechanistic studies in animal models link neuroinflammation as a contributor to neuropathology and cognitive impairment in traumatic brain injury (TBI) or AD-related models. Therefore, we explored the potential interplay of neuroinflammatory responses in TBI and AD by analysis of the temporal neuroinflammatory changes after TBI in an AD model, the APP/PS1 knock-in (KI) mouse. Discrete temporal aspects of astrocyte, cytokine, and chemokine responses in the injured KI mice were delayed compared with the injured wild-type mice, with a peak neuroinflammatory response in the injured KI mice occurring at 7 d after injury. The neuroinflammatory responses were more persistent in the injured KI mice, leading to a chronic neuroinflammation. At late time points after injury, KI mice exhibited a significant impairment in radial arm water maze performance compared with sham KI mice or injured wild-type mice. Intervention with a small-molecule experimental therapeutic (MW151) that selectively attenuates proinflammatory cytokine production yielded improved cognitive behavior outcomes, consistent with a link between neuroinflammatory responses and altered risk for AD-associated pathology changes with head injury. PMID:25904805

  6. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes.

    PubMed

    He, Xiaoqing; Kan, Hong; Cai, Lu; Ma, Qiang

    2009-01-01

    Exposure to high levels of glucose induces the production of reactive oxygen species (ROS) in cardiomyocytes that may contribute to the development of cardiomyopathy in diabetes. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the antioxidant response element (ARE)-dependent gene regulation in response to oxidative stress. The role of Nrf2 in defense against high glucose-induced oxidative damage in cardiomyocytes was investigated. Glucose at high concentrations induced ROS production in both primary neonatal and adult cardiomyocytes from the Nrf2 wild type (WT) mouse heart, whereas, in Nrf2 knockout (KO) cells, ROS was significantly higher under basal conditions and high glucose markedly further increased ROS production in concentration and time-dependent manners. Concomitantly, high glucose induced significantly higher levels of apoptosis at lower concentrations and in shorter time in Nrf2 KO cells than in WT cells. Primary adult cardiomyocytes from control and diabetic mice also showed dependence on Nrf2 function for isoproterenol-stimulated contraction. Additionally, cardiomyocytes from Nrf2 KO mice exhibited increased sensitivity to 3-nitropropionic acid, an inhibitor of mitochondrial respiratory complex II, for both ROS production and apoptosis compared with Nrf2 WT cells, further emphasizing the role of Nrf2 in ROS defense in the cells. Mechanistically, Nrf2 was shown to mediate the basal expression and induction of ARE-controlled cytoprotective genes, Nqo1 and Ho1, at both mRNA and protein levels in cardiomyocytes, as both the basal and inducible expressions of the genes were lost in Nrf2 KO cells or largely reduced by Nrf2 SiRNA. The findings, for the first time, established Nrf2 as a critical regulator of defense against ROS in normal and diabetic hearts.

  7. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury.

    PubMed

    Du, Guo-Qing; Shao, Zheng-Bo; Wu, Jie; Yin, Wen-Juan; Li, Shu-Hong; Wu, Jun; Weisel, Richard D; Tian, Jia-Wei; Li, Ren-Ke

    2017-01-01

    Ischemic cardiac injury is the main contributor to heart failure, and the regenerative capacity of intrinsic stem cells plays an important role in tissue repair after injury. However, stem cells in aged individuals have reduced regenerative potential and aged tissues lack the capacity to renew. Growth differentiation factor 11 (GDF11), from the activin-transforming growth factor β superfamily, has been shown to promote stem cell activity and rejuvenation. We carried out non-invasive targeted delivery of the GDF11 gene to the heart using ultrasound-targeted microbubble destruction (UTMD) and cationic microbubble (CMB) to investigate the ability of GDF11 to rejuvenate the aged heart and improve tissue regeneration after injury. Young (3 months) and old (21 months) mice were used to evaluate the expression of GDF11 mRNA in the myocardium at baseline and after ischemia/reperfusion (I/R) and myocardial infarction. GDF11 expression decreased with age and following myocardial injury. UTMD-mediated delivery of the GDF11 plasmid to the aged heart after I/R injury effectively and selectively increased GDF11 expression in the heart, and improved cardiac function and reduced infarct size. Over-expression of GDF11 decreased senescence markers, p16 and p53, as well as the number of p16(+) cells in old mouse hearts. Furthermore, increased proliferation of cardiac stem cell antigen 1 (Sca-1(+)) cells and increased homing of endothelial progenitor cells and angiogenesis in old ischemic hearts occurred after GDF11 over-expression. Repetitive targeted delivery of the GDF11 gene via UTMD can rejuvenate the aged mouse heart and protect it from I/R injury.

  8. The yellow fluorescent protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying Chondroitinase ABC-mediated repair following spinal cord injury

    PubMed Central

    Carter, Lucy M.; Starkey, Michelle L.; Akrimi, Sonia F.; Davies, Meirion; McMahon, Stephen B.; Bradbury, Elizabeth J.

    2012-01-01

    Chondroitinase ABC (ChABC) represents a promising therapeutic strategy for the treatment of spinal cord injury due to its potent effects on restoring function to spinal injured adult mammals. However, there is limited mechanistic insight as to the underlying effects of ChABC treatment, where the effects are mediated, and which signalling pathways are involved in ChABC-mediated repair. Here we utilise a transgenic (YFP-H) mouse to demonstrate that cortical layer V projection neurons undergo severe atrophy four weeks following thoracic dorsal column injury and that ChABC is neuroprotective for these neurons following ICV infusion. ChABC also prevented cell atrophy following localised delivery to the spinal cord, suggesting a possible retrograde neuroprotective effect mediated at the injury site. Furthermore, neuroprotection of corticospinal cell somata coincided with increased axonal sprouting in the spinal cord. In addition, Western blot analysis of a number of kinases important in survival and growth signalling revealed a significant increase in phosphorylated ERK1 at the spinal injury site following in vivo ChABC treatment, indicating that activated ERK may play a role in downstream repair processes following ChABC treatment. Total forms of PKC and AKT were also elevated, indicating that modification of the glial scar by ChABC promotes long-lasting signalling changes at the lesion site. Thus, using the YFP-H mouse as a novel tool to study degenerative changes and repair following spinal cord injury we demonstrate, for the first time, that ChABC treatment regulates multiple signalling cascades at the injury site and exerts protective effects on axotomised corticospinal projection neurons. PMID:19109493

  9. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy

    PubMed Central

    Greco, Carolina M.; Kunderfranco, Paolo; Rubino, Marcello; Larcher, Veronica; Carullo, Pierluigi; Anselmo, Achille; Kurz, Kerstin; Carell, Thomas; Angius, Andrea; Latronico, Michael V. G.; Papait, Roberto; Condorelli, Gianluigi

    2016-01-01

    Methylation at 5-cytosine (5-mC) is a fundamental epigenetic DNA modification associated recently with cardiac disease. In contrast, the role of 5-hydroxymethylcytosine (5-hmC)—5-mC's oxidation product—in cardiac biology and disease is unknown. Here we assess the hydroxymethylome in embryonic, neonatal, adult and hypertrophic mouse cardiomyocytes, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks during heart development and failure. DNA hydroxymethylation marks the body of highly expressed genes as well as distal regulatory regions with enhanced activity. Moreover, pathological hypertrophy is characterized by a shift towards a neonatal 5-hmC distribution pattern. We also show that the ten-eleven translocation 2 (TET2) enzyme regulates the expression of key cardiac genes, such as Myh7, through 5-hmC deposition on the gene body and at enhancers. Thus, we provide a genome-wide analysis of 5-hmC in the cardiomyocyte and suggest a role for this epigenetic modification in heart development and disease. PMID:27489048

  10. Cardiomyocyte ultrastructural damage in β-thalassaemic mice

    PubMed Central

    Sanyear, Chanita; Butthep, Punnee; Nithipongvanich, Ramaneeya; Sirankapracha, Pornpan; Winichagoon, Pranee; Fucharoen, Suthat; Svasti, Saovaros

    2013-01-01

    β-thalassaemia is a hereditary anaemia resulting from the absence or reduction in β-globin chain production. Heart complications related to iron overload are the most serious cause of death in these patients. In this report cardiac pathology of β-thalassaemic mice was evaluated by light and electron microscopy. The study was carried out in thalassaemic mice carrying human β-thalassaemia mutation, IVSII-654 (654), transgenic mice carrying human βE-globin transgene insertion (E4), thalassaemic mice with human βE-globi