Sample records for mouse cerebral cortex

  1. Absence of bundle structure in the neocortex of the reeler mouse at the embryonic stage. Studies by scanning electron microscopic fractography.

    PubMed

    Mikoshiba, K; Nishimura, Y; Tsukada, Y

    The reeler mutant mouse is characterized by a derangement of the cerebral cortical structure due to abnormalities during the migration step at the embryonic stage. We have analyzed both the control and reeler cerebral cortex by means of scanning electron microscopic fractography. In the control cerebral cortex, the bundle formation was composed of fine fibers on which the migrating neuroblasts were attached perpendicular to the pial surface, whereas no bundle formation was observed in the reeler; instead, there was a fine meshwork of fibers surrounding the neuroblasts. The possible role of bundle formation in the normal cerebral cortex and the correlation between the inability of cells to migrate and the absence of bundle formation in the reeler is discussed.

  2. The Circadian Oscillator of the Cerebral Cortex: Molecular, Biochemical and Behavioral Effects of Deleting the Arntl Clock Gene in Cortical Neurons.

    PubMed

    Bering, Tenna; Carstensen, Mikkel Bloss; Wörtwein, Gitta; Weikop, Pia; Rath, Martin Fredensborg

    2018-02-01

    A molecular circadian oscillator resides in neurons of the cerebral cortex, but its role is unknown. Using the Cre-LoxP method, we have here abolished the core clock gene Arntl in those neurons. This mouse represents the first model carrying a deletion of a circadian clock component specifically in an extrahypothalamic cell type of the brain. Molecular analyses of clock gene expression in the cerebral cortex of the Arntl conditional knockout mouse revealed disrupted circadian expression profiles, whereas clock gene expression in the suprachiasmatic nucleus was still rhythmic, thus showing that Arntl is required for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-β from the mouse brain.

    PubMed

    Hawkes, Cheryl A; Gatherer, Maureen; Sharp, Matthew M; Dorr, Adrienne; Yuen, Ho Ming; Kalaria, Rajesh; Weller, Roy O; Carare, Roxana O

    2013-04-01

    Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  4. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones

    PubMed Central

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697

  5. Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites.

    PubMed

    Kim, Jiyun V; Jiang, Ning; Tadokoro, Carlos E; Liu, Liping; Ransohoff, Richard M; Lafaille, Juan J; Dustin, Michael L

    2010-01-31

    The mouse spinal cord is an important site for autoimmune and injury models. Skull thinning surgery provides a minimally invasive window for microscopy of the mouse cerebral cortex, but there are no parallel methods for the spinal cord. We introduce a novel, facile and inexpensive method for two-photon laser scanning microscopy of the intact spinal cord in the mouse by taking advantage of the naturally accessible intervertebral space. These are powerful methods when combined with gene-targeted mice in which endogenous immune cells are labeled with green fluorescent protein (GFP). We first demonstrate that generation of the intervertebral window does not elicit a reaction of GFP(+) microglial cells in CX3CR1(gfp/+) mice. We next demonstrate a distinct rostrocaudal migration of GFP(+) immune cells in the spinal cord of CXCR6(gfp/+) mice during active experimental autoimmune encephalomyelitis (EAE). Interestingly, infiltration of the cerebral cortex by GFP(+) cells in these mice required three conditions: EAE induction, cortical injury and expression of CXCR6 on immune cells. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Assessment of the developmental totipotency of neural cells in the cerebral cortex of mouse embryo by nuclear transfer

    PubMed Central

    Yamazaki, Yukiko; Makino, Hatsune; Hamaguchi-Hamada, Kayoko; Hamada, Shun; Sugino, Hidehiko; Kawase, Eihachiro; Miyata, Takaki; Ogawa, Masaharu; Yanagimachi, Ryuzo; Yagi, Takeshi

    2001-01-01

    When neural cells were collected from the entire cerebral cortex of developing mouse fetuses (15.5–17.5 days postcoitum) and their nuclei were transferred into enucleated oocytes, 5.5% of the reconstructed oocytes developed into normal offspring. This success rate was the highest among all previous mouse cloning experiments that used somatic cells. Forty-four percent of live embryos at 10.5 days postcoitum were morphologically normal when premature and early-postmitotic neural cells from the ventricular side of the cortex were used. In contrast, the majority (95%) of embryos were morphologically abnormal (including structural abnormalities in the neural tube) when postmitotic-differentiated neurons from the pial side of the cortex were used for cloning. Whereas 4.3% of embryos cloned with ventricular-side cells developed into healthy offspring, only 0.5% of those cloned with differentiated neurons in the pial side did so. These facts seem to suggest that the nuclei of neural cells in advanced stages of differentiation had lost their developmental totipotency. The underlying mechanism for this developmental limitation could be somatic DNA rearrangements in differentiating neural cells. PMID:11698647

  7. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    PubMed Central

    Winter, Mark R.; Liu, Mo; Monteleone, David; Melunis, Justin; Hershberg, Uri; Goderie, Susan K.; Temple, Sally; Cohen, Andrew R.

    2015-01-01

    Summary Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex. PMID:26344906

  8. Effects of valerian consumption during pregnancy on cortical volume and the levels of zinc and copper in the brain tissue of mouse fetus.

    PubMed

    Mahmoudian, Alireza; Rajaei, Ziba; Haghir, Hossein; Banihashemian, Shahaboldin; Hami, Javad

    2012-04-01

    The aim of the present study was to determine the effects of valerian (Valeriana officinalis) consumption in pregnancy on cortical volume and the levels of zinc and copper, two essential elements that affect brain development and function, in the brain tissues of mouse fetuses. Pregnant female mice were treated with either saline or 1.2 g/kg body weight valerian extract intraperitoneally daily on gestation days (GD) 7 to 17. On GD 20, mice were sacrificed and their fetuses were collected. Fetal brains were dissected, weighed and processed for histological analysis. The volume of cerebral cortex was estimated by the Cavalieri principle. The levels of zinc and copper in the brain tissues were measured by atomic absorption spectroscopy. The results indicated that valerian consumption in pregnancy had no significant effect on brain weight, cerebral cortex volume and copper level in fetal brain. However,it significantly decreased the level of zinc in the brain (P<0.05). Using valerian during midgestation do not have an adverse effect on cerebral cortex; however,it caused a significant decrease in zinc level in the fetal brain. This suggests that valerian use should be limited during pregnancy.

  9. Coevolution of radial glial cells and the cerebral cortex

    PubMed Central

    De Juan Romero, Camino

    2015-01-01

    Abstract Radial glia cells play fundamental roles in the development of the cerebral cortex, acting both as the primary stem and progenitor cells, as well as the guides for neuronal migration and lamination. These critical functions of radial glia cells in cortical development have been discovered mostly during the last 15 years and, more recently, seminal studies have demonstrated the existence of a remarkable diversity of additional cortical progenitor cell types, including a variety of basal radial glia cells with key roles in cortical expansion and folding, both in ontogeny and phylogeny. In this review, we summarize the main cellular and molecular mechanisms known to be involved in cerebral cortex development in mouse, as the currently preferred animal model, and then compare these with known mechanisms in other vertebrates, both mammal and nonmammal, including human. This allows us to present a global picture of how radial glia cells and the cerebral cortex seem to have coevolved, from reptiles to primates, leading to the remarkable diversity of vertebrate cortical phenotypes. GLIA 2015;63:1303–1319 PMID:25808466

  10. The Bat as a New Model of Cortical Development.

    PubMed

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Ariza, Jeanelle; Rogers, Hailee; Horton-Sparks, Kayla; Kreutz, Anna; Behringer, Richard; Rasweiler, John J; Noctor, Stephen C

    2017-11-09

    The organization of the mammalian cerebral cortex shares fundamental features across species. However, while the radial thickness of grey matter varies within one order of magnitude, the tangential spread of the cortical sheet varies by orders of magnitude across species. A broader sample of model species may provide additional clues for understanding mechanisms that drive cortical expansion. Here, we introduce the bat Carollia perspicillata as a new model species. The brain of C. perspicillata is similar in size to that of mouse but has a cortical neurogenic period at least 5 times longer than mouse, and nearly as long as that of the rhesus macaque, whose brain is 100 times larger. We describe the development of laminar and regional structures, neural precursor cell identity and distribution, immune cell distribution, and a novel population of Tbr2+ cells in the caudal ganglionic eminence of the developing neocortex of C. perspicillata. Our data indicate that unique mechanisms guide bat cortical development, particularly concerning cell cycle length. The bat model provides new perspective on the evolution of developmental programs that regulate neurogenesis in mammalian cerebral cortex, and offers insight into mechanisms that contribute to tangential expansion and gyri formation in the cerebral cortex. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse.

    PubMed

    Goulas, Alexandros; Uylings, Harry B M; Hilgetag, Claus C

    2017-04-01

    Structural connectivity among cortical areas provides the substrate for information exchange in the cerebral cortex and is characterized by systematic patterns of presence or absence of connections. What principles govern this cortical wiring diagram? Here, we investigate the relation of physical distance and cytoarchitecture with the connectional architecture of the mouse cortex. Moreover, we examine the relation between patterns of ipsilateral and contralateral connections. Our analysis reveals a mirrored and attenuated organization of contralateral connections when compared with ipsilateral connections. Both physical distance and cytoarchitectonic similarity of cortical areas are related to the presence or absence of connections. Notably, our analysis demonstrates that the combination of these factors relates better to cortico-cortical connectivity than each factor in isolation and that the two factors relate differently to ipsilateral and contralateral connectivity. Physical distance is more tightly related to the presence or absence of ipsilateral connections, but its relevance greatly diminishes for contralateral connections, while the contribution of cytoarchitectonic similarity remains relatively stable. Our results, together with similar findings in the cat and macaque cortex, suggest that a common set of principles underlies the macroscale wiring of the mammalian cerebral cortex.

  12. Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex

    PubMed Central

    Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.

    2009-01-01

    Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with α-pifithrin protects immature neurons; blocking p53-mitochondrial functions with μ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity. PMID:18820287

  13. Cholecystokinin levels in prohormone convertase 2 knock-out mouse brain regions reveal a complex phenotype of region-specific alterations.

    PubMed

    Beinfeld, Margery C; Blum, Alissa; Vishnuvardhan, Daesety; Fanous, Sanya; Marchand, James E

    2005-11-18

    Prohormone convertase 2 is widely co-localized with cholecystokinin in rodent brain. To examine its role in cholecystokinin processing, cholecystokinin levels were measured in dissected brain regions from prohormone convertase 2 knock-out mice. Cholecystokinin levels were lower in hippocampus, septum, thalamus, mesencephalon, and pons in knock-out mice than wild-type mice. In cerebral cortex, cortex-related structures and olfactory bulb, cholecystokinin levels were higher than wild type. Female mice were more affected by the loss of prohormone convertase 2 than male mice. The decrease in cholecystokinin levels in these brain regions shows that prohormone convertase 2 is important for cholecystokinin processing. Quantitative polymerase chain reaction measurements were performed to examine the relationship between peptide levels and cholecystokinin and enzyme expression. They revealed that cholecystokinin and prohormone convertase 1 mRNA levels in cerebral cortex and olfactory bulb were actually lower in knock-out than wild type, whereas their expression in other brain regions of knock-out mouse brain was the same as wild type. Female mice frequently had higher expression of cholecystokinin and prohormone convertase 1, 2, and 5 mRNA than male mice. The loss of prohormone convertase 2 alters CCK processing in specific brain regions. This loss also appears to trigger compensatory mechanisms in cerebral cortex and olfactory bulb that produce elevated levels of cholecystokinin but do not involve increased expression of cholecystokinin, prohormone convertase 1 or 5 mRNA.

  14. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    PubMed Central

    Chang, Chia-Yu; Guo, How-Ran; Tsai, Wan-Chen; Yang, Kai-Lin; Lin, Li-Chuan

    2015-01-01

    Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression. PMID:26114099

  15. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression.

    PubMed

    Chang, Chia-Yu; Guo, How-Ran; Tsai, Wan-Chen; Yang, Kai-Lin; Lin, Li-Chuan; Cheng, Tain-Junn; Chuu, Jiunn-Jye

    2015-01-01

    Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  16. Are you also what your mother eats? Distinct proteomic portrait as a result of maternal high-fat diet in the cerebral cortex of the adult mouse.

    PubMed

    Manousopoulou, A; Woo, J; Woelk, C H; Johnston, H E; Singhania, A; Hawkes, C; Garbis, S D; Carare, R O

    2015-08-01

    Epidemiological studies suggest an association between maternal obesity and adverse neurodevelopmental outcomes in offspring. Our aim was to compare the global proteomic portrait in the cerebral cortex between mice born to mothers on a high-fat or control diet who themselves were fed a high-fat or control diet. Male mice born to dams fed a control (C) or high-fat (H) diet 4 weeks before conception and during gestation, and lactation were assigned to either C or H diet at weaning. Mice were killed at 19 weeks and their cerebral cortices were analysed using a two-dimensional liquid chromatography-mass spectrometry methodology. In total, 6 695 proteins were identified (q<0.01), 10% of which were modulated in at least one of the groups relative to controls. In silico analysis revealed that mice clustered based on the diet of the mother and not their own diet and that maternal high-fat diet was significantly associated with response to hypoxia/oxidative stress and apoptosis in the cerebral cortex of the adult offspring. Maternal high-fat diet resulted in distinct endophenotypic changes of the adult offspring cerebral cortex independent of its current diet. The identified proteins could represent novel therapeutic targets for the prevention of neuropathological features resulting from maternal obesity.

  17. Histopathology of motor cortex in an experimental focal ischemic stroke in mouse model.

    PubMed

    de Oliveira, Juçara Loli; Crispin, Pedro di Tárique Barreto; Duarte, Elisa Cristiana Winkelmann; Marloch, Gilberto Domingos; Gargioni, Rogério; Trentin, Andréa Gonçalves; Alvarez-Silva, Marcio

    2014-05-01

    Experimental ischemia results in cortical brain lesion followed by ischemic stroke. In this study, focal cerebral ischemia was induced in mice by occlusion of the middle cerebral artery. We studied cortical layers I, II/III, V and VI in the caudal forelimb area (CFA) and medial agranular cortex (AGm) from control and C57BL/6 mice induced with ischemic stroke. Based on our analysis of CFA and AGm motor cortex, significant differences were observed in the numbers of neurons, astrocytes and microglia in the superficial II/III and deep V cortical layers. Cellular changes were more prominent in layer V of the CFA with nuclear pyknosis, chromatin fragmentation, necrosis and degeneration, as well as, morphological evidence of apoptosis, mainly in neurons. As result, the CFA was more severely impaired than the AGm in this focal cerebral ischemic model, as evidenced by the proliferation of astrocytes, potentially resulting in neuroinflammation by microglia-like cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Thyroid Hormone Economy in the Perinatal Mouse Brain: Implications for Cerebral Cortex Development.

    PubMed

    Bárez-López, Soledad; Obregon, Maria Jesus; Bernal, Juan; Guadaño-Ferraz, Ana

    2018-05-01

    Thyroid hormones (THs, T4 and the transcriptionally active hormone T3) play an essential role in neurodevelopment; however, the mechanisms underlying T3 brain delivery during mice fetal development are not well known. This work has explored the sources of brain T3 during mice fetal development using biochemical, anatomical, and molecular approaches. The findings revealed that during late gestation, a large amount of fetal brain T4 is of maternal origin. Also, in the developing mouse brain, fetal T3 content is regulated through the conversion of T4 into T3 by type-2 deiodinase (D2) activity, which is present from earlier prenatal stages. Additionally, D2 activity was found to be essential to mediate expression of T3-dependent genes in the cerebral cortex, and also necessary to generate the transient cerebral cortex hyperthyroidism present in mice lacking the TH transporter Monocarboxylate transporter 8. Notably, the gene encoding for D2 (Dio2) was mainly expressed at the blood-cerebrospinal fluid barrier (BCSFB). Overall, these data signify that T4 deiodinated by D2 may be the only source of T3 during neocortical development. We therefore propose that D2 activity at the BCSFB converts the T4 transported across the choroid plexus into T3, thus supplying the brain with active hormone to maintain TH homeostasis.

  19. Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep.

    PubMed

    Wisor, J P; Morairty, S R; Huynh, N T; Steininger, T L; Kilduff, T S

    2006-08-11

    Most hypnotic medications currently on the market target some aspect of GABAergic neurotransmission. Although all such compounds increase sleep, these drugs differentially affect the activity of the cerebral cortex as measured by the electroencephalogram. Whereas benzodiazepine medications such as triazolam tend to suppress slow wave activity in the cortex, the GABA(B) ligand gamma-hydroxybutyrate greatly enhances slow wave activity and the non-benzodiazepine, zolpidem, which binds to the omega1 site on the GABA(A) receptor/Cl(-) ionophore complex, is intermediate in this regard. Our previous studies have demonstrated that a small number of genes exhibit increased expression in the cerebral cortex of the mouse and rat during recovery sleep after sleep deprivation: egr-3, fra-2, grp78, grp94, ngfi-b, and nr4a3. Using these genes as a panel of biomarkers associated with sleep, we asked whether hypnotic medications induce similar molecular changes in the rat cerebral cortex to those observed when both sleep continuity and slow wave activity are enhanced during recovery sleep. We find that, although each drug increases the expression of a subset of genes in the panel of biomarkers, no drug fully replicates the molecular changes in the cortex associated with recovery sleep. Furthermore, high levels of slow wave activity in the cortex are correlated with increased expression of fra-2 whereas the expression of grp94 is correlated with body temperature. These results demonstrate that sleep-related changes in gene expression may be affected by physiological covariates of sleep and wakefulness rather than by vigilance state per se.

  20. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions.

    PubMed

    Li, Hongyun; Ruberu, Kalani; Karl, Tim; Garner, Brett

    2016-01-01

    Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer's disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.

  1. Region-specific RNA m6A methylation represents a new layer of control in the gene regulatory network in the mouse brain.

    PubMed

    Chang, Mengqi; Lv, Hongyi; Zhang, Weilong; Ma, Chunhui; He, Xue; Zhao, Shunli; Zhang, Zhi-Wei; Zeng, Yi-Xin; Song, Shuhui; Niu, Yamei; Tong, Wei-Min

    2017-09-01

    N 6 -methyladenosine (m 6 A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m 6 A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m 6 A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m 6 A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m 6 A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain. © 2017 The Authors.

  2. An Evo-Devo Approach to Thyroid Hormones in Cerebral and Cerebellar Cortical Development: Etiological Implications for Autism

    PubMed Central

    Berbel, Pere; Navarro, Daniela; Román, Gustavo C.

    2014-01-01

    The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction. PMID:25250016

  3. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex.

    PubMed

    García-Díaz, Beatriz; Riquelme, Raquel; Varela-Nieto, Isabel; Jiménez, Antonio Jesús; de Diego, Isabel; Gómez-Conde, Ana Isabel; Matas-Rico, Elisa; Aguirre, José Ángel; Chun, Jerold; Pedraza, Carmen; Santín, Luis Javier; Fernández, Oscar; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo

    2015-11-01

    Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases.

  4. Reelin is essential for neuronal migration but not for radial glial elongation in neonatal ferret cortex.

    PubMed

    Schaefer, Alisa; Poluch, Sylvie; Juliano, Sharon

    2008-04-01

    Numerous functions related to neuronal migration are linked to the glycoprotein reelin. Reelin also elongates radial glia, which are disrupted in mutant reeler mice. Our lab developed a model of cortical dysplasia in ferrets that shares features with the reeler mouse, including impaired migration of neurons into the cerebral cortex and disrupted radial glia. Explants of normal ferret cortex in coculture with dysplastic ferret cortex restore the deficits in this model. To determine if reelin is integral to the repair, we used explants of P0 mouse cortex either of the wild type (WT) or heterozygous (het) for the reelin gene, as well as P0 reeler cortex (not containing reelin), in coculture with organotypic cultures of dysplastic ferret cortex. This arrangement revealed that all types of mouse cortical explants (WT, het, reeler) elongated radial glia in ferret cortical dysplasia, indicating that reelin is not required for proper radial glial morphology. Migration of cells into ferret neocortex, however, did not improve with explants of reeler cortex, but was almost normal after pairing with WT or het explants. We also placed an exogenous source of reelin in ferret cultures at the pial surface to reveal that migrating cells move toward the reelin source in dysplastic cortex; radial glia in these cultures were also improved toward normal. Our results demonstrate that the normotopic position of reelin is important for proper neuronal positioning, and that reelin is capable of elongating radial glial cells but is not the only radialization factor.

  5. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex

    PubMed Central

    Dorand, R Dixon; Barkauskas, Deborah S; Evans, Teresa A; Petrosiute, Agne; Huang, Alex Y

    2014-01-01

    Fluorescent imaging coupled with high-resolution femtosecond pulsed infrared lasers allows for interrogation of cellular interactions deeper in living tissues than ever imagined. Intravital imaging of the central nervous system (CNS) has provided insights into neuronal development, synaptic transmission, and even immune interactions. In this review we will discuss the two most common intravital approaches for studying the cerebral cortex in the live mouse brain for pre-clinical studies, the thinned skull and cranial window techniques, and focus on the advantages and drawbacks of each approach. In addition, we will discuss the use of neuronal physiologic parameters as determinants of successful surgical and imaging preparation. PMID:25568834

  6. A protocol for characterizing the impact of collateral flow after distal middle cerebral artery occlusion

    PubMed Central

    DeFazio, R. Anthony; Levy, Sean; Morales, Carmen L.; Levy, Rebecca V.; Dave, Kunjan R.; Lin, Hung W.; Abaffy, Tatjana; Watson, Brant D.; Perez-Pinzon, Miguel A.; Ohanna, Victoria

    2010-01-01

    I. SUMMARY In humans and in animal models of stroke, collateral blood flow between territories of the major pial arteries has a profound impact on cortical infarct size. However, there is a gap in our understanding of the genetic determinants of collateral formation and flow, as well as the signaling pathways and neurovascular interactions regulating this flow. Previous studies have demonstrated that collateral flow between branches of the anterior cerebral artery (ACA) and the middle cerebral artery (MCA) can protect mouse cortex from infarction after middle cerebral artery occlusion. Because the number and diameter of collaterals varies among mouse strains and after transgenic manipulations, a combination of methods is required to control for these variations. Here, we report an inexpensive approach to characterizing the cerebrovascular anatomy, and in vivo monitoring of cerebral blood flow as well. Further, we introduce a new, minimally invasive method for the occlusion of distal MCA branches. These methods will permit a new generation of studies on the mechanisms regulating collateral remodeling and cortical blood flow after stroke. PMID:21593993

  7. Correlations Decrease with Propagation of Spiking Activity in the Mouse Barrel Cortex

    PubMed Central

    Ranganathan, Gayathri Nattar; Koester, Helmut Joachim

    2011-01-01

    Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal networks of the mammalian cerebral cortex. Using optical methods we recorded spiking activity from large samples of neurons from two neural populations simultaneously. The results indicate that correlations decreased as spiking activity propagated from layer 4 to layer 2/3 in the rodent barrel cortex. PMID:21629764

  8. Cartography and Connectomes Perspective article for Neuron 25th Anniversary Issue

    PubMed Central

    Van Essen, David C.

    2013-01-01

    The past 25 years have seen great progress in parcellating the cerebral cortex into a mosaic of many distinct areas in mice, monkeys, and humans. Quantitative studies of inter-areal connectivity have revealed unexpectedly many pathways and a wide range of connection strengths in mouse and macaque cortex. In humans, advances in analyzing ‘structural’ and ‘functional’ connectivity using powerful but indirect noninvasive neuroimaging methods are yielding intriguing insights about brain circuits, their variability across individuals, and their relationship to behavior. PMID:24183027

  9. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development

    PubMed Central

    Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S

    2012-01-01

    Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932

  10. Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism.

    PubMed

    Cheng, Aiwu; Coksaygan, Turhan; Tang, Hongyan; Khatri, Rina; Balice-Gordon, Rita J; Rao, Mahendra S; Mattson, Mark P

    2007-03-01

    During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.

  11. Knockdown of Myo-Inositol Transporter SMIT1 Normalizes Cholinergic and Glutamatergic Function in an Immortalized Cell Line Established from the Cerebral Cortex of a Trisomy 16 Fetal Mouse, an Animal Model of Human Trisomy 21 (Down Syndrome).

    PubMed

    Cárdenas, Ana María; Fernández-Olivares, Paola; Díaz-Franulic, Ignacio; González-Jamett, Arlek M; Shimahara, Takeshi; Segura-Aguilar, Juan; Caviedes, Raúl; Caviedes, Pablo

    2017-11-01

    The Na + /myo-inositol cotransporter (SMIT1) is overexpressed in human Down syndrome (DS) and in trisomy 16 fetal mice (Ts16), an animal model of the human condition. SMIT1 overexpression determines increased levels of intracellular myo-inositol, a precursor of phophoinositide synthesis. SMIT1 is overexpressed in CTb cells, an immortalized cell line established from the cerebral cortex of a Ts16 mouse fetus. CTb cells exhibit impaired cytosolic Ca 2+ signals in response to glutamatergic and cholinergic stimuli (increased amplitude and delayed time-dependent kinetics in the decay post-stimulation), compared to our CNh cell line, derived from the cerebral cortex of a euploid animal. Considering the role of myo-inositol in intracellular signaling, we normalized SMIT1 expression in CTb cells using specific mRNA antisenses. Forty-eight hours post-transfection, SMIT1 levels in CTb cells reached values comparable to those of CNh cells. At this time, decay kinetics of Ca 2+ signals induced by either glutamate, nicotine, or muscarine were accelerated in transfected CTb cells, to values similar to those of CNh cells. The amplitude of glutamate-induced cytosolic Ca 2+ signals in CTb cells was also normalized. The results suggest that SMIT1 overexpression contributes to abnormal cholinergic and glutamatergic Ca 2+ signals in the trisomic condition, and knockdown of DS-related genes in our Ts16-derived cell line could constitute a relevant tool to study DS-related neuronal dysfunction.

  12. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain.

    PubMed

    Kumari, Anita; Singh, Padmanabh; Baghel, Meghraj Singh; Thakur, M K

    2016-05-01

    Adverse early life experience is prominent risk factors for numerous psychiatric illnesses, including mood and anxiety disorders. It imposes serious long-term costs on the individual as well as health and social systems. Hence, developing therapies that prevent the long-term consequences of early life stress is of utmost importance, and necessitates a better understanding of the mechanisms by which early life stress triggers long-lasting alterations in gene expression and behavior. Post-weaning isolation rearing of rodents models the behavioral consequences of adverse early life experiences in humans and it is reported to cause anxiety like behavior which is more common in case of females. Therefore, in the present study, we have studied the impact of social isolation of young female mice for 8weeks on the anxiety like behavior and the underlying molecular mechanism. Elevated plus maze and open field test revealed that social isolation caused anxiety like behavior. BDNF, a well-known molecule implicated in the anxiety like behavior, was up-regulated both at the message and protein level in cerebral cortex by social isolation. CREB-1 and CBP, which play a crucial role in BDNF transcription, were up-regulated at mRNA level in cerebral cortex by social isolation. HDAC-2, which negatively regulates BDNF expression, was down-regulated at mRNA and protein level in cerebral cortex by social isolation. Furthermore, BDNF acts in concert with Limk-1, miRNA-132 and miRNA-134 for the regulation of structural and morphological plasticity. Social isolation resulted in up-regulation of Limk-1 mRNA and miRNA-132 expression in the cerebral cortex. MiRNA-134, which inhibits the translation of Limk-1, was decreased in cerebral cortex by social isolation. Taken together, our study suggests that social isolation mediated anxiety like behavior is associated with up-regulation of BDNF expression and concomitant increase in the expression of CBP, CREB-1, Limk-1 and miRNA-132, and decrease in the expression of HDAC-2 and miRNA-134 in the cerebral cortex. Copyright © 2016. Published by Elsevier Inc.

  13. Mitochondrial Superoxide Production Negatively Regulates Neural Progenitor Proliferation and Cerebral Cortical Development

    PubMed Central

    Hou, Yan; Ouyang, Xin; Wan, Ruiqian; Cheng, Heping; Mattson, Mark P.; Cheng, Aiwu

    2012-01-01

    Although high amounts of reactive oxygen species (ROS) can damage cells, ROS can also play roles as second messengers, regulating diverse cellular processes. Here we report that embryonic mouse cerebral cortical neural progenitor cells (NPCs) exhibit intermittent spontaneous bursts of mitochondrial superoxide (SO) generation (mitochondrial SO flashes) that require transient opening of membrane permeability transition pores (mPTP). This quantal SO production negatively regulates NPC self-renewal. Mitochondrial SO scavengers and mPTP inhibitors reduce SO flash frequency and enhance NPC proliferation, whereas prolonged mPTP opening and SO generation increase SO flash incidence and decrease NPC proliferation. The inhibition of NPC proliferation by mitochondrial SO involves suppression of extracellular signal-regulated kinases. Moreover, mice lacking SOD2 (SOD2−/− mice) exhibit significantly fewer proliferative NPCs and differentiated neurons in the embryonic cerebral cortex at mid-gestation compared with wild type littermates. Cultured SOD2−/− NPCs exhibit a significant increase in SO flash frequency and reduced NPC proliferation. Taken together, our findings suggest that mitochondrial SO flashes negatively regulate NPC self-renewal in the developing cerebral cortex. PMID:22949407

  14. The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles.

    PubMed

    Gămănuţ, Răzvan; Kennedy, Henry; Toroczkai, Zoltán; Ercsey-Ravasz, Mária; Van Essen, David C; Knoblauch, Kenneth; Burkhalter, Andreas

    2018-02-07

    The inter-areal wiring pattern of the mouse cerebral cortex was analyzed in relation to a refined parcellation of cortical areas. Twenty-seven retrograde tracer injections were made in 19 areas of a 47-area parcellation of the mouse neocortex. Flat mounts of the cortex and multiple histological markers enabled detailed counts of labeled neurons in individual areas. The observed log-normal distribution of connection weights to each cortical area spans 5 orders of magnitude and reveals a distinct connectivity profile for each area, analogous to that observed in macaques. The cortical network has a density of 97%, considerably higher than the 66% density reported in macaques. A weighted graph analysis reveals a similar global efficiency but weaker spatial clustering compared with that reported in macaques. The consistency, precision of the connectivity profile, density, and weighted graph analysis of the present data differ significantly from those obtained in earlier studies in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  16. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  17. Differential expression of glutamate transporters EAAT1 and EAAT2 in mice deficient for PACAP-type I receptor.

    PubMed

    Zink, M; Schmitt, A; Henn, F A; Gass, P

    2004-12-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic neurotransmission and induces the expression of glutamate transporters EAAT1 and EAAT2 in newborn mouse astroglial cell cultures. Since nanomolar concentrations of PACAP exert this effect, signal transduction via the high affinity PACAP-type I-receptor PAC1 was assumed. To test this hypothesis and to assess the importance of PAC1-signalling in vivo, we analyzed glutamate transporter expression in mice with a PAC1 knockout. EAAT1 and EAAT2 expression was investigated in the hippocampus and the cerebral cortex of PAC1 mutant mice and wildtype littermates by semiquantitative in-situ-hybridization. PAC1-knockout mice show a subtle but significant reduction of EAAT1 expression in the dentate gyrus. In contrast, reduced expression levels of EAAT1 in the cerebral cortex did not reach statistical significance and EAAT2 expression was unchanged in CA3 and cerebral cortex of PAC1 mutant mice. Our data confirm the previously reported in-vitro-regulation of EAAT1 in the adult nervous system in vivo. EAAT2 expression, however, is unchanged in PAC1 knockout mice, most likely due to counterbalancing factors.

  18. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply

    PubMed Central

    Gould, Ian Gopal; Tsai, Philbert; Kleinfeld, David

    2016-01-01

    The cortical angioarchitecture is a key factor in controlling cerebral blood flow and oxygen metabolism. Difficulties in imaging the complex microanatomy of the cortex have so far restricted insight about blood flow distribution in the microcirculation. A new methodology combining advanced microscopy data with large scale hemodynamic simulations enabled us to quantify the effect of the angioarchitecture on the cerebral microcirculation. High-resolution images of the mouse primary somatosensory cortex were input into with a comprehensive computational model of cerebral perfusion and oxygen supply ranging from the pial vessels to individual brain cells. Simulations of blood flow, hematocrit and oxygen tension show that the wide variation of hemodynamic states in the tortuous, randomly organized capillary bed is responsible for relatively uniform cortical tissue perfusion and oxygenation. Computational analysis of microcirculatory blood flow and pressure drops further indicates that the capillary bed, including capillaries adjacent to feeding arterioles (d < 10 µm), are the largest contributors to hydraulic resistance. PMID:27780904

  19. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex.

    PubMed

    Herrera, Jose L; Ordoñez-Gutierrez, Lara; Fabrias, Gemma; Casas, Josefina; Morales, Araceli; Hernandez, Guadalberto; Acosta, Nieves G; Rodriguez, Covadonga; Prieto-Valiente, Luis; Garcia-Segura, Luis M; Alonso, Rafael; Wandosell, Francisco G

    2018-01-01

    Different dietary ratios of n -6/ n -3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n -6/ n -3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n -3 and n -6 LC-PUFAs.

  20. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex

    PubMed Central

    Herrera, Jose L.; Ordoñez-Gutierrez, Lara; Fabrias, Gemma; Casas, Josefina; Morales, Araceli; Hernandez, Guadalberto; Acosta, Nieves G.; Rodriguez, Covadonga; Prieto-Valiente, Luis; Garcia-Segura, Luis M.; Alonso, Rafael; Wandosell, Francisco G.

    2018-01-01

    Different dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs. PMID:29740285

  1. MRI-based in vivo assessment of early cerebral infarction in a mouse filament perforation model of subarachnoid hemorrhage.

    PubMed

    Sasaki, Kazumasu; Mutoh, Tatsushi; Nakamura, Kazuhiro; Kojima, Ikuho; Taki, Yasuyuki; Suarez, Jose Ignacio; Ishikawa, Tatsuya

    2017-07-13

    Experimental subarachnoid hemorrhage (SAH) by endovascular filament perforation method is used widely in mice, but it sometimes present acute cerebral infarctions with varied magnitude and anatomical location. This study aimed to determine the prevalence and location of the acute ischemic injury in this experimental model. Male C57BL/6 mice were subjected to SAH by endovascular perforation. Distribution of SAH was defined by T2*-weighted images within 1h after SAH. Prevalence and location of acute infarction were assessed by diffusion-weighted MR images on day 1 after the induction. Among 72 mice successfully acquired post-SAH MR images, 29 (40%) developed acute infarction. Location of the infarcts was classified into either single infarct (ipsilateral cortex, n=12; caudate putamen, n=3; hippocampus, n=1) or multiple lesions (cortex and caudate putamen, n=6; cortex and hippocampus, n=2; cortex, hippocampus and thalamus/hypothalamus, n=3; bilateral cortex, n=2). The mortality rate within 24h was significantly higher in mice with multiple infarcts than those with single lesion (30% versus 0%; P=0.03). Distribution of the ischemic lesion positively correlated with MRI-evidenced SAH grading (r 2 =0.31, P=0.0002). Experimental SAH immediately after the vessel perforation can induce acute cerebral infarction in varying vascular territories, resulting in increased mortality. The present model may in part, help researchers to interpret the mechanism of clinically-evidenced early multiple combined infarction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Niladri; Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, H9X 3V9; Stamler, Christopher J.

    2005-05-15

    Mercury (Hg) is a ubiquitous pollutant that can disrupt neurochemical signaling pathways in mammals. It is well documented that inorganic Hg (HgCl{sub 2}) and methyl Hg (MeHg) can inhibit the binding of radioligands to the muscarinic acetylcholine (mACh) receptor in rat brains. However, little is known concerning this relationship in specific anatomical regions of the brain or in other species, including humans. The purpose of this study was to explore the inhibitory effects of HgCl{sub 2} and MeHg on [{sup 3}H]-quinuclidinyl benzilate ([{sup 3}H]-QNB) binding to the mACh receptor in the cerebellum and cerebral cortex regions from human, rat, mouse,more » mink, and river otter brain tissues. Saturation binding curves were obtained from each sample to calculate receptor density (B {sub max}) and ligand affinity (K {sub d}). Subsequently, samples were exposed to HgCl{sub 2} or MeHg to derive IC50 values and inhibition constants (K {sub i}). Results demonstrate that HgCl{sub 2} is a more potent inhibitor of mACh receptor binding than MeHg, and the receptors in the cerebellum are more sensitive to Hg-mediated mACh receptor inhibition than those in the cerebral cortex. Species sensitivities, irrespective of Hg type and brain region, can be ranked from most to least sensitive: river otter > rat > mink > mouse > humans. In summary, our data demonstrate that Hg can inhibit the binding [{sup 3}H]-QNB to the mACh receptor in a range of mammalian species. This comparative study provides data on interspecies differences and a framework for interpreting results from human, murine, and wildlife studies.« less

  3. Human Pluripotent Stem-Cell-Derived Cortical Neurons Integrate Functionally into the Lesioned Adult Murine Visual Cortex in an Area-Specific Way.

    PubMed

    Espuny-Camacho, Ira; Michelsen, Kimmo A; Linaro, Daniele; Bilheu, Angéline; Acosta-Verdugo, Sandra; Herpoel, Adèle; Giugliano, Michele; Gaillard, Afsaneh; Vanderhaeghen, Pierre

    2018-05-29

    The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex

    PubMed Central

    Allen, William E.; Kauvar, Isaac V.; Chen, Michael Z.; Richman, Ethan B.; Yang, Samuel J.; Chan, Ken; Gradinaru, Viviana; Deverman, Benjamin E.; Luo, Liqun; Deisseroth, Karl

    2017-01-01

    SUMMARY The successful planning and execution of adaptive behaviors in mammals may require long-range coordination of neural networks throughout cerebral cortex. The neuronal implementation of signals that could orchestrate cortex-wide activity remains unclear. Here, we develop and apply methods for cortex-wide Ca2+ imaging in mice performing decision-making behavior and identify a global cortical representation of task engagement encoded in the activity dynamics of both single cells and superficial neuropil distributed across the majority of dorsal cortex. The activity of multiple molecularly defined cell types was found to reflect this representation with type-specific dynamics. Focal optogenetic inhibition tiled across cortex revealed a crucial role for frontal cortex in triggering this cortex-wide phenomenon; local inhibition of this region blocked both the cortex-wide response to task-initiating cues and the voluntary behavior. These findings reveal cell-type-specific processes in cortex for globally representing goal-directed behavior and identify a major cortical node that gates the global broadcast of task-related information. PMID:28521139

  5. Demonstration of neuron-glia transfer of precursors for GABA biosynthesis in a co-culture system of dissociated mouse cerebral cortex.

    PubMed

    Leke, Renata; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2008-12-01

    Co-cultures of neurons and astrocytes were prepared from dissociated embryonic mouse cerebral cortex and cultured for 7 days. To investigate if these cultures may serve as a functional model system to study neuron-glia interaction with regard to GABA biosynthesis, the cells were incubated either in media containing [U-(13)C]glutamine (0.1, 0.3 and 0.5 mM) or 1 mM acetate plus 2.5 mM glucose plus 1 mM lactate. In the latter case one of the 3 substrates was uniformly (13)C labeled. Cellular contents and (13)C labeling of glutamate, GABA, aspartate and glutamine were determined in the cells after an incubation period of 2.5 h. The GABA biosynthetic machinery exhibited the expected complexity with regard to metabolic compartmentation and involvement of TCA cycle activity as seen in other culture systems containing GABAergic neurons. Metabolism of acetate clearly demonstrated glial synthesis of glutamine and its transfer to the neuronal compartment. It is concluded that this co-culture system serves as a reliable model in which functional and pharmacological aspects of GABA biosynthesis can be investigated.

  6. Seizure-mediated neuronal activation induces DREAM gene expression in the mouse brain.

    PubMed

    Matsu-ura, Toru; Konishi, Yoshiyuki; Aoki, Tsutomu; Naranjo, Jose R; Mikoshiba, Katsuhiko; Tamura, Taka-aki

    2002-12-30

    Various transcriptional activators are induced in neurons concomitantly with long-lasting neural activity, whereas only a few transcription factors are known to act as neural activity-inducible transcription repressors. In this study, mRNA of DREAM (DRE-antagonizing modulator), a Ca(2+)-modulated transcriptional repressor, was demonstrated to accumulate in the mouse brain after pentylenetetrazol (PTZ)-induced seizures. Accumulation in the mouse hippocampus reached maximal level in the late phase (at 7-8 h) after PTZ injection. Kainic acid induced the same response. Interestingly, the late induction of DREAM expression required new protein synthesis and was blocked by MK801 suggesting that Ca(2+)-influx via NMDA receptors is necessary for the PTZ-mediated DREAM expression. In situ hybridization revealed that PTZ-induced DREAM mRNA accumulation was observed particularly in the dentate gyrus, cerebral cortex, and piriform cortex. The results of the present study demonstrate that DREAM is a neural activity-stimulated late gene and suggest its involvement in adaptation to long-lasting neuronal activity.

  7. Brain region differences in regulation of Akt and GSK3 by chronic stimulant administration in mice.

    PubMed

    Mines, Marjelo A; Jope, Richard S

    2012-07-01

    Acute amphetamine administration activates glycogen synthase kinase-3 (GSK3) by reducing its inhibitory serine-phosphorylation in mouse striatum and cerebral cortex. This results from Akt inactivation and is required for certain behavioral effects of amphetamine, such as increased locomotor activity. Here we tested if regulation of Akt and GSK3 was similarly affected by longer-term administration of amphetamine, as well as of methylphenidate, since each of these is administered chronically in patients with attention deficit hyperactivity disorder (ADHD). Akt is activated by post-translational phosphorylation on Thr308, and modulated by Ser473 phosphorylation, whereas phosphorylation on Ser21/9 inhibits the two GSK3 isoforms, GSK3α and GSK3β. After eight days of amphetamine or methylphenidate treatment, striatal Akt and GSK3 were dephosphorylated similar to reported changes after acute amphetamine treatment. Oppositely, in the cerebral cortex and hippocampus Akt and GSK3 phosphorylation increased after eight days of amphetamine or methylphenidate treatment. These opposite brain region changes in Akt and GSK3 phosphorylation matched opposite changes in the association of Akt with β-arrestin and GSK3, which after eight days of amphetamine treatment were increased in the striatum and decreased in the cerebral cortex. Thus, whereas the acute dephosphorylating effect of stimulants on Akt and GSK3 in the striatum was maintained, the response switched in the cerebral cortex after eight days of amphetamine or methylphenidate treatment to cause increased phosphorylation of Akt and GSK3. These results demonstrate that prolonged administration of stimulants causes brain region-selective differences in the regulation of Akt and GSK3. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Abnormal excitability and episodic low-frequency oscillations in the cerebral cortex of the tottering mouse.

    PubMed

    Cramer, Samuel W; Popa, Laurentiu S; Carter, Russell E; Chen, Gang; Ebner, Timothy J

    2015-04-08

    The Ca(2+) channelopathies caused by mutations of the CACNA1A gene that encodes the pore-forming subunit of the human Cav2.1 (P/Q-type) voltage-gated Ca(2+) channel include episodic ataxia type 2 (EA2). Although, in EA2 the emphasis has been on cerebellar dysfunction, patients also exhibit episodic, nonmotoric abnormalities involving the cerebral cortex. This study demonstrates episodic, low-frequency oscillations (LFOs) throughout the cerebral cortex of tottering (tg/tg) mice, a widely used model of EA2. Ranging between 0.035 and 0.11 Hz, the LFOs in tg/tg mice can spontaneously develop very high power, referred to as a high-power state. The LFOs in tg/tg mice are mediated in part by neuronal activity as tetrodotoxin decreases the oscillations and cortical neuron discharge contain the same low frequencies. The high-power state involves compensatory mechanisms because acutely decreasing P/Q-type Ca(2+) channel function in either wild-type (WT) or tg/tg mice does not induce the high-power state. In contrast, blocking l-type Ca(2+) channels, known to be upregulated in tg/tg mice, reduces the high-power state. Intriguingly, basal excitatory glutamatergic neurotransmission constrains the high-power state because blocking ionotropic or metabotropic glutamate receptors results in high-power LFOs in tg/tg but not WT mice. The high-power LFOs are decreased markedly by acetazolamide and 4-aminopyridine, the primary treatments for EA2, suggesting disease relevance. Together, these results demonstrate that the high-power LFOs in the tg/tg cerebral cortex represent a highly abnormal excitability state that may underlie noncerebellar symptoms that characterize CACNA1A mutations. Copyright © 2015 the authors 0270-6474/15/355664-16$15.00/0.

  9. Foxp1 Regulates Cortical Radial Migration and Neuronal Morphogenesis in Developing Cerebral Cortex

    PubMed Central

    Li, Xue; Xiao, Jian; Fröhlich, Henning; Tu, Xiaomeng; Li, Lianlian; Xu, Yue; Cao, Huateng; Qu, Jia; Rappold, Gudrun A.; Chen, Jie-Guang

    2015-01-01

    FOXP1 is a member of FOXP subfamily transcription factors. Mutations in FOXP1 gene have been found in various development-related cognitive disorders. However, little is known about the etiology of these symptoms, and specifically the function of FOXP1 in neuronal development. Here, we report that suppression of Foxp1 expression in mouse cerebral cortex led to a neuronal migration defect, which was rescued by overexpression of Foxp1. Mice with Foxp1 knockdown exhibited ectopic neurons in deep layers of the cortex postnatally. The neuronal differentiation of Foxp1-downregulated cells was normal. However, morphological analysis showed that the neurons with Foxp1 deficiency had an inhibited axonal growth in vitro and a weakened transition from multipolar to bipolar in vivo. Moreover, we found that the expression of Foxp1 modulated the dendritic maturation of neurons at a late postnatal date. Our results demonstrate critical roles of Foxp1 in the radial migration and morphogenesis of cortical neurons during development. This study may shed light on the complex relationship between neuronal development and the related cognitive disorders. PMID:26010426

  10. Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms.

    PubMed

    Shin, Hwa Kyoung; Salomone, Salvatore; Potts, E Michelle; Lee, Sae-Won; Millican, Eric; Noma, Kensuke; Huang, Paul L; Boas, David A; Liao, James K; Moskowitz, Michael A; Ayata, Cenk

    2007-05-01

    Rho-kinase is a serine threonine kinase that increases vasomotor tone via its effects on both endothelium and smooth muscle. Rho-kinase inhibition reduces cerebral infarct size in wild type, but not endothelial nitric oxide synthase deficient (eNOS-/-) mice. The mechanism may be related to Rho-kinase activation under hypoxic/ischemic conditions and impaired vasodilation because of downregulation of eNOS activity. To further implicate Rho-kinase in impaired vascular relaxation during hypoxia/ischemia, we exposed isolated vessels from rat and mouse to 60 mins of hypoxia, and showed that hypoxia reversibly abolished acetylcholine-induced eNOS-dependent relaxation, and that Rho-kinase inhibitor hydroxyfasudil partially preserved this relaxation during hypoxia. We, therefore, hypothesized that if hypoxia-induced Rho-kinase activation acutely impairs vasodilation in ischemic cortex, in vivo, then Rho-kinase inhibitors would acutely augment cerebral blood flow (CBF) as a mechanism by which they reduce infarct size. To test this, we studied the acute cerebral hemodynamic effects of Rho-kinase inhibitors in ischemic core and penumbra during distal middle cerebral artery occlusion (dMCAO) in wild-type and eNOS-/- mice using laser speckle flowmetry. When administered 60 mins before or immediately after dMCAO, Rho-kinase inhibitors hydroxyfasudil and Y-27632 reduced the area of severely ischemic cortex. However, hydroxyfasudil did not reduce the area of CBF deficit in eNOS-/- mice, suggesting that its effect on CBF within the ischemic cortex is primarily endothelium-dependent, and not mediated by its direct vasodilator effect on vascular smooth muscle. Our results suggest that Rho-kinase negatively regulates eNOS activity in acutely ischemic brain, thereby worsening the CBF deficit. Therefore, rapid nontranscriptional upregulation of eNOS activity by small molecule inhibitors of Rho-kinase may be a viable therapeutic approach in acute stroke.

  11. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    PubMed

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  12. The mouse cortico-striatal projectome

    PubMed Central

    Hintiryan, Houri; Foster, Nicholas N.; Bowman, Ian; Bay, Maxwell; Song, Monica Y.; Gou, Lin; Yamashita, Seita; Bienkowski, Michael S.; Zingg, Brian; Zhu, Muye; Yang, X. William; Shih, Jean C.; Toga, Arthur W.; Dong, Hong-Wei

    2017-01-01

    Different cortical areas are organized into distinct intra-cortical subnetworks. How descending pathways from the entire cortex interact subcortically as a network remains unclear. Here, we report an open-access comprehensive mesoscale cortico-striatal projectome—a detailed connectivity projection map from the entire cerebral cortex to the dorsal striatum or caudoputamen (CP) in rodents. Based on these projections, we use novel computational neuroanatomical tools to identify 29 distinct functional striatal domains. Further, we characterize different cortico-striatal networks and how they reconfigure across the rostral-caudal extent of the CP. The workflow was also applied to select cortico-striatal connections in two different mouse models of disconnection syndromes to demonstrate its utility in characterizing circuitry-specific connectopathies. Together, this work provides the structural basis for studying the functional diversity of the dorsal striatum and disruptions of cortico-basal ganglia networks across a broad range of disorders. PMID:27322419

  13. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring

    PubMed Central

    Wang, Yanyan; Surzenko, Natalia; Friday, Walter B.; Zeisel, Steven H.

    2015-01-01

    Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)—radial glial cells and intermediate progenitor cells—was reduced in fetal brains (P < 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P < 0.001) and 4 mo of age (P < 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.—Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. PMID:26700730

  14. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring.

    PubMed

    Wang, Yanyan; Surzenko, Natalia; Friday, Walter B; Zeisel, Steven H

    2016-04-01

    Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)-radial glial cells and intermediate progenitor cells-was reduced in fetal brains (P< 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P< 0.001) and 4 mo of age (P< 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.-Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. © FASEB.

  15. Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain.

    PubMed

    Tiwari, Vivek; Ambadipudi, Susmitha; Patel, Anant B

    2013-10-01

    The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.

  16. Spontaneous Up states in vitro: a single-metric index of the functional maturation and regional differentiation of the cerebral cortex.

    PubMed

    Rigas, Pavlos; Adamos, Dimitrios A; Sigalas, Charalambos; Tsakanikas, Panagiotis; Laskaris, Nikolaos A; Skaliora, Irini

    2015-01-01

    Understanding the development and differentiation of the neocortex remains a central focus of neuroscience. While previous studies have examined isolated aspects of cellular and synaptic organization, an integrated functional index of the cortical microcircuit is still lacking. Here we aimed to provide such an index, in the form of spontaneously recurring periods of persistent network activity -or Up states- recorded in mouse cortical slices. These coordinated network dynamics emerge through the orchestrated regulation of multiple cellular and synaptic elements and represent the default activity of the cortical microcircuit. To explore whether spontaneous Up states can capture developmental changes in intracortical networks we obtained local field potential recordings throughout the mouse lifespan. Two independent and complementary methodologies revealed that Up state activity is systematically modified by age, with the largest changes occurring during early development and adolescence. To explore possible regional heterogeneities we also compared the development of Up states in two distinct cortical areas and show that primary somatosensory cortex develops at a faster pace than primary motor cortex. Our findings suggest that in vitro Up states can serve as a functional index of cortical development and differentiation and can provide a baseline for comparing experimental and/or genetic mouse models.

  17. Spontaneous Up states in vitro: a single-metric index of the functional maturation and regional differentiation of the cerebral cortex

    PubMed Central

    Rigas, Pavlos; Adamos, Dimitrios A.; Sigalas, Charalambos; Tsakanikas, Panagiotis; Laskaris, Nikolaos A.; Skaliora, Irini

    2015-01-01

    Understanding the development and differentiation of the neocortex remains a central focus of neuroscience. While previous studies have examined isolated aspects of cellular and synaptic organization, an integrated functional index of the cortical microcircuit is still lacking. Here we aimed to provide such an index, in the form of spontaneously recurring periods of persistent network activity -or Up states- recorded in mouse cortical slices. These coordinated network dynamics emerge through the orchestrated regulation of multiple cellular and synaptic elements and represent the default activity of the cortical microcircuit. To explore whether spontaneous Up states can capture developmental changes in intracortical networks we obtained local field potential recordings throughout the mouse lifespan. Two independent and complementary methodologies revealed that Up state activity is systematically modified by age, with the largest changes occurring during early development and adolescence. To explore possible regional heterogeneities we also compared the development of Up states in two distinct cortical areas and show that primary somatosensory cortex develops at a faster pace than primary motor cortex. Our findings suggest that in vitro Up states can serve as a functional index of cortical development and differentiation and can provide a baseline for comparing experimental and/or genetic mouse models. PMID:26528142

  18. Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue.

    PubMed

    Tsytsarev, Vassiliy; Akkentli, Fatih; Pumbo, Elena; Tang, Qinggong; Chen, Yu; Erzurumlu, Reha S; Papkovsky, Dmitri B

    2017-04-01

    Brain imaging methods are continually improving. Imaging of the cerebral cortex is widely used in both animal experiments and charting human brain function in health and disease. Among the animal models, the rodent cerebral cortex has been widely used because of patterned neural representation of the whiskers on the snout and relative ease of activating cortical tissue with whisker stimulation. We tested a new planar solid-state oxygen sensor comprising a polymeric film with a phosphorescent oxygen-sensitive coating on the working side, to monitor dynamics of oxygen metabolism in the cerebral cortex following sensory stimulation. Sensory stimulation led to changes in oxygenation and deoxygenation processes of activated areas in the barrel cortex. We demonstrate the possibility of dynamic mapping of relative changes in oxygenation in live mouse brain tissue with such a sensor. Oxygenation-based functional magnetic resonance imaging (fMRI) is very effective method for functional brain mapping but have high costs and limited spatial resolution. Optical imaging of intrinsic signal (IOS) does not provide the required sensitivity, and voltage-sensitive dye optical imaging (VSDi) has limited applicability due to significant toxicity of the voltage-sensitive dye. Our planar solid-state oxygen sensor imaging approach circumvents these limitations, providing a simple optical contrast agent with low toxicity and rapid application. The planar solid-state oxygen sensor described here can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo. Further, this approach allows visualization of local neural activity with high temporal and spatial resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia

    PubMed Central

    Ferland, Russell J.; Batiz, Luis Federico; Neal, Jason; Lian, Gewei; Bundock, Elizabeth; Lu, Jie; Hsiao, Yi-Chun; Diamond, Rachel; Mei, Davide; Banham, Alison H.; Brown, Philip J.; Vanderburg, Charles R.; Joseph, Jeffrey; Hecht, Jonathan L.; Folkerth, Rebecca; Guerrini, Renzo; Walsh, Christopher A.; Rodriguez, Esteban M.; Sheen, Volney L.

    2009-01-01

    Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in ‘Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia'. Neuron, 21, 1315–1325, 1998; Sheen et al. in ‘Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex'. Nat. Genet., 36, 69–76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in ‘MEKK4 signaling regulates filamin expression and neuronal migration'. Neuron, 52, 789–801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (α-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventicular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell adhesion and loss of neuroependymal integrity. PMID:18996916

  20. Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection.

    PubMed

    Chen, Yan-Ting; Zang, Xue-Feng; Pan, Jie; Zhu, Xiao-Lei; Chen, Fei; Chen, Zhi-Bin; Xu, Yun

    2012-09-01

    1. Histone deacetylase (HDAC) inhibitors exert neuroprotection in both cellular and animal models of ischaemic stroke. However, which HDAC isoform (or isoforms) mediates this beneficial effect has not yet been determined. 2. In the present study, gene levels of the HDAC isoforms were determined in the mouse cortex using reverse transcription-polymerase chain reaction (RT-PCR), whereas changes in the expression of individual zinc-dependent HDAC family members were evaluated by western blotting, 3, 12, 24 and 48 h after cerebral ischaemia induced by transient middle cerebral artery occlusion in male Kunming mice. 3. The HDAC isoforms HDAC1-11 were all expressed in the mouse cortex and differentially affected by cerebral ischaemia. Notably, there was a substantial increase in HDAC3, HDAC6 and HDAC11 expression during the early phases of experimental stroke, indicating their contribution to stroke pathogenesis. Furthermore, induction of HDAC3 and HDAC6 in cortical neurons by ischaemic stroke was confirmed in vivo and in vitro using double-labelled immunostaining and RT-PCR, respectively. Therefore, small hairpin (sh) RNAs were used to selectively knock down HDAC3 or HDAC6. This knockdown appreciably promoted the survival of cortical neurons subjected to oxygen and glucose deprivation. 4. The findings of the present study demonstrate the expression patterns of HDAC isoforms during experimental ischaemic stroke. Furthermore, HDAC3 and HDAC6 were identified as potential mediators in the neurotoxicity of ischaemic stroke, suggesting that specific therapeutic approaches may be considered according to HDAC subtype. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Wiley Publishing Asia Pty Ltd.

  1. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer's disease-related pathologies in APPswe/PS1dE9 transgenic mice.

    PubMed

    Tsai-Teng, Tzeng; Chin-Chu, Chen; Li-Ya, Lee; Wan-Ping, Chen; Chung-Kuang, Lu; Chien-Chang, Shen; Chi-Ying, Huang F; Chien-Chih, Chen; Shiao, Young-Ji

    2016-06-27

    The fruiting body of Hericium erinaceus has been demonstrated to possess anti-dementia activity in mouse model of Alzheimer's disease and people with mild cognitive impairment. However, the therapeutic potential of Hericium erinaceus mycelia on Alzheimer's disease remains unclear. In this study, the effects of erinacine A-enriched Hericium erinaceus mycelia (HE-My) on the pathological changes in APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease are studied. After a 30 day oral administration to 5 month-old female APPswe/PS1dE9 transgenic mice, we found that HE-My and its ethanol extracts (HE-Et) attenuated cerebral Aβ plaque burden. It's worth noting that the attenuated portion of a plaque is the non-compact structure. The level of insulin-degrading enzyme was elevated by both HE-My and HE-Et in cerebral cortex. On the other hand, the number of plaque-activated microglia and astrocytes in cerebral cortex and hippocampus were diminished, the ratio of nerve growth factor (NGF) to NGF precursor (proNGF) was increased and hippocampal neurogenesis was promoted after these administrations. All the mentioned benefits of these administrations may therefore improve the declined activity of daily living skill in APPswe/PS1dE9 transgenic mice. These results highlight the therapeutic potential of HE-My and HE-Et on Alzheimer's disease. Therefore, the effective components of HE-My and HE-Et are worth to be developed to become a therapeutic drug for Alzheimer's disease.

  2. Neuropilin 2 deficiency does not affect cortical neuronal viability in response to oxygen-glucose-deprivation and transient middle cerebral artery occlusion.

    PubMed

    Hou, Sheng T; Jiang, Susan X; Slinn, Jacqueline; O'Hare, Michael; Karchewski, Laurie

    2010-04-01

    Neuropilin 2 (NRP2) is a type I transmembrane protein that binds to distinct members of the class III secreted Semaphorin subfamily. NRP2 plays important roles in repulsive axon guidance, angiogenesis and vasculogenesis through partnering with co-receptors such as vascular endothelial growth factor receptors (VEGFRs) during development. Emerging evidence also suggests that NRP2 contributes to injury response and environment changes in adult brains. In this study, we examined the contribution of NRP2 gene to cerebral ischemia-induced brain injury using NRP2 deficient mouse. To our surprise, the lack of NRP2 expression does not affect the outcome of brain injury induced by transient occlusion of the middle cerebral artery (MCAO) in mouse. The cerebral vasculature in terms of the middle cerebral artery anatomy and microvessel density in the cerebral cortex of NRP2 deficient homozygous (NRP2(-/-)) mice are normal and almost identical to those of the heterozygous (NRP2(+/-)) and wild type (NRP2(+/+)) littermates. MCAO (1h) and 24h reperfusion caused a brain infarction of 23% (compared to the contralateral side) in NRP2(-/-) mice, which is not different from those in NRP2(+/- and +/+) mice at 22 and 21%, respectively (n=19, p>0.05). Correspondingly, NRP2(-/-) mouse also showed a similar level of deterioration of neurological functions after stroke compared with their NRP2(+/- and +/+) littermates. Oxygen-glucose-deprivation (OGD) caused a significant neuronal death in NRP2(-/-) cortical neurons, at the level similar to that in NRP(+/+) cortical neurons (72% death in NRP(-/-) neurons vs. 75% death in NRP2(+/+) neurons; n=4; p>0.05). Together, these loss-of-function studies demonstrated that despite of its critical role in neuronal guidance and vascular formation during development, NRP2 expression dose not affect adult brain response to cerebral ischemia. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Anticerebral Ischemia-Reperfusion Injury Activity of Synthesized Puerarin Derivatives

    PubMed Central

    Ji, Yubin; Yan, Xinjia

    2016-01-01

    When cerebral ischemia-reperfusion injury happened in patients, multiple pathological processes occur, such as leukocyte infiltration, platelet, and complement activation, which would result in cognitive dysfunction and inflammation. Puerarin has shown protective effect on injury of neural cell. In order to enhance this protective effect of puerarin, puerarin derivatives with different log⁡P values were designed and synthesized. The original phenolic hydroxyl in the puerarin molecules was substituted in order to change the blood-brain barrier permeability and thus enhance the efficacy for preventing cerebral ischemia/reperfusion injury. And the structure of the newly synthesized molecules was confirmed by 1H NMR spectroscopy and mass spectrometry. The mouse model of cerebral artery ischemia/reperfusion injury was established to test the anticerebral ischemia-reperfusion injury activity of the puerarin derivatives. The assays of the water maze, Y maze, brain cortex Ca2+-Mg2+-ATP enzyme, and iNOS enzyme activity were performed in this mouse model. The results showed that puerarin derivative P1-EA and P2-EA were resulting in an increased lipophilicity that enabled the derivatives to pass more efficiently through the blood-brain barrier, thus, improving the protective effects against cerebral ischemia/reperfusion injury. Therefore, derivatives of puerarin may serve as promising approach to improve neuron function in ischemia-reperfusion brain injury-related disorders. PMID:27807543

  4. A Distributed Network for Social Cognition Enriched for Oxytocin Receptors

    PubMed Central

    Mitre, Mariela; Marlin, Bianca J.; Schiavo, Jennifer K.; Morina, Egzona; Norden, Samantha E.; Hackett, Troy A.; Aoki, Chiye J.

    2016-01-01

    Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent–infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior. PMID:26911697

  5. Mapping oxygen concentration in the awake mouse brain

    PubMed Central

    Lyons, Declan G; Parpaleix, Alexandre; Roche, Morgane; Charpak, Serge

    2016-01-01

    Although critical for brain function, the physiological values of cerebral oxygen concentration have remained elusive because high-resolution measurements have only been performed during anesthesia, which affects two major parameters modulating tissue oxygenation: neuronal activity and blood flow. Using measurements of capillary erythrocyte-associated transients, fluctuations of oxygen partial pressure (Po2) associated with individual erythrocytes, to infer Po2 in the nearby neuropil, we report the first non-invasive micron-scale mapping of cerebral Po2 in awake, resting mice. Interstitial Po2 has similar values in the olfactory bulb glomerular layer and the somatosensory cortex, whereas there are large capillary hematocrit and erythrocyte flux differences. Awake tissue Po2 is about half that under isoflurane anesthesia, and within the cortex, vascular and interstitial Po2 values display layer-specific differences which dramatically contrast with those recorded under anesthesia. Our findings emphasize the importance of measuring energy parameters non-invasively in physiological conditions to precisely quantify and model brain metabolism. DOI: http://dx.doi.org/10.7554/eLife.12024.001 PMID:26836304

  6. Mapping oxygen concentration in the awake mouse brain.

    PubMed

    Lyons, Declan G; Parpaleix, Alexandre; Roche, Morgane; Charpak, Serge

    2016-02-02

    Although critical for brain function, the physiological values of cerebral oxygen concentration have remained elusive because high-resolution measurements have only been performed during anesthesia, which affects two major parameters modulating tissue oxygenation: neuronal activity and blood flow. Using measurements of capillary erythrocyte-associated transients, fluctuations of oxygen partial pressure (Po2) associated with individual erythrocytes, to infer Po2 in the nearby neuropil, we report the first non-invasive micron-scale mapping of cerebral Po2 in awake, resting mice. Interstitial Po2 has similar values in the olfactory bulb glomerular layer and the somatosensory cortex, whereas there are large capillary hematocrit and erythrocyte flux differences. Awake tissue Po2 is about half that under isoflurane anesthesia, and within the cortex, vascular and interstitial Po2 values display layer-specific differences which dramatically contrast with those recorded under anesthesia. Our findings emphasize the importance of measuring energy parameters non-invasively in physiological conditions to precisely quantify and model brain metabolism.

  7. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Alkayed, Nabil; Wang, Ruikang K.

    2009-07-01

    Optical microanglography (OMAG) is a recently developed imaging modality capable of volumetric imaging of dynamic blood perfusion, down to capillary level resolution, with an imaging depth up to 2.00 mm beneath the tissue surface. We report the use of OMAG to monitor the cerebral blood flow (CBF) over the cortex of mouse brain upon traumatic brain injury (TBI), with the cranium left intact, for a period of two weeks on the same animal. We show the ability of OMAG to repeatedly image 3-D cerebral vasculatures during pre- and post-traumatic phases, and to visualize the changes of regulated CBF and the vascular plasticity after TBI. The results indicate the potential of OMAG to explore the mechanism involved in the rehabilitation of TBI.

  8. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.

    PubMed

    Morrill, Ryan J; Hasenstaub, Andrea R

    2018-03-14

    The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.

  9. Manipulating neuronal activity with low frequency transcranial ultrasound

    NASA Astrophysics Data System (ADS)

    Moore, Michele Elizabeth

    Stimulation of the rodent cerebral cortex is used to investigate the underlying biological basis for the restorative effects of slow wave sleep. Neuronal activation by optogenetic and ultrasound stimulation elicits changes in action potentials across the cerebral cortex that are recorded as electroencephalograms. Optogenetic stimulation requires an invasive implantation procedure limiting its application in human studies. We sought to determine whether ultrasound stimulation could be as effective as optogenetic techniques currently used, in an effort to further understand the physiological and metabolic requirements of sleep. We successfully recorded electroencephalograms in response to transcranial ultrasound stimulation of the barrel cortex at 1 and 7 Hz frequencies, comparing them to those recorded in response to optogenetic stimuli applied at the same frequencies. Our results showed application of a 473 nm blue LED positioned 6 cm above the skull and ultrasound stimulation at an output voltage of 1000 mVpp produced electroencephalograms with physiological responses of similar amplitude. We concluded that there exists an intensity-proportionate response in the optogenetic stimulation, but not with ultrasound stimulation at the frequencies we surveyed. Activation of neuronal cells in response to optogenetic stimulation in a Thy1-ChR2 transgenic mouse line is specifically targeted to pyramidal cells in the cerebral cortex. ChR2 responses to optogenetic stimulation are mediated by a focal activation of neuronal ion channels. We measured electrophysiological responses to ultrasound stimulation, comparing them to those recorded from optogenetic stimuli. Our results show striking similarities between ultrasound-induced responses and optogenetically-induced responses, which may indicate that transcranial ultrasound stimulation is also mediated by ion channel dependent processes in cerebral cortical neurons. The biophysical substrates for electrical excitability of neurons impose temporal constraints on their response to stimulation. If ultrasound-mediated responses are, in fact, ion channel mediated responses, ultrasound-induced responses should exhibit time-dependence characteristics similar to those of optogenetically-triggered responses. Minimal stimulus duration thresholds and the temporal limits of paired pulse facilitation for ultrasound stimulation were identical to those of optogenetic stimulation. Collectively, these experiments demonstrate an electrophysiological basis for low-frequency transcranial ultrasound stimulation of cerebral cortical neuronal activity.

  10. [The expression of the c-fos gene in the brain of mice in the dynamic acquisition of defensive behavioral habits].

    PubMed

    Anokhin, K V; Riabinin, A E; Sudakov, K V

    2000-01-01

    Levels of c-fos mRNA expression in mouse cerebral cortex and hippocampus at different stages of footshock escape and avoidance learning were studied by Northern hydridization. In the first series of experiments a mouse was presented with 30 electric footshock daily in a chamber where it could escape from the floor by jumping on the safe platform attached to the wall. A large increase in c-fos mRNA level in the cerebral cortex and hippocampus was observed during the first day of training. Mice that were trained for 9 consecutive days and acquired a footshock escape reaction showed no elevation of c-fos expression in the brain as compared to the quiet control group. In the second series of experiments the levels of c-fos expression were compared in individual mice trained to avoid the footshock by jumping on the platform in response to an auditory conditioned stimulus. Mice which acquired avoidance behavior more rapidly had lower c-fos mRNA levels than slow learners. There was no such to difference between the corresponding yoked control groups which consisted of animals matched the rapid and slow learners by the number of footshocks received. It is concluded that achievement of adaptive results in the course of learning leads to a suppression of further c-fos induction by motivational excitation.

  11. Treatment of hypoxic-ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells.

    PubMed

    Ma, Jie; Wang, Yu; Yang, Jianhua; Yang, Min; Chang, Keun-A; Zhang, Linhua; Jiang, Feng; Li, Yi; Zhang, Zhonggong; Heo, Chaejeong; Suh, Yoo-Hun

    2007-07-01

    A 7-day-old hypoxic-ischemic encephalopathy (HIE) mouse model was used to study the effect of transplantation of embryonic stem (ES) cell-derived cells on the HIE. After the inducement in vitro, the ES cell-derived cells expressed Nestin and MAP-2, rather than GFAP mRNA. After transplantation, ES cell-derived cells can survive, migrate into the injury site, and specifically differentiate into neurons, showing improvement of the learning ability and memory of the HIE mouse at 8 months post-transplantation. The non-grafted HIE mouse brain showed typical pathological changes in the hippocampus and cerebral cortex, where the number of neurons was reduced, while in the cell graft group, number of the neurons increased in the same regions. Although further study is necessary to elucidate the precise mechanisms responsible for this functional recovery, we believe that ES cells have advantages for use as a donor source in HIE.

  12. Correlation between brain injury and dysphagia in adult patients with stroke

    PubMed Central

    Nunes, Maria Cristina de Alencar; Jurkiewicz, Ari Leon; Santos, Rosane Sampaio; Furkim, Ana Maria; Massi, Giselle; Pinto, Gisele Sant Ana; Lange, Marcos Christiano

    2012-01-01

    Summary Introduction: In the literature, the incidence of oropharyngeal dysphagia in patients with cerebrovascular accident (AVE) ranges 20–90%. Some studies correlate the location of a stroke with dysphagia, while others do not. Objective: To correlate brain injury with dysphagia in patients with stroke in relation to the type and location of stroke. Method: A prospective study conducted at the Hospital de Clinicas with 30 stroke patients: 18 women and 12 men. All patients underwent clinical evaluation and swallowing nasolaryngofibroscopy (FEES®), and were divided based on the location of the injury: cerebral cortex, cerebellar cortex, subcortical areas, and type: hemorrhagic or transient ischemic. Results: Of the 30 patients, 18 had ischemic stroke, 10 had hemorrhagic stroke, and 2 had transient stroke. Regarding the location, 10 lesions were in the cerebral cortex, 3 were in the cerebral and cerebellar cortices, 3 were in the cerebral cortex and subcortical areas, and 3 were in the cerebral and cerebellar cortices and subcortical areas. Cerebral cortex and subcortical area ischemic strokes predominated in the clinical evaluation of dysphagia. In FEES®, decreased laryngeal sensitivity persisted following cerebral cortex and ischemic strokes. Waste in the pharyngeal recesses associated with epiglottic valleculae predominated in the piriform cortex in all lesion areas and in ischemic stroke. A patient with damage to the cerebral and cerebellar cortices from an ischemic stroke exhibited laryngeal penetration and tracheal aspiration of liquid and honey. Conclusion: Dysphagia was prevalent when a lesion was located in the cerebral cortex and was of the ischemic type. PMID:25991951

  13. OCT-based in vivo tissue injury mapping

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2016-03-01

    Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.

  14. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    PubMed Central

    Kazu, Rodrigo S.; Maldonado, José; Mota, Bruno; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex. PMID:25429261

  15. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research.

    PubMed

    Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C

    2017-08-01

    Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and -negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for preclinical mouse models of glioblastoma.

  16. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research

    PubMed Central

    Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C

    2017-01-01

    Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and ‑negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for preclinical mouse models of glioblastoma. PMID:28830577

  17. Strain differences of the effect of enucleation and anophthalmia on the size and growth of sensory cortices in mice.

    PubMed

    Massé, Ian O; Guillemette, Sonia; Laramée, Marie-Eve; Bronchti, Gilles; Boire, Denis

    2014-11-07

    Anophthalmia is a condition in which the eye does not develop from the early embryonic period. Early blindness induces cross-modal plastic modifications in the brain such as auditory and haptic activations of the visual cortex and also leads to a greater solicitation of the somatosensory and auditory cortices. The visual cortex is activated by auditory stimuli in anophthalmic mice and activity is known to alter the growth pattern of the cerebral cortex. The size of the primary visual, auditory and somatosensory cortices and of the corresponding specific sensory thalamic nuclei were measured in intact and enucleated C57Bl/6J mice and in ZRDCT anophthalmic mice (ZRDCT/An) to evaluate the contribution of cross-modal activity on the growth of the cerebral cortex. In addition, the size of these structures were compared in intact, enucleated and anophthalmic fourth generation backcrossed hybrid C57Bl/6J×ZRDCT/An mice to parse out the effects of mouse strains and of the different visual deprivations. The visual cortex was smaller in the anophthalmic ZRDCT/An than in the intact and enucleated C57Bl/6J mice. Also the auditory cortex was larger and the somatosensory cortex smaller in the ZRDCT/An than in the intact and enucleated C57Bl/6J mice. The size differences of sensory cortices between the enucleated and anophthalmic mice were no longer present in the hybrid mice, showing specific genetic differences between C57Bl/6J and ZRDCT mice. The post natal size increase of the visual cortex was less in the enucleated than in the anophthalmic and intact hybrid mice. This suggests differences in the activity of the visual cortex between enucleated and anophthalmic mice and that early in-utero spontaneous neural activity in the visual system contributes to the shaping of functional properties of cortical networks. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly

    PubMed Central

    de Juan Romero, Camino; Bruder, Carl; Tomasello, Ugo; Sanz-Anquela, José Miguel; Borrell, Víctor

    2015-01-01

    Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ∼80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. PMID:25916825

  19. Expression pattern of cadherins in the naked mole rat (Heterocephalus glaber) suggests innate cortical diversification of the cerebrum.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Iriki, Atsushi; Okanoya, Kazuo

    2011-06-15

    The cerebral cortex is an indispensable region for higher cognitive function that is remarkably diverse among mammalian species. Although previous research has shown that the cortical area map in the mammalian cerebral cortex is formed by innate and activity-dependent mechanisms, it remains unknown how these mechanisms contribute to the evolution and diversification of the functional cortical areas in various species. The naked mole rat (Heterocephalus glaber) is a subterranean, eusocial rodent. Physiological and anatomical studies have revealed that the visual system is regressed and the somatosensory system is enlarged. To examine whether species differences in cortical area development are caused by intrinsic factors or environmental factors, we performed comparative gene expression analysis of neonatal naked mole rat and mouse brains. The expression domain of cadherin-6, a somatosensory marker, was expanded caudally and shifted dorsally in the cortex, whereas the expression domain of cadherin-8, a visual marker, was reduced caudally in the neonatal naked mole rat cortex. The expression domain of cadherin-8 was also reduced in other visual areas, such as the lateral geniculate nucleus and superior colliculus. Immunohistochemical analysis of thalamocortical fibers further suggested that somatosensory input did not affect cortical gene expression in the neonatal naked mole rat brain. These results suggest that the development of the somatosensory system and the regression of the visual system in the naked mole rat cortex are due to intrinsic genetic mechanisms as well as sensory input-dependent mechanisms. Intrinsic genetic mechanisms thus appear to contribute to species diversity in cortical area formation. Copyright © 2011 Wiley-Liss, Inc.

  20. JIP3 regulates neuronal radial migration by mediating TrkB axonal anterograde transport in the developing cerebral cortex.

    PubMed

    Ma, Huixian; Yu, Hui; Li, Ting; Zhao, Yan; Hou, Ming; Chen, Zheyu; Wang, Yue; Sun, Tao

    2017-04-15

    Radial migration is essential for the precise lamination and the coordinated function of the cerebral cortex. However, the molecular mechanisms for neuronal radial migration are not clear. Here, we report that c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) is highly expressed in the brain of embryonic mice and essential for radial migration. Knocking down JIP3 by in utero electroporation specifically perturbs the radial migration of cortical neurons but has no effect on neurogenesis and neuronal differentiation. Furthermore, we illustrate that JIP3 knockdown delays but does not block the migration of cortical neurons by investigating the distribution of neurons with JIP3 knocked down in the embryo and postnatal mouse. Finally, we find that JIP3 regulates cortical neuronal migration by mediating TrkB axonal anterograde transport during brain development. These findings deepen our understanding of the regulation of neuronal development by JIP3 and provide us a novel view on the regulating mechanisms of neuronal radial migration. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Protocol to Isolate a Large Amount of Functional Oligodendrocyte Precursor Cells from the Cerebral Cortex of Adult Mice and Humans

    PubMed Central

    Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando

    2013-01-01

    During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair. PMID:24303061

  2. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans.

    PubMed

    Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando

    2013-01-01

    During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.

  3. Spinal Cord Injury Causes Brain Inflammation Associated with Cognitive and Affective Changes: Role of Cell Cycle Pathways

    PubMed Central

    Zhao, Zaorui; Sabirzhanov, Boris; Stoica, Bogdan A.; Kumar, Alok; Luo, Tao; Skovira, Jacob; Faden, Alan I.

    2014-01-01

    Experimental spinal cord injury (SCI) causes chronic neuropathic pain associated with inflammatory changes in thalamic pain regulatory sites. Our recent studies examining chronic pain mechanisms after rodent SCI showed chronic inflammatory changes not only in thalamus, but also in other regions including hippocampus and cerebral cortex. Because changes appeared similar to those in our rodent TBI models that are associated with neurodegeneration and neurobehavioral dysfunction, we examined effects of mouse SCI on cognition, depressive-like behavior, and brain inflammation. SCI caused spatial and retention memory impairment and depressive-like behavior, as evidenced by poor performance in the Morris water maze, Y-maze, novel objective recognition, step-down passive avoidance, tail suspension, and sucrose preference tests. SCI caused chronic microglial activation in the hippocampus and cerebral cortex, where microglia with hypertrophic morphologies and M1 phenotype predominated. Stereological analyses showed significant neuronal loss in the hippocampus at 12 weeks but not 8 d after injury. Increased cell-cycle-related gene (cyclins A1, A2, D1, E2F1, and PCNA) and protein (cyclin D1 and CDK4) expression were found chronically in hippocampus and cerebral cortex. Systemic administration of the selective cyclin-dependent kinase inhibitor CR8 after SCI significantly reduced cell cycle gene and protein expression, microglial activation and neurodegeneration in the brain, cognitive decline, and depression. These studies indicate that SCI can initiate a chronic brain neurodegenerative response, likely related to delayed, sustained induction of M1-type microglia and related cell cycle activation, which result in cognitive deficits and physiological depression. PMID:25122899

  4. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis

    PubMed Central

    Zhou, Jun-Hao; Zhang, Tong-Tong; Song, Dan-Dan; Xia, Yun-Fei; Qin, Zheng-Hong; Sheng, Rui

    2016-01-01

    Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis. PMID:27256465

  5. Nicotinamide Forestalls Pathology and Cognitive Decline in Alzheimer Mice: Evidence for Improved Neuronal Bioenergetics and Autophagy Procession

    PubMed Central

    Liu, Dong; Pitta, Michael; Jiang, Haiyang; Lee, Jong-Hwan; Zhang, Guofeng; Chen, Xinzhi; Kawamoto, Elisa M.; Mattson, Mark P.

    2012-01-01

    Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline and the pathological accumulations of amyloid β-peptide (Aβ) and hyperphosphorylated Tau (p-Tau) in Alzheimer's disease (AD). To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the NAD+ precursor nicotinamide on brain cell mitochondrial function and macroautophagy, bioenergetics-related signaling and cognitive performance were studied in cultured neurons and in a mouse model of AD. Oxidative stress resulted in decreased mitochondrial mass, mitochondrial degeneration and autophagosome accumulation in neurons. Nicotinamide preserved mitochondrial integrity and autophagy function, and reduced neuronal vulnerability to oxidative/metabolic insults and Aβ toxicity. NAD+ biosynthesis, autophagy and PI3K signaling were required for the neuroprotective action of nicotinamide. Treatment of 3xTgAD mice with nicotinamide for 8 months resulted in improved cognitive performance, and reduced Aβ and p-Tau pathologies in hippocampus and cerebral cortex. Nicotinamide treatment preserved mitochondrial integrity, and improved autophagy-lysosome procession by enhancing lysosome/autolysosome acidification to reduce autophagosome accumulation. Treatment of 3xTgAD mice with nicotinamide resulted in elevated levels of activated neuroplasticity-related kinases (Akt and ERKs) and the transcription factor cyclic AMP response element-binding protein in the hippocampus and cerebral cortex. Thus, nicotinamide suppresses AD pathology and cognitive decline in a mouse model of AD by a mechanism involving improved brain bioenergetics with preserved functionality of mitochondria and the autophagy system. PMID:23273573

  6. Astrocytic calcium activation in a mouse model of tDCS—Extended discussion

    PubMed Central

    Monai, Hiromu; Hirase, Hajime

    2016-01-01

    ABSTRACT Transcranial direct current stimulation (tDCS) has been reported to be effective for alleviation of neuropsychiatric and neurological conditions as well as enhancement of memory and cognition. Despite the positive effects of tDCS in humans, its mechanism of action remains poorly understood. Recently, we reported that astrocytes, a major glial cell type in the brain, show an increase in intracellular Ca2+ levels during tDCS in the cerebral cortex of the awake mouse. This tDCS-induced elevation in astrocytic Ca2+ has subsequently been demonstrated to be important for cortical plasticity. In this commentary article, we discuss possible interpretations and implications of our findings from the viewpoint of neuron-glia interactions. PMID:27830161

  7. Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit

    PubMed Central

    Serradj, Najet

    2016-01-01

    Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb constraint during development to expand our understanding of experience-dependent CST development from both basic and translational perspectives. This mouse develops dense ipsilateral CST projections, a bilateral motor cortex motor representation, and bilateral motor phenotypes. Together these phenotypes can be used as readouts of corticospinal system organization and function and the changes brought about by experience. The Emx1-Cre:EphA4tm2Kldr mouse shares features with the common developmental disorder cerebral palsy: bilateral voluntary motor impairments and bilateral CST miswiring. Emx1-Cre:EphA4tm2Kldr mice with typical motor experiences during development display the bilateral phenotype of “mirror” reaching, because of a strongly bilateral motor cortex motor representation and a bilateral CST. By contrast, Emx1-Cre:EphA4tm2Kldr mice that experienced unilateral forelimb constraint from P1 to P30 and tested at maturity had a more contralateral motor cortex motor representation in each hemisphere; more lateralized CST projections; and substantially more lateralized/independent reaching movements. Changes in CST organization and function in this model can be explained by reduced synaptic competition of the CST from the side without developmental forelimb motor experiences. Using this model we show that unilateral constraint largely abrogated the effects of the genetic mutation on CST projections and thus demonstrates how robust and persistent experience-dependent development can be for the establishment of corticospinal system connections and voluntary control. Further, our findings inform the mechanisms of and strategies for developing behavioral therapies to treat bilateral movement impairments and CST miswiring in cerebral palsy. PMID:27673329

  8. Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit.

    PubMed

    Serradj, Najet; Martin, John H

    Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb constraint during development to expand our understanding of experience-dependent CST development from both basic and translational perspectives. This mouse develops dense ipsilateral CST projections, a bilateral motor cortex motor representation, and bilateral motor phenotypes. Together these phenotypes can be used as readouts of corticospinal system organization and function and the changes brought about by experience. The Emx1-Cre:EphA4tm2Kldr mouse shares features with the common developmental disorder cerebral palsy: bilateral voluntary motor impairments and bilateral CST miswiring. Emx1-Cre:EphA4tm2Kldr mice with typical motor experiences during development display the bilateral phenotype of "mirror" reaching, because of a strongly bilateral motor cortex motor representation and a bilateral CST. By contrast, Emx1-Cre:EphA4tm2Kldr mice that experienced unilateral forelimb constraint from P1 to P30 and tested at maturity had a more contralateral motor cortex motor representation in each hemisphere; more lateralized CST projections; and substantially more lateralized/independent reaching movements. Changes in CST organization and function in this model can be explained by reduced synaptic competition of the CST from the side without developmental forelimb motor experiences. Using this model we show that unilateral constraint largely abrogated the effects of the genetic mutation on CST projections and thus demonstrates how robust and persistent experience-dependent development can be for the establishment of corticospinal system connections and voluntary control. Further, our findings inform the mechanisms of and strategies for developing behavioral therapies to treat bilateral movement impairments and CST miswiring in cerebral palsy.

  9. Simultaneous and Noninvasive Imaging of Cerebral Oxygen Metabolic Rate, Blood Flow and Oxygen Extraction Fraction in Stroke Mice

    PubMed Central

    Zhu, Xiao-Hong; Chen, James; Tu, Tsang-Wei; Chen, Wei; Song, Sheng-Kwei

    2012-01-01

    Many brain diseases have been linked to abnormal oxygen metabolism and blood perfusion; nevertheless, there is still a lack of robust diagnostic tools for directly imaging cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF), as well as the oxygen extraction fraction (OEF) that reflects the balance between CMRO2 and CBF. This study employed the recently developed in vivo 17O MR spectroscopic imaging to simultaneously assess CMRO2, CBF and OEF in the brain using a preclinical middle cerebral arterial occlusion mouse model with a brief inhalation of 17O-labeled oxygen gas. The results demonstrated high sensitivity and reliability of the noninvasive 17O-MR approach for rapidly imaging CMRO2, CBF and OEF abnormalities in the ischemic cortex of the MCAO mouse brain. It was found that in the ischemic brain regions both CMRO2 and CBF were substantially lower than that of intact brain regions, even for the mildly damaged brain regions that were unable to be clearly identified by the conventional MRI. In contrast, OEF was higher in the MCAO affected brain regions. This study demonstrates a promising 17O MRI technique for imaging abnormal oxygen metabolism and perfusion in the diseased brain regions. This 17O MRI technique is advantageous because of its robustness, simplicity, noninvasiveness and reliability: features that are essential to potentially translate it to human patients for early diagnosis and monitoring of treatment efficacy. PMID:23000789

  10. Simultaneous and noninvasive imaging of cerebral oxygen metabolic rate, blood flow and oxygen extraction fraction in stroke mice.

    PubMed

    Zhu, Xiao-Hong; Chen, James M; Tu, Tsang-Wei; Chen, Wei; Song, Sheng-Kwei

    2013-01-01

    Many brain diseases have been linked to abnormal oxygen metabolism and blood perfusion; nevertheless, there is still a lack of robust diagnostic tools for directly imaging cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF), as well as the oxygen extraction fraction (OEF) that reflects the balance between CMRO(2) and CBF. This study employed the recently developed in vivo (17)O MR spectroscopic imaging to simultaneously assess CMRO(2), CBF and OEF in the brain using a preclinical middle cerebral arterial occlusion mouse model with a brief inhalation of (17)O-labeled oxygen gas. The results demonstrated high sensitivity and reliability of the noninvasive (17)O-MR approach for rapidly imaging CMRO(2), CBF and OEF abnormalities in the ischemic cortex of the MCAO mouse brain. It was found that in the ischemic brain regions both CMRO(2) and CBF were substantially lower than that of intact brain regions, even for the mildly damaged brain regions that were unable to be clearly identified by the conventional MRI. In contrast, OEF was higher in the MCAO affected brain regions. This study demonstrates a promising (17)O MRI technique for imaging abnormal oxygen metabolism and perfusion in the diseased brain regions. This (17)O MRI technique is advantageous because of its robustness, simplicity, noninvasiveness and reliability: features that are essential to potentially translate it to human patients for early diagnosis and monitoring of treatment efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Cholinergic neurodegeneration in an Alzheimer mouse model overexpressing amyloid-precursor protein with the Swedish-Dutch-Iowa mutations.

    PubMed

    Foidl, Bettina Maria; Do-Dinh, Patricia; Hutter-Schmid, Bianca; Bliem, Harald R; Humpel, Christian

    2016-12-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is mainly characterized by beta-amyloid (Aβ) plaque deposition, Tau pathology and dysfunction of the cholinergic system causing memory impairment. The aim of the present study was to examine (1) anxiety and cognition, (2) Aβ plaque deposition and (3) degeneration of cholinergic neurons in the nucleus basalis of Meynert (nbM) and cortical cholinergic innervation in an Alzheimer mouse model (APP_SweDI; overexpressing amyloid precursor protein (APP) with the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations). Our results show that 12-month-old APP_SweDI mice were more anxious and had more memory impairment. A large number of Aβ plaques were already visible at the age of 6 months and increased with age. A significant decrease in cholinergic neurons was seen in the transgenic mouse model in comparison to the wild-type mice, identified by immunohistochemistry against choline acetyltransferase (ChAT) and p75 neurotrophin receptor as well as by in situ hybridization. Moreover, a significant decrease in cortical cholinergic fiber density was found in the transgenic mice as compared to the wild-type. In the cerebral cortex of APP_SweDI mice, swollen cholinergic varicosities were seen in the vicinity of Aβ plaques. In conclusion, the present study shows that in an AD mouse model (APP_SweDI mice) a high Aβ plaque load in the cortex causes damage to cholinergic axons in the cortex, followed by subsequent retrograde-induced cell death of cholinergic neurons and some forms of compensatory processes. This degeneration was accompanied by enhanced anxiety and impaired cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Increased Glutamate Receptor and Transporter Expression in the Cerebral Cortex and Striatum of Gcdh -/- Mice: Possible Implications for the Neuropathology of Glutaric Acidemia Type I

    PubMed Central

    Lagranha, Valeska Lizzi; Matte, Ursula; de Carvalho, Talita Giacomet; Seminotti, Bianca; Pereira, Carolina Coffi; Koeller, David M.; Woontner, Michael; Goodman, Stephen I.; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2014-01-01

    We determined mRNA expression of the ionotropic glutamate receptors NMDA (NR1, NR2A and NR2B subunits), AMPA (GluR2 subunit) and kainate (GluR6 subunit), as well as of the glutamate transporters GLAST and GLT1 in cerebral cortex and striatum of wild type (WT) and glutaryl-CoA dehydrogenase deficient (Gchh -/-) mice aged 7, 30 and 60 days. The protein expression levels of some of these membrane proteins were also measured. Overexpression of NR2A and NR2B in striatum and of GluR2 and GluR6 in cerebral cortex was observed in 7-day-old Gcdh -/-. There was also an increase of mRNA expression of all NMDA subunits in cerebral cortex and of NR2A and NR2B in striatum of 30-day-old Gcdh -/- mice. At 60 days of life, all ionotropic receptors were overexpressed in cerebral cortex and striatum of Gcdh -/- mice. Higher expression of GLAST and GLT1 transporters was also verified in cerebral cortex and striatum of Gcdh -/- mice aged 30 and 60 days, whereas at 7 days of life GLAST was overexpressed only in striatum from this mutant mice. Furthermore, high lysine intake induced mRNA overexpression of NR2A, NR2B and GLAST transcripts in striatum, as well as of GluR2 and GluR6 in both striatum and cerebral cortex of Gcdh -/- mice. Finally, we found that the protein expression of NR2A, NR2B, GLT1 and GLAST were significantly greater in cerebral cortex of Gcdh -/- mice, whereas NR2B and GLT1 was similarly enhanced in striatum, implying that these transcripts were translated into their products. These results provide evidence that glutamate receptor and transporter expression is higher in Gcdh -/- mice and that these alterations may be involved in the pathophysiology of GA I and possibly explain, at least in part, the vulnerability of striatum and cerebral cortex to injury in patients affected by GA I. PMID:24594605

  13. Increased glutamate receptor and transporter expression in the cerebral cortex and striatum of gcdh-/- mice: possible implications for the neuropathology of glutaric acidemia type I.

    PubMed

    Lagranha, Valeska Lizzi; Matte, Ursula; de Carvalho, Talita Giacomet; Seminotti, Bianca; Pereira, Carolina Coffi; Koeller, David M; Woontner, Michael; Goodman, Stephen I; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2014-01-01

    We determined mRNA expression of the ionotropic glutamate receptors NMDA (NR1, NR2A and NR2B subunits), AMPA (GluR2 subunit) and kainate (GluR6 subunit), as well as of the glutamate transporters GLAST and GLT1 in cerebral cortex and striatum of wild type (WT) and glutaryl-CoA dehydrogenase deficient (Gchh-/-) mice aged 7, 30 and 60 days. The protein expression levels of some of these membrane proteins were also measured. Overexpression of NR2A and NR2B in striatum and of GluR2 and GluR6 in cerebral cortex was observed in 7-day-old Gcdh-/-. There was also an increase of mRNA expression of all NMDA subunits in cerebral cortex and of NR2A and NR2B in striatum of 30-day-old Gcdh-/- mice. At 60 days of life, all ionotropic receptors were overexpressed in cerebral cortex and striatum of Gcdh-/- mice. Higher expression of GLAST and GLT1 transporters was also verified in cerebral cortex and striatum of Gcdh-/- mice aged 30 and 60 days, whereas at 7 days of life GLAST was overexpressed only in striatum from this mutant mice. Furthermore, high lysine intake induced mRNA overexpression of NR2A, NR2B and GLAST transcripts in striatum, as well as of GluR2 and GluR6 in both striatum and cerebral cortex of Gcdh-/- mice. Finally, we found that the protein expression of NR2A, NR2B, GLT1 and GLAST were significantly greater in cerebral cortex of Gcdh-/- mice, whereas NR2B and GLT1 was similarly enhanced in striatum, implying that these transcripts were translated into their products. These results provide evidence that glutamate receptor and transporter expression is higher in Gcdh-/- mice and that these alterations may be involved in the pathophysiology of GA I and possibly explain, at least in part, the vulnerability of striatum and cerebral cortex to injury in patients affected by GA I.

  14. Spatial embedding of structural similarity in the cerebral cortex

    PubMed Central

    Song, H. Francis; Kennedy, Henry; Wang, Xiao-Jing

    2014-01-01

    Recent anatomical tracing studies have yielded substantial amounts of data on the areal connectivity underlying distributed processing in cortex, yet the fundamental principles that govern the large-scale organization of cortex remain unknown. Here we show that functional similarity between areas as defined by the pattern of shared inputs or outputs is a key to understanding the areal network of cortex. In particular, we report a systematic relation in the monkey, human, and mouse cortex between the occurrence of connections from one area to another and their similarity distance. This characteristic relation is rooted in the wiring distance dependence of connections in the brain. We introduce a weighted, spatially embedded random network model that robustly gives rise to this structure, as well as many other spatial and topological properties observed in cortex. These include features that were not accounted for in any previous model, such as the wide range of interareal connection weights. Connections in the model emerge from an underlying distribution of spatially embedded axons, thereby integrating the two scales of cortical connectivity—individual axons and interareal pathways—into a common geometric framework. These results provide insights into the origin of large-scale connectivity in cortex and have important implications for theories of cortical organization. PMID:25368200

  15. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    PubMed

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  16. A Sharp Cadherin-6 Gene Expression Boundary in the Developing Mouse Cortical Plate Demarcates the Future Functional Areal Border

    PubMed Central

    Terakawa, Youhei W.; Inoue, Yukiko U.; Asami, Junko; Hoshino, Mikio; Inoue, Takayoshi

    2013-01-01

    The mammalian cerebral cortex can be tangentially subdivided into tens of functional areas with distinct cyto-architectures and neural circuitries; however, it remains elusive how these areal borders are genetically elaborated during development. Here we establish original bacterial artificial chromosome transgenic mouse lines that specifically recapitulate cadherin-6 (Cdh6) mRNA expression profiles in the layer IV of the somatosensory cortex and by detailing their cortical development, we show that a sharp Cdh6 gene expression boundary is formed at a mediolateral coordinate along the cortical layer IV as early as the postnatal day 5 (P5). By further applying mouse genetics that allows rigid cell fate tracing with CreERT2 expression, it is demonstrated that the Cdh6 gene expression boundary set at around P4 eventually demarcates the areal border between the somatosensory barrel and limb field at P20. In the P6 cortical cell pellet culture system, neurons with Cdh6 expression preferentially form aggregates in a manner dependent on Ca2+ and electroporation-based Cdh6 overexpression limited to the postnatal stages perturbs area-specific cell organization in the barrel field. These results suggest that Cdh6 expression in the nascent cortical plate may serve solidification of the protomap for cortical functional areas. PMID:22875867

  17. Regional microstructural organization of the cerebral cortex is affected by preterm birth.

    PubMed

    Bouyssi-Kobar, Marine; Brossard-Racine, Marie; Jacobs, Marni; Murnick, Jonathan; Chang, Taeun; Limperopoulos, Catherine

    2018-01-01

    To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. We prospectively enrolled very preterm infants (gestational age (GA) at birth<32 weeks; birthweight<1500 g) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants.

  18. Amyloid deposition in the hippocampus and entorhinal cortex: Quantitative analysis of a transgenic mouse model

    PubMed Central

    Reilly, John F.; Games, Dora; Rydel, Russell E.; Freedman, Stephen; Schenk, Dale; Young, Warren G.; Morrison, John H.; Bloom, Floyd E.

    2003-01-01

    Various transgenic mouse models of Alzheimer's disease (AD) have been developed that overexpress mutant forms of amyloid precursor protein in an effort to elucidate more fully the potential role of β-amyloid (Aβ) in the etiopathogenesis of the disease. The present study represents the first complete 3D reconstruction of Aβ in the hippocampus and entorhinal cortex of PDAPP transgenic mice. Aβ deposits were detected by immunostaining and thioflavin fluorescence, and quantified by using high-throughput digital image acquisition and analysis. Quantitative analysis of amyloid load in hippocampal subfields showed a dramatic increase between 12 and 15 months of age, with little or no earlier detectable deposition. Three-dimensional reconstruction in the oldest brains visualized previously unrecognized sheets of Aβ coursing through the hippocampus and cerebral cortex. In contrast with previous hypotheses, compact plaques form before significant deposition of diffuse Aβ, suggesting that different mechanisms are involved in the deposition of diffuse amyloid and the aggregation into plaques. The dentate gyrus was the hippocampal subfield with the greatest amyloid burden. Sublaminar distribution of Aβ in the dentate gyrus correlated most closely with the termination of afferent projections from the lateral entorhinal cortex, mirroring the selective vulnerability of this circuit in human AD. This detailed temporal and spatial analysis of Aβ and compact amyloid deposition suggests that specific corticocortical circuits express selective, but late, vulnerability to the pathognomonic markers of amyloid deposition, and can provide a basis for detecting prior vulnerability factors. PMID:12697936

  19. Genetic Elimination of GABAergic Neurotransmission Reveals Two Distinct Pacemakers for Spontaneous Waves of Activity in the Developing Mouse Cortex

    PubMed Central

    Easton, Curtis R.; Weir, Keiko; Scott, Adina; Moen, Samantha P.; Barger, Zeke; Folch, Albert; Hevner, Robert F.

    2014-01-01

    Many structures of the mammalian CNS generate propagating waves of electrical activity early in development. These waves are essential to CNS development, mediating a variety of developmental processes, such as axonal outgrowth and pathfinding, synaptogenesis, and the maturation of ion channel and receptor properties. In the mouse cerebral cortex, waves of activity occur between embryonic day 18 and postnatal day 8 and originate in pacemaker circuits in the septal nucleus and the piriform cortex. Here we show that genetic knock-out of the major synthetic enzyme for GABA, GAD67, selectively eliminates the picrotoxin-sensitive fraction of these waves. The waves that remain in the GAD67 knock-out have a much higher probability of propagating into the dorsal neocortex, as do the picrotoxin-resistant fraction of waves in controls. Field potential recordings at the point of wave initiation reveal different electrical signatures for GABAergic and glutamatergic waves. These data indicate that: (1) there are separate GABAergic and glutamatergic pacemaker circuits within the piriform cortex, each of which can initiate waves of activity; (2) the glutamatergic pacemaker initiates waves that preferentially propagate into the neocortex; and (3) the initial appearance of the glutamatergic pacemaker does not require preceding GABAergic waves. In the absence of GAD67, the electrical activity underlying glutamatergic waves shows greatly increased tendency to burst, indicating that GABAergic inputs inhibit the glutamatergic pacemaker, even at stages when GABAergic pacemaker circuitry can itself initiate waves. PMID:24623764

  20. A computational model of cerebral cortex folding.

    PubMed

    Nie, Jingxin; Guo, Lei; Li, Gang; Faraco, Carlos; Stephen Miller, L; Liu, Tianming

    2010-05-21

    The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Caveolin1 Identifies a Specific Subpopulation of Cerebral Cortex Callosal Projection Neurons (CPN) Including Dual Projecting Cortical Callosal/Frontal Projection Neurons (CPN/FPN)

    PubMed Central

    2018-01-01

    Abstract The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes. PMID:29379878

  2. Hyperconnectivity of prefrontal cortex to amygdala projections in a mouse model of macrocephaly/autism syndrome.

    PubMed

    Huang, Wen-Chin; Chen, Youjun; Page, Damon T

    2016-11-15

    Multiple autism risk genes converge on the regulation of mTOR signalling, which is a key effector of neuronal growth and connectivity. We show that mTOR signalling is dysregulated during early postnatal development in the cerebral cortex of germ-line heterozygous Pten mutant mice (Pten +/- ), which model macrocephaly/autism syndrome. The basolateral amygdala (BLA) receives input from subcortical-projecting neurons in the medial prefrontal cortex (mPFC). Analysis of mPFC to BLA axonal projections reveals that Pten +/- mice exhibit increased axonal branching and connectivity, which is accompanied by increased activity in the BLA in response to social stimuli and social behavioural deficits. The latter two phenotypes can be suppressed by pharmacological inhibition of S6K1 during early postnatal life or by reducing the activity of mPFC-BLA circuitry in adulthood. These findings identify a mechanism of altered connectivity that has potential relevance to the pathophysiology of macrocephaly/autism syndrome and autism spectrum disorders featuring dysregulated mTOR signalling.

  3. Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex.

    PubMed

    Blanquie, Oriane; Yang, Jenq-Wei; Kilb, Werner; Sharopov, Salim; Sinning, Anne; Luhmann, Heiko J

    2017-08-21

    Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptosis and sensory deprivation leads to exacerbated amounts of apoptotic neurons in the corresponding functional area of the neocortex. Thus, our data demonstrate that spontaneous and periphery-driven activity patterns are important for the structural and functional maturation of the neocortex by refining the final number of cortical neurons in a region-dependent manner.

  4. Hyperconnectivity of prefrontal cortex to amygdala projections in a mouse model of macrocephaly/autism syndrome

    PubMed Central

    Huang, Wen-Chin; Chen, Youjun; Page, Damon T.

    2016-01-01

    Multiple autism risk genes converge on the regulation of mTOR signalling, which is a key effector of neuronal growth and connectivity. We show that mTOR signalling is dysregulated during early postnatal development in the cerebral cortex of germ-line heterozygous Pten mutant mice (Pten+/−), which model macrocephaly/autism syndrome. The basolateral amygdala (BLA) receives input from subcortical-projecting neurons in the medial prefrontal cortex (mPFC). Analysis of mPFC to BLA axonal projections reveals that Pten+/− mice exhibit increased axonal branching and connectivity, which is accompanied by increased activity in the BLA in response to social stimuli and social behavioural deficits. The latter two phenotypes can be suppressed by pharmacological inhibition of S6K1 during early postnatal life or by reducing the activity of mPFC–BLA circuitry in adulthood. These findings identify a mechanism of altered connectivity that has potential relevance to the pathophysiology of macrocephaly/autism syndrome and autism spectrum disorders featuring dysregulated mTOR signalling. PMID:27845329

  5. Uptake of (/sup 3/H)serotonin into plasma membrane vesicles from mouse cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Reilly, C.A.; Reith, M.E.A.

    1988-05-05

    Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of (/sup 3/H)serotonin had a Na/sup +/-dependent and Na/sup +/-independent component. The Na/sup +/-dependent uptake was inhibited by classical blockers of serotonin uptake and had a K/sub m/ of 63-180 nM, and a V/sub max/ of 0.1-0.3 pmol mg/sup -1/ s/sup -1/ at 77 mM Na/sup +/. The uptake required the presence of external Na/sup +/ and internal K/sup +/. Replacement ofmore » Cl/sup -/ by other anions (NO/sub 2//sup -/, S/sub 2/O/sub 3//sup 2 -/) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN/sup -/ ion in the absence of internal K/sup +/ and with equal (Na/sup +/) inside and outside. The increase of uptake as a function of (Na/sup +/) indicated a K/sub m/ for Na/sup +/ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport except for the number of sodium ions that are required for transport.« less

  6. Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia

    PubMed Central

    Hoerder-Suabedissen, Anna; Oeschger, Franziska M.; Krishnan, Michelle L.; Belgard, T. Grant; Wang, Wei Zhi; Lee, Sheena; Webber, Caleb; Petretto, Enrico; Edwards, A. David; Molnár, Zoltán

    2013-01-01

    The subplate zone is a highly dynamic transient sector of the developing cerebral cortex that contains some of the earliest generated neurons and the first functional synapses of the cerebral cortex. Subplate cells have important functions in early establishment and maturation of thalamocortical connections, as well as in the development of inhibitory cortical circuits in sensory areas. So far no role has been identified for cells in the subplate in the mature brain and disease association of the subplate-specific genes has not been analyzed systematically. Here we present gene expression evidence for distinct roles of the mouse subplate across development as well as unique molecular markers to extend the repertoire of subplate labels. Performing systematic comparisons between different ages (embryonic days 15 and 18, postnatal day 8, and adult), we reveal the dynamic and constant features of the markers labeling subplate cells during embryonic and early postnatal development and in the adult. This can be visualized using the online database of subplate gene expression at https://molnar.dpag.ox.ac.uk/subplate/. We also identify embryonic similarities in gene expression between the ventricular zones, intermediate zone, and subplate, and distinct postnatal similarities between subplate, layer 5, and layers 2/3. The genes expressed in a subplate-specific manner at some point during development show a statistically significant enrichment for association with autism spectrum disorders and schizophrenia. Our report emphasizes the importance of the study of transient features of the developing brain to better understand neurodevelopmental disorders. PMID:23401504

  7. Iso-α-acids, Bitter Components of Beer, Prevent Inflammation and Cognitive Decline Induced in a Mouse Model of Alzheimer's Disease*

    PubMed Central

    Ano, Yasuhisa; Dohata, Atsushi; Taniguchi, Yoshimasa; Hoshi, Ayaka; Uchida, Kazuyuki; Takashima, Akihiko; Nakayama, Hiroyuki

    2017-01-01

    Alongside the rapid growth in aging populations worldwide, prevention and therapy for age-related memory decline and dementia are in great demand to maintain a long, healthy life. Here we found that iso-α-acids, hop-derived bitter compounds in beer, enhance microglial phagocytosis and suppress inflammation via activation of the peroxisome proliferator-activated receptor γ. In normal mice, oral administration of iso-α-acids led to a significant increase both in CD11b and CD206 double-positive anti-inflammatory type microglia (p < 0.05) and in microglial phagocytosis in the brain. In Alzheimer's model 5xFAD mice, oral administration of iso-α-acids resulted in a 21% reduction in amyloid β in the cerebral cortex as observed by immunohistochemical analysis, a significant reduction in inflammatory cytokines such as IL-1β and chemokines including macrophage inflammatory protein-1α in the cerebral cortex (p < 0.05) and a significant improvement in a novel object recognition test (p < 0.05), as compared with control-fed 5xFAD mice. The differences in iso-α-acid-fed mice were due to the induction of microglia to an anti-inflammatory phenotype. The present study is the first to report that amyloid β deposition and inflammation are suppressed in a mouse model of Alzheimer's disease by a single component, iso-α-acids, via the regulation of microglial activation. The suppression of neuroinflammation and improvement in cognitive function suggests that iso-α-acids contained in beer may be useful for the prevention of dementia. PMID:28087694

  8. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-09

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. SFPQ associates to LSD1 and regulates the migration of newborn pyramidal neurons in the developing cerebral cortex.

    PubMed

    Saud, K; Cánovas, J; Lopez, C I; Berndt, F A; López, E; Maass, J C; Barriga, A; Kukuljan, M

    2017-04-01

    The development of the cerebral cortex requires the coordination of multiple processes ranging from the proliferation of progenitors to the migration and establishment of connectivity of the newborn neurons. Epigenetic regulation carried out by the COREST/LSD1 complex has been identified as a mechanism that regulates the development of pyramidal neurons of the cerebral cortex. We now identify the association of the multifunctional RNA-binding protein SFPQ to LSD1 during the development of the cerebral cortex. In vivo reduction of SFPQ dosage by in utero electroporation of a shRNA results in impaired radial migration of newborn pyramidal neurons, in a similar way to that observed when COREST or LSD1 expressions are decreased. Diminished SFPQ expression also associates to decreased proliferation of progenitor cells, while it does not affect the acquisition of neuronal fate. These results are compatible with the idea that SFPQ, plays an important role regulating proliferation and migration during the development of the cerebral cortex. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.

  10. Proteomic analysis of cPKCβII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice.

    PubMed

    Bu, Xiangning; Zhang, Nan; Yang, Xuan; Liu, Yanyan; Du, Jianli; Liang, Jing; Xu, Qunyuan; Li, Junfa

    2011-04-01

    Hypoxic preconditioning (HPC) initiates intracellular signaling pathway to provide protection against subsequent cerebral ischemic injuries, and its mechanism may provide molecular targets for therapy in stroke. According to our study of conventional protein kinase C βII (cPKCβII) activation in HPC, the role of cPKCβII in HPC-induced neuroprotection and its interacting proteins were determined in this study. The autohypoxia-induced HPC and middle cerebral artery occlusion (MCAO)-induced cerebral ischemia mouse models were prepared as reported. We found that HPC reduced 6 h MCAO-induced neurological deficits, infarct volume, edema ratio and cell apoptosis in peri-infarct region (penumbra), but cPKCβII inhibitors Go6983 and LY333531 blocked HPC-induced neuroprotection. Proteomic analysis revealed that the expression of four proteins in cytosol and eight proteins in particulate fraction changed significantly among 49 identified cPKCβII-interacting proteins in cortex of HPC mice. In addition, HPC could inhibit the decrease of phosphorylated collapsin response mediator protein-2 (CRMP-2) level and increase of CRMP-2 breakdown product. TAT-CRMP-2 peptide, which prevents the cleavage of endogenous CRMP-2, could inhibit CRMP-2 dephosphorylation and proteolysis as well as the infarct volume of 6 h MCAO mice. This study is the first to report multiple cPKCβII-interacting proteins in HPC mouse brain and the role of cPKCβII-CRMP-2 in HPC-induced neuroprotection against early stages of ischemic injuries in mice. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  11. Convection-enhanced delivery of AAV2 in white matter--a novel method for gene delivery to cerebral cortex.

    PubMed

    Barua, N U; Woolley, M; Bienemann, A S; Johnson, D; Wyatt, M J; Irving, C; Lewis, O; Castrique, E; Gill, S S

    2013-10-30

    Convection-enhanced delivery (CED) is currently under investigation for delivering therapeutic agents to subcortical targets in the brain. Direct delivery of therapies to the cerebral cortex, however, remains a significant challenge. We describe a novel method of targeting adeno-associated viral vector (AAV) mediated gene therapies to specific cerebral cortical regions by performing high volume, high flow rate infusions into underlying white matter in a large animal (porcine) model. Infusion volumes of up to 700 μl at flow rates as high as 10 μl/min were successfully performed in white matter without adverse neurological sequelae. Co-infusion of AAV2/5-GFP with 0.2% Gadolinium in artificial CSF confirmed transgene expression in the deep layers of cerebral cortex overlying the infused areas of white matter. AAV-mediated gene therapies have been previously targeted to the cerebral cortex by performing intrathalamic CED and exploiting axonal transport. The novel method described in this study facilitates delivery of gene therapies to specific regions of the cerebral cortex without targeting deep brain structures. AAV-mediated gene therapies can be targeted to specific cortical regions by performing CED into underlying white matter. This technique could be applied to the treatment of neurological disorders characterised by cerebral cortical degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice.

    PubMed

    Cahill, Lindsay S; Gazdzinski, Lisa M; Tsui, Albert Ky; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory Mt; Kassner, Andrea; Sled, John G

    2017-03-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO 2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia.

  13. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice

    PubMed Central

    Gazdzinski, Lisa M; Tsui, Albert KY; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory MT; Kassner, Andrea; Sled, John G

    2016-01-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia. PMID:27165012

  14. Photothrombosis-Induced Infarction of the Mouse Cerebral Cortex Is Not Affected by the Nrf2-Activator Sulforaphane

    PubMed Central

    Hou, Linda; Nilsson, Åsa; Pekna, Marcela; Pekny, Milos; Nilsson, Michael

    2012-01-01

    Sulforaphane-induced activation of the transcription factor NF-E2 related factor 2 (Nrf2 or the gene Nfe2l2) and subsequent induction of the phase II antioxidant system has previously been shown to exert neuroprotective action in a transient model of focal cerebral ischemia. However, its ability to attenuate functional and cellular deficits after permanent focal cerebral ischemia is not clear. We assessed the neuroprotective effects of sulforaphane in the photothrombotic model of permanent focal cerebral ischemia. Sulforaphane was administered (5 or 50 mg/kg, i.p.) after ischemic onset either as a single dose or as daily doses for 3 days. Sulforaphane increased transcription of Nrf2, Hmox1, GCLC and GSTA4 mRNA in the brain confirming activation of the Nrf2 system. Single or repeated administration of sulforaphane had no effect on the infarct volume, nor did it reduce the number of activated glial cells or proliferating cells when analyzed 24 and 72 h after stroke. Motor-function as assessed by beam-walking, cylinder-test, and adhesive test, did not improve after sulforaphane treatment. The results show that sulforaphane treatment initiated after photothrombosis-induced permanent cerebral ischemia does not interfere with key cellular mechanisms underlying tissue damage. PMID:22911746

  15. Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease

    PubMed Central

    Poisnel, Géraldine; Hérard, Anne-Sophie; El Tannir El Tayara, Nadine; Bourrin, Emmanuel; Volk, Andreas; Kober, Frank; Delatour, Benoit; Delzescaux, Thierry; Debeir, Thomas; Rooney, Thomas; Benavides, Jésus; Hantraye, Philippe; Dhenain, Marc

    2013-01-01

    Alzheimer’s disease (AD), the most common age-related neurodegenerative disorder, is characterized by the invariant cerebral accumulation of β-amyloid peptide. This event occurs early in the disease process. In humans, [18F]-Fluoro-2-deoxy-D-Glucose-Positron Emission Tomography ([18F]-FDG-PET) is largely used to follow-up in vivo cerebral glucose utilisation (CGU) and brain metabolism modifications associated to the AD pathology. Here, [18F]-FDG-PET was used to study age-related changes of CGU under resting conditions in 3, 6 and 12-month-old APPSweLon/PS1M146L, a mouse model of amyloidosis. We showed an age-dependent increase of glucose uptake in several brain regions of APP/PS1 mice but not in control animals and a higher [18F]-FDG uptake in the cortex and the hippocampus of 12-month-old APP/PS1 mice as compared to age-matched control mice. We then developed a method of 3D-microscopic autoradiography to evaluate glucose uptake at the level of amyloid plaques and showed an increased glucose uptake close to the plaques rather than in amyloid-free cerebral tissues. These data suggest a macroscopic and microscopic reorganisation of glucose uptake in relation to cerebral amyloidosis. PMID:22079157

  16. Photothrombosis-induced infarction of the mouse cerebral cortex is not affected by the Nrf2-activator sulforaphane.

    PubMed

    Porritt, Michelle J; Andersson, Helene C; Hou, Linda; Nilsson, Åsa; Pekna, Marcela; Pekny, Milos; Nilsson, Michael

    2012-01-01

    Sulforaphane-induced activation of the transcription factor NF-E2 related factor 2 (Nrf2 or the gene Nfe2l2) and subsequent induction of the phase II antioxidant system has previously been shown to exert neuroprotective action in a transient model of focal cerebral ischemia. However, its ability to attenuate functional and cellular deficits after permanent focal cerebral ischemia is not clear. We assessed the neuroprotective effects of sulforaphane in the photothrombotic model of permanent focal cerebral ischemia. Sulforaphane was administered (5 or 50 mg/kg, i.p.) after ischemic onset either as a single dose or as daily doses for 3 days. Sulforaphane increased transcription of Nrf2, Hmox1, GCLC and GSTA4 mRNA in the brain confirming activation of the Nrf2 system. Single or repeated administration of sulforaphane had no effect on the infarct volume, nor did it reduce the number of activated glial cells or proliferating cells when analyzed 24 and 72 h after stroke. Motor-function as assessed by beam-walking, cylinder-test, and adhesive test, did not improve after sulforaphane treatment. The results show that sulforaphane treatment initiated after photothrombosis-induced permanent cerebral ischemia does not interfere with key cellular mechanisms underlying tissue damage.

  17. Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo.

    PubMed

    Palesi, Fulvia; Tournier, Jacques-Donald; Calamante, Fernando; Muhlert, Nils; Castellazzi, Gloria; Chard, Declan; D'Angelo, Egidio; Wheeler-Kingshott, Claudia A M

    2015-11-01

    In addition to motor functions, it has become clear that in humans the cerebellum plays a significant role in cognition too, through connections with associative areas in the cerebral cortex. Classical anatomy indicates that neo-cerebellar regions are connected with the contralateral cerebral cortex through the dentate nucleus, superior cerebellar peduncle, red nucleus and ventrolateral anterior nucleus of the thalamus. The anatomical existence of these connections has been demonstrated using virus retrograde transport techniques in monkeys and rats ex vivo. In this study, using advanced diffusion MRI tractography we show that it is possible to calculate streamlines to reconstruct the pathway connecting the cerebellar cortex with contralateral cerebral cortex in humans in vivo. Corresponding areas of the cerebellar and cerebral cortex encompassed similar proportion (about 80%) of the tract, suggesting that the majority of streamlines passing through the superior cerebellar peduncle connect the cerebellar hemispheres through the ventrolateral thalamus with contralateral associative areas. This result demonstrates that this kind of tractography is a useful tool to map connections between the cerebellum and the cerebral cortex and moreover could be used to support specific theories about the abnormal communication along these pathways in cognitive dysfunctions in pathologies ranging from dyslexia to autism.

  18. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex.

    PubMed

    Jasmin, Luc; Rabkin, Samuel D; Granato, Alberto; Boudah, Abdennacer; Ohara, Peter T

    2003-07-17

    It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.

  19. Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain

    PubMed Central

    Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.

    2014-01-01

    The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349

  20. Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex

    PubMed Central

    Toma, Kenichi; Hanashima, Carina

    2015-01-01

    Information processing in the cerebral cortex requires the activation of diverse neurons across layers and columns, which are established through the coordinated production of distinct neuronal subtypes and their placement along the three-dimensional axis. Over recent years, our knowledge of the regulatory mechanisms of the specification and integration of neuronal subtypes in the cerebral cortex has progressed rapidly. In this review, we address how the unique cytoarchitecture of the neocortex is established from a limited number of progenitors featuring neuronal identity transitions during development. We further illuminate the molecular mechanisms of the subtype-specific integration of these neurons into the cerebral cortex along the radial and tangential axis, and we discuss these key features to exemplify how neocortical circuit formation accomplishes economical connectivity while maintaining plasticity and evolvability to adapt to environmental changes. PMID:26321900

  1. Nicotine and cigarette smoke modulate Nrf2-BDNF-dopaminergic signal and neurobehavioral disorders in adult rat cerebral cortex.

    PubMed

    Naha, Nibedita; Gandhi, D N; Gautam, A K; Prakash, J Ravi

    2018-05-01

    Nicotine and cigarette smoking (CS) are associated with addiction behavior, drug-seeking, and abuse. However, the mechanisms that mediate this association especially, the role of brain-derived neurotrophic factor (BDNF), dopamine (DA), and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in the cerebral cortex, are not fully known. Therefore, we hypothesized that overexpression of BDNF and DA, and suppression of Nrf2 contribute to several pathological and behavioral alterations in adult cerebral cortex. Methodology/Principal Observations: We treated Wistar rats with different doses of oral nicotine and passive CS for 4-week (short-term) and 12-week (long-term) duration, where doses closely mimic the human smoking scenario. Our result showed dose-dependent association of anxiogenic and depressive behavior, and cognitive interference with neurodegeneration and DNA damage in the cerebral cortex upon exposure to nicotine/CS as compared to the control. Further, the results are linked to upregulation of oxidative stress, overexpression of BDNF, DA, and DA marker, tyrosine hydroxylase (TH), with concomitant downregulation of ascorbate and Nrf2 expression in the exposed cerebral cortex when compared with the control. Overall, our data strongly suggest that the intervention of DA and BDNF, and depletion of antioxidants are important factors during nicotine/CS-induced cerebral cortex pathological changes leading to neurobehavioral impairments, which could underpin the novel therapeutic approaches targeted at tobacco smoking/nicotine's neuropsychological disorders including cognition and drug addiction.

  2. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon.

    PubMed

    Garcia-Calero, Elena; Botella-Lopez, Arancha; Bahamonde, Olga; Perez-Balaguer, Ariadna; Martinez, Salvador

    2016-07-01

    In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.

  3. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A.

    PubMed

    Mathew, Jobin; Balakrishnan, Savitha; Antony, Sherin; Abraham, Pretty Mary; Paulose, C S

    2012-02-24

    Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.

  4. Microvascular basis for growth of small infarcts following occlusion of single penetrating arterioles in mouse cortex

    PubMed Central

    Taylor, Zachary J; Hui, Edward S; Watson, Ashley N; Nie, Xingju; Deardorff, Rachael L; Jensen, Jens H; Helpern, Joseph A

    2015-01-01

    Small cerebral infarcts, i.e. microinfarcts, are common in the aging brain and linked to vascular cognitive impairment. However, little is known about the acute growth of these minute lesions and their effect on blood flow in surrounding tissues. We modeled microinfarcts in the mouse cortex by inducing photothrombotic clots in single penetrating arterioles. The resultant hemodynamic changes in tissues surrounding the occluded vessel were then studied using in vivo two-photon microscopy. We were able to generate a spectrum of infarct volumes by occluding arterioles that carried a range of blood fluxes. Those resulting from occlusion of high-flux penetrating arterioles (flux of 2 nL/s or higher) exhibited a radial outgrowth that encompassed unusually large tissue volumes. The gradual expansion of these infarcts was propagated by an evolving insufficiency in capillary flow that encroached on territories of neighboring penetrating arterioles, leading to the stagnation and recruitment of their perfusion domains into the final infarct volume. Our results suggest that local collapse of microvascular function contributes to tissue damage incurred by single penetrating arteriole occlusions in mice, and that a similar mechanism may add to pathophysiology induced by microinfarcts of the human brain. PMID:26661182

  5. Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis.

    PubMed

    Marshall, Randolph S; Asllani, Iris; Pavol, Marykay A; Cheung, Ying-Kuen; Lazar, Ronald M

    2017-01-01

    Cortical thinning is a potentially important biomarker, but the pathophysiology in cerebrovascular disease is unknown. We investigated the association between regional cortical blood flow and regional cortical thickness in patients with asymptomatic unilateral high-grade internal carotid artery disease without stroke. Twenty-nine patients underwent high resolution anatomical and single-delay, pseudocontinuous arterial spin labeling magnetic resonance imaging with partial volume correction to assess gray matter baseline flow. Cortical thickness was estimated using Freesurfer software, followed by co-registration onto each patient's cerebral blood flow image space. Paired t-tests assessed regional cerebral blood flow in motor cortex (supplied by the carotid artery) and visual cortex (indirectly supplied by the carotid) on the occluded and unoccluded side. Pearson correlations were calculated between cortical thickness and regional cerebral blood flow, along with age, hypertension, diabetes and white matter hyperintensity volume. Multiple regression and generalized estimating equation were used to predict cortical thickness bilaterally and in each hemisphere separately. Cortical blood flow correlated with thickness in motor cortex bilaterally (p = 0.0002), and in the occluded and unoccluded sides individually; age (p = 0.002) was also a predictor of cortical thickness in the motor cortex. None of the variables predicted cortical thickness in visual cortex. Blood flow was significantly lower on the occluded versus unoccluded side in the motor cortex (p<0.0001) and in the visual cortex (p = 0.018). On average, cortex was thinner on the side of occlusion in motor but not in visual cortex. The association between cortical blood flow and cortical thickness in carotid arterial territory with greater thinning on the side of the carotid occlusion suggests that altered cerebral hemodynamics is a factor in cortical thinning.

  6. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.

    PubMed

    Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai

    2016-03-01

    It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P < 0.05). The changes in glucose, lactate, and glycerol in the perfusate and α-spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P < 0.05). Glutamate showed no difference between cortex and striatum in all groups (all P > 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type.

    PubMed

    Pilz, Gregor-Alexander; Shitamukai, Atsunori; Reillo, Isabel; Pacary, Emilie; Schwausch, Julia; Stahl, Ronny; Ninkovic, Jovica; Snippert, Hugo J; Clevers, Hans; Godinho, Leanne; Guillemot, Francois; Borrell, Victor; Matsuzaki, Fumio; Götz, Magdalena

    2013-01-01

    The mechanisms governing the expansion of neuron number in specific brain regions are still poorly understood. Enlarged neuron numbers in different species are often anticipated by increased numbers of progenitors dividing in the subventricular zone. Here we present live imaging analysis of radial glial cells and their progeny in the ventral telencephalon, the region with the largest subventricular zone in the murine brain during neurogenesis. We observe lineage amplification by a new type of progenitor, including bipolar radial glial cells dividing at subapical positions and generating further proliferating progeny. The frequency of this new type of progenitor is increased not only in larger clones of the mouse lateral ganglionic eminence but also in cerebral cortices of gyrated species, and upon inducing gyrification in the murine cerebral cortex. This implies key roles of this new type of radial glia in ontogeny and phylogeny.

  8. Tooele Army Depot - South Area Suspected Releases Units RCRA Facility Investigation - Phase II for SWMUs 1, 25, and 37. Appendices: D-M

    DTIC Science & Technology

    1995-11-01

    VI) or to the acidity of the aerosol. Many cases of nasal mucosal injury (inflamed mucosa, ulcerated or perforated septum) in workers exposed to Cr0 3...degeneration in the cerebral cortex, marked chromatoloysis, nuclear changes in neurons, neuronal degenera- tion in the cerebral cortex accompanied by...by degeneration and death of nerves in the focal areas of the cerebral cortex (i.e. the largest part of the brain), loss of vision, speech impairment

  9. Non-shivering thermogenesis during prostaglandin E1 fever in rats: role of the cerebral cortex.

    PubMed

    Monda, M; Amaro, S; De Luca, B

    1994-07-18

    We have tested the hypothesis that there is a role for the cerebral cortex in the control of non-shivering thermogenesis during fever induced by prostaglandin E1 (PGE1). While under urethan anesthesia, the firing rate of nerves innervating interscapular brown adipose tissue (IBAT), IBAT and colonic temperatures (TIBAT and Tc) and oxygen (O2) consumption were monitored during the fever from PGE1 injection (400 and 800 ng) in a lateral cerebral ventricle in controls and in functionally decorticated Sprague-Dawley rats. Rats were functionally decorticated by applying 3.3 M KCl solution on the frontal cortex which causes cortical spreading depression (CSD). Pyrogen injections caused dose-related increases in firing rate, TIBAT, Tc and O2 consumption and CSD reduced these enhancements. Our findings indicate that the cerebral cortex could be involved in the control of non-shivering thermogenesis during PGE1-induced febrile response.

  10. Comparison of frailty of primary neurons, embryonic, and aging mouse cortical layers.

    PubMed

    Fugistier, Patrick; Vallet, Philippe G; Leuba, Geneviève; Piotton, Françoise; Marin, Pascale; Bouras, Constantin; Savioz, Armand

    2014-02-01

    Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ(1-42), okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Evolution and development of the mammalian cerebral cortex.

    PubMed

    Molnár, Zoltán; Kaas, Jon H; de Carlos, Juan A; Hevner, Robert F; Lein, Ed; Němec, Pavel

    2014-01-01

    Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of the brain. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals, which helps to elucidate how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration whereas others migrate radially. A number of recent studies have begun to characterize the chick, mouse and human and nonhuman primate cortical transcriptome to help us understand how gene expression relates to the development and anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies. © 2014 S. Karger AG, Basel.

  12. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    ERIC Educational Resources Information Center

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  13. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease.

    PubMed

    Nithianantharajah, J; Hannan, A J

    2013-10-22

    Huntington's disease (HD) is an autosomal dominant tandem repeat expansion disorder involving cognitive, psychiatric and motor symptoms. The expanded trinucleotide (CAG) repeat leads to an extended polyglutamine tract in the huntingtin protein and a subsequent cascade of molecular and cellular pathogenesis. One of the key features of neuropathology, which has been shown to precede the eventual loss of neurons in the cerebral cortex, striatum and other areas, are changes to synapses, including the dendritic protrusions known as spines. In this review we will focus on synapse and spine pathology in HD, including molecular and experience-dependent aspects of pathogenesis. Dendritic spine pathology has been found in both the human HD brain at post mortem as well as various transgenic and knock-in animal models. These changes may help explain the symptoms in HD, and synaptopathy within the cerebral cortex may be particularly important in mediating the psychiatric and cognitive manifestations of this disease. The earliest stages of synaptic dysfunction in HD, as assayed in various mouse models, appears to involve changes in synaptic proteins and associated physiological abnormalities such as synaptic plasticity deficits. In mouse models, synaptic and cortical plasticity deficits have been directly correlated with the onset of cognitive deficits, implying a causal link. Furthermore, following the discovery that environmental enrichment can delay onset of affective, cognitive and motor deficits in HD transgenic mice, specific synaptic molecules shown to be dysregulated by the polyglutamine-induced toxicity were also found to be beneficially modulated by environmental stimulation. This identifies potential molecular targets for future therapeutic developments to treat this devastating disease. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Iso-α-acids, Bitter Components of Beer, Prevent Inflammation and Cognitive Decline Induced in a Mouse Model of Alzheimer's Disease.

    PubMed

    Ano, Yasuhisa; Dohata, Atsushi; Taniguchi, Yoshimasa; Hoshi, Ayaka; Uchida, Kazuyuki; Takashima, Akihiko; Nakayama, Hiroyuki

    2017-03-03

    Alongside the rapid growth in aging populations worldwide, prevention and therapy for age-related memory decline and dementia are in great demand to maintain a long, healthy life. Here we found that iso-α-acids, hop-derived bitter compounds in beer, enhance microglial phagocytosis and suppress inflammation via activation of the peroxisome proliferator-activated receptor γ. In normal mice, oral administration of iso-α-acids led to a significant increase both in CD11b and CD206 double-positive anti-inflammatory type microglia ( p < 0.05) and in microglial phagocytosis in the brain. In Alzheimer's model 5xFAD mice, oral administration of iso-α-acids resulted in a 21% reduction in amyloid β in the cerebral cortex as observed by immunohistochemical analysis, a significant reduction in inflammatory cytokines such as IL-1β and chemokines including macrophage inflammatory protein-1α in the cerebral cortex ( p < 0.05) and a significant improvement in a novel object recognition test ( p < 0.05), as compared with control-fed 5xFAD mice. The differences in iso-α-acid-fed mice were due to the induction of microglia to an anti-inflammatory phenotype. The present study is the first to report that amyloid β deposition and inflammation are suppressed in a mouse model of Alzheimer's disease by a single component, iso-α-acids, via the regulation of microglial activation. The suppression of neuroinflammation and improvement in cognitive function suggests that iso-α-acids contained in beer may be useful for the prevention of dementia. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Expression of VGLUTs contributes to degeneration and acquisition of learning and memory.

    PubMed

    Cheng, Xiao-Rui; Yang, Yong; Zhou, Wen-Xia; Zhang, Yong-Xiang

    2011-03-01

    Vesicular glutamate transporters (VGLUTs), which include VGLUT1, VGLUT2 and VGLUT3, are responsible for the uploading of L-glutamate into synaptic vesicles. The expression pattern of VGLUTs determines the level of synaptic vesicle filling (i.e., glutamate quantal size) and directly influences glutamate receptors and glutamatergic synaptic transmission; thus, VGLUTs may play a key role in learning and memory in the central nervous system. To determine whether VGLUTs contribute to the degeneration or acquisition of learning and memory, we used an animal model for the age-related impairment of learning and memory, senescence-accelerated mouse/prone 8 (SAMP8). KM mice were divided into groups based on their learning and memory performance in a shuttle-box test. The expression of VGLUTs and synaptophysin (Syp) mRNA and protein in the cerebral cortex and hippocampus were investigated with real-time fluorescence quantitative PCR and western blot, respectively. Our results demonstrate that, in the cerebral cortex, protein expression of VGLUT1, VGLUT2, VGLUT3 and Syp was decreased in SAMP8 with age and increased in KM mice, which displayed an enhanced capacity for learning and memory. The protein expression of VGLUT2 and Syp was decreased in the hippocampus of SAMP8 with aging. The expression level of VGLUT1 and VGLUT2 proteins were highest in KM mouse group with a 76-100% avoidance score in the shuttle-box test. These data demonstrate that protein expression of VGLUT1, VGLUT2 and Syp decreases age-dependently in SAMP8 and increases in a learning- and memory-dependent manner in KM mice. Correlation analysis indicated the protein expression of VGLUT1, VGLUT2 and Syp has a positive correlation with the capacity of learning and memory. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin.

    PubMed

    Ogino, Himari; Hisanaga, Arisa; Kohno, Takao; Kondo, Yuta; Okumura, Kyoko; Kamei, Takana; Sato, Tempei; Asahara, Hiroshi; Tsuiji, Hitomi; Fukata, Masaki; Hattori, Mitsuharu

    2017-03-22

    The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro , but it remains controversial as to whether this effect occurs in vivo Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus. N-t cleavage of Reelin was markedly decreased in the embryonic cerebral cortex of ADAMTS-3 knock-out (KO) mice. Importantly, the amount of Dab1 and the phosphorylation level of Tau, which inversely correlate with Reelin activity, were significantly decreased in the cerebral cortex of ADAMTS-3 KO mice. Conditional KO mice, in which ADAMTS-3 was deficient only in the excitatory neurons of the forebrain, showed increased dendritic branching and elongation in the postnatal cerebral cortex. Our study shows that ADAMTS-3 is the major enzyme that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. Therefore, inhibition of ADAMTS-3 may be an effective treatment for neuropsychiatric and neurodegenerative disorders. SIGNIFICANCE STATEMENT ADAMTS-3 was identified as the protease that cleaves and inactivates Reelin in the cerebral cortex and hippocampus. ADAMTS-3 was expressed in the excitatory neurons of the embryonic and postnatal cerebral cortex and hippocampus. Cleavage by ADAMTS-3 is the major contributor of Reelin inactivation in vivo Tau phosphorylation was decreased and dendritic branching and elongation was increased in ADAMTS-3-deficient mice. Therefore, inhibition of ADAMTS-3 upregulates Reelin activity and may be a potential therapeutic strategy for the prevention or treatment of neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. Copyright © 2017 the authors 0270-6474/17/373181-11$15.00/0.

  17. Age-related expression of Neurexin1 and Neuroligin3 is correlated with presynaptic density in the cerebral cortex and hippocampus of male mice.

    PubMed

    Kumar, Dhiraj; Thakur, M K

    2015-01-01

    Neurexin1 (Nrxn1) and Neuroligin3 (Nlgn3) are cell adhesion proteins, which play an important role in synaptic plasticity that declines with advancing age. However, the expression of these proteins during aging has not been analyzed. In the present study, we have examined the age-related changes in the expression of these proteins in cerebral cortex and hippocampus of 10-, 30-, 50-, and 80-week-old male mice. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis indicated that messenger RNA (mRNA) level of Nrxn1 and Nlgn3 significantly increased from 10 to 30 weeks and then decreased at 50 weeks in both the regions. However, in 80-week-old mice, Nrxn1 and Nlgn3 were further downregulated in cerebral cortex while Nrxn1 was downregulated and Nlgn3 was upregulated in hippocampus. These findings were corroborated by immunoblotting and immunofluorescence results. When the expression of Nrxn1 and Nlgn3 was correlated with presynaptic density marker synaptophysin, it was found that synaptophysin protein expression in cerebral cortex was high at 10 weeks and decreased gradually up to 80 weeks, whereas in hippocampus, it decreased until 50 weeks and then increased remarkably at 80 weeks. Furthermore, Pearson's correlation analysis showed that synaptophysin had a strong relation with Nrxn1 and Nlgn3 in cerebral cortex and with Nlgn3 in hippocampus. Thus, these findings showed that Nrxn1 and Nlgn3 are differentially expressed in cerebral cortex and hippocampus which might be responsible for alterations in synaptic plasticity during aging.

  18. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    PubMed

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  19. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway.

    PubMed

    Hu, Guang-Qiang; Du, Xi; Li, Yong-Jie; Gao, Xiao-Qing; Chen, Bi-Qiong; Yu, Lu

    2017-01-01

    Nicotiflorin is a flavonoid extracted from Carthamus tinctorius. Previous studies have shown its cerebral protective effect, but the mechanism is undefined. In this study, we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway. The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion. Nicotiflorin (10 mg/kg) was administered by tail vein injection. Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining. Additionally, p-JAK2, p-STAT3, Bcl-2, Bax, and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay. Nicotiflorin altered the shape and structure of injured neurons, decreased the number of apoptotic cells, down-regulates expression of p-JAK2, p-STAT3, caspase-3, and Bax, decreased Bax immunoredactivity, and increased Bcl-2 protein expression and immunoreactivity. These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.

  20. PET Quantification of the Norepinephrine Transporter in Human Brain with (S,S)-18F-FMeNER-D2.

    PubMed

    Moriguchi, Sho; Kimura, Yasuyuki; Ichise, Masanori; Arakawa, Ryosuke; Takano, Harumasa; Seki, Chie; Ikoma, Yoko; Takahata, Keisuke; Nagashima, Tomohisa; Yamada, Makiko; Mimura, Masaru; Suhara, Tetsuya

    2017-07-01

    Norepinephrine transporter (NET) in the brain plays important roles in human cognition and the pathophysiology of psychiatric disorders. Two radioligands, ( S , S )- 11 C-MRB and ( S , S )- 18 F-FMeNER-D 2 , have been used for imaging NETs in the thalamus and midbrain (including locus coeruleus) using PET in humans. However, NET density in the equally important cerebral cortex has not been well quantified because of unfavorable kinetics with ( S , S )- 11 C-MRB and defluorination with ( S , S )- 18 F-FMeNER-D 2 , which can complicate NET quantification in the cerebral cortex adjacent to the skull containing defluorinated 18 F radioactivity. In this study, we have established analysis methods of quantification of NET density in the brain including the cerebral cortex using ( S , S )- 18 F-FMeNER-D 2 PET. Methods: We analyzed our previous ( S , S )- 18 F-FMeNER-D 2 PET data of 10 healthy volunteers dynamically acquired for 240 min with arterial blood sampling. The effects of defluorination on the NET quantification in the superficial cerebral cortex was evaluated by establishing a time stability of NET density estimations with an arterial input 2-tissue-compartment model, which guided the less-invasive reference tissue model and area under the time-activity curve methods to accurately quantify NET density in all brain regions including the cerebral cortex. Results: Defluorination of ( S , S )- 18 F-FMeNER-D 2 became prominent toward the latter half of the 240-min scan. Total distribution volumes in the superficial cerebral cortex increased with the scan duration beyond 120 min. We verified that 90-min dynamic scans provided a sufficient amount of data for quantification of NET density unaffected by defluorination. Reference tissue model binding potential values from the 90-min scan data and area under the time-activity curve ratios of 70- to 90-min data allowed for the accurate quantification of NET density in the cerebral cortex. Conclusion: We have established methods of quantification of NET densities in the brain including the cerebral cortex unaffected by defluorination using ( S , S )- 18 F-FMeNER-D 2 These results suggest that we can accurately quantify NET density with a 90-min ( S , S )- 18 F-FMeNER-D 2 scan in broad brain areas. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  1. A Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor.

    PubMed

    Bernard, Clémence; Vincent, Clémentine; Testa, Damien; Bertini, Eva; Ribot, Jérôme; Di Nardo, Ariel A; Volovitch, Michel; Prochiantz, Alain

    2016-05-01

    During postnatal life the cerebral cortex passes through critical periods of plasticity allowing its physiological adaptation to the environment. In the visual cortex, critical period onset and closure are influenced by the non-cell autonomous activity of the Otx2 homeoprotein transcription factor, which regulates the maturation of parvalbumin-expressing inhibitory interneurons (PV cells). In adult mice, the maintenance of a non-plastic adult state requires continuous Otx2 import by PV cells. An important source of extra-cortical Otx2 is the choroid plexus, which secretes Otx2 into the cerebrospinal fluid. Otx2 secretion and internalization requires two small peptidic domains that are part of the DNA-binding domain. Thus, mutating these "transfer" sequences also modifies cell autonomous transcription, precluding this approach to obtain a cell autonomous-only mouse. Here, we develop a mouse model with inducible secretion of an anti-Otx2 single-chain antibody to trap Otx2 in the extracellular milieu. Postnatal secretion of this single-chain antibody by PV cells delays PV maturation and reduces plasticity gene expression. Induced adult expression of this single-chain antibody in cerebrospinal fluid decreases Otx2 internalization by PV cells, strongly induces plasticity gene expression and reopens physiological plasticity. We provide the first mammalian genetic evidence for a signaling mechanism involving intercellular transfer of a homeoprotein transcription factor. Our single-chain antibody mouse model is a valid strategy for extracellular neutralization that could be applied to other homeoproteins and signaling molecules within and beyond the nervous system.

  2. Protective Effects of Forskolin on Behavioral Deficits and Neuropathological Changes in a Mouse Model of Cerebral Amyloidosis

    PubMed Central

    Zug, Caroline; Schluesener, Hermann J.; Zhang, Zhi-Yuan

    2016-01-01

    The production of amyloid-β peptides in the brains of patients with Alzheimer disease (AD) may contribute to memory loss and impairments in social behavior. Here, an efficient adenylate cyclase activator, forskolin, was orally administered by gavage (100 mg/kg body weight) to 5-month-old transgenic APP/PS1 mice, which serve as an animal model of cerebral amyloidosis. Analyses of nest construction, sociability, and immunohistochemical features were used to determine the effects of forskolin treatment. After a relatively short term of treatment (10 days), forskolin-treated transgenic mice showed restored nest construction ability (p < 0.05) and their sociability (p < 0.01). There was a reduction of Aβ plaque deposition in the cortex and in the hippocampus. Furthermore, expression of transforming growth factor β, glial fibrillary acidic protein, and Iba-1 in the cortex was reduced in the forskolin-treated group, suggesting regulation of the inflammatory response mediated by activated microglia and astrocytes in the brains of the APP/PS1 mice (p < 0.01). Taken together, these findings suggest that forskolin shows neuroprotective effects in APP/PS1 Tg mice and may be a promising drug in the treatment of patients with AD. PMID:27251043

  3. Protective Effects of Forskolin on Behavioral Deficits and Neuropathological Changes in a Mouse Model of Cerebral Amyloidosis.

    PubMed

    Owona, Brice Ayissi; Zug, Caroline; Schluesener, Hermann J; Zhang, Zhi-Yuan

    2016-07-01

    The production of amyloid-β peptides in the brains of patients with Alzheimer disease (AD) may contribute to memory loss and impairments in social behavior. Here, an efficient adenylate cyclase activator, forskolin, was orally administered by gavage (100 mg/kg body weight) to 5-month-old transgenic APP/PS1 mice, which serve as an animal model of cerebral amyloidosis. Analyses of nest construction, sociability, and immunohistochemical features were used to determine the effects of forskolin treatment. After a relatively short term of treatment (10 days), forskolin-treated transgenic mice showed restored nest construction ability (p < 0.05) and their sociability (p < 0.01). There was a reduction of Aβ plaque deposition in the cortex and in the hippocampus. Furthermore, expression of transforming growth factor β, glial fibrillary acidic protein, and Iba-1 in the cortex was reduced in the forskolin-treated group, suggesting regulation of the inflammatory response mediated by activated microglia and astrocytes in the brains of the APP/PS1 mice (p < 0.01). Taken together, these findings suggest that forskolin shows neuroprotective effects in APP/PS1 Tg mice and may be a promising drug in the treatment of patients with AD. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  4. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope.

    PubMed

    Shonat, R D; Wachman, E S; Niu, W; Koretsky, A P; Farkas, D L

    1997-09-01

    A newly developed microscope using acousto-optic tunable filters (AOTFs) was used to generate in vivo hemoglobin saturation (SO2) and oxygen tension (PO2) maps in the cerebral cortex of mice. SO2 maps were generated from the spectral analysis of reflected absorbance images collected at different wavelengths, and PO2 maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. As the inspiratory O2 was stepped from hypoxia (10% O2), through normoxia (21% O2), to hyperoxia (60% O2), measured SO2 and PO2 levels rose accordingly and predictably throughout. A plot of SO2 versus PO2 in different arterial and venous regions of the pial vessels conformed to the sigmoidal shape of the oxygen-hemoglobin dissociation curve, providing further validation of the two mapping procedures. The study demonstrates the versatility of the AOTF microscope for in vivo physiologic investigation, allowing for the generation of nearly simultaneous SO2 and PO2 maps in the cerebral cortex, and the frequency-domain detection of phosphorescence lifetimes. This class of study opens up exciting new possibilities for investigating the dynamics of hemoglobin and O2 binding during functional activation of neuronal tissues.

  5. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand.

    PubMed

    Bekar, Lane K; Wei, Helen S; Nedergaard, Maiken

    2012-12-01

    Given the brain's uniquely high cell density and tissue oxygen levels bordering on hypoxia, the ability to rapidly and precisely match blood flow to constantly changing patterns in neural activity is an essential feature of cerebrovascular regulation. Locus coeruleus-norepinephrine (LC-NE) projections innervate the cerebral vasculature and can mediate vasoconstriction. However, function of the LC-mediated constriction in blood-flow regulation has never been addressed. Here, using intrinsic optical imaging coupled with an anesthesia regimen that only minimally interferes with LC activity, we show that NE enhances spatial and temporal aspects of functional hyperemia in the mouse somatosensory cortex. Increasing NE levels in the cortex using an α(2)-adrenergic receptor antagonist paradoxically reduces the extent of functional hyperemia while enhancing the surround blood-flow reduction. However, the NE-mediated vasoconstriction optimizes spatial and temporal focusing of the hyperemic response resulting in a sixfold decrease in the disparity between blood volume and oxygen demand. In addition, NE-mediated vasoconstriction accelerated redistribution to subsequently active regions, enhancing temporal synchronization of blood delivery. These observations show an important role for NE in optimizing neurovascular coupling. As LC neuron loss is prominent in Alzheimer and Parkinson diseases, the diminished ability to couple blood volume to oxygen demand may contribute to their pathogenesis.

  6. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope.

    PubMed Central

    Shonat, R D; Wachman, E S; Niu, W; Koretsky, A P; Farkas, D L

    1997-01-01

    A newly developed microscope using acousto-optic tunable filters (AOTFs) was used to generate in vivo hemoglobin saturation (SO2) and oxygen tension (PO2) maps in the cerebral cortex of mice. SO2 maps were generated from the spectral analysis of reflected absorbance images collected at different wavelengths, and PO2 maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. As the inspiratory O2 was stepped from hypoxia (10% O2), through normoxia (21% O2), to hyperoxia (60% O2), measured SO2 and PO2 levels rose accordingly and predictably throughout. A plot of SO2 versus PO2 in different arterial and venous regions of the pial vessels conformed to the sigmoidal shape of the oxygen-hemoglobin dissociation curve, providing further validation of the two mapping procedures. The study demonstrates the versatility of the AOTF microscope for in vivo physiologic investigation, allowing for the generation of nearly simultaneous SO2 and PO2 maps in the cerebral cortex, and the frequency-domain detection of phosphorescence lifetimes. This class of study opens up exciting new possibilities for investigating the dynamics of hemoglobin and O2 binding during functional activation of neuronal tissues. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 PMID:9284290

  7. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A

    PubMed Central

    2012-01-01

    Abstact Background Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. Methods In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Results Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Conclusions Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management. PMID:22364254

  8. Main Effects of Diagnoses, Brain Regions, and their Interaction Effects for Cerebral Metabolites in Bipolar and Unipolar Depressive Disorders

    NASA Astrophysics Data System (ADS)

    Tan, Hai-Zhu; Li, Hui; Liu, Chen-Feng; Guan, Ji-Tian; Guo, Xiao-Bo; Wen, Can-Hong; Ou, Shao-Min; Zhang, Yin-Nan; Zhang, Jie; Xu, Chong-Tao; Shen, Zhi-Wei; Wu, Ren-Hua; Wang, Xue-Qin

    2016-11-01

    Previous studies suggested patients with bipolar depressive disorder (BDd) or unipolar depressive disorder (UDd) have cerebral metabolites abnormalities. These abnormalities may stem from multiple sub-regions of gray matter in brain regions. Thirteen BDd patients, 20 UDd patients and 20 healthy controls (HC) were enrolled to investigate these abnormalities. Absolute concentrations of 5 cerebral metabolites (glutamate-glutamine (Glx), N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), parietal cortex (PC)) were measured from 4 subregions (the medial frontal cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and parietal cortex (PC)) of gray matter. Main and interaction effects of cerebral metabolites across subregions of gray matter were evaluated. For example, the Glx was significantly higher in BDd compared with UDd, and so on. As the interaction analyses showed, some interaction effects existed. The concentrations of BDds’ Glx, Cho, Cr in the ACC and HCs’ mI and Cr in the PC were higher than that of other interaction effects. In addition, the concentrations of BDds’ Glx and Cr in the PC and HCs’ mI in the ACC were statistically significant lower than that of other interaction effects. These findings point to region-related abnormalities of cerebral metabolites across subjects with BDd and UDd.

  9. Main Effects of Diagnoses, Brain Regions, and their Interaction Effects for Cerebral Metabolites in Bipolar and Unipolar Depressive Disorders.

    PubMed

    Tan, Hai-Zhu; Li, Hui; Liu, Chen-Feng; Guan, Ji-Tian; Guo, Xiao-Bo; Wen, Can-Hong; Ou, Shao-Min; Zhang, Yin-Nan; Zhang, Jie; Xu, Chong-Tao; Shen, Zhi-Wei; Wu, Ren-Hua; Wang, Xue-Qin

    2016-11-21

    Previous studies suggested patients with bipolar depressive disorder (BDd) or unipolar depressive disorder (UDd) have cerebral metabolites abnormalities. These abnormalities may stem from multiple sub-regions of gray matter in brain regions. Thirteen BDd patients, 20 UDd patients and 20 healthy controls (HC) were enrolled to investigate these abnormalities. Absolute concentrations of 5 cerebral metabolites (glutamate-glutamine (Glx), N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), parietal cortex (PC)) were measured from 4 subregions (the medial frontal cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and parietal cortex (PC)) of gray matter. Main and interaction effects of cerebral metabolites across subregions of gray matter were evaluated. For example, the Glx was significantly higher in BDd compared with UDd, and so on. As the interaction analyses showed, some interaction effects existed. The concentrations of BDds' Glx, Cho, Cr in the ACC and HCs' mI and Cr in the PC were higher than that of other interaction effects. In addition, the concentrations of BDds' Glx and Cr in the PC and HCs' mI in the ACC were statistically significant lower than that of other interaction effects. These findings point to region-related abnormalities of cerebral metabolites across subjects with BDd and UDd.

  10. The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats

    PubMed Central

    Li, Qingzhao; Liu, Huibin; Alattar, Mohamed; Jiang, Shoufang; Han, Jing; Ma, Yujiao; Jiang, Chunyang

    2015-01-01

    This study aimed to explore the pattern of accumulation of some of main heavy metals in blood and various organs of rats after exposed to the atmospheric fine particulate matter (PM2.5). Rats were randomly divided into control and three treatment groups (tracheal perfusion with 10 mg/kg, 20 mg/kg and 40 mg/kg of PM2.5 suspension liquid, respectively). Whole blood and the lung, liver, kidney, and cerebral cortex were harvested after rats were treated and sacrificed. The used heavy metals were detected using inductively coupled plasma-mass spectrometry (ICP-MS) instrument. As results, Lead was increased in the liver, lung and cerebral cortex and the level of manganese was significantly elevated in the liver and cerebral cortex in PM2.5 treated rats. Besides, arsenic was prominently enriched both in cerebral cortex and in blood, and so did the aluminum in the cerebral cortex and the copper in the liver. However, cadmium, chromium and nickel have shown no difference between the control group and the three PM2.5 treated groups. Following the exposure of PM2.5, different heavy metals are preferentially accumulated in different body tissues. PMID:26582271

  11. Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats.

    PubMed

    Kolb, B; Cioe, J; Muirhead, D

    1998-03-01

    Rats were given suction lesions of the presumptive frontal cortex on embryonic day 18 (E18) and subsequently tested, as adults, on tests of spatial navigation (Morris water task, radial arm maze), motor tasks (Whishaw reaching task, beam walking), and locomotor activity. Frontal cortical lesions at E18 affected cerebral morphogenesis, producing unusual morphological structures including abnormal patches of neurons in the cortex and white matter as well as neuronal bridges between the hemispheres. A small sample of E18 operates also had hydrocephaly. The animals with E18 lesions without hydrocephalus were behaviorally indistinguishable from littermate controls. The results demonstrate that animals with focal lesions of the presumptive frontal cortex have gross abnormalities in cerebral morphology but the lesions leave the functions normally subserved by the frontal cortex in adult rats unaffected. The results are discussed in the context of a hypothesis regarding the optimal times for functional recovery from cortical injury.

  12. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  13. Protein tyrosine phosphatase receptor type R deficient mice exhibit increased exploration in a new environment and impaired novel object recognition memory.

    PubMed

    Erkens, Mirthe; Bakker, Brenda; van Duijn, Lucette M; Hendriks, Wiljan J A J; Van der Zee, Catharina E E M

    2014-05-15

    Mouse gene Ptprr encodes multiple protein tyrosine phosphatase receptor type R (PTPRR) isoforms that negatively regulate mitogen-activated protein kinase (MAPK) signaling pathways. In the mouse brain, PTPRR proteins are expressed in cerebellum, olfactory bulb, hippocampus, amygdala and perirhinal cortex but their precise role in these regions remains to be determined. Here, we evaluated phenotypic consequences of loss of PTPRR activity and found that basal smell was normal for Ptprr(-/-) mice. Also, spatial learning and fear-associated contextual learning were unaffected. PTPRR deficiency, however, resulted in impaired novel object recognition and a striking increase in exploratory activity in a new environment. The data corroborate the importance of proper control of MAPK signaling in cerebral functions and put forward PTPRR as a novel target to modulate synaptic processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dose-Dependent Effect of Intravenous Administration of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Neonatal Stroke Mice

    PubMed Central

    Tanaka, Emi; Ogawa, Yuko; Mukai, Takeo; Sato, Yoshiaki; Hamazaki, Takashi; Nagamura-Inoue, Tokiko; Harada-Shiba, Mariko; Shintaku, Haruo; Tsuji, Masahiro

    2018-01-01

    Neonatal brain injury induced by stroke causes significant disability, including cerebral palsy, and there is no effective therapy for stroke. Recently, mesenchymal stem cells (MSCs) have emerged as a promising tool for stem cell-based therapies. In this study, we examined the safety and efficacy of intravenously administered human umbilical cord-derived MSCs (UC-MSCs) in neonatal stroke mice. Pups underwent permanent middle cerebral artery occlusion at postnatal day 12 (P12), and low-dose (1 × 104) or high-dose (1 × 105) UC-MSCs were administered intravenously 48 h after the insult (P14). To evaluate the effect of the UC-MSC treatment, neurological behavior and cerebral blood flow were measured, and neuroanatomical analysis was performed at P28. To investigate the mechanisms of intravenously injected UC-MSCs, systemic blood flowmetry, in vivo imaging and human brain-derived neurotrophic factor (BDNF) measurements were performed. Functional disability was significantly improved in the high-dose UC-MSC group when compared with the vehicle group, but cerebral blood flow and cerebral hemispheric volume were not restored by UC-MSC therapy. The level of exogenous human BDNF was elevated only in the cerebrospinal fluid of one pup 24 h after UC-MSC injection, and in vivo imaging revealed that most UC-MSCs were trapped in the lungs and disappeared in a week without migration toward the brain or other organs. We found that systemic blood flow was stable over the 10 min after cell administration and that there were no differences in mortality among the groups. Immunohistopathological assessment showed that the percent area of Iba1-positive staining in the peri-infarct cortex was significantly reduced with the high-dose UC-MSC treatment compared with the vehicle treatment. These results suggest that intravenous administration of UC-MSCs is safe for a mouse model of neonatal stroke and improves dysfunction after middle cerebral artery occlusion by modulating the microglial reaction in the peri-infarct cortex. PMID:29568282

  15. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies

    PubMed Central

    Azzarelli, Roberta; Kerloch, Thomas; Pacary, Emilie

    2015-01-01

    The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations. PMID:25610373

  16. The use of antioxidants to prevent glutamate-induced derangement of calcium ion metabolism in rat cerebral cortex synaptosomes.

    PubMed

    Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Tyurina, Y Y; Tyurin, V A

    2000-01-01

    Glutamate is shown to induce increases in intracellular Ca2+ concentrations ([Ca2+]i), increases in 45Ca2+ influx, decreases in the activity of Na+,K+-ATPase activity, and activation of the Na+/Ca2+ exchanger in rat cerebral cortex synaptosomes. NMDA receptor antagonists virtually prevented these effects. Preincubation of synaptosomes with alpha-tocopherol, superoxide dismutase, and ganglioside GM1 normalized [Ca2+]i, 45Ca2+ influx, and Na+,K+-ATPase activity in rat cerebral cortex synaptosomes exposed to glutamate. Glutamate and GM1 activated the Na+/K+ exchanger, and their effects were additive. Calcium ions entering cerebral cortex nerve cells via NMDA receptors during exposure to high glutamate concentrations appeared to be only the trigger for the processes activating free-radical reactions. Activation of these reactions led to increases in Ca2+ influx into cells, decreases in Na+,K+-ATPase activity, and significant increases in [Ca2+]i, though this could be prevented by antioxidants and gangliosides.

  17. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis.

    PubMed

    Fan, Xiaoying; Dong, Ji; Zhong, Suijuan; Wei, Yuan; Wu, Qian; Yan, Liying; Yong, Jun; Sun, Le; Wang, Xiaoye; Zhao, Yangyu; Wang, Wei; Yan, Jie; Wang, Xiaoqun; Qiao, Jie; Tang, Fuchou

    2018-06-04

    The cellular complexity of human brain development has been intensively investigated, although a regional characterization of the entire human cerebral cortex based on single-cell transcriptome analysis has not been reported. Here, we performed RNA-seq on over 4,000 individual cells from 22 brain regions of human mid-gestation embryos. We identified 29 cell sub-clusters, which showed different proportions in each region and the pons showed especially high percentage of astrocytes. Embryonic neurons were not as diverse as adult neurons, although they possessed important features of their destinies in adults. Neuron development was unsynchronized in the cerebral cortex, as dorsal regions appeared to be more mature than ventral regions at this stage. Region-specific genes were comprehensively identified in each neuronal sub-cluster, and a large proportion of these genes were neural disease related. Our results present a systematic landscape of the regionalized gene expression and neuron maturation of the human cerebral cortex.

  18. Effects of morphine, physostigmine and raphe nuclei stimulation on 5-hydroxytryptamine release from the cerebral cortex of the cat.

    PubMed Central

    Aiello-Malmberg, P; Bartolini, A; Bartolini, R; Galli, A

    1979-01-01

    1. The release of 5-hydroxytryptamine (5-HT) from the cerebral cortex and caudate nucleus of brainstem-transected cats and from the cerebral cortex of rats anaesthetized with urethane was determined by radioenzymatic and biological assay. 2. The stimulation of nucleus linearis intermedius of raphe doubles the basal 5-HT release in the caudate nucleus and increases it 3 fold in the cerebral cortex. The effects of the electrical stimulation of the raphe are potentiated by chlorimipramine. 3. Brain 5-HT release is greatly increased by morphine hydrochloride (6 mg/kg i.v.) and by physostigmine (100 microgram/kg i.v.), but not by DL-DOPA (50 mg/kg i.v.). 4. It is suggested that the 5-HT releasing action of physostigmine can contribute to some of its pharmacological effects such as the analgesic effect so far attributed exclusively to its indirect cholinomimetic activity. 5. The 5-HT releasing action of physostigmine seems unrelated to its anticholinesterase activity. PMID:435680

  19. Amino Acid Neurotransmitters; Mechanisms of Their Uptake into Synaptic Vesicles

    DTIC Science & Technology

    1991-08-01

    4.1.1.15), is localized in specific GABAergic nerve terminals (Fonnum et al, 1970). The subcortical telencephalon , which contains among others the...ratio between the vesicular uptake of GABA and glycine is similar in cerebral cortex, subcortical telencephalon , whole brain, and spinal cord. This is...regions, cerebral cortex, cerebellum, medulla and subcortical telencephalon (i.e. forebrain after removal of cortex). The vesicular uptake is low and

  20. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    NASA Astrophysics Data System (ADS)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  1. Folding, But Not Surface Area Expansion, Is Associated with Cellular Morphological Maturation in the Fetal Cerebral Cortex

    PubMed Central

    Studholme, Colin; Frias, Antonio E.

    2017-01-01

    Altered macroscopic anatomical characteristics of the cerebral cortex have been identified in individuals affected by various neurodevelopmental disorders. However, the cellular developmental mechanisms that give rise to these abnormalities are not understood. Previously, advances in image reconstruction of diffusion magnetic resonance imaging (MRI) have made possible high-resolution in utero measurements of water diffusion anisotropy in the fetal brain. Here, diffusion anisotropy within the developing fetal cerebral cortex is longitudinally characterized in the rhesus macaque, focusing on gestation day (G85) through G135 of the 165 d term. Additionally, for subsets of animals characterized at G90 and G135, immunohistochemical staining was performed, and 3D structure tensor analyses were used to identify the cellular processes that most closely parallel changes in water diffusion anisotropy with cerebral cortical maturation. Strong correlations were found between maturation of dendritic arbors on the cellular level and the loss of diffusion anisotropy with cortical development. In turn, diffusion anisotropy changes were strongly associated both regionally and temporally with cortical folding. Notably, the regional and temporal dependence of diffusion anisotropy and folding were distinct from the patterns observed for cerebral cortical surface area expansion. These findings strengthen the link proposed in previous studies between cellular-level changes in dendrite morphology and noninvasive diffusion MRI measurements of the developing cerebral cortex and support the possibility that, in gyroencephalic species, structural differentiation within the cortex is coupled to the formation of gyri and sulci. SIGNIFICANCE STATEMENT Abnormal brain morphology has been found in populations with neurodevelopmental disorders. However, the mechanisms linking cellular level and macroscopic maturation are poorly understood, even in normal brains. This study contributes new understanding to this subject using serial in utero MRI measurements of rhesus macaque fetuses, from which macroscopic and cellular information can be derived. We found that morphological differentiation of dendrites was strongly associated both regionally and temporally with folding of the cerebral cortex. Interestingly, parallel associations were not observed with cortical surface area expansion. These findings support the possibility that perturbed morphological differentiation of cells within the cortex may underlie abnormal macroscopic characteristics of individuals affected by neurodevelopmental disorders. PMID:28069920

  2. Long-term, repeated measurements of mouse cortical microflow at the same region of interest with high spatial resolution.

    PubMed

    Tomita, Yutaka; Pinard, Elisabeth; Tran-Dinh, Alexy; Schiszler, Istvan; Kubis, Nathalie; Tomita, Minoru; Suzuki, Norihiro; Seylaz, Jacques

    2011-02-04

    A method for long-term, repeated, semi-quantitative measurements of cerebral microflow at the same region of interest (ROI) with high spatial resolution was developed and applied to mice subjected to focal arterial occlusion. A closed cranial window was chronically implanted over the left parieto-occipital cortex. The anesthetized mouse was placed several times, e.g., weekly, under a dynamic confocal microscope, and Rhodamine B-isothiocyanate-dextran was each time intravenously injected as a bolus, while microflow images were video recorded. Left and right tail veins were sequentially catheterized in a mouse three times at maximum over a 1.5 months' observation period. Smearing of the input function resulting from the use of intravenous injection was shown to be sufficiently small. The distal middle cerebral artery (MCA) was thermocoagulated through the cranial window in six mice, and five sham-operated mice were studied in parallel. Dye injection and video recording were conducted four times in this series, i.e., before and at 10 min, 7 and 30 days after sham operation or MCA occlusion. Pixelar microflow values (1/MTT) in a matrix of approximately 50×50 pixels were displayed on a two-dimensional (2-D) map, and the frequency distribution of the flow values was also calculated. No significant changes in microflow values over time were detected in sham-operated mice, while the time course of flow changes in the ischemic penumbral area in operated mice was similar to those reported in the literature. This method provides a powerful tool to investigate long-term changes in mouse cortical microflow under physiological and pathological conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    PubMed

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  4. Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system.

    PubMed

    Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello

    2015-12-01

    Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.

  5. Research on acupuncture points and cortical functional activation position in cats by infrared imaging detection

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Sha, Zhanyou; Wang, Shuhai; Wen, Huanming

    2007-12-01

    The research of the brain cognition is mainly to find out the activation position in brain according to the stimulation at present in the world. The research regards the animals as the experimental objects and explores the stimulation response on the cerebral cortex of acupuncture. It provides a new method, which can detect the activation position on the creatural cerebral cortex directly by middle-far infrared imaging. According to the theory of local temperature situation, the difference of cortical temperature maybe associate with the excitement of cortical nerve cells, the metabolism of local tissue and the local hemal circulation. Direct naked detection of temperature variety on cerebral cortex is applied by middle and far infrared imaging technology. So the activation position is ascertained. The effect of stimulation response is superior to other indirect methods. After removing the skulls on the head, full of cerebral cortex of a cat are exposed. By observing the infrared images and measuring the temperatures of the visual cerebral cortex during the process of acupuncturing, the points are used to judge the activation position. The variety in the cortical functional sections is corresponding to the result of the acupuncture points in terms of infrared images and temperatures. According to experimental results, we know that the variety of a cortical functional section is corresponding to a special acupuncture point exactly.

  6. Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex.

    PubMed

    Hira, Riichiro; Terada, Shin-Ichiro; Kondo, Masashi; Matsuzaki, Masanori

    2015-09-30

    Movements of animals are composed of two fundamental dynamics: discrete and rhythmic movements. Although the movements with distinct dynamics are thought to be differently processed in the CNS, it is unclear how they are represented in the cerebral cortex. Here, we investigated the cortical representation of movement dynamics by developing prolonged transcranial optogenetic stimulation (pTOS) using awake, channelrhodopsin-2 transgenic mice. We found two domains that induced discrete forelimb movements in the forward and backward directions, and these sandwiched a domain that generated rhythmic forelimb movements. The forward discrete movement had an intrinsic velocity profile and the rhythmic movement had an intrinsic oscillation frequency. Each of the forward discrete and rhythmic domains possessed intracortical synaptic connections within its own domain, independently projected to the spinal cord, and weakened the neuronal activity and movement induction of the other domain. pTOS-induced movements were also classified as ethologically relevant movements. Forepaw-to-mouth movement was mapped in a part of the forward discrete domain, while locomotion-like movement was in a part of the rhythmic domain. Interestingly, photostimulation of the rhythmic domain resulted in a nonrhythmic, continuous lever-pull movement when a lever was present. The motor cortex possesses functional modules for distinct movement dynamics, and these can adapt to environmental constraints for purposeful movements. Significance statement: Animal behavior has discrete and rhythmic components, such as reaching and locomotion. It is unclear how these movements with distinct dynamics are represented in the cerebral cortex. We investigated the dynamics of movements induced by long-duration transcranial photostimulation on the dorsal cortex of awake channelrhodopsin-2 transgenic mice. We found two domains causing forward and backward discrete forelimb movements and a domain for rhythmic forelimb movements. A domain for forward discrete movement and a domain for rhythmic movement mutually weakened neuronal activity and movement size. The photostimulation of the rhythmic domain also induced nonrhythmic, lever-pull movement, when the lever was present. Thus, the motor cortex has functional modules with distinct dynamics, and each module retains flexibility for adaptation to different environments. Copyright © 2015 the authors 0270-6474/15/3513311-12$15.00/0.

  7. Pathophysiological analyses of periventricular nodular heterotopia using gyrencephalic mammals.

    PubMed

    Matsumoto, Naoyuki; Hoshiba, Yoshio; Morita, Kazuya; Uda, Natsu; Hirota, Miwako; Minamikawa, Maki; Ebisu, Haruka; Shinmyo, Yohei; Kawasaki, Hiroshi

    2017-03-15

    Although periventricular nodular heterotopia (PNH) is often found in the cerebral cortex of people with thanatophoric dysplasia (TD), the pathophysiology of PNH in TD is largely unknown. This is mainly because of difficulties in obtaining brain samples of TD patients and a lack of appropriate animal models for analyzing the pathophysiology of PNH in TD. Here we investigate the pathophysiological mechanisms of PNH in the cerebral cortex of TD by utilizing a ferret TD model which we recently developed. To make TD ferrets, we electroporated fibroblast growth factor 8 (FGF8) into the cerebral cortex of ferrets. Our immunohistochemical analyses showed that PNH nodules in the cerebral cortex of TD ferrets were mostly composed of cortical neurons, including upper layer neurons and GABAergic neurons. We also found disorganizations of radial glial fibers and of the ventricular lining in the TD ferret cortex, indicating that PNH may result from defects in radial migration of cortical neurons along radial glial fibers during development. Our findings provide novel mechanistic insights into the pathogenesis of PNH in TD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Oxidative stress and cell death in the cerebral cortex as a long-term consequence of neonatal hypoglycemia.

    PubMed

    Anju, T R; Akhilraj, P R; Paulose, C S

    2016-09-01

    Neonatal hypoglycemia limits glucose supply to cells leading to long-term consequences in brain function. The present study evaluated antioxidant and cell death factors' alterations in cerebral cortex of 1-month-old rats exposed to neonatal hypoglycemia. Gene expression studies by real-time PCR were carried out using gene-specific TaqMan probes. Fluorescent dyes were used for immunohistochemistry and nuclear staining and imaged by confocal microscope. Total antioxidant level and expression of antioxidant enzymes - superoxide dismutase (SOD) and gluthathione peroxide (GPx) - mRNA was significantly reduced along with high peroxide level in the cerebral cortex of 1-month-old rats exposed to neonatal hypoglycemia. Real-time PCR analysis showed an upregulation of Bax, caspase 3, and caspase 8 gene expression. Confocal imaging with TOPRO-3 staining and immunohistochemistry with caspase 3 antibody indicated cell death activation. The reduced free radical scavenging capability coupled with the expression of key factors involved in cell death pathway points to the possibility of oxidative stress in the cortex of 1-month-old rats exposed to neonatal hypoglycemia. The observed results indicate the effects of neonatal hypoglycemia in determining the antioxidant capability of cerebral cortex in a later stage of life.

  9. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment.

    PubMed

    Tan, Xing-Lin; Xue, Yue-Qiang; Ma, Tao; Wang, Xiaofang; Li, Jing Jing; Lan, Lubin; Malik, Kafait U; McDonald, Michael P; Dopico, Alejandro M; Liao, Francesca-Fang

    2015-06-24

    Cerebral infarction due to thrombosis leads to the most common type of stroke and a likely cause of age-related cognitive decline and dementia. Endothelial nitric oxide synthase (eNOS) generates NO, which plays a crucial role in maintaining vascular function and exerting an antithrombotic action. Reduced eNOS expression and eNOS polymorphisms have been associated with stroke and Alzheimer's disease (AD), the most common type of dementia associated with neurovascular dysfunction. However, direct proof of such association is lacking. Since there are no reports of complete eNOS deficiency in humans, we used heterozygous eNOS(+/-) mice to mimic partial deficiency of eNOS, and determine its impact on cerebrovascular pathology and perfusion of cerebral vessels. Combining cerebral angiography with immunohistochemistry, we found thrombotic cerebral infarctions in eNOS(+/-) mice as early as 3-6 months of age but not in eNOS(+/+) mice at any age. Remarkably, vascular occlusions in eNOS(+/-) mice were found almost exclusively in three areas: temporoparietal and retrosplenial granular cortexes, and hippocampus this distribution precisely matching the hypoperfused areas identified in preclinical AD patients. Moreover, progressive cerebral amyloid angiopaphy (CAA), blood brain barrier (BBB) breakdown, and cognitive impairment were also detected in aged eNOS(+/-) mice. These data provide for the first time the evidence that partial eNOS deficiency results in spontaneous thrombotic cerebral infarctions that increase with age, leading to progressive CAA and cognitive impairments. We thus conclude that eNOS(+/-) mouse may represent an ideal model of ischemic stroke to address early and progressive damage in spontaneously-evolving chronic cerebral ischemia and thus, study vascular mechanisms contributing to vascular dementia and AD.

  10. Critical role of matrix metalloprotease-9 in chronic high fat diet-induced cerebral vascular remodelling and increase of ischaemic brain injury in mice†

    PubMed Central

    Deng, Jiao; Zhang, Junfeng; Feng, Chenzhuo; Xiong, Lize; Zuo, Zhiyi

    2014-01-01

    Aims About one-third of American adults and 20% of teenagers are obese. Obesity and its associated metabolic disturbances including hyperlipidaemia are risk factors for cardiovascular diseases including stroke. They can worsen neurological outcome after stroke. We determined whether obesity and hyperlipidaemia could induce cerebral vascular remodelling via matrix metalloproteases (MMP) and whether this remodelling affected neurological outcome after brain ischaemia. Methods and results Six-week-old male CD1, C57BL/6J, and MMP-9−/− mice were fed regular diet (RD) or high-fat diet (HFD) for 10 weeks. They were subjected to vascular casting or a 90 min middle cerebral arterial occlusion (MCAO). Mice on HFD were heavier and had higher blood glucose and lipid levels than those on RD. HFD-fed CD1 and C57BL/6J mice had an increased cerebral vascular tortuosity index and decreased inner diameters of the middle cerebral arterial root. HFD increased microvessel density in CD1 mouse cerebral cortex. After MCAO, CD1 and C57BL/6J mice on HFD had a bigger infarct volume, more severe brain oedema and blood–brain barrier damage, higher haemorrhagic transformation rate, greater haemorrhagic volume, and worse neurological function. HFD increased MMP-9 activity in the ischaemic and non-ischaemic brain tissues. Although HFD increased the body weights, blood glucose, and lipid levels in the MMP-9−/− mice on a C57BL/6J genetic background, the HFD-induced cerebral vascular remodelling and worsening of neurological outcome did not occur in these mice. Conclusion HFD induces cerebral vascular remodelling and worsens neurological outcome after transient focal brain ischaemia. MMP-9 activation plays a critical role in these HFD effects. PMID:24935427

  11. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

    PubMed

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R

    2016-03-01

    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity

    PubMed Central

    Wang, Danhong; Buckner, Randy L.

    2013-01-01

    Asymmetry of the human cerebellum was investigated using intrinsic functional connectivity. Regions of functional asymmetry within the cerebellum were identified during resting-state functional MRI (n = 500 subjects) and replicated in an independent cohort (n = 500 subjects). The most strongly right lateralized cerebellar regions fell within the posterior lobe, including crus I and crus II, in regions estimated to link to the cerebral association cortex. The most strongly left lateralized cerebellar regions were located in lobules VI and VIII in regions linked to distinct cerebral association networks. Comparison of cerebellar asymmetry with independently estimated cerebral asymmetry revealed that the lateralized regions of the cerebellum belong to the same networks that are strongly lateralized in the cerebrum. The degree of functional asymmetry of the cerebellum across individuals was significantly correlated with cerebral asymmetry and varied with handedness. In addition, cerebellar asymmetry estimated at rest predicted cerebral lateralization during an active language task. These results demonstrate that functional lateralization is likely a unitary feature of large-scale cerebrocerebellar networks, consistent with the hypothesis that the cerebellum possesses a roughly homotopic map of the cerebral cortex including the prominent asymmetries of the association cortex. PMID:23076113

  13. MACF1 Controls Migration and Positioning of Cortical GABAergic Interneurons in Mice.

    PubMed

    Ka, Minhan; Moffat, Jeffrey J; Kim, Woo-Yang

    2017-12-01

    GABAergic interneurons develop in the ganglionic eminence in the ventral telencephalon and tangentially migrate into the cortical plate during development. However, key molecules controlling interneuron migration remain poorly identified. Here, we show that microtubule-actin cross-linking factor 1 (MACF1) regulates GABAergic interneuron migration and positioning in the developing mouse brain. To investigate the role of MACF1 in developing interneurons, we conditionally deleted the MACF1 gene in mouse interneuron progenitors and their progeny using Dlx5/6-Cre-IRES-EGFP and Nkx2.1-Cre drivers. We found that MACF1 deletion results in a marked reduction and defective positioning of interneurons in the mouse cerebral cortex and hippocampus, suggesting abnormal interneuron migration. Indeed, the speed and mode of interneuron migration were abnormal in the MACF1-mutant brain, compared with controls. Additionally, MACF1-deleted interneurons showed a significant reduction in the length of their leading processes and dendrites in the mouse brain. Finally, loss of MACF1 decreased microtubule stability in cortical interneurons. Our findings suggest that MACF1 plays a critical role in cortical interneuron migration and positioning in the developing mouse brain. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease.

    PubMed

    Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L

    2016-08-01

    Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds.

  15. Bipolar electrocoagulation on cortex after AVMs lesionectomy for seizure control.

    PubMed

    Cao, Yong; Wang, Rong; Yang, Lijun; Bai, Qin; Wang, Shuo; Zhao, Jizong

    2011-01-01

    The findings of previous studies remain controversial on the optimal management required for effective seizure control after surgical excision of arteriovenous malformations (AVMs). We evaluated the efficacy of additional bipolar electrocoagulation on the electrically positive cortex guided by intraoperative electrocorticography (ECoG) for controlling cerebral AVMs-related epilepsy. Sixty consecutive patients with seizure due to cerebral AVMs, who underwent surgical excision of cerebral AVMs and intraoperative ECoG, were assessed. The AVMs and surrounding hemosiderin stained tissue were completely removed, and bipolar electrocoagulation was applied on the surrounding cerebral cortex where epileptic discharges were monitored via intraoperative ECoG. Patients were followed up at three to six months after the surgery and then annually. We evaluated seizure outcome by using Engel's classification and postoperative complications. Forty-nine patients (81.6%) were detected of epileptic discharges before and after AVMs excision. These patients underwent the removal of AVMs plus bipolar electrocoagulation on spike-positive site cortex. After electrocoagulation, 45 patients' epileptic discharges disappeared, while four obviously diminished. Fifty-five of 60 patients (91.7%) had follow-up lasting at least 22 months (mean 51.1 months; range 22-93 months). Determined by the Engel Seizure Outcome Scale, 39 patients (70.9%) were Class I, seven (12.7%) Class II, five (9.0%) Class III, and four (7.2%) Class IV. Even after the complete removal of AVM and surrounding gliotic and hemosiderin stained tissue, a high-frequency residual spike remained on the surrounding cerebral cortex. Effective surgical seizure control can be achieved by carrying out additional bipolar electrocoagulation on the cortex guided by the intraoperative ECoG.

  16. Volumetric cerebral characteristics of children exposed to opiates and other substances in utero

    PubMed Central

    Walhovd, K. B.; Moe, V.; Slinning, K.; Due-Tønnessen, P.; Bjørnerud, A.; Dale, A. M.; van der Kouwe, A.; Quinn, B. T.; Kosofsky, B.; Greve, D.; Fischl, B.

    2007-01-01

    Morphometric cerebral characteristics were studied in children with prenatal poly-substance exposure (n =14) compared to controls (n = 14) without such exposure. Ten of the substance exposed children were born to mothers who used opiates (heroin) throughout the pregnancy. Groups were compared across 16 brain measures: cortical gray matter, cerebral white matter, hippocampus, amygdala, thalamus, accumbens area, caudate, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, lateral ventricles, inferior lateral ventricles, and the 3rd and 4th ventricles. In addition, continuous measurement of thickness across the entire cortical mantle was performed. Volumetric characteristics were correlated with ability and questionnaire assessments 2 years prior to scan. Compared to controls, the substance-exposed children had smaller intracranial and brain volumes, including smaller cerebral cortex, amygdala, accumbens area, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, and inferior lateral ventricles, and thinner cortex of the right anterior cingulate and lateral orbitofrontal cortex. Pallidum and putamen appeared especially reduced in the subgroup exposed to opiates. Only volumes of the right anterior cingulate, the right lateral orbitofrontal cortex and the accumbens area, showed some association with ability and questionnaire measures. The sample studied is rare, and hence small, so conclusions cannot be drawn with certainty. Morphometric group differences were observed, but associations with previous behavioral assessment were generally weak. Some of the volumetric differences, particularly thinner cortex in part of the right lateral orbitofrontal cortex, may be moderately involved in cognitive and behavioral difficulties more frequently experienced by opiate and poly-substance exposed children. PMID:17513131

  17. A role for PDGF-C/PDGFRα signaling in the formation of the meningeal basement membranes surrounding the cerebral cortex

    PubMed Central

    Andrae, Johanna; Gouveia, Leonor; Gallini, Radiosa; He, Liqun; Fredriksson, Linda; Nilsson, Ingrid; Johansson, Bengt R.; Eriksson, Ulf; Betsholtz, Christer

    2016-01-01

    ABSTRACT Platelet-derived growth factor-C (PDGF-C) is one of three known ligands for the tyrosine kinase receptor PDGFRα. Analysis of Pdgfc null mice has demonstrated roles for PDGF-C in palate closure and the formation of cerebral ventricles, but redundancy with other PDGFRα ligands might obscure additional functions. In search of further developmental roles for PDGF-C, we generated mice that were double mutants for Pdgfc−/− and PdgfraGFP/+. These mice display a range of severe phenotypes including spina bifida, lung emphysema, abnormal meninges and neuronal over-migration in the cerebral cortex. We focused our analysis on the central nervous system (CNS), where PDGF-C was identified as a critical factor for the formation of meninges and assembly of the glia limitans basement membrane. We also present expression data on Pdgfa, Pdgfc and Pdgfra in the cerebral cortex and microarray data on cerebral meninges. PMID:26988758

  18. Effect of oral administration of Pheretima aspergillum (earthworm) in rats with cerebral infarction induced by middle-cerebral artery occlusion.

    PubMed

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Huang, Chih-Yang; Hsieh, Ching-Liang

    2012-01-01

    We investigated the curative effect of Pheretima aspergillum (earthworm, PA) on rats with middle cerebral artery occlusion (MCAo). The MCAo-induced cerebral infarction was established and its underlying mechanisms by counting the infarction areas and evaluating the rats' neurological status. Immunostaining was used to test the expression of NeuN, and glial fibrillary acidic (GFAP), S100B, and brain-derived neurotrophic factor (BDNF) proteins. Our results showed that oral administration of PA for two weeks to rats with MCAo successfully reduced cerebral infarction areas in the cortex and striatum, and also reduced scores of neurological deficit. The PA-treated MCAo rats showed greatly decreased neuronal death, glial proliferation, and S100B proteins in the penumbra area of the cortex and in the ischemic core area of the cortex, but BDNF did not changed. These results demonstrated novel and detailed cellular mechanisms underlying the neuroprotective effects of PA in MCAo rats.

  19. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex.

    PubMed

    Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L

    2014-03-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.

  20. Estimates of Segregation and Overlap of Functional Connectivity Networks in the Human Cerebral Cortex

    PubMed Central

    Yeo, BT Thomas; Krienen, Fenna M; Chee, Michael WL; Buckner, Randy L

    2014-01-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1,000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. PMID:24185018

  1. Neural Correlates of Suicidal Ideation and Its Reduction in Depression

    PubMed Central

    Lally, Níall; Nugent, Allison C.; Furey, Maura L.; Luckenbaugh, David A.; Zarate, Carlos A.

    2015-01-01

    Background: The neural correlates of suicidal ideation and its reduction after treatment are unknown. We hypothesized that increased regional cerebral glucose metabolism in the infralimbic cortex (Brodmann area 25), amygdala, and subgenual anterior cingulate cortex would be associated with suicidal ideation and its reduction after ketamine infusion. Methods: Medication-free patients (n=19) with treatment-resistant major depressive disorder underwent positron emission tomography imaging at baseline and 230 minutes after an open-label ketamine infusion (0.5mg/kg for 40 minutes). Results: Baseline suicidal ideation and regional cerebral glucose metabolism in the infralimbic cortex were significantly correlated (r=.59, P=.007); but not overall mood scores (r=−.07, P=.79). Reductions in suicidal ideation after ketamine infusion were correlated with decreased regional cerebral glucose metabolism in the infralimbic cortex (r=.54, P=.02). Metabolism in other areas of interest was not significantly correlated with suicidal ideation or depression. Conclusion: The infralimbic cortex may be implicated in suicidal ideation. PMID:25550331

  2. Role of the Functional State of the Hypothalamus in Bioelectric Reactions of the Cerebral Cortex to Radiation,

    DTIC Science & Technology

    The effect of subjection of the hypothalamus to electrocoagulation in the area of the mamillary bodies on the bioelectric activity and reactivity of...the cerebral cortex exposed to radiation was studied. Rabbits were irradiated on the 10th day after electrocoagulation . Immediately after... electrocoagulation , a decline in the excitability and functional activity of cortical neurons in the posterior section of the cortex and a decrease in the

  3. Role of Hydrogen Sulfide in Early Blood-Brain Barrier Disruption following Transient Focal Cerebral Ischemia

    PubMed Central

    Jiang, Zheng; Li, Chun; Manuel, Morganne L.; Yuan, Shuai; Kevil, Christopher G.; McCarter, Kimberly D.; Lu, Wei; Sun, Hong

    2015-01-01

    We determined the role of endogenous hydrogen sulfide (H₂S) in cerebral vasodilation/hyperemia and early BBB disruption following ischemic stroke. A cranial window was prepared over the left frontal, parietal and temporal cortex in mice. Transient focal cerebral Ischemia was induced by directly ligating the middle cerebral artery (MCA) for two hours. Regional vascular response and cerebral blood flow (CBF) during ischemia and reperfusion were measured in real time. Early BBB disruption was assessed by Evans Blue (EB) and sodium fluorescein (Na-F) extravasation at 3 hours of reperfusion. Topical treatment with DL-propargylglycine (PAG, an inhibitor for cystathionine γ-lyase (CSE)) and aspartate (ASP, inhibitor for cysteine aminotransferase/3-mercaptopyruvate sulfurtransferase (CAT/3-MST)), but not O-(Carboxymethyl)hydroxylamine hemihydrochloride (CHH, an inhibitor for cystathionine β-synthase (CBS)), abolished postischemic cerebral vasodilation/hyperemia and prevented EB and Na-F extravasation. CSE knockout (CSE-/-) reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. An upregulated CBS was found in cerebral cortex of CSE-/- mice. Topical treatment with CHH didn’t further alter postischemic cerebral vasodilation/hyperemia, but prevented EB extravasation in CSE-/- mice. In addition, L-cysteine-induced hydrogen sulfide (H2S) production similarly increased in ischemic side cerebral cortex of control and CSE-/- mice. Our findings suggest that endogenous production of H2S by CSE and CAT/3-MST during reperfusion may be involved in postischemic cerebral vasodilation/hyperemia and play an important role in early BBB disruption following transient focal cerebral ischemia. PMID:25695633

  4. Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke

    PubMed Central

    Srinivasan, Vivek J.; Mandeville, Emiri T.; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H.; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties. PMID:23940761

  5. In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex

    PubMed Central

    Azzarelli, Roberta; Oleari, Roberto; Lettieri, Antonella; Andre', Valentina; Cariboni, Anna

    2017-01-01

    Neuronal migration is a fundamental biological process that underlies proper brain development and neuronal circuit formation. In the developing cerebral cortex, distinct neuronal populations, producing excitatory, inhibitory and modulatory neurotransmitters, are generated in different germinative areas and migrate along various routes to reach their final positions within the cortex. Different technical approaches and experimental models have been adopted to study the mechanisms regulating neuronal migration in the cortex. In this review, we will discuss the most common in vitro, ex vivo and in vivo techniques to visualize and study cortical neuronal migration. PMID:28448448

  6. Annual Research Review: Development of the Cerebral Cortex--Implications for Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Rubenstein, John L. R.

    2011-01-01

    The cerebral cortex has a central role in cognitive and emotional processing. As such, understanding the mechanisms that govern its development and function will be central to understanding the bases of severe neuropsychiatric disorders, particularly those that first appear in childhood. In this review, I highlight recent progress in elucidating…

  7. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development.

    PubMed

    Bruno, Alessandra Nejar; Da Silva, Rosane Souza; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Barreto-chaves, Maria Luiza M; Sarkis, João José Freitas

    2003-11-01

    Here we investigate the possible effects of the hyperthyroidism on the hydrolysis of the ATP to adenosine in the synaptosomes of hippocampus, cerebral cortex and blood serum of rats in different developmental phases. Manifestations of hyperthyroidism include anxiety, nervousness, tachycardia, physical hyperactivity and weight loss amongst others. The thyroid hormones modulate a number of physiological functions in central nervous system, including development, function, expression of adenosine A(1) receptors and transport of neuromodulator adenosine. Thus, hyperthyroidism was induced in male Wistar rats (5-, 60-, 150- and 330-day old) by daily injections of L-thyroxine (T4) for 14 days. Nucleotide hydrolysis was decreased by about 14-52% in both hippocampus and cerebral cortex in 5 to 60-day-old rats. These changes were also observed in rat blood serum. In addition, in 11-month-old rats, inhibition of ADP and AMP hydrolysis persisted in the hippocampus, whereas, in cerebral cortex, an increase in AMP hydrolysis was detected. Thus, hyperthyroidism affects the extracellular nucleotides balance and adenosine production, interfering in neurotransmitter release, development and others physiological processes in different systems.

  8. Encapsulated VEGF-secreting cells enhance proliferation of neuronal progenitors in the hippocampus of AβPP/Ps1 mice.

    PubMed

    Antequera, Desiree; Portero, Aitziber; Bolos, Marta; Orive, Gorka; Hernández, Rosa M Rm A; Pedraz, José Luis; Carro, Eva

    2012-01-01

    Vascular endothelial growth factor (VEGF) promotes neurogenesis in the adult hippocampus, but the way in which this process occurs in the Alzheimer's disease (AD) brain is still unknown. We examined the proliferation of neuronal precursors with an ex vivo approach, using encapsulated VEGF secreting cells, in AβPP/PS1 mice, a mouse model of AD. Overexpression of VEGF and VEGF receptor flk-1 was observed in the cerebral cortex from VEGF microcapsules-treated AβPP/PS1 mice at 1, 3 and 6 months after VEGF-microcapsule implantation. Stereological counting of 5-bromodeoxyuridine positive cells revealed that encapsulated VEGF secreting cells significantly enhanced cellular proliferation in the hippocampal dentate gyrus (DG). The number of neuronal precursors in VEGF microcapsules-treated AβPP/PS1 mice was also greater, and this effect remains after 6 months. We also confirmed that encapsulated VEGF secreting cells also stimulated angiogenesis in the cerebral cortex and hippocampal dentate gyrus. In addition, we found that VEGF-microcapsule treatment was associated with a depressed expression and activity of acetylcholinesterase in the hippocampus of AβPP/PS1 mice, a similar pattern as first-line medications for the treatment of AD. We conclude that stereologically-implanted VEGF-microcapsules exert an acute and long-standing neurotrophic effects, and could be utilized to improve potential therapies to control the progression of AD.

  9. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex

    PubMed Central

    Chen, Kenian; Sloan, Steven A.; Bennett, Mariko L.; Scholze, Anja R.; O'Keeffe, Sean; Phatnani, Hemali P.; Guarnieri, Paolo; Caneda, Christine; Ruderisch, Nadine; Deng, Shuyun; Liddelow, Shane A.; Zhang, Chaolin; Daneman, Richard; Maniatis, Tom; Barres, Ben A.

    2014-01-01

    The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain. PMID:25186741

  10. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood–brain barrier

    PubMed Central

    St-Amour, Isabelle; Paré, Isabelle; Alata, Wael; Coulombe, Katherine; Ringuette-Goulet, Cassandra; Drouin-Ouellet, Janelle; Vandal, Milène; Soulet, Denis; Bazin, Renée; Calon, Frédéric

    2013-01-01

    Intravenous immunoglobulin (IVIg) is currently evaluated in clinical trials for the treatment of various disorders of the central nervous system. To assess its capacity to reach central therapeutic targets, the brain bioavailability of IVIg must be determined. We thus quantified the passage of IVIg through the blood–brain barrier (BBB) of C57Bl/6 mice using complementary quantitative and qualitative methodologies. As determined by enzyme-linked immunosorbent assay, a small proportion of systemically injected IVIg was detected in the brain of mice (0.009±0.001% of injected dose in the cortex) whereas immunostaining revealed localization mainly within microvessels and less frequently in neurons. Pharmacokinetic analyses evidenced a low elimination rate constant (0.0053  per hour) in the cortex, consistent with accumulation within cerebral tissue. In situ cerebral perfusion experiments revealed that a fraction of IVIg crossed the BBB without causing leakage. A dose-dependent decrease of brain uptake was consistent with a saturable blood-to-brain transport mechanism. Finally, brain uptake of IVIg after a subchronic treatment was similar in the 3xTg-AD mouse model of Alzheimer disease compared with nontransgenic controls. In summary, our results provide evidence of BBB passage and bioavailability of IVIg into the brain in the absence of BBB leakage and in sufficient concentration to interact with the therapeutic targets. PMID:24045402

  11. Perinatal exposure to bisphenol-A impairs spatial memory through upregulation of neurexin1 and neuroligin3 expression in male mouse brain.

    PubMed

    Kumar, Dhiraj; Thakur, Mahendra Kumar

    2014-01-01

    Bisphenol-A (BPA), a well known endocrine disruptor, impairs learning and memory in rodents. However, the underlying molecular mechanism of BPA induced impairment in learning and memory is not well known. As synaptic plasticity is the cellular basis of memory, the present study investigated the effect of perinatal exposure to BPA on the expression of synaptic proteins neurexin1 (Nrxn1) and neuroligin3 (Nlgn3), dendritic spine density and spatial memory in postnatal male mice. The pregnant mice were orally administered BPA (50 µg/kgbw/d) from gestation day (GD) 7 to postnatal day (PND) 21 and sesame oil was used as a vehicle control. In Morris water maze (MWM) test, BPA extended the escape latency time to locate the hidden platform in 8 weeks male mice. RT-PCR and Immunoblotting results showed significant upregulation of Nrxn1 and Nlgn3 expression in both cerebral cortex and hippocampus of 3 and 8 weeks male mice. This was further substantiated by in-situ hybridization and immunofluorescence techniques. BPA also significantly increased the density of dendritic spines in both regions, as analyzed by rapid Golgi staining. Thus our data suggest that perinatal exposure to BPA impairs spatial memory through upregulation of expression of synaptic proteins Nrxn1 and Nlgn3 and increased dendritic spine density in cerebral cortex and hippocampus of postnatal male mice.

  12. Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain

    PubMed Central

    Kumar, Dhiraj; Thakur, Mahendra Kumar

    2014-01-01

    Bisphenol-A (BPA), a well known endocrine disruptor, impairs learning and memory in rodents. However, the underlying molecular mechanism of BPA induced impairment in learning and memory is not well known. As synaptic plasticity is the cellular basis of memory, the present study investigated the effect of perinatal exposure to BPA on the expression of synaptic proteins neurexin1 (Nrxn1) and neuroligin3 (Nlgn3), dendritic spine density and spatial memory in postnatal male mice. The pregnant mice were orally administered BPA (50 µg/kgbw/d) from gestation day (GD) 7 to postnatal day (PND) 21 and sesame oil was used as a vehicle control. In Morris water maze (MWM) test, BPA extended the escape latency time to locate the hidden platform in 8 weeks male mice. RT-PCR and Immunoblotting results showed significant upregulation of Nrxn1 and Nlgn3 expression in both cerebral cortex and hippocampus of 3 and 8 weeks male mice. This was further substantiated by in-situ hybridization and immunofluorescence techniques. BPA also significantly increased the density of dendritic spines in both regions, as analyzed by rapid Golgi staining. Thus our data suggest that perinatal exposure to BPA impairs spatial memory through upregulation of expression of synaptic proteins Nrxn1 and Nlgn3 and increased dendritic spine density in cerebral cortex and hippocampus of postnatal male mice. PMID:25330104

  13. Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex.

    PubMed

    Ye, Qian; Miao, Qing-Long

    2013-08-08

    Perineuronal nets (PNNs) are extracellular matrix structures consisting of chondroitin sulfate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R (Tn-R). They enwrap a subset of GABAergic inhibitory interneurons in the cerebral cortex and restrict experience-dependent cortical plasticity. While the expression profile of PNN components has been widely studied in many areas of the central nervous system of various animal species, it remains unclear how these components are expressed during the postnatal development of mouse primary visual cortex (V1). In the present study, we characterized the developmental time course of the formation of PNNs in the mouse primary visual cortex, using the specific antibodies against the two PNN component proteins aggrecan and tenascin-R, or the lectin Wisteria floribunda agglutinin (WFA) that directly binds to glycosaminoglycan chains of chondroitin sulfate proteoglycans (CSPGs). We found that the fluorescence staining signals of both the WFA staining and the antibody against aggrecan rapidly increased in cortical neurons across layers 2-6 during postnatal days (PD) 10-28 and reached a plateau around PD42, suggesting a full construction of PNNs by the end of the critical period. Co-staining with antibodies to Ca(2+) binding protein parvalbumin (PV) demonstrated that the majority of PNN-surrounding cortical neurons are immunoreactive to PV. Similar expression profile of another PNN component tenascin-R was observed in the development of V1. Dark rearing of mice from birth significantly reduced the density of PNN-surrounding neurons. In addition, the expression of two recently identified CSPG receptors - Nogo receptor (NgR) and leukocyte common antigen-related phosphatase (LAR), showed significant increases from PD14 to PD70 in layer 2-6 of cortical PV-positive interneurons in normal reared mice, but decreased significantly in dark-reared ones. Taken together, these results suggest that PNNs form preferentially in cortical PV-positive interneurons in an experience-dependent manner, and reach full maturation around the end of the critical period of V1 development. © Elsevier B.V. All rights reserved.

  14. Subcortical hematoma caused by cerebral amyloid angiopathy: does the first evidence of hemorrhage occur in the subarachnoid space?

    PubMed

    Takeda, Shigeki; Yamazaki, Kazunori; Miyakawa, Teruo; Onda, Kiyoshi; Hinokuma, Kaoru; Ikuta, Fusahiro; Arai, Hiroyuki

    2003-12-01

    Six autopsy cases of subcortical hematoma caused by CAA were examined to elucidate the primary site of hemorrhage. Immunohistochemistry for amyloid beta-protein (A beta) revealed extensive CAA in the intrasulcal meningeal vessels rather than in the cerebral cortical vessels. All of the examined cases had multiple hematomas in the subarachnoid space, mainly in the cerebral sulci, as well as intracerebral hematomas. Each intracerebral hematoma was connected to the subarachnoid hematomas at the depth of cerebral sulci or through the lateral side of the cortex. There was no debris of the cerebral cortical tissue in the subarachnoid hematomas. In case 2, another solitary subarachnoid hematoma, which was not connected to any intracerebral hematoma, was seen. In all of these subarachnoid hematomas, many ruptured A beta-immunopositive arteries were observed. These ruptured arteries did not accompany any debris of the brain tissue, some of them were large in diameter (250-300 microm), and several of them were far from the cerebral cortex. Therefore, it was considered that they were not cortical arteries but meningeal arteries. Within the cerebral cortex, there were only a few ruptured arteries associated with small hemorrhages. There were no ruptured vessels within the intracerebral hematomas. There was a strong suggestion that all of the subarachnoid hematomas, including the solitary one in case 2, originated from the rupture of the meningeal arteries. The present study indicates that in some cases of subcortical hematoma caused by CAA, the primary hemorrhage occurs in the subarachnoid space, in particular the cerebral sulci, because of rupture of multiple meningeal arteries. Infarction occurs subsequently in the cortex around the hematoma, the hematoma penetrates into the brain parenchyma, and finally, a subcortical hematoma is formed.

  15. Effect of allo- and xenotransplantation of embryonic nervous tissue and umbilical cord blood-derived stem cells on structural and functional state of cerebral cortex of albino rats in posttraumatic period.

    PubMed

    Ereniev, S I; Semchenko, V V; Sysheva, E V; Bogdashin, I V; Shapovalova, V V; Khizhnyak, A S; Gasanenko, L N

    2005-11-01

    Comparative study of the structural and functional state of cerebral cortex of adult albino rats after intracerebral allo- and xenotransplantation of embryonic nervous tissue and intravenous injection of umbilical cord blood-derived stem cells at different terms after diffuse-focal cerebral trauma revealed the best cerebroprotective effect on day 7 of posttraumatic period in animals receiving embryonic nervous tissue.

  16. Microvasculature of the cerebral cortex: a vascular corrosion cast and immunocytochemical study.

    PubMed

    Scala, Gaetano

    2014-04-01

    In mammals, the cerebral cortex microvasculature (CCM) of the neopallium plays important roles in the physiological and pathological processes of the brain. The aim of the present work is to analyze the CCM by use of the SEM-vascular corrosion cast technique, and to examine the immunocytochemical characteristics of the CCM in adult domestic ruminants (cattle, buffalo, and sheep) by using the SEM-immunogold technique. The CCM originated from the very small, finger-like terminal branches of the macrovasculature of the brain. The superficial cortical arterioles were more numerous than the deep straight arterioles which proceeded toward the white matter. The surface casts of the arterioles and capillaries of the cerebral cortex showed ring-shaped formations in the arterioles and at the origin of the capillaries. All capillaries down-stream from these ring-shaped formations were flaccid. Casts of the capillaries showed wrinkles due to the presence of endothelial folds, which is characteristic of varying blood pressure. Formations having intense anti-GIFAP immunoreactivity were frequently evident along the course of the blood capillaries in the cerebral cortex. These formations were probably astrocytes that might regulate the cerebral microcirculation based on physiological and pathological stimuli, such as neuronal activation. Copyright © 2014 Wiley Periodicals, Inc.

  17. Age related rise in lactate and its correlation with lactate dehydrogenase (LDH) status in post-mitochondrial fractions isolated from different regions of brain in mice.

    PubMed

    Datta, Siddhartha; Chakrabarti, Nilkanta

    2018-04-18

    Rise in brain lactate is the hallmark of ageing. Separate studies report that ageing is associated with elevation of lactate level and alterations of lactate dehydrogenase (LDH)-A/B mRNA-expression-ratio in cerebral cortex and hippocampus. However, age related lactate rise in brain and its association with LDH status and their brain regional variations are still elusive. In the present study, level of lactate, LDH (A and B) activity and LDH-A expression were evaluated in post-mitochondrial fraction of tissues isolated from four different brain regions (cerebral cortex, hippocampus, substantia nigra and cerebellum) of young and aged mice. Lactate levels elevated in four brain regions with maximum rise in substantia nigra of aged mice. LDH-A protein expression and its activity decreased in cerebral cortex, hippocampus and substantia nigra without any changes of these parameters in cerebellum of aged mice. LDH-B activity decreased in hippocampus, substantia nigra and cerebellum whereas its activity remains unaltered in cerebral cortex of aged mice. Accordingly, the ratio of LDH-A/LDH-B-activity remains unaltered in hippocampus and substantia nigra, decreased in cerebral cortex and increased in cerebellum. Therefore, rise of lactate in three brain regions (cerebral cortex, hippocampus, substantia nigra) appeared to be not correlated with the alterations of its regulatory enzymes activities in these three brain regions, rather it supports the fact of involvement of other mechanisms, like lactate transport and/or aerobic/anaerobic metabolism as the possible cause(s) of lactate rise in these three brain regions. The increase in LDH-A/LDH-B-activity-ratio appeared to be positively correlated with elevated lactate level in cerebellum of aged mice. Overall, the present study indicates that the mechanism of rise in lactate in brain varies with brain regions where LDH status plays an important role during ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. [Raman spectra of monkey cerebral cortex tissue].

    PubMed

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  19. Local cerebral glucose utilization during status epilepticus in newborn primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujikawa, D.G.; Dwyer, B.E.; Lake, R.R.

    1989-06-01

    The effect of bicuculline-induced status epilepticus (SE) on local cerebral metabolic rates for glucose (LCMRglc) was studied in 2-wk-old ketamine-anesthetized marmoset monkeys, using the 2-(/sup 14/C)-deoxy-D-glucose autoradiographical technique. To estimate LCMRglc in cerebral cortex and thalamus during SE, the lumped constant (LC) for 2-deoxy-D-glucose (2-DG) and the rate constants for 2-DG and glucose were calculated for these regions. The control LC was 0.43 in frontoparietal cortex, 0.51 in temporal cortex, and 0.50 in thalamus; it increased to 1.07 in frontoparietal cortex, 1.13 in temporal cortex, and 1.25 in thalamus after 30 min of seizures. With control LC values, LCMRglc inmore » frontoparietal cortex, temporal cortex, and dorsomedial thalamus appeared to increase four to sixfold. With seizure LC values, LCMRglc increased 1.5- to 2-fold and only in cortex. During 45-min seizures, LCMRglc in cortex and thalamus probably increases 4- to 6-fold initially and later falls to the 1.5- to 2-fold level as tissue glucose concentrations decrease. Together with our previous results demonstrating depletion of high-energy phosphates and glucose in these regions, the data suggest that energy demands exceed glucose supply. The long-term effects of these metabolic changes on the developing brain remain to be determined.« less

  20. The Impact of Development and Sensory Deprivation on Dendritic Protrusions in the Mouse Barrel Cortex

    PubMed Central

    Chen, Chia-Chien; Bajnath, Adesh; Brumberg, Joshua C.

    2015-01-01

    Dendritic protrusions (spines and filopodia) are structural indicators of synapses that have been linked to neuronal learning and memory through their morphological alterations induced by development and experienced-dependent activities. Although previous studies have demonstrated that depriving sensory experience leads to structural changes in neocortical organization, the more subtle effects on dendritic protrusions remain unclear, mostly due to focus on only one specific cell type and/or age of manipulation. Here, we show that sensory deprivation induced by whisker trimming influences the dendritic protrusions of basilar dendrites located in thalamocortical recipient lamina (IV and VI) of the mouse barrel cortex in a layer-specific manner. Following 1 month of whisker trimming after birth, the density of dendritic protrusions increased in layer IV, but decreased in layer VI. Whisker regrowth for 1 month returned protrusion densities to comparable level of age-matched controls in layer VI, but not in layer IV. In adults, chronic sensory deprivation led to an increase in protrusion densities in layer IV, but not in layer VI. In addition, chronic pharmacological blockade of N-methyl-d-aspartate receptors (NMDARs) increased protrusion density in both layers IV and VI, which returned to the control level after 1 month of drug withdrawal. Our data reveal that different cortical layers respond to chronic sensory deprivation in different ways, with more pronounced effects during developmental critical periods than adulthood. We also show that chronically blocking NMDARs activity during developmental critical period also influences the protrusion density and morphology in the cerebral cortex. PMID:24408954

  1. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain.

    PubMed

    Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui

    2010-08-06

    CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.

  2. Research on relation between cortical functional section and acupuncture point

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Li, Chunhua; Liang, Guozhuang; Wang, Shuhai

    2008-02-01

    The application of the infrared imaging using in the brain cognition and the acupuncture is introduced. Acupuncturing a certain point of the healthy experimental cats, observing the responds of the cerebral cortical temperature by using of infrared imaging, and researching the corresponding relation between the acupuncture points with the active sections of the cerebral cortex, so the effect of the acupuncture is obtained. The theory of the refreshment and induce resuscitation pinprick is approved. The method of the "refreshment and induce resuscitation pinprick" can promote the metabolize renovation, improve the living function and increase the healing rate. However, the relations between the points and the cortical functional sections have not the last word still. After removing the skulls on the head, full of the cerebral cortex of a cat are exposed. Observing the infrared imaging and measuring the temperatures of the visual cerebral cortex during the process of acupuncturing the points to judge the activation position. During the process of acupuncture, the trend of the rising temperature on cerebral cortex is primary in terms of the phenomena in the infrared pictures. The cortical hemogram variety is measured in terms of the infrared pictures and the temperature values, so the characteristic curve of the temperature for a corresponding position on the cerebral cortex and the acupuncture point can be obtained. When the acupuncture point is changed, the position where temperature varied on cerebral cortex is different correspondingly. The variety in the cortical functional sections is corresponding to the result of the acupuncture point in terms of the imaging and the temperatures. The experimental results accord with the theoretic model, so they validate the correctness of the "refreshment and induce resuscitation pinprick". According to the experimental results, we know that the variety of a cortical functional section is corresponding to a special acupuncture point exactly. The similar relations can be applied in human being in terms of the comparative acupuncture. The conclusions of the research can provide the evidences in the infrared pictures and the temperature values for the studies on the acupuncture applied in the field of brain cognition.

  3. Motor Deficits and Decreased Striatal Dopamine Receptor 2 Binding Activity in the Striatum-Specific Dyt1 Conditional Knockout Mice

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Jianyong; Standaert, David G.; Li, Yuqing

    2011-01-01

    DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit. PMID:21931745

  4. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.

    PubMed

    Reillo, Isabel; de Juan Romero, Camino; García-Cabezas, Miguel Ángel; Borrell, Víctor

    2011-07-01

    The cerebral cortex of large mammals undergoes massive surface area expansion and folding during development. Specific mechanisms to orchestrate the growth of the cortex in surface area rather than in thickness are likely to exist, but they have not been identified. Analyzing multiple species, we have identified a specialized type of progenitor cell that is exclusive to mammals with a folded cerebral cortex, which we named intermediate radial glia cell (IRGC). IRGCs express Pax6 but not Tbr2, have a radial fiber contacting the pial surface but not the ventricular surface, and are found in both the inner subventricular zone and outer subventricular zone (OSVZ). We find that IRGCs are massively generated in the OSVZ, thus augmenting the numbers of radial fibers. Fanning out of this expanding radial fiber scaffold promotes the tangential dispersion of radially migrating neurons, allowing for the growth in surface area of the cortical sheet. Accordingly, the tangential expansion of particular cortical regions was preceded by high proliferation in the underlying OSVZ, whereas the experimental reduction of IRGCs impaired the tangential dispersion of neurons and resulted in a smaller cortical surface. Thus, the generation of IRGCs plays a key role in the tangential expansion of the mammalian cerebral cortex.

  5. Non-invasive measurement of cerebral oxygen metabolism in the mouse brain by ultra-high field 17O MR spectroscopy

    PubMed Central

    Cui, Weina; Zhu, Xiao-Hong; Vollmers, Manda L; Colonna, Emily T; Adriany, Gregor; Tramm, Brandon; Dubinsky, Janet M; Öz, Gülin

    2013-01-01

    To assess cerebral energetics in transgenic mouse models of neurologic disease, a robust, efficient, and practical method for quantification of cerebral oxygen consumption is needed. 17O magnetic resonance spectroscopy (MRS) has been validated to measure cerebral metabolic rate of oxygen (CMRO2) in the rat brain; however, mice present unique challenges because of their small size. We show that CMRO2 measurements with 17O MRS in the mouse brain are highly reproducible using 16.4 Tesla and a newly designed oxygen delivery system. The method can be utilized to measure mitochondrial function in mice quickly and repeatedly, without oral intubation, and has numerous potential applications to study cerebral energetics. PMID:24064490

  6. Cellular scaling rules for the brain of afrotherians

    PubMed Central

    Neves, Kleber; Ferreira, Fernanda M.; Tovar-Moll, Fernanda; Gravett, Nadine; Bennett, Nigel C.; Kaswera, Consolate; Gilissen, Emmanuel; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from the common eutherian ancestor. We find that afrotherians share non-neuronal scaling rules with rodents, primates and eulipotyphlans, as well as the coordinated scaling of numbers of neurons in the cerebral cortex and cerebellum. Afrotherians share with rodents and eulipotyphlans, but not with primates, the scaling of number of neurons in the cortex and in the cerebellum as a function of the number of neurons in the rest of the brain. Afrotheria also share with rodents and eulipotyphlans the neuronal scaling rules that apply to the cerebral cortex. Afrotherians share with rodents, but not with eulipotyphlans nor primates, the neuronal scaling rules that apply to the cerebellum. Importantly, the scaling of the folding index of the cerebral cortex with the number of neurons in the cerebral cortex is not shared by either afrotherians, rodents, or primates. The sharing of some neuronal scaling rules between afrotherians and rodents, and of some additional features with eulipotyphlans and primates, raise the interesting possibility that these shared characteristics applied to the common eutherian ancestor. In turn, the clade-specific characteristics that relate to the distribution of neurons along the surface of the cerebral cortex and to its degree of gyrification suggest that these characteristics compose an evolutionarily plastic suite of features that may have defined and distinguished mammalian groups in evolution. PMID:24596544

  7. Gain control by layer six in cortical circuits of vision.

    PubMed

    Olsen, Shawn R; Bortone, Dante S; Adesnik, Hillel; Scanziani, Massimo

    2012-02-22

    After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.

  8. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex.

    PubMed

    Pollen, Alex A; Nowakowski, Tomasz J; Shuga, Joe; Wang, Xiaohui; Leyrat, Anne A; Lui, Jan H; Li, Nianzhen; Szpankowski, Lukasz; Fowler, Brian; Chen, Peilin; Ramalingam, Naveen; Sun, Gang; Thu, Myo; Norris, Michael; Lebofsky, Ronald; Toppani, Dominique; Kemp, Darnell W; Wong, Michael; Clerkson, Barry; Jones, Brittnee N; Wu, Shiquan; Knutsson, Lawrence; Alvarado, Beatriz; Wang, Jing; Weaver, Lesley S; May, Andrew P; Jones, Robert C; Unger, Marc A; Kriegstein, Arnold R; West, Jay A A

    2014-10-01

    Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships but require efficient methods for cell capture and mRNA sequencing. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths, the limitations of shallow sequencing have not been investigated directly. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In the developing cortex, we identify diverse cell types, including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.

  9. Deep Sequencing Reveals Uncharted Isoform Heterogeneity of the Protein-Coding Transcriptome in Cerebral Ischemia.

    PubMed

    Bhattarai, Sunil; Aly, Ahmed; Garcia, Kristy; Ruiz, Diandra; Pontarelli, Fabrizio; Dharap, Ashutosh

    2018-06-03

    Gene expression in cerebral ischemia has been a subject of intense investigations for several years. Studies utilizing probe-based high-throughput methodologies such as microarrays have contributed significantly to our existing knowledge but lacked the capacity to dissect the transcriptome in detail. Genome-wide RNA-sequencing (RNA-seq) enables comprehensive examinations of transcriptomes for attributes such as strandedness, alternative splicing, alternative transcription start/stop sites, and sequence composition, thus providing a very detailed account of gene expression. Leveraging this capability, we conducted an in-depth, genome-wide evaluation of the protein-coding transcriptome of the adult mouse cortex after transient focal ischemia at 6, 12, or 24 h of reperfusion using RNA-seq. We identified a total of 1007 transcripts at 6 h, 1878 transcripts at 12 h, and 1618 transcripts at 24 h of reperfusion that were significantly altered as compared to sham controls. With isoform-level resolution, we identified 23 splice variants arising from 23 genes that were novel mRNA isoforms. For a subset of genes, we detected reperfusion time-point-dependent splice isoform switching, indicating an expression and/or functional switch for these genes. Finally, for 286 genes across all three reperfusion time-points, we discovered multiple, distinct, simultaneously expressed and differentially altered isoforms per gene that were generated via alternative transcription start/stop sites. Of these, 165 isoforms derived from 109 genes were novel mRNAs. Together, our data unravel the protein-coding transcriptome of the cerebral cortex at an unprecedented depth to provide several new insights into the flexibility and complexity of stroke-related gene transcription and transcript organization.

  10. Irisin Peptide Protects Brain Against Ischemic Injury Through Reducing Apoptosis and Enhancing BDNF in a Rodent Model of Stroke.

    PubMed

    Asadi, Yasin; Gorjipour, Fazel; Behrouzifar, Sedigheh; Vakili, Abedin

    2018-06-07

    Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood-brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P < 0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P < 0.001) without changing BBB permeability (P > 0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P < 0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.

  11. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    NASA Astrophysics Data System (ADS)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  12. Vygotsky Meets Neuroscience: The Cerebellum and the Rise of Culture through Play

    ERIC Educational Resources Information Center

    Vandervert, Larry

    2017-01-01

    The author suggests the brain's cerebellum and cerebral cortex are the origin of culture and considers the cerebellar models that came to constitute culture to be derived specifically from play. He summarizes recent research on the behavioral, cognitive, and affective evolution of the cerebellum and the cerebral cortex that shows the development…

  13. Osthole confers neuroprotection against cortical stab wound injury and attenuates secondary brain injury.

    PubMed

    Xia, Yang; Kong, Liang; Yao, Yingjia; Jiao, Yanan; Song, Jie; Tao, Zhenyu; You, Zhong; Yang, Jingxian

    2015-09-04

    Neuroendoscopy is an innovative technique for neurosurgery that can nonetheless result in traumatic brain injury. The accompanying neuroinflammation may lead to secondary tissue damage, which is the major cause of delayed neuronal death after surgery. The present study investigated the capacity of osthole to prevent secondary brain injury and the underlying mechanism of action in a mouse model of stab wound injury. A mouse model of cortical stab wound injury was established by inserting a needle into the cerebral cortex for 20 min to mimic neuroendoscopy. Mice received an intraperitoneal injection of osthole 30 min after surgery and continued for 14 days. Neurological severity was evaluated 12 h and up to 21 days after the trauma. Brains were collected 3-21 days post-injury for histological analysis, immunocytochemistry, quantitative real-time PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and enzyme-linked immunosorbent assays. Neurological function improved in mice treated with osthole and was accompanied by reduced brain water content and accelerated wound closure relative to untreated mice. Osthole treatment reduced the number of macrophages/microglia and peripheral infiltrating of neutrophils and lowered the level of the proinflammatory cytokines interleukin-6 and tumor necrosis factor α in the lesioned cortex. Osthole-treated mice had fewer TUNEL+ apoptotic neurons surrounding the lesion than controls, indicating increased neuronal survival. Osthole reduced secondary brain damage by suppressing inflammation and apoptosis in a mouse model of stab wound injury. These results suggest a new strategy for promoting neuronal survival and function after neurosurgery to improve long-term patient outcome.

  14. Changes in the brain biogenic monoamines of rats, induced by piracetam and aniracetam.

    PubMed

    Petkov, V D; Grahovska, T; Petkov, V V; Konstantinova, E; Stancheva, S

    1984-01-01

    Single oral dose of 600 mg/kg weight piracetam, respectively 50 mg/kg aniracetam, causes essential changes in the level and turnover of dopamine (DA) and serotonin (5-HT) in some rat cerebral structures. When the animals were killed one hour after the administration of the drugs, piracetam significantly increased the DA level in the cerebral cortex and in the striatum, as well as the 5-HT level in the cortex, reducing the 5-HT level in the striatum, brain stem and hypothalamus. At the same time, under the effect of piracetam the DA turnover was accelerated in the cortex and hypothalamus and delayed in the striatum, the noradrenaline turnover was accelerated in the brain stem, the 5-HT turnover was accelerated in the cortex and delayed in the striatum, stem and hypothalamus. Under the effect of aniracetam the DA level was reduced in the striatum and hypothalamus; the 5-HT level was also decreased in the hypothalamus and increased in the cortex and striatum. Aniracetam delayed the DA turnover in the striatum and the 5-HT turnover in the hypothalamus, accelerating the 5-HT turnover in the cortex, striatum and stem. The results obtained show that the changes induced in the cerebral biogenic monoamines participate in the mechanism of action of piracetam and aniracetam, whereby it seems that the analogies and differences in their effects on the cerebral biogenic monoamines play a definite role for the observed analogies and differences in the behavioural effects of these two "nootropic" compounds.

  15. TransOmic analysis of forebrain sections in Sp2 conditional knockout embryonic mice using IR-MALDESI imaging of lipids and LC-MS/MS label-free proteomics

    PubMed Central

    Loziuk, Philip; Meier, Florian; Johnson, Caroline

    2016-01-01

    Quantitative methods for detection of biological molecules are needed more than ever before in the emerging age of “omics” and “big data.” Here, we provide an integrated approach for systematic analysis of the “lipidome” in tissue. To test our approach in a biological context, we utilized brain tissue selectively deficient for the transcription factor Specificity Protein 2 (Sp2). Conditional deletion of Sp2 in the mouse cerebral cortex results in developmental deficiencies including disruption of lipid metabolism. Silver (Ag) cationization was implemented for infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) to enhance the ion abundances for olefinic lipids, as these have been linked to regulation by Sp2. Combining Ag-doped and conventional IR-MALDESI imaging, this approach was extended to IR-MALDESI imaging of embryonic mouse brains. Further, our imaging technique was combined with bottom-up shotgun proteomic LC-MS/MS analysis and western blot for comparing Sp2 conditional knockout (Sp2-cKO) and wild-type (WT) cortices of tissue sections. This provided an integrated omics dataset which revealed many specific changes to fundamental cellular processes and biosynthetic pathways. In particular, step-specific altered abundances of nucleotides, lipids, and associated proteins were observed in the cerebral cortices of Sp2-cKO embryos. PMID:26942738

  16. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow.

    PubMed

    Li, Hongmei; Guo, Qinxi; Inoue, Taeko; Polito, Vinicia A; Tabuchi, Katsuhiko; Hammer, Robert E; Pautler, Robia G; Taffet, George E; Zheng, Hui

    2014-08-09

    Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.

  17. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices.

    PubMed

    Torres, I L; Gamaro, G D; Silveira-Cucco, S N; Michalowski, M B; Corrêa, J B; Perry, M L; Dalmaz, C

    2001-01-01

    It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 microCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  18. Localizing the Frequency x Regularity Word Reading Interaction in the Cerebral Cortex

    ERIC Educational Resources Information Center

    Cummine, Jacqueline; Sarty, Gordon E.; Borowsky, Ron

    2010-01-01

    The aim of this work is to combine behavioural and functional magnetic resonance imaging (fMRI) data to advance our knowledge of where the Frequency x Regularity interaction on word naming is located in the cerebral cortex. Participants named high and low frequency, regular and exception words in a behavioural lab (Experiment 1) and during an fMRI…

  19. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuriya, Mutsuo; Keio Advanced Research Center for Water Biology and Medicine, Keio University, Shinjuku, Tokyo, 160-8582; Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, 240-8501

    Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This primingmore » effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. - Highlights: • Background NE augments the responsiveness of astrocytes to subsequent NE stimulation. • The priming effect is independent of neuronal activity and mediated by βadrenoceptor. • Background subthreshold NE may play gliomodulatory roles in the cerebral cortex.« less

  20. The elephant brain in numbers

    PubMed Central

    Herculano-Houzel, Suzana; Avelino-de-Souza, Kamilla; Neves, Kleber; Porfírio, Jairo; Messeder, Débora; Mattos Feijó, Larissa; Maldonado, José; Manger, Paul R.

    2014-01-01

    What explains the superior cognitive abilities of the human brain compared to other, larger brains? Here we investigate the possibility that the human brain has a larger number of neurons than even larger brains by determining the cellular composition of the brain of the African elephant. We find that the African elephant brain, which is about three times larger than the human brain, contains 257 billion (109) neurons, three times more than the average human brain; however, 97.5% of the neurons in the elephant brain (251 billion) are found in the cerebellum. This makes the elephant an outlier in regard to the number of cerebellar neurons compared to other mammals, which might be related to sensorimotor specializations. In contrast, the elephant cerebral cortex, which has twice the mass of the human cerebral cortex, holds only 5.6 billion neurons, about one third of the number of neurons found in the human cerebral cortex. This finding supports the hypothesis that the larger absolute number of neurons in the human cerebral cortex (but not in the whole brain) is correlated with the superior cognitive abilities of humans compared to elephants and other large-brained mammals. PMID:24971054

  1. Maternal Geophagy of Calabash Chalk on Foetal Cerebral Cortex Histomorphology.

    PubMed

    Ekanem, Theresa Bassey; Ekong, Moses Bassey; Eluwa, Mokutima Amarachi; Igiri, Anozeng Oyono; Osim, Eme Efiom

    2015-01-01

    Calabash chalk, a kaolin-base substance is a common geophagic material mostly consumed by pregnant women. This study investigated its effect on the histomorphology of the foetal cerebral cortex. Twelve gestating Wistar rats were divided equally into groups 1 and 2. On pregnancy day seven (PD7), group 2 animals were administered 200 mg/kg body weight of calabash chalk suspension, while group 1 animals served as the control and received 1 ml of distilled water, by oral gavages and for 14 days (PD7-PD20). On PD21, the dams were sacrificed, and the foetuses removed, examined for gross malformations, weighed and culled to two foetuses per mother. Their whole brains were excised, weighed and preserved using 10% buffered formalin, and routinely processed by haematoxylin and eosin, and Luxol fast blue methods. The foetuses showed no morphological change, but their mean body weights was higher (p=0.0001). Histomorphological sections of the cerebral cortex showed hypertrophy and hyperplasia of cells in all the cortical layers, with less demonstrated Nissl and higher (p=0.001) cellular population compared with the control group. Calabash chalk cause body weight increase and histomorphological changes in the cerebral cortex of foetuses.

  2. Ablation of TrkB expression in RGS9-2 cells leads to hyperphagic obesity★

    PubMed Central

    Liao, Guey-Ying; Li, Yuqing; Xu, Baoji

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB (tropomyosin receptor kinase B), are widely expressed in the brain where they regulate a wide variety of biological processes, including energy homeostasis. However, the specific population(s) of TrkB-expressing neurons through which BDNF governs energy homeostasis remain(s) to be determined. Using the Cre-loxP recombination system, we deleted the mouse TrkB gene in RGS9-2-expressing cells. In this mouse mutant, TrkB expression was abolished in several hypothalamic nuclei, including arcuate nucleus, dorsomedial hypothalamus, and lateral hypothalamus. TrkB expression was also abolished in a small number of cells in other brain regions, including the cerebral cortex and striatum. The mutant animals developed hyperphagic obesity with normal energy expenditure. Despite hyperglycemia under fed conditions, these animals exhibited normal fasting blood glucose levels and normal glucose tolerance. These results suggest that BDNF regulates energy homeostasis in part through TrkB-expressing neurons in the hypothalamus. PMID:24327964

  3. Prenatal Exposure to Tributyltin Decreases GluR2 Expression in the Mouse Brain.

    PubMed

    Ishida, Keishi; Saiki, Takashi; Umeda, Kanae; Miyara, Masatsugu; Sanoh, Seigo; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), a common environmental contaminant, is widely used as an antifouling agent in paint. We previously reported that exposure of primary cortical neurons to TBT in vitro decreased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit glutamate receptor 2 (GluR2) expression and subsequently increased neuronal vulnerability to glutamate. Therefore, to identify whether GluR2 expression also decreases after TBT exposure in vivo, we evaluated the changes in GluR2 expression in the mouse brain after prenatal or postnatal exposure to 10 and 25 ppm TBT through pellet diets. Although the mean feed intake and body weight did not decrease in TBT-exposed mice compared with that in control mice, GluR2 expression in the cerebral cortex and hippocampus decreased after TBT exposure during the prenatal period. These results indicate that a decrease in neuronal GluR2 may be involved in TBT-induced neurotoxicity, especially during the fetal period.

  4. The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding

    PubMed Central

    Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Gabi, Mariana; Mota, Bruno; Grinberg, Lea T.; Farfel, José M.; Ferretti-Rebustini, Renata E. L.; Leite, Renata E. P.; Filho, Wilson J.; Herculano-Houzel, Suzana

    2013-01-01

    The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex) the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital) that differ in how neurons are distributed across their gray matter volume and in three zones (prefrontal, occipital, and non-occipital) that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non-occipital areas. PMID:24032005

  5. CORRELATION INDICES OF CEREBRAL HEMODYNAMICS AND ELECTRICAL ACTIVITY IN CHILDREN WITH IMPAIRED MOTOR SKILLS.

    PubMed

    Golovchenko, I V; Hayday, M I

    The correlations between the indicators of cerebral hemodynamics and electrical activity in children with impaired motor skills of central origin (children with cerebral palsy) were investigated. There is established a high number of links between indicators of rheoencephalogram (REG) and electroencephalogram (EEG) in the left cerebral hemisphere than in the right. In frontomastoidal allocation 19 correlations and in occipitomastoidal - 59 links. We suppose that poor circulation in vertebroplasty-basilar system leads to the defeat of the brain stem, which, with afferent pathways of the reticular formation, connects the thalamus with the cortex. In the reticular formation there is an inhibition of ascending activators influences, which eland to decreasing of the cortex is tonus. You can talk about the functional immaturity of the system of nonspecific activation by the reticular formation of the brain stem. Children with violation of motor activity had significantly more negative and positive significant and high correlation among the existing indicators of electric brain activity and cerebral hemodynamics, in our opinion, is due to the development of interconnection compensation that is carried out by adjustment of the functional systems and the formation of new forms of adaptive responses in conditions of disontogenetik. Feature correlation pattern of the EEG, of children with disorders of motor activity, is associated with a significantly great number of high and significant correlations between measures of electrical brain activity in the δ- and q- rhythms, especially in the temporal areas of the cerebral cortex. According to visual analysis of EEG there is revealed a common manifestation of changes of bioelectric brain activity in children with disorders of motor activity. This is manifested in the development of paroxysmal activity of action potentials of θ- and δ-rhythms with the focus of activity in the anterior areas of the cerebral cortex; the formation of a mosaic representation of the θ-rhythms in temporal areas; the presence of hypersynchronous a-paroxysms in the posterior areas of the cerebral cortex. The given facts testify to activation of mechanisms of limbic-neocortical systems and synchronizing influences of the reticular formation of the stem and diencephalic structures. There is also detected greater number of correlations when occipitomastoidal registration was lone it reflects compensatory redistribution of cerebral blood flow over the affected structures of brain stem structures that are associated with the provision of cortical functions.

  6. Cerebral Processing of Voice Gender Studied Using a Continuous Carryover fMRI Design

    PubMed Central

    Pernet, Cyril; Latinus, Marianne; Crabbe, Frances; Belin, Pascal

    2013-01-01

    Normal listeners effortlessly determine a person's gender by voice, but the cerebral mechanisms underlying this ability remain unclear. Here, we demonstrate 2 stages of cerebral processing during voice gender categorization. Using voice morphing along with an adaptation-optimized functional magnetic resonance imaging design, we found that secondary auditory cortex including the anterior part of the temporal voice areas in the right hemisphere responded primarily to acoustical distance with the previously heard stimulus. In contrast, a network of bilateral regions involving inferior prefrontal and anterior and posterior cingulate cortex reflected perceived stimulus ambiguity. These findings suggest that voice gender recognition involves neuronal populations along the auditory ventral stream responsible for auditory feature extraction, functioning in pair with the prefrontal cortex in voice gender perception. PMID:22490550

  7. Expression of Histone Deacetylases in Cellular Compartments of the Mouse Brain and the Effects of Ischemia

    PubMed Central

    Bachleda, Amelia; Morrison, Richard S.; Murphy, Sean P.

    2011-01-01

    Drugs that inhibit specific histone deacetylase (HDAC) activities have enormous potential in preventing the consequences of acute injury to the nervous system and in allaying neurodegeneration. However, very little is known about the expression pattern of the HDACs in the central nervous system (CNS). Identifying the cell types that express HDACs in the CNS is important for determining therapeutic targets for HDAC inhibitors and evaluating potential side effects. We characterized the cellular expression of HDACs 1–3, and HDACs 4 and 6, in the adult mouse brain in the cingulate cortex, parietal cortex, dentate gyrus, and CA1 regions of the hippocampus and subcortical white matter. Expression of class I HDACs showed a cell-and region-specific pattern. Transient focal ischemia induced by temporary middle cerebral artery occlusion, or global ischemia induced by in vitro oxygen–glucose deprivation, altered the extent of HDAC expression in a region- and cell-specific manner. The pan-HDAC inhibitor, SAHA, reduced ischemia-induced alterations in HDACs. The results suggest that in addition to promoting epigenetic changes in transcriptional activity in the nucleus of neurons and glia, HDACs may also have non-transcriptional actions in axons and the distant processes of glial cells and may significantly modulate the response to injury in a cell- and region-specific manner. PMID:21966324

  8. Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells.

    PubMed Central

    McKinnon, R D; Danielson, P; Brow, M A; Bloom, F E; Sutcliffe, J G

    1987-01-01

    We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture. Images PMID:2439903

  9. [Effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water].

    PubMed

    Xiuwen, Yang; Hongchen, Liu; Ke, Li; Zhen, Jin; Gang, Liu

    2014-12-01

    We used functional magnetic resonance imaging (fMRI) to explore the effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water. Six male and female subjects were subjected to whole-brain fMRI during the phasic delivery of non-noxious hot (23 °C) and no- xious cold (4 °C) water intraoral stimulation. A block-design blood oxygenation level-dependent fMRI scan covering the entire brain was also carried out. The activated cortical areas were as follows: left pre-/post-central gyrus, insula/operculum, anterior cingulate cortex (ACC), orbital frontal cortex (OFC), midbrain red nucleus, and thalamus. The activated cortical areas under cold condition were as follows: left occipital lobe, premotor cortex/Brodmann area (BA) 6, right motor language area BA44, lingual gyrus, parietal lobule (BA7, 40), and primary somatosensory cortex S I. Comparisons of the regional cerebral blood flow response magnitude were made among stereotactically concordant brain regions that showed significant responses under the two conditions of this study. Compared with non-noxious warmth, more regions were activated in noxious coldness, and the magnitude of activation in areas produced after non-noxious warm stimulation significantly increased. However, ACC only significantly increased the magnitude of activation under noxious coldness stimulation. Results suggested that a similar network of regions was activated common to the perception of pain and no-pain produced by either non-noxious warmth or noxious coldness stimulation. Non-noxious warmth also activated more brain regions and significantly increased the response magnitude of cerebral-cortex activation compared with noxious coldness. Noxious coldness stimulation further significantly increased the magnitude of activation in ACC areas compared with noxious warmth.

  10. Subchronic exposure of benzo(a)pyrene interferes with the expression of Bcl-2, Ki-67, C-myc and p53, Bax, Caspase-3 in sub-regions of cerebral cortex and hippocampus.

    PubMed

    He, Jianlong; Ji, Xiaoying; Li, Yongfei; Xue, Xiaochang; Feng, Guodong; Zhang, Huqin; Wang, Huichun; Gao, Meilii

    2016-01-01

    Benzo[a]pyrene [B(a)P], a representative substance of the polycyclic aromatic hydrocarbons, is an ubiquitous environmental contaminant. However, the mechanism of B(a)P neurotoxicity is still not clear. The aim of this study was to investigate the molecular mechanism by assay the expression of Bcl-2, C-myc, Ki-67 oncogene and p53, Bax, Caspase-3 proapoptotic gene in sub-regions of cerebral cortex and hippocampus in brain. Mice were administrated with subchronic intraperitoneal injection and oral gavage of B(a)P (2.5, 5, 10mg/kg body weight) for 13 weeks. We observed that B(a)P induced the significant increase in relative brain weights and the slight proliferation phenomenon in hippocampus in the experiment. Significant increase of C-myc, Ki-67 and p53, Bax, Caspase-3 and dramatic decrease of Bcl-2 protein levels were observed through immunohistochemical analysis. The relative higher interference of Bcl-2, C-myc, Ki-67 and p53, Bax, Caspase-3 proteins was observed in hippocampus sub-regions of dentate gyrus, cornu ammonis 3 and cornu ammonis 1. The relative lower interference of the examined genes was found in cerebral cortex sub-regions of frontal cortex, temporal cortex and parietal cortex. The results showed a region-difference manner with accompanying dose-dependent manner in brain hippocampus and cerebral cortex induced by B(a)P. These findings indicate that B(a)P-induced subchronic neural toxicity may occur through the enhancement in Bcl-2, C-myc, Ki-67 oncogenes and p53, Bax, Caspase-3 proapoptotic genes expression. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Effect of electroacupuncture on the expression of interlukin-1beta mRNA after transient focal cerebral ischemia.

    PubMed

    Xu, Zhen-Feng; Wu, Gen-Cheng; Cao, Xiao-Ding

    2002-01-01

    It has been reported that interleukin-1beta (IL-1beta ) play a key role in the pathogenesis of cerebral ischemia. Acupuncture is an effective traditional medical therapy in China. The aim of present study was to evaluate the effect of electroacupuncture (EA) on IL-1beta mRNA expression after middle cerebral artery occlusion (MCAO) in rats. Using in situ hybridization technique, it was found that in the MCAO group the expression of IL-1beta mRNA was significantly increased at 2h, 6h, 12h after reperfusion in cerebral ischemic cortex compared with normal group. In EA+ MCAO group the expression of IL-1beta mRNA was significantly decreased at 2h, 6h and 12h in ischemic cortex compared with MCAO group. The results indicated that EA might decrease the IL-1beta protein expression by reducing the IL-beta mRNA expression in ischemic cortex.

  12. In Vivo Imaging of Flavoprotein Fluorescence During Hypoxia Reveals the Importance of Direct Arterial Oxygen Supply to Cerebral Cortex Tissue.

    PubMed

    Chisholm, K I; Ida, K K; Davies, A L; Papkovsky, D B; Singer, M; Dyson, A; Tachtsidis, I; Duchen, M R; Smith, K J

    2016-01-01

    Live imaging of mitochondrial function is crucial to understand the important role played by these organelles in a wide range of diseases. The mitochondrial redox potential is a particularly informative measure of mitochondrial function, and can be monitored using the endogenous green fluorescence of oxidized mitochondrial flavoproteins. Here, we have observed flavoprotein fluorescence in the exposed murine cerebral cortex in vivo using confocal imaging; the mitochondrial origin of the signal was confirmed using agents known to manipulate mitochondrial redox potential. The effects of cerebral oxygenation on flavoprotein fluorescence were determined by manipulating the inspired oxygen concentration. We report that flavoprotein fluorescence is sensitive to reductions in cortical oxygenation, such that reductions in inspired oxygen resulted in loss of flavoprotein fluorescence with the exception of a preserved 'halo' of signal in periarterial regions. The findings are consistent with reports that arteries play an important role in supplying oxygen directly to tissue in the cerebral cortex, maintaining mitochondrial function.

  13. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model.

    PubMed

    Wang, Shaojun; Zhou, Jun; Kang, Weijie; Dong, Zhaoni; Wang, Hezuo

    2016-01-15

    Cerebral infarction is a severe hypoxic ischemic necrosis with accelerated neuronal cell apoptosis in the brain. As a monoclonal antibody against interleukin 6, tocilizumab (TCZ) is widely used in immune diseases, whose function in cerebral infarction has not been studied. This study aims to reveal the role of TCZ in regulating neuronal cell apoptosis in cerebral infarction. The cerebral infarction rat model was constructed by middle cerebral artery occlusion and treated with TCZ. Cell apoptosis in hippocampus and cortex of the brain was examined with TUNEL method. Rat neuronal cells cultured in oxygen-glucose deprivation (OGD) conditions and treated with TCZ were used to compare cell viability and apoptosis. Apoptosis-related factors including B-cell lymphoma extra large (Bcl-xL) and Caspase 3, as well as the phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in brain cortex were analyzed from the protein level. Results indicated that TCZ treatment could significantly prevent the promoted cell apoptosis caused by cerebral infarction or OGD (P < 0.05 or P < 0.01). In brain cortex of the rat model, TCZ up-regulated Bcl-xL and down-regulated Caspase 3, consistent with the inhibited cell apoptosis. It also promoted tyrosine 705 phosphorylation of STAT3, which might be the potential regulatory mechanism of TCZ in neuronal cells. This study provided evidence for the protective role of TCZ against neuronal cell apoptosis in cerebral infarction. Based on these fundamental data, TCZ is a promising option for treating cerebral infarction, but further investigations on related mechanisms are still necessary.

  14. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    NASA Technical Reports Server (NTRS)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  15. Loss of Elp3 Impairs the Acetylation and Distribution of Connexin-43 in the Developing Cerebral Cortex

    PubMed Central

    Laguesse, Sophie; Close, Pierre; Van Hees, Laura; Chariot, Alain; Malgrange, Brigitte; Nguyen, Laurent

    2017-01-01

    The Elongator complex is required for proper development of the cerebral cortex. Interfering with its activity in vivo delays the migration of postmitotic projection neurons, at least through a defective α-tubulin acetylation. However, this complex is already expressed by cortical progenitors where it may regulate the early steps of migration by targeting additional proteins. Here we report that connexin-43 (Cx43), which is strongly expressed by cortical progenitors and whose depletion impairs projection neuron migration, requires Elongator expression for its proper acetylation. Indeed, we show that Cx43 acetylation is reduced in the cortex of Elp3cKO embryos, as well as in a neuroblastoma cell line depleted of Elp1 expression, suggesting that Cx43 acetylation requires Elongator in different cellular contexts. Moreover, we show that histones deacetylase 6 (HDAC6) is a deacetylase of Cx43. Finally, we report that acetylation of Cx43 regulates its membrane distribution in apical progenitors of the cerebral cortex. PMID:28507509

  16. Regional cerebral blood flow changes associated with focal electrically administered seizure therapy (FEAST).

    PubMed

    Chahine, George; Short, Baron; Spicer, Ken; Schmidt, Matthew; Burns, Carol; Atoui, Mia; George, Mark S; Sackeim, Harold A; Nahas, Ziad

    2014-01-01

    Use of electroconvulsive therapy (ECT) is limited by cognitive disturbance. Focal electrically-administered seizure therapy (FEAST) is designed to initiate focal seizures in the prefrontal cortex. To date, no studies have documented the effects of FEAST on regional cerebral blood flow (rCBF). A 72 year old depressed man underwent three single photon emission computed tomography (SPECT) scans to capture the onset and resolution of seizures triggered with right unilateral FEAST. We used Bioimage Suite for within-subject statistical analyses of perfusion differences ictally and post-ictally compared with the baseline scan. Early ictal increases in regional cerebral blood flow (rCBF) were limited to the right prefrontal cortex. Post-ictally, perfusion was reduced in bilateral frontal and occipital cortices and increased in left motor and precuneus cortex. FEAST appears to triggers focal onsets of seizure activity in the right prefrontal cortex with subsequent generalization. Future studies are needed on a larger sample. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Fractal dimension as an index of brain cortical changes throughout life.

    PubMed

    Kalmanti, Elina; Maris, Thomas G

    2007-01-01

    The fractal dimension (FD) of the cerebral cortex was measured in 93 individuals, aged from 3 months to 78 years, with normal brain MRI's in order to compare the convolutions of the cerebral cortex between genders and age groups. Image J, an image processing program, was used to skeletonize cerebral cortex and the box counting method applied. FDs on slices taken from left and right hemispheres were calculated. Our results showed a significant degree of lateralization in the left hemisphere. It appears that basal ganglia development, mainly in the left hemisphere, is heavily dependent upon age until puberty. In addition, both left and right cortex development equally depends on age until puberty, while the corresponding right hemisphere convolutions continue to develop until a later stage. An increased developmental activity appears between the ages of 1 and 15 years, indicating a significant brain remodelling during childhood and adolescence. In infancy, only changes in basal ganglia are observed, while the right hemisphere continues to remodel in adulthood.

  18. Changes in Somatosensory Responsiveness in Behaving Primates

    DTIC Science & Technology

    1988-08-01

    visually vs. vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory...vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory-triggered...recording chamber was implanted over the forelimb * region of the left sensorimotor cortices following a craniotomy and secured with smaller bolts and the

  19. Tell me twice: A multi-study analysis of the functional connectivity between the cerebrum and cerebellum after repeated trait information.

    PubMed

    Van Overwalle, Frank; Heleven, Elien; Ma, Ning; Mariën, Peter

    2017-01-01

    This multi-study analysis (6 fMRI studies; 142 participants) explores the functional activation and connectivity of the cerebellum with the cerebrum during repeated behavioral information uptake informing about personality traits of different persons. The results suggest that trait repetition recruits activity in areas belonging to the mentalizing and executive control networks in the cerebrum, and the executive control areas in the cerebellum. Cerebral activation was observed in the executive control network including the posterior medial frontal cortex (pmFC), the bilateral prefrontal cortex (PFC) and bilateral inferior parietal cortex (IPC), in the mentalizing network including the bilateral middle temporal cortex (MTC) extending to the right superior temporal cortex (STC), as well as in the visual network including the left cuneus (Cun) and the left inferior occipital cortex. Moreover, cerebellar activation was found bilaterally in lobules VI and VII belonging to the executive control network. Importantly, significant patterns of functional connectivity were found linking these cerebellar executive areas with cerebral executive areas in the medial pmFC, the left PFC and the left IPC, and mentalizing areas in the left MTC. In addition, connectivity was found between the cerebral areas in the left hemisphere involved in the executive and mentalizing networks, as well as with their homolog areas in the right hemisphere. The discussion centers on the role of these cerebello-cerebral connections in matching internal predictions generated by the cerebellum with external information from the cerebrum, presumably involving the sequencing of behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Acute intrastriatal injection of quinolinic acid provokes long-lasting misregulation of the cytoskeleton in the striatum, cerebral cortex and hippocampus of young rats.

    PubMed

    Pierozan, Paula; Gonçalves Fernandes, Carolina; Ferreira, Fernanda; Pessoa-Pureur, Regina

    2014-08-19

    Quinolinic acid (QUIN) is a neuroactive metabolite of the kinurenine pathway, considered to be involved in aging and some neurodegenerative disorders, including Huntington׳s disease. In the present work we have studied the long-lasting effect of acute intrastriatal injection of QUIN (150 nmol/0.5 µL) in 30 day-old rats on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits (NFL, NFM and NFH) respectively, until 21 days after injection. The acute administration of QUIN altered the homeostasis of IF phosphorylation in a selective manner, progressing from striatum to cerebral cortex and hippocampus. Twenty four hours after QUIN injection, the IFs were hyperphosphorylated in the striatum. This effect progressed to cerebral cortex causing hypophosphorylation at day 14 and appeared in the hippocampus as hyperphosphorylation at day 21 after QUIN infusion. PKA and PKCaMII have been activated in striatum and hippocampus, since Ser55 and Ser57 in NFL head domain were hyperphosphorylated. However, MAPKs (Erk1/2, JNK and p38MAPK) were hyperphosphorylated/activated only in the hippocampus, suggesting different signaling mechanisms in these two brain structures during the first weeks after QUIN infusion. Also, protein phosphatase 1 (PP1) and 2B (PP2B)-mediated hypophosphorylation of the IF proteins in the cerebral cortex 14 after QUIN injection reinforce the selective signaling mechanisms in different brain structures. Increased GFAP immunocontent in the striatum and cerebral cortex 24h and 14 days after QUIN injection respectively, suggests reactive astrocytes in these brain regions. We propose that disruption of cytoskeletal homeostasis in neural cells takes part of the long-lasting molecular mechanisms of QUIN toxicity in adolescent rats, showing selective and progressive misregulation of the signaling mechanisms targeting the IF proteins in the striatum, cerebral cortex and hippocampus with important implications for brain function. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Cdk5 Phosphorylation of ErbB4 is Required for Tangential Migration of Cortical Interneurons

    PubMed Central

    Rakić, Sonja; Kanatani, Shigeaki; Hunt, David; Faux, Clare; Cariboni, Anna; Chiara, Francesca; Khan, Shabana; Wansbury, Olivia; Howard, Beatrice; Nakajima, Kazunori; Nikolić, Margareta; Parnavelas, John G.

    2015-01-01

    Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and molecular biological techniques, we report that the signaling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the tangential migration of interneurons toward and within the cerebral cortex by modulating the critical neurodevelopmental signaling pathway, ErbB4/phosphatidylinositol 3-kinase, that has been repeatedly linked to schizophrenia. This finding identifies Cdk5 as a crucial signaling factor in cortical interneuron development in mammals. PMID:24142862

  2. Longitudinal in-vivo diffusion tensor imaging for assessing brain developmental changes in BALB/cJ mice, a model of reduced sociability relevant to autism.

    PubMed

    Kumar, Manoj; Kim, Sungheon; Pickup, Stephen; Chen, Rong; Fairless, Andrew H; Ittyerah, Ranjit; Abel, Ted; Brodkin, Edward S; Poptani, Harish

    2012-05-21

    Diffusion tensor imaging (DTI) is highly sensitive in detecting brain structure and connectivity phenotypes in autism spectrum disorders (ASD). Since one of the core symptoms of ASD is reduced sociability (reduced tendency to seek social interaction), we hypothesized that DTI will be sensitive in detecting neural phenotypes that correlate with decreased sociability in mouse models. Relative to C57BL/6J (B6) mice, juvenile BALB/cJ mice show reduced sociability. We performed social approach test in a three-chambered apparatus and in-vivo longitudinal DTI at post-natal days 30, 50 and 70 days-of-age in BALB/cJ (n=32) and B6 (n=15) mice to assess the correlation between DTI and sociability and to evaluate differences in DTI parameters between these two strains. Fractional anisotropy (FA) and mean diffusivity (MD) values from in-vivo DTI data were analyzed from white matter (corpus callosum, internal and external capsule) and gray matter (cerebral cortex, frontal motor cortex, hippocampus, thalamus and amygdaloid) regions based on their relevance to ASD. A moderate but significant (p<0.05) negative correlation between sociability and FA in hippocampus and frontal motor cortex was noted for BALB/cJ mice at 30 days-of-age. Significant differences in FA and MD values between BALB/cJ and B6 mice were observed in most white and gray matter areas at all three time points. Significant differences in developmental trajectories of FA and MD values from thalamus and frontal motor cortex were also observed between BALB/cJ and B6, indicating relative under-connectivity in BALB/cJ mice. These results indicate that DTI may be used as an in-vivo, non-invasive imaging method to assess developmental trajectories of brain connectivity in mouse models of neurodevelopmental and behavioral disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Longitudinal in-vivo diffusion tensor imaging for assessing brain developmental changes in BALB/cJ mice, a model of reduced sociability relevant to autism

    PubMed Central

    Kumar, Manoj; Kim, Sungheon; Pickup, Stephen; Chen, Rong; Fairless, Andrew H.; Ittyerah, Ranjit; Abel, Ted; Brodkin, Edward S.; Poptani, Harish

    2012-01-01

    Diffusion tensor imaging (DTI) is highly sensitive in detecting brain structure and connectivity phenotypes in autism spectrum disorders (ASD). Since one of the core symptoms of ASD is reduced sociability (reduced tendency to seek social interaction), we hypothesized that DTI will be sensitive in detecting neural phenotypes that correlate with decreased sociability in mouse models. Relative to C57BL/6J (B6) mice, juvenile BALB/cJ mice show reduced sociability. We performed social approach test in a three-chambered apparatus and in-vivo longitudinal DTI at post-natal days 30, 50 and 70 days-of-age in BALB/cJ (n=32) and B6 (n=15) mice to assess the correlation between DTI and sociability and to evaluate differences in DTI parameters between these two strains. Fractional anisotropy (FA) and mean diffusivity (MD) values from in-vivo DTI data were analyzed from white matter (corpus callosum, internal and external capsule) and gray matter (cerebral cortex, frontal motor cortex, hippocampus, thalamus and amygdaloid) regions based on their relevance to ASD. A moderate but significant (p<0.05) negative correlation between sociability and FA in hippocampus and frontal motor cortex was noted for BALB/cJ mice at 30 days-of-age. Significant differences in FA and MD values between BALB/cJ and B6 mice were observed in most white and gray matter areas at all three time points. Significant differences in developmental trajectories of FA and MD values from thalamus and frontal motor cortex were also observed between BALB/cJ and B6, indicating relative under-connectivity in BALB/cJ mice. These results indicate that DTI may be used as an in-vivo, non-invasive imaging method to assess developmental trajectories of brain connectivity in mouse models of neurodevelopmental and behavioral disorders. PMID:22513103

  4. Changes in Cerebral Cortex of Children Treated for Medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Arthur K.; Marcus, Karen J.; Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA

    2007-07-15

    Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from amore » larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications.« less

  5. Localization of brain 5α-reductase messenger RNA in mice selectively bred for high chronic alcohol withdrawal severity.

    PubMed

    Roselli, Charles E; Finn, Timothy J; Ronnekleiv-Kelly, Sean M; Tanchuck, Michelle A; Kaufman, Katherine R; Finn, Deborah A

    2011-12-01

    Several lines of evidence suggest that fluctuations in endogenous levels of the γ-aminobutyric acid (GABA)ergic neurosteroid allopregnanolone (ALLO) represent one mechanism for regulation of GABAergic inhibitory tone in the brain, with an ultimate impact on behavior. Consistent with this idea, there was an inverse relationship between ALLO levels and symptoms of anxiety and depression in humans and convulsive activity in rodents during alcohol withdrawal. Our recent studies examined the activity and expression of 5α-reductase (Srd5a1), the rate-limiting enzyme in the biosynthesis of ALLO, during alcohol withdrawal in mice selectively bred for high chronic alcohol withdrawal (Withdrawal Seizure-Prone [WSP]) and found that Srd5a1 was downregulated in the cortex and hippocampus over the time course of dependence and withdrawal. The purpose of the present studies was to extend these findings and more discretely map the regions of Srd5a1 expression in mouse brain using radioactive in situ hybridization in WSP mice that were ethanol naïve, following exposure to 72h ethanol vapor (dependent) or during peak withdrawal. In naïve animals, expression of Srd5a1 was widely distributed throughout the mouse brain, with highest expression in specific regions of the cerebral cortex, hippocampus, thalamus, hypothalamus, and amygdala. In dependent animals and during withdrawal, there was no change in Srd5a1 expression in cortex or hippocampus, which differed from our recent findings in dissected tissues. These results suggest that local Srd5a1 mRNA expression in WSP brain may not change in parallel with local ALLO content or withdrawal severity. Published by Elsevier Inc.

  6. Localization of Brain 5α-Reductase Messenger RNA in Mice Selectively Bred for High Chronic Alcohol Withdrawal Severity

    PubMed Central

    Roselli, Charles E.; Finn, Tim J.; Ronnekleiv-Kelly, Sean M.; Tanchuck, Michelle A.; Kaufman, Katherine R.; Finn, Deborah A.

    2011-01-01

    Several lines of evidence suggest that fluctuations in endogenous levels of the γ-aminobutyric acid (GABA)ergic neurosteroid allopregnanolone (ALLO) represent one mechanism for regulation of GABAergic inhibitory tone in the brain, with an ultimate impact on behavior. Consistent with this idea, there was an inverse relationship between ALLO levels and symptoms of anxiety and depression in humans and convulsive activity in rodents during alcohol withdrawal. Our recent studies examined activity and expression of 5α-reductase (Srd5a1), the rate-limiting enzyme in the biosynthesis of ALLO, during alcohol withdrawal in mice selectively bred for high chronic alcohol withdrawal (Withdrawal Seizure-Prone, WSP) and found that Srd5a1 was down-regulated in the cortex and hippocampus over the time course of dependence and withdrawal. The purpose of the present studies was to extend these findings and more discretely map the regions of Srd5a1 expression in mouse brain using radioactive in situ hybridization in WSP mice that were ethanol naïve, following exposure to 72 h ethanol vapor (dependent) or during peak withdrawal. In naïve animals, expression of Srd5a1 was widely distributed throughout the mouse brain, with highest expression in specific regions of the cerebral cortex, hippocampus, thalamus, hypothalamus, and amygdala. In dependent animals and during withdrawal, there was no change in Srd5a1 expression in cortex or hippocampus, which differed from our recent findings in dissected tissues. These results suggest that local Srd5a1 mRNA expression in WSP brain may not change in parallel with local ALLO content or withdrawal severity. PMID:21917407

  7. Possible involvements of glutamate and adrenergic receptors on acute toxicity of methylphenidate in isolated hippocampus and cerebral cortex of adult rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2017-04-01

    Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α 2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  8. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    PubMed

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Experimental Evidence that In Vivo Intracerebral Administration of L-2-Hydroxyglutaric Acid to Neonatal Rats Provokes Disruption of Redox Status and Histopathological Abnormalities in the Brain.

    PubMed

    Ribeiro, Rafael Teixeira; Zanatta, Ângela; Amaral, Alexandre Umpierrez; Leipnitz, Guilhian; de Oliveira, Francine Hehn; Seminotti, Bianca; Wajner, Moacir

    2018-04-01

    Tissue accumulation of L-2-hydroxyglutaric acid (L-2-HG) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-2-HGA), a rare neurometabolic inherited disease characterized by neurological symptoms and brain white matter abnormalities whose pathogenesis is not yet well established. L-2-HG was intracerebrally administered to rat pups at postnatal day 1 (P1) to induce a rise of L-2-HG levels in the central nervous system (CNS). Thereafter, we investigated whether L-2-HG in vivo administration could disturb redox homeostasis and induce brain histopathological alterations in the cerebral cortex and striatum of neonatal rats. L-2-HG markedly induced the generation of reactive oxygen species (increase of 2',7'-dichloroflurescein-DCFH-oxidation), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione-GSH) and sulfhydryl content in the cerebral cortex. Alterations of the activities of various antioxidant enzymes were also observed in the cerebral cortex and striatum following L-2-HG administration. Furthermore, L-2-HG-induced lipid peroxidation and GSH decrease in the cerebral cortex were prevented by the antioxidant melatonin and by the classical antagonist of NMDA glutamate receptor MK-801, suggesting the involvement of reactive species and of overstimulation of NMDA receptor in these effects. Finally, L-2-HG provoked significant vacuolation and edema particularly in the cerebral cortex with less intense alterations in the striatum that were possibly associated with the unbalanced redox homeostasis caused by this metabolite. Taken together, it is presumed that these pathomechanisms may underlie the neurological symptoms and brain abnormalities observed in the affected patients.

  10. Cyclooxygenase system contributes to the maintenance of post convulsive period of epileptic phenomena in the genetically epileptic El mice.

    PubMed

    Okada, Kazumasa; Yamashita, Uki; Tsuji, Sadatoshi

    2006-09-01

    Recent studies have shown that cytokines and cyclooxygenase (COX)-2 are up-regulated in the brain of human epilepsy patients and animal models of epilepsy. We investigated the effect of inflammatory responses induced by intramuscular injection of turpentine on the epileptic phenomenon in genetically epileptic El mice. As parameters of epileptic seizure, seizure threshold (number of toss-ups to induce convulsion), duration of actual convulsion and duration of post actual convulsive period (period from the offset of convulsion to full recovery) were evaluated. The post actual convulsive period was prolonged without any change of seizure threshold or duration of actual convulsion 24 h after turpentine injection. Although pretreatment with indomethacin for one week did not change the seizure parameters, indomethacin suppressed the prolongation of the post actual convulsive period induced by turpentine. The mRNA expression of IL-1beta, IL-6 and COX-2 in the cerebral cortex was detected by RT-PCR. There was no difference in the mRNA expression in the cerebral cortex before and 24 h after seizure. The mRNA levels of IL-1beta, IL-6 and COX-2 in the cerebral cortex were up-regulated 24 h after turpentine injection. On the other hand, the up-regulated mRNA levels of IL-1beta, IL-6 and COX-2 in the cerebral cortex after turpentine treatment were not suppressed by indomethacin. These results suggest that prostaglandins induced with COX-2 in the cerebral cortex seem to play an important role in the maintenance of the post convulsive period, but not in induction and maintenance of the actual convulsive state.

  11. Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response.

    PubMed

    Thakare, Vishnu N; Aswar, Manoj K; Kulkarni, Yogesh P; Patil, Rajesh R; Patel, Bhoomika M

    2017-10-01

    Silymarin is a polyphenolic flavonoid of Silybum marianum, exhibited neuroprotection and antidepressant like activity in acute restraint stressed mice. The main objective of the present study is to investigate possible antidepressant like activity of silymarin in experimentally induced depressive behavior in rats. The depressive behaviors were induced in rats by olfactory bulbectomized (OBX) technique. Wistar rats were administered with silymarin at a dose of 100mg/kg and 200mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) level], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Rats subjected to OBX elicited significant increase in immobility time, ambulatory and rearing behaviors, reduced BDNF level, 5-HT, DA, NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of with silymarin significantly attenuated immobility time, ambulatory and rearing behaviors, serum corticosterone and improved BDNF expression, 5-HT, DA, NE and antioxidant paradigms in cerebral cortex as well as hippocampus. In addition, silymarin attenuated IL-6, and TNF-α significantly in hippocampus and cerebral cortex in OBX rats. Thus, silymarin exhibits anti-depressant-like activity in OBX rats due to alterations in several neurotransmitters, endocrine and immunologic systems, including BDNF, 5-HT, DA, NE, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex as well as serum corticosterone. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. [Effects of electromagnetic pulse on blood-brain barrier permeability and tight junction proteins in rats].

    PubMed

    Qiu, Lian-bo; Ding, Gui-rong; Zhang, Ya-mei; Zhou, Yan; Wang, Xiao-wu; Li, Kang-chu; Xu, Sheng-long; Tan, Juan; Zhou, Jia-xing; Guo, Guo-zhen

    2009-09-01

    To study the effect of electromagnetic pulse (EMP) on the permeability of blood-brain barrier, tight junction (TJ)-associated protein expression and localization in rats. 66 male SD rats, weighing (200 approximately 250) g, were sham or whole-body exposed to EMP at 200 kV/m for 200 pulses. The repetition rate was 1 Hz. The permeability of the blood-brain barrier in rats was assessed by albumin immunohistochemistry. The expression of typical tight junction protein ZO-1 and occludin in both cerebral cortex homogenate and cerebral cortex microvessel homogenate was analyzed by the Western blotting and the distribution of ZO-1 and occludin was examined by immunofluorescence microscopy. In the sham exposure rats, no brain capillaries showed albumin leakage, at 0.5 h after 200 kV/m EMP exposure for 200 pulses; a few brain capillaries with extravasated serum albumin was found, with the time extended, the number of brain capillaries with extravasated serum albumin increased, and reached the peak at 3 h, then began to recover at 6 h. In addition, no change in the distribution of the occludin was found after EMP exposure. Total occludin expression had no significant change compared with the control. However, the expression level of ZO-1 significantly decreased at 1 h and 3 h after EMP exposure in both cerebral cortex homogenate and cerebral cortex microvessel homogenate. Furthermore, immunofluorescence studies also showed alterations in ZO-1 protein localization in cerebral cortex microvessel. The EMP exposure (200 kV/m, 200 pulses) could increase blood-brain barrier permeability in rat, and this change is associated with specific alterations in tight junction protein ZO-1.

  13. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II.

    PubMed

    Carvalho-Silva, Milena; Gomes, Lara M; Scaini, Giselli; Rebelo, Joyce; Damiani, Adriani P; Pereira, Maiara; Andrade, Vanessa M; Gava, Fernanda F; Valvassori, Samira S; Schuck, Patricia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-08-01

    Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.

  14. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior

    PubMed Central

    Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju

    2018-01-01

    The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765

  15. Cerebral Cortex Hyperthyroidism of Newborn Mct8-Deficient Mice Transiently Suppressed by Lat2 Inactivation

    PubMed Central

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M.; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2 -/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development. PMID:24819605

  16. Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation.

    PubMed

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.

  17. Selective Neurodegeneration, Without Neurofibrillary Tangles, in a Mouse Model of Niemann-Pick C Disease

    PubMed Central

    German, Dwight C.; Quintero, E. Matthew; Liang, Chang-Lin; Ng, Benton; Punia, Surender; Xie, Chonglun; Dietschy, John M.

    2012-01-01

    The BALB/c mouse model of Niemann-Pick type C (NPC) disease exhibits neuropathological similarities to the human condition. There is an age-related cerebral atrophy, demyelination of the corpus callosum, and degeneration of cerebellar Purkinje cells in the NPC mouse. In human NPC, many cortical and subcortical neurons contain neurofibrillary tangles, which are thought by some investigators to play an important role in the neurodegenerative process. The purpose of the present study was to determine whether neurodegeneration occurs in the NPC mouse, in brain regions other than the cerebellum and whether the degeneration is related to the presence of neurofibrillary tangles. Using light microscopic methods with immunohistochemistry, electron microscopy, and cell counting methods, 11-week-old NPC+/+ and NPC−/− animals were examined. In the NPC−/− mice, there were 96% fewer Purkinje cells, 28% fewer neurons in the prefrontal cortex, 20% fewer neurons in the thalamus, and 63% fewer glial cells in the corpus callosum. On the other hand, previous studies indicate normal numbers of neurons and glial cells in these same neuroanatomical regions in young NPC−/− mice. There were normal numbers of cholinergic neurons in sections assessed in the striatum and basal forebrain in the 11-week-old animals and no evidence of neurofibrillary tangles within cells. The present data indicate that both neurons and glial cells die in the NPC mouse but that all cells are not equally vulnerable. There was no evidence for neurofibrillary tangles in the NPC mouse, and therefore the degenerative process in the mouse is unrelated to the neurofibrillary tangle. PMID:11298365

  18. Updated energy budgets for neural computation in the neocortex and cerebellum

    PubMed Central

    Howarth, Clare; Gleeson, Padraig; Attwell, David

    2012-01-01

    The brain's energy supply determines its information processing power, and generates functional imaging signals. The energy use on the different subcellular processes underlying neural information processing has been estimated previously for the grey matter of the cerebral and cerebellar cortex. However, these estimates need reevaluating following recent work demonstrating that action potentials in mammalian neurons are much more energy efficient than was previously thought. Using this new knowledge, this paper provides revised estimates for the energy expenditure on neural computation in a simple model for the cerebral cortex and a detailed model of the cerebellar cortex. In cerebral cortex, most signaling energy (50%) is used on postsynaptic glutamate receptors, 21% is used on action potentials, 20% on resting potentials, 5% on presynaptic transmitter release, and 4% on transmitter recycling. In the cerebellar cortex, excitatory neurons use 75% and inhibitory neurons 25% of the signaling energy, and most energy is used on information processing by non-principal neurons: Purkinje cells use only 15% of the signaling energy. The majority of cerebellar signaling energy use is on the maintenance of resting potentials (54%) and postsynaptic receptors (22%), while action potentials account for only 17% of the signaling energy use. PMID:22434069

  19. Effects of oxotremorine on local glucose utilization in the rat cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, M.; Wamsley, J.K.; Rapoport, S.I.

    The (/sup 14/C)2-deoxy-D-glucose technique was used to examine the effects of central muscarinic stimulation on local cerebral glucose utilization (LCGU) in the cerebral cortex of the unanesthetized rat. Systemic administration of the muscarinic agonist oxotremorine (OXO, 0.1 to 1.0 mg/kg, i.p.) increased LCGU in the neocortex, mesocortex, and paleocortex. In the neocortex, OXO was more potent in elevating LCGU of the auditory, frontal, and sensorimotor regions compared with the visual cortex. Within these neocortical regions, OXO effects were greatest in cortical layers IV and V. OXO effects were more dramatic in the neocortex than in the meso- or paleocortex, andmore » no significant effect occurred in the perirhinal and pyriform cortices. OXO-induced LCGU increases were not influenced by methylatropine (1 mg/kg, s.c.) but were antagonized completely by scopolamine (2.5 mg/kg, i.p.). Scopolamine reduced LCGU in layer IV of the auditory cortex and in the retrosplenial cortex. The distribution and magnitude of the cortical LCGU response to OXO apparently were related to the distributions of cholinergic neurochemical markers, especially high affinity muscarinic binding sites.« less

  20. Thirst-Dependent Activity of the Insular Cortex Reflects its Emotion-Related Subdivision: A Cerebral Blood Flow Study.

    PubMed

    Meier, Lea; Federspiel, Andrea; Jann, Kay; Wiest, Roland; Strik, Werner; Dierks, Thomas

    2018-04-26

    Recent studies investigating neural correlates of human thirst have identified various subcortical and telencephalic brain areas. The experience of thirst represents a homeostatic emotion and a state that slowly evolves over time. Therefore, the present study aims at systematically examining cerebral perfusion during the parametric progression of thirst. We measured subjective thirst ratings, serum parameters and cerebral blood flow in 20 healthy subjects across four different thirst stages: intense thirst, moderate thirst, subjective satiation and physiological satiation. Imaging data revealed dehydration-related perfusion differences in previously identified brain areas, such as the anterior cingulate cortex, the middle temporal gyrus and the insular cortex. However, significant differences across all four thirst stages (including the moderate thirst level), were exclusively found in the posterior insular cortex. The subjective thirst ratings over the different thirst stages, however, were associated with perfusion differences in the right anterior insula. These findings add to our understanding of the insular cortex as a key player in human thirst - both on the level of physiological dehydration and the level of the subjective thirst experience. Copyright © 2018. Published by Elsevier Ltd.

  1. The basic nonuniformity of the cerebral cortex

    PubMed Central

    Herculano-Houzel, Suzana; Collins, Christine E.; Wong, Peiyan; Kaas, Jon H.; Lent, Roberto

    2008-01-01

    Evolutionary changes in the size of the cerebral cortex, a columnar structure, often occur through the addition or subtraction of columnar modules with the same number of neurons underneath a unit area of cortical surface. This view is based on the work of Rockel et al. [Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244], who found a steady number of approximately 110 neurons underneath a surface area of 750 μm2 (147,000 underneath 1 mm2) of the cerebral cortex of five species from different mammalian orders. These results have since been either corroborated or disputed by different groups. Here, we show that the number of neurons underneath 1 mm2 of the cerebral cortical surface of nine primate species and the closely related Tupaia sp. is not constant and varies by three times across species. We found that cortical thickness is not inversely proportional to neuronal density across species and that total cortical surface area increases more slowly than, rather than linearly with, the number of neurons underneath it. The number of neurons beneath a unit area of cortical surface varies linearly with neuronal density, a parameter that is neither related to cortical size nor total number of neurons. Our finding of a variable number of neurons underneath a unit area of the cerebral cortex across primate species indicates that models of cortical organization cannot assume that cortical columns in different primates consist of invariant numbers of neurons. PMID:18689685

  2. The basic nonuniformity of the cerebral cortex.

    PubMed

    Herculano-Houzel, Suzana; Collins, Christine E; Wong, Peiyan; Kaas, Jon H; Lent, Roberto

    2008-08-26

    Evolutionary changes in the size of the cerebral cortex, a columnar structure, often occur through the addition or subtraction of columnar modules with the same number of neurons underneath a unit area of cortical surface. This view is based on the work of Rockel et al. [Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221-244], who found a steady number of approximately 110 neurons underneath a surface area of 750 microm(2) (147,000 underneath 1 mm(2)) of the cerebral cortex of five species from different mammalian orders. These results have since been either corroborated or disputed by different groups. Here, we show that the number of neurons underneath 1 mm(2) of the cerebral cortical surface of nine primate species and the closely related Tupaia sp. is not constant and varies by three times across species. We found that cortical thickness is not inversely proportional to neuronal density across species and that total cortical surface area increases more slowly than, rather than linearly with, the number of neurons underneath it. The number of neurons beneath a unit area of cortical surface varies linearly with neuronal density, a parameter that is neither related to cortical size nor total number of neurons. Our finding of a variable number of neurons underneath a unit area of the cerebral cortex across primate species indicates that models of cortical organization cannot assume that cortical columns in different primates consist of invariant numbers of neurons.

  3. Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Peuser, Jörn; Belhaj-Saif, Abderraouf; Hamadjida, Adjia; Schmidlin, Eric; Gindrat, Anne-Dominique; Völker, Andreas Charles; Zakharov, Pavel; Hoogewoud, Henri-Marcel; Rouiller, Eric M.; Scheffold, Frank

    2011-09-01

    The nonhuman primate model is suitable to study mechanisms of functional recovery following lesion of the cerebral cortex (motor cortex), on which therapeutic strategies can be tested. To interpret behavioral data (time course and extent of functional recovery), it is crucial to monitor the properties of the experimental cortical lesion, induced by infusion of the excitotoxin ibotenic acid. In two adult macaque monkeys, ibotenic acid infusions produced a restricted, permanent lesion of the motor cortex. In one monkey, the lesion was monitored over 3.5 weeks, combining laser speckle imaging (LSI) as metabolic readout (cerebral blood flow) and anatomical assessment with magnetic resonance imaging (T2-weighted MRI). The cerebral blood flow, measured online during subsequent injections of the ibotenic acid in the motor cortex, exhibited a dramatic increase, still present after one week, in parallel to a MRI hypersignal. After 3.5 weeks, the cerebral blood flow was strongly reduced (below reference level) and the hypersignal disappeared from the MRI scan, although the lesion was permanent as histologically assessed post-mortem. The MRI data were similar in the second monkey. Our experiments suggest that LSI and MRI, although they reflect different features, vary in parallel during a few weeks following an excitotoxic cortical lesion.

  4. Attenuation of acute restraint stress-induced depressive like behavior and hippocampal alterations with protocatechuic acid treatment in mice.

    PubMed

    Thakare, Vishnu N; Dhakane, Valmik D; Patel, Bhoomika M

    2017-04-01

    Protocatechuic acid ethyl ester (PCA), a phenolic compound, exhibits neuroprotective effects through improving endogenous antioxidant enzymatic and nonezymatic system. Based on the role of oxidative stress in modulating depressive disorders and the relationship between neuroprotective and antioxidant potential of PCA, we studied if its antidepressant like effect is associated by modulation of cerebral cortex and hippocampal antioxidant alterations. Acute restraint stress (ARS) is known to induce depressive like behavior by neuronal oxidative damage in mice. Swiss albino mice subjected to ARS exhibited an increased immobility time in forced swim test, elevated serum corticosterone and produced oxidative stress dependent alterations in cerebral cortex and hippocampus mainly increased thiobarbituric acid reactive substances and reduced catalase (CAT), superoxide dismutase (SOD) activity. Treatment with PCA was able to prevent stress induced immobility time in forced swim test without altering locomotor activity in mice. Further, PCA treatment attenuated the elevation of serum corticosterone, lipid peroxidation and restored enzymatic antioxidants in cerebral cortex and hippocampus in ARS mice. Altogether, the experimental findings demonstrate the notion that PCA exhibit antidepressant like activity might be related, at least in part, to its capability of modulating antioxidant defense system and oxidative damage induced by ARS in cerebral cortex and hippocampus in mice and thus maintain the pro-/anti-oxidative homeostasis.

  5. Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex

    PubMed Central

    Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.

    2016-01-01

    The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711

  6. Cerebral Lateralization and Aggression.

    ERIC Educational Resources Information Center

    Hillbrand, Marc; And Others

    1994-01-01

    A resurgence of interest in the relationship between cerebral lateralization (the functional asymmetry of the cerebral cortex) and aggression has occurred. Most recent studies have found that individuals with abnormal patterns of lateralization are overrepresented among violent individuals. Intervening variables (such as drug and alcohol abuse)…

  7. NADPH-diaphorase activity and neurovascular coupling in the rat cerebral cortex.

    PubMed

    Vlasenko, O V; Maisky, V A; Maznychenko, A V; Pilyavskii, A I

    2008-01-01

    The distribution of NADPH-diaphorase-reactive (NADPH-dr) neurons and neuronal processes in the cerebral cortex and basal forebrain and their association with parenchymal vessels were studied in normal adult rats using NADPH-d histochemical protocol. The intensely stained cortical interneurons and reactive subcortically originating afferents, and stained microvessels were examined through a light microscope at law (x250) and high (x630) magnifications. NADPH-dr interneurons were concentrated in layers 2-6 of the M1 and M2 areas. However, clear predominance in their concentration (14 +/- 0.8 P < 0.05 per section) was found in layer 6. A mean number of labeled neurons in auditory (AuV), granular and agranular (GI, AIP) areas of the insular cortex was calculated to reach 12.3 +/- 0.7, 18.5 +/- 1.0 and 23.3 +/- 1.7 units per section, respectively (P < 0.05). The distinct apposition of labelled neurons to intracortical vessels was found in the M1, M2. The order of frequency of neurovascular coupling in different zones of the cerebral cortex was as following sequence: AuV (31.2%, n = 1040) > GI (18.0%, n = 640) > S1 (13.3%, n = 720) > M1 (6.3%, n = 1360). A large number of structural associations between labeled cells and vessels in the temporal and insular cortex indicate that NADPH-d-reactive interneurons can contribute to regulation of the cerebral regional blood flow in these areas.

  8. Using OCT-based microangiography for in vivo longitudinal study of arteriogenesis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yuandong; Choi, Woo June; Wang, Ruikang K.

    2017-03-01

    The adaptive growth of collateral vessels, termed "arteriogenesis", is crucial for maintaining regional blood supply during arterial obstruction and offsetting the adverse effect of tissue ischemia. Stimulation of arteriogenesis has been applied for the treatment of occlusive vascular diseases, and in vivo imaging of the progressive development of collateral vessel will facilitate a better understanding of the mechanism. We present using high-resolution OCT-based microangiography (OMAG) to image arteriogenesis process longitudinally in mouse cerebral cortex after middle cerebral artery occlusion (MCAO). We imaged the collateral arterioles at the arteriolo-arteriolar anastomosis (AAA) within 7-day period after MCAO to reveal key elements of collateral vessel remodeling, including alteration in vessel morphology, velocity and directionality of blood flow. The magnitudes of changes in these parameters matched the time course of the active building of collateral vessels stated in previous studies using histology. Hence, OMAG is a promising imaging tool for non-invasive longitudinal study of functional collateral vessel growth in small animal models and can be potentially applied in the experimental study of arteriogenesis stimulation.

  9. Assessment transcallosal Diaschisis in a model of focal cerebral ischemia in rats.

    PubMed

    Arango-Dávila, César Augusto; Muñoz Ospina, Beatriz Elena; Castaño, Daniel Manrique; Potes, Laura; Umbarila Prieto, John

    2016-06-30

    To evaluate transcallosal changes after a local ischemic injury in rats by using the monoclonal marker anti-NeuN (Mouse anti-neuronal nuclei). Twenty-eight adult, male, Wistar rats were subjected to focal injury in the right hemisphere. The technique used was the experimental model of focal ischemic injury through intraluminal suture of the middle cerebral artery. Analyses were made for the five groups: after the lesion (control), at 24 h, 96 h, 10 days and 20 days. Exofocal neuronal damage was inferred from neuronal immunoreactivity changes to NeuN. In the cortex contralateral to the lesion, immunoreactivity was diminished. This finding was most notable in the supra-granular sheets 24 h post ischemia. After 96 h, there was a generalized diminishment of the inmmunoreactivity in the supra and infra-granular sheets. At 10 and 20 days, the tissue recovered some immunoreactivity to NeuN, but there were some changes in the VI layer. The immunoreactive changes to NeuN support the process of inter-hemispheric diaschisis. Changes in immunoreactivity could indicate metabolic stress secondary to the disruption in connectivity to the site of lesion.

  10. Increased cerebral oxygen consumption in Eker rats and effects of N-methyl-D-aspartate blockade: Implications for autism.

    PubMed

    Weiss, Harvey R; Liu, Xia; Zhang, Qihang; Chi, Oak Z

    2007-08-15

    Because there is a strong correlation between tuberous sclerosis and autism, we used a tuberous sclerosis model (Eker rat) to test the hypothesis that these animals would have an altered regional cerebral O2 consumption that might be associated with autism. We also examined whether the altered cerebral O2 consumption was related to changes in the importance of N-methyl-D-aspartate (NMDA) receptors. Young (4 weeks) male control Long Evans (N = 14) and Eker (N = 14) rats (70-100 g) were divided into control and CGS-19755 (10 mg/kg, competitive NMDA antagonist)-treated animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. NMDA receptor protein levels were determined by Western immunoblotting. We found significantly increased basal O2 consumption in the cortex (6.2 +/- 0.6 ml O2/min/100 g Eker vs. 4.7 +/- 0.4 Long Evans), hippocampus, cerebellum, and pons. Regional cerebral blood flow was also elevated in Eker rats at baseline, but cerebral O2 extraction was similar. CGS-19755 significantly lowered O2 consumption in the cortex (2.8 +/- 0.3), hippocampus, and pons of the Long Evans rats but had no effect on cortex (5.8 +/- 0.8) or other regions of the Eker rats. Cerebral blood flow followed a similar pattern. NMDA receptor protein levels (NR1 subunit) were similar between groups. In conclusion, Eker rats had significantly elevated cerebral O2 consumption and blood flow, but this was not related to NMDA receptor activation. In fact, the importance of NMDA receptors in the control of basal cerebral O2 consumption was reduced. This might have important implications in the treatment of autism. Copyright 2007 Wiley-Liss, Inc.

  11. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    PubMed

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  12. Fine-Tuning of Neurogenesis is Essential for the Evolutionary Expansion of the Cerebral Cortex

    PubMed Central

    Poluch, Sylvie; Juliano, Sharon L.

    2015-01-01

    We used several animal models to study global and regional cortical surface expansion: The lissencephalic mouse, gyrencephalic normal ferrets, in which the parietal cortex expands more than the temporal cortex, and moderately lissencephalic ferrets, showing a similar degree of temporal and parietal expansion. We found that overall cortical surface expansion is achieved when specific events occur prior to surpragranular layer formation. (1) The subventricular zone (SVZ) shows substantial growth, (2) the inner SVZ contains an increased number of outer radial glia and intermediate progenitor cells expressing Pax6, and (3) the outer SVZ contains a progenitor cell composition similar to the combined VZ and inner SVZ. A greater parietal expansion is also achieved by eliminating the latero-dorsal neurogenic gradient, so that neurogenesis displays a similar developmental degree between parietal and temporal regions. In contrast, mice or lissencephalic ferrets show more advanced neurogenesis in the temporal region. In conclusion, we propose that global and regional cortical surface expansion rely on similar strategies consisting in altering the timing of neurogenic events prior to the surpragranular layer formation, so that more progenitor cells, and ultimately more neurons, are produced. This hypothesis is supported by findings from a ferret model of lissencephaly obtained by transiently blocking neurogenesis during the formation of layer IV. PMID:23968831

  13. The effects of neck flexion on cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in related sensory cortices

    PubMed Central

    2012-01-01

    Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306

  14. Delayed Influence of Spinal Cord Injury on the Amino Acids of NO• Metabolism in Rat Cerebral Cortex Is Attenuated by Thiamine

    PubMed Central

    Boyko, Alexandra; Ksenofontov, Alexander; Ryabov, Sergey; Baratova, Lyudmila; Graf, Anastasia; Bunik, Victoria

    2018-01-01

    Severe spinal cord injuries (SCIs) result in chronic neuroinflammation in the brain, associated with the development of cognitive and behavioral impairments. Nitric oxide (NO•) is a gaseous messenger involved in neuronal signaling and inflammation, contributing to nitrosative stress under dysregulated production of reactive nitrogen species. In this work, biochemical changes induced in the cerebral cortex of rats 8 weeks after SCI are assessed by quantification of the levels of amino acids participating in the NO• and glutathione metabolism. The contribution of the injury-induced neurodegeneration is revealed by comparison of the SCI- and laminectomy (LE)-subjected animals. Effects of the operative interventions are assessed by comparison of the operated (LE/SCI) and non-operated animals. Lower ratios of citrulline (Cit) to arginine (Arg) or Cit to ornithine and a more profound decrease in the ratio of lysine to glycine distinguish SCI animals from those after LE. The data suggest decreased NO• production from both Arg and homoarginine in the cortex 8 weeks after SCI. Both LE and SCI groups show a strong decrease in the level of cortex glutathione. The neurotropic, anti-inflammatory, and antioxidant actions of thiamine (vitamin B1) prompted us to study the thiamine effects on the SCI-induced changes in the NO• and glutathione metabolism. A thiamine injection (400 mg/kg intraperitoneally) within 24 h after SCI abrogates the changes in the cerebral cortex amino acids related to NO•. Thiamine-induced normalization of the brain glutathione levels after LE and SCI may involve increased supply of glutamate for glutathione biosynthesis. Thus, thiamine protects from sequelae of SCI on NO•-related amino acids and glutathione in cerebral cortex. PMID:29379782

  15. Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction.

    PubMed

    Baldo, Barbara; Soylu, Rana; Petersén, Asa

    2013-01-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin protein. Neuropathology in the basal ganglia and in the cerebral cortex has been linked to the motor and cognitive symptoms whereas recent work has suggested that the hypothalamus might be involved in the metabolic dysfunction. Several mouse models of HD that display metabolic dysfunction have hypothalamic pathology, and expression of mutant huntingtin in the hypothalamus has been causally linked to the development of metabolic dysfunction in mice. Although the pathogenic mechanisms by which mutant huntingtin exerts its toxic functions in the HD brain are not fully known, several studies have implicated a role for the lysososomal degradation pathway of autophagy. Interestingly, changes in autophagy in the hypothalamus have been associated with the development of metabolic dysfunction in wild-type mice. We hypothesized that expression of mutant huntingtin might lead to changes in the autophagy pathway in the hypothalamus in mice with metabolic dysfunction. We therefore investigated whether there were changes in basal levels of autophagy in a mouse model expressing a fragment of 853 amino acids of mutant huntingtin selectively in the hypothalamus using a recombinant adeno-associate viral vector approach as well as in the transgenic BACHD mice. We performed qRT-PCR and Western blot to investigate the mRNA and protein expression levels of selected autophagy markers. Our results show that basal levels of autophagy are maintained in the hypothalamus despite the presence of metabolic dysfunction in both mouse models. Furthermore, although there were no major changes in autophagy in the striatum and cortex of BACHD mice, we detected modest, but significant differences in levels of some markers in mice at 12 months of age. Taken together, our results indicate that overexpression of mutant huntingtin in mice do not significantly perturb basal levels of autophagy.

  16. A Primate lncRNA Mediates Notch Signaling During Neuronal Development by Sequestering miRNA

    PubMed Central

    Rani, Neha; Nowakowski, Tomasz J; Zhou, Hongjun; Godshalk, Sirie E.; Lisi, Véronique; Kriegstein, Arnold R.; Kosik, Kenneth S.

    2016-01-01

    Summary Long non-coding RNAs (lncRNAs) are a diverse and poorly conserved category of transcripts that have expanded greatly in primates, particularly in the brain. We identified a lncRNA, which has acquired 16 microRNA response elements for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) is expressed in neural progenitor cells and then declines in neurons. Binding and release of miR-143-3p, by LncND, controls the expression of Notch receptors. LncND expression is enriched in radial glia cells (RGCs) in the ventricular and subventricular zones of developing human brain. Down-regulation in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression. Gain-of-function of LncND in developing mouse cortex led to an expansion of PAX6+ RGCs. These findings support role for LncND in miRNA-mediated regulation of Notch signaling within the neural progenitor pool in primates that may have contributed to the expansion of cerebral cortex. PMID:27263970

  17. Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex.

    PubMed

    Neske, Garrett T; Patrick, Saundra L; Connors, Barry W

    2015-01-21

    The recurrent synaptic architecture of neocortex allows for self-generated network activity. One form of such activity is the Up state, in which neurons transiently receive barrages of excitatory and inhibitory synaptic inputs that depolarize many neurons to spike threshold before returning to a relatively quiescent Down state. The extent to which different cell types participate in Up states is still unclear. Inhibitory interneurons have particularly diverse intrinsic properties and synaptic connections with the local network, suggesting that different interneurons might play different roles in activated network states. We have studied the firing, subthreshold behavior, and synaptic conductances of identified cell types during Up and Down states in layers 5 and 2/3 in mouse barrel cortex in vitro. We recorded from pyramidal cells and interneurons expressing parvalbumin (PV), somatostatin (SOM), vasoactive intestinal peptide (VIP), or neuropeptide Y. PV cells were the most active interneuron subtype during the Up state, yet the other subtypes also received substantial synaptic conductances and often generated spikes. In all cell types except PV cells, the beginning of the Up state was dominated by synaptic inhibition, which decreased thereafter; excitation was more persistent, suggesting that inhibition is not the dominant force in terminating Up states. Compared with barrel cortex, SOM and VIP cells were much less active in entorhinal cortex during Up states. Our results provide a measure of functional connectivity of various neuron types in barrel cortex and suggest differential roles for interneuron types in the generation and control of persistent network activity. Copyright © 2015 the authors 0270-6474/15/351089-17$15.00/0.

  18. Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?

    PubMed

    Eyre, Janet A; Smith, Martin; Dabydeen, Lyvia; Clowry, Gavin J; Petacchi, Eliza; Battini, Roberta; Guzzetta, Andrea; Cioni, Giovanni

    2007-11-01

    Subjects with severe hemiplegic cerebral palsy have increased ipsilateral corticospinal projections from their noninfarcted cortex. We investigated whether their severe impairment might, in part, be caused by activity-dependent, competitive displacement of surviving contralateral corticospinal projections from the affected cortex by more active ipsilateral corticospinal projections from the nonaffected cortex, thereby compounding the impairment. Transcranial magnetic stimulation (TMS) characterized corticospinal tract development from each hemisphere over the first 2 years in 32 healthy children, 14 children with unilateral stroke, and 25 with bilateral lesions. Magnetic resonance imaging and anatomic studies compared corticospinal tract growth in 13 patients with perinatal stroke with 46 healthy subjects. Infants with unilateral lesions initially had responses after TMS of the affected cortex, which became progressively more abnormal, and seven were eventually lost. There was associated hypertrophy of the ipsilateral corticospinal axons projecting from the noninfarcted cortex. Magnetic resonance imaging and anatomic studies demonstrated hypertrophy of the corticospinal tract from the noninfarcted hemisphere. TMS findings soon after the stroke did not predict impairment; subsequent loss of responses and hypertrophy of ipsilateral corticospinal axons from the noninfarcted cortex predicted severe impairment at 2 years. Infants with bilateral lesions maintained responses to TMS from both hemispheres with a normal pattern of development. Rather than representing "reparative plasticity," increased ipsilateral projections from the noninfarcted cortex compound disability by competitively displacing surviving contralateral corticospinal projections from the infarcted cortex. This may provide a pathophysiological explanation for why signs of hemiplegic cerebral palsy appear late and progress over the first 2 years of life.

  19. Differential regulation of microtubule severing by APC underlies distinct patterns of projection neuron and interneuron migration

    PubMed Central

    Eom, Tae-Yeon; Stanco, Amelia; Guo, Jiami; Wilkins, Gary; Deslauriers, Danielle; Yan, Jessica; Monckton, Chase; Blair, Josh; Oon, Eesim; Perez, Abby; Salas, Eduardo; Oh, Adrianna; Ghukasyan, Vladimir; Snider, William D.; Rubenstein, John L. R.; Anton, E. S.

    2014-01-01

    Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex. PMID:25535916

  20. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.

  1. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    PubMed

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  2. Identification of proteins in hyperglycemia and stroke animal models.

    PubMed

    Sung, Jin-Hee; Shah, Fawad-Ali; Gim, Sang-Ah; Koh, Phil-Ok

    2016-01-01

    Stroke is a major cause of disability and death in adults. Diabetes mellitus is a metabolic disorder that strongly increases the risk of severe vascular diseases. This study compared changes in proteins of the cerebral cortex during ischemic brain injury between nondiabetic and diabetic animals. Adult male rats were injected with streptozotocin (40 mg/kg) via the intraperitoneal route to induce diabetes and underwent surgical middle cerebral artery occlusion (MCAO) 4 wk after streptozotocin treatment. Cerebral cortex tissues were collected 24 h after MCAO and cerebral cortex proteins were analyzed by two-dimensional gel electrophoresis and mass spectrometry. Several proteins were identified as differentially expressed between nondiabetic and diabetic animals. Among the identified proteins, we focused on the following metabolism-related enzymes: isocitrate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, adenosylhomocysteinase, pyruvate kinase, and glucose-6-phosphate isomerase (neuroleukin). Expression of these proteins was decreased in animals that underwent MCAO. Moreover, protein expression was reduced to a greater extent in diabetic animals than in nondiabetic animals. Reverse transcription-polymerase chain reaction analysis confirmed that the diabetic condition exacerbates the decrease in expression of metabolism-related proteins after MCAO. These results suggest that the diabetic condition may exacerbate brain damage during focal cerebral ischemia through the downregulation of metabolism-related proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Fluoride and arsenic exposure affects spatial memory and activates the ERK/CREB signaling pathway in offspring rats.

    PubMed

    Zhu, Yu-Peng; Xi, Shu-Hua; Li, Ming-Yan; Ding, Ting-Ting; Liu, Nan; Cao, Fu-Yuan; Zeng, Yang; Liu, Xiao-Jing; Tong, Jun-Wang; Jiang, Shou-Fang

    2017-03-01

    Fluoride and arsenic are inorganic contaminants that occur in the natural environment. Chronic fluoride and/or arsenic exposure can induce developmental neurotoxicity and negatively influence intelligence in children, although the underlying molecular mechanisms are poorly understood. This study explored the effects of fluoride and arsenic exposure in drinking water on spatial learning, memory and key protein expression in the ERK/CREB signaling pathway in hippocampal and cerebral cortex tissue in rat offspring. Pregnant rats were divided into four groups. Control rats drank tap water, while rats in the three exposure groups drank water with sodium fluoride (100mg/L), sodium arsenite (75mg/L), and a sodium fluoride (100mg/L) and sodium arsenite (75mg/L) combination during gestation and lactation. After weaning, rat pups drank the same solution as their mothers. Spatial learning and memory ability of pups at postnatal day 21 (PND21) and postnatal day 42 (PND42) were measured using a Morris water maze. ERK, phospho-ERK (p-ERK), CREB and phospho-CREB (p-CREB) protein expression in the hippocampus and cerebral cortex was detected using Western blot. Compared with the control pups, escape latencies increased in PND42 pups exposed to arsenic and co-exposed to fluoride and arsenic, and the short-term and long-term spatial memory ability declined in pups exposed to fluoride and arsenic, both alone and in combination. Compared with controls, ERK and p-ERK levels decreased in the hippocampus and cerebral cortex in pups exposed to combined fluoride and arsenic. CREB protein expression in the cerebral cortex decreased in pups exposed to fluoride, arsenic, and the fluoride and arsenic combination. p-CREB protein expression in both the hippocampus and cerebral cortex was decreased in pups exposed to fluoride and arsenic in combination compared to the control group. There were negative correlation between the proteins expression and escape latency periods in pups. These data indicate that exposure to fluoride and arsenic in early life stage changes ERK, p-ERK, CREB and p-CREB protein expression in the hippocampus and cerebral cortex of rat offspring at PND21 and PND 42, which may contribute to impaired neurodevelopment following exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Clinicopathological characteristics of patients with amyotrophic lateral sclerosis resulting in a totally locked-in state (communication Stage V).

    PubMed

    Hayashi, Kentaro; Mochizuki, Yoko; Takeuchi, Ryoko; Shimizu, Toshio; Nagao, Masahiro; Watabe, Kazuhiko; Arai, Nobutaka; Oyanagi, Kiyomitsu; Onodera, Osamu; Hayashi, Masaharu; Takahashi, Hitoshi; Kakita, Akiyoshi; Isozaki, Eiji

    2016-09-30

    In the present study, we performed a comprehensive analysis to clarify the clinicopathological characteristics of patients with amyotrophic lateral sclerosis (ALS) that had progressed to result in a totally locked-in state (communication Stage V), in which all voluntary movements are lost and communication is impossible. In 11 patients, six had phosphorylated TAR DNA-binding protein 43 (pTDP-43)-immunoreactive (ir) neuronal cytoplasmic inclusions (NCI), two had fused in sarcoma (FUS)-ir NCI, and three had copper/zinc superoxide dismutase (SOD1)-ir NCI. The time from ALS onset to the need for tracheostomy invasive ventilation was less than 24 months in ten patients. Regardless of accumulated protein, all the patients showed common lesions in the pallido-nigro-luysian system, brainstem reticular formation, and cerebellar efferent system, in addition to motor neurons. In patients with pTDP-43-ir NCI, patients with NCI in the hippocampal dentate granule neurons (DG) showed a neuronal loss in the cerebral cortex, and patients without NCI in DG showed a preserved cerebral cortex. By contrast, in patients with FUS-ir NCI, patients with NCI in DG showed a preserved cerebral cortex and patients without NCI in DG showed marked cerebral degeneration. The cerebral cortex of patients with SOD1-ir NCI was preserved. Together, these findings suggest that lesions of the cerebrum are probably not necessary for progression to Stage V. In conclusion, patients with ALS that had progressed to result in communication Stage V showed rapidly-progressed symptoms, and their common lesions could cause the manifestations of communication Stage V.

  5. The organization of the human cerebellum estimated by intrinsic functional connectivity

    PubMed Central

    Krienen, Fenna M.; Castellanos, Angela; Diaz, Julio C.; Yeo, B. T. Thomas

    2011-01-01

    The cerebral cortex communicates with the cerebellum via polysynaptic circuits. Separate regions of the cerebellum are connected to distinct cerebral areas, forming a complex topography. In this study we explored the organization of cerebrocerebellar circuits in the human using resting-state functional connectivity MRI (fcMRI). Data from 1,000 subjects were registered using nonlinear deformation of the cerebellum in combination with surface-based alignment of the cerebral cortex. The foot, hand, and tongue representations were localized in subjects performing movements. fcMRI maps derived from seed regions placed in different parts of the motor body representation yielded the expected inverted map of somatomotor topography in the anterior lobe and the upright map in the posterior lobe. Next, we mapped the complete topography of the cerebellum by estimating the principal cerebral target for each point in the cerebellum in a discovery sample of 500 subjects and replicated the topography in 500 independent subjects. The majority of the human cerebellum maps to association areas. Quantitative analysis of 17 distinct cerebral networks revealed that the extent of the cerebellum dedicated to each network is proportional to the network's extent in the cerebrum with a few exceptions, including primary visual cortex, which is not represented in the cerebellum. Like somatomotor representations, cerebellar regions linked to association cortex have separate anterior and posterior representations that are oriented as mirror images of one another. The orderly topography of the representations suggests that the cerebellum possesses at least two large, homotopic maps of the full cerebrum and possibly a smaller third map. PMID:21795627

  6. GD3- and O-acetylated GD3-gangliosides in the GM2 synthase-deficient mouse brain and their immunohistochemical localization

    PubMed Central

    Matsuda, Junko; Vanier, Marie T.; Popa, Iuliana; Portoukalian, Jacques; Suzuki, Kunihiko

    2006-01-01

    Gangliosides in the brain of the knockout mouse deficient in the activity of β1,4 N-acetylgalactosaminyl transferase (β1,4 GalNAc-T)(GM2 synthase) consisted of nearly exclusively of GM3- and GD3-gangliosides as expected from the known substrate specificity of the enzyme and in confirmation of the initial reports from two laboratories that generated the mutant mouse experimentally. The total molar amount of gangliosides was approximately 30% higher in the mutant mouse brain than that in the wild-type brain. However, contrary to the initial reports, one-fourth of total GD3-ganglioside was O-acetylated. It reacted positively with an anti-O-acetylated GD3 monoclonal antibody and disappeared with a corresponding increase in GD3-ganglioside after mild alkaline treatment. The absence of O-acetylated GD3 in the initial reports can be explained by the saponification step included in their analytical procedures. Although quantitatively much less and identification tentative, we also detected GT3 and O-acetylated GT3. Anti-GD3 and anti-O-acetylated GD3 monoclonal antibodies gave positive reactions in the brain of mutant mouse as expected from the analytical results. Either antibody barely stained wild-type brain except for immunoreactivity of GD3 in the cerebellar Purkinje cells. The distributions of GD3 and O-acetylated GD3 in the brain of mutant mouse were similar but differential localization was noted in the cerebellar Purkinje cells and cerebral cortex. PMID:25792782

  7. Sensorimotor development in neonatal progesterone receptor knockout mice.

    PubMed

    Willing, Jari; Wagner, Christine K

    2014-01-01

    Early exposure to steroid hormones can permanently and dramatically alter neural development. This is best understood in the organizational effects of hormones during development of brain regions involved in reproductive behaviors or neuroendocrine function. However, recent evidence strongly suggests that steroid hormones play a vital role in shaping brain regions involved in cognitive behavior such as the cerebral cortex. The most abundantly expressed steroid hormone receptor in the developing rodent cortex is the progesterone receptor (PR). In the rat, PR is initially expressed in the developmentally-critical subplate at E18, and subsequently in laminas V and II/III through the first three postnatal weeks (Quadros et al. [2007] J Comp Neurol 504:42-56; Lopez & Wagner [2009]: J Comp Neurol 512:124-139), coinciding with significant periods of dendritic maturation, the arrival of afferents and synaptogenesis. In the present study, we investigated PR expression in the neonatal mouse somatosensory cortex. Additionally, to investigate the potential role of PR in developing cortex, we examined sensorimotor function in the first two postnatal weeks in PR knockout mice and their wildtype (WT) and heterozygous (HZ) counterparts. While the three genotypes were similar in most regards, PRKO and HZ mice lost the rooting reflex 2-3 days earlier than WT mice. These studies represent the first developmental behavioral assessment of PRKO mice and suggest PR expression may play an important role in the maturation of cortical connectivity and sensorimotor integration. Copyright © 2013 Wiley Periodicals, Inc.

  8. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction.

    PubMed

    Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei

    2012-07-05

    The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.

  9. Prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 increases glutamate uptake through overexpression of GLT1 and EAAC1 glutamate transporter subtypes in rat frontal cerebral cortex.

    PubMed

    Castaldo, Pasqualina; Magi, Simona; Gaetani, Silvana; Cassano, Tommaso; Ferraro, Luca; Antonelli, Tiziana; Amoroso, Salvatore; Cuomo, Vincenzo

    2007-09-01

    Prenatal exposure to the CB1 receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone) mesylate (WIN) at a daily dose of 0.5 mg/kg, and Delta9-tetrahydrocannabinol (Delta9-THC) at a daily dose of 5 mg/kg, reduced dialysate glutamate levels in frontal cerebral cortex of adolescent offspring (40-day-old) with respect to those born from vehicle-treated mothers. WIN treatment induced a statistically significant enhancement of Vmaxl-[3H]glutamate uptake, whereas it did not modify glutamate Km, in frontal cerebral cortex synaptosomes of adolescent rats. Western blotting analysis, performed either in membrane proteins derived from homogenates and in proteins extracted from synaptosomes of frontal cerebral cortex, revealed that prenatal WIN exposure enhanced the expression of glutamate transporter 1 (GLT1) and excitatory amino acid carrier 1 (EAAC1). Moreover, immunocytochemical analyses of frontal cortex area revealed a more intense GLT1 and EAAC1 immunoreactivity (ir) distribution in the WIN-treated group. Collectively these results show that prenatal exposure to the cannabinoid CB1 receptor agonist WIN increases expression and functional activity of GLT1 and EAAC1 glutamate transporters (GluTs) associated to a decrease of cortical glutamate outflow, in adolescent rats. These findings may contribute to explain the mechanism underlying the cognitive impairment observed in the offspring of mothers who used marijuana during pregnancy.

  10. Holographic 3D multi-spot two-photon excitation for fast optical stimulation in brain

    NASA Astrophysics Data System (ADS)

    Takiguchi, Yu; Toyoda, Haruyoshi

    2017-04-01

    We report here a holographic high speed accessing microscope of sensory-driven synaptic activity across all inputs to single living neurons in the context of the intact cerebral cortex. This system is based on holographic multiple beam generation with spatial light modulator, we have demonstrated performance of the holographic excitation efficiency in several in vitro prototype system. 3D weighted iterative Fourier Transform method using the Ewald sphere in consideration of calculation speed has been adopted; multiple locations can be patterned in 3D with single hologram. Standard deviation of intensities of spots are still large due to the aberration of the system and/or hologram calculation, we successfully excited multiple locations of neurons in living mouse brain to monitor the calcium signals.

  11. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  12. Characteristics of (3H)2-Deoxyglucose Uptake by Slices of Rat Cerebral Cortex

    DTIC Science & Technology

    1983-05-17

    phlorizin or by phloretin , two compounds known to inhibit glucose transport by kidney and by erythrocytes, respectively. Net [-̂ H]2-de- oxyglucose uptake...Hexoses 53 17. The Effect of Phlorizin and Phloretin on Net [3H]2-Deoxy- glucose Transport by Slices of Cerebral Cortex 55 18. The Effect of Sodium...LeFevre, 1961). Transport by erythrocytes is not dependent on sodium (Silverman, 1976). Transport is, however, sensitive to inhibition by phloretin

  13. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro

    PubMed Central

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P. C.; Livesey, Frederick J.

    2015-01-01

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144

  14. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS.

    PubMed

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Cozer, Aline Gonçalves; Hoefel, Ana Lúcia; Cecconello, Ana Lúcia; Zanini, Priscila; Niches, Gabriela; Kucharski, Luiz Carlos; Ribeiro, Maria Flávia M

    2017-07-01

    DHEA is a neuroactive steroid, due to its modulatory actions on the central nervous system (CNS). DHEA is able to regulate neurogenesis, neurotransmitter receptors and neuronal excitability, function, survival and metabolism. The levels of DHEA decrease gradually with advancing age, and this decline has been associated with age related neuronal dysfunction and degeneration, suggesting a neuroprotective effect of endogenous DHEA. There are significant sex differences in the pathophysiology, epidemiology and clinical manifestations of many neurological diseases. The aim of this study was to determine whether DHEA can alter glucose metabolism in different structures of the CNS from male and female rats, and if this effect is sex-specific. The results showed that DHEA decreased glucose uptake in some structures (cerebral cortex and olfactory bulb) in males, but did not affect glucose uptake in females. When compared, glucose uptake in males was higher than females. DHEA enhanced the glucose oxidation in both males (cerebral cortex, olfactory bulb, hippocampus and hypothalamus) and females (cerebral cortex and olfactory bulb), in a sex-dependent manner. In males, DHEA did not affect synthesis of glycogen, however, glycogen content was increased in the cerebral cortex and olfactory bulb. DHEA modulates glucose metabolism in a tissue-, dose- and sex-dependent manner to increase glucose oxidation, which could explain the previously described neuroprotective role of this hormone in some neurodegenerative diseases. Copyright © 2016. Published by Elsevier Ltd.

  15. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    PubMed

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  16. Perillaldehyde attenuates cerebral ischemia-reperfusion injury-triggered overexpression of inflammatory cytokines via modulating Akt/JNK pathway in the rat brain cortex.

    PubMed

    Xu, Lixing; Li, Yuebi; Fu, Qiang; Ma, Shiping

    2014-11-07

    Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, has anti-inflammatory effects. Few studies have examined the neuroprotective effect of PAH on stroke. So the aim of our study is to investigate the effect of PAH on ischemia-reperfusion-induced injury in the rat brain cortex. Middle cerebral artery occlusion (MCAO) model was selected to make cerebral ischemia-reperfusion injury. Rats were assigned randomly to groups of sham, MCAO, and two treatment groups by PAH at 36.0, 72.0mg/kg. Disease model was set up after intragastrically (i.g.) administering for 7 consecutive days. The neurological deficit, the cerebral infarct size, biochemical parameters and the relative mRNA and protein levels were examined. The results showed that the NO level, the iNOS activity, the neurological deficit scores, the cerebral infarct size and the expression of inflammatory cytokines including interleukin (IL)-1β, interleukin (IL)-6 and tumor necrosis factor (TNF)-α were significantly decreased by PAH treatment. PAH also increased the Phospho-Akt level and decrease the Phospho-JNK level by Western blot analysis. Meanwhile, the PAH groups exhibited a dramatically decrease of apoptosis-related mRNA expression such as Bax and caspase-3. Our findings shown that PAH attenuates cerebral ischemia/reperfusion injury in the rat brain cortex, and suggest its neuroprotective effect is relate to regulating the inflammatory response through Akt /JNK pathway. The activation of this signalling pathway eventually inhibits apoptotic cell death induced by cerebral ischemia-reperfusion. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs.

    PubMed Central

    Travis, G H; Sutcliffe, J G

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033

  18. Cortical metabolism in pyruvate dehydrogenase deficiency revealed by ex vivo multiplet 13C-NMR of the adult mouse brain

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Malloy, Craig R.; Patel, Mulchand S.; Pascual, Juan M.

    2013-01-01

    The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain metabolism indicated that a 25% reduction in flux through PDC and a corresponding increase in flux from an alternative source of acetyl-CoA would substantially alter the 13C NMR spectrum obtained from brain tissue. Therefore, we evaluated metabolism of [1,6-13C2]glucose (oxidized by both neurons and glia) and [1,2-13C2]acetate (an energy source that bypasses PDC) in the cerebral cortex of adult mice mildly and selectively deficient in brain PDC activity, a viable model that recapitulates the human disorder. Intravenous infusions were performed in conscious mice and extracts of brain tissue were studied by 13C NMR. We hypothesized that mice deficient in PDC must increase the proportion of energy derived from acetate metabolism in the brain. Unexpectedly, the distribution of 13C in glutamate and glutamine, a measure of the relative flux of acetate and glucose into the citric acid cycle, was not altered. The 13C labeling pattern in glutamate differed significantly from glutamine, indicating preferential oxidation of [1,2-13C]acetate relative to [1,6-13C]glucose by a readily discernible metabolic domain of the brain of both normal and mutant mice, presumably glia. These findings illustrate that metabolic compartmentation is preserved in the PDC-deficient cerebral cortex, probably reflecting intact neuron-glia metabolic interactions, and that a reduction in brain PDC activity sufficient to induce cerebral dysgenesis during development does not appreciably disrupt energy metabolism in the mature brain. PMID:22884585

  19. Quality components and antidepressant-like effects of GABA green tea.

    PubMed

    Teng, Jie; Zhou, Wen; Zeng, Zhen; Zhao, Wenfang; Huang, Yahui; Zhang, Xu

    2017-09-20

    Gamma (γ)-aminobutyric acid (GABA) green tea, with high GABA content, is a kind of special green tea. The goals of this study are to analyze the changes in quality components of green tea during anaerobic treatment, and to investigate whether or not the extract of GABA present in green tea can prevent depression or improve the depressive state of animals. Results showed that GABA content in green tea had increased significantly after anaerobic treatment. The contents of tea polysaccharides, total free amino acids, and water extracts were also increased whereas tea polyphenols were reduced. More importantly, the extract of GABA green tea could alleviate mouse depression and stress from desperate environments through the forced swim test (FST), tail suspension test (TST), mRNA and protein expression levels of GABA A receptors. Therefore, these results indicate that GABA green tea may have a health effect on prevention and alleviation of depression, and it works on the GABAergic neurotransmission of mouse cerebral cortex via up-regulating expression of the GABA A receptor α1 subunit, thus ameliorating depression.

  20. SDF1 regulates leading process branching and speed of migrating interneurons

    PubMed Central

    Lysko, Daniel E.; Putt, Mary; Golden, Jeffrey A.

    2011-01-01

    Cell migration is required for normal embryonic development, yet how cells navigate complex paths while integrating multiple guidance cues remains poorly understood. During brain development, interneurons migrate from the ventral ganglionic eminence to the cerebral cortex within several migratory streams. They must exit these streams to invade the cortical plate. While SDF1-signaling is necessary for normal interneuron stream migration, how they switch from tangential stream migration to invade the cortical plate is unknown. Here we demonstrate that SDF1-signaling reduces interneuron branching frequency by reducing cAMP levels via a Gi-signaling pathway using an in vitro mouse explant system, resulting in the maintenance of stream migration. Blocking SDF1-signaling, or increasing branching frequency, results in stream exit and cortical plate invasion in mouse brain slices. These data support a novel model to understand how migrating interneurons switch from tangential migration to invade the cortical plate in which reducing SDF1-signaling increases leading process branching and slows the migration rate, permitting migrating interneurons to sense cortically directed guidance cues. PMID:21289183

  1. Nervous-Tissue-Specific Elimination of Microtubule-Actin Crosslinking Factor 1a Results in Multiple Developmental Defects in the Mouse Brain

    PubMed Central

    Goryunov, Dmitry; He, Cui-Zhen; Lin, Chyuan-Sheng; Leung, Conrad L.; Liem, Ronald K. H.

    2010-01-01

    The microtubule-actin crosslinking factor 1 (MACF1) is a ubiquitous cytoskeletal linker protein with multiple spliced isoforms expressed in different tissues. The MACF1a isoform contains microtubule and actin binding regions and is expressed at high levels in the nervous system. Macf1−/− mice are early embryonic lethal and hence the role of MACF1 in the nervous system could not be determined. We have specifically knocked out MACF1a in the developing mouse nervous system using Cre/loxP technology. Mutant mice died within 24–36 hrs after birth of apparent respiratory distress. Their brains displayed a disorganized cerebral cortex with a mixed layer structure, heterotopia in the pyramidal layer of the hippocampus, disorganized thalamocortical and corticofugal fibers, and aplastic anterior and hippocampal commissures. Embryonic neurons showed a defect in traversing the cortical plate. Our data suggest a critical role for MACF1 in neuronal migration that is dependent on its ability to interact with both microfilaments and microtubules. PMID:20170731

  2. Nervous-tissue-specific elimination of microtubule-actin crosslinking factor 1a results in multiple developmental defects in the mouse brain.

    PubMed

    Goryunov, Dmitry; He, Cui-Zhen; Lin, Chyuan-Sheng; Leung, Conrad L; Liem, Ronald K H

    2010-05-01

    The microtubule-actin crosslinking factor 1 (MACF1) is a ubiquitous cytoskeletal linker protein with multiple spliced isoforms expressed in different tissues. The MACF1a isoform contains microtubule and actin-binding regions and is expressed at high levels in the nervous system. Macf1-/- mice are early embryonic lethal and hence the role of MACF1 in the nervous system could not be determined. We have specifically knocked out MACF1a in the developing mouse nervous system using Cre/loxP technology. Mutant mice died within 24-36h after birth of apparent respiratory distress. Their brains displayed a disorganized cerebral cortex with a mixed layer structure, heterotopia in the pyramidal layer of the hippocampus, disorganized thalamocortical and corticofugal fibers, and aplastic anterior and hippocampal commissures. Embryonic neurons showed a defect in traversing the cortical plate. Our data suggest a critical role for MACF1 in neuronal migration that is dependent on its ability to interact with both microfilaments and microtubules. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window

    PubMed Central

    Holtmaat, Anthony; Bonhoeffer, Tobias; Chow, David K; Chuckowree, Jyoti; De Paola, Vincenzo; Hofer, Sonja B; Hübener, Mark; Keck, Tara; Knott, Graham; Lee, Wei-Chung A; Mostany, Ricardo; Mrsic-Flogel, Tom D; Nedivi, Elly; Portera-Cailliau, Carlos; Svoboda, Karel; Trachtenberg, Joshua T; Wilbrecht, Linda

    2011-01-01

    To understand the cellular and circuit mechanisms of experience-dependent plasticity, neurons and their synapses need to be studied in the intact brain over extended periods of time. Two-photon excitation laser scanning microscopy (2PLSM), together with expression of fluorescent proteins, enables high-resolution imaging of neuronal structure in vivo. In this protocol we describe a chronic cranial window to obtain optical access to the mouse cerebral cortex for long-term imaging. A small bone flap is replaced with a coverglass, which is permanently sealed in place with dental acrylic, providing a clear imaging window with a large field of view (∼0.8–12 mm2). The surgical procedure can be completed within ∼1 h. The preparation allows imaging over time periods of months with arbitrary imaging intervals. The large size of the imaging window facilitates imaging of ongoing structural plasticity of small neuronal structures in mice, with low densities of labeled neurons. The entire dendritic and axonal arbor of individual neurons can be reconstructed. PMID:19617885

  4. Cerebellar Development and Disease

    PubMed Central

    Gleeson, Joseph G.

    2008-01-01

    Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948

  5. Glycogen distribution in the microwave‐fixed mouse brain reveals heterogeneous astrocytic patterns

    PubMed Central

    Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C.

    2016-01-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well‐defined glycogen immunoreactive signals compared with the conventional periodic acid‐Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3‐CA1 and striatum had a ‘patchy’ appearance with glycogen‐rich and glycogen‐poor astrocytes appearing in alternation. The glycogen patches were more evident with large‐molecule glycogen in young adult mice but they were hardly observable in aged mice (1–2 years old). Our results reveal brain region‐dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532–1545 PMID:27353480

  6. 6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer's disease.

    PubMed

    Zueva, I V; Semenov, V E; Mukhamedyarov, M A; Lushchekina, S V; Kharlamova, A D; Petukhova, E O; Mikhailov, A S; Podyachev, S N; Saifina, L F; Petrov, K A; Minnekhanova, O A; Zobov, V V; Nikolsky, E E; Masson, P; Reznik, V S

    2015-01-01

    Alzheimer's disease (AD) is the major age-related progressive neurodegenerative disorder. The brain of AD patients suffers from loss of cholinergic neurons and decreased number of synapses [1]. AD is caused by an imbalance between Aβ production and clearance, resulting in increased amount of Aβ in various forms [2]. Reduction of Aβ production and increasing clearance of Aβ pathogenic forms are key targets in the development of potential therapeutic agents for AD treatment. Unfortunately, only nosotropic approaches for treatment of AD are currently effective in humans. These approaches mainly focus on the inhibition of brain acetyl-cholinesterase (AChE) to increase lifetime of cerebral acetylcholine [3]. It is important to emphasize that AChE itself promotes the formation of Aβ fibrils in vitro and Aβ plaques in the cerebral cortex of transgenic mouse models of AD [4]. This property of AChE results from interaction between Aβ and the peripheral anionic site of the enzyme (PAS) [5]. Dual binding site inhibitors of both catalytic active site (CAS) and PAS can simultaneously improve cognition and slow down the rate of Aβ-induced neural degeneration. Unfortunately, the assortment of AChE PAS ligands is still extremely limited. To study putative advantages of AChE non-charged PAS inhibitors based on 6-methyluracil derivatives for the treatment of Alzheimer's disease. In vitro studies. Concentration of drug producing 50% of AChE/BuChE activity inhibition (IC50) was measured using the method of Ellman et al. [6]. Toxicological experiments were performed using IP injection of the different compounds in mice. LD50, dose (in mg/kg) causing lethal effects in 50% of animals was taken as a criterion of toxicity [7]. The ability of compound to block in vitro AChE-induced Aβ1-40 aggregation was studied using a thioflavin T (ThT) fluorescent probe [8].In vivo biological assays. For in vivo blood-brain barrier permeation assay brains were removed 30 min after IP injection of LD50 dose of tested compound injection. The inhibitory potency was measured using the method of Ellman.Scopolamine and transgenic models of AD were used to evaluate the influence of compound 35 on spatial memory performance.Water solution of scopolamine was injected to mice (ip) 20 minutes before starting memory test during 14 days [9]. Mice were assigned to 7 groups, including 4 groups receiving injection (ip) of compound in different dosages, donepezil-treated mice (donepezil is conventionally used to treat Alzheimer's disease), positive and negative control groups. Double transgenic (APP/PS1) mice expressing a chimeric mouse/human amyloid precursor protein and a mutant of human presenilin-1 [10] were assigned to 4 groups, including transgenic animals injected (ip) with compound 35 or donepezil solution, positive (transgenes injected with water) and negative (wild-type mice) controls.To evaluate spatial memory performance, mice were trained on a reward alternation task using a conventional T-maze [11]. The criterion for a mouse having learned the rewarded alternation task was 3 consecutive days of at least 5 correct responses out of the 6 free trials.For β-amyloid peptide load was evaluated quantitatively as a number and summary area of Thioflavine S fluorescent spots in cerebral cortex and hippocampal images using Image J program. Statistical analyses were performed using the Mann-Whitney test. We evaluated the acute toxicity of the most active compounds. The most potent AChE inhibitor compound 35 (IC50 (AChE) = 5 ± 0.5 nM) exhibited the lowest LD50 values (51 mg/kg) and inhibited brain AChE by more than 71 ± 1%. Compound 35 at 10 nM, exhibited a significant (35 ± 9%) inhibitory activity toward human AChE-induced Aβ aggregation.Scopolamine injection induced significant decrease in correct choice percentage in T-maze, as well as decrease in percentage of mice reaching criterion for learning the task by day 14. This memory deficit was relieved to some extent either by compound 35 (5 mg/kg) or donepezil (reference compound) treatment (0.75 mg/kg). Interestingly, higher doses of compound 35 (10 and 15 mg/kg) produced less therapeutic effect on spatial memory deficit.Group of APP/PS1 mice showed 3 times lower percentage of reaching behavioral criterion and lower percentage of correct choice in T-maze alternation task comparing to WT mice, whereas compound 35 (5 mg/kg) or Donepezil treatment effectively improved these parameters in APP/PS1 mice.Compound 35 treatment (5 mg/kg) during 14 days significantly reduced percentage of summary area and number of β-amyloid peptide (βAP) deposits visualized in sections of cerebral cortex, dentate gyrus, and hippocampal CA3 area in APP/PS1 mice. The most prominent reduction of βAP load by compound 35 treatment was found in CA3 area and cerebral cortex. Meanwhile, Donepezil treatment (1 mg/kg) during 14 days significantly reduced βAP load in cerebral cortex but not in dentate gyrus and CA3 area. Experiments showed that the most potent AChE inhibitor compound 35 (6-methyluracil derivative) permeated the blood-brain barrier, improved working memory in the APP/PS1 transgenic mice and significantly reduced the number and area of Aβ plaques in the brain. Thus, compound 35 is a promising candidate as a bi-functional inhibitor of AChE for treatment of AD.

  7. The Response of Cerebral Cortex to Haemorrhagic Damage: Experimental Evidence from a Penetrating Injury Model

    PubMed Central

    Purushothuman, Sivaraman; Marotte, Lauren; Stowe, Sally; Johnstone, Daniel M.; Stone, Jonathan

    2013-01-01

    Understanding the response of the brain to haemorrhagic damage is important in haemorrhagic stroke and increasingly in the understanding the cerebral degeneration and dementia that follow head trauma and head-impact sports. In addition, there is growing evidence that haemorrhage from small cerebral vessels is important in the pathogenesis of age-related dementia (Alzheimer’s disease). In a penetration injury model of rat cerebral cortex, we have examined the neuropathology induced by a needlestick injury, with emphasis on features prominent in the ageing and dementing human brain, particularly plaque-like depositions and the expression of related proteins. Needlestick lesions were made in neo- and hippocampal cortex in Sprague Dawley rats aged 3–5 months. Brains were examined after 1–30 d survival, for haemorrhage, for the expression of hyperphosphorylated tau, Aβ, amyloid precursor protein (APP), for gliosis and for neuronal death. Temporal cortex from humans diagnosed with Alzheimer’s disease was examined with the same techniques. Needlestick injury induced long-lasting changes–haem deposition, cell death, plaque-like deposits and glial invasion–along the needle track. Around the track, the lesion induced more transient changes, particularly upregulation of Aβ, APP and hyperphosporylated tau in neurons and astrocytes. Reactions were similar in hippocampus and neocortex, except that neuronal death was more widespread in the hippocampus. In summary, experimental haemorrhagic injury to rat cerebral cortex induced both permanent and transient changes. The more permanent changes reproduced features of human senile plaques, including the formation of extracellular deposits in which haem and Aβ-related proteins co-localised, neuronal loss and gliosis. The transient changes, observed in tissue around the direct lesion, included the upregulation of Aβ, APP and hyperphosphorylated tau, not associated with cell death. The findings support the possibility that haemorrhagic damage to the brain can lead to plaque-like pathology. PMID:23555765

  8. Non-invasive detection of matrix-metalloproteinase activity in a mouse model of cerebral ischemia using multispectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Ni, Ruiqing; Vaas, Markus; Ren, Wuwei; Klohs, Jan

    2018-02-01

    Matrix metalloproteinases (MMPs) play important roles in the pathophysiology of cerebral ischemia. Here we visualized in vivo MMP activity in the transient middle cerebral artery occlusion (tMCAO) mouse model using multispectral optoacoustic imaging (MSOT) with a MMP-activatable probe. MSOT data was co-registered with structural magnetic resonance imaging (MRI) obtained at 7 T for localization of signal distribution. We demonstrated upregulated MMP signal within the focal ischemic lesion in the tMCAO mouse model using MSOT/MRI multimodal imaging. This convenient non-invasive method will allow repetitive measurement following the time course of MMP-lesion development in ischemic stroke animal model.

  9. A subconvulsive dose of kainate selectively compromises astrocytic metabolism in the mouse brain in vivo.

    PubMed

    Walls, Anne B; Eyjolfsson, Elvar M; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S

    2014-08-01

    Despite the well-established use of kainate as a model for seizure activity and temporal lobe epilepsy, most studies have been performed at doses giving rise to general limbic seizures and have mainly focused on neuronal function. Little is known about the effect of lower doses of kainate on cerebral metabolism and particularly that associated with astrocytes. We investigated astrocytic and neuronal metabolism in the cerebral cortex of adult mice after treatment with saline (controls), a subconvulsive or a mildly convulsive dose of kainate. A combination of [1,2-(13)C]acetate and [1-(13)C]glucose was injected and subsequent nuclear magnetic resonance spectroscopy of cortical extracts was employed to distinctively map astrocytic and neuronal metabolism. The subconvulsive dose of kainate led to an instantaneous increase in the cortical lactate content, a subsequent reduction in the amount of [4,5-(13)C]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contrast, the convulsive dose led to decrements in the cortical content and (13)C labeling of glutamate, glutamine, GABA, and aspartate. Evidence is provided that astrocytic metabolism is affected by a subconvulsive dose of kainate, whereas a higher dose is required to affect neuronal metabolism. The cerebral glycogen content was dose-dependently reduced by kainate supporting a role for glycogen during seizure activity.

  10. A subconvulsive dose of kainate selectively compromises astrocytic metabolism in the mouse brain in vivo

    PubMed Central

    Walls, Anne B; Eyjolfsson, Elvar M; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S

    2014-01-01

    Despite the well-established use of kainate as a model for seizure activity and temporal lobe epilepsy, most studies have been performed at doses giving rise to general limbic seizures and have mainly focused on neuronal function. Little is known about the effect of lower doses of kainate on cerebral metabolism and particularly that associated with astrocytes. We investigated astrocytic and neuronal metabolism in the cerebral cortex of adult mice after treatment with saline (controls), a subconvulsive or a mildly convulsive dose of kainate. A combination of [1,2-13C]acetate and [1-13C]glucose was injected and subsequent nuclear magnetic resonance spectroscopy of cortical extracts was employed to distinctively map astrocytic and neuronal metabolism. The subconvulsive dose of kainate led to an instantaneous increase in the cortical lactate content, a subsequent reduction in the amount of [4,5-13C]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contrast, the convulsive dose led to decrements in the cortical content and 13C labeling of glutamate, glutamine, GABA, and aspartate. Evidence is provided that astrocytic metabolism is affected by a subconvulsive dose of kainate, whereas a higher dose is required to affect neuronal metabolism. The cerebral glycogen content was dose-dependently reduced by kainate supporting a role for glycogen during seizure activity. PMID:24824917

  11. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    PubMed

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  12. Development and characterization of NEX- Pten, a novel forebrain excitatory neuron-specific knockout mouse.

    PubMed

    Kazdoba, Tatiana M; Sunnen, C Nicole; Crowell, Beth; Lee, Gum Hwa; Anderson, Anne E; D'Arcangelo, Gabriella

    2012-01-01

    The phosphatase and tensin homolog located on chromosome 10 (PTEN) suppresses the activity of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, a signaling cascade critically involved in the regulation of cell proliferation and growth. Human patients carrying germ line PTEN mutations have an increased predisposition to tumors, and also display a variety of neurological symptoms and increased risk of epilepsy and autism, implicating PTEN in neuronal development and function. Consistently, loss of Pten in mouse neural cells results in ataxia, seizures, cognitive abnormalities, increased soma size and synaptic abnormalities. To better understand how Pten regulates the excitability of principal forebrain neurons, a factor that is likely to be altered in cognitive disorders, epilepsy and autism, we generated a novel conditional knockout mouse line (NEX-Pten) in which Cre, under the control of the NEX promoter, drives the deletion of Pten specifically in early postmitotic, excitatory neurons of the developing forebrain. Homozygous mutant mice exhibited a massive enlargement of the forebrain, and died shortly after birth due to excessive mTOR activation. Analysis of the neonatal cerebral cortex further identified molecular defects resulting from Pten deletion that likely affect several aspects of neuronal development and excitability. Copyright © 2012 S. Karger AG, Basel.

  13. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon

    The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significantmore » gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.« less

  14. Expression of a serine protease (motopsin PRSS12) mRNA in the mouse brain: in situ hybridization histochemical study.

    PubMed

    Iijima, N; Tanaka, M; Mitsui, S; Yamamura, Y; Yamaguchi, N; Ibata, Y

    1999-03-20

    Serine proteases are considered to play several important roles in the brain. In an attempt to find novel brain-specific serine proteases (BSSPs), motopsin (PRSS-12) was cloned from a mouse brain cDNA library by polymerase chain reaction (PCR). Northern blot analysis demonstrated that the postnatal 10-day mouse brain contained the most amount of motopsin mRNA. At this developmental stage, in situ hybridization histochemistry showed that motopsin mRNA was specifically expressed in the following regions: cerebral cortical layers II/III, V and VIb, endopiriform cortex and the limbic system, particularly in the CA1 region of the hippocampal formation. In addition, in the brainstem, the oculomotor nucleus, trochlear nucleus, mecencephalic and motor nuclei of trigeminal nerve (N), abducens nucleus, facial nucleus, nucleus of the raphe pontis, dorsoral motor nucleus of vagal N, hypoglossal nucleus and ambiguus nucleus showed motopsin mRNA expression. Expression was also found in the anterior horn of the spinal cord. The above findings strongly suggest that neurons in almost all motor nuclei, particularly in the brainstem and spinal cord, express motopsin mRNA, and that motopsin seems to have a close relation to the functional role of efferent neurons. Copyright 1999 Elsevier Science B.V.

  15. Comparative modular analysis of gene expression in vertebrate organs.

    PubMed

    Piasecka, Barbara; Kutalik, Zoltán; Roux, Julien; Bergmann, Sven; Robinson-Rechavi, Marc

    2012-03-29

    The degree of conservation of gene expression between homologous organs largely remains an open question. Several recent studies reported some evidence in favor of such conservation. Most studies compute organs' similarity across all orthologous genes, whereas the expression level of many genes are not informative about organ specificity. Here, we use a modularization algorithm to overcome this limitation through the identification of inter-species co-modules of organs and genes. We identify such co-modules using mouse and human microarray expression data. They are functionally coherent both in terms of genes and of organs from both organisms. We show that a large proportion of genes belonging to the same co-module are orthologous between mouse and human. Moreover, their zebrafish orthologs also tend to be expressed in the corresponding homologous organs. Notable exceptions to the general pattern of conservation are the testis and the olfactory bulb. Interestingly, some co-modules consist of single organs, while others combine several functionally related organs. For instance, amygdala, cerebral cortex, hypothalamus and spinal cord form a clearly discernible unit of expression, both in mouse and human. Our study provides a new framework for comparative analysis which will be applicable also to other sets of large-scale phenotypic data collected across different species.

  16. Optical microangiography enabling visualization of change in meninges after traumatic brain injury in mice in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Qin, Wan; Qi, Xiaoli; Wang, Ruikang K.

    2016-03-01

    Traumatic brain injury (TBI) is a form of brain injury caused by sudden impact on brain by an external mechanical force. Following the damage caused at the moment of injury, TBI influences pathophysiology in the brain that takes place within the minutes or hours involving alterations in the brain tissue morphology, cerebral blood flow (CBF), and pressure within skull, which become important contributors to morbidity after TBI. While many studies for the TBI pathophysiology have been investigated with brain cortex, the effect of trauma on intracranial tissues has been poorly studied. Here, we report use of high-resolution optical microangiography (OMAG) to monitor the changes in cranial meninges beneath the skull of mouse after TBI. TBI is induced on a brain of anesthetized mouse by thinning the skull using a soft drill where a series of drilling exert mechanical stress on the brain through the skull, resulting in mild brain injury. Intracranial OMAG imaging of the injured mouse brain during post-TBI phase shows interesting pathophysiological findings in the meningeal layers such as widening of subdural space as well as vasodilation of subarachnoid vessels. These processes are acute and reversible within hours. The results indicate potential of OMAG to explore mechanism involved following TBI on small animals in vivo.

  17. Hemodynamic changes in a rat parietal cortex after endothelin-1-induced middle cerebral artery occlusion monitored by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ma, Yushu; Dou, Shidan; Wang, Yi; La, Dongsheng; Liu, Jianghong; Ma, Zhenhe

    2016-07-01

    A blockage of the middle cerebral artery (MCA) on the cortical branch will seriously affect the blood supply of the cerebral cortex. Real-time monitoring of MCA hemodynamic parameters is critical for therapy and rehabilitation. Optical coherence tomography (OCT) is a powerful imaging modality that can produce not only structural images but also functional information on the tissue. We use OCT to detect hemodynamic changes after MCA branch occlusion. We injected a selected dose of endothelin-1 (ET-1) at a depth of 1 mm near the MCA and let the blood vessels follow a process first of occlusion and then of slow reperfusion as realistically as possible to simulate local cerebral ischemia. During this period, we used optical microangiography and Doppler OCT to obtain multiple hemodynamic MCA parameters. The change trend of these parameters from before to after ET-1 injection clearly reflects the dynamic regularity of the MCA. These results show the mechanism of the cerebral ischemia-reperfusion process after a transient middle cerebral artery occlusion and confirm that OCT can be used to monitor hemodynamic parameters.

  18. The effects of whole body vibration combined computerized postural control training on the lower extremity muscle activity and cerebral cortex activity in stroke patients.

    PubMed

    Uhm, Yo-Han; Yang, Dae-Jung

    2018-02-01

    [Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.

  19. The Effect of Diazoxide Upon Heat Shock Protein and Physiological Response to Hemorrhagic Shock and Cerebral Stroke

    DTIC Science & Technology

    2006-06-16

    ischemic kidney model [121]. Photothrombic brain injury elicits the expression of HSP70 and HSP27 . HSP70 expression as early as one hour post-trauma...delineated the area of necrosis at 24 hours post-thrombic injury in ipsilateral cortex. HSP27 expression also was found to be upregulated and in fact...more globally expressed in the entire ipsilateral cerebral cortex, primarily in astrocytes [122]. 25 HSP25 and HSP27 Research demonstrates

  20. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    PubMed

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  1. [Macro- and microscopic systematization of cerebral cortex malformations in children].

    PubMed

    Milovanov, A P; Milovanova, O A

    2011-01-01

    For the first time in pediatric pathologicoanatomic practice the complete systematization of cerebral cortex malformations is represented. Organ, macroscopic forms: microencephaly, macroencephaly, micropolygyria, pachygyria, schizencephaly, porencephaly, lissencephaly. Histic microdysgenesis of cortex: type I includes isolated abnormalities such as radial (IA) and tangential (I B) subtypes of cortical dislamination; type II includes sublocal cortical dislamination with immature dysmorphic neurons (II A) and balloon cells (II B); type III are the combination focal cortical dysplasia with tuberous sclerosis of the hippocampus (III A), tumors (III B) and malformations of vessels, traumatic and hypoxic disorders (III C). Band heterotopias. Subependimal nodular heterotopias. Tuberous sclerosis. Cellular typification of cortical dysplasia: immature neurons and balloon cells.

  2. FDG-PET study of the bilateral subthalamic nucleus stimulation effects on the regional cerebral metabolism in advanced Parkinson disease.

    PubMed

    Li, D; Zuo, C; Guan, Y; Zhao, Y; Shen, J; Zan, S; Sun, B

    2006-01-01

    The aim of the study was to evaluate the changes in regional cerebral metabolic rate of glucose (rCMRGlu) induced by bilateral subthalamic nucleurs (STN) stimulation in advanced Parkinson's disease (PD). 18F-Fluorodeoxyglucose (FDG) PET data obtained before and one month after stimulation were analyzed with statistical parametric mapping (SPM). As a result of clinically effective bilateral STN stimulation, rCMRGlu increased in lateral globus pallidus (GP), upper brain stem, dorsolateral prefrontal cortex (DLPFC) and posterior parietal-occipital cortex, and decreased in the orbital frontal cortex and parahippocampus gyrus (p < 0.001). We conclude that the alleviation of clinical symptoms in advanced PD by bilateral STN stimulation may be the result of activation of both ascending and descending pathways from STN and of restoration of the impaired higher-order cortex functions.

  3. Amitriptyline reduces rectal pain related activation of the anterior cingulate cortex in patients with irritable bowel syndrome.

    PubMed

    Morgan, V; Pickens, D; Gautam, S; Kessler, R; Mertz, H

    2005-05-01

    Irritable bowel syndrome (IBS) is a disorder of intestinal hypersensitivity and altered motility, exacerbated by stress. Functional magnetic resonance imaging (fMRI) during painful rectal distension in IBS has demonstrated greater activation of the anterior cingulate cortex (ACC), an area relevant to pain and emotions. Tricyclic antidepressants are effective for IBS. The aim of this study was to determine if low dose amitriptyline reduces ACC activation during painful rectal distension in IBS to confer clinical benefits. Secondary aims were to identify other brain regions altered by amitriptyline, and to determine if reductions in cerebral activation are greater during mental stress. Nineteen women with painful IBS were randomised to amitriptyline 50 mg or placebo for one month and then crossed over to the alternate treatment after washout. Cerebral activation during rectal distension was compared between placebo and amitriptyline groups by fMRI. Distensions were performed alternately during auditory stress and relaxing music. Rectal pain induced significant activation of the perigenual ACC, right insula, and right prefrontal cortex. Amitriptyline was associated with reduced pain related cerebral activations in the perigenual ACC and the left posterior parietal cortex, but only during stress. The tricyclic antidepressant amitriptyline reduces brain activation during pain in the perigenual (limbic) anterior cingulated cortex and parietal association cortex. These reductions are only seen during stress. Amitriptyline is likely to work in the central nervous system rather than peripherally to blunt pain and other symptoms exacerbated by stress in IBS.

  4. Functional and structural mapping of human cerebral cortex: Solutions are in the surfaces

    PubMed Central

    Van Essen, David C.; Drury, Heather A.; Joshi, Sarang; Miller, Michael I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex. PMID:9448242

  5. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  6. Constancy and trade-offs in the neuroanatomical and metabolic design of the cerebral cortex

    PubMed Central

    Karbowski, Jan

    2014-01-01

    Mammalian brains span about four orders of magnitude in cortical volume and have to operate in different environments that require diverse behavioral skills. Despite these geometric and behavioral diversities, the examination of cerebral cortex across species reveals that it contains a substantial number of conserved characteristics that are associated with neuroanatomy and metabolism, i.e., with neuronal connectivity and function. Some of these cortical constants or invariants have been known for a long time but not sufficiently appreciated, and others were only recently discovered. The focus of this review is to present the cortical invariants and discuss their role in the efficient information processing. Global conservation in neuroanatomy and metabolism, as well as their correlated regional and developmental variability suggest that these two parallel systems are mutually coupled. It is argued that energetic constraint on cortical organization can be strong if cerebral blood supplied is either below or above a certain level, and it is rather soft otherwise. Moreover, because maximization or minimization of parameters associated with cortical connectivity, function and cost often leads to conflicts in design, it is argued that the architecture of the cerebral cortex is a result of structural and functional compromises. PMID:24574975

  7. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders.

    PubMed

    Inaguma, Yutaka; Matsumoto, Ayumi; Noda, Mariko; Tabata, Hidenori; Maeda, Akihiko; Goto, Masahide; Usui, Daisuke; Jimbo, Eriko F; Kikkawa, Kiyoshi; Ohtsuki, Mamitaro; Momoi, Mariko Y; Osaka, Hitoshi; Yamagata, Takanori; Nagata, Koh-Ichi

    2016-10-01

    Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future subject since a deletion mutation in PIK3C3 was detected in a patient with specific learning disorders (SLD). © 2016 International Society for Neurochemistry.

  8. The effect of aniracetam on cerebral glucose metabolism in rats after lesioning of the basal forebrain measured by PET.

    PubMed

    Ouchi, Y; Kakiuchi, T; Okada, H; Nishiyama, S; Tsukada, H

    1999-03-15

    To evaluate the effect of aniracetam, a potent modulator of the glutamatergic and cholinergic systems, on the altered cerebral glucose metabolism after lesioning of the basal forebrain, we measured the cerebral metabolic rate of glucose (CMRGlc) with positron emission tomography and the choline acetyltransferase (ChAT) activity in the frontal cortex of the lesioned rats after treating them with aniracetam. Continuous administration of aniracetam for 7 days after the surgery prevented CMRGlc reduction in the frontal cortex ipsilateral to the lesion while the lesioned rats without aniracetam showed significant CMRGlc reduction in the frontal cortex. The level of CMRGlc in the lesion-side basal forebrain was lower in all rats regardless of the aniracetam treatment. Biochemical studies showed that aniracetam did not alter the reduction in the frontal ChAT activity. These results showed that aniracetam prevents glucose metabolic reduction in the cholinergically denervated frontal cortex with little effect on the cortical cholinergic system. The present study suggested that a neurotransmitter system other than the cholinergic system, e.g. the glutamatergic system, plays a central role in the cortical metabolic recovery after lesioning of the basal forebrain.

  9. Cocaine induced cortical microischemia in the rodent brain: Clinical implications

    PubMed Central

    Ren, Hugang; Du, Congwu; Yuan, Zhijia; Park, Ki; Volkow, Nora D.; Pan, Yingtian

    2014-01-01

    Cocaine-induced stroke is among the most serious medical complications associated with its abuse. However the extent to which acute cocaine may induce silent microischemia predisposing the cerebral tissue to neurotoxicity has not been investigated; in part, because of limitations of current neuroimaging tools, i.e., lack of high spatiotemporal resolution and sensitivity to simultaneously measure cerebral blood flow (CBF) in vessels of different calibers (including capillaries) quantitatively and over a large field of view. Here we combine ultrahigh-resolution optical coherence tomography to enable tracker-free 3D microvascular angiography (μOCA) and a new phase-intensity-mapping algorithm to enhance the sensitivity of 3D optical Doppler tomography (μODT) for simultaneous capillary CBF quantization. We apply the technique to study the responses of cerebral microvascular networks to single and repeated cocaine administration in the mouse somatosensory cortex. We show that within 2–3 minutes after cocaine administration CBF markedly decreased (e.g., ~70%) but the magnitude and recovery differed for the various types of vessels; arterioles had the fastest recovery (~5min), capillaries varied drastically (from 4–20min) and venules showed relatively slower recovery (~12min). More importantly, we showed that cocaine interrupted CBF in some arteriolar branches for over 45min and this effect was exacerbated with repeated cocaine administration. These results provide evidence that cocaine doses within the range administered by drug abusers induces cerebral microischemia and that these effects are exacerbated with repeated use. Thus cocaine-induced microischemia is likely to be a contributor to its neurotoxic effects. PMID:22124273

  10. Infectious Progression of Canine Distemper Virus from Circulating Cerebrospinal Fluid into the Central Nervous System.

    PubMed

    Takenaka, Akiko; Sato, Hiroki; Ikeda, Fusako; Yoneda, Misako; Kai, Chieko

    2016-10-15

    In the current study, we generated recombinant chimeric canine distemper viruses (CDVs) by replacing the hemagglutinin (H) and/or phosphoprotein (P) gene in an avirulent strain expressing enhanced green fluorescent protein (EGFP) with those of a mouse-adapted neurovirulent strain. An in vitro experimental infection indicated that the chimeric CDVs possessing the H gene derived from the mouse-adapted CDV acquired infectivity for neural cells. These cells lack the CDV receptors that have been identified to date (SLAM and nectin-4), indicating that the H protein defines infectivity in various cell lines. The recombinant viruses were administered intracerebrally to 1-week-old mice. Fatal neurological signs of disease were observed only with a recombinant CDV that possessed both the H and P genes of the mouse-adapted strain, similar to the parental mouse-adapted strain, suggesting that both genes are important to drive virulence of CDV in mice. Using this recombinant CDV, we traced the intracerebral propagation of CDV by detecting EGFP. Widespread infection was observed in the cerebral hemispheres and brainstems of the infected mice. In addition, EGFP fluorescence in the brain slices demonstrated a sequential infectious progression in the central nervous system: CDV primarily infected the neuroependymal cells lining the ventricular wall and the neurons of the hippocampus and cortex adjacent to the ventricle, and it then progressed to an extensive infection of the brain surface, followed by the parenchyma and cortex. In the hippocampal formation, CDV spread in a unidirectional retrograde pattern along neuronal processes in the hippocampal formation from the CA1 region to the CA3 region and the dentate gyrus. Our mouse model demonstrated that the main target cells of CDV are neurons in the acute phase and that the virus spreads via neuronal transmission pathways in the hippocampal formation. CDV is the etiological agent of distemper in dogs and other carnivores, and in many respects, the pathogenesis of CDV infection in animals resembles that of measles virus infection in humans. We successfully generated a recombinant CDV containing the H and P genes from a mouse-adapted neurovirulent strain and expressing EGFP. The recombinant CDV exhibited severe neurovirulence with high mortality, comparable to the parental mouse-adapted strain. The mouse-infectious model could become a useful tool for analyzing CDV infection of the central nervous system subsequent to passing through the blood-cerebrospinal fluid barrier and infectious progression in the target cells in acute disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Infectious Progression of Canine Distemper Virus from Circulating Cerebrospinal Fluid into the Central Nervous System

    PubMed Central

    Takenaka, Akiko; Sato, Hiroki; Ikeda, Fusako; Yoneda, Misako

    2016-01-01

    ABSTRACT In the current study, we generated recombinant chimeric canine distemper viruses (CDVs) by replacing the hemagglutinin (H) and/or phosphoprotein (P) gene in an avirulent strain expressing enhanced green fluorescent protein (EGFP) with those of a mouse-adapted neurovirulent strain. An in vitro experimental infection indicated that the chimeric CDVs possessing the H gene derived from the mouse-adapted CDV acquired infectivity for neural cells. These cells lack the CDV receptors that have been identified to date (SLAM and nectin-4), indicating that the H protein defines infectivity in various cell lines. The recombinant viruses were administered intracerebrally to 1-week-old mice. Fatal neurological signs of disease were observed only with a recombinant CDV that possessed both the H and P genes of the mouse-adapted strain, similar to the parental mouse-adapted strain, suggesting that both genes are important to drive virulence of CDV in mice. Using this recombinant CDV, we traced the intracerebral propagation of CDV by detecting EGFP. Widespread infection was observed in the cerebral hemispheres and brainstems of the infected mice. In addition, EGFP fluorescence in the brain slices demonstrated a sequential infectious progression in the central nervous system: CDV primarily infected the neuroependymal cells lining the ventricular wall and the neurons of the hippocampus and cortex adjacent to the ventricle, and it then progressed to an extensive infection of the brain surface, followed by the parenchyma and cortex. In the hippocampal formation, CDV spread in a unidirectional retrograde pattern along neuronal processes in the hippocampal formation from the CA1 region to the CA3 region and the dentate gyrus. Our mouse model demonstrated that the main target cells of CDV are neurons in the acute phase and that the virus spreads via neuronal transmission pathways in the hippocampal formation. IMPORTANCE CDV is the etiological agent of distemper in dogs and other carnivores, and in many respects, the pathogenesis of CDV infection in animals resembles that of measles virus infection in humans. We successfully generated a recombinant CDV containing the H and P genes from a mouse-adapted neurovirulent strain and expressing EGFP. The recombinant CDV exhibited severe neurovirulence with high mortality, comparable to the parental mouse-adapted strain. The mouse-infectious model could become a useful tool for analyzing CDV infection of the central nervous system subsequent to passing through the blood-cerebrospinal fluid barrier and infectious progression in the target cells in acute disease. PMID:27489268

  12. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex.

    PubMed

    Nuriya, Mutsuo; Takeuchi, Miyabi; Yasui, Masato

    2017-01-29

    Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This priming effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Virtual reality training improves balance function.

    PubMed

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  14. Virtual reality training improves balance function

    PubMed Central

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  15. Differentiated effect of ageing on the enzymes of Krebs' cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex.

    PubMed

    Villa, R F; Gorini, A; Hoyer, S

    2006-11-01

    The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.

  16. Neurotensin effect on Na+, K+-ATPase is CNS area- and membrane-dependent and involves high affinity NT1 receptor.

    PubMed

    López Ordieres, María Graciela; Rodríguez de Lores Arnaiz, Georgina

    2002-11-01

    We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.

  17. Posterior hypoperfusion in Parkinson's disease with and without dementia measured with arterial spin labeling MRI.

    PubMed

    Kamagata, Koji; Motoi, Yumiko; Hori, Masaaki; Suzuki, Michimasa; Nakanishi, Atsushi; Shimoji, Keigo; Kyougoku, Shinsuke; Kuwatsuru, Ryohei; Sasai, Keisuke; Abe, Osamu; Mizuno, Yoshikuni; Aoki, Shigeki; Hattori, Nobutaka

    2011-04-01

    To determine whether quantitative arterial spin labeling (ASL) can be used to evaluate regional cerebral blood flow in Parkinson's disease with dementia (PDD) and without dementia (PD). Thirty-five PD patients, 11 PDD patients, and 35 normal controls were scanned by using a quantitative ASL method with a 3 Tesla MRI unit. Regional cerebral blood flow was compared in the posterior cortex using region-of-interest analysis. PD and PDD patients showed lower regional cerebral blood flow in the posterior cortex than normal controls (P = 0.002 and P = 0.001, respectively, analysis of variance with a Bonferroni post hoc test). This is the first study to detect hypoperfusion in the posterior cortex in PD and PDD patients using ASL perfusion MRI. Because ASL perfusion MRI is completely noninvasive and can, therefore, safely be used for repeated assessments, this method can be used to monitor treatment effects or disease progression in PD. Copyright © 2011 Wiley-Liss, Inc.

  18. Cerebral Oxygenation of the Cortex and Striatum following Normobaric Hyperoxia and Mild Hypoxia in Rats by EPR Oximetry using Multi-Probe Implantable Resonators

    PubMed Central

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Mupparaju, Sriram; Khan, Nadeem; Swartz, Harold

    2013-01-01

    Multi-site electron paramagnetic resonance (EPR) oximetry, using multi-probe implantable resonators, was used to measure the partial pressure of oxygen (pO2) in the brains of rats following normobaric hyperoxia and mild hypoxia. The cerebral tissue pO2 was measured simultaneously in the cerebral cortex and striatum in the same rats before, during, and after normobaric hyperoxia and mild hypoxia challenges. The baseline mean tissue pO2 values (±SE) were not significantly different between the cortex and striatum. During 30 min of 100% O2 inhalation, a statistically significant increase in tissue pO2 of all four sites was observed, however, the tissue pO2 of the striatum area was significantly higher than in the forelimb area of the cortex. Brain pO2 significantly decreased from the baseline value during 15 min of 15% O2 challenge. No differences in the recovery of the cerebral cortex and striatum pO2 were observed when the rats were allowed to breathe 30% O2. It appears that EPR oximetry using implantable resonators can provide information on pO2 under the experimental conditions needed for such a study. The levels of pO2 that occurred in these experiments are readily resolvable by multi-site EPR oximetry with multi-probe resonators. In addition, the ability to simultaneously measure the pO2 in several areas of the brain provides important information that could potentially help differentiate the pO2 changes that can occur due to global or local mechanisms. PMID:21445770

  19. Potential antidepressant-like activity of silymarin in the acute restraint stress in mice: Modulation of corticosterone and oxidative stress response in cerebral cortex and hippocampus.

    PubMed

    Thakare, Vishnu N; Dhakane, Valmik D; Patel, Bhoomika M

    2016-10-01

    Silymarin is a polyphenolic flavanoid of Silybum marianum, elicited neuroprotection and antidepressant like activity in stressed model. It was found to increase 5-hydroxytryptamine (5-HT) levels in the cortex and dopamine (DA) and norepinephrine (NE) in the cerebellum in normal mice. The aim of the present study was to investigate the potential antidepressant-like activity of silymarin in the acute restraint stress (ARS) in mice. The ARS was induced by immobilizing the mice for a period of 7h using rodent restraint device preventing them for any physical movement. One hour prior to ARS, silymarin was administered at doses of 100mg/kg and 200mg/kg per oral to non stressed and ARS mice. Various behavioral parameters like immobility time in force swim test, locomotor activity in open field test, and biochemical alterations, serum corticosterone, 5-HT, DA, NE level, malondialdehyde (MDA), and antioxidant enzymes (GSH, CAT and SOD) in hippocampus and cerebral cortex in non stressed and ARS subjected mice were investigated. Experimental findings reveals mice subjected to ARS exhibited significant increase immobility time, serum corticosterone, MDA formation and impaired SOD and CAT activities in hippocampus and cerebral cortex as compared to non stressed mice. Silymarin treatment (100mg/kg and 200mg/kg) significantly attenuated immobility time, corticosterone and restored the antioxidant enzymes after ARS. The present experimental findings indicate that silymarin exhibits antidepressant like activity probably either through alleviating oxidative stress by modulation of corticosterone response, and antioxidant defense system in hippocampus and cerebral cortex in ARS mice. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  20. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J.E.; Matthews, P.S.

    1984-09-01

    Local 5'-deiodination of serum thyroxine (T4) is the main source of triiodothyronine (T3) for the brain. Since we noted in previous studies that the cerebral cortex of neonatal rats tolerated marked reductions in serum T4 without biochemical hypothyroidism, we examined the in vivo T4 and T3 metabolism in that tissue and in the cerebellum of euthyroid and hypothyroid 2-wk-old rats. We also assessed the contribution of enhanced tissue T4 to T3 conversion and decreased T3 removal from the tissues to the T3 homeostasis in hypothyroid brain. Congenital and neonatal hypothyroidism was induced by adding methimazole to the drinking water. Serum,more » cerebral cortex (Cx), cerebellum (Cm), liver (L) and kidney (R) concentrations of 125I-T4, 125I-T3(T4), and 131I-T3 were measured at various times after injecting 125I-T4 and 131I-T3. The rate of T3 removal from the tissues was measured after injecting an excess of anti-T3-antibody to rats previously injected with tracer T3. In hypothyroidism, the fractional removal rates and clearances were reduced in all tissues, in cortex and cerebellum by 70%, and in liver and kidney ranging from 30 to 50%. While greater than 80% of the 125I-T3(T4) in the brain tissues of euthyroid rats was locally produced, in hypothyroid cerebral cortex and cerebellum the integrated concentrations of 125I-T3(T4) were 2.7- and 1.5-fold greater than in euthyroid rats.« less

  1. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    PubMed

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  2. Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients.

    PubMed

    Kamp, Marcel A; Slotty, Philipp; Turowski, Bernd; Etminan, Nima; Steiger, Hans-Jakob; Hänggi, Daniel; Stummer, Walter

    2012-03-01

    Intraoperative measurements of cerebral blood flow are of interest during vascular neurosurgery. Near-infrared indocyanine green (ICG) fluorescence angiography was introduced for visualizing vessel patency intraoperatively. However, quantitative information has not been available. To report our experience with a microscope with an integrated dynamic ICG fluorescence analysis system supplying semiquantitative information on blood flow. We recorded ICG fluorescence curves of cortex and cerebral vessels using software integrated into the surgical microscope (Flow 800 software; Zeiss Pentero) in 30 patients undergoing surgery for different pathologies. The following hemodynamic parameters were assessed: maximum intensity, rise time, time to peak, time to half-maximal fluorescence, cerebral blood flow index, and transit times from arteries to cortex. For patients without obvious perfusion deficit, maximum fluorescence intensity was 177.7 arbitrary intensity units (AIs; 5-mg ICG bolus), mean rise time was 5.2 seconds (range, 2.9-8.2 seconds; SD, 1.3 seconds), mean time to peak was 9.4 seconds (range, 4.9-15.2 seconds; SD, 2.5 seconds), mean cerebral blood flow index was 38.6 AI/s (range, 13.5-180.6 AI/s; SD, 36.9 seconds), and mean transit time was 1.5 seconds (range, 360 milliseconds-3 seconds; SD, 0.73 seconds). For 3 patients with impaired cerebral perfusion, time to peak, rise time, and transit time between arteries and cortex were markedly prolonged (>20, >9 , and >5 seconds). In single patients, the degree of perfusion impairment could be quantified by the cerebral blood flow index ratios between normal and ischemic tissue. Transit times also reflected blood flow perturbations in arteriovenous fistulas. Quantification of ICG-based fluorescence angiography appears to be useful for intraoperative monitoring of arterial patency and regional cerebral blood flow.

  3. Altered Regional Cerebral Blood Flow in Idiopathic Hypersomnia.

    PubMed

    Boucetta, Soufiane; Montplaisir, Jacques; Zadra, Antonio; Lachapelle, Francis; Soucy, Jean-Paul; Gravel, Paul; Dang-Vu, Thien Thanh

    2017-10-01

    Idiopathic hypersomnia is characterized by excessive daytime sleepiness, despite normal or long sleep time. Its pathophysiological mechanisms remain unclear. This pilot study aims at characterizing the neural correlates of idiopathic hypersomnia using single photon emission computed tomography. Thirteen participants with idiopathic hypersomnia and 16 healthy controls were scanned during resting wakefulness using a high-resolution single photon emission computed tomography scanner with 99mTc-ethyl cysteinate dimer to assess cerebral blood flow. The main analysis compared regional cerebral blood flow distribution between the two groups. Exploratory correlations between regional cerebral blood flow and clinical characteristics evaluated the functional correlates of those brain perfusion patterns. Significance was set at p < .05 after correction for multiple comparisons. Participants with idiopathic hypersomnia showed regional cerebral blood flow decreases in medial prefrontal cortex and posterior cingulate cortex and putamen, as well as increases in amygdala and temporo-occipital cortices. Lower regional cerebral blood flow in the medial prefrontal cortex was associated with higher daytime sleepiness. These preliminary findings suggest that idiopathic hypersomnia is characterized by functional alterations in brain areas involved in the modulation of vigilance states, which may contribute to the daytime symptoms of this condition. The distribution of regional cerebral blood flow changes was reminiscent of the patterns associated with normal non-rapid-eye-movement sleep, suggesting the possible presence of incomplete sleep-wake transitions. These abnormalities were strikingly distinct from those induced by acute sleep deprivation, suggesting that the patterns seen here might reflect a trait associated with idiopathic hypersomnia rather than a non-specific state of sleepiness. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Methylmercury poisoning in common marmosets--a study of selective vulnerability within the cerebral cortex.

    PubMed

    Eto, K; Yasutake, A; Kuwana, T; Korogi, Y; Akima, M; Shimozeki, T; Tokunaga, H; Kaneko, Y

    2001-01-01

    Neuropathological lesions found in chronic human Minamata disease tend to be localized in the calcarine cortex of occipital lobes, the pre- and postcentral lobuli, and the temporal gyri. The mechanism for the selective vulnerability is still not clear, though several hypotheses have been proposed. One hypothesis is vascular and postulates that the lesions are the result of ischemia secondary to compression of sulcal arteries from methylmercury-induced cerebral edema. To test this hypothesis, we studied common marmosets because the cerebrum of marmosets has 2 distinct deep sulci, the calcarine and Sylvian fissures. MRI analysis, mercury assays of tissue specimens, histologic and histochemical studies of the brain are reported and discussed. Brains sacrificed early after exposure to methylmercury showed high contents of methylmercury and edema of the cerebral white matter. These results may explain the selective cortical degeneration along the deep cerebral fissures or sulci.

  5. Comparative Analysis of the Subventricular Zone in Rat, Ferret and Macaque: Evidence for an Outer Subventricular Zone in Rodents

    PubMed Central

    Camacho, Jasmin; Antczak, Jared L.; Prakash, Anish N.; Cziep, Matthew E.; Walker, Anita I.; Noctor, Stephen C.

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates. PMID:22272298

  6. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.

    PubMed

    Martínez-Cerdeño, Verónica; Cunningham, Christopher L; Camacho, Jasmin; Antczak, Jared L; Prakash, Anish N; Cziep, Matthew E; Walker, Anita I; Noctor, Stephen C

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.

  7. A network of networks model to study phase synchronization using structural connection matrix of human brain

    NASA Astrophysics Data System (ADS)

    Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.

    2018-04-01

    The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.

  8. Further studies on cortical tangential migration in wild type and Pax-6 mutant mice.

    PubMed

    Jiménez, D; López-Mascaraque, L; de Carlos, J A; Valverde, F

    2002-01-01

    In this study we present new data concerning the tangential migration from the medial and lateral ganglionic eminences (MGE and LGE) to the cerebral cortex during development. We have used Calbindin as a useful marker to follow the itinerary of tangential migratory cells during early developmental stages in wild-type and Pax-6 homozygous mutant mice. In the wild-type mice, at early developmental stages, migrating cells advance through the intermediate zone (IZ) and preplate (PP). At more advanced stages, migrating cells were present in the subplate (SP) and cortical plate (CP) to reach the entire developing cerebral cortex. We found that, in the homozygous mutant mice (Pax-6(Sey-Neu)/Pax-6(Sey-Neu)), this tangential migration is severely affected at early developmental stages: migrating cells were absent in the IZ, which were only found some days later, suggesting that in the mutant mice, there is a temporal delay in tangential migration. We have also defined some possible mechanisms to explain certain migratory routes from the basal telencephalon to the cerebral cortex. We describe the existence of two factors, which we consider to be essential for the normal migration; the first one is the cell adhesion molecule PSA-NCAM, whose role in other migratory systems is well known. The second factor is Robo-2, whose expression delimits a channel for the passage of migratory cells from the basal telencephalon to the cerebral cortex.

  9. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    PubMed

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen

    PubMed Central

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-01-01

    Glial calcium (Ca2+) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca2+ waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O2 tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca2+ activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology. PMID:23211964

  11. Enhanced accumulation of Kir4.1 protein, but not mRNA, in a murine model of cuprizone-induced demyelination.

    PubMed

    Nakajima, Mitsunari; Kawamura, Takuya; Tokui, Ryuji; Furuta, Kohei; Sugino, Mami; Nakanishi, Masayuki; Okuyama, Satoshi; Furukawa, Yoshiko

    2013-11-06

    Two channel proteins, inwardly rectifying potassium channel 4.1 (Kir4.1) and water channel aquaporin-4 (AQP4), were recently identified as targets of an autoantibody response in patients with multiple sclerosis and neuromyelitis optica, respectively. In the present study, we examined the expression patterns of Kir4.1 and AQP4 in a mouse model of demyelination induced by cuprizone, a copper chelator. Demyelination was confirmed by immunohistochemistry using an anti-proteolipid protein antibody in various brain regions, including the corpus callosum, of cuprizone-fed mice. Activation of microglial and astroglial cells was also confirmed by immunohistochemistry, using an anti-ionized calcium binding adapter molecule and a glial fibrillary acidic protein antibody. Western blot analysis revealed the induction of Kir4.1 protein, but not AQP4, in the cortex of cuprizone-fed mice. Immunohistochemical analysis confirmed the Kir4.1 protein induction in microvessels of the cerebral cortex. Real-time polymerase chain reaction analysis revealed that mRNA levels of Kir4.1 and AQP4 in the cortex did not change during cuprizone administration. These findings suggest that enhanced accumulation of Kir4.1 protein in the brain with an inflammatory condition facilitates the autoantibody formation against Kir4.1 in patients with multiple sclerosis. © 2013 Published by Elsevier B.V.

  12. Analysis of haptic information in the cerebral cortex

    PubMed Central

    2016-01-01

    Haptic sensing of objects acquires information about a number of properties. This review summarizes current understanding about how these properties are processed in the cerebral cortex of macaques and humans. Nonnoxious somatosensory inputs, after initial processing in primary somatosensory cortex, are partially segregated into different pathways. A ventrally directed pathway carries information about surface texture into parietal opercular cortex and thence to medial occipital cortex. A dorsally directed pathway transmits information regarding the location of features on objects to the intraparietal sulcus and frontal eye fields. Shape processing occurs mainly in the intraparietal sulcus and lateral occipital complex, while orientation processing is distributed across primary somatosensory cortex, the parietal operculum, the anterior intraparietal sulcus, and a parieto-occipital region. For each of these properties, the respective areas outside primary somatosensory cortex also process corresponding visual information and are thus multisensory. Consistent with the distributed neural processing of haptic object properties, tactile spatial acuity depends on interaction between bottom-up tactile inputs and top-down attentional signals in a distributed neural network. Future work should clarify the roles of the various brain regions and how they interact at the network level. PMID:27440247

  13. Assessment transcallosal Diaschisis in a model of focal cerebral ischemia in rats

    PubMed Central

    Muñoz Ospina, Beatriz Elena; Castaño, Daniel Manrique; Potes, Laura; Umbarila Prieto, John

    2016-01-01

    Objective: To evaluate transcallosal changes after a local ischemic injury in rats by using the monoclonal marker anti-NeuN (Mouse anti-neuronal nuclei). Methods: Twenty-eight adult, male, Wistar rats were subjected to focal injury in the right hemisphere. The technique used was the experimental model of focal ischemic injury through intraluminal suture of the middle cerebral artery. Analyses were made for the five groups: after the lesion (control), at 24 h, 96 h, 10 days and 20 days. Exofocal neuronal damage was inferred from neuronal immunoreactivity changes to NeuN. Results: In the cortex contralateral to the lesion, immunoreactivity was diminished. This finding was most notable in the supra-granular sheets 24 h post ischemia. After 96 h, there was a generalized diminishment of the inmmunoreactivity in the supra and infra-granular sheets. At 10 and 20 days, the tissue recovered some immunoreactivity to NeuN, but there were some changes in the VI layer. Conclusion: The immunoreactive changes to NeuN support the process of inter-hemispheric diaschisis. Changes in immunoreactivity could indicate metabolic stress secondary to the disruption in connectivity to the site of lesion. PMID:27546930

  14. Receptors for VIP and PACAP in guinea pig cerebral cortex: effects on cyclic AMP synthesis and characterization by 125I-VIP binding.

    PubMed

    Zawilska, Jolanta B; Dejda, Agnieszka; Niewiadomski, Pawel; Gozes, Illana; Nowak, Jerzy Z

    2005-01-01

    Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in guinea pig cerebral cortex were characterized by (1) radioreceptor binding of 125I-labeled VIP (human/rat/porcine), and (2) cyclic AMP (cAMP) formation. Saturation analysis of 125I-VIP binding to membranes of guinea pig cerebral cortex resulted in a linear Scatchard plot, suggesting the presence of a single class of high-affinity receptor-binding sites, with a Kd of 0.63 nM and a B(max) of 77 fmol/mg protein. Various peptides from the PACAP/VIP/secretin family displaced the specific binding of 125I-VIP to guinea pig cerebrum with the relative rank order of potency: chicken VIP (cVIP) > or = PACAP38 approximately PACAP27 approximately guinea pig VIP (gpVIP) > or = mammalian (human/rat/porcine) VIP (mVIP) > peptide histidine-methionine (PHM) > peptide histidine-isoleucine (PHI) > secretin. Analysis of the competition curves revealed displacement of 125I-VIP from high- and lower-affinity binding sites, with IC50 values in the picomolar and the nanomolar range, respectively. About 70% of the specific 125I-VIP-binding sites in guinea pig cerebral cortex were sensitive to Gpp(NH)p, a nonhydrolyzable analog of GTP. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, cVIP, gpVIP, mVIP, PHM, and PHI stimulated cAMP production in [3H]adenine-prelabeled slices of guinea pig cerebral cortex in a concentration-dependent manner. Of the tested peptides, the most effective were PACAP38 and PACAP27, which at a 1 microM concentration produced a 17- to 19-fold rise in cAMP synthesis, increasing the nucleotide production to approx 11% conversion above the control value. The three forms of VIP (cVIP, mVIP, and gpVIP) at the highest concentration used, i.e., 3 microM, produced net increases in cAMP production in the range of 8-9% conversion, whereas 5 microM PHM and PHI, by, respectively, 6.7% and 4.9% conversion. It is concluded that cerebral cortex of guinea pig contains VPAC- type receptors positively linked to cAMP formation. In addition, the observed stronger action of PACAP (both PACAP38 and PACAP27), when compared to any form of VIP, on cAMP production in this tissue, suggests its interaction with both PAC1 and VPAC receptors.

  15. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex.

    PubMed

    Ji, Liting; Bishayee, Kausik; Sadra, Ali; Choi, Seunghyuk; Choi, Wooyul; Moon, Sungho; Jho, Eek-Hoon; Huh, Sung-Oh

    2017-07-04

    Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants.

    PubMed

    Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L

    2010-05-31

    Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex.

    PubMed

    Bifari, Francesco; Decimo, Ilaria; Pino, Annachiara; Llorens-Bobadilla, Enric; Zhao, Sheng; Lange, Christian; Panuccio, Gabriella; Boeckx, Bram; Thienpont, Bernard; Vinckier, Stefan; Wyns, Sabine; Bouché, Ann; Lambrechts, Diether; Giugliano, Michele; Dewerchin, Mieke; Martin-Villalba, Ana; Carmeliet, Peter

    2017-03-02

    Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2 + neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Imagery use and affective responses during exercise: an examination of cerebral hemodynamics using near-infrared spectroscopy.

    PubMed

    Tempest, Gavin; Parfitt, Gaynor

    2013-10-01

    Imagery, as a cognitive strategy, can improve affective responses during moderate-intensity exercise. The effects of imagery at higher intensities of exercise have not been examined. Further, the effect of imagery use and activity in the frontal cortex during exercise is unknown. Using a crossover design (imagery and control), activity of the frontal cortex (reflected by changes in cerebral hemodynamics using near-infrared spectroscopy) and affective responses were measured during exercise at intensities 5% above the ventilatory threshold (VT) and the respiratory compensation point (RCP). Results indicated that imagery use influenced activity of the frontal cortex and was associated with a more positive affective response at intensities above VT, but not RCP to exhaustion (p < .05). These findings provide direct neurophysiological evidence of imagery use and activity in the frontal cortex during exercise at intensities above VT that positively impact affective responses.

  19. Molecular and functional definition of the developing human striatum.

    PubMed

    Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena

    2014-12-01

    The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.

  20. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion.

    PubMed

    Kajimoto, Masaki; Ledee, Dolena R; Olson, Aaron K; Isern, Nancy G; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A

    2016-11-01

    Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography-mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis. © The Author(s) 2016.

  1. The effect of donepezil on increased regional cerebral blood flow in the posterior cingulate cortex of a patient with Parkinson's disease dementia.

    PubMed

    Imamura, Keiko; Wada-Isoe, Kenji; Kowa, Hisanori; Tanabe, Yoshio; Nakashima, Kenji

    2008-01-01

    It has been reported that the cholinesterase inhibitor, donepezil, improves cognitive decline in patients with Parkinson's disease dementia (PDD). However, this improvement was dominant for frontal lobe dysfunction, and the increase in the Mini-Mental State Examination (MMSE) score was minimal. We report a PDD patient with a decline of regional cerebral blood flow (rCBF) in the posterior cingulate cortex, precunei, and bilateral parietotemporal association cortex, as determined by single-photon emission computed tomography (SPECT) using the easy Z-scores imaging system (e-ZIS). Upon administration of donepezil, both the rCBF and MMSE score increased. The effectiveness of donepezil may vary based on the rCBF pattern in PDD.

  2. Alantolactone and Isoalantolactone Prevent Amyloid β25-35 -induced Toxicity in Mouse Cortical Neurons and Scopolamine-induced Cognitive Impairment in Mice.

    PubMed

    Seo, Ji Yeon; Lim, Soon Sung; Kim, Jiyoung; Lee, Ki Won; Kim, Jong-Sang

    2017-05-01

    Given the evidence for detoxifying/antioxidant enzyme-inducing activities by alantolactone (AL) and isoalantolactone (IAL), the purpose of this study was to investigate the effects of AL and IAL on Aβ 25-35 -induced cell death in mouse cortical neuron cells and to determine their effects on scopolamine-induced amnesia in mice. Our data demonstrated that both compounds effectively attenuated the cytotoxicity of Aβ 25-35 (10 μM) in neuronal cells derived from the mouse cerebral cortex. It was also found that the production of intracellular reactive oxygen species, including superoxide anion induced by Aβ 25-35 , was inhibited. Moreover, the administration of the sesquiterpenes reversed scopolamine-induced cognitive impairments as assessed by Morris water, Y-maze, and the passive avoidance tests, and the compounds decreased acetylcholinesterase (AChE) activities in a dose-dependent manner. Interestingly, AL and IAL did not improve scopolamine-induced cognitive deficit in Nrf2 -/- mice, suggesting that memory improvement by sesquiterpenes was mediated not only by the activation of the Nrf2 signaling pathway but also by their inhibitory activity against AChE. In conclusion, our results showed that AL and IAL had neuroprotective effects and reversed cognitive impairments induced by scopolamine in a mouse model. Therefore, AL and IAL deserve further study as potential therapeutic agents for reactive oxygen species-related neurodegenerative diseases. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. [Effect of nootropic agents on impulse activity of cerebral cortex neurons].

    PubMed

    Iasnetsov, V V; Pravdivtsev, V A; Krylova, I N; Kozlov, S B; Provornova, N A; Ivanov, Iu V; Iasnetsov, V V

    2001-01-01

    The effect of nootropes (semax, mexidol, and GVS-111) on the activity of individual neurons in various cerebral cortex regions was studied by microelectrode and microionophoresis techniques in cats immobilized by myorelaxants. It was established that the inhibiting effect of mexidol upon neurons in more than half of cases is prevented or significantly decreased by the GABA antagonists bicuculline and picrotoxin. The inhibiting effect of semax and GVS-111 upon neurons in more than half of cases is related to stimulation of the M-choline and NMDA receptors, respectively.

  4. Mental Symptoms in Huntington's Disease and a Possible Primary Aminergic Neuron Lesion

    NASA Astrophysics Data System (ADS)

    Mann, J. John; Stanley, Michael; Gershon, Samuel; Rossor, M.

    1980-12-01

    Monoamine oxidase activity was higher in the cerebral cortex and basal ganglia of patients dying from Huntington's disease than in controls. Enzyme kinetics and multiple substrate studies indicated that the increased activity was due to elevated concentrations of monoamine oxidase type B. Concentrations of homovanillic acid were increased in the cerebral cortex but not in the basal ganglia of brains of patients with Huntington's disease. These changes may represent a primary aminergic lesion that could underlie some of the mental symptoms of this disease.

  5. Gender differences in cerebral metabolism for color processing in mice: A PET/MRI Study.

    PubMed

    Njemanze, Philip C; Kranz, Mathias; Amend, Mario; Hauser, Jens; Wehrl, Hans; Brust, Peter

    2017-01-01

    Color processing is a central component of mammalian vision. Gender-related differences of color processing revealed by non-invasive functional transcranial Doppler ultrasound suggested right hemisphere pattern for blue/yellow chromatic opponency by men, and a left hemisphere pattern by women. The present study measured the accumulation of [18F]fluorodeoxyglucose ([18F]FDG) in mouse brain using small animal positron emission tomography and magnetic resonance imaging (PET/MRI) with statistical parametric mapping (SPM) during light stimulation with blue and yellow filters compared to darkness condition. PET revealed a reverse pattern relative to dark condition compared to previous human studies: Male mice presented with left visual cortex dominance for blue through the right eye, while female mice presented with right visual cortex dominance for blue through the left eye. We applied statistical parametric mapping (SPM) to examine gender differences in activated architectonic areas within the orbital and medial prefrontal cortex and related cortical and sub-cortical areas that lead to the striatum, medial thalamus and other brain areas. The metabolic connectivity of the orbital and medial prefrontal cortex evoked by blue stimulation spread through a wide range of brain structures implicated in viscerosensory and visceromotor systems in the left intra-hemispheric regions in male, but in the right-to-left inter-hemispheric regions in female mice. Color functional ocular dominance plasticity was noted in the right eye in male mice but in the left eye in female mice. This study of color processing in an animal model could be applied in the study of the role of gender differences in brain disease.

  6. [Research on activity evolution of cerebral cortex and hearing rehabilitation of congenitally deaf children after cochlear implant].

    PubMed

    Wang, X J; Liang, M J; Zhang, J P; Huang, H; Zheng, Y Q

    2017-11-05

    Objective: There is a significant difference in the hearing rehabilitation between the congenitally deaf children after cochlear implant(CI). The intrinsic mechanism that affects the hearing rehabilitation in patients was discussed from the perspective of evoked EEG source activity. Method: Firstly, we collected the ERP data from 23 patients and 10 control group children during 0, 3, 6, 9 and 12 months after CI. According to the hearing rehabilitation during 12 months after CI, the patients were divided into two groups: rehabilitation of "the good" and "the poor". Then we used sLORETA to show the changes in the groups of patients' cerebral cortex and compared with the control group. Result: Cross-modal reorganization of cerebral cortex exists in the congenitally deaf children. The cross-modal reorganization gradually degraded and the activity of the relevant cortex followed by normally after CI. There was a statistically significant difference( P < 0.05) in the temporal lobe and the associated cortex around parietal lobe between "the good" and "the poor" groups after 12 months. Conclusion: The normalization of the cross-modal reorganization in patients reflects the hearing rehabilitation after CI, especially the normalization of the activity of the temporal lobe and the associated cortex around parietal lobe, which influences the rehabilitation effect of the auditory function to some extent. This research demonstrated the detection of the mechanism has important significance for the hearing recovery training and evaluation of the hearing rehabilitation after CI. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  7. The Specification of Cortical Subcerebral Projection Neurons Depends on the Direct Repression of TBR1 by CTIP1/BCL11a.

    PubMed

    Cánovas, José; Berndt, F Andrés; Sepúlveda, Hugo; Aguilar, Rodrigo; Veloso, Felipe A; Montecino, Martín; Oliva, Carlos; Maass, Juan C; Sierralta, Jimena; Kukuljan, Manuel

    2015-05-13

    The acquisition of distinct neuronal fates is fundamental for the function of the cerebral cortex. We find that the development of subcerebral projections from layer 5 neurons in the mouse neocortex depends on the high levels of expression of the transcription factor CTIP1; CTIP1 is coexpressed with CTIP2 in neurons that project to subcerebral targets and with SATB2 in those that project to the contralateral cortex. CTIP1 directly represses Tbr1 in layer 5, which appears as a critical step for the acquisition of the subcerebral fate. In contrast, lower levels of CTIP1 in layer 6 are required for TBR1 expression, which directs the corticothalamic fate. CTIP1 does not appear to play a critical role in the acquisition of the callosal projection fate in layer 5. These findings unravel a key step in the acquisition of cell fate for closely related corticofugal neurons and indicate that differential dosages of transcriptions factors are critical to specify different neuronal identities. Copyright © 2015 the authors 0270-6474/15/357552-13$15.00/0.

  8. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    PubMed Central

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293

  9. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    PubMed

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  10. Superresolution Imaging of Aquaporin-4 Cluster Size in Antibody-Stained Paraffin Brain Sections

    PubMed Central

    Smith, Alex J.; Verkman, Alan S.

    2015-01-01

    The water channel aquaporin-4 (AQP4) forms supramolecular clusters whose size is determined by the ratio of M1- and M23-AQP4 isoforms. In cultured astrocytes, differences in the subcellular localization and macromolecular interactions of small and large AQP4 clusters results in distinct physiological roles for M1- and M23-AQP4. Here, we developed quantitative superresolution optical imaging methodology to measure AQP4 cluster size in antibody-stained paraffin sections of mouse cerebral cortex and spinal cord, human postmortem brain, and glioma biopsy specimens. This methodology was used to demonstrate that large AQP4 clusters are formed in AQP4−/− astrocytes transfected with only M23-AQP4, but not in those expressing only M1-AQP4, both in vitro and in vivo. Native AQP4 in mouse cortex, where both isoforms are expressed, was enriched in astrocyte foot-processes adjacent to microcapillaries; clusters in perivascular regions of the cortex were larger than in parenchymal regions, demonstrating size-dependent subcellular segregation of AQP4 clusters. Two-color superresolution imaging demonstrated colocalization of Kir4.1 with AQP4 clusters in perivascular areas but not in parenchyma. Surprisingly, the subcellular distribution of AQP4 clusters was different between gray and white matter astrocytes in spinal cord, demonstrating regional specificity in cluster polarization. Changes in AQP4 subcellular distribution are associated with several neurological diseases and we demonstrate that AQP4 clustering was preserved in a postmortem human cortical brain tissue specimen, but that AQP4 was not substantially clustered in a human glioblastoma specimen despite high-level expression. Our results demonstrate the utility of superresolution optical imaging for measuring the size of AQP4 supramolecular clusters in paraffin sections of brain tissue and support AQP4 cluster size as a primary determinant of its subcellular distribution. PMID:26682810

  11. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice.

    PubMed

    Cacciottolo, Mafalda; Christensen, Amy; Moser, Alexandra; Liu, Jiahui; Pike, Christian J; Smith, Conor; LaDu, Mary Jo; Sullivan, Patrick M; Morgan, Todd E; Dolzhenko, Egor; Charidimou, Andreas; Wahlund, Lars-Olof; Wiberg, Maria Kristofferson; Shams, Sara; Chiang, Gloria Chia-Yi; Finch, Caleb E

    2016-01-01

    The apolipoprotein APOE4 allele confers greater risk of Alzheimer's disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in 2 clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes (5XFAD (+/-) /human APOE(+/+)). At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy, plaques, and soluble Aβ also showed female excess. Both the cerebral microbleeds and cerebral amyloid angiopathy increased in proportion to individual Aβ load. In humans, the opposite sex bias of APOE4 allele for microbleeds versus the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cerebral Myiasis Associated with Artificial Cranioplasty Flap: A Case Report.

    PubMed

    Giri, Sachin Ashok; Kotecha, Nitin; Giri, Deepali; Diyora, Batuk; Nayak, Naren; Sharma, Alok

    2016-03-01

    Cranioplasty is a commonly performed procedure for the repair of cranial defects. Various materials have been used for this procedure and have a good safety profile. Human cerebral myiasis is an exceedingly rare condition. It involves the invasion of live or dead human tissues by larvae of the insect species dipterous. We describe the first case of cerebral myiasis associated with an artificial cranioplasty bone flap. There was delayed cerebral cortex infestation of the species dipterous after cranioplasty with polymethyl methacrylate bone flap. The patient initially presented with an acute subdural hematoma and contaminated, comminuted frontal bone fracture that required craniectomy with interval cranioplasty at 3 months. Two years after the index procedure, the patient presented for neurosurgical follow-up because of 2 months of nonhealing ulcers and a foul smell emanating from the cranioplasty site, as well as acute onset of unilateral arm and leg weakness. Surgical exploration found live larvae invading the dura and cerebral cortex, an area that was thoroughly debrided with good outcomes for the patient. Cerebral myiasis can be managed via surgical and antibiotic therapy to obtain a good clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography

    PubMed Central

    Merkle, Conrad W.; Srinivasan, Vivek J.

    2015-01-01

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. PMID:26477654

  14. Role of Liver X Receptor in AD Pathophysiology

    PubMed Central

    Sandoval-Hernández, Adrián G.; Buitrago, Luna; Moreno, Herman; Cardona-Gómez, Gloria Patricia; Arboleda, Gonzalo

    2015-01-01

    Alzheimer's disease (AD) is the major cause of dementia worldwide. The pharmacological activation of nuclear receptors (Liver X receptors: LXRs or Retinoid X receptors: RXR) has been shown to induce overexpression of the ATP-Binding Cassette A1 (ABCA1) and Apolipoprotein E (ApoE), changes that are associated with improvement in cognition and reduction of amyloid beta pathology in amyloidogenic AD mouse models (i.e. APP, PS1: 2tg-AD). Here we investigated whether treatment with a specific LXR agonist has a measurable impact on the cognitive impairment in an amyloid and Tau AD mouse model (3xTg-AD: 12-months-old; three months treatment). The data suggests that the LXR agonist GW3965 is associated with increased expression of ApoE and ABCA1 in the hippocampus and cerebral cortex without a detectable reduction of the amyloid load. We also report that most cells overexpressing ApoE (86±12%) are neurons localized in the granular cell layer of the hippocampus and entorhinal cortex. In the GW3965 treated 3xTg-AD mice we also observed reduction in astrogliosis and increased number of stem and proliferating cells in the subgranular zone of the dentate gyrus. Additionally, we show that GW3965 rescued hippocampus long term synaptic plasticity, which had been disrupted by oligomeric amyloid beta peptides. The effect of GW3965 on synaptic function was protein synthesis dependent. Our findings identify alternative functional/molecular mechanisms by which LXR agonists may exert their potential benefits as a therapeutic strategy against AD. PMID:26720273

  15. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography.

    PubMed

    Merkle, Conrad W; Srinivasan, Vivek J

    2016-01-15

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The effects of L-arginine on cerebral hemodynamics after controlled cortical impact injury in the mouse.

    PubMed

    Liu, Hao; Goodman, J Clay; Robertson, Claudia S

    2002-03-01

    Traumatic brain injury (TBI) induces vascular changes that may influence neurological outcome by causing the brain to be more susceptible to secondary ischemic insults. In rat models of TBI, L-arginine administration has been shown to restore cerebral blood flow and improve neurological outcome. The purpose of this study was to determine if hypoperfusion occurs in a mouse model of TBI and if L-arginine administration has the same beneficial effects after injury in the mouse. C57BL6 mice were anesthetized with isoflurane, intubated and mechanically ventilated, and underwent a 3-m/sec, 1.5-mm deformation cortical impact injury. Five minutes after injury, L-arginine, 300 mg/kg, or saline were administered. Arterial blood pressure, intracranial pressure, and laser Doppler flow at the impact site were monitored for 3 h after the injury. The cerebral hemodynamic effects of the TBI induced by cortical impact injury were similar to that previously observed in rats. Intracranial hypertension, with ICP peaking at 46+/-2 mm Hg, and systemic hypotension both contributed to a reduction in CPP. In addition, LDF decreased significantly at the impact site. L-Arginine administration restored LDF to near baseline levels without increasing ICP. These studies demonstrate that cerebral hemodynamics can be measured in mouse models of TBI. The changes in cerebral hemodynamics are relatively simlar to those see in the rat model of cortical impact injury and suggest an important role for nitric oxide metabolism in the maintenance of cerebral blood flow following TBI.

  17. Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex

    NASA Astrophysics Data System (ADS)

    Mesquita, Rickson C.; Faseyitan, Olufunsho K.; Turkeltaub, Peter E.; Buckley, Erin M.; Thomas, Amy; Kim, Meeri N.; Durduran, Turgut; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Hamilton, Roy H.

    2013-06-01

    Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects.

  18. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury

    PubMed Central

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G.; Hovda, David A.; Sutton, Richard L.

    2013-01-01

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients’ remains under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose metabolism and neuronal injury in a rodent model of unilateral controlled cortical impact (CCI) injury. In Experiment 1, a single episode of hyperglycemia (50% glucose at 2 g/kg, i.p.) initiated immediately after CCI was found to significantly attenuate a TBI-induced depression of glucose metabolism in cerebral cortex (4 of 6 regions) and subcortical regions (2 of 7) as well as to significantly reduce the number of dead/dying neurons in cortex and hippocampus at 24 h post-CCI. Experiment 2 examined effects of more prolonged and intermittent hyperglycemia induced by glucose administrations (2 g/kg, i.p.) at 0, 1, 3 and 6 h post-CCI. The latter study also found significantly improved cerebral metabolism (in 3 of 6 cortical and 3 of 7 subcortical regions) and significant neuroprotection in cortex and hippocampus 1 day after CCI and glucose administration. These results indicate that acute episodes of post-TBI hyperglycemia can be beneficial and are consistent with other recent studies showing benefits of providing exogenous energy substrates during periods of increased cerebral metabolic demand. PMID:23994447

  19. Neuroprotective mechanism of BNG-1 against focal cerebral ischemia: a neuroimaging and neurotrophin study.

    PubMed

    Chi, Nai-Fang; Liu, Ho-Ling; Yang, Jen-Tsung; Lin, Jr-Rung; Liao, Shu-Li; Peng, Bo-Han; Lee, Yen-Tung; Lee, Tsong-Hai

    2014-01-01

    BNG-1 is a herb complex used in traditional Chinese medicine to treat stroke. In this study, we attempted to identify the neuroprotective mechanism of BNG-1 by using neuroimaging and neurotrophin analyses of a stroke animal model. Rats were treated with either saline or BNG-1 for 7 d after 60-min middle cerebral artery occlusion by filament model. The temporal change of magnetic resonance (MR) imaging of brain was studied using a 7 Tesla MR imaging (MRI) system and the temporal expressions of neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in brain were analyzed before operation and at 4 h, 2 d, and 7 d after operation. Compared with the saline group, the BNG-1 group exhibited a smaller infarction volume in the cerebral cortex in T2 image from as early as 4 h to 7 d, less edema in the cortex in diffusion weighted image from 2 to 7 d, earlier reduction of postischemic hyperperfusion in both the cortex and striatum in perfusion image at 4 h, and earlier normalization of the ischemic pattern in the striatum in susceptibility weighted image at 2 d. NT-3 and BDNF levels were higher in the BNG-1 group than the saline group at 7 d. We concluded that the protective effect of BNG-1 against cerebral ischemic injury might act through improving cerebral hemodynamics and recovering neurotrophin generation.

  20. The difference in the effect of glutamate and NO synthase inhibitor on free calcium concentration and Na+, K+-ATPase activity in synaptosomes from various brain regions.

    PubMed

    Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Leont'ev, V G

    1999-09-01

    The significant increase of free calcium concentration ([Ca2+]i) was found in rat cerebral cortex synaptosomes and hippocampal crude synaptosomal fraction after their exposure to glutamate. But no change of [Ca2+]i was revealed in cerebellar synaptosomes, the slight increase of [Ca2+]i in striatal synaptosomes was not significant. The presence of Ng-nitro-L-arginine methyl ester (L-NAME) in the incubation medium practically prevented the increase of [Ca2+]i initiated by glutamate in cerebral cortex synaptosomes, but not in hippocampal ones. The significant diminution of [Ca2+]i in the presence of this inhibitor was shown in striatal synaptosomes exposed to glutamate. Na+,K+-ATPase activity is significantly lower in cerebral cortex, striatal and hippocampal synaptosomes exposed to glutamate. L-NAME prevented the inactivation of this enzyme by glutamate. In cerebellar synaptosomes the tendency to the decrease of enzymatic activity in the presence of L-NAME was on the contrary noticed. Thus, the data obtained provide evidence of the protective effect of NO synthase inhibitor in brain cortex and striatal synaptosomes, but not in cerebellar synaptosomes. Synaptosomes appear to be an adequate model to study the regional differences in the mechanism of toxic effect of excitatory amino acids.

  1. Dogs Have the Most Neurons, Though Not the Largest Brain: Trade-Off between Body Mass and Number of Neurons in the Cerebral Cortex of Large Carnivoran Species

    PubMed Central

    Jardim-Messeder, Débora; Lambert, Kelly; Noctor, Stephen; Pestana, Fernanda M.; de Castro Leal, Maria E.; Bertelsen, Mads F.; Alagaili, Abdulaziz N.; Mohammad, Osama B.; Manger, Paul R.; Herculano-Houzel, Suzana

    2017-01-01

    Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons. PMID:29311850

  2. Dogs Have the Most Neurons, Though Not the Largest Brain: Trade-Off between Body Mass and Number of Neurons in the Cerebral Cortex of Large Carnivoran Species.

    PubMed

    Jardim-Messeder, Débora; Lambert, Kelly; Noctor, Stephen; Pestana, Fernanda M; de Castro Leal, Maria E; Bertelsen, Mads F; Alagaili, Abdulaziz N; Mohammad, Osama B; Manger, Paul R; Herculano-Houzel, Suzana

    2017-01-01

    Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons.

  3. MRI-based morphometric characterizations of sexual dimorphism of the cerebrum of ferrets (Mustela putorius).

    PubMed

    Sawada, Kazuhiko; Horiuchi-Hirose, Miwa; Saito, Shigeyoshi; Aoki, Ichio

    2013-12-01

    The present study aimed to characterize cerebral morphology in young adult ferrets and its sexual dimorphism using high-field MRI and MRI-based morphometry. Ex vivo short TR/TE (typical T1-weighted parameter setting for conventional MRI) and T2W (long TR/TE) MRI with high spatial resolution at 7-tesla could visualize major subcortical and archicortical structures, i.e., the caudate nucleus, lentiform nucleus, amygdala and hippocampus. In particular, laminar organization of the olfactory bulb was identifiable by short TR/TE-MRI. The primary and secondary sulci observable in the adult ferret were distinguishable on either short TR/TE- or T2W-MRI, and the cortical surface morphology was reproduced well by 3D-rendered images obtained by short TR/TE-MRI. The cerebrum had a significantly lower volume in females than in males, which was attributed to region-specific volume reduction in the cerebral cortex and subcortical white matter in females. A sexual difference was also detected, manifested by an overall reduction in normalized signal ratios of short TR/TE-MRI in all cerebral structures examined in females than in males. On the other hand, an alternating array of higher and lower short TR/TE-MRI intensity transverse zones throughout the cortex, which was reminiscent of the functional cortical areas, was revealed by maximum intensity projection (MIP) in 3D. The normalized signal ratio of short TR/TE-MRI, but not T2W-MRI in the cortex, was negatively correlated with the density of myelin-basic protein immunoreactive fibers (males, r=-0.440; females, r=-0.481). The present results suggest that sexual differences in the adult ferret cerebrum are characterized by reduced volumes of the cerebral cortex and subcortical white matter in females, and by overall reductions in physiochemical characteristics, as obtained by short TR/TE-MRI, in females. It should be noted that short TR/TE-MRI-based MIP delineated functional cortical areas related to myeloarchitecture in 3D. Such an approach makes possible conventional investigation of the functional organization of the cerebral cortex and its abnormalities using high-field MRI. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Effect of chronic usage of tramadol on motor cerebral cortex and testicular tissues of adult male albino rats and the effect of its withdrawal: histological, immunohistochemical and biochemical study.

    PubMed

    Ghoneim, Fatma M; Khalaf, Hanaa A; Elsamanoudy, Ayman Z; Helaly, Ahmed N

    2014-01-01

    This study was designed to demonstrate the histopathological and biochemical changes in rat cerebral cortex and testicles due to chronic usage of tramadol and the effect of withdrawal. Thirty adult male rats weighing 180-200 gm were classified into three groups; group I (control group) group II (10 rats received 50 mg/kg/day of tramadol intraperitoneally for 4 weeks) and group III (10 rats received the same dose as group II then kept 4 weeks later to study the effect of withdrawal). Histological and immunohistochemical examination of cerebral cortex and testicular specimens for Bax (apoptotic marker) were carried out. Testicular specimens were examined by electron microscopy. RT-PCR after RNA extraction from both specimens was done for the genes of some antioxidant enzymes .Also, malondialdehyde (MDA) was measured colourimetrically in tissues homogenizate. The results of this study demonstrated histological changes in testicular and brain tissues in group II compared to group I with increased apoptotic index proved by increased Bax expression. Moreover in this group increased MDA level with decreased gene expression of the antioxidant enzymes revealed oxidative stress. Group III showed signs of improvement but not returned completely normal. It could be concluded that administration of tramadol have histological abnormalities on both cerebral cortex and testicular tissues associated with oxidative stress in these organs. Also, there is increased apoptosis in both organs which regresses with withdrawal. These findings may provide a possible explanation for delayed fertility and psychological changes associated with tramadol abuse.

  5. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    PubMed

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  6. Enhanced electrical responsiveness in the cerebral cortex with oral melatonin administration after a small hemorrhage near the internal capsule in rats.

    PubMed

    Ueda, Yoshitomo; Masuda, Tadashi; Ishida, Akimasa; Misumi, Sachiyo; Shimizu, Yuko; Jung, Cha-Gyun; Hida, Hideki

    2014-11-01

    Intracerebral hemorrhage (ICH) can cause direct brain injury at the insult site and indirect damage in remote brain areas. Although a protective effect of melatonin (ML) has been reported for ICH, its detailed mechanisms and effects on remote brain injury remain unclear. To clarify the mechanism of indirect neuroprotection after ICH, we first investigated whether ML improved motor function after ICH and then examined the underlying mechanisms. The ICH model rat was made by collagenase injection into the left globus pallidus, adjacent to the internal capsule. ML oral administration (15 mg/kg) for 7 days after ICH resulted in significant recovery of motor function. Retrograde labeling of the corticospinal tract by Fluoro-Gold revealed a significant increase in numbers of positive neurons in the cerebral cortex. Immunohistological analysis showed that ML treatment induced no difference in OX41-positive activated microglia/macrophage at day 1 (D1) but a significant reduction in 8-hydroxydeoxyguanosin-positive cells at D7. Neutral red assay revealed that ML significantly prevented H2 O2 -induced cell death in cultured oligodendrocytes and astrocytes but not in neurons. Electrophysiological response in the cerebral cortex area where the number of Fluoro-Gold-positive cells was increased was significantly improved in ML-treated rats. These data suggest that ML improves motor abilities after ICH by protecting oligodendrocytes and astrocytes in the vicinity of the lesion in the corticospinal tract from oxidative stress and causes enhanced electrical responsiveness in the cerebral cortex remote to the ICH pathology. Copyright © 2014 Wiley Periodicals, Inc.

  7. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    PubMed

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.

  8. Activation of adenosine A(1) receptors alters behavioral and biochemical parameters in hyperthyroid rats.

    PubMed

    Bruno, Alessandra Nejar; Fontella, Fernanda Urruth; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Dalmaz, Carla; Sarkis, João José Freitas

    2006-02-28

    Adenosine acting on A(1) receptors has been related with neuroprotective and neuromodulatory actions, protection against oxidative stress and decrease of anxiety and nociceptive signaling. Previous studies demonstrated an inhibition of the enzymes that hydrolyze ATP to adenosine in the rat central nervous system after hyperthyroidism induction. Manifestations of hyperthyroidism include increased anxiety, nervousness, high O(2) consumption and physical hyperactivity. Here, we investigated the effects of administration of a specific agonist of adenosine A(1) receptor (N(6)-cyclopentyladenosine; CPA) on nociception, anxiety, exploratory response, locomotion and brain oxidative stress of hyperthyroid rats. Hyperthyroidism was induced by daily intraperitoneal injections of l-thyroxine (T4) for 14 days. Nociception was assessed with a tail-flick apparatus and exploratory behavior, locomotion and anxiety were analyzed by open-field and plus-maze tests. We verified the total antioxidant reactivity (TAR), lipid peroxide levels by the thiobarbituric acid reactive species (TBARS) reaction and the free radicals content by the DCF test. Our results demonstrated that CPA reverted the hyperalgesia induced by hyperthyroidism and decreased the exploratory behavior, locomotion and anxiety in hyperthyroid rats. Furthermore, CPA decreased lipid peroxidation in hippocampus and cerebral cortex of control rats and in cerebral cortex of hyperthyroid rats. CPA also increased the total antioxidant reactivity in hippocampus and cerebral cortex of control and hyperthyroid rats, but the production of free radicals verified by the DCF test was changed only in cerebral cortex. These results suggest that some of the hyperthyroidism effects are subjected to regulation by adenosine A(1) receptor, demonstrating the involvement of the adenosinergic system in this pathology.

  9. Perinatal asphyxia results in changes in presynaptic bouton number in striatum and cerebral cortex-a stereological and behavioral analysis.

    PubMed

    Van de Berg, W D; Blokland, A; Cuello, A C; Schmitz, C; Vreuls, W; Steinbusch, H W; Blanco, C E

    2000-10-01

    Deficits in cognitive function have been related to quantitative changes in synaptic population, particularly in the cerebral cortex. Here, we used an established model of perinatal asphyxia that induces morphological changes, i.e. neuron loss in the cerebral cortex and striatum, as well as behavioural deficits. We hypothesized that perinatal asphyxia may lead to a neurodegenerative process resulting in cognitive impairment and altered presynaptic bouton numbers in adult rats. We studied cognitive performance at 18 months and presynaptic bouton numbers at 22 months following perinatal asphyxia. Data of the spatial Morris water escape task did not reveal clear memory or learning deficits in aged asphyctic rats compared to aged control rats. However, a memory impairment in aged rats versus young rats was observed, which was more pronounced in asphyctic rats. We found an increase in presynaptic bouton density in the parietal cortex, whereas no changes were found in striatum and frontal cortex in asphyctic rats. An increase of striatal volume was observed in asphyctic rats, leading to an increase in presynaptic bouton numbers in this area. These findings stress the issue that volume measurements have to be taken into account when determining presynaptic bouton density. Furthermore, perinatal asphyxia led to region-specific changes in presynaptic bouton numbers and it worsened the age-related cognitive impairment. These results suggest that perinatal asphyxia induced neuronal loss, which is compensated for by an increase in presynaptic bouton numbers.

  10. The Neural Mechanism Exploration of Adaptive Motor Control: Dynamical Economic Cell Allocation in the Primary Motor Cortex.

    PubMed

    Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping

    2017-05-01

    Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.

  11. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  12. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications.more » Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.« less

  13. Fructo-oligosaccharide systemically diminished D-galactose-induced oxidative molecule damages in BALB/cJ mice.

    PubMed

    Hsia, Chien-Hsun; Wang, Cheng-Hsin; Kuo, Yi-Wen; Ho, Ying-Jui; Chen, Hsiao-Ling

    2012-06-01

    Subcutaneous (s.c.) D-galactose (DG) treatment has been shown to facilitate the development of biomarkers for Alzheimer's disease in C57BL/6J mice. The aim of the present study was to determine whether this treatment in young BALB/cJ mice, another mouse strain, enhanced oxidative stress to similar extents shown in older mice, and to further determine the effects of fructo-oligosaccharide (FO), a prebiotic fibre and vitamin E (antioxidant control) on the DG-induced oxidative damage of lipids, proteins and mitochondrial DNA, and erythrocyte antioxidant enzyme activities. Mice (12 weeks of age, n 40) were divided into four groups: vehicle (s.c. saline)+control (modified rodent chow); DG (s.c. 1·2 g/kg body weight)+control; DG+FO (5 %, w/w); DG+vitamin E (α-tocopherol, 0·2 %). Then, the animals were killed after 52 d of treatment. Another natural ageing (NA) group without any injection was killed at 47 weeks of age, which served as an aged control. The results indicated that the DG treatment enhanced malonaldehyde dimethyl acetal (MDA) levels in the plasma, liver and cerebral cortex, and protein carbonyl levels in the liver and hippocampus to similar levels shown in the NA group. FO, similar to α-tocopherol, systemically normalised DG-induced elevations in the levels of MDA in the plasma, liver and cerebral cortex, protein carbonyls in the liver and hippocampus, hepatic mitochondrial 8-oxo-deoxyguanosine and erythrocyte superoxide dismutase activity. In conclusion, the s.c. DG treatment in younger BALB/cJ mice resembled the oxidative status in older mice. FO supplementation systemically prevented DG-induced oxidative stress, probably through its fermentation products and prebiotic effect.

  14. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T₃in the mouse cerebral cortex.

    PubMed

    Hernandez, Arturo; Morte, Beatriz; Belinchón, Mónica M; Ceballos, Ainhoa; Bernal, Juan

    2012-06-01

    Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T(3) to nuclear receptors. Brain T(3) concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T(4) and T(3). We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T(3) led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T(3) treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T(3) action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T(3) concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.

  15. Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs)

    PubMed Central

    Herculano-Houzel, Suzana; Ribeiro, Pedro; Campos, Leandro; Valotta da Silva, Alexandre; Torres, Laila B.; Catania, Kenneth C.; Kaas, Jon H.

    2011-01-01

    Brain size scales as different functions of its number of neurons across mammalian orders such as rodents, primates, and insectivores. In rodents, we have previously shown that, across a sample of 6 species, from mouse to capybara, the cerebral cortex, cerebellum and the remaining brain structures increase in size faster than they gain neurons, with an accompanying decrease in neuronal density in these structures [Herculano-Houzel et al.: Proc Natl Acad Sci USA 2006;103:12138–12143]. Important remaining questions are whether such neuronal scaling rules within an order apply equally to all pertaining species, and whether they extend to closely related taxa. Here, we examine whether 4 other species of Rodentia, as well as the closely related rabbit (Lagomorpha), conform to the scaling rules identified previously for rodents. We report the updated neuronal scaling rules obtained for the average values of each species in a way that is directly comparable to the scaling rules that apply to primates [Gabi et al.: Brain Behav Evol 2010;76:32–44], and examine whether the scaling relationships are affected when phylogenetic relatedness in the dataset is accounted for. We have found that the brains of the spiny rat, squirrel, prairie dog and rabbit conform to the neuronal scaling rules that apply to the previous sample of rodents. The conformity to the previous rules of the new set of species, which includes the rabbit, suggests that the cellular scaling rules we have identified apply to rodents in general, and probably to Glires as a whole (rodents/lagomorphs), with one notable exception: the naked mole-rat brain is apparently an outlier, with only about half of the neurons expected from its brain size in its cerebral cortex and cerebellum. PMID:21985803

  16. Modest changes in cerebral glucose metabolism in patients with sleep apnea syndrome after continuous positive airway pressure treatment.

    PubMed

    Ju, Gawon; Yoon, In-Young; Lee, Sang Don; Kim, Yu Kyeong; Yoon, Eunjin; Kim, Jeong-Whun

    2012-01-01

    Decreased cerebral glucose metabolism has been reported in patients with sleep apnea syndrome (SAS), but it has yet to be decided whether cerebral glucose metabolism in SAS can be altered by continuous positive airway pressure (CPAP) treatment. The aim of this study was to evaluate cerebral glucose metabolism changes in patients with SAS after CPAP treatment. Thirteen middle-aged male patients with severe SAS [mean age 49.3 ± 7.2 years, mean apnea-hypopnea index (AHI) 60.4 ± 21.2] and 13 male controls (mean age 46.0 ± 9.4 years, mean AHI 4.1 ± 3.7) participated in the study. All 26 study subjects underwent fluorodeoxyglucose-positron emission tomography (FDG-PET), but SAS patients underwent FDG-PET twice, namely before and 3 months after acceptable CPAP usage. Significant hypometabolism was observed in the bilateral prefrontal areas, left cuneus and left cingulate cortex of SAS patients before CPAP, and after CPAP, significant increases in cortical glucose metabolism were observed in the bilateral precentral gyri and left anterior cingulate cortex. However, these improvements in hypometabolism in both areas were insufficient to reach control levels, and hypometabolism in other regions persisted after CPAP treatment. Reduced cerebral glucose metabolism in the precentral gyrus and the cingulate cortex in patients with SAS was modestly improved by acceptable CPAP treatment. The findings of this study suggest that acceptable CPAP usage cannot completely reverse reduced cerebral glucose metabolism in SAS patients. Further studies are required to evaluate the long-term effects of CPAP treatment with total compliance. Copyright © 2012 S. Karger AG, Basel.

  17. Local Circuit Inhibition in the Cerebral Cortex as the source of Gain Control and Untuned Suppression

    PubMed Central

    Shapley, Robert M.; Xing, Dajun

    2012-01-01

    Theoretical considerations have led to the concept that the cerebral cortex is operating in a balanced state in which synaptic excitation is approximately balanced by synaptic inhibition from the local cortical circuit. This paper is about the functional consequences of the balanced state in sensory cortex. One consequence is gain control: there is experimental evidence and theoretical support for the idea that local circuit inhibition acts as a local automatic gain control throughout the cortex. Second, inhibition increases cortical feature selectivity: many studies of different sensory cortical areas have reported that suppressive mechanisms contribute to feature selectivity. Synaptic inhibition from the local microcircuit should be untuned (or broadly tuned) for stimulus features because of the microarchitecture of the cortical microcircuit. Untuned inhibition probably is the source of Untuned Suppression that enhances feature selectivity. We studied inhibition’s function in our experiments, guided by a neuronal network model, on orientation selectivity in the primary visual cortex, V1, of the Macaque monkey. Our results revealed that Untuned Suppression, generated by local circuit inhibition, is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:23036513

  18. Surface Based Analysis of Diffusion Orientation for Identifying Architectonic Domains in the In Vivo Human Cortex

    PubMed Central

    McNab, Jennifer A.; Polimeni, Jonathan R.; Wang, Ruopeng; Augustinack, Jean C.; Fujimoto, Kyoko; Player, Allison; Janssens, Thomas; Farivar, Reza; Folkerth, Rebecca D.; Vanduffel, Wim; Wald, Lawrence L.

    2012-01-01

    Diffusion tensor MRI is sensitive to the coherent structure of brain tissue and is commonly used to study large-scale white matter structure. Diffusion in grey matter is more isotropic, however, several groups have observed coherent patterns of diffusion anisotropy within the cerebral cortical grey matter. We extend the study of cortical diffusion anisotropy by relating it to the local coordinate system of the folded cerebral cortex. We use 1mm and sub-millimeter isotropic resolution diffusion imaging to perform a laminar analysis of the principal diffusion orientation, fractional anisotropy, mean diffusivity and partial volume effects. Data from 6 in vivo human subjects, a fixed human brain specimen and an anesthetized macaque were examined. Large regions of cortex show a radial diffusion orientation. In vivo human and macaque data displayed a sharp transition from radial to tangential diffusion orientation at the border between primary motor and somatosensory cortex, and some evidence of tangential diffusion in secondary somatosensory cortex and primary auditory cortex. Ex vivo diffusion imaging in a human tissue sample showed some tangential diffusion orientation in S1 but mostly radial diffusion orientations in both M1 and S1. PMID:23247190

  19. The Complexity of Clinical Huntington's Disease: Developments in Molecular Genetics, Neuropathology and Neuroimaging Biomarkers.

    PubMed

    Tippett, Lynette J; Waldvogel, Henry J; Snell, Russell G; Vonsattel, Jean-Paul; Young, Anne B; Faull, Richard L M

    2017-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterised by extensive neuronal loss in the striatum and cerebral cortex, and a triad of clinical symptoms affecting motor, cognitive/behavioural and mood functioning. The mutation causing HD is an expansion of a CAG tract in exon 1 of the HTT gene. This chapter provides a multifaceted overview of the clinical complexity of HD. We explore recent directions in molecular genetics including the identification of loci that are genetic modifiers of HD that could potentially reveal therapeutic targets beyond the HTT gene transcript and protein. The variability of clinical symptomatology in HD is considered alongside recent findings of variability in cellular and neurochemical changes in the striatum and cerebral cortex in human brain. We review evidence from structural neuroimaging methods of progressive changes of striatum, cerebral cortex and white matter in pre-symptomatic and symptomatic HD, with a particular focus on the potential identification of neuroimaging biomarkers that could be used to test promising disease-specific and modifying treatments. Finally we provide an overview of completed clinical trials in HD and future therapeutic developments.

  20. Alteration in 5-HT₂C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri.

    PubMed

    Krishnakumar, Amee; Anju, T R; Abraham, Pretty Mary; Paulose, C S

    2015-01-01

    Bacopa monnieri is effective in stress management, brain function and a balanced mood. 5-HT2C receptors have been implicated in stress whereas NMDA receptors and mGlu5 play crucial role in memory and cognition. In the present study, we investigated the role of B. monnieri extract in ameliorating pilocarpine induced temporal lobe epilepsy through regulation of 5-HT2C and NMDA receptors in cerebral cortex. Our studies confirmed an increased 5-HT2C receptor function during epilepsy thereby facilitating IP3 release. We also observed an decreased NMDA receptor function with an elevated mGlu5 and GLAST gene expression in epileptic condition indicating the possibility for glutamate mediated excitotoxicity. These alterations lead to impaired behavioural functions as indicated by the Elevated Plus maze test. Carbamazepine and B. monnieri treatments to epileptic rats reversed the alterations in 5-HT2C, NMDA receptor functions and IP3 content thereby effectively managing the neurotransmitter balance in the cerebral cortex.

  1. Compound of icariin, astragalus, and puerarin mitigates iron overload in the cerebral cortex of Alzheimer's disease mice.

    PubMed

    Zhang, Yu; Kong, Wei-Na; Chai, Xi-Qing

    2018-04-01

    Increasing evidence indicates that disruption of normal iron homeostasis may contribute to pathological development of Alzheimer's disease. Icariin, astragalus, and puerarin have been shown to suppress iron overload in the cerebral cortex and improve spatial learning and memory disorders in Alzheimer's disease mice, although the underlying mechanism remains unclear. In the present study, APPswe/PS1ΔE9 transgenic mice were administered icariin, astragalus, and puerarin (120, 80, and 80 mg/kg, respectively, once a day, for 3 months). Iron levels were detected by flame atomic absorption spectroscopy. Interleukin-1β, interleukin-6, and tumor necrosis factor-α levels were measured in the cerebral cortex by enzyme linked immunosorbent assay. Glutathione peroxidase and superoxide dismutase activity and malondialdehyde content were determined by colorimetry. Our results demonstrate that after treatment, iron levels and malondialdehyde content are decreased, while glutathione peroxidase and superoxide dismutase activities are increased. Further, interleukin-1β, interleukin-6, and tumor necrosis factor-α levels were reduced. These results confirm that compounds of icariin, astragalus, and puerarin may alleviate iron overload by reducing oxidative stress and the inflammatory response.

  2. Aging Exacerbates Obesity-induced Cerebromicrovascular Rarefaction, Neurovascular Uncoupling, and Cognitive Decline in Mice

    PubMed Central

    Tucsek, Zsuzsanna; Toth, Peter; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Warrington, Junie P.; Giles, Cory B.; Wren, Jonathan D.; Koller, Akos; Ballabh, Praveen; Sonntag, William E.; Csiszar, Anna

    2014-01-01

    Epidemiological studies show that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular impairment, we compared young (7 months) and aged (24 months) high-fat diet–fed obese C57BL/6 mice. We found that aging exacerbates the obesity-induced decline in microvascular density both in the hippocampus and in the cortex. The extent of hippocampal microvascular rarefaction and the extent of impairment of hippocampal-dependent cognitive function positively correlate. Aging exacerbates obesity-induced loss of pericyte coverage on cerebral microvessels and alters hippocampal angiogenic gene expression signature, which likely contributes to microvascular rarefaction. Aging also exacerbates obesity-induced oxidative stress and induction of NADPH oxidase and impairs cerebral blood flow responses to whisker stimulation. Collectively, obesity exerts deleterious cerebrovascular effects in aged mice, promoting cerebromicrovascular rarefaction and neurovascular uncoupling. The morphological and functional impairment of the cerebral microvasculature in association with increased blood–brain barrier disruption and neuroinflammation (Tucsek Z, Toth P, Sosnowsk D, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol Biol Med Sci. 2013. In press, PMID: 24269929) likely contribute to obesity-induced cognitive decline in aging. PMID:24895269

  3. Chotosan, a kampo formula, ameliorates chronic cerebral hypoperfusion-induced deficits in object recognition behaviors and central cholinergic systems in mice.

    PubMed

    Zhao, Qi; Murakami, Yukihisa; Tohda, Michihisa; Obi, Ryosuke; Shimada, Yutaka; Matsumoto, Kinzo

    2007-04-01

    We previously demonstrated that the Kampo formula chotosan (CTS) ameliorated spatial cognitive impairment via central cholinergic systems in a chronic cerebral hypoperfusion (P2VO) mouse model. In this study, the object discrimination tasks were used to determine if the ameliorative effects of CTS on P2VO-induced cognitive deficits are a characteristic pharmacological profile of this formula, with the aim of clarifying the mechanisms by which CTS enhances central cholinergic function in P2VO mice. The cholinesterase inhibitor tacrine (THA) and Kampo formula saikokeishito (SKT) were used as controls. P2VO impaired object discrimination performance in the object recognition, location, and context tests. Daily administration of CTS (750 mg/kg, p.o.) and THA (2.5 mg/kg, i.p.) improved the object discrimination deficits, whereas SKT (750 mg/kg, p.o.) did not. In ex vivo assays, tacrine but not CTS or SKT inhibited cortical cholinesterase activity. P2VO reduced the mRNA expression of m(3) and m(5) muscarinic receptors and choline acetyltransferase but not that of other muscarinic receptor subtypes in the cerebral cortex. Daily administration of CTS and THA but not SKT reversed these expression changes. These results suggest that CTS and THA improve P2VO-induced cognitive impairment by normalizing the deficit of central cholinergic systems and that the beneficial effect on P2VO-induced cognitive deficits is a distinctive pharmacological characteristic of CTS.

  4. Connectional Modularity of Top-Down and Bottom-Up Multimodal Inputs to the Lateral Cortex of the Mouse Inferior Colliculus

    PubMed Central

    Lesicko, Alexandria M.H.; Hristova, Teodora S.; Maigler, Kathleen C.

    2016-01-01

    The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information. PMID:27798184

  5. Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III.

    PubMed

    Juric-Sekhar, Gordana; Kapur, Raj P; Glass, Ian A; Murray, Mitzi L; Parnell, Shawn E; Hevner, Robert F

    2011-04-01

    Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria-lissencephaly.

  6. Gender difference in the effect of progesterone on neonatal hypoxic/ischemic brain injury in mouse.

    PubMed

    Dong, Shuyu; Zhang, Qian; Kong, Delian; Zhou, Chao; Zhou, Jie; Han, Jingjing; Zhou, Yan; Jin, Guoliang; Hua, Xiaodong; Wang, Jun; Hua, Fang

    2018-08-01

    This study investigated the effects of progesterone (PROG) on neonatal hypoxic/ischemic (NHI) brain injury, the differences in effects between genders, and the underlying mechanisms. NHI brain injury was established in both male and female neonatal mice induced by occlusion of the left common carotid artery followed by hypoxia. The mice were treated with PROG or vehicle. Fluoro-Jade B staining (F-JB), long term behavior testing, and brain magnetic resonance image (MRI) were applied to evaluate neuronal death, neurological function, and brain damage. The underlying molecular mechanisms were also investigated by Western blots. The results showed that, in the male mice, administration of PROG significantly reduced neuronal death, improved the learning and memory function impaired by cerebral HI, decreased infarct size, and maintained the thickness of the cortex after cerebral HI. PROG treatment, however, did not show significant neuroprotective effects on female mice subjected to HI. In addition, the data demonstrated a gender difference in the expression of tumor necrosis factor receptor 1 (TNFR1), TNF receptor associated factor 6 (TRAF6), Fas associated protein with death domain (FADD), and TIR-domain-containing adapter-inducing interferon-β (TRIF) between males and females. Our results indicated that treatment with PROG had beneficial effects on NHI injured brain in acute stage and improved the long term cognitive function impaired by cerebral HI in male mice. In addition, the activation of TNF and TRIF mediated signaling in response to cerebral HI and the treatment of PROG varied between genders, which highly suggested that gender differences should be emphasized in evaluating neonatal HI brain injury and PROG effects, as well as the underlying mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Classic cadherin expressions balance postnatal neuronal positioning and dendrite dynamics to elaborate the specific cytoarchitecture of the mouse cortical area.

    PubMed

    Egusa, Saki F; Inoue, Yukiko U; Asami, Junko; Terakawa, Youhei W; Hoshino, Mikio; Inoue, Takayoshi

    2016-04-01

    A unique feature of the mammalian cerebral cortex is in its tangential parcellation via anatomical and functional differences. However, the cellular and/or molecular machinery involved in cortical arealization remain largely unknown. Here we map expression profiles of classic cadherins in the postnatal mouse barrel field of the primary somatosensory area (S1BF) and generate a novel bacterial artificial chromosome transgenic (BAC-Tg) mouse line selectively illuminating nuclei of cadherin-6 (Cdh6)-expressing layer IV barrel neurons to confirm that tangential cellular assemblage of S1BF is established by postnatal day 5 (P5). When we electroporate the cadherins expressed in both barrel neurons and thalamo-cortical axon (TCA) terminals limited to the postnatal layer IV neurons, S1BF cytoarchitecture is disorganized with excess elongation of dendrites at P7. Upon delivery of dominant negative molecules for all classic cadherins, tangential cellular positioning and biased dendritic arborization of barrel neurons are significantly altered. These results underscore the value of classic cadherin-mediated sorting among neuronal cell bodies, dendrites and TCA terminals in postnatally elaborating the S1BF-specific tangential cytoarchitecture. Additionally, how the "protocortex" machinery affects classic cadherin expression profiles in the process of cortical arealization is examined and discussed. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    PubMed

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  9. Prenatal neurogenesis in autism spectrum disorders

    NASA Astrophysics Data System (ADS)

    Kaushik, Gaurav; Zarbalis, Konstantinos

    2016-03-01

    An ever-increasing body of literature describes compelling evidence that a subset of young children on the autism spectrum show abnormal cerebral growth trajectories. In these cases, normal cerebral size at birth is followed by a period of abnormal growth and starting in late childhood often by regression compared to unaffected controls. Recent work has demonstrated an abnormal increase in the number of neurons of the prefrontal cortex suggesting that cerebral size increase in autism is driven by excess neuronal production. In addition, some affected children display patches of abnormal laminar positioning of cortical projection neurons. As both cortical projection neuron numbers and their correct layering within the developing cortex requires the undisturbed proliferation of neural progenitors, it appears that neural progenitors lie in the center of the autism pathology associated with early brain overgrowth. Consequently, autism spectrum disorders associated with cerebral enlargement should be viewed as birth defects of an early embryonic origin with profound implications for their early diagnosis, preventive strategies, and therapeutic intervention.

  10. Imaging the accumulation and suppression of tau pathology using multiparametric MRI

    PubMed Central

    Holmes, Holly E.; Colgan, Niall; Ismail, Ozama; Ma, Da; Powell, Nick M.; O'Callaghan, James M.; Harrison, Ian F.; Johnson, Ross A.; Murray, Tracey K.; Ahmed, Zeshan; Heggenes, Morton; Fisher, Alice; Cardoso, M.J.; Modat, Marc; Walker-Samuel, Simon; Fisher, Elizabeth M.C.; Ourselin, Sebastien; O'Neill, Michael J.; Wells, Jack A.; Collins, Emily C.; Lythgoe, Mark F.

    2016-01-01

    Mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology—a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau. Tau-related atrophy was discernible from 5.5 months within the cortex and hippocampus. We observed markedly less atrophy in the treated rTg4510 mice, which was enhanced after doxycycline intervention from 3.5 months. We also observed differences in amide proton transfer, cerebral blood flow, and diffusion tensor imaging parameters in the rTg4510 mice, which were significantly less altered after doxycycline treatment. We propose that these non-invasive MRI techniques offer insight into pathologic mechanisms underpinning Alzheimer's disease that may be important when evaluating emerging therapeutics targeting one of more of these processes. PMID:26923415

  11. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns.

    PubMed

    Oe, Yuki; Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C; Hirase, Hajime

    2016-09-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.

  12. Adeno-associated virus vector-mediated transduction in the cat brain.

    PubMed

    Vite, Charles H; Passini, Marco A; Haskins, Mark E; Wolfe, John H

    2003-10-01

    Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme beta-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AAV1 vector resulted in greater transduction of the gray matter than AAV2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.

  13. A Map of Anticipatory Activity in Mouse Motor Cortex.

    PubMed

    Chen, Tsai-Wen; Li, Nuo; Daie, Kayvon; Svoboda, Karel

    2017-05-17

    Activity in the mouse anterior lateral motor cortex (ALM) instructs directional movements, often seconds before movement initiation. It is unknown whether this preparatory activity is localized to ALM or widely distributed within motor cortex. Here we imaged activity across motor cortex while mice performed a whisker-based object localization task with a delayed, directional licking response. During tactile sensation and the delay epoch, object location was represented in motor cortex areas that are medial and posterior relative to ALM, including vibrissal motor cortex. Preparatory activity appeared first in deep layers of ALM, seconds before the behavioral response, and remained localized to ALM until the behavioral response. Later, widely distributed neurons represented the outcome of the trial. Cortical area was more predictive of neuronal selectivity than laminar location or axonal projection target. Motor cortex therefore represents sensory, motor, and outcome information in a spatially organized manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Region-, age-, and sex-specific effects of fetal diazepam exposure on the postnatal development of neurosteroids

    PubMed Central

    Kellogg, Carol K.; Kenjarski, Thomas P.; Pleger, Gloria L.; Frye, Cheryl A.

    2013-01-01

    Fetal exposure to diazepam (DZ), a positive modulator of GABAA receptors and an agonist at mitochondrial benzodiazine receptors, induces long-term neural and behavioral effects. This study evaluated whether the early manipulation influenced the normal development of brain levels of neurosteroids or altered steroid action at GABAA receptors. Pregnant dams were injected over gestation days 14 through 20 with DZ (2.5 mg/kg) or the vehicle. Male and female offspring were analyzed at five postnatal ages. The levels of progesterone (P), dihydroprogesterone (DHP), 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP), testosterone (T), dihydrotestosterone, and 5α-androstan-3α,17β diol were measured in the cerebral cortex and diencephalon. The results indicated that development of brain steroid levels and the impact of fetal DZ exposure were region- and sex-specific. Age-related changes in brain steroids did not mirror associated changes in circulating P and T. Age regulated the levels of all 3 progestins in the cerebral cortex, and fetal DZ exposure interacted with the development of P and DHP. The development of 3α,5α-THP in the cortex was markedly influenced by sex, with levels in males decreasing over postnatal development whereas they increased over postpubertal development in females. An adolescent surge in T levels was observed in male cortex and fetal DZ exposure prevented that surge. Steroid levels in the diencephalon were altered by age mainly in females, and DZ exposure had little effect in this region. The data support region-specific regulation of brain steroid synthesis. Only in the cerebral cortex are relevant mechanisms readily modifiable by fetal DZ exposure. However, neither sex nor fetal DZ exposure altered the response of GABAA receptors in adult cortex to neurosteroid. PMID:16376310

  15. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.

    PubMed

    Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M

    2014-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.

  16. Ethanol fixed brain imaging by phase-contrast X-ray technique

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Thet-Thet-Lwin; Kunii, Takuya; Sirai, Ryota; Ohizumi, Takahito; Maruyama, Hiroko; Hyodo, Kazuyuki; Yoneyama, Akio; Ueda, Kazuhiro

    2013-03-01

    The two-crystal phase-contrast X-ray imaging technique using an X-ray crystal interferometer can depict the fine structures of rat's brain such as cerebral cortex, white matter, and basal ganglia. Image quality and contrast by ethanol fixed brain showed significantly better than those by usually used formalin fixation at 35 keV X-ray energy. Image contrast of cortex by ethanol fixation was more than 3-times higher than that by formalin fixation. Thus, the technique of ethanol fixation might be better suited to image cerebral structural detail at 35 keV X-ray energy.

  17. Deriving excitatory neurons of the neocortex from pluripotent stem cells

    PubMed Central

    Hansen, David V.; Rubenstein, John L.R.; Kriegstein, Arnold R.

    2011-01-01

    The human cerebral cortex is an immensely complex structure that subserves critical functions that can be disrupted in developmental and degenerative disorders. Recent innovations in cellular reprogramming and differentiation techniques have provided new ways to study the cellular components of the cerebral cortex. Here we discuss approaches to generate specific subtypes of excitatory cortical neurons from pluripotent stem cells. We review spatial and temporal aspects of cortical neuron specification that can guide efforts to produce excitatory neuron subtypes with increased resolution. Finally, we discuss distinguishing features of human cortical development and their translational ramifications for cortical stem cell technologies. PMID:21609822

  18. Tanshinone inhibits neuronal cell apoptosis and inflammatory response in cerebral infarction rat model

    PubMed Central

    Zhou, Liang; Zhang, Jie; Wang, Chao; Sun, Qiangsan

    2017-01-01

    We aimed to investigate the effect and mechanisms of tanshinone (TSN) IIA in cerebral infarction. The cerebral infarction rat model was established by middle cerebral artery occlusion (MCAO). After pretreatment with TSN, cerebral infarct volume, cerebral edema, and neurological deficits score were evaluated, as well as cell apoptosis in hippocampus and cortex of the brain was examined with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were determined by Enzyme-Linked Immunosorbent Assay (ELISA). In addition, rat primary neuronal cells were isolated and cultured in oxygen-glucose deprivation (OGD) conditions. After pretreatment with TSN, cell viability and apoptosis were observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis, respectively. The expressions of Bax and B-cell lymphoma 2 (Bcl-2) were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. Compared with untreated cerebral infarction rat, TSN treatment significantly reduced cerebral infarct volume, cerebral edema, and neurological deficits score (P < 0.05). Cell apoptosis as well as the levels of IL-6, TNF-α, and CRP in hippocampus and cortex of cerebral infarction rat were inhibited after pretreatment with TSN (P < 0.05). Furthermore, TSN remarkably increased cell viability and inhibited cell apoptosis ratio (P < 0.05) in OGD-induced rat neuronal cells. Besides, TSN significantly downregulated the expression of Bax and upregulated Bcl-2 (P < 0.05). TSN IIA has a preventive effect on cerebral infarction by inhibiting neuronal cell apoptosis and inflammatory response in vitro and in vivo. PMID:28402151

  19. Tanshinone inhibits neuronal cell apoptosis and inflammatory response in cerebral infarction rat model.

    PubMed

    Zhou, Liang; Zhang, Jie; Wang, Chao; Sun, Qiangsan

    2017-06-01

    We aimed to investigate the effect and mechanisms of tanshinone (TSN) IIA in cerebral infarction. The cerebral infarction rat model was established by middle cerebral artery occlusion (MCAO). After pretreatment with TSN, cerebral infarct volume, cerebral edema, and neurological deficits score were evaluated, as well as cell apoptosis in hippocampus and cortex of the brain was examined with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were determined by Enzyme-Linked Immunosorbent Assay (ELISA). In addition, rat primary neuronal cells were isolated and cultured in oxygen-glucose deprivation (OGD) conditions. After pretreatment with TSN, cell viability and apoptosis were observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis, respectively. The expressions of Bax and B-cell lymphoma 2 (Bcl-2) were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. Compared with untreated cerebral infarction rat, TSN treatment significantly reduced cerebral infarct volume, cerebral edema, and neurological deficits score ( P < 0.05). Cell apoptosis as well as the levels of IL-6, TNF-α, and CRP in hippocampus and cortex of cerebral infarction rat were inhibited after pretreatment with TSN ( P < 0.05). Furthermore, TSN remarkably increased cell viability and inhibited cell apoptosis ratio ( P < 0.05) in OGD-induced rat neuronal cells. Besides, TSN significantly downregulated the expression of Bax and upregulated Bcl-2 ( P < 0.05). TSN IIA has a preventive effect on cerebral infarction by inhibiting neuronal cell apoptosis and inflammatory response in vitro and in vivo.

  20. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    PubMed

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U- 13 C]glucose or [1,2- 13 C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13 C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13 C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13 C-labeling observed with [U- 13 C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2- 13 C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13 C-labeling (%) data obtained from mass spectrometry. Based on this approach we suggest that cellular metabolic compartmentation in hippocampus and cerebral cortex is very similar.

  1. Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia.

    PubMed

    Chi, Oak Z; Mellender, Scott J; Kiss, Geza K; Liu, Xia; Weiss, Harvey R

    2017-05-01

    One of the important factors altering the degree of blood-brain barrier (BBB) disruption in cerebral ischemia is the anesthetic used. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway has been reported to be involved in modulating BBB permeability and in isoflurane induced neuroprotection. This study was performed to compare the degree of BBB disruption in focal cerebral ischemia under isoflurane vs pentobarbital anesthesia and to determine whether inhibition of PI3K/Akt would affect the disruption in the early stage of focal cerebral ischemia. Permanent middle cerebral artery (MCA) occlusion was performed in rats under 1.4% isoflurane or pentobarbital (50mg/kg i.p.) anesthesia with controlled ventilation. In half of each group LY294002, which is a PI3K/Akt inhibitor, was applied on the ischemic cortex immediately after MCA occlusion. After one hour of MCA occlusion, the transfer coefficient (K i ) of 14 C-α-aminoisobutyric acid ( 14 C-AIB) was determined to quantify the degree of BBB disruption. MCA occlusion increased the K i both in the isoflurane and pentobarbital anesthetized rats. However, the value of K i was lower under isoflurane (11.5±6.0μL/g/min) than under pentobarbital (18.3±7.1μL/g/min) anesthesia. The K i of the contralateral cortex of the pentobarbital group was higher (+74%) than that of the isoflurane group. Application of LY294002 on the ischemic cortex increased the K i (+99%) only in the isoflurane group. The degree of BBB disruption by MCA occlusion was significantly lower under isoflurane than pentobarbital anesthesia in the early stage of cerebral ischemia. Our data demonstrated the importance of choice of anesthetics and suggest that PI3K/Akt signaling pathway plays a significant role in altering BBB disruption in cerebral ischemia during isoflurane but not during pentobarbital anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Sex Difference in Daily Rhythms of Clock Gene Expression in the Aged Human Cerebral Cortex

    PubMed Central

    Lim, Andrew S.P.; Myers, Amanda J.; Yu, Lei; Buchman, Aron S.; Duffy, Jeanne F.; De Jager, Philip L.; Bennett, David A.

    2013-01-01

    Background Studies using self-report and physiological markers of circadian rhythmicity have demonstrated sex differences in a number of circadian attributes including morningness-eveningness, entrained phase, and intrinsic period. However, these sex differences have not been examined at the level of the molecular clock, and not in human cerebral cortex. We tested the hypothesis that there are detectable daily rhythms of clock gene expression in human cerebral cortex, and that there are significant sex differences in the timing of these rhythms. Methods We quantified the expression levels of three clock genes – PER2, PER3, and ARNTL1 in samples of dorsolateral prefrontal cortex from 490 deceased individuals in two cohort studies of older individuals, the Religious Orders Study and the Rush Memory and Aging Project, using mRNA microarray data. We parameterized clock gene expression at death as a function of time of death using cosine curves, and examined for sex differences in the phase of these curves. Findings Significant daily variation was seen in the expression of PER2 (p=0.004), PER3 (p=0.003) and ARNTL1 (p=0.0005). PER2/3 expression peaked at 10:38 [95%CI 9:20–11:56] and 10:44 [95%CI 9:29–11:59] respectively, and ARNTL1 expression peaked in antiphase to this at 21:23 [95%CI 20:16–22:30]. The timing of the expression of all three genes was significantly earlier in women than in men (PER2 6.8 hours p=0.002; PER3 5.5 hours p=0.001; ARNTL1 4.7 hours p=0.007). Interpretation Daily rhythms of clock gene expression are present in human cerebral cortex and can be inferred from postmortem samples. Moreover, these rhythms are relatively delayed in men compared to women. PMID:23606611

  3. Therapeutic potential of silymarin in chronic unpredictable mild stress induced depressive-like behavior in mice.

    PubMed

    Thakare, Vishnu N; Patil, Rajesh R; Oswal, Rajesh J; Dhakane, Valmik D; Aswar, Manoj K; Patel, Bhoomika M

    2018-02-01

    Silymarin, a plant-derived polyphenolic flavonoid of Silybum marianum, elicited significant antidepressant-like activity in an acute restraint stress model of depression. It improved monoamines, mainly 5-hydroxytryptamine (5-HT) levels in the cortex, dopamine (DA) and norepinephrine (NE) in the cerebellum in mice. The present study was undertaken to explore the antidepressant potential of silymarin in chronic unpredictable mild stress (CUMS) induced depressive-like behavior in mice, and to find out its probable mechanism(s) of action, mainly neurogenesis, neuroinflammation, and/or oxidative stress. The mice were subjected to CUMS for 28 days (4 weeks) and administered with silymarin (100 mg/kg and 200 mg/kg), or fluoxetine or vehicle from days 8 to 28 (3 weeks simultaneously). Animals were evaluated for behavioral changes, such as anhedonia by sucrose preference test, behavioral despair by forced swim test, and exploratory behaviors by an open field test. In addition, neurobiochemical alterations, mainly monoamines, 5-HT, NE, DA, neurotrophic factor BDNF, and cytokines, IL-6, TNF-α, oxidant-antioxidant parameters by determining the malondialdehyde formation (an index of lipid peroxidation process), superoxide dismutase (SOD) and catalase (CAT) activity in hippocampus and cerebral cortex along with serum corticosterone were investigated. Our findings reveal that mice subjected to CUMS exhibited lower sucrose preference, increase immobility time without affecting general locomotion of the animals, and reduce BDNF, 5-HT, NE, and DA level, increased serum corticosterone, IL-6 and TNF-α along with an oxidant-antioxidant imbalance in the hippocampus and cerebral cortex. Silymarin significantly reversed the CUMS-induced changes in the hippocampus and cerebral cortex in mice. Thus, the possible mechanism involved in the antidepressant-like activity of silymarin is correlated to the alleviation of monoaminergic, neurogenesis (enhancing 5-HT, NE, and BDNF levels), and attenuation of inflammatory cytokines system and oxidative stress by modulation of corticosterone response, restoration of antioxidant defense system in cerebral cortex and hippocampus.

  4. Bacopa monnieri (Brahmi) improved novel object recognition task and increased cerebral vesicular glutamate transporter type 3 in sub-chronic phencyclidine rat model of schizophrenia.

    PubMed

    Piyabhan, Pritsana; Wannasiri, Supaporn; Naowaboot, Jarinyaporn

    2016-12-01

    Reduced vesicular glutamate transporter 1 (VGLUT1) and 2 (VGLUT2) indicate glutamatergic hypofunction leading to cognitive impairment in schizophrenia. However, VGLUT3 involvement in cognitive dysfunction has not been reported in schizophrenia. Brahmi (Bacopa monnieri) might be a new treatment and prevention for cognitive deficits in schizophrenia by acting on cerebral VGLUT3 density. We aimed to study cognitive enhancement- and neuroprotective-effects of Brahmi on novel object recognition and cerebral VGLUT3 immunodensity in sub-chronic (2 mg/kg, Bid, ip) phencyclidine (PCP) rat model of schizophrenia. Rats were assigned to three groups for cognitive enhancement effect study: Group 1, Control; Group 2, PCP administration; Group 3, PCP+Brahmi. A neuroprotective-effect study was also carried out. Rats were again assigned to three groups: Group 1, Control; Group 2, PCP administration; Group 3, Brahmi+PCP. Discrimination ratio (DR) representing cognitive ability was obtained from a novel object recognition task. VGLUT3 immunodensity was measured in the prefrontal cortex, striatum and cornu ammonis fields 1-3 (CA1-3) using immunohistochemistry. We found reduced DR in the PCP group, which occurred alongside VGLUT3 reduction in all brain areas. PCP+Brahmi showed higher DR score with increased VGLUT3 immunodensity in the prefrontal cortex and striatum. Brahmi+PCP group showed a higher DR score with increased VGLUT3 immunodensity in the prefrontal cortex, striatum and CA1-3. We concluded that reduced cerebral VGLUT3 was involved in cognitive deficit in PCP-administrated rats. Receiving Brahmi after PCP restored cognitive deficit by increasing VGLUT3 in the prefrontal cortex and striatum. Receiving Brahmi before PCP prevented cognitive impairment by elevating VGLUT3 in prefrontal cortex, striatum and CA1-3. Therefore, Brahmi could be a new frontier of restoration and prevention of cognitive deficit in schizophrenia. © 2016 John Wiley & Sons Australia, Ltd.

  5. Cognitive-motor interactions of the basal ganglia in development

    PubMed Central

    Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert

    2014-01-01

    Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214

  6. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically significant differences in the variation of PAX6 and SOX1-positive NPCs between the two human pluripotent cell-derived methods; therefore, both methods are suitable for producing stable dorsal NPCs. When further differentiated into mature neurons, NPCs gave rise to a population of almost exclusively forebrain cortical neurons, confirming the dorsal fate commitment of the progenitors. The methods described in this study show improvements over previously published studies and are highly efficient at differentiating human and mouse pluripotent cell types into dorsal PAX6-positive NPCs and eventually into forebrain cortical neurons.

  7. Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition.

    PubMed

    Mao, Lun-Lin; Hao, Dong-Lin; Mao, Xiao-Wei; Xu, Yuan-Feng; Huang, Ting-Ting; Wu, Bo-Na; Wang, Li-Hui

    2015-08-18

    PTEN is a dual specificity phosphatase and is implicated in inflammation and apoptosis of cerebral ischemia and reperfusion (I/R) injury. Bisperoxovanadium (Bpv), a specific inhibitor of PTEN's phosphatase activity, has demonstrated powerful neuroprotective properties. We investigated the neuroprotective roles of Bpv in the rat model of middle cerebral artery occlusion (MCAO) cerebral I/R injury, and explored the modulation of inflammatory mediators and PI3K/Akt/GSK-3β pathways by Bpv. Our results showed that treatment with Bpv (0.2 mg/kg/day) significantly decreased neurological deficit scores at 7 days after MCAO and infarct volume at 4 days after MCAO. The IL-10 concentration was increased and TNF-α concentration was decreased in the ischemic boundary zone of the cerebral cortex at 4 days after MCAO by Bpv. Furthermore, Bpv (0.2 mg/kg/day) treatment significantly reduced PTEN mRNA and protein levels and increased PI3K, Akt and p-GSK-3β proteins expression in the ischemic boundary zone of the cerebral cortex at 4 days after MCAO. In conclusions, Bpv treatment demonstrates neuroprotective effects on cerebral ischemia and reperfusion injury of ischemic stroke rats and is associated with its modulation of inflammatory mediator production and up-regulation of PTEN downstream proteins PI3K, Akt and p-GSK-3β. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys.

    PubMed

    Muntané, Gerard; Santpere, Gabriel; Verendeev, Andrey; Seeley, William W; Jacobs, Bob; Hopkins, William D; Navarro, Arcadi; Sherwood, Chet C

    2017-09-01

    Handedness and language are two well-studied examples of asymmetrical brain function in humans. Approximately 90% of humans exhibit a right-hand preference, and the vast majority shows left-hemisphere dominance for language function. Although genetic models of human handedness and language have been proposed, the actual gene expression differences between cerebral hemispheres in humans remain to be fully defined. In the present study, gene expression profiles were examined in both hemispheres of three cortical regions involved in handedness and language in humans and their homologues in rhesus macaques: ventrolateral prefrontal cortex, posterior superior temporal cortex (STC), and primary motor cortex. Although the overall pattern of gene expression was very similar between hemispheres in both humans and macaques, weighted gene correlation network analysis revealed gene co-expression modules associated with hemisphere, which are different among the three cortical regions examined. Notably, a receptor-enriched gene module in STC was particularly associated with hemisphere and showed different expression levels between hemispheres only in humans.

  9. Human cortical–hippocampal dialogue in wake and slow-wave sleep

    PubMed Central

    Mitra, Anish; Hacker, Carl D.; Pahwa, Mrinal; Tagliazucchi, Enzo; Laufs, Helmut; Leuthardt, Eric C.; Raichle, Marcus E.

    2016-01-01

    Declarative memory consolidation is hypothesized to require a two-stage, reciprocal cortical–hippocampal dialogue. According to this model, higher frequency signals convey information from the cortex to hippocampus during wakefulness, but in the reverse direction during slow-wave sleep (SWS). Conversely, lower-frequency activity propagates from the information “receiver” to the “sender” to coordinate the timing of information transfer. Reversal of sender/receiver roles across wake and SWS implies that higher- and lower-frequency signaling should reverse direction between the cortex and hippocampus. However, direct evidence of such a reversal has been lacking in humans. Here, we use human resting-state fMRI and electrocorticography to demonstrate that δ-band activity and infraslow activity propagate in opposite directions between the hippocampus and cerebral cortex. Moreover, both δ activity and infraslow activity reverse propagation directions between the hippocampus and cerebral cortex across wake and SWS. These findings provide direct evidence for state-dependent reversals in human cortical–hippocampal communication. PMID:27791089

  10. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    PubMed Central

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  11. Comparative analysis of Six 3 and Six 6 distribution in the developing and adult mouse brain.

    PubMed

    Conte, Ivan; Morcillo, Julian; Bovolenta, Paola

    2005-11-01

    Six 3 and Six 6 genes are two closely related members of the Six/sine oculis family of homeobox containing transcription factors. Their expression and function at early stages of embryonic development has been widely addressed in a variety of species. However, their mRNA distribution during late embryonic, postnatal, and adult brain barely has been analyzed. Here, we show that despite their initial overlap in the anterior neural plate, the expression of Six 3 and Six 6 progressively segregates to different regions during mammalian brain development, maintaining only few areas of partial overlap in the thalamic and hypothalamic regions. Six 3, but not Six 6, is additionally expressed in the olfactory bulb, cerebral cortex, hippocampus, midbrain, and cerebellum. These distinct patterns support the idea that Six 3 and Six 6 are differentially required during forebrain development. Developmental Dynamics 234:718-725, 2005. (c) 2005 Wiley-Liss, Inc.

  12. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.

    PubMed

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-04-23

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.

  13. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations

    PubMed Central

    Mestre, Ana L. G.; Inácio, Pedro M. C.; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S.; Cristiano, Maria L. S.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês M.; Ventura, João; Gomes, Henrique L.

    2017-01-01

    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques. PMID:29109679

  14. Transcriptional Landscape of the Prenatal Human Brain

    PubMed Central

    Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Ebbert, Amanda; Riley, Zackery L.; Aiona, Kaylynn; Arnold, James M.; Bennet, Crissa; Bertagnolli, Darren; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Carey, Anita; Cuhaciyan, Christine; Dalley, Rachel A.; Dee, Nick; Dolbeare, Tim A.; Facer, Benjamin A. C.; Feng, David; Fliss, Tim P.; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W.; Gu, Guangyu; Howard, Robert E.; Jochim, Jayson M.; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Lemon, Tracy A.; Lesnar, Phil; McMurray, Bergen; Mastan, Naveed; Mosqueda, Nerick F.; Naluai-Cecchini, Theresa; Ngo, Nhan-Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana E.; Player, Allison Stevens; Pletikos, Mihovil; Reding, Melissa; Royall, Joshua J.; Roll, Kate; Sandman, David; Sarreal, Melaine; Shapouri, Sheila; Shapovalova, Nadiya V.; Shen, Elaine H.; Sjoquist, Nathan; Slaughterbeck, Clifford R.; Smith, Michael; Sodt, Andy J.; Williams, Derric; Zöllei, Lilla; Fischl, Bruce; Gerstein, Mark B.; Geschwind, Daniel H.; Glass, Ian A.; Hawrylycz, Michael J.; Hevner, Robert F.; Huang, Hao; Jones, Allan R.; Knowles, James A.; Levitt, Pat; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Dang, Chinh; Bernard, Amy; Hohmann, John G.; Lein, Ed S.

    2014-01-01

    Summary The anatomical and functional architecture of the human brain is largely determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and postmitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and human-expanded outer subventricular zones. Both germinal and postmitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in frontal lobe. Finally, many neurodevelopmental disorder and human evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development. PMID:24695229

  15. Optogenetic mapping of brain circuitry

    NASA Astrophysics Data System (ADS)

    Augustine, George J.; Berglund, Ken; Gill, Harin; Hoffmann, Carolin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Molly; Lo, Daniel; Nakajima, Ryuichi; Park, Min Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In

    2012-10-01

    Studies of the brain promise to be revolutionized by new experimental strategies that harness the combined power of optical techniques and genetics. We have mapped the circuitry of the mouse brain by using both optogenetic actuators that control neuronal activity and optogenetic sensors that detect neuronal activity. Using the light-activated cation channel, channelrhodopsin-2, to locally photostimulate neurons allows high-speed mapping of local and long-range circuitry. For example, with this approach we have mapped local circuits in the cerebral cortex, cerebellum and many other brain regions. Using the fluorescent sensor for chloride ions, Clomeleon, allows imaging of the spatial and temporal dimensions of inhibitory circuits in the brain. This approach allows imaging of both conventional "phasic" synaptic inhibition as well as unconventional "tonic" inhibition. The combined use of light to both control and monitor neural activity creates unprecedented opportunities to explore brain function, screen pharmaceutical agents, and potentially to use light to ameliorate psychiatric and neurological disorders.

  16. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations.

    PubMed

    Mestre, Ana L G; Inácio, Pedro M C; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S; Cristiano, Maria L S; Aguiar, Paulo; Medeiros, Maria C R; Araújo, Inês M; Ventura, João; Gomes, Henrique L

    2017-01-01

    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques.

  17. Effective components of Chinese herbs reduce central nervous system function decline induced by iron overload

    PubMed Central

    Dong, Xian-hui; Bai, Jiang-tao; Kong, Wei-na; He, Xiao-ping; Yan, Peng; Shao, Tie-mei; Yu, Wen-guo; Chai, Xi-qing; Wu, Yan-hua; Liu, Cong

    2015-01-01

    Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer’s disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer’s disease patients. An APPswe/PS1ΔE9 double transgenic mouse model of Alzheimer’s disease was used. The intragastric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer’s disease. These compounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer’s disease. PMID:26109953

  18. [A case of anti-MOG antibody-positive multiphasic disseminated encephalomyelitis co-occurring with unilateral cerebral cortical encephalitis].

    PubMed

    Fukushima, Naoya; Suzuki, Miki; Ogawa, Ryo; Hayashi, Kitami; Takanashi, Jun-Ichi; Ohashi, Takashi

    2017-11-25

    A 20-year-old woman first developed acute disseminated encephalomyelitis (ADEM) at 11 years of age. At 17 years of age, she was hospitalized due to generalized seizure and diagnosed with encephalitis. Brain MRI revealed a FLAIR-hyperintense lesion in the unilateral cerebral cortex. At 18 years of age, serum anti-myelin oligodendrocyte glycoprotein (MOG) antibody was detected. At 20 years of age, she was admitted to our hospital, diagnosed with multifocal disseminated encephalomyelitis (MDEM). MDEM has been observed in patients that are seropositive for the anti-MOG antibody. More recently, unilateral cerebral cortex encephalitis with epilepsy has also been reported in such patients. The co-occurrence of MDEM and cortical encephalitis in the same patient has important implications for the pathogenesis of anti-MOG antibody-associated autoimmune diseases.

  19. Modeling Early Cortical Serotonergic Deficits in Autism

    PubMed Central

    Boylan, Carolyn B.; Blue, Mary E.; Hohmann, Christine F.

    2007-01-01

    Autism is a developmental brain disorder characterized by deficits in social interaction, language and behavior. Brain imaging studies demonstrate increased cerebral cortical volumes and micro- and macroscopic neuroanatomic changes in children with this disorder. Alterations in forebrain serotonergic function may underlie the neuroanatomic and behavioral features of autism. Serotonin is involved in neuronal growth and plasticity and these actions are likely mediated via serotonergic and glutamatergic receptors. Few animal models of autism have been described that replicate both etiology and pathophysiology. We report here on a selective serotonin (5-HT) depletion model of this disorder in neonatal mice that mimics neurochemical and structural changes in cortex and, in addition, displays a behavioral phenotype consistent with autism. Newborn male and female mice were depleted of forebrain 5-HT with injections of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), into the bilateral medial forebrain bundle (mfb). Behavioral testing of these animals as adults revealed alterations in social, sensory and stereotypic behaviors. Lesioned mice showed significantly increased cortical width. Serotonin immunocytochemistry showed a dramatic long-lasting depletion of 5-HT containing fibers in cerebral cortex until postnatal day (PND) 60. Autoradiographic binding to high affinity 5-HT transporters was significantly but transiently reduced in cerebral cortex of 5,7-DHT-depleted mice. AMPA glutamate receptor binding was decreased at PND 15. We hypothesize that increased cerebral cortical volume and sensorimotor, cognitive and social deficits observed in both 5-HT-depleted animals and in individuals with autism, may be the result of deficiencies in timely axonal pruning to key cerebral cortical areas. PMID:17034875

  20. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury.

    PubMed

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G; Hovda, David A; Sutton, Richard L

    2013-10-16

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients' remain under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose metabolism and neuronal injury in a rodent model of unilateral controlled cortical impact (CCI) injury. In Experiment 1, a single episode of hyperglycemia (50% glucose at 2 g/kg, i.p.) initiated immediately after CCI was found to significantly attenuate a TBI-induced depression of glucose metabolism in cerebral cortex (4 of 6 regions) and subcortical regions (2 of 7) as well as to significantly reduce the number of dead/dying neurons in cortex and hippocampus at 24 h post-CCI. Experiment 2 examined effects of more prolonged and intermittent hyperglycemia induced by glucose administrations (2 g/kg, i.p.) at 0, 1, 3 and 6h post-CCI. The latter study also found significantly improved cerebral metabolism (in 3 of 6 cortical and 3 of 7 subcortical regions) and significant neuroprotection in cortex and hippocampus 1 day after CCI and glucose administration. These results indicate that acute episodes of post-TBI hyperglycemia can be beneficial and are consistent with other recent studies showing benefits of providing exogenous energy substrates during periods of increased cerebral metabolic demand. © 2013 Elsevier B.V. All rights reserved.

  1. Modeling early cortical serotonergic deficits in autism.

    PubMed

    Boylan, Carolyn B; Blue, Mary E; Hohmann, Christine F

    2007-01-10

    Autism is a developmental brain disorder characterized by deficits in social interaction, language and behavior. Brain imaging studies demonstrate increased cerebral cortical volumes and micro- and macro-scopic neuroanatomic changes in children with this disorder. Alterations in forebrain serotonergic function may underlie the neuroanatomic and behavioral features of autism. Serotonin is involved in neuronal growth and plasticity and these actions are likely mediated via serotonergic and glutamatergic receptors. Few animal models of autism have been described that replicate both etiology and pathophysiology. We report here on a selective serotonin (5-HT) depletion model of this disorder in neonatal mice that mimics neurochemical and structural changes in cortex and, in addition, displays a behavioral phenotype consistent with autism. Newborn male and female mice were depleted of forebrain 5-HT with injections of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), into the bilateral medial forebrain bundle (mfb). Behavioral testing of these animals as adults revealed alterations in social, sensory and stereotypic behaviors. Lesioned mice showed significantly increased cortical width. Serotonin immunocytochemistry showed a dramatic long-lasting depletion of 5-HT containing fibers in cerebral cortex until postnatal day (PND) 60. Autoradiographic binding to high affinity 5-HT transporters was significantly but transiently reduced in cerebral cortex of 5,7-DHT-depleted mice. AMPA glutamate receptor binding was decreased at PND 15. We hypothesize that increased cerebral cortical volume and sensorimotor, cognitive and social deficits observed in both 5-HT-depleted animals and in individuals with autism, may be the result of deficiencies in timely axonal pruning to key cerebral cortical areas.

  2. Exercise-induced changes in local cerebral glucose utilization in the rat.

    PubMed

    Vissing, J; Andersen, M; Diemer, N H

    1996-07-01

    In exercise, little is known about local cerebral glucose utilization (LCGU), which is an index of functional neurogenic activity. We measured LCGU in resting and running (approximately 85% of maximum O2 uptake) rats (n = 7 in both groups) previously equipped with a tail artery catheter. LCGU was measured quantitatively from 2-deoxy-D-[1-14C]glucose autoradiographs. During exercise, total cerebral glucose utilization (TCGU) increased by 38% (p < 0.005). LCGU increased (p < 0.05) in areas involved in motor function (motor cortex 39%, cerebellum approximately 110%, basal ganglia approximately 30%, substantia nigra approximately 37%, and in the following nuclei: subthalamic 47%, posterior hypothalamic 74%, red 61%, ambiguous 43%, pontine 61%), areas involved in sensory function (somatosensory 27%, auditory 32%, and visual cortex 42%, thalamus approximately 75%, and in the following nuclei: Darkschewitsch 22%, cochlear 51%, vestibular 30%, superior olive 23%, cuneate 115%), areas involved in autonomic function (dorsal raphe nucleus 30%, and areas in the hypothalamus approximately 35%, amygdala approximately 35%, and hippocampus 29%), and in white matter of the corpus callosum (36%) and cerebellum (52%). LCGU did not change with exercise in prefrontal and frontal cortex, cingulum, inferior olive, nucleus of solitary tract and median raphe, lateral septal and interpenduncular nuclei, or in areas of the hippocampus, amygdala, and hypothalamus. Glucose utilization did not decrease during exercise in any of the studied cerebral regions. In summary, heavy dynamic exercise increases TCGU and evokes marked differential changes in LCGU. The findings provide clues to the cerebral areas that participate in the large motor, sensory, and autonomic adaptation occurring in exercise.

  3. Opposing Effects of Maternal Hypo- and Hyperthyroidism on the Stability of Thalamocortical Synapses in the Visual Cortex of Adult Offspring.

    PubMed

    Strobl, Marie-Therese J; Freeman, Daniel; Patel, Jenica; Poulsen, Ryan; Wendler, Christopher C; Rivkees, Scott A; Coleman, Jason E

    2017-05-01

    Insufficient or excessive thyroid hormone (TH) levels during fetal development can cause long-term neurological and cognitive problems. Studies in animal models of perinatal hypo- and hyperthyroidism suggest that these problems may be a consequence of the formation of maladaptive circuitry in the cerebral cortex, which can persist into adulthood. Here we used mouse models of maternal hypo- and hyperthyroidism to investigate the long-term effects of altering thyroxine (T4) levels during pregnancy (corresponding to embryonic days 6.5-18.5) on thalamocortical (TC) axon dynamics in adult offspring. Because perinatal hypothyroidism has been linked to visual processing deficits in humans, we performed chronic two-photon imaging of TC axons and boutons in primary visual cortex (V1). We found that a decrease or increase in maternal serum T4 levels was associated with atypical steady-state dynamics of TC axons and boutons in V1 of adult offspring. Hypothyroid offspring exhibited axonal branch and bouton dynamics indicative of an abnormal increase in TC connectivity, whereas changes in hyperthyroid offspring were indicative of an abnormal decrease in TC connectivity. Collectively, our data suggest that alterations to prenatal T4 levels can cause long-term synaptic instability in TC circuits, which could impair early stages of visual processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    PubMed Central

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  5. Increased oxygen consumption in the somatosensory cortex of alpha-chloralose anesthetized rats during forepaw stimulation determined using MRS at 11.7 Tesla.

    PubMed

    Yang, Jehoon; Shen, Jun

    2006-09-01

    The significance of changes in cerebral oxygen consumption in focally activated brain tissue is still controversial. Since the rate of cerebral oxygen consumption is tightly coupled to that of tricarboxylic acid cycle which can be measured from the turnover kinetics of [4-(13)C]glutamate using in vivo (1)H{(13)C} magnetic resonance spectroscopy, changes in tricarboxylic acid cycle flux rate were assessed in primary somatosensory cortex of alpha-chloralose anesthetized rats during electrical forepaw stimulation. With markedly improved (1)H{(13)C} magnetic resonance spectroscopy technique and the use of high magnetic field strength of 11.7 T accessible to the current study, [4-(13)C]glutamate at 2.35 ppm was spectrally resolved from overlapping resonances of [4-(13)C]glutamine at 2.46 ppm and [2-(13)C]GABA at 2.28 ppm as well as the more distal [3-(13)C]glutamate and [3-(13)C]glutamine. The results showed a significantly increased V(TCA) in focally activated primary somatosensory cortex during forepaw stimulation, corresponding to approximately 51 +/- 27% (n = 6, mean +/- SD) increase in cerebral oxygen consumption rate. Considering the high efficiency in producing adenosine triphosphate by oxidative metabolism of glucose, the results demonstrate that aerobic oxidative metabolism provides the majority of energy required for cerebral focal activation in alpha-chloralose anesthetized rats subjected to forepaw stimulation.

  6. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development

    PubMed Central

    Meechan, Daniel W.; Maynard, Thomas M.; Fernandez, Alejandra; Karpinski, Beverly A.; Rothblat, Lawrence A.; LaMantia, Anthony S.

    2015-01-01

    Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic “model” syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that “modeling a model”, in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development. PMID:25866365

  7. [Changes in pain sensitivity after the ablation of the somatosensory areas of the cerebral cortex in cats].

    PubMed

    Reshetniak, V K; Kukushkin, M L

    1986-12-01

    The effects of ablation of the first and second somatosensory cortex on pain sensitivity were studied in the behavioural experiments on adult cats. The ablation of the first somatosensory cortex (SI) was shown to cause an increase of the response thresholds at all the levels of a conventional scale, while the destruction of the second somatosensory cortex (S2) decreased the response thresholds. The role of SI and S2 in the evaluation of nociceptive information is discussed.

  8. l-Methionine and silymarin: A comparison of prophylactic protective capabilities in acetaminophen-induced injuries of the liver, kidney and cerebral cortex.

    PubMed

    Onaolapo, Olakunle J; Adekola, Moses A; Azeez, Taiwo O; Salami, Karimat; Onaolapo, Adejoke Y

    2017-01-01

    We compared the relative protective abilities of silymarin and l-methionine pre-treatment in acetaminophen overdose injuries of the liver, kidney and cerebral cortex by assessing behaviours, antioxidant status, tissue histological changes and biochemical parameters of hepatic/renal function. Rats were divided into six groups of ten each; animals in five of these groups were pre-treated with oral distilled water, silymarin (25mg/kg) or l-methionine (2.5, 5 and 10mg/kg body weight) for 14days; and then administered intraperitoneal (i.p.) acetaminophen at 800mg/kg/day for 3days. Rats in the sixth group (normal control) received distilled water orally for 14days and then i.p. for 3days. Neurobehavioural tests were conducted 7days after last i.p treatment, and animals sacrificed on the 8th day. Plasma was assayed for biochemical markers of liver/kidney function; while sections of the liver, kidney and cerebral cortex were either homogenised for assay of antioxidant status or processed for histology. Acetaminophen overdose resulted in locomotor retardation, excessive self-grooming, working-memory impairment, anxiety, derangement of liver/kidney biochemistry, antioxidant imbalance, and histological changes in the liver, kidney and cerebral cortex. Administration of silymarin or increasing doses of l-methionine counteracted the behavioural changes, reversed biochemical indices of liver/kidney injury, and improved antioxidant activity. Silymarin and l-methionine also conferred variable degrees of tissue protection, on histology. Either silymarin or l-methionine can protect vulnerable tissues from acetaminophen overdose injury; however, each offers variable protection to different tissues. This study highlights an obstacle to seeking the 'ideal' protective agent against acetaminophen overdose. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Inorganic Arsenic Induces NRF2-Regulated Antioxidant Defenses in Both Cerebral Cortex and Hippocampus in Vivo.

    PubMed

    Zhang, Yang; Duan, Xiaoxu; Li, Jinlong; Zhao, Shuo; Li, Wei; Zhao, Lu; Li, Wei; Nie, Huifang; Sun, Guifang; Li, Bing

    2016-08-01

    Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid.

  10. Seasonal and Regional Differences in Gene Expression in the Brain of a Hibernating Mammal

    PubMed Central

    Schwartz, Christine; Hampton, Marshall; Andrews, Matthew T.

    2013-01-01

    Mammalian hibernation presents a unique opportunity to study naturally occurring neuroprotection. Hibernating ground squirrels undergo rapid and extreme physiological changes in body temperature, oxygen consumption, and heart rate without suffering neurological damage from ischemia and reperfusion injury. Different brain regions show markedly different activity during the torpor/arousal cycle: the cerebral cortex shows activity only during the periodic returns to normothermia, while the hypothalamus is active over the entire temperature range. Therefore, region-specific neuroprotective strategies must exist to permit this compartmentalized spectrum of activity. In this study, we use the Illumina HiSeq platform to compare the transcriptomes of these two brain regions at four collection points across the hibernation season: April Active, October Active, Torpor, and IBA. In the cerebral cortex, 1,085 genes were found to be differentially expressed across collection points, while 1,063 genes were differentially expressed in the hypothalamus. Comparison of these transcripts indicates that the cerebral cortex and hypothalamus implement very different strategies during hibernation, showing less than 20% of these differentially expressed genes in common. The cerebral cortex transcriptome shows evidence of remodeling and plasticity during hibernation, including transcripts for the presynaptic cytomatrix proteins bassoon and piccolo, and extracellular matrix components, including laminins and collagens. Conversely, the hypothalamic transcriptome displays upregulation of transcripts involved in damage response signaling and protein turnover during hibernation, including the DNA damage repair gene RAD50 and ubiquitin E3 ligases UBR1 and UBR5. Additionally, the hypothalamus transcriptome also provides evidence of potential mechanisms underlying the hibernation phenotype, including feeding and satiety signaling, seasonal timing mechanisms, and fuel utilization. This study provides insight into potential neuroprotective strategies and hibernation control mechanisms, and also specifically shows that the hibernator brain exhibits both seasonal and regional differences in mRNA expression. PMID:23526982

  11. Subchronic treatment with acai frozen pulp prevents the brain oxidative damage in rats with acute liver failure.

    PubMed

    de Souza Machado, Fernanda; Kuo, Jonnsin; Wohlenberg, Mariane Farias; da Rocha Frusciante, Marina; Freitas, Márcia; Oliveira, Alice S; Andrade, Rodrigo B; Wannmacher, Clovis M D; Dani, Caroline; Funchal, Claudia

    2016-12-01

    Acai has been used by the population due to its high nutritional value and its benefits to health, such as its antioxidant properties. The aim of this study was to evaluate the protective effect of acai frozen pulp on oxidative stress parameters in cerebral cortex, hippocampus and cerebellum of Wistar rats treated with carbon tetrachloride (CCl 4 ). Thirty male Wistar rats (90-day-old) were orally treated with water or acai frozen pulp for 14 days (7 μL/g). On the 15th day, half of the animals received treatment with mineral oil and the other half with CCl 4 (3.0 mL/kg). The cerebral cortex, hippocampus and cerebellum were dissected and used for analysis of creatine kinase activity (CK), thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, and the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Statistical analysis was performed by ANOVA followed by Tukey's post-test. CCl 4 was able to inhibit CK activity in all tissues tested and to provoke lipid damage in cerebral cortex and cerebellum, and protein damage in the three tissues tested. CCl 4 enhanced CAT activity in the cerebral cortex, and inhibited CAT activity in the hippocampus and cerebellum and reduced SOD activity in all tissues studied. Acai frozen pulp prevented the inhibition of CK, TBARS, carbonyl and CAT activity in all brain structures and only in hippocampus for SOD activity. Therefore, acai frozen pulp has antioxidant properties and maybe could be useful in the treatment of some diseases that affect the central nervous system that are associated with oxidative damage.

  12. The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.

    PubMed

    Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria

    2011-01-25

    Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Rose oil (from Rosa × damascena Mill.) vapor attenuates depression-induced oxidative toxicity in rat brain.

    PubMed

    Nazıroğlu, Mustafa; Kozlu, Süleyman; Yorgancıgil, Emre; Uğuz, Abdülhadi Cihangir; Karakuş, Kadir

    2013-01-01

    Oxidative stress is a critical route of damage in various physiological stress-induced disorders, including depression. Rose oil may be a useful treatment for depression because it contains flavonoids which include free radical antioxidant compounds such as rutin and quercetin. We investigated the effects of absolute rose oil (from Rosa × damascena Mill.) and experimental depression on lipid peroxidation and antioxidant levels in the cerebral cortex of rats. Thirty-two male rats were randomly divided into four groups. The first group was used as control, while depression was induced in the second group using chronic mild stress (CMS). Oral (1.5 ml/kg) and vapor (0.15 ml/kg) rose oil were given for 28 days to CMS depression-induced rats, constituting the third and fourth groups, respectively. The sucrose preference test was used weekly to identify depression-like phenotypes during the experiment. At the end of the experiment, cerebral cortex samples were taken from all groups. The lipid peroxidation levels in the cerebral cortex in the CMS group were higher than in control whereas their levels were decreased by rose oil vapor exposure. The vitamin A, vitamin E, vitamin C and β-carotene concentrations in the cerebral cortex were lower in the CMS group than in the control group whereas their concentrations were higher in the rose oil vapor plus CMS group. The CMS-induced antioxidant vitamin changes were not modulated by oral treatment. Glutathione peroxidase activity and reduced glutathione did not change statistically in the four groups following CMS or either treatment. In conclusion, experimental depression is associated with elevated oxidative stress while treatment with rose oil vapor induced protective effects on oxidative stress in depression.

  14. Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortical dialysis: effects of drugs affecting noradrenergic transmission.

    PubMed

    L'Heureux, R; Dennis, T; Curet, O; Scatton, B

    1986-06-01

    The release of endogenous noradrenaline was measured in the cerebral cortex of the halothane-anesthetized rat by using the technique of brain dialysis coupled to a radioenzymatic assay. A thin dialysis tube was inserted transversally in the cerebral cortex (transcortical dialysis) and perfused with Ringer medium (2 microliter min-1). Under basal conditions, the cortical output of noradrenaline was stable over a period of at least 6 h and amounted to 8.7 pg/20 min (not corrected for recovery). Histological control of the perfused area revealed very little damage and normal morphology in the vicinity of the dialysis tube. Omission of calcium from the perfusion medium caused a marked drop in cortical noradrenaline output. Bilateral electrical stimulation (for 10 min) of the ascending noradrenergic pathways in the medial forebrain bundle caused a frequency-dependent increase in cortical noradrenaline output over the range 5-20 Hz. Stimulation at a higher frequency (50 Hz) resulted in a levelling off of the increase in cortical noradrenaline release. Systemic administration of the dopamine-beta-hydroxylase inhibitor bis-(4-methyl-1-homopiperazinylthiocarbonyl) disulfide (FLA 63) (25 mg/kg i.p.) markedly reduced, whereas injection of the monoamine oxidase inhibitor pargyline (75 mg/kg i.p.) resulted in a progressive increase in, cortical noradrenaline output. d-Amphetamine (2 mg/kg i.p.) provoked a sharp increase in cortical noradrenaline release (+450% over basal values within 40 min). Desmethylimipramine (10 mg/kg i.p.) produced a twofold increase of cortical noradrenaline release. Finally, idazoxan (20 mg/kg i.p.) and clonidine (0.3 mg/kg i.p.), respectively, increased and decreased the release of noradrenaline from the cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Distinction of Neurons, Glia and Endothelial Cells in the Cerebral Cortex: An Algorithm Based on Cytological Features

    PubMed Central

    García-Cabezas, Miguel Á.; John, Yohan J.; Barbas, Helen; Zikopoulos, Basilis

    2016-01-01

    The estimation of the number or density of neurons and types of glial cells and their relative proportions in different brain areas are at the core of rigorous quantitative neuroanatomical studies. Unfortunately, the lack of detailed, updated, systematic and well-illustrated descriptions of the cytology of neurons and glial cell types, especially in the primate brain, makes such studies especially demanding, often limiting their scope and broad use. Here, following an extensive analysis of histological materials and the review of current and classical literature, we compile a list of precise morphological criteria that can facilitate and standardize identification of cells in stained sections examined under the microscope. We describe systematically and in detail the cytological features of neurons and glial cell types in the cerebral cortex of the macaque monkey and the human using semithin and thick sections stained for Nissl. We used this classical staining technique because it labels all cells in the brain in distinct ways. In addition, we corroborate key distinguishing characteristics of different cell types in sections immunolabeled for specific markers counterstained for Nissl and in ultrathin sections processed for electron microscopy. Finally, we summarize the core features that distinguish each cell type in easy-to-use tables and sketches, and structure these key features in an algorithm that can be used to systematically distinguish cellular types in the cerebral cortex. Moreover, we report high inter-observer algorithm reliability, which is a crucial test for obtaining consistent and reproducible cell counts in unbiased stereological studies. This protocol establishes a consistent framework that can be used to reliably identify and quantify cells in the cerebral cortex of primates as well as other mammalian species in health and disease. PMID:27847469

  16. [Origin of cortical interneurons: basic concepts and clinical implications].

    PubMed

    Marín, O

    Introduction and development. GABAergic interneurons play a prominent role in the function of the cerebral cortex, since they allow the synchronization of pyramidal neurons and greatly influence their differentiation and maturation during development. Until recently it has been thought that cortical interneurons and pyramidal neurons originate from progenitor cells located in the dorsal region of the telencephalon, the pallium. Recent studies, however, have demonstrated that a large number of cortical GABAergic neurons arise from progenitors located in the subpallium the region of the telencephalon that gives rise to the basal ganglia, and that they arise in the cerebral cortex after a long tangential migration. Aims. In this review I have summarized our current knowledge of the factors that control the specification of cortical interneurons, as well as the mechanisms that direct their migration to the cortex.

  17. Comparison of gray matter volume and thickness for analysis of cortical changes in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Liu, Jiachao; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kunchen; Guo, Xiaojuan

    2011-03-01

    Gray matter volume and cortical thickness are two indices of concern in brain structure magnetic resonance imaging research. Gray matter volume reflects mixed-measurement information of cerebral cortex, while cortical thickness reflects only the information of distance between inner surface and outer surface of cerebral cortex. Using Scaled Subprofile Modeling based on Principal Component Analysis (SSM_PCA) and Pearson's Correlation Analysis, this study further provided quantitative comparisons and depicted both global relevance and local relevance to comprehensively investigate morphometrical abnormalities in cerebral cortex in Alzheimer's disease (AD). Thirteen patients with AD and thirteen age- and gender-matched healthy controls were included in this study. Results showed that factor scores from the first 8 principal components accounted for ~53.38% of the total variance for gray matter volume, and ~50.18% for cortical thickness. Factor scores from the fifth principal component showed significant correlation. In addition, gray matter voxel-based volume was closely related to cortical thickness alterations in most cortical cortex, especially, in some typical abnormal brain regions such as insula and the parahippocampal gyrus in AD. These findings suggest that these two measurements are effective indices for understanding the neuropathology in AD. Studies using both gray matter volume and cortical thickness can separate the causes of the discrepancy, provide complementary information and carry out a comprehensive description of the morphological changes of brain structure.

  18. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex formore » each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations that brain radiation patients experience deficits in domains of memory, executive function, and attention. Correlations of regional cortical atrophy with domain-specific cognitive functioning in prospective trials are warranted.« less

  19. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    PubMed Central

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions. PMID:25993263

  20. TH-EF-BRB-01: BEST IN PHYSICS (THERAPY): Dosimetric Comparison of 4π and Clinical IMRT for Cortex-Sparing High-Grade Glioma Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, K; Tran, A; Yu, V

    Purpose: Thinning of the cerebral cortex has been observed in patients treated with fractionated partial brain radiation therapy and may contribute to cognitive decline following treatment. The extent of this thinning is dose-dependent, and was shown comparable to that of neurodegenerative diseases such as Alzheimer’s disease at one year post-therapy. This study investigates whether 4π radiotherapy can enable better sparing of the cortex and other critical structures when compared to conventional clinical IMRT plans. Methods: Clinical cortex-sparing IMRT plans for 15 high-grade glioma patients were included in this study. 4π radiotherapy plans were created for each patient with 20 intensity-modulatedmore » non-coplanar fields selected with a greedy column-generation optimization. All plans were normalized to deliver 100% of the prescribed dose to 95% of the planning target volume (PTV). The mean and maximum dose to the cerebral cortex and other organs at risk (OARs) were compared for the two plan types, as well as the conformity index (CI), homogeneity index (HI), and 50% dose spillage volume (R50). Results: The 4π plans significantly reduced the mean cortex dose by an average of 16% (range 6% to 27%) compared to the clinical plans. The mean dose to every other OAR compared was also reduced by 15% to 43%, with statistically significant reductions to the brainstem, chiasm, eyes, optic nerves, subcortical whit, and hippocampus. The average maximum doses were also reduced for 10/12 OARs. The R50 was significantly reduced with the 4π plans (>14%) and the homogeneity index was significantly improved. Conclusion: 4π enables significant sparing of the cerebral cortex when treating high-grade gliomas with fractionated partial brain radiation therapy, potentially reducing the risk of harmful dose-dependent cortical thinning. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems.« less

  1. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    PubMed

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p < 0.05) in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05) only in the right frontal eye field. Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  2. Microglia in the Cerebral Cortex in Autism

    ERIC Educational Resources Information Center

    Tetreault, Nicole A.; Hakeem, Atiya Y.; Jiang, Sue; Williams, Brian A.; Allman, Elizabeth; Wold, Barbara J.; Allman, John M.

    2012-01-01

    We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had…

  3. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer’s Disease of humans and mice

    PubMed Central

    Cacciottolo, Mafalda; Christensen, Amy; Moser, Alexandra; Liu, Jiahui; Pike, Christian J.; Sullivan, Patrick M.; Morgan, Todd E.; Dolzhenko, Egor; Charidimou, Andreas; Wahlund, Lars-Olaf; Wiberg, Maria Kristofferson; Shams, Sara; Chiang, Gloria Chia-Yi; Finch, Caleb E.

    2015-01-01

    The APOE4 allele confers greater risk of Alzheimer’s Disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment (MCI) and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in two clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes. At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy (CAA), plaques, and soluble Aβ also showed female excess. Both the cerebral microbleeds and CAA increased in proportion to individual Aβ load. In humans, the opposite sex bias of APOE4 allele for microbleeds vs the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition. PMID:26686669

  4. The proprotein convertase PC2 is involved in the maturation of prosomatostatin to somatostatin-14 but not in the somatostatin deficit in Alzheimer's disease.

    PubMed

    Winsky-Sommerer, R; Grouselle, D; Rougeot, C; Laurent, V; David, J-P; Delacourte, A; Dournaud, P; Seidah, N G; Lindberg, I; Trottier, S; Epelbaum, J

    2003-01-01

    A somatostatin deficit occurs in the cerebral cortex of Alzheimer's disease patients without a major loss in somatostatin-containing neurons. This deficit could be related to a reduction in the rate of proteolytic processing of peptide precursors. Since the two proprotein convertases (PC)1 and PC2 are responsible for the processing of neuropeptide precursors directed to the regulated secretory pathway, we examined whether they are involved first in the proteolytic processing of prosomatostatin in mouse and human brain and secondly in somatostatin defect associated with Alzheimer's disease. By size exclusion chromatography, the cleavage of prosomatostatin to somatostatin-14 is almost totally abolished in the cortex of PC2 null mice, while the proportions of prosomatostatin and somatostatin-28 are increased. By immunohistochemistry, PC1 and PC2 were localized in many neuronal elements in human frontal and temporal cortex. The convertases levels were quantified by Western blot, as well as the protein 7B2 which is required for the production of active PC2. No significant change in PC1 levels was observed in Alzheimer's disease. In contrast, a marked decrease in the ratio of the PC2 precursor to the total enzymatic pool was observed in the frontal cortex of Alzheimer patients. This decrease coincides with an increase in the binding protein 7B2. However, the content and enzymatic activity of the PC2 mature form were similar in Alzheimer patients and controls. Therefore, the cortical somatostatin defect is not due to convertase alteration occuring during Alzheimer's disease. Further studies will be needed to assess the mechanisms involved in somatostatin deficiency in Alzheimer's disease.

  5. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    PubMed Central

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  6. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    PubMed

    Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  7. Sleep Loss Reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to Specific Clock Genes in the Mouse Cerebral Cortex

    PubMed Central

    Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), −6, −12, and −18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and −6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518

  8. Experimental and clinical study of EHF treatment of vascular-vestibular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mal`tsev, A.E.; Abakarov, A.T.; Istomin, V.S.

    1994-07-01

    The authors present the results of a study of the effectiveness of EHF radiation on the cerebral hemodynamics, bioelectrical activity of the cerebral cortex, and functional state of the vestibular analyzer in chronic studies of cats using a model of vascular-vestibular dysfunction. The clinical part of the work reflects the results of studies of the functional state of cerebral blood circulation and the vestibular analyzer during the EHF treatment of angiovertebrogenic vestibular dysfunction in a background of initial manifestations of cerebral blood supply deficiency (angiodistonic variant).

  9. Aging, self-referencing, and medial prefrontal cortex.

    PubMed

    Gutchess, Angela H; Kensinger, Elizabeth A; Schacter, Daniel L

    2007-01-01

    The lateral prefrontal cortex undergoes both structural and functional changes with healthy aging. In contrast, there is little structural change in the medial prefrontal cortex, but relatively little is known about the functional changes to this region with age. Using an event-related fMRI design, we investigated the response of medial prefrontal cortex during self-referencing in order to compare age groups on a task that young and elderly perform similarly and that is known to actively engage the region in young adults. Nineteen young (M age = 23) and seventeen elderly (M age = 72) judged whether adjectives described themselves, another person, or were presented in upper case. We assessed the overlap in activations between young and elderly for the self-reference effect (self vs. other person), and found that both groups engage medial prefrontal cortex and mid-cingulate during self-referencing. The only cerebral differences between the groups in self versus other personality assessment were found in somatosensory and motor-related areas. In contrast, age-related modulations were found in the cerebral network recruited for emotional valence processing. Elderly (but not young) showed increased activity in the dorsal prefrontal cortex for positive relative to negative items, which could reflect an increase in controlled processing of positive information for elderly adults.

  10. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1G93A mouse model of amyotrophic lateral sclerosis.

    PubMed

    Tefera, Tesfaye W; Borges, Karin

    2018-01-01

    Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1- 13 C]glucose and [1,2- 13 C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1 G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1 H and 13 C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3- 13 C]lactate, total alanine and [3- 13 C]alanine, but not cortical glucose and [1- 13 C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1- 13 C]glucose-derived [4- 13 C]glutamate, [4- 13 C]glutamine and [2- 13 C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3- 13 C]pyruvate entry into the TCA cycle. Lack of changes in [1,2- 13 C]acetate-derived [4,5- 13 C]glutamate, [4,5- 13 C]glutamine and [1,2- 13 C]GABA levels indicate unchanged astrocytic 13 C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2- 13 C] and [4- 13 C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1 G93A mouse model at symptomatic disease stages.

  11. Transcriptional Consequences of 16p11.2 Deletion and Duplication in Mouse Cortex and Multiplex Autism Families

    PubMed Central

    Blumenthal, Ian; Ragavendran, Ashok; Erdin, Serkan; Klei, Lambertus; Sugathan, Aarathi; Guide, Jolene R.; Manavalan, Poornima; Zhou, Julian Q.; Wheeler, Vanessa C.; Levin, Joshua Z.; Ernst, Carl; Roeder, Kathryn; Devlin, Bernie; Gusella, James F.; Talkowski, Michael E.

    2014-01-01

    Reciprocal copy-number variation (CNV) of a 593 kb region of 16p11.2 is a common genetic cause of autism spectrum disorder (ASD), yet it is not completely penetrant and can manifest in a wide array of phenotypes. To explore its molecular consequences, we performed RNA sequencing of cerebral cortex from mouse models with CNV of the syntenic 7qF3 region and lymphoblast lines from 34 members of 7 multiplex ASD-affected families harboring the 16p11.2 CNV. Expression of all genes in the CNV region correlated well with their DNA copy number, with no evidence of dosage compensation. We observed effects on gene expression outside the CNV region, including apparent positional effects in cis and in trans at genomic segments with evidence of physical interaction in Hi-C chromosome conformation data. One of the most significant positional effects was telomeric to the 16p11.2 CNV and includes the previously described “distal” 16p11.2 microdeletion. Overall, 16p11.2 CNV was associated with altered expression of genes and networks that converge on multiple hypotheses of ASD pathogenesis, including synaptic function (e.g., NRXN1, NRXN3), chromatin modification (e.g., CHD8, EHMT1, MECP2), transcriptional regulation (e.g., TCF4, SATB2), and intellectual disability (e.g., FMR1, CEP290). However, there were differences between tissues and species, with the strongest effects being consistently within the CNV region itself. Our analyses suggest that through a combination of indirect regulatory effects and direct effects on nuclear architecture, alteration of 16p11.2 genes disrupts expression networks that involve other genes and pathways known to contribute to ASD, suggesting an overlap in mechanisms of pathogenesis. PMID:24906019

  12. Ketamine-induced apoptosis in the mouse cerebral cortex follows similar characteristic of physiological apoptosis and can be regulated by neuronal activity.

    PubMed

    Wang, Qi; Shen, Feng-Yan; Zou, Rong; Zheng, Jing-Jing; Yu, Xiang; Wang, Ying-Wei

    2017-06-17

    The effects of general anesthetics on inducing neuronal apoptosis during early brain development are well-documented. However, since physiological apoptosis also occurs during this developmental window, it is important to determine whether anesthesia-induced apoptosis targets the same cell population as physiological apoptosis or different cell types altogether. To provide an adequate plane of surgery, ketamine was co-administered with dexmedetomidine. The apoptotic neurons in the mouse primary somatosensory cortex (S1) were quantitated by immunohistochemistry. To explore the effect of neural activity on ketamine-induced apoptosis, the approaches of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) and an environmental enrichment (EE) were performed. Ketamine-induced apoptosis in S1 is most prominent at postnatal days 5 and 7 (P5 - P7), and becomes insignificant by P12. Physiological and ketamine-induced apoptosis follow similar developmental patterns, mostly comprised of layer V pyramidal neurons at P5 and shifting to mostly layer II to IV GABAergic neurons by P9. Changes in neuronal activity induced by the DREADD system bidirectionally regulated the pattern of ketamine-induced apoptosis, with reduced activity inducing increased apoptosis and shifting the lamination pattern to a more immature form. Importantly, rearing mice in an EE significantly reduced the magnitude of ketamine-induced apoptosis and shifted its developmental pattern to a more mature form. Together, these results demonstrate that lamination pattern and cell-type dependent vulnerability to ketamine-induced apoptosis follow the physiological apoptosis pattern and are age- and activity-dependent. Naturally elevating neuronal activity is a possible method for reducing the adverse effects of general anesthesia.

  13. Parallel pathways from whisker and visual sensory cortices to distinct frontal regions of mouse neocortex

    PubMed Central

    Sreenivasan, Varun; Kyriakatos, Alexandros; Mateo, Celine; Jaeger, Dieter; Petersen, Carl C.H.

    2016-01-01

    Abstract. The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs. PMID:27921067

  14. A Synaptic Basis for Memory Storage in the Cerebral Cortex

    NASA Astrophysics Data System (ADS)

    Bear, Mark F.

    1996-11-01

    A cardinal feature of neurons in the cerebral cortex is stimulus selectivity, and experience-dependent shifts in selectivity are a common correlate of memory formation. We have used a theoretical ``learning rule,'' devised to account for experience-dependent shifts in neuronal selectivity, to guide experiments on the elementary mechanisms of synaptic plasticity in hippocampus and neocortex. These experiments reveal that many synapses in hippocampus and neocortex are bidirectionally modifiable, that the modifications persist long enough to contribute to long-term memory storage, and that key variables governing the sign of synaptic plasticity are the amount of NMDA receptor activation and the recent history of cortical activity.

  15. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    PubMed

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  16. Role of cerebellum in learning postural tasks.

    PubMed

    Ioffe, M E; Chernikova, L A; Ustinova, K I

    2007-01-01

    For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.

  17. Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III

    PubMed Central

    Juric-Sekhar, Gordana; Kapur, Raj P.; Glass, Ian A.; Murray, Mitzi L.; Parnell, Shawn E.

    2011-01-01

    Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria–lissencephaly. PMID:20857301

  18. Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes.

    PubMed

    Takata, Norio; Nagai, Terumi; Ozawa, Katsuya; Oe, Yuki; Mikoshiba, Katsuhiko; Hirase, Hajime

    2013-01-01

    We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.

  19. Characterization of Atrophic Changes in the Cerebral Cortex Using Fractal Dimensional Analysis

    PubMed Central

    George, Anuh T.; Jeon, Tina; Hynan, Linda S.; Youn, Teddy S.; Kennedy, David N.; Dickerson, Bradford

    2010-01-01

    The purpose of this project is to apply a modified fractal analysis technique to high-resolution T1 weighted magnetic resonance images in order to quantify the alterations in the shape of the cerebral cortex that occur in patients with Alzheimer’s disease. Images were selected from the Alzheimer’s Disease Neuroimaging Initiative database (Control N=15, Mild-Moderate AD N=15). The images were segmented using a semi-automated analysis program. Four coronal and three axial profiles of the cerebral cortical ribbon were created. The fractal dimensions (Df) of the cortical ribbons were then computed using a box-counting algorithm. The mean Df of the cortical ribbons from AD patients were lower than age-matched controls on six of seven profiles. The fractal measure has regional variability which reflects local differences in brain structure. Fractal dimension is complementary to volumetric measures and may assist in identifying disease state or disease progression. PMID:20740072

  20. Borders and Comparative Cytoarchitecture of the Perirhinal and Postrhinal Cortices in an F1 Hybrid Mouse

    PubMed Central

    Beaudin, Stephane A.; Singh, Teghpal; Agster, Kara L.

    2013-01-01

    We examined the cytoarchitectonic and chemoarchitectonic organization of the cortical regions associated with the posterior rhinal fissure in the mouse brain, within the framework of what is known about these regions in the rat. Primary observations were in a first-generation hybrid mouse line, B6129PF/J1. The F1 hybrid was chosen because of the many advantages afforded in the study of the molecular and cellular bases of learning and memory. Comparisons with the parent strains, the C57BL6/J and 129P3/J are also reported. Mouse brain tissue was processed for visualization of Nissl material, myelin, acetyl cholinesterase, parvalbumin, and heavy metals. Tissue stained for heavy metals by the Timm’s method was particularly useful in the assignment of borders and in the comparative analyses because the patterns of staining were similar across species and strains. As in the rat, the areas examined were parcellated into 2 regions, the perirhinal and the postrhinal cortices. The perirhinal cortex was divided into areas 35 and 36, and the postrhinal cortex was divided into dorsal (PORd) and ventral (PORv) subregions. In addition to identifying the borders of the perirhinal cortex, we were able to identify a region in the mouse brain that shares signature features with the rat postrhinal cortex. PMID:22368084

  1. Brain Tissue PO2 Measurement During Normoxia and Hypoxia Using Two-Photon Phosphorescence Lifetime Microscopy.

    PubMed

    Xu, Kui; Boas, David A; Sakadžić, Sava; LaManna, Joseph C

    2017-01-01

    Key to the understanding of the principles of physiological and structural acclimatization to changes in the balance between energy supply (represented by substrate and oxygen delivery, and mitochondrial oxidative phosphorylation) and energy demand (initiated by neuronal activity) is to determine the controlling variables, how they are sensed and the mechanisms initiated to maintain the balance. The mammalian brain depends completely on continuous delivery of oxygen to maintain its function. We hypothesized that tissue oxygen is the primary sensed variable. In this study two-photon phosphorescence lifetime microscopy (2PLM) was used to determine and define the tissue oxygen tension field within the cerebral cortex of mice to a cortical depth of between 200-250 μm under normoxia and acute hypoxia (FiO 2  = 0.10). High-resolution images can provide quantitative distributions of oxygen and intercapillary oxygen gradients. The data are best appreciated by quantifying the distribution histogram that can then be used for analysis. For example, in the brain cortex of a mouse, at a depth of 200 μm, tissue oxygen tension was mapped and the distribution histogram was compared under normoxic and mild hypoxic conditions. This powerful method can provide for the first time a description of the delivery and availability of brain oxygen in vivo.

  2. Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Nowakowski, R. S.; Caviness, V. S. Jr

    1996-01-01

    Neocortical neuronogenesis occurs in the pseudostratified ventricular epithelium (PVE) where nuclei of proliferative cells undergo interkinetic nuclear movement. A fraction of daughter cells exits the cell cycle as neurons (the quiescent, or Q, fraction), whereas a complementary fraction remains in the cell cycle (the proliferative, or P, fraction). By means of sequential thymidine and bromodeoxyuridine injections in mouse on embryonic day 14, we have monitored the proliferative and post-mitotic migratory behaviors of 1 and 2 hr cohorts of PVE cells defined by the injection protocols. Soon after mitosis, the Q fraction partitions into a rapidly exiting (up to 50 microns/hr) subpopulation (Qr) and a more slowly exiting (6 microns/hr) subpopulation (Qs). Qr and Qs are separated as two distributions on exit from the ventricular zone with an interpeak distance of approximately 40 microns. Cells in Qr and Qs migrate through the intermediate zone with no significant change in the interpeak distance, suggesting that they migrate at approximately the same velocities. The rate of migration increases with ascent through the intermediate zone (average 2-6.4 microns/hr) slowing only transiently on entry into the developing cortex. Within the cortex, Qr and Qs merge to form a single distribution most concentrated over layer V.

  3. EFFECT OF PREGNANCY ON AUTOREGULATION OF CEREBRAL BLOOD FLOW IN ANTERIOR VERSUS POSTERIOR CEREBRUM

    PubMed Central

    Cipolla, Marilyn J.; Bishop, Nicole; Chan, Siu-Lung

    2012-01-01

    Severe pre/eclampsia are associated with brain edema that forms preferentially in the posterior cerebral cortex possibly due to decreased sympathetic innervation of posterior cerebral arteries and less effective autoregulation during acute hypertension. In the present study, we examined the effect of pregnancy on the effectiveness of cerebral blood flow autoregulation using laser Doppler flowmetry and edema formation by wet:dry weight in acute hypertension induced by phenylephrine infusion in the anterior and posterior cerebrum from nonpregnant (n=8) and late-pregnant (n=6) Sprague Dawley rats. In addition, we compared the effect of pregnancy on sympathetic innervation by tyrosine hydroxylase staining of posterior and middle cerebral arteries (n=5–6/group) and endothelial and neuronal nitric oxide synthase expression using quantitative polymerase chain reaction (n=3/group). In nonpregnant animals, there was no difference in autoregulation between anterior and posterior cerebrum. However, in late-pregnant animals, the threshold of cerebral blood flow autoregulation was shifted to lower pressures in the posterior cerebrum, which was associated with increased neuronal nitric oxide synthase expression in the posterior cerebral cortex vs. anterior. Compared to the nonpregnant state, pregnancy increased the threshold of autoregulation in both brain regions that was related to decreased expression of endothelial nitric oxide synthase. Lastly, acute hypertension during pregnancy caused greater edema formation in both brain cortices that was not due to changes in sympathetic innervation. These findings suggest that although pregnancy shifted the cerebral blood flow autoregulatory curve to higher pressures in both the anterior and posterior cortices, it did not protect from edema during acute hypertension. PMID:22824983

  4. Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum.

    PubMed

    Cipolla, Marilyn J; Bishop, Nicole; Chan, Siu-Lung

    2012-09-01

    Severe preeclampsia and eclampsia are associated with brain edema that forms preferentially in the posterior cerebral cortex possibly because of decreased sympathetic innervation of posterior cerebral arteries and less effective autoregulation during acute hypertension. In the present study, we examined the effect of pregnancy on the effectiveness of cerebral blood flow autoregulation using laser Doppler flowmetry and edema formation by wet:dry weight in acute hypertension induced by phenylephrine infusion in the anterior and posterior cerebrum from nonpregnant (n=8) and late-pregnant (n=6) Sprague-Dawley rats. In addition, we compared the effect of pregnancy on sympathetic innervation by tyrosine hydroxylase staining of posterior and middle cerebral arteries (n=5-6 per group) and endothelial and neuronal NO synthase expression using quantitative PCR (n=3 per group). In nonpregnant animals, there was no difference in autoregulation between the anterior and posterior cerebrum. However, in late-pregnant animals, the threshold of cerebral blood flow autoregulation was shifted to lower pressures in the posterior cerebrum, which was associated with increased neuronal NO synthase expression in the posterior cerebral cortex versus anterior. Compared with the nonpregnant state, pregnancy increased the threshold of autoregulation in both brain regions that was related to decreased expression of endothelial NO synthase. Lastly, acute hypertension during pregnancy caused greater edema formation in both brain cortices that was not attributed to changes in sympathetic innervation. These findings suggest that, although pregnancy shifted the cerebral blood flow autoregulatory curve to higher pressures in both the anterior and posterior cortices, it did not protect from edema during acute hypertension.

  5. Photoacoustic microscopy of cerebral hemodynamic and oxygen-metabolic responses to anesthetics

    NASA Astrophysics Data System (ADS)

    Cao, Rui; Li, Jun; Ning, Bo; Sun, Naidi; Wang, Tianxiong; Zuo, Zhiyi; Hu, Song

    2017-02-01

    General anesthetics are known to have profound effects on cerebral hemodynamics and neuronal activities. However, it remains a challenge to directly assess anesthetics-induced hemodynamic and oxygen-metabolic changes from the true baseline under wakefulness at the microscopic level, due to the lack of an enabling technology for high-resolution functional imaging of the awake mouse brain. To address this challenge, we have developed head-restrained photoacoustic microscopy (PAM), which enables simultaneous imaging of the cerebrovascular anatomy, total concentration and oxygen saturation of hemoglobin (CHb and sO2), and blood flow in awake mice. From these hemodynamic measurements, two important metabolic parameters, oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2), can be derived. Side-by-side comparison of the mouse brain under wakefulness and anesthesia revealed multifaceted cerebral responses to isoflurane, a volatile anesthetic widely used in preclinical research and clinical practice. Key observations include elevated cerebral blood flow (CBF) and reduced oxygen extraction and metabolism.

  6. Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane.

    PubMed

    Yang, Bin; Liang, Ge; Khojasteh, Soorena; Wu, Zhen; Yang, Wenqiong; Joseph, Donald; Wei, Huafeng

    2014-01-01

    While previous studies have demonstrated neuronal apoptosis and associated cognitive impairment after isoflurane or propofol exposure in neonatal rodents, the effects of these two anesthetics have not been directly compared. Here, we compare and contrast the effectiveness of isoflurane and propofol to cause neurodegeneration in the developing brain and associated cognitive dysfunction. Seven-day-old mice were used. Mice in the isoflurane treatment group received 6 h of 1.5% isoflurane, while mice in propofol treatment group received one peritoneal injection (150 mg/kg), which produced persistent anesthesia with loss of righting for at least 6 h. Mice in control groups received carrying gas or a peritoneal injection of vehicle (intralipid). At 6 h after anesthetic treatment, a subset of each group was sacrificed and examined for evidence of neurodegeneration, using plasma levels of S100β, and apoptosis using caspase-3 immunohistochemistry in the cerebral cortex and hippocampus and Western blot assays of the cortex. In addition, biomarkers for inflammation (interleukin-1, interleukin-6, and tumor necrosis factor alpha) were examined with Western blot analyses of the cortex. In another subset of mice, learning and memory were assessed 32 days after the anesthetic exposures using the Morris water maze. Isoflurane significantly increased plasma S100β levels compared to controls and propofol. Both isoflurane and propofol significantly increased caspase-3 levels in the cortex and hippocampus, though isoflurane was significantly more potent than propofol. However, there were no significant differences in the inflammatory biomarkers in the cortex or in subsequent learning and memory between the experimental groups. Both isoflurane and propofol caused significant apoptosis in the mouse developing brain, with isoflurane being more potent. Isoflurane significantly increased levels of the plasma neurodegenerative biomarker, S100β. However, these neurodegenerative effects of isoflurane and propofol in the developing brain were not associated with effects on inflammation or with cognitive dysfunction in later life.

  7. The connectivity of the brain: multi-level quantitative analysis.

    PubMed

    Murre, J M; Sturdy, D P

    1995-11-01

    We develop a mathematical formalism or calculating connectivity volumes generated by specific topologies with various physical packing strategies. We consider four topologies (full, random, nearest-neighbor, and modular connectivity) and three physical models: (i) interior packing, where neurons and connection fibers are intermixed, (ii) sheeted packing where neurons are located on a sheet with fibers running underneath, and (iii) exterior packing where the neurons are located at the surfaces of a cube or sphere with fibers taking up the internal volume. By extensive cross-referencing of available human neuroanatomical data we produce a consistent set of parameters for the whole brain, the cerebral cortex, and the cerebellar cortex. By comparing these inferred values with those predicted by the expressions, we draw the following general conclusions for the human brain, cortex, and cerebellum: (i) Interior packing is less efficient than exterior packing (in a sphere). (ii) Fully and randomly connected topologies are extremely inefficient. More specifically we find evidence that different topologies and physical packing strategies might be used at different scales. (iii) For the human brain at a macro-structural level, modular topologies on an exterior sphere approach the data most closely. (iv) On a mesostructural level, laminarization and columnarization are evidence of the superior efficiency of organizing the wiring as sheets. (v) Within sheets, microstructures emerge in which interior models are shown to be the most efficient. With regard to interspecies similarities and differences we conjecture (vi) that the remarkable constancy of number of neurons per underlying square millimeter of cortex may be the result of evolution minimizing interneuron distance in grey matter, and (vii) that the topologies that best fit the human brain data should not be assumed to apply to other mammals, such as the mouse for which we show that a random topology may be feasible for the cortex.

  8. Experimental hypertension increases spontaneous intracerebral hemorrhages in a mouse model of cerebral amyloidosis

    PubMed Central

    Passos, Giselle F; Kilday, Kelley; Gillen, Daniel L; Vasilevko, Vitaly

    2015-01-01

    Hypertension and cerebral amyloid angiopathy (CAA) are major risk factors for intracerebral hemorrhage (ICH); however the mechanisms of interplay between the two are not fully understood. We investigated the effect of hypertension in a transgenic mouse model with Alzheimer’s-like pathology (Tg2576) treating them with angiontensin II and L-NG-nitroarginine methyl ester. A similar increase in systolic blood pressure was observed in both Tg2576 and control mice; however Tg2576 mice developed signs of stroke with a markedly shorter latency. Cerebral deposition of amyloid beta promotes the hypertension-induced ICH, thus supporting the notion that hypertension is a risk factor for ICH among patients with CAA. PMID:26661173

  9. Quantifying the pattern of beta/A4 amyloid protein distribution in Alzheimer's disease by image analysis.

    PubMed

    Bruce, C V; Clinton, J; Gentleman, S M; Roberts, G W; Royston, M C

    1992-04-01

    We have undertaken a study of the distribution of the beta/A4 amyloid deposited in the cerebral cortex in Alzheimer's disease. Previous studies which have examined the differential distribution of amyloid in the cortex in order to determine the laminar pattern of cortical pathology have not proved to be conclusive. We have developed an alternative method for the solution of this problem. It involves the immunostaining of sections followed by computer-enhanced image analysis. A mathematical model is then used to describe both the amount and the pattern of amyloid across the cortex. This method is both accurate and reliable and also removes many of the problems concerning inter and intra-rater variability in measurement. This method will provide the basis for further quantitative studies on the differential distribution of amyloid in Alzheimer's disease and other cases of dementia where cerebral amyloidosis occurs.

  10. Suppression of phase synchronisation in network based on cat's brain.

    PubMed

    Lameu, Ewandson L; Borges, Fernando S; Borges, Rafael R; Iarosz, Kelly C; Caldas, Iberê L; Batista, Antonio M; Viana, Ricardo L; Kurths, Jürgen

    2016-04-01

    We have studied the effects of perturbations on the cat's cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with a small-world property. We focus on the suppression of neuronal phase synchronisation considering different kinds of perturbations. Among the various controlling interventions, we choose three methods: delayed feedback control, external time-periodic driving, and activation of selected neurons. We simulate these interventions to provide a procedure to suppress undesired and pathological abnormal rhythms that can be associated with many forms of synchronisation. In our simulations, we have verified that the efficiency of synchronisation suppression by delayed feedback control is higher than external time-periodic driving and activation of selected neurons of the cat's cerebral cortex with the same coupling strengths.

  11. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    PubMed

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  12. Cerebral blood flow changes in very-late-onset schizophrenia-like psychosis with catatonia before and after successful treatment.

    PubMed

    Tsujino, Naohisa; Nemoto, Takahiro; Yamaguchi, Taiju; Katagiri, Naoyuki; Tohgi, Nao; Ikeda, Ryu; Shiraga, Nobuyuki; Mizumura, Sunao; Mizuno, Masafumi

    2011-10-01

    The purpose of the present study was to investigate regional cerebral blood flow (rCBF) changes in a patient with very-late-onset schizophrenia-like psychosis (VLOS) with catatonia. A 64-year-old woman developed catatonia after experiencing persecutory delusions. The patient's rCBF was examined using single photon emission computed tomography (SPECT) with easy Z-score imaging system. Before treatment, hypoperfusion was observed in the striatum and the thalamus, whereas hyperperfusion was observed in the left lateral frontal cortex and the left temporal cortex. After treatment, the disproportions in rCBF disappeared, and hyperperfusion was observed in the motor cortex. Sequential SPECT findings suggest that rCBF abnormalities may be correlated with the symptomatology of catatonia in patients with VLOS. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.

  13. Natural speech reveals the semantic maps that tile human cerebral cortex

    PubMed Central

    Huth, Alexander G.; de Heer, Wendy A.; Griffiths, Thomas L.; Theunissen, Frédéric E.; Gallant, Jack L.

    2016-01-01

    The meaning of language is represented in regions of the cerebral cortex collectively known as the “semantic system”. However, little of the semantic system has been mapped comprehensively, and the semantic selectivity of most regions is unknown. Here we systematically map semantic selectivity across the cortex using voxel-wise modeling of fMRI data collected while subjects listened to hours of narrative stories. We show that the semantic system is organized into intricate patterns that appear consistent across individuals. We then use a novel generative model to create a detailed semantic atlas. Our results suggest that most areas within the semantic system represent information about specific semantic domains, or groups of related concepts, and our atlas shows which domains are represented in each area. This study demonstrates that data-driven methods—commonplace in studies of human neuroanatomy and functional connectivity—provide a powerful and efficient means for mapping functional representations in the brain. PMID:27121839

  14. Quantitative comparison of high-resolution MRI and myelin-stained histology of the human cerebral cortex.

    PubMed

    Osechinskiy, Sergey; Kruggel, Frithjof

    2009-01-01

    The architectonic analysis of the human cerebral cortex is presently based on the examination of stained tissue sections. Recent progress in high-resolution magnetic resonance imaging (MRI) promotes the feasibility of an in vivo architectonic analysis. Since the exact relationship between the laminar fine-structure of a cortical MRI signal and histological cyto-and myeloarchitectonic staining patterns is not known, a quantitative study comparing high-resolution MRI to histological ground truth images is necessary for validating a future MRI based architectonic analysis. This communication describes an ongoing study comparing post mortem MR images to a myelin-stained histology of the brain cortex. After establishing a close spatial correspondence between histological sections and MRI using a slice-to-volume nonrigid registration algorithm, transcortical intensity profiles, extracted from both imaging modalities along curved trajectories of a Laplacian vector field, are compared via a cross-correlational analysis.

  15. [The antioxidant prevention of disorders in calcium ion metabolism under the action of glutamate on the synaptosomes of the rat cerebral cortex].

    PubMed

    Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Tiurina, Iu Iu; Tiurin, V A

    1999-04-01

    An increase of intracellular calcium ion concentration and of the 45Ca2+ entry, a decrease in Na+,K(+)-ATPase activity, and activation of Na+/Ca2+ exchange were shown to be initiated by glutamate in the rat brain cortex synaptosomes. These effects could be prevented with antagonists and blocking agents of the NMDA receptors. Pre-incubation of the synaptosomes with alpha-tocopherol, superoxide dismutase, and ganglioside GM1 was shown to normalise [45Ca2+], the rate of 45Ca2+ entry, and the activity of Na+,K(+)-ATPase in the synaptosomes. The data obtained suggest that calcium ions entering the brain cortex neurones via the NMDA receptors in presence of excessive glutamate, trigger activation of free radical reactions damaging the neurones in ischemia, cerebral lesions, and other pathological conditions.

  16. Relations of Blood Pressure and Head Injury to Regional Cerebral Blood Flow

    PubMed Central

    Allen, Allyssa J.; Katzel, Leslie I.; Wendell, Carrington R.; Siegel, Eliot L.; Lefkowitz, David; Waldstein, Shari R.

    2016-01-01

    Hypertension confers increased risk for cognitive decline, dementia, and cerebrovascular disease. These associations have been attributed, in part, to cerebral hypoperfusion. Here we posit that relations of higher blood pressure to lower levels of cerebral perfusion may be potentiated by a prior head injury. Participants were 87 community-dwelling older adults -69% men, 90% white, mean age= 66.9 years, 27.6% with a history of mild traumatic brain injury (mTBI) defined as a loss of consciousness

  17. Cryptotanshinone exhibits therapeutical effects on cerebral stroke through the PI3K/AKT‑eNOS signaling pathway.

    PubMed

    Zhu, Weixin; Qiu, Weihong; Lu, Ailan

    2017-12-01

    Cerebral stroke is a kind of acute cerebrovascular disease with high incidence, morbidity and disability. Treatments against various types of cerebral stroke are limited at preventive measurements due to the lack of effective therapeutic method. The present study aimed to investigate the protective effect of cryptotanshinone (CPT) on cerebral stroke, and investigate the possible mechanism involved in order to develop a novel therapy against stoke. The phosphoinositide 3‑kinase membrane translocation of cerebral stroke rats pretreated with CPT at various concentrations were measured, as well as the phosphorylation of protein kinase B (AKT) and endothelial nitric oxide synthase (eNOS). Additionally, the expression level of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax) and vascular endothelial growth factor were also assessed using western blotting and reverse transcription‑quantitative polymerase chain reaction. Furthermore, biochemical tests were used to measure the activity of superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) in both the cerebral cortex and peripheral blood. As a result, CPT‑pretreated rats presented declined phosphoinositide 3‑kinase (PI3K) and AKT expression levels, indicating that the PI3K/AKT signaling pathway was inhibited. Increased Bcl‑2 and NO levels in both the cerebral cortex and peripheral blood demonstrated the anti‑apoptosis and blood vessel protection effect of CPT. Furthermore, increased SOD activity and declined MDA levels demonstrated suppressed lipid peroxidation. In conclusion, CPT exhibited a protective effect against cerebral stroke through inhibition of the PI3K/AKT‑eNOS signaling pathway. These results suggested the potential of CPT as a promising agent in the treatment of cerebral stroke.

  18. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    PubMed Central

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  19. The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: A diffusion tensor imaging study.

    PubMed

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2015-10-08

    Precise evaluation of the ascending reticular activating system (ARAS) is important for diagnosis, prediction of prognosis, and management of patients with disorders of impaired consciousness. In the current study, we attempted to reconstruct the direct neural pathway between the brainstem reticular formation (RF) and the cerebral cortex in normal subjects, using diffusion tensor imaging (DTI). Forty-one healthy subjects were recruited for this study. DTIs were performed using a sensitivity-encoding head coil at 1.5Tesla with FMRIB Software Library. For connectivity of the brainstem RF, we used two regions of interest (ROIs) for the brainstem RF (seed ROI) and the thalamus and hypothalamus (exclusion ROI). Connectivity was defined as the incidence of connection between the brainstem RF and target brain regions at the threshold of 5 and 50 streamlines. Regarding the thresholds of 5 and 50, the brainstem RF showed high connectivity to the lateral prefrontal cortex (lPFC, 67.1% and 20.7%) and ventromedial prefrontal cortex (vmPFC, 50.0% and 18.3%), respectively. In contrast, the brainstem RF showed low connectivity to the primary motor cortex (31.7% and 3.7%), premotor cortex (24.4% and 3.7%), primary somatosensory cortex (23.2% and 2.4%), orbitofrontal cortex (17.1% and 7.3%), and posterior parietal cortex (12.2% and 0%), respectively. The brainstem RF was mainly connected to the prefrontal cortex, particularly lPFC and vmPFC. We believe that the methodology and results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. [Effect of Reading a Book on a Tablet Computer on Cerebral Blood Flow in the Prefrontal Cortex].

    PubMed

    Sugiura, Akihiro; Eto, Takuya; Kinoshita, Fumiya; Takada, Hiroki

    2018-01-01

    By measuring cerebral blood flow in the prefrontal cortex, we aimed to determine how reading a book on a tablet computer affects sleep. Seven students (7 men age range, 21-32 years) participated in this study. In a controlled illuminance environment, the subjects read a novel in printed form or on a tablet computer from any distance. As the subjects were reading, the cerebral blood flow in their prefrontal cortex was measured by near-infrared spectroscopy. The study protocol was as follows. 1) Subjects mentally counted a sequence of numbers for 30 s as a pretest to standardized thinking and then 2) read the novel for 10 min, using the printed book or tablet computer. In step 2), the use of the book or tablet computer was in a random sequence. Subjects rested between the two tasks. Significantly increased brain activity (increase in regional cerebral blood flow) was observed following reading a novel on a tablet computer compared with that after reading a printed book. Furthermore, the region around Broca's area was more active when reading on a tablet computer than when reading a printed book. Considering the results of this study and previous studies on physiological characteristics during nonrapid eye movement sleep, we concluded that reading a book on a tablet computer before the onset of sleep leads to the potential inhibition of sound sleep through mechanisms other than the suppression of melatonin secretion.

Top