Science.gov

Sample records for mouse dendritic cells

  1. Cross-Presentation in Mouse and Human Dendritic Cells.

    PubMed

    Segura, Elodie; Amigorena, Sebastian

    2015-01-01

    Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.

  2. Generation of mouse and human dendritic cells in vitro.

    PubMed

    Guo, Xueheng; Zhou, Yifan; Wu, Tao; Zhu, Xinyi; Lai, Wenlong; Wu, Li

    2016-05-01

    Dendritic cells (DC) that can orchestrate immune responses and maintain host homeostasis, are indispensable components of the immune system. Although distributed widely in many lymphoid and non-lymphoid tissues, their rarity in number has become a limiting factor for DC related research and therapies. Therefore, methods for efficiently generating large numbers of DC resembling their in vivo counterparts are urgently needed for DC related research and therapies. Herein we summarize the current methods for generating mouse and human DC in vitro and hope that these will facilitate both studies of DC biology and their clinical applications.

  3. Organization of pyramidal cell apical dendrites and composition of dendritic clusters in the mouse: emphasis on primary motor cortex.

    PubMed

    Lev, D L; White, E L

    1997-02-01

    It has been proposed that neurons in sensory cortices are organized into modules that centre on clusters of apical dendrites belonging to layer V pyramidal neurons. In the present study, sections reacted for microtubule-associated protein (MAP2) were examined in order to determine the three-dimensional inter-relationships of pyramidal cell dendrites in mouse primary motor cortex (MsI) cortex. Results indicate that pyramidal cell dendrites in MsI cortex can be interpreted to be arranged in a modular fashion, and that these modules are organized similarly to those in the sensory areas of the cortex. Also included in the present study are experiments designed to determine if the clusters of apical dendrites, around which the modules are centred, are composed of dendrites belonging to one or to more than one type of projection cell. Callosal neurons in MsI cortex were labelled by the retrograde transport of horseradish peroxidase deposited onto severed callosal fibres in the contralateral hemisphere. Examination of tangential thin sections through layer IV of MsI cortex shows clusters of apical dendrites in which every dendrite is labelled with horseradish peroxidase. Adjacent clusters are composed of unlabelled dendrites, suggesting that the apical dendrites of callosal neurons aggregate to form clusters that are composed exclusively of dendrites belonging to this type of projection cell. These findings suggest a hitherto unsuspected degree of specificity in the cellular composition of cortical modules.

  4. Clusters of synaptic inputs on dendrites of layer 5 pyramidal cells in mouse visual cortex

    PubMed Central

    Gökçe, Onur; Bonhoeffer, Tobias; Scheuss, Volker

    2016-01-01

    The spatial organization of synaptic inputs on the dendritic tree of cortical neurons plays a major role for dendritic integration and neural computations, yet, remarkably little is known about it. We mapped the spatial organization of glutamatergic synapses between layer 5 pyramidal cells by combining optogenetics and 2-photon calcium imaging in mouse neocortical slices. To mathematically characterize the organization of inputs we developed an approach based on combinatorial analysis of the likelihoods of specific synapse arrangements. We found that the synapses of intralaminar inputs form clusters on the basal dendrites of layer 5 pyramidal cells. These clusters contain 4 to 14 synapses within ≤30 µm of dendrite. According to the spatiotemporal characteristics of synaptic summation, these numbers suggest that there will be non-linear dendritic integration of synaptic inputs during synchronous activation. DOI: http://dx.doi.org/10.7554/eLife.09222.001 PMID:27431612

  5. DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites.

    PubMed

    Li, Shuai; Sukeena, Joshua M; Simmons, Aaron B; Hansen, Ethan J; Nuhn, Renee E; Samuels, Ivy S; Fuerst, Peter G

    2015-04-08

    In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections.

  6. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

    PubMed

    Inoue, Takahito; Fujiwara, Takeshi; Rikitake, Yoshiyuki; Maruo, Tomohiko; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Mizoguchi, Akira; Takai, Yoshimi

    2015-08-15

    Mitral cells project lateral dendrites that contact the lateral and primary dendrites of other mitral cells and granule cell dendrites in the external plexiform layer (EPL) of the olfactory bulb. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. In immunofluorescence microscopy, the immunofluorescence signal for the cell adhesion molecule nectin-1 was concentrated on mitral cell lateral dendrites in the EPL of the developing mouse olfactory bulb. In electron microscopy, the immunogold particles for nectin-1 were symmetrically localized on the plasma membranes at the contacts between mitral cell lateral dendrites, which showed bilateral darkening without dense cytoskeletal undercoats characteristic of puncta adherentia junctions. We named the contacts where the immunogold particles for nectin-1 were symmetrically accumulated "nectin-1 spots." The nectin-1 spots were 0.21 μm in length on average and the distance between the plasma membranes was 20.8 nm on average. In 3D reconstruction of serial sections, clusters of the nectin-1 spots formed a disc-like structure. In the mitral cell lateral dendrites of nectin-1-knockout mice, the immunogold particles for nectin-1 were undetectable and the plasma membrane darkening was electron-microscopically normalized, but the plasma membranes were partly separated from each other. The nectin-1 spots were further identified between mitral cell lateral and primary dendrites and between mitral cell lateral dendrites and granule cell dendritic spine necks. These results indicate that the nectin-1 spots constitute a novel adhesion apparatus that tethers mitral cell dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

  7. Effects of CHO-expressed recombinant lactoferrins on mouse dendritic cell presentation and function.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2015-07-01

    Lactoferrin (LF), a natural iron-binding protein, has previously demonstrated effectiveness in enhancing the Bacillus Calmette-Guérin (BCG) tuberculosis vaccine. This report investigates immune modulatory effects of Chinese hamster ovary (CHO) cell-expressed recombinant mouse and human LFs on mouse bone marrow-derived dendritic cells (BMDCs), comparing homologous and heterologous functions. BCG-infected BMDCs were cultured with LF, and examined for class II presentation molecule expression. Culturing of BCG-infected BMDCs with either LF decreased the class II molecule-expressing population. Mouse LF significantly increased the production of IL-12p40, IL-1β and IL-10, while human LF-treated BMDCs increased only IL-1β and IL-10. Overlaying naïve CD4 T-cells onto BCG-infected BMDCs cultured with mouse LF increased IFN-γ, whereas the human LF-exposed group increased IFN-γ and IL-17 from CD4 T cells. Overlay of naïve CD8 T cells onto BCG-infected BMDCs treated with mouse LF increased the production of IFN-γ and IL-17, while similar experiments using human LF only increased IL-17. This report is the first to examine mouse and human recombinant LFs in parallel experiments to assess murine DC function. These results detail the efficacy of the human LF counterpart used in a heterologous system to understand LF-mediated events that confer BCG efficacy against Mycobacterium tuberculosis challenge.

  8. Establishment of a cell line with features of early dendritic cell precursors from fetal mouse skin.

    PubMed

    Girolomoni, G; Lutz, M B; Pastore, S; Assmann, C U; Cavani, A; Ricciardi-Castagnoli, P

    1995-08-01

    During ontogeny, the skin is progressively populated by major histocompatibility complex class II-negative dendritic cell (DC) precursors that then mature into efficient antigen-presenting cells (APC). To characterize these DC progenitors better, we generated myeloid cell lines from fetal mouse skin by infecting cell suspensions with a retroviral vector carrying an envAKR-mycMH2 fusion gene. These cells, represented by the line FSDC, displayed a dendritic morphology and their proliferation in serum-free medium was promoted by granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage-CSF. FSDC expressed strong surface-membrane ATP/ADPase activity, intracellular staining for 2A1 antigen, and a surface phenotype consistent with a myeloid precursor: H-2d,b+, I-Ad,b+, CD54+, CD11b+, CD11c+, 2.4G2+, F4/80+, CD44+, 2F8+, ER-MP 12-, Sca-1+, Sca-2+, NLDC-145-, B7.2+, B7.1-, J11d-, B220-, Thy-1-, and CD3-. FSDC stimulated poorly allogeneic or syngeneic T cells in the primary mixed-leukocyte reaction, and markedly increased this function after treatment with GM-CSF, GM-CSF and interleukin (IL)-4 or interferon-gamma (IFN-gamma); in contrast, stem cell factor, IL-1 alpha and tumor necrosis factor-alpha had no effect. Preculture with IFN-gamma was required for presentation of haptens to primed T cells in vitro. However, FSDC, even after cytokine activation, were less potent APC than adult epidermal Langerhans cells in both of the above assays. Finally, FSDC derivatized with haptens and injected either intravenously or subcutaneously could efficiently induce contact sensitivity responses in naive syngeneic mice. The results indicate that fetal mouse skin is colonized by myeloid precursors possessing a macrophage/immature DC-like surface phenotype and priming capacity in vivo. These cells need further differentiation and activation signals (e.g. cytokines) to express their antigen presenting potential in vitro.

  9. Dendritic Calcium Signaling in ON and OFF Mouse Retinal Ganglion Cells

    PubMed Central

    Margolis, David J.; Gartland, Andrew J.; Euler, Thomas; Detwiler, Peter B.

    2010-01-01

    Retinal ganglion cells (RGCs) are the output cells of the retina; they convert synaptic input into spike output that carries visual information to the brain. Synaptic inputs are received, integrated and communicated to the spike initiation zone of the axon by dendrites whose properties are poorly understood. Here simultaneous patch clamp recording and 2-photon Ca2+ imaging are used to study voltage- and light-evoked Ca2+ signals in the dendrites of identified types of mouse RGCs from parallel ON and OFF pathways, which encode the onset and offset of light, respectively. The results show pathway-specific differences in voltage-dependent Ca2+ signaling. While both ON and OFF cells express high-voltage-activated (HVA) Ca2+ channels, only OFF RGCs also express low-voltage-activated (LVA) Ca2+ channels. LVA Ca2+ channels in OFF cells are de-inactivated by hyperpolarization from the resting potential and give rise to rebound excited Ca2+ spikes at the termination of a step of either hyperpolarizing current or light. This suggests that the differential expression of voltage-gated Ca2+ channels in ON and OFF RGC dendrites contribute to differences in the way the two cell types process visual stimuli. PMID:20505081

  10. The Change of Immunoactivity of Dendritic Cells Induced by Mouse 4-1BBL Recombinant Adenovirus

    PubMed Central

    Youlin, Kuang; Xiaodong, Weng; Zhiyuan, Chen; Hengcheng, Zhu; Hui, Chen; Botao, Jiang

    2010-01-01

    Purpose The purpose of this study is to construct a recombinant adenovirus vector carrying mouse 4-1BBL and observe its effects in dendritic cells. Materials and Methods Mouse 4-1BBL cDNA was taken from the plasmid pcDNA3-m4-1BBL and subcloned into adenovirus shuttle plasmid pAdTrack-CMV, and then transformed into competent BJ5183 with plasmid pAdEasy-1. After recombination in E. coli, Ad-4-1BBL was packaged and amplified in HEK 293 cells. The expression of 4-1BBL in Ad-4-1BBL-transfected mouse prostate cancer cell line RM-1 was detected by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. After the co-culture of dendritic cells (DCs) with Ad-4-1BBL-transfected RM-1 cells, interleukin (IL)-6 and IL-12 production were assessed by enzyme-linked immunosorbent assay (ELISA) and co-stimulatary moleculs (CD80 and CD86) on DCs were analyzed by flow cytometry. Results The levels of IL-6 (3,960 pg/mL) and IL-12 (249 pg/mL) production in Ad-m4-1BBL-pulsed DCs were more than those in none-pulsed DCs. The differences were statistically significant (p < 0.05). The expression of co-stimulatary molecules (CD80 and CD86) was up-regulated in Ad-m4-1BBL-pulsed DCs. Conclusion The results indicated the recombinant mouse 4-1BBL can effectively activate DCs. PMID:20499429

  11. Morphine inhibits Purkinje cell survival and dendritic differentiation in organotypic cultures of the mouse cerebellum

    PubMed Central

    Hauser, Kurt F.; Gurwell, Julie A.; Turbek, Carol S.

    2015-01-01

    The effects of morphine on the morphogenesis and survival of calbindin-D28kimmunoreactive Purkinje cells was studied in organotypic explant cultures isolated from 1- or 7-day-old mouse cerebella. To reduce experimental variability, bilaterally matched pairs of organotypic cultures were used to compare the effects of opiate drug treatment. One explant within each pair was untreated, while the remaining explant was continuously treated for 7 to 10 days with morphine, morphine plus naloxone, or naloxone alone. In explants derived from 1-day-old mice, morphine treatment significantly reduced Purkinje cell dendritic length compared to symmetrically-matched untreated control explants. The concentration of morphine estimated to cause a half-maximal reduction (EC50) in dendritic length was 4.9 × 10−8 M. At higher concentrations (EC50 = 3.6 × 10−6 M), morphine also significantly decreased the number of Purkinje cells in explants from 1-day-old mice compared to untreated explants. Electron microscopy identified increased numbers of degenerating Purkinje cells in explants derived from 1-day-old mice. This showed that high concentrations (10−5 M) of morphine reduced Purkinje cell numbers by decreasing their rate of survival. In explants derived from 7-day-old mice, morphine (10−5 M) neither affected Purkinje cell dendritic length nor cell numbers compared to symmetrically-matched untreated (control) explants. Collectively, these findings suggest that morphine per se, through a direct action on the cerebellum, can affect Purkinje cell differentiation and survival. The results additionally suggest there is a critical period during development when Purkinje cells are especially vulnerable to the effects of morphine. PMID:7821399

  12. Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells

    PubMed Central

    Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Pinto Salcedo, Suzana; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, SangKon; Gorvel, Jean-Pierre

    2012-01-01

    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8+ T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4+ and CD8+ T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4+ T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies. PMID:23166489

  13. Brucella β 1,2 cyclic glucan is an activator of human and mouse dendritic cells.

    PubMed

    Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Salcedo, Suzana Pinto; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, Sangkon; Gorvel, Jean-Pierre

    2012-01-01

    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8(+) T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4(+) and CD8(+) T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4(+) T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies.

  14. Effects of mesenchymal stromal cells on human myeloid dendritic cell differentiation and maturation in a humanized mouse model.

    PubMed

    Chen, Ping; Huang, Yanfei; Womer, Karl L

    2015-12-01

    Mesenchymal stromal cells (MSCs) have shown promise as cellular therapy in allogeneic transplantation, although the precise mechanisms underlying their benefit in clinical trials are difficult to study. We previously demonstrated that MSCs exert immunoregulatory effects in mouse bone marrow-derived dendritic cell (DC) culture. Since mouse studies do not reliably reproduce human events, we used a humanized mouse model to study the immunomodulatory effects of human MSCs on human DC immunobiology. Humanized mice were established by injection of cord blood CD34(+) cells into NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl/SzJ) (NOD scid gamma, NSG) mice. Human cells were detected in the mouse bone marrow, blood, and spleen 12weeks after transplantation. Human DCs were differentiated from humanized mouse bone marrow cells during human MSC co-culture. MSCs inhibited DC differentiation and kept DCs in an immature state as demonstrated by phenotype and function. In conclusion, humanized mouse models represent a useful method to study the function of human MSCs on human DC immunobiology.

  15. Dendritic cells and macrophages in the uveal tract of the normal mouse eye

    PubMed Central

    McMenamin, P.

    1999-01-01

    BACKGROUND/AIMS—Dendritic cells (DC) and macrophages are components of the immune cell populations in the uveal tract whose density, distribution, turnover, and function may play a role in the maintenance of immunological homeostasis in the eye. Little is known of these cells in the mouse eye despite this being the predominant experimental model in many studies of ocular immune responses and immunoinflammatory mediated eye diseases. The aim of the present study was to obtain further immunophenotypic data on resident tissue macrophages and DC populations in the mouse uveal tract.
METHODS—Pieces of iris, ciliary body, and choroid dissected from perfusion fixed BALB/c mice were incubated whole in a variety of anti-macrophage and DC monoclonal antibodies (mAbs). Labelled cells were visualised using either single or double immunoperoxidase techniques.
RESULTS—Quantitative analysis and double immunolabelling revealed that 80% of F4/80+ cells (a mAb that recognises both DC and macrophages) in the iris are macrophages (SER4+). The iris contained a network of Ia+ cells (412 (SD 130) cells/mm2) of which two thirds appear to be DC. A similar pattern was observed in the ciliary body and choroid. Only a few DC in the uveal tract were very weakly reactive for mAbs which recognise B7-1 (CD80), B7-2 (CD86), β2 integrin (mAb N418), and multivesicular bodies associated with antigen presentation (mAb M342).
CONCLUSIONS—The present study reveals that the mouse uveal tract, like the rat, contains rich networks of DC and resident tissue macrophages. The networks of resident tissue macrophages in the mouse uveal tract closely resemble similar networks in non-ocular tissues. The phenotype of uveal tract DC suggests they are in the "immature" phase of their life cycle, similar to Langerhans cells of the skin, thus implying their role in situ within the eye is antigen capture and not antigen presentation.

 PMID:10216062

  16. Expression patterns of H2-O in mouse B cells and dendritic cells correlate with cell function.

    PubMed

    Fallas, Jennifer L; Yi, Woelsung; Draghi, Nicole A; O'Rourke, Helen M; Denzin, Lisa K

    2007-02-01

    In the endosomes of APCs, the MHC class II-like molecule H2-M catalyzes the exchange of class II-associated invariant chain peptides (CLIP) for antigenic peptides. H2-O is another class II-like molecule that modulates the peptide exchange activity of H2-M. Although the expression pattern of H2-O in mice has not been fully evaluated, H2-O is expressed by thymic epithelial cells, B cells, and dendritic cells (DCs). In this study, we investigated H2-O, H2-M, and I-A(b)-CLIP expression patterns in B cell subsets during B cell development and activation. H2-O was first detected in the transitional 1 B cell subset and high levels were maintained in marginal zone and follicular B cells. H2-O levels were down-regulated specifically in germinal center B cells. Unexpectedly, we found that mouse B cells may have a pool of H2-O that is not associated with H2-M. Additionally, we further evaluate H2-O and H2-M interactions in mouse DCs, as well as H2-O expression in bone marrow-derived DCs. We also evaluated H2-O, H2-M, I-A(b), and I-A(b)-CLIP expression in splenic DC subsets, in which H2-O expression levels varied among the splenic DC subsets. Although it has previously been shown that H2-O modifies the peptide repertoire, H2-O expression did not alter DC presentation of a number of endogenous and exogenous Ags. Our further characterization of H2-O expression in DCs, as well as the identification of a potential free pool of H2-O in mouse splenic B cells, suggest that H2-O may have a yet to be elucidated role in immune responses.

  17. Plasmacytoid dendritic cells alter the antitumor activity of CpG-oligodeoxynucleotides in a mouse model of lung carcinoma.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Luciano, Antonio; Crother, Timothy R; Maiolino, Piera; Bonavita, Eduardo; Arra, Claudio; Adcock, Ian M; Arditi, Moshe; Pinto, Aldo

    2010-10-15

    The effect of CpG-oligodeoxynucleotides (CpG) has been studied on a number of tumors. Although CpG may facilitate tumor regression in mouse models of melanoma, its activity in lung cancer is unclear. The aim of our study was to elucidate the effect of CpG (0.5-50 μg/mouse) in a mouse model of Lewis lung carcinoma cell-induced lung cancer. Lung tumor growth increased at 3 and 7 d after a single administration of CpG. This was associated with a greater influx of plasmacytoid dendritic cells (pDCs), immature myeloid dendritic cells, and greater recruitment of regulatory T cells. Depletion of pDCs using a specific Ab (m927) reversed the immune-suppressive environment and resulted in a decreased lung tumor burden, accompanied by a greater influx of active myeloid dendritic cells and CD8(+) T cells, and a higher production of Th1- and Th17-like cytokines. Furthermore, the rate of apoptosis in the lungs of mice treated with CpG increased following the depletion of pDCs. CpG treatment alone does not lead to tumor regression in the lung. However, ablation of pDCs renders CpG a good adjuvant for lung cancer chemotherapy in this experimental model.

  18. Constitutive activation of neuronal Src causes aberrant dendritic morphogenesis in mouse cerebellar Purkinje cells.

    PubMed

    Kotani, Takenori; Morone, Nobuhiro; Yuasa, Shigeki; Nada, Shigeyuki; Okada, Masato

    2007-02-01

    Src family tyrosine kinases are essential for neural development, but their in vivo functions remain elusive because of functional compensation among family members. To elucidate the roles of individual Src family members in vivo, we generated transgenic mice expressing the neuronal form of c-Src (n-Src), Fyn, and their constitutively active forms in cerebellar Purkinje cells using the L7 promoter. The expression of the constitutively active n-Src retarded the postnatal development of Purkinje cells and disrupted dendritic morphogenesis, whereas the wild-type n-Src had only moderate effects. Neither wild-type nor constitutively active Fyn over-expression significantly affected Purkinje-cell morphology. The aberrant Purkinje cells in n-Src transgenic mice retained multiple dendritic shafts extending in non-polarized directions and were located heterotopically in the molecular layer. Ultrastructural observation of the dendritic shafts revealed that the microtubules of n-Src transgenic mice were more densely and irregularly arranged, and had structural deformities. In primary culture, Purkinje cells from n-Src transgenic mice developed abnormally thick dendritic shafts and large growth-cone-like structures with poorly extended dendrites, which could be rescued by treatment with a selective inhibitor of Src family kinases, PP2. These results suggest that n-Src activity regulates the dendritic morphogenesis of Purkinje cells through affecting microtubule organization.

  19. Bone marrow-derived dendritic cells.

    PubMed

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  20. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells

    PubMed Central

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  1. Maturation Stages of Mouse Dendritic Cells in Growth Factor–dependent Long-Term Cultures

    PubMed Central

    Winzler, Claudia; Rovere, Patrizia; Rescigno, Maria; Granucci, Francesca; Penna, Giuseppe; Adorini, Luciano; Zimmermann, Valerie S.; Davoust, Jean; Ricciardi-Castagnoli, Paola

    1997-01-01

    The signals controlling the checkpoints of dendritic cells (DC) maturation and the correlation between phenotypical and functional maturational stages were investigated in a defined model system of growth factor–dependent immature mouse DC. Three sequential stages of DC maturation (immature, mature, and apoptotic) were defined and characterized. Immature DC (stage 1) had low expression of costimulatory molecules, highly organized cytoskeleton, focal adhesion plaques, and slow motility; accordingly, they were very efficient in antigen uptake and processing of soluble proteins. Further, at this stage most of major histocompatibility complex class II molecules were within cytoplasmic compartments consistent with a poor allostimulatory capacity. Bacteria or cytokines were very efficient in inducing progression from stage 1 towards stage 2 (mature). Morphological changes were observed by confocal analysis including depolymerization of F-actin and loss of vinculin containing adhesive structures which correlates with acquisition of high motility. Antigen uptake and presentation of native protein antigen was reduced. In contrast, presentation of immunogenic peptides and allostimulatory activity became very efficient and secretion of IL-12 p75 was detectable after antigen presentation. This functional DC maturation ended by apoptotic cell death, and no reversion to the immature phenotype was observed. PMID:9016880

  2. Clostridium difficile toxin B intoxicated mouse colonic epithelial CT26 cells stimulate the activation of dendritic cells

    PubMed Central

    Huang, Tuxiong; Perez-Cordon, Gregorio; Shi, Lianfa; Li, Guangchao; Sun, Xingmin; Wang, Xiaoning; Wang, Jufang; Feng, Hanping

    2015-01-01

    Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis mainly through two exotoxins TcdA and TcdB that target intestinal epithelial cells. Dendritic cells (DCs) play an important role in regulating intestinal inflammatory responses. In the current study, we explored the interaction of TcdB-intoxicated epithelial cells with mouse bone marrow-derived DCs. TcdB induced cell death and heat shock protein translocation in mouse intestinal epithelial CT26 cells. The intoxicated epithelial cells promoted the phagocytosis and the TNF-α secretion by DCs. Incubation with TcdB-intoxicated CT26 cells stimulated DC maturation. Moreover, TcdB-treated CT26 cells induced DC immigration when they were injected into mice subcutaneously. Taken together, these data demonstrate that TcdB-intoxicated intestinal epithelial cells are able to stimulate DC activation in vitro and attract DCs in vivo, indicating that epithelial cells may be able to regulate DC activation under the exposure of TcdB during C. difficile infection. PMID:25743476

  3. Clostridium difficile toxin B intoxicated mouse colonic epithelial CT26 cells stimulate the activation of dendritic cells.

    PubMed

    Huang, Tuxiong; Perez-Cordon, Gregorio; Shi, Lianfa; Li, Guangchao; Sun, Xingmin; Wang, Xiaoning; Wang, Jufang; Feng, Hanping

    2015-04-01

    Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis mainly through two exotoxins TcdA and TcdB that target intestinal epithelial cells. Dendritic cells (DCs) play an important role in regulating intestinal inflammatory responses. In the current study, we explored the interaction of TcdB-intoxicated epithelial cells with mouse bone marrow-derived DCs. TcdB induced cell death and heat shock protein translocation in mouse intestinal epithelial CT26 cells. The intoxicated epithelial cells promoted the phagocytosis and the TNF-α secretion by DCs. Incubation with TcdB-intoxicated CT26 cells stimulated DC maturation. Moreover, TcdB-treated CT26 cells induced DC immigration when they were injected into mice subcutaneously. Taken together, these data demonstrate that TcdB-intoxicated intestinal epithelial cells are able to stimulate DC activation in vitro and attract DCs in vivo, indicating that epithelial cells may be able to regulate DC activation under the exposure of TcdB during C. difficile infection.

  4. Cross-Presentation of Cell-Associated Antigens by Mouse Splenic Dendritic Cell Populations

    PubMed Central

    Thacker, Robert I.; Janssen, Edith M.

    2012-01-01

    Cross-presentation of cell-associated antigens (Ag) plays an important role in the induction of anti-tumor responses, autoimmune diseases, and transplant rejection. While several dendritic cell (DC) populations can induce pro-inflammatory CD8+ T cell responses to cell-associated Ag during infection, in the absence of infection, cross-priming of naïve CD8+ T cells is highly restricted. Comparison of the main splenic DC populations in mice – including the classic, cross-presenting CD8α DC and the recently described merocytic DC (mcDC) – reveals that cross-priming DCs display a distinct phenotype in cell-associated Ag uptake, endosomal/lysosomal trafficking, lysosomal acidification, and Ag persistence compared to non-cross-priming DC populations. Although the CD8α DC and mcDC subsets utilize similar processing pathways to cross-present cell-associated Ag, cross-priming by CD8α DCs is associated with IL-12 production, while the superior priming of the mcDC is critically dependent on type I IFN production. This discussion illustrates how subtle differences in internal processing pathways and their signaling sequelae significantly affect the duration of Ag cross-presentation and cytokine production by DCs, thereby shaping the ensuing CD8+ T cell response. PMID:22566924

  5. Levels of dendritic cell populations and regulatory T cells vary significantly between two commonly used mouse strains.

    PubMed

    Vogelsang, Petra; Hovden, Arnt-Ove; Jonsson, Roland; Appel, Silke

    2009-12-01

    Dendritic cells (DC) are a heterogeneous group of professional antigen-presenting cells (APC) involved in both initiating immune responses and maintaining tolerance. Roughly, DC can be divided into plasmacytoid DC (pDC) and conventional DC (cDC). By controlling regulatory T cells (Treg), DC can influence the outcome of both immunity and autoimmunity. Since the use of mice as in vivo models became a practical tool for researchers studying pathological events in all kind of human diseases, we decided to compare levels of cDC, pDC and Treg in both spleen and blood between two inbred mouse strains. Here we show that two commonly used mouse strains, BALB/c and C57BL/10J mice, have significantly different levels of distinct CD11c(+)/CD4(-)/CD8a(+), CD11c(+)/CD4(+)/CD8a(-) and CD11c(+)/CD4(-)/CD8a(-) cDC populations, pDC and Treg. Therefore, we emphasize the importance of considering the proper model when comparing data sets from different mouse strains.

  6. Dendritic Cells are Critical Accessory Cells for Thymus-Dependent Antibody Responses in Mouse and in Man

    NASA Astrophysics Data System (ADS)

    Inaba, Kayo; Steinman, Ralph M.; van Voorhis, Wesley C.; Muramatsu, Shigeru

    1983-10-01

    We report that dendritic cells (DC) are necessary and potent accessory cells for anti-sheep erythrocyte responses in both mouse and man. In mice, a small number of DC (0.3-1% of the culture) restores the response of B/T-lymphocyte mixtures to that observed in unfractionated spleen. An even lower dose (0.03-0.1% DC) is needed if the T cells have been primed to antigen. Responses are both antigen and T cell dependent. Selective depletion of DC from unfractionated spleen with the monoclonal antibody 33D1 and complement ablates the antibody response. In contrast to DC, purified spleen macrophages are weak or inactive stimulators. However, when mixed with DC, macrophages can increase the yield of antibody-secreting cells about 2-fold. In man, small numbers (0.3-1%) of blood DC stimulate antibody formation in vitro. Purified human monocytes do not stimulate but in low doses (1% of the culture) inhibit the antibody response. Likewise, selective removal of human monocytes with antibody and complement enhances or accelerates the development of antibody-secreting cells. We conclude that DC are required for the development of T-dependent antibody responses by mouse and human lymphocytes in vitro.

  7. Soluble TNF Regulates TACE via AP-2α Transcription Factor in Mouse Dendritic Cells.

    PubMed

    Ge, Lisheng; Vujanovic, Nikola L

    2017-01-01

    Dendritic cells (DCs), the essential immunoregulatory and APCs, are major producers of the central mediator of inflammation, soluble TNF-α (sTNF). sTNF is generated by TNF-α converting enzyme (TACE) proteolytic release of the transmembrane TNF (tmTNF) ectodomain. The mechanisms of TACE and sTNF regulation in DCs remain elusive. This study newly defines that sTNF regulates TACE in mouse DCs by engaging the AP-2α transcription factor. We found that the expression of AP-2α was higher, whereas the expression and activity of TACE were lower, in wild-type DCs (wtDCs) than in TNF knockout (TNFko) DCs. Exogenous sTNF rapidly and simultaneously induced increases of AP-2α expression and decreases of TACE expression and activity in wtDCs and TNFko DCs, indicating that AP-2α and TACE are inversely dependent on sTNF and are functionally associated. To define this functional association, we identified an AP-2α binding site in TACE promoter and demonstrated, using EMSAs and chromatin immunoprecipitation assays, that AP-2α could bind to TACE promoter in a TNF-dependent manner. Additionally, sTNF simultaneously enhanced AP-2α expression and decreased TACE promoter luciferase activity in DCs. Similarly, transfection of AP-2α cDNA decreased TACE promoter luciferase activity, TACE expression, and TACE enzymatic activity in wtDCs or TNFko DCs. In contrast, transfection of AP-2α small interfering RNA increased TACE promoter luciferase activity, TACE expression, and TACE enzymatic activity in wtDCs. These results show that TACE is a target of, and is downregulated by, sTNF-induced AP-2α transcription factor in DCs.

  8. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling

    PubMed Central

    Robbins, Scott H; Walzer, Thierry; Dembélé, Doulaye; Thibault, Christelle; Defays, Axel; Bessou, Gilles; Xu, Huichun; Vivier, Eric; Sellars, MacLean; Pierre, Philippe; Sharp, Franck R; Chan, Susan; Kastner, Philippe; Dalod, Marc

    2008-01-01

    Background Dendritic cells (DCs) are a complex group of cells that play a critical role in vertebrate immunity. Lymph-node resident DCs (LN-DCs) are subdivided into conventional DC (cDC) subsets (CD11b and CD8α in mouse; BDCA1 and BDCA3 in human) and plasmacytoid DCs (pDCs). It is currently unclear if these various DC populations belong to a unique hematopoietic lineage and if the subsets identified in the mouse and human systems are evolutionary homologs. To gain novel insights into these questions, we sought conserved genetic signatures for LN-DCs and in vitro derived granulocyte-macrophage colony stimulating factor (GM-CSF) DCs through the analysis of a compendium of genome-wide expression profiles of mouse or human leukocytes. Results We show through clustering analysis that all LN-DC subsets form a distinct branch within the leukocyte family tree, and reveal a transcriptomal signature evolutionarily conserved in all LN-DC subsets. Moreover, we identify a large gene expression program shared between mouse and human pDCs, and smaller conserved profiles shared between mouse and human LN-cDC subsets. Importantly, most of these genes have not been previously associated with DC function and many have unknown functions. Finally, we use compendium analysis to re-evaluate the classification of interferon-producing killer DCs, lin-CD16+HLA-DR+ cells and in vitro derived GM-CSF DCs, and show that these cells are more closely linked to natural killer and myeloid cells, respectively. Conclusion Our study provides a unique database resource for future investigation of the evolutionarily conserved molecular pathways governing the ontogeny and functions of leukocyte subsets, especially DCs. PMID:18218067

  9. Effect of Matrix Metallopeptidase 13 on the Function of Mouse Bone Marrow-derived Dendritic Cells

    PubMed Central

    Li, Xiao-Dong; Zhang, Xin-Rui; Li, Zhi-Hao; Yang, Yang; Zhang, Duo; Zheng, Heng; Dong, Shu-Ying; Chen, Juan; Zeng, Xian-Dong

    2017-01-01

    Background: Dendritic cells are professional antigen-presenting cells found in an immature state in epithelia and interstitial space, where they capture antigens such as pathogens or damaged tissue. Matrix metallopeptidase 13 (MMP-13), a member of the collagenase subfamily, is involved in many different cellular processes and is expressed in murine bone marrow-derived dendritic cells (DCs). The function of MMP-13 in DCs is not well understood. Here, we investigated the effect of MMP-13 on DC maturation, apoptosis, and phagocytosis. Methods: Bone marrow-derived dendritic cells were obtained from C57BL/6 mice. One short-interfering RNA specific for MMP-13 was used to transfect DCs. MMP-13-silenced DCs and control DCs were prepared, and apoptosis was measured using real-time polymerase chain reaction and Western blotting. MMP-13-silenced DCs and control DCs were analyzed for surface expression of CD80 and CD86 and phagocytosis capability using flow cytometry. Results: Compared to the control DCs, MMP-13-silenced DCs increased expression of anti-apoptosis-related genes, BAG1 (control group vs. MMP-13-silenced group: 4.08 ± 0.60 vs. 6.11 ± 0.87, P = 0.008), BCL-2 (control group vs. MMP-13-silenced group: 7.54 ± 0.76 vs. 9.54 ± 1.29, P = 0.036), and TP73 (control group vs. MMP-13-silenced group: 4.33 ± 0.29 vs. 5.60 ± 0.32, P = 0.001) and decreased apoptosis-related genes, CASP1 (control group vs. MMP-13-silenced group: 3.79 ± 0.67 vs. 2.54 ± 0.39, P = 0.019), LTBR (control group vs. MMP-13-silenced group: 9.23 ± 1.25 vs. 6.24 ± 1.15, P = 0.012), and CASP4 (control group vs. MMP-13-silenced group: 2.07 ± 0.56 vs. 0.35 ± 0.35, P = 0.002). Protein levels confirmed the same expression pattern. MMP-13-silenced groups decreased expression of CD86 on DCs; however, there was no statistical difference in CD80 surface expression. Furthermore, MMP-13-silenced groups exhibited weaker phagocytosis capability. Conclusion: These results indicate that MMP-13 inhibition

  10. Brucella discriminates between mouse dendritic cell subsets upon in vitro infection.

    PubMed

    Papadopoulos, Alexia; Gagnaire, Aurélie; Degos, Clara; de Chastellier, Chantal; Gorvel, Jean-Pierre

    2016-01-01

    Brucella is a Gram-negative bacterium responsible for brucellosis, a worldwide re-emerging zoonosis. Brucella has been shown to infect and replicate within Granulocyte macrophage colony-stimulating factor (GMCSF) in vitro grown bone marrow-derived dendritic cells (BMDC). In this cell model, Brucella can efficiently control BMDC maturation. However, it has been shown that Brucella infection in vivo induces spleen dendritic cells (DC) migration and maturation. As DCs form a complex network composed by several subpopulations, differences observed may be due to different interactions between Brucella and DC subsets. Here, we compare Brucella interaction with several in vitro BMDC models. The present study shows that Brucella is capable of replicating in all the BMDC models tested with a high infection rate at early time points in GMCSF-IL15 DCs and Flt3l DCs. GMCSF-IL15 DCs and Flt3l DCs are more activated than the other studied DC models and consequently intracellular bacteria are not efficiently targeted to the ER replicative niche. Interestingly, GMCSF-DC and GMCSF-Flt3l DC response to infection is comparable. However, the key difference between these 2 models concerns IL10 secretion by GMCSF DCs observed at 48 h post-infection. IL10 secretion can explain the weak secretion of IL12p70 and TNFα in the GMCSF-DC model and the low level of maturation observed when compared to GMCSF-IL15 DCs and Flt3l DCs. These models provide good tools to understand how Brucella induce DC maturation in vivo and may lead to new therapeutic design using DCs as cellular vaccines capable of enhancing immune response against pathogens.

  11. Infection of mouse bone marrow-derived immature dendritic cells with classical swine fever virus C-strain promotes cells maturation and lymphocyte proliferation.

    PubMed

    Zheng, Fu-Ying; Qiu, Chang-Qing; Jia, Huai-Jie; Chen, Guo-Hua; Zeng, Shuang; He, Xiao-Bing; Fang, Yong-Xiang; Lin, Guo-Zhen; Jing, Zhi-Zhong

    2013-12-01

    In this study, the interactions of classical swine fever virus (CSFV) C-strain and the virulent GSLZ strain with mouse bone marrow-derived immature dendritic cells (BM-imDCs) were investigated for the first time. Both the C-strain and the virulent GSLZ strain could effectively infect and replicate in mouse BM-imDCs. C-strain-infected BM-imDCs showed a greatly enhanced degree of maturation, and could effectively promote the expansion and proliferation of allogeneic naive T cells. The C-strain induced a stronger Th1 response. Infection with the virulent GSLZ strain had no obvious influence on cell maturation or lymphocyte proliferation, and failed to induce any obvious immune response. The results of this study provided initial information for research of the immunologic mechanisms of CSFV using mouse DCs as the model cells.

  12. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes.

    PubMed

    Montecalvo, Angela; Larregina, Adriana T; Shufesky, William J; Stolz, Donna Beer; Sullivan, Mara L G; Karlsson, Jenny M; Baty, Catherine J; Gibson, Gregory A; Erdos, Geza; Wang, Zhiliang; Milosevic, Jadranka; Tkacheva, Olga A; Divito, Sherrie J; Jordan, Rick; Lyons-Weiler, James; Watkins, Simon C; Morelli, Adrian E

    2012-01-19

    Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs.

  13. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes

    PubMed Central

    Montecalvo, Angela; Larregina, Adriana T.; Shufesky, William J.; Beer Stolz, Donna; Sullivan, Mara L. G.; Karlsson, Jenny M.; Baty, Catherine J.; Gibson, Gregory A.; Erdos, Geza; Wang, Zhiliang; Milosevic, Jadranka; Tkacheva, Olga A.; Divito, Sherrie J.; Jordan, Rick; Lyons-Weiler, James; Watkins, Simon C.

    2012-01-01

    Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs. PMID:22031862

  14. Ectopic expression of HLA-DO in mouse dendritic cells diminishes MHC class II antigen presentation.

    PubMed

    Fallas, Jennifer L; Tobin, Helen M; Lou, Olivia; Guo, Donglin; Sant'Angelo, Derek B; Denzin, Lisa K

    2004-08-01

    The MHC class II-like molecule HLA-DM (DM) (H-2M in mice) catalyzes the exchange of CLIP for antigenic peptides in the endosomes of APCs. HLA-DO (DO) (H-2O in mice) is another class II-like molecule that is expressed in B cells, but not in other APCs. Studies have shown that DO impairs or modifies the peptide exchange activity of DM. To further evaluate the role of DO in Ag processing and presentation, we generated transgenic mice that expressed the human HLA-DOA and HLA-DOB genes under the control of a dendritic cell (DC)-specific promoter. Our analyses of DCs from these mice showed that as DO levels increased, cell surface levels of A(b)-CLIP also increased while class II-peptide levels decreased. The presentation of some, but not all, exogenous Ags to T cells or T hybridomas was significantly inhibited by DO. Surprisingly, H-2M accumulated in DO-expressing DCs and B cells, suggesting that H-2O/DO prolongs the half-life of H-2M. Overall, our studies showed that DO expression impaired H-2M function, resulting in Ag-specific down-modulation of class II Ag processing and presentation.

  15. The HPV16 E7 Oncoprotein Disrupts Dendritic Cell Function and Induces the Systemic Expansion of CD11b+Gr1+ Cells in a Transgenic Mouse Model

    PubMed Central

    Damian-Morales, Gabriela; Serafín-Higuera, Nicolás; Moreno-Eutimio, Mario Adán; Cortés-Malagón, Enoc M.; Bonilla-Delgado, José; Rodríguez-Uribe, Genaro; Ocadiz-Delgado, Rodolfo; Lambert, Paul F.

    2016-01-01

    Objective. The aim of this study was to analyze the effects of the HPV16 E7 oncoprotein on dendritic cells (DCs) and CD11b+Gr1+ cells using the K14E7 transgenic mouse model. Materials and Methods. The morphology of DCs was analyzed in male mouse skin on epidermal sheets using immunofluorescence and confocal microscopy. Flow cytometry was used to determine the percentages of DCs and CD11b+Gr1+ cells in different tissues and to evaluate the migration of DCs. Results. In the K14E7 mouse model, the morphology of Langerhans cells and the migratory activity of dendritic cells were abnormal. An increase in CD11b+Gr1+ cells was observed in the blood and skin of K14E7 mice, and molecules related to CD11b+Gr1+ chemoattraction (MCP1 and S100A9) were upregulated. Conclusions. These data suggest that the HPV16 E7 oncoprotein impairs the function and morphology of DCs and induces the systemic accumulation of CD11b+Gr1+ cells. PMID:27478837

  16. The Isolation and Enrichment of Large Numbers of Highly Purified Mouse Spleen Dendritic Cell Populations and Their In Vitro Equivalents.

    PubMed

    Vremec, David

    2016-01-01

    Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.

  17. Tumor cells prevent mouse dendritic cell maturation induced by TLR ligands.

    PubMed

    Idoyaga, Juliana; Moreno, José; Bonifaz, Laura

    2007-08-01

    Tumor cells can evade the immune system through several mechanisms, one of which is to block DC maturation. It has been suggested that signaling via Toll-like receptors (TLR) may be involved in the induction of prophylactic anti-cancer immunity and in the treatment of established tumors. In the present study we found that high numbers of tumor cells interfere with BMDC activation induced by the TLR ligands LPS and poly IC. Tumor cells blocked TLR3- and TLR4-mediated induction of MHCII and the co-stimulatory molecules CD40 and CD86, as well as the cytokines IL-12, TNF-alpha and IL-6. Importantly, tumor cells induced inhibitory molecules (B7-DC, B7-H1 and CD80) on spleen DC in vivo and on BMDC, even in the presence of TLR ligands. Moreover, after a long exposure with tumor cells, purified BMDC were unable to respond to a second challenge with TLR ligands. The failure of tumor exposed-BMDC to express co-stimulatory molecules and cytokines in the presence of TLR ligands has implications for the future development of DC-based cancer immune therapies using TLR ligands as adjuvants for the activation of DC.

  18. Effects of Foxp3 gene modified dendritic cells on mouse corneal allograft rejection

    PubMed Central

    Gong, Yu-Bo; Hu, Lian-Na; Liu, Yong; Han, Gen-Cheng; Guo, Hui-Ling; Luo, Ling; Wang, Li-Qiang; Li, Yan; Huang, Yi-Fei

    2015-01-01

    Objective: To investigate the effect of Foxp3 gene modified dendritic cells (Foxp3 + DC) on allogeneic T cells proliferation and to study the effect of Foxp3 + DC on corneal allograft rejection. Methods: Lentivirus-Foxp3 was transfected into DC2.4 cells, as Foxp3 + DC cells. 42 BALB/c mice were randomly divided into: Group A (n = 6), normal group; Group B (n = 12), Group C (n = 12) and Group D (n = 12), allograft groups, were treated with normal saline, DC2.4, Foxp3 + DC by intraperitoneal injection, respectively. Results: Compared with the control group, Foxp3 protein in the Foxp3 + DC cells increased significantly (P < 0.05); the expressions of CD80 and CD86 immunophenotypes of Foxp3 + DC cells decreased significantly (P < 0.05); IL-12 secretion reduced (P < 0.05), but IL-10 secretion was promoted (P < 0.05). The average transplant survival time in Group B was (14.833 ± 1.472) d, and Group C and Group D led to a statistically significant prolongation of transplant survival to (17.667 ± 1.366, 23.000 ± 2.000) d (P < 0.05) respectively. 14 d after transplantation, as compared with Group C and D, the expressions of IFN-γ in grafts markedly increased in Group B. 14 d after transplantation, as compared with Group B, the expressions of Foxp3 mRNA, IDO mRNA in grafts decreased remarkably in Group C and D (P < 0.05); as compared with Group C, the expressions of Foxp3 mRNA, IDO mRNA in grafts decreased remarkably in Group D (P < 0.05). Conclusion: Foxp3 + DC cells reduce the expression of costimulatory factors, reduce the secretion of IL-12, promote IL-10 production and inhibit the stimulation of alloreactive T cell proliferation response capacity. Foxp3 + DC cells play important roles in inhibiting corneal allograft immune response and prolonging graft survival time. PMID:26064298

  19. Dendritic cells serve as a “Trojan horse” for oncolytic adenovirus delivery in the treatment of mouse prostate cancer

    PubMed Central

    Li, Zhao-lun; Liang, Xuan; Li, He-cheng; Wang, Zi-ming; Chong, Tie

    2016-01-01

    Aim: Adenovirus-mediated gene therapy is a novel therapeutic approach for the treatment of cancer, in which replication of the virus itself is the anticancer method. However, the success of this novel therapy is limited due to inefficient delivery of the virus to the target sites. In this study, we used dendritic cells (DCs) as carriers for conditionally replicating adenoviruses (CRAds) in targeting prostate carcinoma (PCa). Methods: Four types of CRAds, including Ad-PC (without PCa-specific promoter and a recombinant human tumor necrosis factor, rmhTNF, sequence), Ad-PC-rmhTNF (without PCa-specific promoter), Ad-PPC-NCS (without an rmhTNF sequence) and Ad-PPC-rmhTNF, were constructed. The androgen-insensitive mouse PCa RM-1 cells were co-cultured with CRAd-loading DCs, and the viability of RM-1 cells was examined using MTT assay. The in vivo effects of CRAd-loading DCs on PCa were evaluated in RM-1 xenograft mouse model. Results: Two PCa-specific CRAds (Ad-PPC-NCS, Ad-PPC-rmhTNF) exhibited more potent suppression on the viability of RM-1 cells in vitro than the PCa-non-specific CRAds (Ad-PC, Ad-PC-rmhTNF). In PCa-bearing mice, intravenous injection of the PCa-specific CRAd-loading DCs significantly inhibited the growth of xenografted tumors, extended the survival time, and induced T-cell activation. Additionally, the rmhTNF-containing CRAds exhibited greater tumor killing ability than CRAds without rmhTNF. Conclusion: DCs may be an effective vector for the delivery of CRAds in the treatment of PCa. PMID:27345628

  20. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.

    PubMed

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine.

  1. Effect of thymoquinone on cytosolic pH and Na+/H+ exchanger activity in mouse dendritic cells.

    PubMed

    Yang, Wenting; Bhandaru, Madhuri; Pasham, Venkanna; Bobbala, Diwakar; Zelenak, Christine; Jilani, Kashif; Rotte, Anand; Lang, Florian

    2012-01-01

    The anti-inflammatory Nigella sativa component thymoquinone compromises the function of dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. DC function is regulated by the Na(+)/H(+) exchanger (NHE), which is stimulated by lipopolysaccharides (LPS) and required for LPS-induced cell swelling, reactive oxygen species (ROS) production, TNF-α release and migration. Here we explored, whether thymoquinone influences NHE activity in DCs. To this end, bone marrow derived mouse DCs were treated with LPS in the absence and presence of thymoquinone (10 μM). Cytosolic pH (pH(i)) was determined from 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from the Na(+)-dependent realkalinization following an ammonium pulse, cell volume from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, TNF-α production utilizing ELISA and DC migration with transwell migration assays. As a result, exposure of DCs to LPS (1 μg/ml) led within 4 hours to transient increase of NHE activity. Thymoquinone did not significantly modify cytosolic pH or cellular NHE activity in the absence of LPS, but abrogated the effect of LPS on NHE activity. Accordingly, in the presence of thymoquinone LPS-treatment resulted in cytosolic acidification. LPS further increased forward scatter and ROS formation, effects similarly abrogated by thymoquinone. Again, in the absence of LPS, thymoquinone did not significantly modify ROS formation and cell volume. LPS further triggered TNF-α release and migration, effects again blunted in the presence of thymoquinone. NHE1 inhibitor cariporide (10 μM) blunted LPS induced TNF-α release and migration. The effects of thymoquinone on NHE activity and migration were reversed upon treatment of the cells with t-butyl hydroperoxide (TBOOH, 5 μM). In conclusion, thymoquinone blunts LPS induced NHE activity, cell swelling, oxidative burst

  2. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    PubMed

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  3. Evaluation of an α synuclein sensitized dendritic cell based vaccine in a transgenic mouse model of Parkinson disease.

    PubMed

    Ugen, Kenneth E; Lin, Xiaoyang; Bai, Ge; Liang, Zhanhua; Cai, Jianfeng; Li, Kunyun; Song, Shijie; Cao, Chuanhai; Sanchez-Ramos, Juan

    2015-01-01

    In order to develop a cell-based vaccine against the Parkinson disease (PD) associated protein α-synuclein (α-Syn) 3 peptides were synthesized based upon predicted B cell epitopes within the full length α-Syn protein sequence. These peptide fragments as well as the full length recombinant human α-Syn (rh- α-Syn) protein were used to sensitize mouse bone marrow-derived dendritic cells (DC) ex vivo, followed by intravenous delivery of these sensitized DCs into transgenic (Tg) mice expressing the human A53T variant of α-Syn. ELISA analysis and testing of behavioral locomotor function by rotometry were performed on all mice after the 5th vaccination as well as just prior to euthanasia. The results indicated that vaccination with peptide sensitized DCs (PSDC) as well as DCs sensitized by rh-α-Syn induced specific anti-α-Syn antibodies in all immunized mice. In terms of rotometry performance, a measure of locomotor activity correlated to brain dopamine levels, mice vaccinated with PSDC or rh- α-Syn sensitized DCs performed significantly better than non-vaccinated Tg control mice during the final assessment (i.e. at 17 months of age) before euthanasia. As well, measurement of levels of brain IL-1α, a cytokine hypothesized to be associated with neuroinflammation, demonstrated that this proinflammatory molecule was significantly reduced in the PSDC and rh- α-Syn sensitized DC vaccinated mice compared to the non-vaccinated Tg control group. Overall, α-Syn antigen-sensitized DC vaccination was effective in generating specific anti- α-Syn antibodies and improved locomotor function without eliciting an apparent general inflammatory response, indicating that this strategy may be a safe and effective treatment for PD.

  4. Mucosal and systemic anti-HIV immunity controlled by A20 in mouse dendritic cells.

    PubMed

    Hong, Bangxing; Song, Xiao-Tong; Rollins, Lisa; Berry, Lindsey; Huang, Xue F; Chen, Si-Yi

    2011-02-01

    Both mucosal and systemic immune responses are required for preventing or containing HIV transmission and chronic infection. However, currently described vaccination approaches are largely ineffective in inducing both mucosal and systemic responses. In this study, we found that the ubiquitin-editing enzyme A20--an inducible feedback inhibitor of the TNFR, RIG-I, and TLR signaling pathways that broadly controls the maturation, cytokine production, and immunostimulatory potency of DCs--restricted systemically immunized DCs to induce both robust mucosal and systemic HIV-specific cellular and humoral responses. Mechanistic studies revealed that A20 regulated DC production of retinoic acid and proinflammatory cytokines, inhibiting the expression of gut-homing receptors on T and B cells. Furthermore, A20-silenced, hyperactivated DCs exhibited an enhanced homing capacity to draining and gut-associated lymphoid tissues (GALTs) after systemic administration. Thus, this study provides insights into the role of A20 in innate immunity. This work may allow the development of an efficient HIV vaccination strategy that is capable of inducing both robust systemic and mucosal anti-HIV cellular and humoral responses.

  5. Mucosal and systemic anti-HIV immunity controlled by A20 in mouse dendritic cells

    PubMed Central

    Hong, Bangxing; Song, Xiao-Tong; Rollins, Lisa; Berry, Lindsey; Huang, Xue F.; Chen, Si-Yi

    2011-01-01

    Both mucosal and systemic immune responses are required for preventing or containing HIV transmission and chronic infection. However, currently described vaccination approaches are largely ineffective in inducing both mucosal and systemic responses. In this study, we found that the ubiquitin-editing enzyme A20 — an inducible feedback inhibitor of the TNFR, RIG-I, and TLR signaling pathways that broadly controls the maturation, cytokine production, and immunostimulatory potency of DCs — restricted systemically immunized DCs to induce both robust mucosal and systemic HIV-specific cellular and humoral responses. Mechanistic studies revealed that A20 regulated DC production of retinoic acid and proinflammatory cytokines, inhibiting the expression of gut-homing receptors on T and B cells. Furthermore, A20-silenced, hyperactivated DCs exhibited an enhanced homing capacity to draining and gut-associated lymphoid tissues (GALTs) after systemic administration. Thus, this study provides insights into the role of A20 in innate immunity. This work may allow the development of an efficient HIV vaccination strategy that is capable of inducing both robust systemic and mucosal anti-HIV cellular and humoral responses. PMID:21206085

  6. Characterization of chicken dendritic cell markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  7. [Exosomes derived from dendritic cells].

    PubMed

    Amigorena, S

    2001-01-01

    Dendritic cells (DC) are potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and vitro. DCs secrete a 60-80 nm membrane vesicle population of endocytic origin, called exosomes. The protein composition of exosomes was analyzed using a systematic proteomic approach. Besides MHC and costimulatory molecules, exosomes bear several adhesion proteins, probably involved in their specific targeting. Exosomes also accumulate several cytosolic factors, most likely involved in exoxome's biogenesis in late endosomes. Like DCs, exosomes induce potent anti tumor immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced the eradication of established mouse tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome treated mice, and depletion of CD8+ T cells in vivo inhibited the anti tumor effect of exosomes. These results strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.

  8. Endostatin enhances antitumor effect of tumor antigen-pulsed dendritic cell therapy in mouse xenograft model of lung carcinoma

    PubMed Central

    Liang, Jing; Liu, Xiaolin; Xie, Qi; Chen, Guoling; Li, Xingyu; Jia, Yanrui; Yin, Beibei; Qu, Xun; Li, Yan

    2016-01-01

    Objective To investigate the antitumor effect of endostatin combined with tumor antigen-pulsed dendritic cell (DC)-T cell therapy on lung cancer. Methods Transplanted Lewis lung cancer (LLC) models of C57BL/6 mice were established by subcutaneous injection of LLC cells in left extremity axillary. Tumor antigen-pulsed DC-T cells from spleen cells and bone of mice were cultured in vitro. Tumor-bearing mice were randomly divided into three groups, including DC-T+endostatin group, DC-T group, and phosphate-buffered saline (PBS) control group. Microvessel density (MVD) of tumor tissue in tumor-bearing mice was determined by immunohistochemistry (IHC). The expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were determined by Western blotting and IHC staining. The proportions of CD8+ T cells, mature dendritic cells (mDC), tumor-associated macrophages [TAM (M1/M2)], and myeloid-derived suppressor cells (MDSC) in suspended cells of tumor tissue were determined by flow cytometry. The expressions of interleukin (IL)-6, IL-10, IL-17, transforming growth factor-β (TGF-β) and interferon-γ (IFN-γ) in suspended cells of tumor tissue were detected by enzyme-linked immune sorbent assay (ELISA). Results DC-T cells combined with endostatin remarkably suppressed tumor growth. MVD of mice in DC-T+endostatin group was significantly lower than that of the control group and DC-T monotherapy group. The expressions of VEGF, IL-6 and IL-17 in tumors were markedly decreased, but IFN-γ and HIF-1α increased after treating with DC-T cells combined with endostatin, compared to control group and DC-T group. In the DC-T+endostatin group, the proportions of MDSC and TAM (M2 type) were significantly decreased, mDC and TAM (M1 type) were up-regulated, and CD8+ T cells were recruited to infiltrate tumors, in contrast to PBS control and DC-T monotherapy. DC-T cells combined with endostatin potently reduced the expressions of IL-6, IL-10, TGF-β and

  9. The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells

    PubMed Central

    Wang, Bei; Kuroiwa, Janelle M.Y.; He, Li-Zhen; Charalambous, Anna; Keler, Tibor; Steinman, Ralph M.

    2010-01-01

    To develop a tumor vaccine directly targeting tumor antigen to dendritic cells in situ, we engineered human mesothelin (MSLN) into an antibody specific for mouse DEC-205, a receptor for antigen presentation. We then characterized both T cell and humoral responses to human MSLN and compared immunizing efficacy of DEC-205-targeted MSLN to nontargeted protein after a single dose immunization. Targeting human MSLN to DEC-205 receptor induced stronger CD4+ T cell responses compared to high doses of mesothelin protein. ∼0.5% CD4+ T cells were primed to produce IFN-γ, TNF-α and IL-2 via intracellular cytokine staining, and the T cells also could proliferate rapidly. The immune response exhibited breadth because the primed CD4+ T cells responded to at least three epitopes in the H-2b background. Targeting MSLN protein to DEC-205 receptor also resulted in cross-presentation to CD8+ T cells. Antibody responses against human MSLN were also detected in serum from primed mice by ELISA assays. In summary, targeting of MSLN to DEC-205 improves the induction of CD4+ and CD8+ T cell immunity accompanied by an antibody response. DEC-205-targeting could be valuable to enhance immunity to MSLN in the setting of cancers where this nonmutated protein is expressed. PMID:19769731

  10. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow.

    PubMed

    Mayer, Christian Thomas; Ghorbani, Peyman; Nandan, Amrita; Dudek, Markus; Arnold-Schrauf, Catharina; Hesse, Christina; Berod, Luciana; Stüve, Philipp; Puttur, Franz; Merad, Miriam; Sparwasser, Tim

    2014-11-13

    Multiple subsets of FMS-like tyrosine kinase 3 ligand (FLT3L)-dependent dendritic cells (DCs) control T-cell tolerance and immunity. In mice, Batf3-dependent CD103(+) DCs efficiently enter lymph nodes and cross-present antigens, rendering this conserved DC subset a promising target for tolerance induction or vaccination. However, only limited numbers of CD103(+) DCs can be isolated with current methods. Established bone marrow culture protocols efficiently generate monocyte-derived DCs or produce a mixture of FLT3L-dependent DC subsets. We show that CD103(+) DC development requires prolonged culture time and continuous action of both FLT3L and granulocyte macrophage colony-stimulating factor (GM-CSF), explained by a dual effect of GM-CSF on DC precursors and differentiating CD103(+) DCs. Accordingly, we established a novel method to generate large numbers of CD103(+) DCs (iCD103-DCs) with limited presence of other DC subsets. iCD103-DCs develop in a Batf3- and Irf8-dependent fashion, express a CD8α/CD103 DC gene signature, cross-present cell-associated antigens, and respond to TLR3 stimulation. Thus, iCD103-DCs reflect key features of tissue CD103(+) DCs. Importantly, iCD103-DCs express high levels of CCR7 upon maturation and migrate to lymph nodes more efficiently than classical monocyte-derived DCs. Finally, iCD103-DCs induce T cell-mediated protective immunity in vivo. Our study provides insights into CD103(+) DC development and function.

  11. Long-Term Depletion of Conventional Dendritic Cells Cannot Be Maintained in an Atherosclerotic Zbtb46-DTR Mouse Model

    PubMed Central

    Cools, Nathalie; Grootaert, Mandy O. J.; de Bakker, Flore; Van Brussel, Ilse; Wouters, An; De Meyer, Guido R. Y.; De Winter, Benedicte Y.; Schrijvers, Dorien M.

    2017-01-01

    Background and aims Increased evidence suggests a pro-atherogenic role for conventional dendritic cells (cDC). However, due to the lack of an exclusive marker for cDC, their exact contribution to atherosclerosis remains elusive. Recently, a unique transcription factor was described for cDC, namely Zbtb46, enabling us to selectively target this cell type in mice. Methods Low-density lipoprotein receptor-deficient (Ldlr-/-) mice were transplanted with bone marrow from Zbtb46-diphtheria toxin receptor (DTR) transgenic mice following total body irradiation. Zbtb46-DTR→Ldlr-/- chimeras were fed a Western-type diet for 18 weeks while cDC were depleted by administering diphtheria toxin (DT). Results Although we confirmed efficient direct induction of cDC death in vitro and in vivo upon DT treatment of Zbtb46-DTR mice, advanced atherosclerotic plaque size and composition was not altered. Surprisingly, however, analysis of Zbtb46-DTR→Ldlr-/- chimeras showed that depletion of cDC was not sustained following 18 weeks of DT treatment. In contrast, high levels of anti-DT antibodies were detected. Conclusions Because of the observed generation of anti-DT antibodies and consequently the partial depletion of cDC, no clear decision can be taken on the role of cDC in atherosclerosis. Our results underline the unsuitability of Zbtb46-DTR→Ldlr-/- mice for studying the involvement of cDC in maintaining the disease process of atherosclerosis, as well as of other chronic inflammatory diseases. PMID:28060909

  12. Deficiency of Lymph Node-Resident Dendritic Cells (DCs) and Dysregulation of DC Chemoattractants in a Malnourished Mouse Model of Leishmania donovani Infection

    PubMed Central

    Ibrahim, Marwa K.; Barnes, Jeffrey L.; Osorio, E. Yaneth; Anstead, Gregory M.; Jimenez, Fabio; Osterholzer, John J.; Travi, Bruno L.; Ahuja, Seema S.; White, A. Clinton

    2014-01-01

    Malnutrition is thought to contribute to more than one-third of all childhood deaths via increased susceptibility to infection. Malnutrition is a significant risk factor for the development of visceral leishmaniasis, which results from skin inoculation of the intracellular protozoan Leishmania donovani. We previously established a murine model of childhood malnutrition and found that malnutrition decreased the lymph node barrier function and increased the early dissemination of L. donovani. In the present study, we found reduced numbers of resident dendritic cells (conventional and monocyte derived) but not migratory dermal dendritic cells in the skin-draining lymph nodes of L. donovani-infected malnourished mice. Expression of chemokines and their receptors involved in trafficking of dendritic cells and their progenitors to the lymph nodes was dysregulated. C-C chemokine receptor type 2 (CCR2) and its ligands (CCL2 and CCL7) were reduced in the lymph nodes of infected malnourished mice, as were CCR2-bearing monocytes/macrophages and monocyte-derived dendritic cells. However, CCR7 and its ligands (CCL19 and CCL21) were increased in the lymph node and CCR7 was increased in lymph node macrophages and dendritic cells. CCR2-deficient mice recapitulated the profound reduction in the number of resident (but not migratory dermal) dendritic cells in the lymph node but showed no alteration in the expression of CCL19 and CCL21. Collectively, these results suggest that the malnutrition-related reduction in the lymph node barrier to dissemination of L. donovani is related to insufficient numbers of lymph node-resident but not migratory dermal dendritic cells. This is likely driven by the altered activity of the CCR2 and CCR7 chemoattractant pathways. PMID:24818662

  13. Deficiency of lymph node-resident dendritic cells (DCs) and dysregulation of DC chemoattractants in a malnourished mouse model of Leishmania donovani infection.

    PubMed

    Ibrahim, Marwa K; Barnes, Jeffrey L; Osorio, E Yaneth; Anstead, Gregory M; Jimenez, Fabio; Osterholzer, John J; Travi, Bruno L; Ahuja, Seema S; White, A Clinton; Melby, Peter C

    2014-08-01

    Malnutrition is thought to contribute to more than one-third of all childhood deaths via increased susceptibility to infection. Malnutrition is a significant risk factor for the development of visceral leishmaniasis, which results from skin inoculation of the intracellular protozoan Leishmania donovani. We previously established a murine model of childhood malnutrition and found that malnutrition decreased the lymph node barrier function and increased the early dissemination of L. donovani. In the present study, we found reduced numbers of resident dendritic cells (conventional and monocyte derived) but not migratory dermal dendritic cells in the skin-draining lymph nodes of L. donovani-infected malnourished mice. Expression of chemokines and their receptors involved in trafficking of dendritic cells and their progenitors to the lymph nodes was dysregulated. C-C chemokine receptor type 2 (CCR2) and its ligands (CCL2 and CCL7) were reduced in the lymph nodes of infected malnourished mice, as were CCR2-bearing monocytes/macrophages and monocyte-derived dendritic cells. However, CCR7 and its ligands (CCL19 and CCL21) were increased in the lymph node and CCR7 was increased in lymph node macrophages and dendritic cells. CCR2-deficient mice recapitulated the profound reduction in the number of resident (but not migratory dermal) dendritic cells in the lymph node but showed no alteration in the expression of CCL19 and CCL21. Collectively, these results suggest that the malnutrition-related reduction in the lymph node barrier to dissemination of L. donovani is related to insufficient numbers of lymph node-resident but not migratory dermal dendritic cells. This is likely driven by the altered activity of the CCR2 and CCR7 chemoattractant pathways.

  14. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    PubMed

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  15. Dendritic cells in Graves' disease.

    PubMed

    Purnamasari, Dyah; Soewondo, Pradana; Djauzi, Samsuridjal

    2015-01-01

    Dendritic cells are major antigen-presenting cells (APC) that stimulate naive T cells, which induce adaptive immune responses. Graves' disease (GD) is an autoimmune disease characterized by the presence of autoantibodies against Thyroid Stimulating Hormone Receptor (TSHR). The autoantibodies bind with TSHR and stimulate thyroid hormone production. Dendritic cells are still the major APC in GD immune response although thyrocytes in GD can also express Major Histocompatibility Class (MHC) class II molecule. Studies about DC in GD have been conducted by isolating intra-thyroid DC or DC in peripheral circulation. Results of DC studies in GD are still controversial. Changes in number and profile of DC are found, which indicate altered immune response activity and defects of regulator T cell (Treg) in GD.

  16. Synapse Loss and Dendrite Remodeling in a Mouse Model of Glaucoma.

    PubMed

    Berry, Ryan H; Qu, Juan; John, Simon W M; Howell, Gareth R; Jakobs, Tatjana C

    2015-01-01

    It has been hypothesized that synaptic pruning precedes retinal ganglion cell degeneration in glaucoma, causing early dysfunction to retinal ganglion cells. To begin to assess this, we studied the excitatory synaptic inputs to individual ganglion cells in normal mouse retinas and in retinas with ganglion cell degeneration from glaucoma (DBA/2J), or following an optic nerve crush. Excitatory synapses were labeled by AAV2-mediated transfection of ganglion cells with PSD-95-GFP. After both insults the linear density of synaptic inputs to ganglion cells decreased. In parallel, the dendritic arbors lost complexity. We did not observe any cells that had lost dendritic synaptic input while preserving a normal or near-normal morphology. Within the temporal limits of these observations, dendritic remodeling and synapse pruning thus appear to occur near-simultaneously.

  17. Running per se stimulates the dendritic arbor of newborn dentate granule cells in mouse hippocampus in a duration-dependent manner.

    PubMed

    Dostes, Sandrine; Dubreucq, Sarah; Ladevèze, Elodie; Marsicano, Giovanni; Abrous, Djoher N; Chaouloff, Francis; Koehl, Muriel

    2016-03-01

    Laboratory rodents provided chronic unlimited access to running wheels display increased neurogenesis in the hippocampal dentate gyrus. In addition, recent studies indicate that such an access to wheels stimulates dendritic arborization in newly formed neurons. However, (i) the presence of the running wheel in the housing environment might also bear intrinsic influences on the number and shape of new neurons and (ii) the dendritic arborization of new neurons might be insensitive to moderate daily running activity (i.e., several hours). In keeping with these uncertainties, we have examined neurogenesis and dendritic arborization in newly formed granular cells in adult C57Bl/6N male mice housed for 3 weeks under standard conditions, with a locked wheel, with a running wheel set free 3 h/day, or with a running wheel set permanently free. The results indicate that the presence of a blocked wheel in the home cage increased cell proliferation, but not the number of new neurons while running increased in a duration-dependent manner the number of newborn neurons, as assessed by DCX labeling. Morphological analyses of the dendritic tree of newborn neurons, as identified by BrdU-DCX co-staining, revealed that although the presence of the wheel stimulated their dendritic architecture, the amplitude of this effect was lower than that elicited by running activity, and was found to be running duration-dependent.

  18. Dendritic cell analysis in primary immunodeficiency

    PubMed Central

    Bigley, Venetia; Barge, Dawn; Collin, Matthew

    2016-01-01

    Purpose of review Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo. Given their central role in infection, autoimmunity, and malignancy, dendritic cell deficiency or dysfunction would be expected to have clinical consequences. Recent findings Human dendritic cell deficiency disorders, related to GATA binding protein 2 (GATA2) and interferon regulatory factor 8 (IRF8) mutations, have highlighted the importance of dendritic cells and monocytes in primary immunodeficiency diseases and begun to shed light on their nonredundant roles in host defense and immune regulation in vivo. The contribution of dendritic cell and monocyte dysfunction to the pathogenesis of primary immunodeficiency disease phenotypes is becoming increasingly apparent. However, dendritic cell analysis is not yet a routine part of primary immunodeficiency disease workup. Summary Widespread uptake of dendritic cell/monocyte screening in clinical practice will facilitate the discovery of novel dendritic cell and monocyte disorders as well as advancing our understanding of human dendritic cell biology in health and disease. PMID:27755182

  19. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization.

    PubMed

    Denning, Timothy L; Norris, Brian A; Medina-Contreras, Oscar; Manicassamy, Santhakumar; Geem, Duke; Madan, Rajat; Karp, Christopher L; Pulendran, Bali

    2011-07-15

    Although several subsets of intestinal APCs have been described, there has been no systematic evaluation of their phenotypes, functions, and regional localization to date. In this article, we used 10-color flow cytometry to define the major APC subsets in the small and large intestine lamina propria. Lamina propria APCs could be subdivided into CD11c(+)CD11b(-), CD11c(+)CD11b(+), and CD11c(dull)CD11b(+) subsets. CD11c(+)CD11b(-) cells were largely CD103(+)F4/80(-) dendritic cells (DCs), whereas the CD11c(+)CD11b(+) subset comprised CD11c(+)CD11b(+)CD103(+)F4/80(-) DCs and CD11c(+)CD11b(+)CD103(-)F4/80(+) macrophage-like cells. The majority of CD11c(dull)CD11b(+) cells were CD103(-)F4/80(+) macrophages. Although macrophages were more efficient at inducing Foxp3(+) regulatory T (T(reg)) cells than DCs, at higher T cell/APC ratios, all of the DC subsets efficiently induced Foxp3(+) T(reg) cells. In contrast, only CD11c(+)CD11b(+)CD103(+) DCs efficiently induced Th17 cells. Consistent with this, the regional distribution of CD11c(+)CD11b(+)CD103(+) DCs correlated with that of Th17 cells, with duodenum > jejunum > ileum > colon. Conversely, CD11c(+)CD11b(-)CD103(+) DCs, macrophages, and Foxp3(+) T(reg) cells were most abundant in the colon and scarce in the duodenum. Importantly, however, the ability of DC and macrophage subsets to induce Foxp3(+) T(reg) cells versus Th17 cells was strikingly dependent on the source of the mouse strain. Thus, DCs from C57BL/6 mice from Charles River Laboratories (that have segmented filamentous bacteria, which induce robust levels of Th17 cells in situ) were more efficient at inducing Th17 cells and less efficient at inducing Foxp3(+) T(reg) cells than DCs from B6 mice from The Jackson Laboratory. Thus, the functional specializations of APC subsets in the intestine are dependent on the T cell/APC ratio, regional localization, and source of the mouse strain.

  20. Isolation and generation of human dendritic cells.

    PubMed

    Nair, Smita; Archer, Gerald E; Tedder, Thomas F

    2012-11-01

    Dendritic cells are highly specialized antigen-presenting cells (APC), which may be isolated or generated from human blood mononuclear cells. Although mature blood dendritic cells normally represent ∼0.2% of human blood mononuclear cells, their frequency can be greatly increased using the cell enrichment methods described in this unit. More highly purified dendritic cell preparations can be obtained from these populations by sorting of fluorescence-labeled cells. Alternatively, dendritic cells can be generated from monocytes by culture with the appropriate cytokines, as described here. In addition, a negative selection approach is provided that may be employed to generate cell preparations that have been depleted of dendritic cells to be used for comparison in functional studies.

  1. Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells

    PubMed Central

    Bozzacco, Leonia; Yu, Haiqiang; Zebroski, Henry A.; Dengjel, Jörn; Deng, Haiteng; Mojsov, Svetlana; Steinman, Ralph M.

    2011-01-01

    Major histocompatibility complex class II (MHC II) molecules are expressed on the surface of antigen presenting cells and display short bound peptide fragments derived from self and nonself antigens. These peptide-MHC complexes function to maintain immunological tolerance in the case of self antigens and initiate the CD4+ T cell response in the case of foreign proteins. Here we report the application of LC-MS/MS analysis to identify MHC II peptides derived from endogenous proteins expressed in freshly isolated murine splenic DCs. The cell number was enriched in vivo upon treatment with Flt3L-B16 melanoma cells. In a typical experiment, starting with about 5× 108 splenic DCs, we were able to reliably identify a repertoire of over 100 MHC II peptides originating from about 55 proteins localized in membrane (23%), intracellular (26%), endo-lysosomal (12%), nuclear (14%) and extracellular (25%) compartments. Using synthetic isotopically labeled peptides corresponding to the sequences of representative bound MHC II peptides, we quantified by LC-MS relative peptide abundance. In a single experiment, peptides were detected in a wide concentration range spanning from 2.5 fmol/μL to 12 pmol/μL or from approximately 13 copies to 2×105 copies per DC. These peptides were found in similar amounts on B cells where we detected about 80 peptides originating from 55 proteins distributed homogenously within the same cellular compartments as in DCs. About 90 different binding motifs predicted by the epitope prediction algorithm were found within the sequences of the identified MHC II peptides. These results set a foundation for future studies to quantitatively investigate the MHC II repertoire on DCs generated under different immunization conditions. PMID:21913724

  2. The renal microenvironment modifies dendritic cell phenotype.

    PubMed

    Chessa, Federica; Mathow, Daniel; Wang, Shijun; Hielscher, Thomas; Atzberger, Ann; Porubsky, Stefan; Gretz, Norbert; Burgdorf, Sven; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-01-01

    Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.

  3. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    PubMed

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  4. Cell-intrinsic drivers of dendrite morphogenesis.

    PubMed

    Puram, Sidharth V; Bonni, Azad

    2013-12-01

    The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.

  5. Dendritic Cell-Targeted Vaccines

    PubMed Central

    Cohn, Lillian; Delamarre, Lélia

    2014-01-01

    Despite significant effort, the development of effective vaccines inducing strong and durable T-cell responses against intracellular pathogens and cancer cells has remained a challenge. The initiation of effector CD8+ T-cell responses requires the presentation of peptides derived from internalized antigen on class I major histocompatibility complex molecules by dendritic cells (DCs) in a process called cross-presentation. A current strategy to enhance the effectiveness of vaccination is to deliver antigens directly to DCs. This is done via selective targeting of antigen using monoclonal antibodies directed against endocytic receptors on the surface of the DCs. In this review, we will discuss considerations relevant to the design of such vaccines: the existence of DC subsets with specialized functions, the impact of the antigen intracellular trafficking on cross-presentation, and the influence of maturation signals received by DCs on the outcome of the immune response. PMID:24910635

  6. Human macrophage and dendritic cell-specific silencing of high-mobility group protein B1 ameliorates sepsis in a humanized mouse model.

    PubMed

    Ye, Chunting; Choi, Jang-Gi; Abraham, Sojan; Wu, Haoquan; Diaz, Dolores; Terreros, Daniel; Shankar, Premlata; Manjunath, N

    2012-12-18

    Hypersecretion of cytokines by innate immune cells is thought to initiate multiple organ failure in murine models of sepsis. Whether human cytokine storm also plays a similar role is not clear. Here, we show that human hematopoietic cells are required to induce sepsis-induced mortality following cecal ligation and puncture (CLP) in the severely immunodeficient nonobese diabetic (NOD)/SCID/IL2Rγ(-/-) mice, and siRNA treatment to inhibit HMGB1 release by human macrophages and dendritic cells dramatically reduces sepsis-induced mortality. Following CLP, compared with immunocompetent WT mice, NOD/SCID/IL2Rγ(-/-) mice did not show high levels of serum HMGB1 or murine proinflammatory cytokines and were relatively resistant to sepsis-induced mortality. In contrast, NOD/SCID/IL2Rγ(-/-) mice transplanted with human hematopoietic stem cells [humanized bone marrow liver thymic mice (BLT) mice] showed high serum levels of HMGB1, as well as multiple human but not murine proinflammatory cytokines, and died uniformly, suggesting human cytokines are sufficient to induce organ failure in this model. Moreover, targeted delivery of HMGB1 siRNA to human macrophages and dendritic cells using a short acetylcholine receptor (AchR)-binding peptide [rabies virus glycoprotein (RVG)-9R] effectively suppressed secretion of HMGB1, reduced the human cytokine storm, human lymphocyte apoptosis, and rescued humanized mice from CLP-induced mortality. siRNA treatment was also effective when started after the appearance of sepsis symptoms. These results show that CLP in humanized mice provides a model to study human sepsis, HMGB1 siRNA might provide a treatment strategy for human sepsis, and RVG-9R provides a tool to deliver siRNA to human macrophages and dendritic cells that could potentially be used to suppress a variety of human inflammatory diseases.

  7. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues

    PubMed Central

    1988-01-01

    Dendritic cells (DC) are critical accessory cells for primary immune responses and they may be important stimulators of transplantation reactions, but little is known of their traffic into the tissues. We have studied the migration of purified splenic DC and T lymphocytes, labeled with 111Indium-tropolone, in syngeneic and allogeneic mice. First we demonstrate that DC can migrate from the blood into some lymphoid and nonlymphoid tissues. Immediately after intravenous administration, radio-labeled DC were sequestered in the lungs, but they actively migrated into the liver and spleen and reached equilibrium levels between 3 and 24 h after transfer. At least half of the radiolabel accumulated in the liver, but the spleen was the principal site of DC localization in terms of specific activity (radiolabel per weight of tissue). DC were unable to enter Peyer's patches, or mesenteric and other peripheral lymph nodes from the bloodstream. This was also true in splenectomized recipients, where the otherwise spleen-seeking DC were quantitatively diverted to the liver. In contrast, T cells homed readily to the spleen and lymph nodes of normal mice and increased numbers were present in these tissues in splenectomized mice. Thus, unlike T cells, DC cannot recirculate from blood to lymph via the nodes. We then show that migration of DC from the blood into the spleen is dependent on the presence of T cells: DC did not enter the spleens of nude mice, but when they were reconstituted with T cells the numbers entering the spleen resembled those in euthymic mice. In nude mice, as in splenectomized recipients, the DC that would normally enter the spleen were quantitatively diverted to the liver. These findings suggest that there is a spleen- liver equilibrium for DC, that may be akin to that existing between spleen and lymph node for T cells. Finally, we followed the traffic of radiolabeled DC via the afferent lymphatics after subcutaneous footpad inoculation. DC accumulated in the

  8. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy

    PubMed Central

    Yamawaki, Ruth; Thind, Khushdev; Buckmaster, Paul S.

    2014-01-01

    Inhibiting the mTOR signaling pathway with rapamycin blocks granule cell axon (mossy fiber) sprouting after epileptogenic injuries, including pilocarpine-induced status epilepticus. However, it remains unclear whether axons from other types of neurons sprout into the inner molecular layer and synapse with granule cell dendrites despite rapamycin treatment. If so, other aberrant positive-feedback networks might develop. To test this possibility stereological electron microscopy was used to estimate numbers of excitatory synapses in the inner molecular layer per hippocampus in pilocarpine-treated control mice, in mice 5 d after pilocarpine-induced status epilepticus, and after status epilepticus and daily treatment beginning 24 h later with rapamycin or vehicle for 2 months. The optical fractionator method was used to estimate numbers of granule cells in Nissl-stained sections so that numbers of excitatory synapses in the inner molecular layer per granule cell could be calculated. Control mice had an average of 2280 asymmetric synapses in the inner molecular layer per granule cell, which was reduced to 63% of controls 5 d after status epilepticus, recovered to 93% of controls in vehicle-treated mice 2 months after status epilepticus, but remained at only 63% of controls in rapamycin-treated mice. These findings reveal that rapamycin prevented excitatory axons from synapsing with proximal dendrites of granule cells and raise questions about the recurrent excitation hypothesis of temporal lobe epilepsy. PMID:25234294

  9. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  10. Triggering of dendritic cell apoptosis by xanthohumol.

    PubMed

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  11. Podosomes of dendritic cells facilitate antigen sampling

    PubMed Central

    Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G.; van den Bogaart, Geert

    2014-01-01

    Summary Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for podosomes of dendritic cells. PMID:24424029

  12. Podosomes of dendritic cells facilitate antigen sampling.

    PubMed

    Baranov, Maksim V; Ter Beest, Martin; Reinieren-Beeren, Inge; Cambi, Alessandra; Figdor, Carl G; van den Bogaart, Geert

    2014-03-01

    Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.

  13. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex.

    PubMed

    Chen, Chia-Chien; Bajnath, Adesh; Brumberg, Joshua C

    2015-06-01

    Dendritic protrusions (spines and filopodia) are structural indicators of synapses that have been linked to neuronal learning and memory through their morphological alterations induced by development and experienced-dependent activities. Although previous studies have demonstrated that depriving sensory experience leads to structural changes in neocortical organization, the more subtle effects on dendritic protrusions remain unclear, mostly due to focus on only one specific cell type and/or age of manipulation. Here, we show that sensory deprivation induced by whisker trimming influences the dendritic protrusions of basilar dendrites located in thalamocortical recipient lamina (IV and VI) of the mouse barrel cortex in a layer-specific manner. Following 1 month of whisker trimming after birth, the density of dendritic protrusions increased in layer IV, but decreased in layer VI. Whisker regrowth for 1 month returned protrusion densities to comparable level of age-matched controls in layer VI, but not in layer IV. In adults, chronic sensory deprivation led to an increase in protrusion densities in layer IV, but not in layer VI. In addition, chronic pharmacological blockade of N-methyl-d-aspartate receptors (NMDARs) increased protrusion density in both layers IV and VI, which returned to the control level after 1 month of drug withdrawal. Our data reveal that different cortical layers respond to chronic sensory deprivation in different ways, with more pronounced effects during developmental critical periods than adulthood. We also show that chronically blocking NMDARs activity during developmental critical period also influences the protrusion density and morphology in the cerebral cortex.

  14. [Melanoma immunotherapy: dendritic cell vaccines].

    PubMed

    Lozada-Requena, Ivan; Núñez, César; Aguilar, José Luis

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy. Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion of tumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diverse types of cancer in humans and animal models. However, given the low efficiency they have shown, we must implement strategies to enhance their natural capacity either through the coexpression of key molecules to activate or reactivate the immune system, in combination with biosimilars or chemotherapeutic drugs. The action of natural products as alternative or adjuvant immunostimulant should not be ruled out. All types of immunotherapy should measure the impact of myeloid suppressor cells, which can attack the immune system and help tumor progression, respectively. This can reduce the activity of cellular vaccines and/or their combinations, that could be the difference between success or not of the immunotherapy. Although for melanoma there exist biosimilars approved by the Food and Drug Administration (FDA), not all have the expected success. Therefore it is necessary to evaluate other strategies including cellular vaccines loaded with tumor antigenic peptides expressed exclusively or antigens from tumor extracts and their respective adjuvants.

  15. Morphological properties of mouse retinal ganglion cells.

    PubMed

    Coombs, J; van der List, D; Wang, G-Y; Chalupa, L M

    2006-06-19

    The mouse retina offers an increasingly valuable model for vision research given the possibilities for genetic manipulation. Here we assess how the structural properties of mouse retinal ganglion cells relate to the stratification pattern of the dendrites of these neurons within the inner plexiform layer. For this purpose, we used 14 morphological measures to classify mouse retinal ganglion cells parametrically into different clusters. Retinal ganglion cells were labeled in one of three ways: Lucifer Yellow injection, 'DiOlistics' or transgenic expression of yellow fluorescent protein. The resulting analysis of 182 cells revealed 10 clusters of monostratified cells, with dendrites confined to either On or Off sublaminae of the inner plexiform layer, and four clusters of bistratified cells, dendrites spanning the On and Off sublaminae. We also sought to establish how these parametrically identified retinal ganglion cell clusters relate to cell types identified previously on the basis of immunocytochemical staining and the expression of yellow fluorescent protein. Cells labeled with an antibody against melanopsin were found to be located within a single cluster, while those labeled with the SMI-32 antibody were in four different clusters. Yellow fluorescent protein expressing cells were distributed within 13 of the 14 clusters identified here, which demonstrates that yellow fluorescent protein expression is a useful method for labeling virtually the entire population of mouse retinal ganglion cells. Collectively, these findings provide a valuable baseline for future studies dealing with the effects of genetic mutations on the morphological development of these neurons.

  16. Characterization of chicken epidermal dendritic cells

    PubMed Central

    Igyártó, Botond-Zoltán; Lackó, Erzsébet; Oláh, Imre; Magyar, Attila

    2006-01-01

    It has been known for 15 years that the chicken epidermis contains ATPase+ and major histocompatibility complex class II-positive (MHCII+) dendritic cells. These cells were designated as Langerhans cells but neither their detailed phenotype nor their function was further investigated. In the present paper we demonstrate a complete overlapping of ATPase, CD45 and vimentin staining in all dendritic cells of the chicken epidermis. The CD45+ ATPase+ vimentin+ dendritic cells could be divided into three subpopulations: an MHCII+ CD3– KUL01+ and 68.1+ (monocyte-macrophage subpopulation markers) subpopulation, an MHCII– CD3– KUL01– and 68.1– subpopulation and an MHCII– CD3+ KUL01– and 68.1– subpopulation. The first population could be designated as chicken Langerhans cells. The last population represents CD4– CD8– T-cell receptor-αβ– and -γδ– natural killer cells with cytoplasmic CD3 positivity. The epidermal dendritic cells have a low proliferation rate as assessed by bromodeoxyuridine incorporation. Both in vivo and in vitro experiments showed that dendritic cells could be mobilized from the epidermis. Hapten treatment of epidermis resulted in the decrease of the frequency of epidermal dendritic cells and hapten-loaded dendritic cells appeared in the dermis or in in vitro culture of isolated epidermis. Hapten-positive cells were also found in the so-called dermal lymphoid nodules. We suggest that these dermal nodules are responsible for some regional immunological functions similar to the mammalian lymph nodes. PMID:16889640

  17. Oral administration of paeoniflorin attenuates allergic contact dermatitis by inhibiting dendritic cell migration and Th1 and Th17 differentiation in a mouse model.

    PubMed

    Shi, Dongmei; Li, Xuefeng; Li, Dongmei; Zhao, Quanjing; Shen, Yongnian; Yan, Hongxia; Fu, Hongjun; Zheng, Hailin; Lu, Guixia; Qiu, Ying; Liu, Weida

    2015-04-01

    Allergic contact dermatitis (ACD) is a hapten-specific CD4(+) T-cells mediated inflammatory response of the skin. Its pathomechanism involves 2 phases, an induction phase and an elicitation phase. Langerhans cells (LCs) and dendritic cells (DCs) in the skin play key roles in presenting low molecular weight chemicals (haptens) to the lymph nodes. Therefore, inhibition of the migration of LCs or DCs and T-cell proliferation is each expected to control ACD disease. To explore the effectiveness of paeoniflorin (PF) on the migration of LCs and T-cell proliferation in vivo, we establish a murine model of ACD, promoted by repeated exposure to an allergen (specifically 1-Chloro-2,4-dinitrobenzene (DNCB)). Administration of PF inhibits DC migration in this DNCB-induced model in the induction phase. As a result, epidermal LC density in the elicitation phase increased in PF-treated mice when compared to PF-untreated mice. At the same time, PF reduced IFN-γ(+)CD4(+) and IL-17(+)CD4(+) T cells proliferation (but not IL-4(+)CD4(+) T cells proliferation), leading to an attenuated cutaneous inflammatory response. Consistent with this T-cell proliferation profile, secretions of IFN-γ and IL-17 were reduced and IL-10 secretion increased in PF-treated mice, but production of IL-4 and IL-5 remained unchanged in the skin and blood samples. These results suggest that oral administration of PF can treat and prevent ACD effectively through inhibition of DC migration, and thus decrease the capacity of DCs to stimulate Th1 and Th17 cell differentiation and cytokine production.

  18. Somatic translocation: a novel mechanism of granule cell dendritic dysmorphogenesis and dispersion

    PubMed Central

    Murphy, Brian L.; Danzer, Steve C.

    2011-01-01

    Pronounced neuronal remodeling is a hallmark of temporal lobe epilepsy. Here, we use real-time confocal imaging of tissue from mouse brain to demonstrate that remodeling can involve fully-differentiated granule cells following translocation of the soma into an existing apical dendrite. Somatic translocation converts dendritic branches into primary dendrites and shifts adjacent apical dendrites to the basal pole of the cell. Moreover, somatic translocation contributes to the dispersion of the granule cell body layer in vitro, and when granule cell dispersion is induced in vivo, the dispersed cells exhibit virtually identical derangements of their dendritic structures. Together, these findings identify novel forms of neuronal plasticity which contribute to granule cell dysmorphogenesis in the epileptic brain. PMID:21414917

  19. Administration of polysaccharides from Antrodia camphorata modulates dendritic cell function and alleviates allergen-induced T helper type 2 responses in a mouse model of asthma.

    PubMed

    Liu, Ko-Jiunn; Leu, Sy-Jye; Su, Ching-Hua; Chiang, Bor-Luen; Chen, Yi-Lien; Lee, Yueh-Lun

    2010-03-01

    Asthma is a chronic disease characterized by airway inflammation caused by the dysregulated production of cytokines secreted by allergen-specific type 2 T helper (Th2) cells. Antrodia camphorata is a commonly used fungus in Asian folk medicine, and A. camphorata polysaccharides are reported to possess anti-cancer activities. In this study, the immunomodulatory effects of purified fractionated polysaccharides (GF2) from A. camphorata on dendritic cells (DCs) and their potential preventive effects against ovalbumin (OVA) -induced asthma were investigated. In the presence of GF2, lipopolysaccharide (LPS) -activated DCs exhibited up-regulated expression of major histocompatibility complex (MHC) class II and co-stimulatory molecules, as well as enhanced interleukin-10 (IL-10) and IL-12 production. GF2 treatment on LPS-activated DCs suppressed naïve CD4(+) T-cell proliferation and Th2 cell polarization with IL-10 production in an allogeneic mixed lymphocyte reaction. In animal experiments, a high dose of GF2 efficiently reduced expression levels of OVA-specific immunoglobulin G1 (IgG1) and IgE. However, lower doses of GF2 significantly enhanced OVA-specific IgG2a production. Our data also showed that administration of GF2 dose-dependently inhibited the development of airway hyperresponsiveness, airway eosinophilia and Th2 responses. OVA-specific CD4(+) T cells from higher doses of GF2-treated mice had significantly lower proliferative capacities compared with control mice. Moreover, treatment with GF2 significantly increased the high levels of IL-10 and low levels of interferon-gamma produced by T cells. Taken together, these data indicate that administration of A. camphorata polysaccharides (GF2) may have therapeutic potential when used as an adjuvant for the immunomodulatory treatment of allergic asthma.

  20. Immune activation: death, danger and dendritic cells.

    PubMed

    Pulendran, Bali

    2004-01-06

    Dendritic cells are critical for host immunity, and sense microbes with pathogen recognition receptors. New evidence indicates that these cells also sense uric acid crystals in dead cells, suggesting that the immune system is conscious not only of pathogens, but also of death and danger.

  1. Time-Lapse Retinal Ganglion Cell Dendritic Field Degeneration Imaged in Organotypic Retinal Explant Culture

    PubMed Central

    Johnson, Thomas V.; Oglesby, Ericka N.; Steinhart, Matthew R.; Cone-Kimball, Elizabeth; Jefferys, Joan; Quigley, Harry A.

    2016-01-01

    Purpose To develop an ex vivo organotypic retinal explant culture system suitable for multiple time-point imaging of retinal ganglion cell (RGC) dendritic arbors over a period of 1 week, and capable of detecting dendrite neuroprotection conferred by experimental treatments. Methods Thy1-YFP mouse retinas were explanted and maintained in organotypic culture. Retinal ganglion cell dendritic arbors were imaged repeatedly using confocal laser scanning microscopy. Maximal projection z-stacks were traced by two masked investigators and dendritic fields were analyzed for characteristics including branch number, size, and complexity. One group of explants was treated with brain derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) added to the culture media. Changes in individual dendritic fields over time were detected using pair-wise comparison testing. Results Retinal ganglion cells in mouse retinal explant culture began to degenerate after 3 days with 52.4% surviving at 7 days. Dendritic field parameters showed minimal change over 8 hours in culture. Intra- and interobserver measurements of dendrite characteristics were strongly correlated (Spearman rank correlations consistently > 0.80). Statistically significant (P < 0.001) dendritic tree degeneration was detected following 7 days in culture including: 40% to 50% decreases in number of branch segments, number of junctions, number of terminal branches, and total branch length. Scholl analyses similarly demonstrated a significant decrease in dendritic field complexity. Treatment of explants with BDNF+CNTF significantly attenuated dendritic field degeneration. Conclusions Retinal explant culture of Thy1-YFP tissue provides a useful model for time-lapse imaging of RGC dendritic field degeneration over a course of several days, and is capable of detecting neuroprotective amelioration of dendritic pruning within individual RGCs. PMID:26811145

  2. Pplase of Dermatophagoides farinae promotes ovalbumin-induced airway allergy by modulating the functions of dendritic cells in a mouse model

    PubMed Central

    Wang, Hui; Mo, Lihua; Xiao, Xiaojun; An, Shu; Liu, Xiaoyu; Ba, Jinge; Wu, Weifang; Ran, Pixin; Yang, Pingchang; Liu, Zhigang

    2017-01-01

    Our previous studies revealed that many proteins in addition to the known allergens of D. farinae have not been fully characterized. We observed that Pplase did not respond to serum collected from patients sensitized to D. farinae. In a mouse model, Pplase significantly enhanced airway hyperresponsiveness (AHR) and Th2 responses induced by ovalbumin (OVA) compared with mice treated with OVA alone. Moreover, exposure to Pplase significantly increased the expression of IRF4, CD80, CD83, MHCII and TNF-α in DC2.4 cells, which was abolished in the presence of a TLR4 inhibitor. In vitro T cell polarization experiments revealed that Pplase alone could not induce T cell polarization but enhanced T cell polarization together with OVA. In addition, transfer of Pplase-primed bone marrow-derived DCs (BMDCs) to naïve mice enhanced AHR and Th2 immune responses in mice sensitized to OVA. In conclusion, Pplase is not an allergen of D. farinae but can activate DC cells to facilitate OVA-induced allergic responses. PMID:28240301

  3. Dendritic stratification differs among retinal OFF bipolar cell types in the absence of rod photoreceptors

    PubMed Central

    Puller, Christian; Arbogast, Patrick; Keeley, Patrick W.; Reese, Benjamin E.; Haverkamp, Silke

    2017-01-01

    Retinal OFF bipolar cells show distinct connectivity patterns with photoreceptors in the wild-type mouse retina. Some types are cone-specific while others penetrate further through the outer plexiform layer (OPL) to contact rods in addition to cones. To explore dendritic stratification of OFF bipolar cells in the absence of rods, we made use of the ‘cone-full’ Nrl-/- mouse retina in which all photoreceptor precursor cells commit to a cone fate including those which would have become rods in wild-type retinas. The dendritic distribution of OFF bipolar cell types was investigated by confocal and electron microscopic imaging of immunolabeled tissue sections. The cells’ dendrites formed basal contacts with cone terminals and expressed the corresponding glutamate receptor subunits at those sites, indicating putative synapses. All of the four analyzed cell populations showed distinctive patterns of vertical dendritic invasion through the OPL. This disparate behavior of dendritic extension in an environment containing only cone terminals demonstrates type-dependent specificity for dendritic outgrowth in OFF bipolar cells: rod terminals are not required for inducing dendritic extension into distal areas of the OPL. PMID:28257490

  4. Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models

    PubMed Central

    Weaver, Christina M.; Rocher, Anne B.; Rodriguez, Alfredo; Crimins, Johanna L.; Dickstein, Dara L.; Wearne, Susan L.; Hof, Patrick R.

    2011-01-01

    In neurodegenerative disorders, such as Alzheimer’s disease, neuronal dendrites and dendritic spines undergo significant pathological changes. Because of the determinant role of these highly dynamic structures in signaling by individual neurons and ultimately in the functionality of neuronal networks that mediate cognitive functions, a detailed understanding of these changes is of paramount importance. Mutant murine models, such as the Tg2576 APP mutant mouse and the rTg4510 tau mutant mouse have been developed to provide insight into pathogenesis involving the abnormal production and aggregation of amyloid and tau proteins, because of the key role that these proteins play in neurodegenerative disease. This review showcases the multidimensional approach taken by our collaborative group to increase understanding of pathological mechanisms in neurodegenerative disease using these mouse models. This approach includes analyses of empirical 3D morphological and electrophysiological data acquired from frontal cortical pyramidal neurons using confocal laser scanning microscopy and whole-cell patch-clamp recording techniques, combined with computational modeling methodologies. These collaborative studies are designed to shed insight on the repercussions of dystrophic changes in neocortical neurons, define the cellular phenotype of differential neuronal vulnerability in relevant models of neurodegenerative disease, and provide a basis upon which to develop meaningful therapeutic strategies aimed at preventing, reversing, or compensating for neurodegenerative changes in dementia. PMID:20177698

  5. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  6. Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures.

    PubMed

    Dong, Rong; Moulding, Dale; Himoudi, Nourredine; Adams, Stuart; Bouma, Gerben; Eddaoudi, Ayad; Basu, B Piku; Derniame, Sophie; Chana, Prabhjoat; Duncan, Andrew; Anderson, John

    2011-01-01

    Culturing of human peripheral blood CD14 positive monocytes is a method for generation of dendritic cells (DCs) for experimental purposes or for use in clinical grade vaccines. When culturing human DCs in this manner for clinical vaccine production, we noticed that 5-10% of cells within the bulk culture were binuclear or multiple nuclear, but had typical dendritic cell morphology and immunophenotype. We refer to the cells as binuclear cells in dendritic cell cultures (BNiDCs). By using single cell PCR analysis of mitochondrial DNA polymorphisms we demonstrated that approximately 20-25% of cells in DC culture undergo a fusion event. Flow sorted BNiDC express low HLA-DR and IL-12p70, but high levels of IL-10. In mixed lymphocyte reactions, purified BNiDC suppressed lymphocyte proliferation. Blockade of dendritic cell-specific transmembrane protein (DC-STAMP) decreased the number of binuclear cells in DC cultures. BNiDC represent a potentially tolerogenic population within DC preparations for clinical use.

  7. The multifaceted biology of plasmacytoid dendritic cells

    PubMed Central

    Swiecki, Melissa; Colonna, Marco

    2015-01-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613

  8. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    PubMed Central

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  9. Dendritic cells and immunotherapy for cancer.

    PubMed

    Chang, David H; Dhodapkar, Madhav V

    2003-06-01

    Dendritic cells, nature's adjuvant, are antigen-presenting cells specialized to initiate and regulate immunity. Their potent antigen-presenting function has encouraged targeting of dendritic cells (DCs) for harnessing the immune system against cancer. DCs are efficient at activating not only CD4+ helper T-cells and CD8+ killer T-cells but also B-cells and innate effectors such as natural killer and natural killer T-cells. Early studies of adoptive transfer of tumor antigen-loaded DCs have shown promise. However, DC vaccination is at an early stage, and several parameters still need to be established. The complexity of the DC system brings about the necessity for its rational manipulation for achieving protective and therapeutic immunity in patients.

  10. Plasmacytoid dendritic cells and autoimmune inflammation.

    PubMed

    Galicia, Georgina; Gommerman, Jennifer L

    2014-03-01

    Plasmacytoid dendritic cells (pDC) are a sub-population of dendritic cells (DC) that produce large amounts of type I interferon (IFN) in response to nucleic acids that bind and activate toll-like-receptor (TLR)9 and TLR7. Type I IFN can regulate the function of B, T, DC, and natural killer (NK) cells and can also alter the residence time of leukocytes within lymph nodes. Activated pDC can also function as antigen presenting cells (APC) and have the potential to prime and differentiate T cells into regulatory or inflammatory effector cells, depending on the context. In this review we discuss pDC ontogeny, function, trafficking, and activation. We will also examine how pDC can potentially be involved in regulating immune responses in the periphery as well as within the central nervous system (CNS) during multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE).

  11. Dendritic Cells, New Tools for Vaccination

    DTIC Science & Technology

    2003-01-01

    19], Borrelia burgdorferi [20] Chlamydia trachomatis [21] and Candida albicans [22]. C. albicans provides a paradigmatic example of how this ap... Borrelia burgdorferi -pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes, Infect. Immun. 65 (1997) 3386–3390

  12. Olfactory Sensory Neurons Control Dendritic Complexity of Mitral Cells via Notch Signaling

    PubMed Central

    Saito, Tetsuichiro

    2016-01-01

    Mitral cells (MCs) of the mammalian olfactory bulb have a single primary dendrite extending into a single glomerulus, where they receive odor information from olfactory sensory neurons (OSNs). Molecular mechanisms for controlling dendritic arbors of MCs, which dynamically change during development, are largely unknown. Here we found that MCs displayed more complex dendritic morphologies in mouse mutants of Maml1, a crucial gene in Notch signaling. Similar phenotypes were observed by conditionally misexpressing a dominant negative form of MAML1 (dnMAML1) in MCs after their migration. Conversely, conditional misexpression of a constitutively active form of Notch reduced their dendritic complexity. Furthermore, the intracellular domain of Notch1 (NICD1) was localized to nuclei of MCs. These findings suggest that Notch signaling at embryonic stages is involved in the dendritic complexity of MCs. After the embryonic misexpression of dnMAML1, many MCs aberrantly extended dendrites to more than one glomerulus at postnatal stages, suggesting that Notch signaling is essential for proper formation of olfactory circuits. Moreover, dendrites in cultured MCs were shortened by Jag1-expressing cells. Finally, blocking the activity of Notch ligands in OSNs led to an increase in dendritic complexity as well as a decrease in NICD1 signals in MCs. These results demonstrate that the dendritic complexity of MCs is controlled by their presynaptic partners, OSNs. PMID:28027303

  13. Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb

    PubMed Central

    Bywalez, Wolfgang G.; Ona-Jodar, Tiffany; Lukas, Michael; Ninkovic, Jovica; Egger, Veronica

    2017-01-01

    Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional

  14. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  15. Adherent cells in granulocyte-macrophage colony-stimulating factor-induced bone marrow-derived dendritic cell culture system are qualified dendritic cells.

    PubMed

    Li, Gong-Bo; Lu, Guang-Xiu

    2010-01-01

    A widely-used method for generating dendritic cell (DC) is to culture bone marrow cells in granulocyte-macrophage colony-stimulating factor (GM-CSF)-containing medium for 6-10 days. Usually, non-adherent cells are used as qualified dendritic cells while the adherent ones are discarded as "non-dendritic cells" or macrophages. In this study, we show that the adherent cells are nearly identical to the non-adherent cells in both dendritic cell surface markers expression and main dendritic cell-related functions, hence to prove that these "junk cells" are actually qualified dendritic cells.

  16. Dendritic cell therapy for oncology roundtable conference

    PubMed Central

    2011-01-01

    2-3 September 2010, Brussels, Belgium The Dendritic Cell Therapy for Oncology Roundtable Conference was organized by Reliable Cancer Therapies and moderated by Prof. Dr. Steven De Vleeschouwer. The organizer, Reliable Cancer Therapies, is a Swiss non-profit organization that provides information on evidence-based cancer treatments and funding for the development of a selection of promising cancer therapies. In order to be able to give valuable information about dendritic cell (DC) therapy to patients and physicians, the organizing committee felt it necessary to organize this conference to get an up-to-date status of the academic DC therapy field, collect ideas to guide patients towards clinical trials and to induce cross-fertilization for protocol optimization. In total, 31 experts participated to an in-depth discussion about the status and the future development path for dendritic cell vaccines. The conference started with general presentations about cancer immunotherapy, followed by comprehensive overview presentations about the progress in DC vaccine development achieved by each speaker. At the end of the meeting, a thorough general discussion focused on key questions about what is needed to improve DC vaccines. This report does not cover all presentations, but aims to highlight selected points of interest, particularly relating to possible limitations and potential approaches to improvement of DC therapies specifically, and also immunotherapeutic interventions in general terms. PMID:21226916

  17. Inducible expression of endomorphins in murine dendritic cells.

    PubMed

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  18. Generation of regulatory dendritic cells after treatment with paeoniflorin.

    PubMed

    Chen, Dan; Li, Yingxi; Wang, Xiaodong; Li, Keqiu; Jing, Yaqing; He, Jinghua; Qiang, Zhaoyan; Tong, Jingzhi; Sun, Ke; Ding, Wen; Kang, Yi; Li, Guang

    2016-08-01

    Regulatory dendritic cells are a potential therapeutic tool for assessing a variety of immune overreaction diseases. Paeoniflorin, a bioactive glucoside extracted from the Chinese herb white paeony root, has been shown to be effective at inhibiting the maturation and immunostimulatory function of murine bone marrow-derived dendritic cells. However, whether paeoniflorin can program conventional dendritic cells toward regulatory dendritic cells and the underlying mechanism remain unknown. Here, our study demonstrates that paeoniflorin can induce the production of regulatory dendritic cells from human peripheral blood monocyte-derived immature dendritic cells in the absence or presence of lipopolysaccharide (LPS) but not from mature dendritic cells, thereby demonstrating the potential of paeoniflorin as a specific immunosuppressive drug with fewer complications and side effects. These regulatory dendritic cells treated with paeoniflorin exhibited high CD11b/c and low CD80, CD86 and CD40 expression levels as well as enhanced abilities to capture antigen and promote the proliferation of CD4(+)CD25(+) T cells and reduced abilities to migrate and promote the proliferation of CD4(+) T cells, which is associated with the upregulation of endogenous transforming growth factor (TGF)-β-mediated indoleamine 2,3-dioxygenase (IDO) expression. Collectively, paeoniflorin could program immature dendritic cells (imDCs) and imDCs stimulated with LPS toward a regulatory DC fate by upregulating the endogenous TGF-β-mediated IDO expression level, thereby demonstrating its potential as a specific immunosuppressive drug.

  19. Dendritic Cell-Mediated Phagocytosis but Not Immune Activation Is Enhanced by Plasmin

    PubMed Central

    Borg, Rachael J.; Samson, Andre L.; Au, Amanda E.-L.; Scholzen, Anja; Fuchsberger, Martina; Kong, Ying Y.; Freeman, Roxann; Mifsud, Nicole A.; Plebanski, Magdalena; Medcalf, Robert L.

    2015-01-01

    Removal of dead cells in the absence of concomitant immune stimulation is essential for tissue homeostasis. We recently identified an injury-induced protein misfolding event that orchestrates the plasmin-dependent proteolytic degradation of necrotic cells. As impaired clearance of dead cells by the innate immune system predisposes to autoimmunity, we determined whether plasmin could influence endocytosis and immune cell stimulation by dendritic cells – a critical cell that links the innate and adaptive immune systems. We find that plasmin generated on the surface of necrotic cells enhances their phagocytic removal by human monocyte-derived dendritic cells. Plasmin also promoted phagocytosis of protease-resistant microparticles by diverse mouse dendritic cell sub-types both in vitro and in vivo. Together with an increased phagocytic capacity, plasmin-treated dendritic cells maintain an immature phenotype, exhibit reduced migration to lymph nodes, increase their expression/release of the immunosuppressive cytokine TGF-β, and lose their capacity to mount an allogeneic response. Collectively, our findings support a novel role for plasmin formed on dead cells and other phagocytic targets in maintaining tissue homeostasis by increasing the phagocytic function of dendritic cells while simultaneously decreasing their immunostimulatory capacity consistent with producing an immunosuppressive state. PMID:26132730

  20. Immunometabolism governs dendritic cell and macrophage function

    PubMed Central

    2016-01-01

    Recent studies on intracellular metabolism in dendritic cells (DCs) and macrophages provide new insights on the functioning of these critical controllers of innate and adaptive immunity. Both cell types undergo profound metabolic reprogramming in response to environmental cues, such as hypoxia or nutrient alterations, but importantly also in response to danger signals and cytokines. Metabolites such as succinate and citrate have a direct impact on the functioning of macrophages. Immunogenicity and tolerogenicity of DCs is also determined by anabolic and catabolic processes, respectively. These findings provide new prospects for therapeutic manipulation in inflammatory diseases and cancer. PMID:26694970

  1. Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease.

    PubMed

    Zheng, Dong; Cao, Qi; Lee, Vincent W S; Wang, Ya; Zheng, Guoping; Wang, YuanMin; Tan, Thian Kui; Wang, Changqi; Alexander, Stephen I; Harris, David C H; Wang, Yiping

    2012-05-01

    Plasmacytoid dendritic cells play important roles in inducing immune tolerance, preventing allograft rejection, and regulating immune responses in both autoimmune disease and graft-versus-host disease. In order to evaluate a possible protective effect of plasmacytoid dendritic cells against renal inflammation and injury, we purified these cells from mouse spleens and adoptively transferred lipopolysaccharide (LPS)-treated cells, modified ex vivo, into mice with adriamycin nephropathy. These LPS-treated cells localized to the kidney cortex and the lymph nodes draining the kidney, and protected the kidney from injury during adriamycin nephropathy. Glomerulosclerosis, tubular atrophy, interstitial expansion, proteinuria, and creatinine clearance were significantly reduced in mice with adriamycin nephropathy subsequently treated with LPS-activated plasmacytoid dendritic cells as compared to the kidney injury in mice given naive plasmacytoid dendritic cells. In addition, LPS-pretreated cells, but not naive plasmacytoid dendritic cells, convert CD4+CD25- T cells into Foxp3+ regulatory T cells and suppress the proinflammatory cytokine production of endogenous renal macrophages. This may explain their ability to protect against renal injury in adriamycin nephropathy.

  2. Lipid antigen presentation through CD1d pathway in mouse lung epithelial cells, macrophages and dendritic cells and its suppression by poly-dispersed single-walled carbon nanotubes.

    PubMed

    Rizvi, Zaigham Abbas; Puri, Niti; Saxena, Rajiv K

    2015-09-01

    Effect of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNTs) was examined on lipid antigen presentation through CD1d pathway on three cell lines, LA4, MHS, and JAWSII used as prototype antigen presenting cells (APCs). CD1d molecule was expressed on 80-90% MHS (prototype macrophages) and JAWSII (prototype dendritic cells) cells whereas <5% LA4 cells (lung epithelial cells, non-classical APCs) expressed CD1d. Treatment with AF-SWCNTs but not with pristine SWCNTs resulted in a significant decline in the level of CD1d mRNA as well as mRNA levels of some other intracellular proteins involved in lipid antigen presentation pathway (MTP, ApoE, prosaposin, SR-BI and LDLr). Lipid antigen presentation was assessed by first incubating the cells with a prototype lipid antigen (α-Glactosylceramide or αGC) and then staining with L363 monoclonal antibody that detects αGC bound to CD1d molecule. While 100% MHS and JAWSII cells presented αGC, only 20% LA4 cells presented the CD1d antigen. Treatment with AF-SWCNTs resulted in a 30-40% decrease in αGC antigen presentation in all three cell lines. These results show that AF-SWCNT treatment down regulated the lipid antigen presentation pathway in all three cell lines and significantly lowered the ability of these cell lines to present αGC antigen.

  3. [Dendritic cells in cancer immunotherapy].

    PubMed

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities.

  4. Reduced Purkinje cell dendritic arborization and loss of dendritic spines in essential tremor.

    PubMed

    Louis, Elan D; Lee, Michelle; Babij, Rachel; Ma, Karen; Cortés, Etty; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2014-12-01

    Based on accumulating post-mortem evidence of abnormalities in Purkinje cell biology in essential tremor, we hypothesized that regressive changes in dendritic morphology would be apparent in the Purkinje cell population in essential tremor cases versus age-matched controls. Cerebellar cortical tissue from 27 cases with essential tremor and 27 age-matched control subjects was processed by the Golgi-Kopsch method. Purkinje cell dendritic anatomy was quantified using a Neurolucida microscopic system interfaced with a motorized stage. In all measures, essential tremor cases demonstrated significant reductions in dendritic complexity compared with controls. Median values in essential tremor cases versus controls were: 5712.1 versus 10 403.2 µm (total dendrite length, P=0.01), 465.9 versus 592.5 µm (branch length, P=0.01), 22.5 versus 29.0 (maximum branch order, P=0.001), and 165.3 versus 311.7 (number of terminations, P=0.008). Furthermore, the dendritic spine density was reduced in essential tremor cases (medians=0.82 versus 1.02 µm(-1), P=0.03). Our demonstration of regressive changes in Purkinje cell dendritic architecture and spines in essential tremor relative to control brains provides additional evidence of a pervasive abnormality of Purkinje cell biology in this disease, which affects multiple neuronal cellular compartments including their axon, cell body, dendrites and spines.

  5. Dendritic planarity of Purkinje cells is independent of Reelin signaling.

    PubMed

    Kim, Jinkyung; Park, Tae-Ju; Kwon, Namseop; Lee, Dongmyeong; Kim, Seunghwan; Kohmura, Yoshiki; Ishikawa, Tetsuya; Kim, Kyong-Tai; Curran, Tom; Je, Jung Ho

    2015-07-01

    The dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated. Here, we use synchrotron X-ray microscopy to obtain 3-D images of Golgi-stained Purkinje cell dendrites. Purkinje cells that failed to migrate completely exhibited conical dendrites with abnormal 3-D arborization and reduced dendritic complexity. Furthermore, their spines were fewer in number with a distorted morphology. In contrast, Purkinje cells that migrated successfully displayed planar dendritic and spine morphologies similar to normal cells, despite reduced dendritic complexity. These results indicate that, during cerebellar formation, Purkinje cells migrate into an environment that supports development of dendritic planarity and spine formation. While Reelin signaling is important for the migration process, it does not make a direct major contribution to dendrite formation.

  6. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    PubMed

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-03

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  7. Macrophages, dendritic cells, and regression of atherosclerosis

    PubMed Central

    Feig, Jonathan E.; Feig, Jessica L.

    2012-01-01

    Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and cells such as macrophages, dendritic cells (DCs), T cells, and other cellular elements present in the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, the focus of this review will be primarily on the macrophages and DCs. The role of these two cell types in atherosclerosis is discussed, with a particular emphasis on their involvement in atherosclerosis regression. PMID:22934038

  8. Targeting dendritic cells--why bother?

    PubMed

    Kreutz, Martin; Tacken, Paul J; Figdor, Carl G

    2013-04-11

    Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.

  9. Characterization of murine lung dendritic cells: similarities to Langerhans cells and thymic dendritic cells

    PubMed Central

    1990-01-01

    Dendritic cells (DC) are potent accessory cells (AC) for the initiation of primary immune responses. Although murine lymphoid DC and Langerhans cells have been extensively characterized, DC from murine lung have been incompletely described. We isolated cells from enzyme-digested murine lungs and bronchoalveolar lavages that were potent stimulators of a primary mixed lymphocyte response (MLR). The AC had a low buoyant density, were loosely adherent and nonphagocytic. AC function was unaffected by depletion of cells expressing the splenic DC marker, 33D1. In addition, antibody and complement depletion of cells bearing the macrophage marker F4/80, or removal of phagocytic cells with silica also failed to decrease AC activity. In contrast, AC function was decreased by depletion of cells expressing the markers J11d and the low affinity interleukin 2 receptor (IL-2R), both present on thymic and skin DC. AC function was approximately equal in FcR+ and FcR- subpopulations, indicating there was heterogeneity within the AC population. Consistent with the functional data, a combined two-color immunofluorescence and latex bead uptake technique revealed that lung cells high in AC activity were enriched in brightly Ia+ dendritic- shaped cells that (a) were nonphagocytic, (b) lacked specific T and B lymphocyte markers and the macrophage marker F4/80, but (c) frequently expressed C3biR, low affinity IL-2R, FcRII, and the markers NLDC-145 and J11d. Taken together, the functional and phenotypic data suggest the lung cells that stimulate resting T cells in an MLR and that might be important in local pulmonary immune responses are DC that bear functional and phenotypic similarity to other tissues DC, such as Langerhans cells and thymic DC. PMID:2162904

  10. Probiotics, dendritic cells and bladder cancer.

    PubMed

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette-Guérin).

  11. Divergent Effects of Dendritic Cells on Pancreatitis

    DTIC Science & Technology

    2015-09-01

    responses. Our work utilizes murine models and human tissues. Dendritic cells in mice express MHC II and the integrin CD11c. They are proficient in...CD54), and co-stimulatory molecules (CD80, CD86) in the pancreas and spleen in control mice and in models of pancreatitis. We showed that DC... generated BMDC in vitro from BM progenitors using GMCSF (20 ng/ml) in 8 day cultures. Mice were adoptively transferred with 1x106 BMDC after daily caerulein

  12. Metamaterial absorber with random dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  13. Lamin B1 protein is required for dendrite development in primary mouse cortical neurons.

    PubMed

    Giacomini, Caterina; Mahajani, Sameehan; Ruffilli, Roberta; Marotta, Roberto; Gasparini, Laura

    2016-01-01

    Lamin B1, a key component of the nuclear lamina, plays an important role in brain development and function. A duplication of the human lamin B1 (LMNB1) gene has been linked to adult-onset autosomal dominant leukodystrophy, and mouse and human loss-of-function mutations in lamin B1 are susceptibility factors for neural tube defects. In the mouse, experimental ablation of endogenous lamin B1 (Lmnb1) severely impairs embryonic corticogenesis. Here we report that in primary mouse cortical neurons, LMNB1 overexpression reduces axonal outgrowth, whereas deficiency of endogenous Lmnb1 results in aberrant dendritic development. In the absence of Lmnb1, both the length and complexity of dendrites are reduced, and their growth is unresponsive to KCl stimulation. This defective dendritic outgrowth stems from impaired ERK signaling. In Lmnb1-null neurons, ERK is correctly phosphorylated, but phospho-ERK fails to translocate to the nucleus, possibly due to delocalization of nuclear pore complexes (NPCs) at the nuclear envelope. Taken together, these data highlight a previously unrecognized role of lamin B1 in dendrite development of mouse cortical neurons through regulation of nuclear shuttling of specific signaling molecules and NPC distribution.

  14. Lamin B1 protein is required for dendrite development in primary mouse cortical neurons

    PubMed Central

    Giacomini, Caterina; Mahajani, Sameehan; Ruffilli, Roberta; Marotta, Roberto; Gasparini, Laura

    2016-01-01

    Lamin B1, a key component of the nuclear lamina, plays an important role in brain development and function. A duplication of the human lamin B1 (LMNB1) gene has been linked to adult-onset autosomal dominant leukodystrophy, and mouse and human loss-of-function mutations in lamin B1 are susceptibility factors for neural tube defects. In the mouse, experimental ablation of endogenous lamin B1 (Lmnb1) severely impairs embryonic corticogenesis. Here we report that in primary mouse cortical neurons, LMNB1 overexpression reduces axonal outgrowth, whereas deficiency of endogenous Lmnb1 results in aberrant dendritic development. In the absence of Lmnb1, both the length and complexity of dendrites are reduced, and their growth is unresponsive to KCl stimulation. This defective dendritic outgrowth stems from impaired ERK signaling. In Lmnb1-null neurons, ERK is correctly phosphorylated, but phospho-ERK fails to translocate to the nucleus, possibly due to delocalization of nuclear pore complexes (NPCs) at the nuclear envelope. Taken together, these data highlight a previously unrecognized role of lamin B1 in dendrite development of mouse cortical neurons through regulation of nuclear shuttling of specific signaling molecules and NPC distribution. PMID:26510501

  15. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  16. Dendrite

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have found that as melted metals and alloys (combinations of metals) solidify, they can form with different arrangements of atoms, called microstructures. These microstructures depend on the shape of the interface (boundary) between the melted metal and the solid crystal it is forming. There are generally three shapes that the interface can take: planar, or flat; cellular, which looks like the cells of a beehive; and dendritic, which resembles tiny fir trees. Convection at this interface can affect the interface shape and hide the other phenomena (physical events). To reduce the effects of convection, researchers conduct experiments that examine and control conditions at the interface in microgravity. Microgravity also helps in the study of alloys composed of two metals that do not mix. On Earth, the liquid mixtures of these alloys settle into different layers due to gravity. In microgravity, the liquid metals do not settle, and a solid more uniform mixture of both metals can be formed.

  17. Visualization and genetic manipulation of dendrites and spines in the mouse cerebral cortex and hippocampus using in utero electroporation.

    PubMed

    Pacary, Emilie; Haas, Matilda A; Wildner, Hendrik; Azzarelli, Roberta; Bell, Donald M; Abrous, Djoher Nora; Guillemot, François

    2012-07-26

    In utero electroporation (IUE) has become a powerful technique to study the development of different regions of the embryonic nervous system (1-5). To date this tool has been widely used to study the regulation of cellular proliferation, differentiation and neuronal migration especially in the developing cerebral cortex (6-8). Here we detail our protocol to electroporate in utero the cerebral cortex and the hippocampus and provide evidence that this approach can be used to study dendrites and spines in these two cerebral regions. Visualization and manipulation of neurons in primary cultures have contributed to a better understanding of the processes involved in dendrite, spine and synapse development. However neurons growing in vitro are not exposed to all the physiological cues that can affect dendrite and/or spine formation and maintenance during normal development. Our knowledge of dendrite and spine structures in vivo in wild-type or mutant mice comes mostly from observations using the Golgi-Cox method( 9). However, Golgi staining is considered to be unpredictable. Indeed, groups of nerve cells and fiber tracts are labeled randomly, with particular areas often appearing completely stained while adjacent areas are devoid of staining. Recent studies have shown that IUE of fluorescent constructs represents an attractive alternative method to study dendrites, spines as well as synapses in mutant / wild-type mice (10-11) (Figure 1A). Moreover in comparison to the generation of mouse knockouts, IUE represents a rapid approach to perform gain and loss of function studies in specific population of cells during a specific time window. In addition, IUE has been successfully used with inducible gene expression or inducible RNAi approaches to refine the temporal control over the expression of a gene or shRNA (12). These advantages of IUE have thus opened new dimensions to study the effect of gene expression/suppression on dendrites and spines not only in specific cerebral

  18. Harnessing Human Dendritic Cell Subsets for Medicine

    PubMed Central

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  19. Dendritic epidermal T cells facilitate wound healing in diabetic mice

    PubMed Central

    Liu, Zhongyang; Xu, Yingbin; Chen, Lei; Xie, Julin; Tang, Jinming; Zhao, Jingling; Shu, Bin; Qi, Shaohai; Chen, Jian; Liang, Guangping; Luo, Gaoxing; Wu, Jun; He, Weifeng; Liu, Xusheng

    2016-01-01

    The impairment of skin repair in diabetic patients can lead to increased morbidity and mortality. Proper proliferation, apoptosis and migration in keratinocytes are vital for skin repair, but in diabetic patients, hyperglycemia impairs this process. Dendritic epidermal T cells (DETCs) are an important part of the resident cutaneous immunosurveillance program. We observed a reduction in the number of DETCs in a streptozotocin-induced diabetic mouse model. This reduction in DETCs resulted in decreased IGF-1 and KGF production in the epidermis, which is closely associated with diabetic delayed wound closure. DETCs ameliorated the poor wound-healing conditions in diabetic mice by increasing keratinocyte migration and proliferation and decreasing keratinocyte apoptosis in diabetes-like microenvironments. Our results elucidate a new mechanism for diabetic delayed wound closure and point to a new strategy for the treatment of wounds in diabetic patients. PMID:27347345

  20. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    PubMed

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  1. A Specific Nutrient Combination Attenuates the Reduced Expression of PSD-95 in the Proximal Dendrites of Hippocampal Cell Body Layers in a Mouse Model of Phenylketonuria.

    PubMed

    Bruinenberg, Vibeke M; van Vliet, Danique; Attali, Amos; de Wilde, Martijn C; Kuhn, Mirjam; van Spronsen, Francjan J; van der Zee, Eddy A

    2016-03-26

    The inherited metabolic disease phenylketonuria (PKU) is characterized by increased concentrations of phenylalanine in the blood and brain, and as a consequence neurotransmitter metabolism, white matter, and synapse functioning are affected. A specific nutrient combination (SNC) has been shown to improve synapse formation, morphology and function. This could become an interesting new nutritional approach for PKU. To assess whether treatment with SNC can affect synapses, we treated PKU mice with SNC or an isocaloric control diet and wild-type (WT) mice with an isocaloric control for 12 weeks, starting at postnatal day 31. Immunostaining for post-synaptic density protein 95 (PSD-95), a post-synaptic density marker, was carried out in the hippocampus, striatum and prefrontal cortex. Compared to WT mice on normal chow without SNC, PKU mice on the isocaloric control showed a significant reduction in PSD-95 expression in the hippocampus, specifically in the granular cell layer of the dentate gyrus, with a similar trend seen in the cornus ammonis 1 (CA1) and cornus ammonis 3 (CA3) pyramidal cell layer. No differences were found in the striatum or prefrontal cortex. PKU mice on a diet supplemented with SNC showed improved expression of PSD-95 in the hippocampus. This study gives the first indication that SNC supplementation has a positive effect on hippocampal synaptic deficits in PKU mice.

  2. A Specific Nutrient Combination Attenuates the Reduced Expression of PSD-95 in the Proximal Dendrites of Hippocampal Cell Body Layers in a Mouse Model of Phenylketonuria

    PubMed Central

    Bruinenberg, Vibeke M.; van Vliet, Danique; Attali, Amos; de Wilde, Martijn C.; Kuhn, Mirjam; van Spronsen, Francjan J.; van der Zee, Eddy A.

    2016-01-01

    The inherited metabolic disease phenylketonuria (PKU) is characterized by increased concentrations of phenylalanine in the blood and brain, and as a consequence neurotransmitter metabolism, white matter, and synapse functioning are affected. A specific nutrient combination (SNC) has been shown to improve synapse formation, morphology and function. This could become an interesting new nutritional approach for PKU. To assess whether treatment with SNC can affect synapses, we treated PKU mice with SNC or an isocaloric control diet and wild-type (WT) mice with an isocaloric control for 12 weeks, starting at postnatal day 31. Immunostaining for post-synaptic density protein 95 (PSD-95), a post-synaptic density marker, was carried out in the hippocampus, striatum and prefrontal cortex. Compared to WT mice on normal chow without SNC, PKU mice on the isocaloric control showed a significant reduction in PSD-95 expression in the hippocampus, specifically in the granular cell layer of the dentate gyrus, with a similar trend seen in the cornus ammonis 1 (CA1) and cornus ammonis 3 (CA3) pyramidal cell layer. No differences were found in the striatum or prefrontal cortex. PKU mice on a diet supplemented with SNC showed improved expression of PSD-95 in the hippocampus. This study gives the first indication that SNC supplementation has a positive effect on hippocampal synaptic deficits in PKU mice. PMID:27102170

  3. Dendritic cell control of tolerogenic responses

    PubMed Central

    Manicassamy, Santhakumar; Pulendran, Bali

    2011-01-01

    Summary One of the most fundamental problems in immunology is the seemingly schizophrenic ability of the immune system to launch robust immunity against pathogens, while acquiring and maintaining a state of tolerance to the body’s own tissues and the trillions of commensal microorganisms and food antigens that confront it every day. A fundamental role for the innate immune system, particularly dendritic cells (DCs), in orchestrating immunological tolerance has been appreciated, but emerging studies have highlighted the nature of the innate receptors and the signaling pathways that program DCs to a tolerogenic state. Furthermore, several studies have emphasized the major role played by cellular interactions, and the microenvironment in programming tolerogenic DCs. Here we review these studies and suggest that the innate control of tolerogenic responses can be viewed as different hierarchies of organization, in which DCs, their innate receptors and signaling networks, and their interactions with other cells and local microenvironments represent different levels of the hierarchy. PMID:21488899

  4. Transcriptional Control of Dendritic Cell Development

    PubMed Central

    Murphy, Theresa L.; Grajales-Reyes, Gary E.; Wu, Xiaodi; Tussiwand, Roxane; Briseño, Carlos G.; Iwata, Arifumi; Kretzer, Nicole M.; Durai, Vivek; Murphy, Kenneth M.

    2016-01-01

    The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow. PMID:26735697

  5. Alarmins Link Neutrophils and Dendritic Cells

    PubMed Central

    Yang, De; de la Rosa, Gonzalo; Tewary, Poonam; Oppenheim, Joost J.

    2009-01-01

    Neutrophils are the first major population of leukocyte to infiltrate infected or injured tissues and are crucial for initiating host innate defense and adaptive immunity. Although the contribution of neutrophils to innate immune defense is mediated predominantly by phagocytosis and killing of microorganisms, neutrophils also participate in the induction of adaptive immune responses. At sites of infection and/or injury, neutrophils release numerous mediators upon degranulation or death, among these are alarmins which have a characteristic dual capacity to mobilize and activate antigen-presenting cells. We describe here how alarmins released by neutrophil degranulation and/or death can link neutrophils to dendritic cells by promoting their recruitment and activation, resulting in the augmentation of innate and adaptive immune responses. PMID:19699678

  6. Dendritic cells and immunity against cancer

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets which respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease, and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease. PMID:21158979

  7. Follicular dendritic cells in health and disease

    PubMed Central

    El Shikh, Mohey Eldin M.; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  8. Dendritic cells: sentinels of immunity and tolerance.

    PubMed

    Kubach, Jan; Becker, Christian; Schmitt, Edgar; Steinbrink, Kerstin; Huter, Eva; Tuettenberg, Andrea; Jonuleit, Helmut

    2005-04-01

    The induction of effective antigen-specific T-cell immunity to pathogens without the initiation of autoimmunity has evolved as a sophisticated and highly balanced immunoregulatory mechanism. This mechanism assures the generation of antigen-specific effector cells as well as the induction and maintenance of antigen-specific tolerance to self-structures of the body. As professional antigen-presenting cells of the immune system, dendritic cells (DC) are ideally positioned throughout the entire body and equipped with a unique capability to transport antigens from the periphery to lymphoid tissues. There is growing evidence that DC, besides their well-known immunostimulatory properties, also induce and regulate T-cell tolerance in the periphery. This regulatory function of DC is strictly dependent on their different stages of maturation and activation. Additionally, immunosuppressive agents and cytokines further influence the functions of maturing DC. The regulatory properties of DC include induction of T-cell anergy, apoptosis, and the generation of T-cells with regulatory capacities. This brief review summarizes the current knowledge about the immunoregulatory role of DC as guardians for the induction of T-cell immunity and tolerance.

  9. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex.

    PubMed

    Chen, Chia-Chien; Tam, Danny; Brumberg, Joshua C

    2012-04-01

    Early postnatal sensory experience can have profound impacts on the structure and function of cortical circuits affecting behavior. Using the mouse whisker-to-barrel system we chronically deprived animals of normal sensory experience by bilaterally trimming their whiskers every other day from birth for the first postnatal month. Brain tissue was then processed for Golgi staining and neurons in layer 6 of barrel cortex were reconstructed in three dimensions. Dendritic and somatic parameters were compared between sensory-deprived and normal sensory experience groups. Results demonstrated that layer 6 non-pyramidal neurons in the chronically deprived group showed an expansion of their dendritic arbors. The pyramidal cells responded to sensory deprivation with increased somatic size and basilar dendritic arborization but overall decreased apical dendritic parameters. In sum, sensory deprivation impacted on the neuronal architecture of pyramidal and non-pyramidal neurons in layer 6, which may provide a substrate for observed physiological and behavioral changes resulting from whisker trimming.

  10. GATA2 regulates dendritic cell differentiation

    PubMed Central

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki

    2016-01-01

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin−Sca-1+Kit+ cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte–related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  11. GATA2 regulates dendritic cell differentiation.

    PubMed

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation.

  12. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    PubMed Central

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  13. Sleep contributes to dendritic spine formation and elimination in the developing mouse somatosensory cortex.

    PubMed

    Yang, Guang; Gan, Wen-Biao

    2012-11-01

    Sleep is maximal during early postnatal life when rapid and extensive synapse remodeling occurs. It remains unknown whether and how sleep affects synapse development and plasticity. Using transcranial two-photon microscopy, we examined the formation and elimination of fluorescently labeled dendritic spines and filopodia of Layer 5 pyramidal neurons in the barrel cortex of 3-week-old mice during wakefulness and sleep. We observed high turnover of dendritic protrusions over 2 h in both wake and sleep states. The formation rate of dendritic spines or filopodia over 2 h was comparable between the two states. The elimination rate of dendritic spines or filopodia was lower during 2-h wakefulness than during 2-h sleep. Similar results were observed on dendritic protrusion dynamics over 12-h light/dark cycle when mice spent more time asleep or awake. The substantial remodeling of dendritic protrusions during the sleep state supports the notion that sleep plays an important role in the development and plasticity of synaptic connections in the mouse cortex.

  14. Harnessing Dendritic Cells to Generate Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2009-01-01

    Passive immunotherapy of cancer, i.e., transfer of T cells or antibodies, can lead to some objective clinical responses, thus demonstrating that the immune system can reject tumors. However, passive immunotherapy is not expected to yield memory T cells that might control tumor outgrowth. Active immunotherapy with dendritic cell (DCs) vaccines has the potential to induce tumor-specific effector and memory T cells. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. Newer generation DC vaccines are build on the increased knowledge of the DC system including the existence of distinct DC subsets and their plasticity all leading to generation of distinct types of immunity. Rather than the quantity of IFN-γ secreting CD8+ T cells, we should aim at generating high quality high avidity poly-functional effector CD8+ T cells able to reject tumors and long-lived memory CD8+ T cells able to prevent relapse. PMID:19769741

  15. Plasmacytoid dendritic cells in autoimmune diabetes - potential tools for immunotherapy.

    PubMed

    Nikolic, Tatjana; Welzen-Coppens, Jojanneke M C; Leenen, Pieter J M; Drexhage, Hemmo A; Versnel, Marjan A

    2009-01-01

    Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated attack destroys the insulin-producing cells of the pancreatic islets. Despite insulin supplementation severe complications ask for novel treatments that aim at cure or delay of the onset of the disease. In spontaneous animal models for diabetes like the nonobese diabetic (NOD) mouse, distinct steps in the pathogenesis of the disease can be distinguished. In the past 10 years it became evident that DC and macrophages play an important role in all three phases of the pathogenesis of T1D. In phase 1, dendritic cells (DC) and macrophages accumulate at the islet edges. In phase 2, DC and macrophages are involved in the activation of autoreactive T cells that accumulate in the pancreas. In the third phase the islets are invaded by macrophages, DC and NK cells followed by the destruction of the beta-cells. Recent data suggest a role for a new member of the DC family: the plasmacytoid DC (pDC). pDC have been found to induce tolerance in experimental models of asthma. Several studies in humans and the NOD mouse support a similar role for pDC in diabetes. Mechanisms found to be involved in tolerance induction by pDC are inhibition of effector T cells, induction of regulatory T cells, production of cytokines and indoleamine 2,3-dioxygenase (IDO). The exact mechanism of tolerance induction by pDC in diabetes remains to be established but the intrinsic tolerogenic properties of pDC provide a promising, yet underestimated target for therapeutic intervention.

  16. Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics

    PubMed Central

    Goldberg, Jesse H; Yuste, Rafael; Tamas, Gabor

    2003-01-01

    In this second study, we have combined two-photon calcium imaging with whole-cell recording and anatomic reconstructions to directly characterize synaptically evoked calcium signals in three types of mouse V1 supragranular interneurones: parvalbumin-positive fast spikers (FS), calretinin-positive irregular spikers (IS), and adapting cells (AD). We observed that subthreshold synaptic activation evoked calcium signals locally restricted to individual dendritic compartments. These signals were mediated by NMDA receptors (NMDARs) in AD and IS cells, whereas in FS cells, calcium-permeable AMPA receptors (CP-AMPARs) provided an additional and kinetically distinct influx. Furthermore, even a single, subthreshold synaptic activation evoked a larger dendritic calcium influx than backpropagating action potentials. Our results demonstrate that NMDARs dominate subthreshold calcium dynamics in interneurones and reveal the functional contribution of CP-AMPARs to a specific subclass of cortical interneurone. These data highlight different strategies in dendritic signal processing by distinct classes of interneurones. PMID:12844507

  17. MicroRNA-100-5p indirectly modulates the expression of Il6, Ptgs1/2 and Tlr4 mRNA in the mouse follicular dendritic cell-like cell line, FL-Y

    PubMed Central

    Aungier, Susan R; Ohmori, Hitoshi; Clinton, Michael; Mabbott, Neil A

    2015-01-01

    Follicular dendritic cells (FDC) are important stromal cells within the B-cell follicles and germinal centres (GC) of secondary lymphoid tissues. FDC trap and retain native antigens on their surfaces in the form of immune complexes that they display to B cells, in order to select those cells with the highest antigen affinity. MicroRNAs are short, non-coding RNAs that are approximately 18–25 nucleotides in length that regulate gene expression at the post-transcriptional level by repressing the translation of target genes. In the current study, in vivo and in vitro systems were used to identify microRNAs that were potentially expressed by FDC. Constitutive lymphotoxin-β receptor (LTβR) stimulation is required to maintain FDC in their differentiated state. We show that the rapid de-differentiation of spleen FDC that accompanied LTβR-blockade, coincided with a significant decrease in the expression of mmu-miR-100-5p, mmu-miR-138-5p and mmu-miR-2137. These microRNAs were shown to be expressed in the FDC-like cell line, FL-YB, and specific inhibition of mmu-miR-100-5p significantly enhanced expression of Il6, Ptgs1/2 and Tlr4 mRNA in this cell line. The expression of Il6, Ptgs1/2 and Tlr4 by FDC play important roles in regulating GC size and promoting high-affinity antibody responses, so it is plausible that mmu-miR-100-5p may help to regulate the expression of these genes during GC reactions. PMID:24944008

  18. Cell-surface marker analysis of rat thymic dendritic cells.

    PubMed Central

    Bañuls, M P; Alvarez, A; Ferrero, I; Zapata, A; Ardavin, C

    1993-01-01

    Rat thymic dendritic cells have been isolated by collagenase digestion, separation of the low-density cell fraction by centrifugation on metrizamide, and differential adherence. The resulting dendritic cell preparation had a purity of > 90%, and has been analysed by flow cytometry (FCM) using a large panel of monoclonal antibodies (mAb). Dendritic cells expressed major histocompatibility (MHC) class I and class II molecules, the leucocyte common antigen CD45, the rat leucocyte antigen OX44, the rat macrophage marker ED1, and the adhesion molecules Mac-1, LFA-1 and ICAM-1. They were negative for the T- and B-cell-specific forms of CD45, CD45R and B220, and the B-cell marker OX12. Concerning T-cell marker expression, they were negative for T-cell receptor (TcR) and OX40, but they expressed CD2, CD4 and CD8, and interestingly, 50% of DC were CD5+, 50% expressed the alpha-chain of interleukin-2 receptor (IL-2R), and 80% were positive for the T-cell activation antigen recognized by the mAb OX48. Moreover, 60% of DC expressed high levels of Thy-1, whereas 40% displayed intermediate levels of this T-cell marker. PMID:8102122

  19. Minocycline promotes the generation of dendritic cells with regulatory properties

    PubMed Central

    Im, Sun-A; Kim, Ji-Wan; Lee, Jae-Hee; Park, Young-Jun; Song, Sukgil; Lee, Chong-Kil

    2016-01-01

    Minocycline, which has long been used as a broad-spectrum antibiotic, also exhibits non-antibiotic properties such as inhibition of inflammation and angiogenesis. In this study, we show that minocycline significantly enhances the generation of dendritic cells (DCs) from mouse bone marrow (BM) cells when used together with GM-CSF and IL-4. DCs generated from BM cells in the presence of minocycline (Mino-DCs) demonstrate the characteristics of regulatory DCs. Compared with control DCs, Mino-DCs are resistant to subsequent maturation stimuli, impaired in MHC class II-restricted exogenous Ag presentation, and show decreased cytokine secretion. Mino-DCs also show decreased ability to prime allogeneic-specific T cells, while increasing the expansion of CD4+CD25+Foxp3+ T regulatory cells both in vitro and in vivo. In addition, pretreatment with MOG35-55 peptide-pulsed Mino-DCs ameliorates clinical signs of experimental autoimmune encephalitis induced by MOG peptide injection. Our study identifies minocycline as a new pharmacological agent that could be potentially used to increase the production of regulatory DCs for cell therapy to treat autoimmune disorders, allergy, and transplant rejection. PMID:27463004

  20. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  1. Dendritic cell-based immunotherapy in mesothelioma.

    PubMed

    Cornelissen, Robin; Lievense, Lysanne A; Heuvers, Marlies E; Maat, Alexander P; Hendriks, Rudi W; Hoogsteden, Henk C; Hegmans, Joost P; Aerts, Joachim G

    2012-10-01

    Mesothelioma is a rare thoracic malignancy with a dismal prognosis. Current treatment options are scarce and clinical outcomes are rather disappointing. Due to the immunogenic nature of mesothelioma, several studies have investigated immunotherapeutic strategies to improve the prognosis of patients with mesothelioma. In the last decade, progress in knowledge of the modulation of the immune system to attack the tumor has been remarkable, but the optimal strategy for immunotherapy has yet to be unraveled. Because of their potent antigen-presenting capacity, dendritic cells are acknowledged as a promising agent in immunotherapeutic approaches in a number of malignancies. This review gives an update and provides a future perspective in which immunotherapy may improve the outcome of mesothelioma therapy.

  2. DENDRITIC CELLS: ARE THEY CLINICALLY RELEVANT?

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Roberts, Lee; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    Cancer vaccines have undergone a renaissance due to recent clinical trials showing promising immunological data and some clinical benefit to patients. Current trials exploiting dendritic cells (DCs) as vaccines have shown durable tumor regressions in a fraction of patients. Clinical efficacy of current vaccines is hampered by myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of DC vaccines, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the DC system, including the existence of distinct DC subsets. Critical to the design of better vaccines is the concept of distinct DC subsets and distinct DC activation pathways, all contributing to the generation of unique adaptive immune responses. Such novel DC vaccines will be used as monotherapy in patients with resected disease and in combination with antibodies and/or drugs targeting suppressor pathways and modulation of the tumor environment in patients with metastatic disease. PMID:20693842

  3. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    PubMed

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  4. Revving Up Dendritic Cells while Braking PD-L1 to Jump-Start the Cancer-Immunity Cycle Motor.

    PubMed

    Coffelt, Seth B; de Visser, Karin E

    2016-04-19

    Although it is successful for some, most melanoma patients are refractory to T cell checkpoint inhibition. In this issue of Immunity, Merad and colleagues (2016) describe a dendritic-cell-based strategy to heighten the efficacy of therapeutic anti-PD-L1 and BRAF inhibitors in mouse melanoma models.

  5. Role of dendritic cells in cardiovascular diseases

    PubMed Central

    Zhang, Yi; Zhang, Cuihua

    2010-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that bridge innate and adaptive immune responses. Recent work has elucidated the DC life cycle, including several important stages such as maturation, migration and homeostasis, as well as DC classification and subsets/locations, which provided etiological insights on the role of DCs in disease processes. DCs have a close relationship to endothelial cells and they interact with each other to maintain immunity. DCs are deposited in the atherosclerotic plaque and contribute to the pathogenesis of atherosclerosis. In addition, the necrotic cardiac cells induced by ischemia activate DCs by Toll-like receptors, which initiate innate and adaptive immune responses to renal, hepatic and cardiac ischemia reperfusion injury (IRI). Furthermore, DCs are involved in the acute/chronic rejection of solid organ transplantation and mediate transplant tolerance as well. Advancing our knowledge of the biology of DCs will aid development of new approaches to treat many cardiovascular diseases, including atherosclerosis, cardiac IRI and transplantation. PMID:21179302

  6. [Dendritic cell-based therapeutic cancer vaccines].

    PubMed

    Rizzo, Manglio; Alaniz, Laura; Mazzolini, Guillermo D

    2016-01-01

    In recent years immunotherapy has revolutionized the treatment of patients with advanced cancer. The increased knowledge in the tumor immune-biology has allowed developing rational treatments by manipulation of the immune system with significant clinical impact. This rapid development has significantly changed the prognosis of many tumors without treatment options up to date. Other strategies have explored the use of therapeutic vaccines based on dendritic cells (DC) by inducing antitumor immunity. DC are cells of hematopoietic origin, constitutively expressing molecules capable to present antigens, that are functionally the most potent inducers of the activation and proliferation of antigen specific T lymphocytes. The CD8+ T cells proliferate and acquire cytotoxic capacity after recognizing their specific antigen presented on the surface of DC, although only some types of DC can present antigens internalized from outside the cell to precursors of cytotoxic T lymphocytes (this function is called cross-presentation) requiring translocation mechanisms of complex antigens. The induction of an effective adaptive immune response is considered a good option given its specificity, and prolonged duration of response. The DC, thanks to its particular ability of antigen presentation and lymphocyte stimulation, are able to reverse the poor antitumor immune response experienced by patients with cancer. The DC can be obtained from various sources, using different protocols to generate differentiation and maturation, and are administered by various routes such as subcutaneous, intravenous or intranodal. The wide variety of protocols resulted in heterogeneous clinical responses.

  7. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    PubMed Central

    Sim, Wen Jing; Ahl, Patricia Jennifer; Connolly, John Edward

    2016-01-01

    Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential. PMID:26980944

  8. Transcriptional profiling of dendritic cells matured in different osmolarities.

    PubMed

    Chessa, Federica; Hielscher, Thomas; Mathow, Daniel; Gröne, Hermann-Josef; Popovic, Zoran V

    2016-03-01

    Tissue-specific microenvironments shape the fate of mononuclear phagocytes [1-3]. Interstitial osmolarity is a tissue biophysical parameter which considerably modulates the phenotype and function of dendritic cells [4]. In the present report we provide a detailed description of our experimental workflow and bioinformatic analysis applied to our gene expression dataset (GSE72174), aiming to investigate the influence of different osmolarity conditions on the gene expression signature of bone marrow-derived dendritic cells. We established a cell culture system involving murine bone marrow cells, cultured under different NaCl-induced osmolarity conditions in the presence of the dendritic cell growth factor GM-CSF. Gene expression analysis was applied to mature dendritic cells (day 7) developed in different osmolarities, with and without prior stimulation with the TLR2/4 ligand LPS.

  9. Follicular dendritic cell sarcoma of the abdomen: the imaging findings.

    PubMed

    Kang, Tae Wook; Lee, Soon Jin; Song, Hye Jong

    2010-01-01

    Follicular dendritic cell sarcoma is a rare neoplasm that originates from follicular dendritic cells in lymphoid follicles. This disease usually involves the lymph nodes, and especially the head and neck area. Rarely, extranodal sites may be affected, including tonsil, the oral cavity, liver, spleen and the gastrointestinal tract. We report here on the imaging findings of follicular dendritic cell sarcoma of the abdomen that involved the retroperitoneal lymph nodes and colon. It shows as a well-defined, enhancing homogenous mass with internal necrosis and regional lymphadenopathy.

  10. Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice.

    PubMed

    Di Caro, Valentina; Phillips, Brett; Engman, Carl; Harnaha, Jo; Trucco, Massimo; Giannoukakis, Nick

    2014-01-01

    The objective of the study was to identify immune cell populations, in addition to Foxp3+ T-regulatory cells, that participate in the mechanisms of action of tolerogenic dendritic cells shown to prevent and reverse type 1 diabetes in the Non-Obese Diabetic (NOD) mouse strain. Co-culture experiments using tolerogenic dendritic cells and B-cells from NOD as well as transgenic interleukin-10 promoter-reporter mice along with transfer of tolerogenic dendritic cells and CD19+ B-cells into NOD and transgenic mice, showed that these dendritic cells increased the frequency and numbers of interleukin-10-expressing B-cells in vitro and in vivo. The expansion of these cells was a consequence of both the proliferation of pre-existing interleukin-10-expressing B-lymphocytes and the conversion of CD19+ B-lymphcytes into interleukin-10-expressing cells. The tolerogenic dendritic cells did not affect the suppressive activity of these B-cells. Furthermore, we discovered that the suppressive murine B-lymphocytes expressed receptors for retinoic acid which is produced by the tolerogenic dendritic cells. These data assist in identifying the nature of the B-cell population increased in response to the tolerogenic dendritic cells in a clinical trial and also validate very recent findings demonstrating a mechanistic link between human tolerogenic dendritic cells and immunosuppressive regulatory B-cells.

  11. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas

    PubMed Central

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193

  12. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas.

    PubMed

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-08-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.

  13. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system.

    PubMed

    Takenaka, Maisa C; Guereschi, Marcia G; Basso, Alexandre S

    2017-02-01

    Dendritic cells are of paramount importance bridging innate and adaptive immune responses. Depending on the context, after sensing environmental antigens, commensal microorganisms, pathogenic agents, or antigens from the diet, dendritic cells may drive either different effector adaptive immune responses or tolerance, avoiding tissue damage. Although the plasticity of the immune response and the capacity to regulate itself are considered essential to orchestrate appropriate physiological responses, it is known that the nervous system plays a relevant role controlling immune cell function. Dendritic cells present in the skin, the intestine, and lymphoid organs, besides expressing adrenergic receptors, can be reached by neurotransmitters released by sympathetic fibers innervating these tissues. These review focus on how neurotransmitters from the sympathetic nervous system can modulate dendritic cell function and how this may impact the immune response and immune-mediated disorders.

  14. CXCR4 engagement promotes dendritic cell survival and maturation

    SciTech Connect

    Kabashima, Kenji Sugita, Kazunari; Shiraishi, Noriko; Tamamura, Hirokazu; Fujii, Nobutaka; Tokura, Yoshiki

    2007-10-05

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.

  15. Systemic IL-12 Administration Alters Hepatic Dendritic Cell Stimulation Capabilities

    PubMed Central

    Chan, Tim; Back, Timothy C.; Subleski, Jeffrey J.; Weiss, Jonathan M.; Ortaldo, John R.; Wiltrout, Robert H.

    2012-01-01

    The liver is an immunologically unique organ containing tolerogenic dendritic cells (DC) that maintain an immunosuppressive microenvironment. Although systemic IL-12 administration can improve responses to tumors, the effects of IL-12-based treatments on DC, in particular hepatic DC, remain incompletely understood. In this study, we demonstrate systemic IL-12 administration induces a 2–3 fold increase in conventional, but not plasmacytoid, DC subsets in the liver. Following IL-12 administration, hepatic DC became more phenotypically and functionally mature, resembling the function of splenic DC, but differed as compared to their splenic counterparts in the production of IL-12 following co-stimulation with toll-like receptor (TLR) agonists. Hepatic DCs from IL-12 treated mice acquired enhanced T cell proliferative capabilities similar to levels observed using splenic DCs. Furthermore, IL-12 administration preferentially increased hepatic T cell activation and IFNγ expression in the RENCA mouse model of renal cell carcinoma. Collectively, the data shows systemic IL-12 administration enables hepatic DCs to overcome at least some aspects of the inherently suppressive milieu of the hepatic environment that could have important implications for the design of IL-12-based immunotherapeutic strategies targeting hepatic malignancies and infections. PMID:22428016

  16. Dendritic cells--why can they help and hurt us.

    PubMed

    Schäkel, Knut

    2009-03-01

    Dendritic cells (DCs) show a Janus-like functional behavior. They help us by their orchestration of numerous immune responses to defend our body against invading pathogenic micro-organisms and also induce regulatory T cells to inhibit immune reactions against autoantigens as well as diverse harmless environmental antigens. However, DCs can also be of harm to us when misguided by their microenvironment as in allergic and autoimmune diseases or when DCs are targeted and exploited by microbes and cancer cells to evade the immune defense. This huge and diverse functional repertoire of DCs requires complex decision-making processes and the integration of multiple stimulatory and inhibitory signals. Although a given DC type has an extensive functionally plasticity, DCs are heterogeneous and individual DC subtypes are differentially distributed in tissues, express distinct sets of pattern recognition receptors and differ in their capacity to program naive T cells. With the help of transgenic mouse models and selective ablation of individual DC subtypes, we are just at the beginning of understanding the DC system in its complexity. Obtaining a more detailed knowledge of the DC system in mice and men holds strong promise for the successful induction of immunity and tolerance in therapeutic trials. This review presents the recent advances in the understanding of DC biology and discusses why and how DC can help and hurt us.

  17. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  18. [Dendritic cells and gliomas: a hope in immunotherapy?].

    PubMed

    Jouanneau, E; Poujol, D; Caux, C; Belin, M-F; Blay, J-Y; Puisieux, I

    2006-12-01

    Immunotherapy has been explored for several decades to try to improve the prognosis of gliomas, but until recently no therapeutic benefit has been achieved. The discovery of dendritic cells, the most potent professional antigen presenting cells to initiate specific immune response, and the possibility of producing them ex vivo gave rise to new protocols of active immunotherapy. In oncology, promising experimental and clinical therapeutic results were obtained using these dendritic cells loaded with tumor antigen. Patients bearing gliomas have deficit antigen presentation making this approach rational. In several experimental glioma models, independent research teams have showed specific antitumor responses using these dendritic cells. Phase I/II clinical trials have demonstrated the feasibility and the tolerance of this immunotherapeutic approach. In neuro-oncology, the efficiency of such an approach remains to be established, similarly in oncology where positive phase III studies are missing. Nevertheless, dendritic cells comprise a complex network which is only partially understood and capable of generating either immunotolerance or immune response. Numerous parameters remain to be explored before any definitive conclusion about their utility as an anticancer weapon can be drawn. It seems however logical that immunotherapy with dendritic cells could prevent or delay tumor recurrence in patients with minor active disease. A review on glioma and dendritic cells is presented.

  19. Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells.

    PubMed

    Rosas, Marcela; Osorio, Fabiola; Robinson, Matthew J; Davies, Luke C; Dierkes, Nicola; Jones, Simon A; Reis e Sousa, Caetano; Taylor, Philip R

    2011-02-01

    We have examined the potential to generate bona fide macrophages (MØ) from conditionally immortalised murine bone marrow precursors. MØ can be derived from Hoxb8 conditionally immortalised macrophage precursor cell lines (MØP) using either M-CSF or GM-CSF. When differentiated in GM-CSF (GM-MØP) the resultant cells resemble GM-CSF bone marrow-derived dendritic cells (BMDC) in morphological phenotype, antigen phenotype and functional responses to microbial stimuli. In spite of this high similarity between the two cell types and the ability of GM-MØP to effectively present antigen to a T-cell hybridoma, these cells are comparatively poor at priming the expansion of IFN-γ responses from naïve CD4(+) T cells. The generation of MØP from transgenic or genetically aberrant mice provides an excellent opportunity to study the inflammatory role of GM-MØP, and reduces the need for mouse colonies in many studies. Hence differentiation of conditionally immortalised MØPs in GM-CSF represents a unique in vitro model of inflammatory monocyte-like cells, with important differences from bone marrow-derived dendritic cells, which will facilitate functional studies relating to the many 'sub-phenotypes' of inflammatory monocytes.

  20. Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells

    PubMed Central

    Balan, Sreekumar; Ollion, Vincent; Colletti, Nicholas; Chelbi, Rabie; Montanana-Sanchis, Frédéric; Liu, Hong; Vu Manh, Thien-Phong; Sanchez, Cindy; Savoret, Juliette; Perrot, Ivan; Doffin, Anne-Claire; Fossum, Even; Bechlian, Didier; Chabannon, Christian; Bogen, Bjarne; Asselin-Paturel, Carine; Shaw, Michael; Soos, Timothy; Caux, Christophe; Valladeau-Guilemond, Jenny

    2014-01-01

    Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1+ DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1+ human DC. Assessment of the immunoactivation potential of XCR1+ human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1+ and XCR1− human DC in CD34+ progenitor cultures (CD34-DC). Gene expression profiling, phenotypic characterization, and functional studies demonstrated that XCR1− CD34-DC are similar to canonical MoDC, whereas XCR1+ CD34-DC resemble XCR1+ blood DC (bDC). XCR1+ DC were strongly activated by polyinosinic-polycytidylic acid but not LPS, and conversely for MoDC. XCR1+ DC and MoDC expressed strikingly different patterns of molecules involved in inflammation and in cross-talk with NK or T cells. XCR1+ CD34-DC but not MoDC efficiently cross-presented a cell-associated Ag upon stimulation by polyinosinic-polycytidylic acid or R848, likewise to what was reported for XCR1+ bDC. Hence, it is feasible to generate high numbers of bona fide XCR1+ human DC in vitro as a model to decipher the functions of XCR1+ bDC and as a potential source of XCR1+ DC for clinical use. PMID:25009205

  1. Dendritic Cells and Macrophages: Sentinels in the Kidney

    PubMed Central

    Weisheit, Christina K.; Engel, Daniel R.

    2015-01-01

    The mononuclear phagocytes (dendritic cells and macrophages) are closely related immune cells with central roles in anti-infectious defense and maintenance of organ integrity. The canonical function of dendritic cells is the activation of T cells, whereas macrophages remove apoptotic cells and microbes by phagocytosis. In the kidney, these cell types form an intricate system of mononuclear phagocytes that surveys against injury and infection and contributes to organ homeostasis and tissue repair but may also promote progression of CKD. This review summarizes the general functions and classification of dendritic cells and macrophages in the immune system and recapitulates why overlapping definitions and historically separate research have created controversy about their tasks. Their roles in acute kidney disease, CKD, and renal transplantation are described, and therapeutic strategy to modify these cells for therapeutic purposes is discussed. PMID:25568218

  2. New generation of dendritic cell vaccines.

    PubMed

    Radford, Kristen J; Caminschi, Irina

    2013-02-01

    Dendritic cells (DC) play a pivotal role in the induction and regulation of immune responses, including the induction of cytotoxic T lymphocytes (CTL) responses. These are essential for the eradication of cancers and pathogens including HIV and malaria, for which there are currently no effective vaccines. New developments in our understanding of DC biology have identified the key DC subset responsible for CTL induction, which is now an attractive candidate to target for vaccination. These DC are characterized by expression of novel markers Clec9A and XCR1, and a specialized capacity to cross-present antigen (Ag) from tumors and pathogens that do not directly infect DC. New generation DC vaccines that specifically target the cross-presenting DC in vivo have already demonstrated potential in preclinical animal models but the challenge remains to translate these findings into clinically efficacous vaccines in man. This has been greatly facilitated by the recent identification of the equivalent Clec9A(+) XCR1(+) cross-presenting DC in human lymphoid tissues and peripheral tissues that are key sites for vaccination administration. These findings combined with further studies on DC subset biology have important implications for the design of new CTL-mediated vaccines.

  3. The effect of dendritic cells on the retinal cell transplantation

    SciTech Connect

    Oishi, Akio; Nagai, Takayuki; Mandai, Michiko Takahashi, Masayo; Yoshimura, Nagahisa

    2007-11-16

    The potential of bone marrow cell-derived immature dendritic cells (myeloid iDCs) in modulating the efficacy of retinal cell transplantation therapy was investigated. (1) In vitro, myeloid iDCs but not BMCs enhanced the survival and proliferation of embryonic retinal cells, and the expression of various neurotrophic factors by myeloid iDCs was confirmed with RT-PCR. (2) In subretinal transplantation, neonatal retinal cells co-transplanted with myeloid iDCs showed higher survival rate compared to those transplanted without myeloid iDCs. (3) CD8 T-cells reactive against donor retinal cells were significantly increased in the mice with transplantation of retinal cells alone. These results suggested the beneficial effects of the use of myeloid iDCs in retinal cell transplantation therapy.

  4. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice.

    PubMed

    König, Simone; Nitzki, Frauke; Uhmann, Anja; Dittmann, Kai; Theiss-Suennemann, Jennifer; Herrmann, Markus; Reichardt, Holger M; Schwendener, Reto; Pukrop, Tobias; Schulz-Schaeffer, Walter; Hahn, Heidi

    2014-01-01

    Basal cell carcinoma (BCC) belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch). Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC) of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC.

  5. Dendrites of rod bipolar cells sprout in normal aging retina.

    PubMed

    Liets, Lauren C; Eliasieh, Kasra; van der List, Deborah A; Chalupa, Leo M

    2006-08-08

    The aging nervous system is known to manifest a variety of degenerative and regressive events. Here we report the unexpected growth of dendrites in the retinas of normal old mice. The dendrites of many rod bipolar cells in aging mice were observed to extend well beyond their normal strata within the outer plexiform layer to innervate the outer nuclear layer where they appeared to form contacts with the spherules of rod photoreceptors. Such dendritic sprouting increased with age and was evident at all retinal eccentricities. These results provide evidence of retinal plasticity associated with normal aging.

  6. Plumbagin suppresses dendritic cell functions and alleviates experimental autoimmune encephalomyelitis.

    PubMed

    Zhang, Kai; Ge, Zhenzhen; Da, Yurong; Wang, Dong; Liu, Ying; Xue, Zhenyi; Li, Yan; Li, Wen; Zhang, Lijuan; Wang, Huafeng; Zhang, Huan; Peng, Meiyu; Hao, Junwei; Yao, Zhi; Zhang, Rongxin

    2014-08-15

    Plumbagin (PL, 5-hydroxy-2-methyl-1,4-naphthoquinone) is a herbal compound derived from medicinal plants of the Droseraceae, Plumbaginaceae, Dioncophyllaceae, and Ancistrocladaceae families. Reports have shown that PL exerts immunomodulatory activity and may be a novel drug candidate for immune-related disease therapy. However, its effects on dendritic cells (DCs), the most potent antigen-presenting cells (APCs), remain unclear. In this study, we demonstrate that PL inhibits the differentiation, maturation, and function of human monocyte-derived DCs. PL can also restrict the expression of Th1- and Th17-polarizing cytokines in mDC. In addition, PL suppresses DCs both in vitro and in vivo, as demonstrated by its effects on the mouse DC line DC2.4 and mice with experimental autoimmune encephalomyelitis (EAE), respectively. Notably, PL ameliorated the clinical symptoms of EAE, including central nervous system (CNS) inflammation and demyelination. Our results demonstrate the immune suppressive and anti-inflammatory properties of PL via its effects on DCs and suggest that PL could be a potential treatment for DC-related autoimmune and inflammatory diseases.

  7. T lymphocytes and dendritic cells are activated by the deletion of peroxiredoxin II (Prx II) gene.

    PubMed

    Moon, Eun-Yi; Noh, Young-Wook; Han, Ying-Hao; Kim, Sun-Uk; Kim, Jin-Man; Yu, Dae-Yeul; Lim, Jong-Seok

    2006-02-15

    Peroxiredoxin II (Prx II) is a member of antioxidant enzyme family and it plays a protective role against oxidative damage. Constitutive production of endogenous reactive oxygen species was detected in spleen and bone marrow cells lacking Prx II. Here, we investigated the role of Prx II in immune responses. The total number of splenocytes (especially, the population of S-phase cells and CD3(+) T cells) was significantly higher in Prx II(-/-) mice than in wild type. Number of peripheral blood mononuclear cells (PBMCs) in Prx II(-/-) mice was also higher than wild type. Differentiation of Prx II(-/-) mouse bone marrow cells into CD11c-positive dendritic cells was greater than that of wild type. Transplantation of Prx II(-/-) bone marrow cells into wild type mice increased PBMCs in blood and bone marrow-derived dendritic cells. Prx II deletion enhances concanavalin A (ConA)-induced splenocyte proliferation and mixed lymphocyte reaction (MLR) activity of bone marrow-derived CD11c-positive dendritic cells to stimulate recipient splenocytes. Collectively, these data suggest that Prx II inhibits the immune cell responsiveness, which may be regulated by scavenging the low amount of reactive oxygen species (ROS).

  8. Insights into dendritic cell function using advanced imaging modalities.

    PubMed

    Vyas, Jatin M

    2012-11-15

    The application of advanced imaging techniques to fundamental questions in immunology has provided insight into dendritic cell function and has challenged dogma created using static imaging of lymphoid tissue. The history of dendritic cell biology has a storied past and is tightly linked to imaging. The development of imaging techniques that emphasize live cell imaging in situ has provided not only breath-taking movies, but also novel insights into the importance of spatiotemporal relationships between antigen presenting cells and T cells. This review serves to provide a primer on two-photon microscopy, TIRF microscopy, spinning disk confocal microscopy and optical trapping and provides selective examples of insights gained from these tools on dendritic cell biology.

  9. Vaccination with Dendritic Cell Myeloma Fusions in Conjuction with Stem Cell Transplantation and PD-1 Blockade

    DTIC Science & Technology

    2015-07-01

    Award Number: W81XWH-09-1-0296 TITLE: Vaccination with Dendritic Cell Myeloma Fusions in Conjuction with Stem Cell Transplantation and PD-1...Addendum 3. DATES COVERED (From - To) 1May2014 - 30Apr2015 4. TITLE AND SUBTITLE Vaccination with Dendritic Cell Myeloma Fusions in Conjuction with Stem...anti-PD1 antibody (CT-011) alone (Cohort 1) and in conjunction with a dendritic cell/myeloma fusion cell vaccine (Cohort 2) following autologous

  10. How Follicular Dendritic Cells Shape the B-Cell Antigenome

    PubMed Central

    Kranich, Jan; Krautler, Nike Julia

    2016-01-01

    Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs. PMID:27446069

  11. Drinking a lot is good for dendritic cells

    PubMed Central

    Norbury, Christopher C

    2006-01-01

    Macropinocytosis is the actin-dependent formation of large vesicles, which allow the internalization of large quantities of fluid-phase solute. In the majority of cells examined, an exogenous stimulus is required to induce the initiation of this endocytic pathway. However, dendritic cells are thought to constitutively macropinocytose large quantities of exogenous solute as part of their sentinel function. In this review we discuss the evidence that dendritic cells macropinocytose exogenous solute and subsequently present antigenic peptides derived from internalized material to T cells. In addition, we put these data into the context of immune surveillance in vivo. PMID:16556257

  12. Macrophages as APC and the dendritic cell myth.

    PubMed

    Hume, David A

    2008-11-01

    Dendritic cells have been considered an immune cell type that is specialized for the presentation of Ag to naive T cells. Considerable effort has been applied to separate their lineage, pathways of differentiation, and effectiveness in Ag presentation from those of macrophages. This review summarizes evidence that dendritic cells are a part of the mononuclear phagocyte system and are derived from a common precursor, responsive to the same growth factors (including CSF-1), express the same surface markers (including CD11c), and have no unique adaptation for Ag presentation that is not shared by other macrophages.

  13. Sodium action potentials in the dendrites of cerebellar Purkinje cells.

    PubMed

    Regehr, W G; Konnerth, A; Armstrong, C M

    1992-06-15

    We report here that in cerebellar Purkinje cells from which the axon has been removed, positive voltage steps applied to the voltage-clamped soma produce spikes of active current. The spikes are inward, are all-or-none, have a duration of approximately 1 ms, and are reversibly eliminated by tetrodotoxin, a Na channel poison. From cell to cell, the amplitude of the spikes ranges from 4 to 20 nA. Spike latency decreases as the depolarizing step is made larger. These spikes clearly arise at a site where the voltage is not controlled, remote from the soma. From these facts we conclude that Purkinje cell dendrites contain a sufficient density of Na channels to generate action potentials. Activation by either parallel fiber or climbing fiber synapses produces similar spikes, suggesting that normal input elicits Na action potentials in the dendrites. These findings greatly alter current views of how dendrites in these cells respond to synaptic input.

  14. Phenotypic and functional profiling of mouse intestinal antigen presenting cells

    PubMed Central

    Harusato, Akihito; Flannigan, Kyle L.; Geem, Duke; Denning, Timothy L.

    2015-01-01

    The microbiota that populates the mammalian intestine consists of hundreds of trillions of bacteria that are separated from underlying immune cells by a single layer of epithelial cells. The intestinal immune system effectively tolerates components of the microbiota that provide benefit to the host while remaining poised to eliminate those that are harmful. Antigen presenting cells, especially macrophages and dendritic cells, play important roles in maintaining intestinal homeostasis via their ability to orchestrate appropriate responses to the microbiota. Paramount to elucidating intestinal macrophage- and dendritic cell-mediated functions is the ability to effectively isolate and identify these cells from a complex cellular environment. In this review, we summarize methodology for the isolation and phenotypic characterization of macrophages and DCs from the mouse intestine and discuss how this may be useful for gaining insight into the mechanisms by which mucosal immune tolerance is maintained. PMID:25891794

  15. Up-regulation of HP1γ expression during neuronal maturation promotes axonal and dendritic development in mouse embryonic neocortex.

    PubMed

    Oshiro, Hiroaki; Hirabayashi, Yusuke; Furuta, Yasuhide; Okabe, Shigeo; Gotoh, Yukiko

    2015-02-01

    Immature neurons undergo morphological and physiological changes including axonal and dendritic development to establish neuronal networks. As the transcriptional status changes at a large number of genes during neuronal maturation, global changes in chromatin modifiers may take place in this process. We now show that the amount of heterochromatin protein 1γ (HP1γ) increases during neuronal maturation in the mouse neocortex. Knockdown of HP1γ suppressed axonal and dendritic development in mouse embryonic neocortical neurons in culture, and either knockdown or knockout of HP1γ impaired the projection of callosal axons of superficial layer neurons to the contralateral hemisphere in the developing neocortex. Conversely, forced expression of HP1γ facilitated axonal and dendritic development, suggesting that the increase of HP1γ is a rate limiting step in neuronal maturation. These results together show an important role for HP1γ in promoting axonal and dendritic development in maturing neurons.

  16. The Mucosal Adjuvant Cyclic di-AMP Exerts Immune Stimulatory Effects on Dendritic Cells and Macrophages

    PubMed Central

    Libanova, Rimma; Lienenklaus, Stefan; Weiss, Siegfried; Guzmán, Carlos A.

    2014-01-01

    The cyclic di-nucleotide bis-(3′,5′)-cyclic dimeric adenosine monophosphate (c-di-AMP) is a candidate mucosal adjuvant with proven efficacy in preclinical models. It was shown to promote specific humoral and cellular immune responses following mucosal administration. To date, there is only fragmentary knowledge on the cellular and molecular mode of action of c-di-AMP. Here, we report on the identification of dendritic cells and macrophages as target cells of c-di-AMP. We show that c-di-AMP induces the cell surface up-regulation of T cell co-stimulatory molecules as well as the production of interferon-β. Those responses were characterized by in vitro experiments with murine and human immune cells and in vivo studies in mice. Analyses of dendritic cell subsets revealed conventional dendritic cells as principal responders to stimulation by c-di-AMP. We discuss the impact of the reported antigen presenting cell activation on the previously observed adjuvant effects of c-di-AMP in mouse immunization studies. PMID:24755640

  17. Effect of aging and oral tolerance on dendritic cell function.

    PubMed

    Simioni, P U; Fernandes, L G R; Gabriel, D L; Tamashiro, W M S C

    2010-01-01

    Oral tolerance can be induced in some mouse strains by gavage or spontaneous ingestion of dietary antigens. In the present study, we determined the influence of aging and oral tolerance on the secretion of co-stimulatory molecules by dendritic cells (DC), and on the ability of DC to induce proliferation and cytokine secretion by naive T cells from BALB/c and OVA transgenic (DO11.10) mice. We observed that oral tolerance could be induced in BALB/c mice (N = 5 in each group) of all ages (8, 20, 40, 60, and 80 weeks old), although a decline in specific antibody levels was observed in the sera of both tolerized and immunized mice with advancing age (40 to 80 weeks old). DC obtained from young, adult and middle-aged (8, 20, and 40 weeks old) tolerized mice were less efficient (65, 17 and 20%, respectively) than DC from immunized mice (P < 0.05) in inducing antigen-specific proliferation of naive T cells from both BALB/c and DO11.10 young mice, or in stimulating IFN-g, IL-4 and IL-10 production. However, TGF-beta levels were significantly elevated in co-cultures carried out with DC from tolerant mice (P < 0.05). DC from both immunized and tolerized old and very old (60 and 80 weeks old) mice were equally ineffective in inducing T cell proliferation and cytokine production (P < 0.05). A marked reduction in CD86+ marker expression was observed in DC isolated from both old and tolerized mice (75 and 50%, respectively). The results indicate that the aging process does not interfere with the establishment of oral tolerance in BALB/c mice, but reduces DC functions, probably due to the decline of the expression of the CD86 surface marker.

  18. Dendritic cells: a family portrait at mid-gestation

    PubMed Central

    Bizargity, Peyman; Bonney, Elizabeth A

    2009-01-01

    Recent advances in our understanding of dendritic cells (DCs) and their role in tolerance and immunity has fuelled study of their normal development and function within the reproductive tract. The common hypothesis that pregnancy is a state of immune suppression or deviation now includes the idea that alterations in DC phenotype and function are critical for maternal tolerance. We chose to study DCs in the uterus and lymphoid tissue in non-pregnant and pregnant mice at mid-gestation to understand what DC-related factors may be involved in premature birth. We used a mouse model where the mother’s immune system has been shown to respond to the male antigen H-Y. Observed differences among DCs in the uterus, uterine draining nodes and spleen, even in non-pregnant mice, suggest the existence of a specialized uterus-specific subset of DCs. We further found that, amongst CD45+ CD11c+ cells in the uterus and peripheral lymphoid tissue of pregnant mice, expression of major histocompatibility complex class II (MHC II) and costimulatory molecules (i.e. CD80) was similar to that in the non-pregnant state. Moreover, there was no pregnancy-related decrease in the proportion of CD11c+ cells in the uterus or in the uterine node that were CD11b− CD8+. Pregnancy increased the CD11b+ subsets and the expression of chemokine (C-C motif) ligand 6 (CCL6) in DCs of the uterine draining nodes. Finally, DC subsets showed variable expression, with respect to tissue and pregnancy, of the cytokine interleukin-15, which is important in lymphoid cell homeostasis. For DCs, pregnancy is not a state of immune paralysis, but of dynamic developmental change. PMID:18778288

  19. Toll-like receptor-4 agonist in post-haemorrhage pneumonia: role of dendritic and natural killer cells.

    PubMed

    Roquilly, Antoine; Broquet, Alexis; Jacqueline, Cedric; Gautreau, Laetitia; Segain, Jean Pierre; de Coppet, Pierre; Caillon, Jocelyne; Altare, Frédéric; Josien, Regis; Asehnoune, Karim

    2013-11-01

    Haemorrhage-induced immunosuppression has been linked to nosocomial infections. We assessed the impact of monophosphoryl lipid A, a Toll/interleukin-1 receptor-domain-containing adaptor protein inducing interferon-biased Toll-like receptor-4 agonist currently used as a vaccine adjuvant in humans, on post-haemorrhage susceptibility to infection. We used a mouse model of post-haemorrhage pneumonia induced by methicillin-susceptible Staphylococcus aureus. Monophosphoryl lipid A was administered intravenously after haemorrhage and before pneumonia onset. Haemorrhage altered survival rate, increased lung damage (neutrophil accumulation, oedema and cytokine release) and altered the functions of dendritic and natural killer cells. Here, we show that monophosphoryl lipid A decreased systemic dissemination of S. aureus and dampened inflammatory lung lesions. Monophosphoryl lipid A partially restored the capacity for antigen presentation and the transcriptional activity in dendritic cells. Monophosphoryl lipid A did not restore the interferon-γ mRNA but prevented interleukin-10 mRNA overexpression in natural killer cells compared with untreated mice. Ex vivo monophosphoryl lipid A-stimulated dendritic cells or natural killer cells harvested from haemorrhaged animals were adoptively transferred into mice undergoing post-haemorrhage pneumonia. Stimulated dendritic cells (but not stimulated natural killer cells) improved the survival rate compared with mice left untreated. In vivo depletion of natural killer cells decreased survival rate of monophosphoryl lipid A-treated mice. Dendritic and natural killer cells are critically involved in the beneficial effects of monophosphoryl lipid A within post-haemorrhage pneumonia.

  20. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection

    PubMed Central

    Zuniga, Elina I; McGavern, Dorian B; Pruneda-Paz, Jose L; Teng, Chao; Oldstone, Michael B A

    2017-01-01

    Two subsets of dendritic cell (DCs), plasmacytoid (p) and myeloid (m) DCs, have been described in humans and mice. These subsets are known to have divergent roles during an immune response, but their developmental course is unclear. Here we report that virus infection induces bone marrow pDCs to differentiate into mDCs, thereby undergoing profound phenotypic and functional changes including the acquisition of enhanced antigen-presenting capacity and the ability to recognize different microbial structures through Toll-like receptor 4. The conversion of pDCs into mDCs is also induced by the injection of double-stranded RNA and requires type I interferons. Our results establish a precursor-product developmental relationship between these two DC subsets and highlight unexpected plasticity of bone marrow pDCs. PMID:15531885

  1. Morphological properties of mouse retinal ganglion cells during postnatal development.

    PubMed

    Coombs, Julie L; Van Der List, Deborah; Chalupa, Leo M

    2007-08-20

    Quantitative methods were used to assess dendritic stratification and other structural features of developing mouse retinal ganglion cells from birth to after eye opening. Cells were labeled by transgenic expression of yellow fluorescent protein, DiOlistics or diffusion of DiI, and subsequently imaged in three dimensions on a confocal microscope followed by morphometric analysis of 13 different structural properties. At postnatal day 1 (P1), the dendrites of all cells ramified across the vertical extent of the inner plexiform layer (IPL). By P3/4, dendrites were largely confined to different strata of the IPL. The stratification of dendrites initially reflected a retraction of widely ramifying dendritic processes, but for the most part this was due to the subsequent vertical expansion of the IPL. By P8, distinct cell classes could be recognized, although these had not yet attained adult-like properties. The structural features differentiating cell classes were found to follow three different developmental trends. The mean values of one set of morphological parameters were essentially unchanged throughout postnatal development; another set of measures showed a rapid rise with age to adult values; and a third set of measures first increased with age and later decreased, with the regressive events initiated around the time of eye opening. These findings suggest that the morphological development of retinal ganglion cells is regulated by diverse factors operating during different but overlapping time periods. Our results also suggest that dendritic stratification may be more highly specified in the developing mammalian retina than has been previously realized.

  2. Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of Down syndrome.

    PubMed

    Haas, Matilda A; Bell, Donald; Slender, Amy; Lana-Elola, Eva; Watson-Scales, Sheona; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Guillemot, François

    2013-01-01

    Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines--the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.

  3. Alterations to Dendritic Spine Morphology, but Not Dendrite Patterning, of Cortical Projection Neurons in Tc1 and Ts1Rhr Mouse Models of Down Syndrome

    PubMed Central

    Haas, Matilda A.; Bell, Donald; Slender, Amy; Lana-Elola, Eva; Watson-Scales, Sheona; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Guillemot, François

    2013-01-01

    Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects. PMID:24205261

  4. Angioimmunoblastic T-Cell Lymphoma: A Questionable Association with Follicular Dendritic Cell Sarcoma

    PubMed Central

    Zekzer, Miriam; Nalbandyan, Karen

    2017-01-01

    An elderly woman presented with generalized lymphadenopathy, several systemic symptoms, and splenomegaly. An inguinal lymph node excision revealed a compound picture. One aspect of the lymph node morphology, including cells with follicular T-helper cell phenotype, was most consistent with angioimmunoblastic T-cell lymphoma. The other component, revealing spindle cells forming whorls with immunostaining for CD21, CD23, and fascin, might be an integral part of this T-cell lymphoma. However, due to the often massive involvement of the nodal tissue by these follicular dendritic cells, these areas were questionably suggestive of involvement by follicular dendritic cell sarcoma. We raise herein the issue of the borderline area between advanced follicular dendritic cell expansion in angioimmunoblastic T-cell lymphoma and a massive follicular dendritic cell proliferation consistent with follicular dendritic cells sarcoma, in the absence of a genomic analysis. PMID:28197348

  5. Cell-Autonomous Regulation of Dendritic Spine Density by PirB.

    PubMed

    Vidal, George S; Djurisic, Maja; Brown, Kiana; Sapp, Richard W; Shatz, Carla J

    2016-01-01

    Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirB(fl/fl)), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre(-) neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life.

  6. Cell-Autonomous Regulation of Dendritic Spine Density by PirB

    PubMed Central

    2016-01-01

    Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirBfl/fl), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre– neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life. PMID:27752542

  7. Development of Retinal Amacrine Cells and Their Dendritic Stratification

    PubMed Central

    Balasubramanian, Revathi

    2014-01-01

    Themammalian retina containsmultiple neurons, each of which contributes differentially to visual processing. Of these retinal neurons, amacrine cells have recently come to prime light since they facilitate majority of visual processing that takes place in the retina. Amacrine cells are also the most diverse group of neurons in the retina, classified majorly based on the neurotransmitter type they express and morphology of their dendritic arbors. Currently, little is known about the molecular basis contributing to this diversity during development. Amacrine cells also contribute to most of the synapses in the inner plexiform layer and mediate visual information input from bipolar cells onto retinal ganglion cells. In this review, we will describe the current understanding of amacrine cell and cell subtype development. Furthermore, we will address the molecular basis of retinal lamination at the inner plexiform layer. Overall, our review will provide a developmental perspective of amacrine cell subtype classification and their dendritic stratification. PMID:25170430

  8. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  9. TLR5 mediates CD172α(+) intestinal lamina propria dendritic cell induction of Th17 cells.

    PubMed

    Liu, Han; Chen, Feidi; Wu, Wei; Cao, Anthony T; Xue, Xiaochang; Yao, Suxia; Evans-Marin, Heather L; Li, Yan-Qing; Cong, Yingzi

    2016-02-24

    Multiple mechanisms exist in regulation of host responses to massive challenges from microbiota to maintain immune homeostasis in the intestines. Among these is the enriched Th17 cells in the intestines, which regulates intestinal homeostasis through induction of antimicrobial peptides and secretory IgA among others. However, the means by which Th17 cells develop in response to microbiota is still not completely understood. Although both TLR5 and CD172α(+) lamina propria dendritic cells (LPDC) have been shown to promote Th17 cell development, it is still unclear whether TLR5 mediates the CD172α(+)LPDC induction of Th17 cells. By using a microbiota antigen-specific T cell reporter mouse system, we demonstrated that microbiota antigen-specific T cells developed into Th17 cells in the intestinal LP, but not in the spleen when transferred into TCRβxδ(-/-) mice. LPDCs expressed high levels of TLR5, and most CD172α(+)LPDCs also co-expressed TLR5. LPDCs produced high levels of IL-23, IL-6 and TGFβ when stimulated with commensal flagellin and promoted Th17 cell development when cultured with full-length CBir1 flagellin but not CBir1 peptide. Wild-type CD172α(+), but not CD172α(-), LPDCs induced Th17 cells, whereas TLR5-deficient LPDC did not induce Th17 cells. Our data thereby demonstrated that TLR5 mediates CD172α(+)LPDC induction of Th17 cells in the intestines.

  10. Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia

    PubMed Central

    Rosendahl, Alva; Bergmann, Simone; Hammerschmidt, Sven; Goldmann, Oliver; Medina, Eva

    2013-01-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs) in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DCs-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DCs-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9) in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection. PMID:23802100

  11. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma

    PubMed Central

    Winston, Charisse N.; Noël, Anastasia; Neustadtl, Aidan; Parsadanian, Maia; Barton, David J.; Chellappa, Deepa; Wilkins, Tiffany E.; Alikhani, Andrew D.; Zapple, David N.; Villapol, Sonia; Planel, Emmanuel; Burns, Mark P.

    2017-01-01

    Mild traumatic brain injury (mTBI) is an emerging risk for chronic behavioral, cognitive, and neurodegenerative conditions. Athletes absorb several hundred mTBIs each year; however, rodent models of repeat mTBI (rmTBI) are often limited to impacts in the single digits. Herein, we describe the effects of 30 rmTBIs, examining structural and pathological changes in mice up to 365 days after injury. We found that single mTBI causes a brief loss of consciousness and a transient reduction in dendritic spines, reflecting a loss of excitatory synapses. Single mTBI does not cause axonal injury, neuroinflammation, or cell death in the gray or white matter. Thirty rmTBIs with a 1-day interval between each mTBI do not cause dendritic spine loss; however, when the interinjury interval is increased to 7 days, dendritic spine loss is reinstated. Thirty rmTBIs cause white matter pathology characterized by positive silver and Fluoro-Jade B staining, and microglial proliferation and activation. This pathology continues to develop through 60 days, and is still apparent at 365 days, after injury. However, rmTBIs did not increase β-amyloid levels or tau phosphorylation in the 3xTg-AD mouse model of Alzheimer disease. Our data reveal that single mTBI causes a transient loss of synapses, but that rmTBIs habituate to repetitive injury within a short time period. rmTBI causes the development of progressive white matter pathology that continues for months after the final impact. PMID:26857506

  12. GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus

    PubMed Central

    Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María

    2017-01-01

    The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased. PMID:28344548

  13. Exopolysaccharide Produced by Lactobacillus Plantarum Induces Maturation of Dendritic Cells in BALB/c Mice.

    PubMed

    Tang, Yanjun; Dong, Wei; Wan, Keyu; Zhang, Ligang; Li, Chun; Zhang, Lili; Liu, Ning

    2015-01-01

    Lactobacillus plantarum (L. plantarum) exopolysaccharide (EPS) is an important bioactive component in fermented functional foods. However, there is a lack of data concerning the effects of L. plantarum EPS on maturation of mouse dendritic cells (DCs). In this study, we purified L. plantarum EPS and examined its effects on cytokines production by dendritic cells in serum and intestinal fluid of BALB/c mice, then investigated its effects on phenotypic and functional maturation of mouse bone marrow-derived dendritic cells (BMDCs). Cytokines (nitric oxide, IL-12p70, IL-10 and RANTES) in serum and intestinal fluid were analyzed by enzyme linked immunosorbent assay (ELISA) after the mice received EPS for 2, 5 and 7 days, respectively. DCs derived from bone marrow of BALB/c mouse were treated with EPS, then the phenotypic maturation of BMDCs was analyzed using flow cytometer and the functional maturation of BMDCs was analyzed by ELISA, and, lastly, mixed lymphocyte proliferation was performed. We found the molecular weight of purified EPS was approximately 2.4×106 Da and it was composed of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in a molar ratio of 2:1:1:10:4:205:215. We observed that L. plantarum EPS enriched production of nitric oxide, IL-12p70 and RANTES, and decreased the secretion of IL-10 in the serum or intestinal fluid as well as in the supernatant of DCs treated with the EPS. The EPS also up-regulated the expression of MHC II and CD86 on DCs surface and promoted T cells to proliferate in vitro. Our data provide direct evidence to suggest that L. plantarum EPS can effectively induce maturation of DCs in mice.

  14. SH2 domain–containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell–mediated Th2 immunity

    PubMed Central

    2017-01-01

    Purpose The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). Materials and Methods The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHBKD) BMDCs in a mouse atopic dermatitis model. Results SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHBKD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHBKD in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHBKD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. Conclusion SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization. PMID:28168174

  15. Dendritic cell-derived nitric oxide inhibits the differentiation of effector dendritic cells

    PubMed Central

    Wu, Tianshu; Lu, Geming; Hu, Yuan; Zhang, Hui; Xu, Feihong; Wei, Peter; Chen, Kang; Tang, Hua; Yeretssian, Garabet; Xiong, Huabao

    2016-01-01

    Dendritic cells (DCs) play a pivotal role in the development of effective immune defense while avoiding detrimental inflammation and autoimmunity by regulating the balance of adaptive immunity and immune tolerance. However, the mechanisms that govern the effector and regulatory functions of DCs are incompletely understood. Here, we show that DC-derived nitric oxide (NO) controls the balance of effector and regulatory DC differentiation. Mice deficient in the NO-producing enzyme inducible nitric oxide synthase (iNOS) harbored increased effector DCs that produced interleukin-12, tumor necrosis factor (TNF) and IL-6 but normal numbers of regulatory DCs that expressed IL-10 and programmed cell death-1 (PD-1). Furthermore, an iNOS-specific inhibitor selectively enhanced effector DC differentiation, mimicking the effect of iNOS deficiency in mice. Conversely, an NO donor significantly suppressed effector DC development. Furthermore, iNOS−/− DCs supported enhanced T cell activation and proliferation. Finally iNOS−/− mice infected with the enteric pathogen Citrobacter rodentium suffered more severe intestinal inflammation with concomitant expansion of effector DCs in colon and spleen. Collectively, our results demonstrate that DC-derived iNOS restrains effector DC development, and offer the basis of therapeutic targeting of iNOS in DCs to treat autoimmune and inflammatory diseases. PMID:27556858

  16. Ceramide Inhibits Antigen Uptake and Presentation by Dendritic Cells

    PubMed Central

    Sallusto, Federica; Nicolò, Chiara; De Maria, Ruggero; Corinti, Silvia; Testi, Roberto

    1996-01-01

    Ceramides are intramembrane diffusible mediators involved in transducing signals originated from a variety of cell surface receptors. Different adaptive and differentiative cellular responses, including apoptotic cell death, use ceramide-mediated pathways as an essential part of the program. Here, we show that human dendritic cells respond to CD40 ligand, as well as to tumor necrosis factor-α and IL-1β, with intracellular ceramide accumulation, as they are induced to differentiate. Dendritic cells down-modulate their capacity to take up soluble antigens in response to exogenously added or endogenously produced ceramides. This is followed by an impairment in presenting soluble antigens to specific T cell clones, while cell viability and the capacity to stimulate allogeneic responses or to present immunogenic peptides is fully preserved. Thus, ceramide-mediated pathways initiated by different cytokines can actively modulate professional antigen-presenting cell function and antigen-specific immune responses. PMID:8976196

  17. Dendritic cells induce Tc1 cell differentiation via the CD40/CD40L pathway in mice after exposure to cigarette smoke.

    PubMed

    Kuang, Liang-Jian; Deng, Ting-Ting; Wang, Qin; Qiu, Shi-Lin; Liang, Yi; He, Zhi-Yi; Zhang, Jian-Quan; Bai, Jing; Li, Mei-Hua; Deng, Jing-Min; Liu, Guang-Nan; Liu, Ji-Feng; Zhong, Xiao-Ning

    2016-09-01

    Dendritic cells and CD8(+) T cells participate in the pathology of chronic obstructive pulmonary disease, including emphysema, but little is known of the involvement of the CD40/CD40L pathway. We investigated the role of the CD40/CD40L pathway in Tc1 cell differentiation induced by dendritic cells in a mouse model of emphysema, and in vitro. C57BL/6J wild-type and CD40(-/-) mice were exposed to cigarette smoke (CS) or not (control), for 24 wk. In vitro experiments involved wild-type and CD40(-/-) dendritic cells treated with CS extract (CSE) or not. Compared with the control groups, the CS mice (both wild type and CD40(-/-)) had a greater percentage of lung dendritic cells and higher levels of major histocompatability complex (MHC) class I molecules and costimulatory molecules CD40 and CD80. Relative to the CS CD40(-/-) mice, the CS wild type showed greater signs of lung damage and Tc1 cell differentiation. In vitro, the CSE-treated wild-type cells evidenced more cytokine release (IL-12/p70) and Tc1 cell differentiation than did the CSE-treated CD40(-/-) cells. Exposure to cigarette smoke increases the percentage of lung dendritic cells and promotes Tc1 cell differentiation via the CD40/CD40L pathway. Blocking the CD40/CD40L pathway may suppress development of emphysema in mice exposed to cigarette smoke.

  18. Epidermal Viral Immunity Induced by CD8α+ Dendritic Cells But Not by Langerhans Cells

    NASA Astrophysics Data System (ADS)

    Allan, Rhys S.; Smith, Chris M.; Belz, Gabrielle T.; van Lint, Allison L.; Wakim, Linda M.; Heath, William R.; Carbone, Francis R.

    2003-09-01

    The classical paradigm for dendritic cell function derives from the study of Langerhans cells, which predominate within skin epidermis. After an encounter with foreign agents, Langerhans cells are thought to migrate to draining lymph nodes, where they initiate T cell priming. Contrary to this, we show here that infection of murine epidermis by herpes simplex virus did not result in the priming of virus-specific cytotoxic T lymphocytes by Langerhans cells. Rather, the priming response required a distinct CD8α+ dendritic cell subset. Thus, the traditional view of Langerhans cells in epidermal immunity needs to be revisited to accommodate a requirement for other dendritic cells in this response.

  19. Slowing down light using a dendritic cell cluster metasurface waveguide

    NASA Astrophysics Data System (ADS)

    Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.

    2016-11-01

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths.

  20. Slowing down light using a dendritic cell cluster metasurface waveguide.

    PubMed

    Fang, Z H; Chen, H; Yang, F S; Luo, C R; Zhao, X P

    2016-11-25

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths.

  1. Slowing down light using a dendritic cell cluster metasurface waveguide

    PubMed Central

    Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.

    2016-01-01

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths. PMID:27886279

  2. Dendritic web - A viable material for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Scudder, L.; Brandhorst, H. W., Jr.

    1975-01-01

    The dendritic web process is a technique for growing thin silicon ribbon from liquid silicon. The material is suitable for solar cell fabrication and, in fact, cells fabricated on web material are equivalent in performance to cells fabricated on Czochralski-grown material. A recently concluded study has delineated the thermal requirements for silicon web crucibles, and a detailed conceptual design has been developed for a laboratory growth apparatus.

  3. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement

    PubMed Central

    Smith, Nikaïa; Pietrancosta, Nicolas; Davidson, Sophia; Dutrieux, Jacques; Chauveau, Lise; Cutolo, Pasquale; Dy, Michel; Scott-Algara, Daniel; Manoury, Bénédicte; Zirafi, Onofrio; McCort-Tranchepain, Isabelle; Durroux, Thierry; Bachelerie, Françoise; Schwartz, Olivier; Münch, Jan; Wack, Andreas; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2017-01-01

    Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. PMID:28181493

  4. Censoring of self-reactive B cells by follicular dendritic cell-displayed self-antigen.

    PubMed

    Yau, Irene W; Cato, Matthew H; Jellusova, Julia; Hurtado de Mendoza, Tatiana; Brink, Robert; Rickert, Robert C

    2013-08-01

    In the secondary lymphoid organs, intimate contact with follicular dendritic cells (FDCs) is required for B cell retention and Ag-driven selection during the germinal center response. However, selection of self-reactive B cells by Ag on FDCs has not been addressed. To this end, we generated a mouse model to conditionally express a membrane-bound self-antigen on FDCs and to monitor the fate of developing self-reactive B cells. In this article, we show that self-antigen displayed on FDCs mediates effective elimination of self-reactive B cells at the transitional stage. Notwithstanding, some self-reactive B cells persist beyond this checkpoint, showing evidence of Ag experience and intact proximal BCR signaling, but they are short-lived and unable to elicit T cell help. These results implicate FDCs as an important component of peripheral B cell tolerance that prevents the emergence of naive B cells capable of responding to sequestered self-antigens.

  5. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  6. Dendritic Cells and HIV-1 Trans-Infection

    PubMed Central

    McDonald, David

    2010-01-01

    Dendritic cells initiate and sustain immune responses by migrating to sites of pathogenic insult, transporting antigens to lymphoid tissues and signaling immune specific activation of T cells through the formation of the immunological synapse. Dendritic cells can also transfer intact, infectious HIV-1 to CD4 T cells through an analogous structure, the infectious synapse. This replication independent mode of HIV-1 transmission, known as trans-infection, greatly increases T cell infection in vitro and is thought to contribute to viral dissemination in vivo. This review outlines the recent data defining the mechanisms of trans-infection and provides a context for the potential contribution of trans-infection in HIV-1 disease. PMID:21994702

  7. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    PubMed Central

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed for the successful generation of gene knockout embryonic stem cells using homologous recombination technologies. PMID:19731225

  8. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  9. Kv1 channels selectively prevent dendritic hyperexcitability in rat Purkinje cells

    PubMed Central

    Khavandgar, Simin; Walter, Joy T; Sageser, Kristin; Khodakhah, Kamran

    2005-01-01

    Purkinje cells, the sole output of the cerebellar cortex, encode the timing signals required for motor coordination in their firing rate and activity pattern. Dendrites of Purkinje cells express a high density of P/Q-type voltage-gated calcium channels and fire dendritic calcium spikes. Here we show that dendritic subthreshold Kv1.2 subunit-containing Kv1 potassium channels prevent generation of random spontaneous calcium spikes. With Kv1 channels blocked, dendritic calcium spikes drive bursts of somatic sodium spikes and prevent the cell from faithfully encoding motor timing signals. The selective dendritic function of Kv1 channels in Purkinje cells allows them to effectively suppress dendritic hyperexcitability without hindering the generation of somatic action potentials. Further, we show that Kv1 channels also contribute to dendritic integration of parallel fibre synaptic input. Kv1 channels are often targeted to soma and axon and the data presented support a major dendritic function for these channels. PMID:16210348

  10. Docosahexaenoic Acid Protects from Dendritic Pathology in an Alzheimer’s Disease Mouse Model

    PubMed Central

    Calon, Frédéric; Lim, Giselle P.; Yang, Fusheng; Morihara, Takashi; Teter, Bruce; Ubeda, Oliver; Rostaing, Phillippe; Triller, Antoine; Salem, Norman; Ashe, Karen H.; Frautschy, Sally A.; Cole, Greg M.

    2005-01-01

    Learning and memory depend on dendritic spine actin assembly and docosahexaenoic acid (DHA), an essential n-3 (omega-3) polyunsaturated fatty acid (PFA). High DHA consumption is associated with reduced Alzheimer’s disease (AD) risk, yet mechanisms and therapeutic potential remain elusive. Here, we report that reduction of dietary n-3 PFA in an AD mouse model resulted in 80%–90% losses of the p85α subunit of phosphatidylinositol 3-kinase and the postsynaptic actin-regulating protein drebrin, as in AD brain. The loss of postsynaptic proteins was associated with increased oxidation, without concomitant neuron or pre-synaptic protein loss. N-3 PFA depletion increased caspase-cleaved actin, which was localized in dendrites ultrastructurally. Treatment of n-3 PFA-restricted mice with DHA protected against these effects and behavioral deficits and increased antiapoptotic BAD phosphorylation. Since n-3 PFAs are essential for p85-mediated CNS insulin signaling and selective protection of postsynaptic proteins, these findings have implications for neurodegenerative diseases where synaptic loss is critical, especially AD. PMID:15339646

  11. Chronic Social Defeat Stress Modulates Dendritic Spines Structural Plasticity in Adult Mouse Frontal Association Cortex

    PubMed Central

    Shu, Yu

    2017-01-01

    Chronic stress is associated with occurrence of many mental disorders. Previous studies have shown that dendrites and spines of pyramidal neurons of the prefrontal cortex undergo drastic reorganization following chronic stress experience. So the prefrontal cortex is believed to play a key role in response of neural system to chronic stress. However, how stress induces dynamic structural changes in neural circuit of prefrontal cortex remains unknown. In the present study, we examined the effects of chronic social defeat stress on dendritic spine structural plasticity in the mouse frontal association (FrA) cortex in vivo using two-photon microscopy. We found that chronic stress altered spine dynamics in FrA and increased the connectivity in FrA neural circuits. We also found that the changes in spine dynamics in FrA are correlated with the deficit of sucrose preference in defeated mice. Our findings suggest that chronic stress experience leads to adaptive change in neural circuits that may be important for encoding stress experience related memory and anhedonia. PMID:28197343

  12. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    PubMed

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  13. Self-Antigen Presentation by Dendritic Cells in Autoimmunity

    PubMed Central

    Hopp, Ann-Katrin; Rupp, Anne; Lukacs-Kornek, Veronika

    2014-01-01

    The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs). Dendritic cells (DCs) are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype, and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies. PMID:24592266

  14. CD1c+ blood dendritic cells have Langerhans cell potential.

    PubMed

    Milne, Paul; Bigley, Venetia; Gunawan, Merry; Haniffa, Muzlifah; Collin, Matthew

    2015-01-15

    Langerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation. Recent data in mice also show long-term repopulation of the LC compartment with alternative myeloid precursors. Here we show that, although monocytes are able to express langerin, when cultured with soluble ligands granulocyte macrophage colony-stimulating factor (GM-CSF), transforming growth factor β (TGFβ), and bone morphogenetic protein 7 (BMP7), CD1c(+) dendritic cells (DCs) become much more LC-like with high langerin, Birbeck granules, EpCAM, and E-cadherin expression under the same conditions. These data highlight a new potential precursor function of CD1c(+) DCs and demonstrate an alternative pathway of LC differentiation that may have relevance in vivo.

  15. Splenic Inflammatory Pseudotumor-Like Follicular Dendritic Cell Tumor

    PubMed Central

    Vardas, Konstantinos; Manganas, Dimitrios; Papadimitriou, Georgios; Kalatzis, Vasileios; Kyriakopoulos, Georgios; Chantziara, Maria; Exarhos, Dimitrios; Drakopoulos, Spiros

    2014-01-01

    Inflammatory pseudotumor of the spleen with expression of follicular dendritic cell markers is an extremely rare lesion with only a few cases reported previously. The present study reports on an inflammatory pseudotumor of the spleen 10 × 8 × 7 cm in size that was incidentally found in a 61-year-old man and increased gradually in size during a period of 3 months. Abdominal ultrasonography revealed a well-circumscribed splenic mass, and abdominal computed tomography confirmed the presence of a well-circumscribed isodense lesion in the splenic hilum with inhomogenous enhancement in the early-phase images and no enhancement on delayed-phase contrast-enhanced images. Magnetic resonance imaging of the abdomen showed a well-defined isodense tumor on T1-weighted images with mildly increased signal intensity on T2-weighted images, and this is only the second study that provides MRI findings of this entity. The patient underwent an uncomplicated open splenectomy for definitive histologic diagnosis. Under microscopic examination, the lesion was an admixture of lymphocytes, plasma cells and spindle cells. In situ hybridization analysis for Epstein-Barr virus (EBV) revealed that most of the spindle cells were positive for EBV, and immunochemistry showed the expression of the follicular dendritic cell markers CD21, CD35 and CD23 within the tumor. The diagnosis of inflammatory pseudotumor-like follicular dendritic cell tumor was established. PMID:25076893

  16. Dendritic cell fate is determined by BCL11A

    PubMed Central

    Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.

    2014-01-01

    The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644

  17. Continuous single cell imaging reveals sequential steps of plasmacytoid dendritic cell development from common dendritic cell progenitors

    PubMed Central

    Dursun, Ezgi; Endele, Max; Musumeci, Andrea; Failmezger, Henrik; Wang, Shu-Hung; Tresch, Achim; Schroeder, Timm; Krug, Anne B.

    2016-01-01

    Functionally distinct plasmacytoid and conventional dendritic cells (pDC and cDC) shape innate and adaptive immunity. They are derived from common dendritic cell progenitors (CDPs) in the murine bone marrow, which give rise to CD11c+ MHCII− precursors with early commitment to DC subpopulations. In this study, we dissect pDC development from CDP into an ordered sequence of differentiation events by monitoring the expression of CD11c, MHC class II, Siglec H and CCR9 in CDP cultures by continuous single cell imaging and tracking. Analysis of CDP genealogies revealed a stepwise differentiation of CDPs into pDCs in a part of the CDP colonies. This developmental pathway involved an early CD11c+ SiglecH− pre-DC stage and a Siglec H+ CCR9low precursor stage, which was followed rapidly by upregulation of CCR9 indicating final pDC differentiation. In the majority of the remaining CDP pedigrees however the Siglec H+ CCR9low precursor state was maintained for several generations. Thus, although a fraction of CDPs transits through precursor stages rapidly to give rise to a first wave of pDCs, the majority of CDP progeny differentiate more slowly and give rise to longer lived precursor cells which are poised to differentiate on demand. PMID:27892478

  18. A general principle governs vision-dependent dendritic patterning of retinal ganglion cells.

    PubMed

    Xu, Hong-Ping; Sun, Jin Hao; Tian, Ning

    2014-10-15

    Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye-opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision-dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late-stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell-by-cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision-dependent patterning of RGC dendrites.

  19. Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.

    PubMed

    Hey, Ying-Ying; O'Neill, Helen C

    This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.

  20. Mycobacterium bovis BCG-infected neutrophils and dendritic cells cooperate to induce specific T cell responses in humans and mice.

    PubMed

    Morel, Céline; Badell, Edgar; Abadie, Valérie; Robledo, Macarena; Setterblad, Niclas; Gluckman, Jean Claude; Gicquel, Brigitte; Boudaly, Sarah; Winter, Nathalie

    2008-02-01

    Neutrophils are increasingly thought to modulate dendritic cell (DC) functions. We investigated the role of the neutrophil-DC partnership in the response to Mycobacterium bovis BCG-the vaccine used against tuberculosis. We compared neutrophil-DC crosstalk in humans and mice, searching for functional differences. In both species, neutrophils captured fluorescent BCG-enhanced green fluorescent protein (EGFP) and were more phagocytic than DC. Non-apoptotic BCG-infected neutrophils clustered with immature DC, establishing intimate contacts with dendrites, at which fluorescent intact bacilli were observed. Physical interactions between neutrophils and DC were required for DC activation. Human BCG-infected DC produced interleukin (IL)-10, an inhibitory cytokine, whereas DC exposed to BCG-infected neutrophils produced low to undetectable amounts of the cytokine. Mouse BCG-infected neutrophils induced sustained IL-2 production by DC. Human DC exposed to BCG-infected neutrophils stimulated recall T cell reactivity from vaccinated donors. Mouse DC infected with recombinant ovalbumin (OVA)-producing BCG (rBCG(ova)) elicited proliferation of TCR-OVA-transgenic CD4 and CD8 T cells. Moreover, exposing DC to rBCG(ova)-infected neutrophils enhanced OVA presentation. Thus, in mice and humans, neutrophils help DC to cross-present BCG antigens to T cells. Our results suggest that this "ménage à trois" involving neutrophils, DC and T cells plays a major role in the immune response to BCG.

  1. Extended protection capabilities of an immature dendritic-cell targeting malaria sporozoite vaccine.

    PubMed

    Luo, Kun; Zavala, Fidel; Gordy, James; Zhang, Hong; Markham, Richard B

    2017-03-22

    Mouse studies evaluating candidate malaria vaccines have typically examined protective efficacy over the relatively short time frames of several weeks after the final of multiple immunizations. The current study examines the protective ability in a mouse model system of a novel protein vaccine construct in which the adjuvant polyinosinic polycytidilic acid (poly(I:C)) is used in combination with a vaccine in which the immature dendritic cell targeting chemokine, macrophage inflammatory protein 3 alpha (MIP3α), is fused to the circumsporozoite protein (CSP) of Plasmodium falciparum (P. falciparum). Two vaccinations, three weeks apart, elicited extraordinarily high, MIP3α-dependent antibody responses. MIP3α was able to target the vaccine to the CCR6 receptor found predominantly on immature dendritic cells and significantly enhanced the cellular influx at the vaccination site. At three and 23 weeks after the final of two immunizations, mice were challenged by intravenous injection of 5×10(3) transgenic Plasmodium berghei sporozoites expressing P. falciparum CSP, a challenge dose approximately one order of magnitude greater than that which is encountered after mosquito bite in the clinical setting. A ninety-seven percent reduction in liver sporozoite load was observed at both time points, 23 weeks being the last time point tested.

  2. Immune tolerance of mice allogenic tooth transplantation induced by immature dendritic cells

    PubMed Central

    Li, Wenying; Deng, Feng; Wang, Yu; Ma, Ce; Wang, Yurong

    2015-01-01

    As a common procedure in dentistry for replacing a missing tooth, allogenic tooth transplantation has encountered many difficulties in the clinical application because of immunological rejection. It is hypothesized that immature dendritic cell injection might be a potential alternative method to avoid or alleviate immunological rejection in allogenic tooth transplantation. To test this hypothesis, a mouse model of allogenic and autogeneic tooth transplantation was to established test the immunosuppressive effect of immature dendritic cells (imDCs) derived from donor bone marrows on transplant rejection in allogenic tooth transplantation. 2 × 106 imDCs generated with 50 U/ml GM-CSF were injected to each recipient mouse by two ways: tail vein injection 7 days before transplantation or regional dermal injection at day 0 and day 3 after transplantation. Groups of autogeneic tooth transplantation and allogenic tooth transplantation without any treatment were set as control groups. The effects were evaluated with histopathology and immunohistochemistry. We found there was no obvious rejection in autogeneic tooth transplantation group; tail intravenous injection group showed obviously alleviated rejection while local injection group and none-treatment allogenic tooth transplantation group both showed severe rejection. Our results suggested that the rejection of allogenic tooth transplantation could be alleviated by tail vein injection of donor bone marrow-derived imDCs though it could not be completely eliminated. The clinical application of imDCs in allogenic tooth transplantation still needs further deep research. PMID:26131099

  3. Emitter formation in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Rohatgi, A.; Campbell, R. B.; Alexander, P.; Fonash, S. J.; Singh, R.

    1984-01-01

    The use of liquid dopants and liquid masks for p-n junction formation in dendritic web solar cells was investigated and found to be equivalent to the use of gaseous dopants and CVD SiO2 masks previously used. This results in a projected cost reduction of 0.02 1980$/Watt for a 25 MW/year production line, and makes possible junction formation processes having a higher throughput than more conventional processes. The effect of a low-energy (0.4 keV) hydrogen ion implant on dendritic web solar cells was also investigated. Such an implant was observed to improve Voc and Jsc substantially. Measurements of internal quantum efficiency suggest that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. The diffusion length for electrons in the p-type base increased from 53 microns to 150 microns in one case, with dendritic web cell efficiency being boosted to 15.2 percent. The mechanism by which low-energy hydrogen ions can penetrate deeply into the silicon to effect the observed improvement is not known at this time.

  4. Targeting Dendritic Cells in vivo for Cancer Therapy

    PubMed Central

    Caminschi, Irina; Maraskovsky, Eugene; Heath, William Ross

    2012-01-01

    Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo. PMID:22566899

  5. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila

    PubMed Central

    Xiao, Hui; Wang, Denan; Franc, Nathalie C.; Jan, Lily Yeh; Jan, Yuh-Nung

    2014-01-01

    SUMMARY During developmental remodeling, neurites destined for pruning often degenerate on-site. Physical injury also induces degeneration of neurites distal to the injury site. Prompt clearance of degenerating neurites is important for maintaining tissue homeostasis and preventing inflammatory responses. Here we show that in both dendrite pruning and dendrite injury of Drosophila sensory neurons, epidermal cells rather than hemocytes are the primary phagocytes in clearing degenerating dendrites. Epidermal cells act via Draper-mediated recognition to facilitate dendrite degeneration and to engulf and degrade degenerating dendrites. Using multiple dendritic membrane markers to trace phagocytosis, we show that two members of the CD36 family, croquemort (crq) and debris buster (dsb), act at distinct stages of phagosome maturation for dendrite clearance. Our finding reveals the physiological importance of coordination between neurons and their surrounding epidermis, for both dendrite fragmentation and clearance. PMID:24412417

  6. Viral piracy: HIV-1 targets dendritic cells for transmission.

    PubMed

    Lekkerkerker, Annemarie N; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2006-04-01

    Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues. Capture of the virus on DCs takes place via C-type lectins of which the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) is the best studied. DC-SIGN-captured HIV-1 particles accumulate in CD81(+) multivesicular bodies (MVBs) in DCs and are subsequently transmitted to CD4+ T cells resulting in infection of T cells. The viral cell-to-cell transmission takes place at the DC-T cell interface termed the infectious synapse. Recent studies demonstrate that direct infection of DCs contributes to the transmission to T cells at a later phase. Moreover, the infected DCs may function as cellular reservoirs for HIV-1. This review discusses the different processes that govern viral piracy of DCs by HIV-1, emphasizing the intracellular routing of the virus from capture on the cell surface to egress in the infectious synapse.

  7. Guardians of the Gut – Murine Intestinal Macrophages and Dendritic Cells

    PubMed Central

    Gross, Mor; Salame, Tomer-Meir; Jung, Steffen

    2015-01-01

    Intestinal mononuclear phagocytes find themselves in a unique environment, most prominently characterized by its constant exposure to commensal microbiota and food antigens. This anatomic setting has resulted in a number of specializations of the intestinal mononuclear phagocyte compartment that collectively contribute the unique steady state immune landscape of the healthy gut, including homeostatic innate lymphoid cells, B, and T cell compartments. As in other organs, macrophages and dendritic cells (DCs) orchestrate in addition the immune defense against pathogens, both in lymph nodes and mucosa-associated lymphoid tissue. Here, we will discuss origins and functions of intestinal DCs and macrophages and their respective subsets, focusing largely on the mouse and cells residing in the lamina propria. PMID:26082775

  8. Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus.

    PubMed

    Tanabe, Koji; Kani, Shuichi; Shimizu, Takashi; Bae, Young-Ki; Abe, Takaya; Hibi, Masahiko

    2010-12-15

    Neurons have highly polarized structures that determine what parts of the soma elaborate the axon and dendrites. However, little is known about the mechanisms that establish neuronal polarity in vivo. Cerebellar Purkinje cells extend a single primary dendrite from the soma that ramifies into a highly branched dendritic arbor. We used the zebrafish cerebellum to investigate the mechanisms by which Purkinje cells acquire these characteristics. To examine dendritic morphogenesis in individual Purkinje cells, we marked the cell membrane using a Purkinje cell-specific promoter to drive membrane-targeted fluorescent proteins. We found that zebrafish Purkinje cells initially extend multiple neurites from the soma and subsequently retract all but one, which becomes the primary dendrite. In addition, the Golgi apparatus specifically locates to the root of the primary dendrite, and its localization is already established in immature Purkinje cells that have multiple neurites. Inhibiting secretory trafficking through the Golgi apparatus reduces dendritic growth, suggesting that the Golgi apparatus is involved in the dendritic morphogenesis. We also demonstrated that in a mutant of an atypical protein kinase C (aPKC), Prkci, Purkinje cells retain multiple primary dendrites and show disrupted localization of the Golgi apparatus. Furthermore, a mosaic inhibition of Prkci in Purkinje cells recapitulates the aPKC mutant phenotype. These results suggest that the aPKC cell autonomously controls the Golgi localization and thereby regulates the specification of the primary dendrite of Purkinje cells.

  9. Targeting human dendritic cells in situ to improve vaccines.

    PubMed

    Sehgal, Kartik; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2014-11-01

    Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibody-mediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines.

  10. Computer Tomography Imaging Findings of Abdominal Follicular Dendritic Cell Sarcoma

    PubMed Central

    Li, Jing; Geng, Zhi-Jun; Xie, Chuan-Miao; Zhang, Xin-Ke; Chen, Rui-Ying; Cai, Pei-Qiang; Lv, Xiao-Fei

    2016-01-01

    Abstract Follicular dendritic cell sarcoma (FDCS) is a neoplasm that arises from follicular dendritic cells. FDCSs originating in the abdomen are extremely rare. Clinically, they often mimic a wide variety of other abdominal tumors, and correct preoperative diagnosis is often a challenging task. To date, only scattered cases of abdominal FDCS have been reported and few data are available on their radiological features. Here we present the computer tomography imaging findings of 5 patients with surgically and pathologically demonstrated abdominal FDCS. An abdominal FDCS should be included in the differential diagnosis when single or multiple masses with relatively large size, well- or ill-defined borders, complex internal architecture with marked internal necrosis and/or focal calcification, and heterogeneous enhancement with “rapid wash-in and slow wash-out” or “progressive enhancement” enhancement patterns in the solid component are seen. PMID:26735543

  11. A novel peptide targeting Clec9a on dendritic cell for cancer immunotherapy

    PubMed Central

    Yan, Zhongyi; Wu, Yahong; Du, Jiangfeng; Li, Guodong; Wang, Shengdian; Cao, Wenpeng; Zhou, Xiuman; Wu, Chunjing; Zhang, Dan; Jing, Xueli; Li, Yifan; Wang, Hongfei; Gao, Yanfeng; Qi, Yuanming

    2016-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells with antigen recognition molecules on the surface. Clec9a is selectively expressed on mouse CD8a+ DCs and CD103+ DCs subsets, which are functionally similar to human BDCA3+ DCs. It is reported that Clec9a is responsible for the antigen cross-presentation of these DC subsets. In the present study, by using phage display technique, we discovered a novel peptide WH, which can selectively bind to mouse Flt3L induced Clec9a+ DCs or Clec9a over-expressed HEK-293T cells. Furthermore, by using computer-aided docking model and mutation assay, we observed that Asp248 and Trp250 are two key residues for Clec9a to bind with peptide WH. When coupled with OVA257-264 epitope, peptide WH can significantly enhance the ability of Clec9a+ DCs to activate OVA-specific CD8+ T cells, which elicit strong ability to secret IFN-γ, express perforin and granzyme B mRNA. In B16-OVA lung metastasis mouse model, WH-OVA257-264 fusion peptide can also enhance the activation of CD8+ T cells and decrease the lung metastasis loci. All these results suggested that peptide WH could be considered as an antigen delivery carrier targeting Clec9a+ DCs for cancer immunotherapy. PMID:27250027

  12. Dendritic web-type solar cell mini-modules

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1985-01-01

    Twenty-five minimodules composed of dendritic web solar cells with nominal glass size of 12 by 40 cm were provided for study. The modules were identical with respect to design, materials, and manufacturing and assembly processes to full scale modules. The modules were also electrically functional. These minimodules were fabricated to provide test vehicle for environmental testing and to assess reliability of process and design procedures. The module design and performance are outlined.

  13. Modulatory effects on dendritic cells by human herpesvirus 6

    PubMed Central

    Gustafsson, Rasmus; Svensson, Mattias; Fogdell-Hahn, Anna

    2015-01-01

    Human herpesvirus 6A and 6B are β-herpesviruses approaching 100% seroprevalance worldwide. These viruses are involved in several clinical syndromes and have important immunomodulatory effects. Dendritic cells (DC) are key players in innate and adaptive immunity. Accordingly, DC are implicated in the pathogenesis of many human diseases, including infections. In this review the effects of HHV-6 infection on DC will be discussed. PMID:25983728

  14. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation

    PubMed Central

    Singh, Tej Pratap; Zhang, Howard H.; Borek, Izabela; Wolf, Peter; Hedrick, Michael N.; Singh, Satya P.; Kelsall, Brian L.; Clausen, Bjorn E.; Farber, Joshua M.

    2016-01-01

    Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6Chi blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells. PMID:27982014

  15. Induction and identification of rabbit peripheral blood derived dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  16. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells

    PubMed Central

    Felts, Richard L.; Narayan, Kedar; Estes, Jacob D.; Shi, Dan; Trubey, Charles M.; Fu, Jing; Hartnell, Lisa M.; Ruthel, Gordon T.; Schneider, Douglas K.; Nagashima, Kunio; Bess, Julian W.; Bavari, Sina; Lowekamp, Bradley C.; Bliss, Donald; Lifson, Jeffrey D.; Subramaniam, Sriram

    2010-01-01

    The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission. PMID:20624966

  17. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells.

    PubMed

    Bosch, Carles; Masachs, Nuria; Exposito-Alonso, David; Martínez, Albert; Teixeira, Cátia M; Fernaud, Isabel; Pujadas, Lluís; Ulloa, Fausto; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2016-09-13

    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated.

  18. Longitudinal Tracking of Human Dendritic Cells in Murine Models Using Magnetic Resonance Imaging

    PubMed Central

    Briley-Saebo, Karen C.; Leboeuf, Marylene; Dickson, Stephen; Mani, Venkatesh; Fayad, Zahi A.; Palucka, A. Karolina; Banchereau, Jacques; Merad, Miriam

    2011-01-01

    Ex vivo generated dendritic cells are currently used to induce therapeutic immunity in solid tumors. Effective immune response requires dendritic cells to home and remain in lymphoid organs to allow for adequate interaction with T lymphocytes. The aim of the current study was to detect and track Feridex labeled human dendritic cells in murine models using magnetic resonance imaging. Human dendritic cells were incubated with Feridex and the effect of labeling on dendritic cells immune function was evaluated. Ex vivo dendritic cell phantoms were used to estimate sensitivity of the magnetic resonance methods and in vivo homing was evaluated after intravenous or subcutaneous injection. R2*-maps of liver, spleen, and draining lymph nodes were obtained and inductively coupled plasma mass spectrometry or relaxometry methods were used to quantify the Feridex tissue concentrations. Correlations between in vivo R2* values and iron content were then determined. Feridex labeling did not affect dendritic cell maturation or function. Phantom results indicated that it was possible to detect 125 dendritic cells within a given slice. Strong correlation between in vivo R2* values and iron deposition was observed. Importantly, Feridex-labeled dendritic cells were detected in the spleen for up to 2 weeks postintravenous injection. This study suggests that magnetic resonance imaging may be used to longitudinally track Feridex-labeled human dendritic cells for up to 2 weeks after injection. PMID:20593373

  19. Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation

    PubMed Central

    Goldberg, Jesse H; Tamas, Gabor; Yuste, Rafael

    2003-01-01

    GABAergic interneurones are essential in cortical processing, yet the functional properties of their dendrites are still poorly understood. In this first study, we combined two-photon calcium imaging with whole-cell recording and anatomical reconstructions to examine the calcium dynamics during action potential (AP) backpropagation in three types of V1 supragranular interneurones: parvalbumin-positive fast spikers (FS), calretinin-positive irregular spikers (IS), and adapting cells (AD). Somatically generated APs actively backpropagated into the dendritic tree and evoked instantaneous calcium accumulations. Although voltage-gated calcium channels were expressed throughout the dendritic arbor, calcium signals during backpropagation of both single APs and AP trains were restricted to proximal dendrites. This spatial control of AP backpropagation was mediated by Ia-type potassium currents and could be mitigated by by previous synaptic activity. Further, we observed supralinear summation of calcium signals in synaptically activated dendritic compartments. Together, these findings indicate that in interneurons, dendritic AP propagation is synaptically regulated. We propose that interneurones have a perisomatic and a distal dendritic functional compartment, with different integrative functions. PMID:12844506

  20. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection.

    PubMed

    Wakim, Linda M; Bevan, Michael J

    2011-03-31

    After an infection, cytotoxic T lymphocyte precursors proliferate and become effector cells by recognizing foreign peptides in the groove of major histocompatibility complex (MHC) class I molecules expressed by antigen-presenting cells (APCs). Professional APCs specialized for T-cell activation acquire viral antigen either by becoming infected themselves (direct presentation) or by phagocytosis of infected cells, followed by transfer of antigen to the cytosol, processing and MHC class I loading in a process referred to as cross-presentation. An alternative way, referred to as 'cross-dressing', by which an uninfected APC could present antigen was postulated to be by the transfer of preformed peptide-MHC complexes from the surface of an infected cell to the APC without the need of further processing. Here we show that this mechanism exists and boosts the antiviral response of mouse memory CD8(+) T cells. A number of publications have demonstrated sharing of peptide-loaded MHC molecules in vitro. Our in vitro experiments demonstrate that cross-dressing APCs do not acquire peptide-MHC complexes in the form of exosomes released by donor cells. Rather, the APCs and donor cells have to contact each other for the transfer to occur. After a viral infection, we could isolate cross-dressed APCs able to present viral antigen in vitro. Furthermore, using the diphtheria toxin system to selectively eliminate APCs that could only acquire viral peptide-MHC complexes by cross-dressing, we show that such presentation can promote the expansion of resting memory T cells. Notably, naive T cells were excluded from taking part in the response. Cross-dressing is a mechanism of antigen presentation used by dendritic cells that may have a significant role in activating previously primed CD8(+) T cells.

  1. Suppressing The Growth Of Dendrites In Secondary Li Cells

    NASA Technical Reports Server (NTRS)

    Davies, Evan D.; Perrone, David E.; Shen, David H.

    1996-01-01

    Proposed technique for suppressing growth of lithium dendrites in rechargeable lithium electrochemical power cells involves periodic interruption of steady charging current with short, high-current discharge pulses. Technique applicable to lithium cells of several different types, including Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/Vo(x), and Li/MnO(2). Cells candidates for use in spacecraft, military, communications, automotive, and other applications in which high-energy-density rechargeable batteries needed.

  2. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients.

    PubMed

    Rettig, M B; Ma, H J; Vescio, R A; Põld, M; Schiller, G; Belson, D; Savage, A; Nishikubo, C; Wu, C; Fraser, J; Said, J W; Berenson, J R

    1997-06-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) was found in the bone marrow dendritic cells of multiple myeloma patients but not in malignant plasma cells or bone marrow dendritic cells from normal individuals or patients with other malignancies. In addition the virus was detected in the bone marrow dendritic cells from two out of eight patients with monoclonal gammopathy of undetermined significance (MGUS), a precursor to myeloma. Viral interleukin-6, the human homolog of which is a growth factor for myeloma, was found to be transcribed in the myeloma bone marrow dendritic cells. KSHV may be required for transformation from MGUS to myeloma and perpetuate the growth of malignant plasma cells.

  3. Cross-protective efficacy of dendritic cells targeting conserved influenza virus antigen expressed by Lactobacillus plantarum

    PubMed Central

    Yang, Wen-Tao; Shi, Shao-Hua; Yang, Gui-Lian; Jiang, Yan-Long; Zhao, Liang; Li, Yu; Wang, Chun-Feng

    2016-01-01

    Avian influenza virus (AIV) can infect birds and mammals, including humans, and are thus a serious threat to public health. Vaccination is vital for controlling AIV circulation. In this study, we generated a recombinant lactobacillus expressing the NP-M1-DCpep of H9N2 avian influenza virus and evaluated the activation effect of NC8-pSIP409-NP-M1-DCpep on dendritic cells (DCs) in a mouse model. The specific mucosal antibody responses and B and T cell responses in lymphoid tissues were also characterized. Importantly, we confirmed that specific CD8 T cells presented in vitro and antigen-specific cytotoxicity (activated the expression of CD107a) and in vivo antigen-specific cytotoxicity after vaccination. The adoptive transfer of NC8-pSIP409-NP-M1-DCpep-primed CD8+ T cells into NOD-SCID mice resulted in effective protection against mouse-adapted AIV infection. In addition, we observed protection in immunized mice challenged with mouse-adapted H9N2 AIV and H1N1 influenza virus, as evidenced by reductions in the lung virus titers, improvements in lung pathology, and weight loss and complete survival. Our data are promising for the generation of effective, non-traditional influenza vaccines against AIVs. PMID:28004787

  4. Acetyl-L-carnitine improves behavior and dendritic morphology in a mouse model of Rett syndrome.

    PubMed

    Schaevitz, Laura R; Nicolai, Raffaella; Lopez, Carla M; D'Iddio, Stefania; Iannoni, Emerenziana; Berger-Sweeney, Joanne E

    2012-01-01

    Rett syndrome (RTT) is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Girls with RTT suffer from severe motor, respiratory, cognitive and social abnormalities attributed to early deficits in synaptic connectivity which manifest in the adult as a myriad of physiological and anatomical abnormalities including, but not limited to, dimished dendritic complexity. Supplementation with acetyl-L-carnitine (ALC), an acetyl group donor, ameliorates motor and cognitive deficits in other disease models through a variety of mechanisms including altering patterns of histone acetylation resulting in changes in gene expression, and stimulating biosynthetic pathways such as acetylcholine. We hypothesized ALC treatment during critical periods in cortical development would promote normal synaptic maturation, and continuing treatment would improve behavioral deficits in the Mecp2(1lox) mouse model of RTT. In this study, wildtype and Mecp2(1lox) mutant mice received daily injections of ALC from birth until death (postnatal day 47). General health, motor, respiratory, and cognitive functions were assessed at several time points during symptom progression. ALC improved weight gain, grip strength, activity levels, prevented metabolic abnormalities and modestly improved cognitive function in Mecp2 null mice early in the course of treatment, but did not significantly improve motor or cognitive functions assessed later in life. ALC treatment from birth was associated with an almost complete rescue of hippocampal dendritic morphology abnormalities with no discernable side effects in the mutant mice. Therefore, ALC appears to be a promising therapeutic approach to treating early RTT symptoms and may be useful in combination with other therapies.

  5. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    PubMed

    Williams, Briana Jill; Bhatia, Shilpa; Adams, Lisa K; Boling, Susan; Carroll, Jennifer L; Li, Xiao-Lin; Rogers, Donna L; Korokhov, Nikolay; Kovesdi, Imre; Pereboev, Alexander V; Curiel, David T; Mathis, J Michael

    2012-01-01

    Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  6. Mycobacterium-Infected Dendritic Cells Disseminate Granulomatous Inflammation

    PubMed Central

    Harding, Jeffrey S.; Rayasam, Aditya; Schreiber, Heidi A.; Fabry, Zsuzsanna; Sandor, Matyas

    2015-01-01

    The disappearance and reformation of granulomas during tuberculosis has been described using PET/CT/X-ray in both human clinical settings and animal models, but the mechanisms of granuloma reformation during active disease remains unclear. Granulomas can recruit inflammatory dendritic cells (iDCs) that can regulate local T-cell responses and can carry bacteria into the lymph nodes, which is crucial for generating systemic T-cell responses against mycobacteria. Here, we report that a subset of mycobacterium-infected iDCs are associated with bacteria-specific T-cells in infected tissue, outside the granuloma, and that this results in the formation of new and/or larger multi-focal lesions. Mycobacterium-infected iDCs express less CCR7 and migrate less efficiently compared to the non-infected iDCs, which may support T-cell capture in granulomatous tissue. Capture may reduce antigen availability in the lymph node, thereby decreasing systemic priming, resulting in a possible regulatory loop between systemic T-cell responses and granuloma reformation. T-cell/infected iDCs clusters outside the granuloma can be detected during the acute and chronic phase of BCG and Mtb infection. Our studies suggest a direct role for inflammatory dendritic cells in the dissemination of granulomatous inflammation. PMID:26515292

  7. Mycobacterium-Infected Dendritic Cells Disseminate Granulomatous Inflammation.

    PubMed

    Harding, Jeffrey S; Rayasam, Aditya; Schreiber, Heidi A; Fabry, Zsuzsanna; Sandor, Matyas

    2015-10-30

    The disappearance and reformation of granulomas during tuberculosis has been described using PET/CT/X-ray in both human clinical settings and animal models, but the mechanisms of granuloma reformation during active disease remains unclear. Granulomas can recruit inflammatory dendritic cells (iDCs) that can regulate local T-cell responses and can carry bacteria into the lymph nodes, which is crucial for generating systemic T-cell responses against mycobacteria. Here, we report that a subset of mycobacterium-infected iDCs are associated with bacteria-specific T-cells in infected tissue, outside the granuloma, and that this results in the formation of new and/or larger multi-focal lesions. Mycobacterium-infected iDCs express less CCR7 and migrate less efficiently compared to the non-infected iDCs, which may support T-cell capture in granulomatous tissue. Capture may reduce antigen availability in the lymph node, thereby decreasing systemic priming, resulting in a possible regulatory loop between systemic T-cell responses and granuloma reformation. T-cell/infected iDCs clusters outside the granuloma can be detected during the acute and chronic phase of BCG and Mtb infection. Our studies suggest a direct role for inflammatory dendritic cells in the dissemination of granulomatous inflammation.

  8. Influence of organophosphate poisoning on human dendritic cells.

    PubMed

    Schäfer, Marina; Koppe, Franziska; Stenger, Bernhard; Brochhausen, Christoph; Schmidt, Annette; Steinritz, Dirk; Thiermann, Horst; Kirkpatrick, Charles James; Pohl, Christine

    2013-12-05

    Organophosphourus compounds (OPC, including nerve agents and pesticides) exhibit acute toxicity by inhibition of acetylcholinesterase. Lung affections are frequent complications and a risk factor for death. In addition, epidemiological studies reported immunological alterations after OPC exposure. In our experiments we investigated the effects of organophosphourus pesticides dimethoate and chlorpyrifos on dendritic cells (DC) that are essential for the initial immune response, especially in the pulmonary system. DC, differentiated from the monocyte cell line THP-1 by using various cytokines (IL-4, GM-CSF, TNF-α, Ionomycin), were exposed to organophosphourus compounds at different concentrations for a 24h time period. DC were characterized by flow cytometry and immunofluorescence using typical dendritic cell markers (e.g., CD11c, CD209 and CD83). After OPC exposure we investigated cell death, the secretion profile of inflammatory mediators, changes of DC morphology, and the effect on protein kinase signalling pathways. Our results revealed a successful differentiation of THP-1 into DC. OPC exposure caused a significant concentration-dependent influence on DC: Dendrites of the DC were shortened and damaged, DC-specific cell surface markers (i.e., CD83and CD209) decreased dramatically after chlorpyrifos exposure. Interestingly, the effects caused by dimethoate were in general less pronounced. The organophosphourus compounds affected the release of inflammatory cytokines, such as IL-1ß and IL-8. The anti-inflammatory cytokine IL-10 was significantly down regulated. Protein kinases like the Akt family or ERK, which are essential for cell survival and proliferation, were inhibited by both OPC. These findings indicate that the tested organophosphourus compounds induced significant changes in cell morphology, inhibited anti-inflammatory cytokines and influenced important protein signalling pathways which are involved in regulation of apoptosis. Thus our results highlight

  9. Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells.

    PubMed

    Linehan, Jonathan L; Dileepan, Thamotharampillai; Kashem, Sakeen W; Kaplan, Daniel H; Cleary, Patrick; Jenkins, Marc K

    2015-10-13

    Intranasal (i.n.) infections preferentially generate Th17 cells. We explored the basis for this anatomic preference by tracking polyclonal CD4(+) T cells specific for an MHC class II-bound peptide from the mucosal pathogen Streptococcus pyogenes. S. pyogenes MHC class II-bound peptide-specific CD4(+) T cells were first activated in the cervical lymph nodes following i.n. inoculation and then differentiated into Th17 cells. S. pyogenes-induced Th17 formation depended on TGF-β1 from dendritic cells and IL-6 from a CD301b(+) dendritic cell subset located in the cervical lymph nodes but not the spleen. Thus, the tendency of i.n. infection to induce Th17 cells is related to cytokine production by specialized dendritic cells that drain this site.

  10. A novel cancer therapeutic using thrombospondin 1 in dendritic cells.

    PubMed

    Weng, Tzu-Yang; Huang, Shih-Shien; Yen, Meng-Chi; Lin, Chi-Chen; Chen, Yi-Ling; Lin, Chiu-Mei; Chen, Wei-Ching; Wang, Chih-Yang; Chang, Jang-Yang; Lai, Ming-Derg

    2014-02-01

    Induction of thrombospondin 1 (TSP-1) is generally assumed to suppress tumor growth through inhibiting angiogenesis; however, it is less clear how TSP-1 in dendritic cells (DCs) influences tumor progression. We investigated tumor growth and immune mechanism by downregulation of TSP-1 in dendritic cells. Administration of TSP-1 small hairpin RNA (shRNA) through the skin produced anticancer therapeutic effects. Tumor-infiltrating CD4(+) and CD8(+) T cells were increased after the administration of TSP-1 shRNA. The expression of interleukin-12 and interferon-γ in the lymph nodes was enhanced by injection of TSP-1 shRNA. Lymphocytes from the mice injected with TSP-1 shRNA selectively killed the tumor cells, and the cytotoxicity of lymphocytes was abolished by depletion of CD8(+) T cells. Injection of CD11c(+) TSP-1-knockout (TSP-1-KO) bone marrow-derived DCs (BMDCs) delayed tumor growth in tumor-bearing mice. Similarly, antitumor activity induced by TSP-1-KO BMDCs was abrogated by depletion of CD8(+) T cells. In contrast, the administration of shRNAs targeting TSP-2, another TSP family member, did not extend the survival of tumor-bearing mice. Finally, TSP-1 shRNA functioned as an immunotherapeutic adjuvant to augment the therapeutic efficacy of Neu DNA vaccination. Collectively, the downregulation of TSP-1 in DCs produces an effective antitumor response that is opposite to the protumor effects by silencing of TSP-1 within tumor cells.

  11. Directing dendritic cell immunotherapy towards successful cancer treatment

    PubMed Central

    Sabado, Rachel Lubong; Bhardwaj, Nina

    2010-01-01

    The use of dendritic cells (DCs) for tumor immunotherapy represents a powerful approach for harnessing the patient's own immune system to eliminate tumor cells. However, suboptimal conditions for generating potent immunostimulatory DCs, as well as the induction of tolerance and suppression mediated by the tumors and its microenvironment have contributed to limited success. Combining DC vaccines with new approaches that enhance immunogenicity and overcome the regulatory mechanisms underlying peripheral tolerance may be the key to achieving effective and durable anti-tumor immune responses that translate to better clinical outcomes. PMID:20473346

  12. Classification of dendritic cell phenotypes from gene expression data

    PubMed Central

    2011-01-01

    Background The selection of relevant genes for sample classification is a common task in many gene expression studies. Although a number of tools have been developed to identify optimal gene expression signatures, they often generate gene lists that are too long to be exploited clinically. Consequently, researchers in the field try to identify the smallest set of genes that provide good sample classification. We investigated the genome-wide expression of the inflammatory phenotype in dendritic cells. Dendritic cells are a complex group of cells that play a critical role in vertebrate immunity. Therefore, the prediction of the inflammatory phenotype in these cells may help with the selection of immune-modulating compounds. Results A data mining protocol was applied to microarray data for murine cell lines treated with various inflammatory stimuli. The learning and validation data sets consisted of 155 and 49 samples, respectively. The data mining protocol reduced the number of probe sets from 5,802 to 10, then from 10 to 6 and finally from 6 to 3. The performances of a set of supervised classification models were compared. The best accuracy, when using the six following genes --Il12b, Cd40, Socs3, Irgm1, Plin2 and Lgals3bp-- was obtained by Tree Augmented Naïve Bayes and Nearest Neighbour (91.8%). Using the smallest set of three genes --Il12b, Cd40 and Socs3-- the performance remained satisfactory and the best accuracy was with Support Vector Machine (95.9%). These data mining models, using data for the genes Il12b, Cd40 and Socs3, were validated with a human data set consisting of 27 samples. Support Vector Machines (71.4%) and Nearest Neighbour (92.6%) gave the worst performances, but the remaining models correctly classified all the 27 samples. Conclusions The genes selected by the data mining protocol proposed were shown to be informative for discriminating between inflammatory and steady-state phenotypes in dendritic cells. The robustness of the data mining

  13. Maturation-Resistant Dendritic Cells Ameliorate Experimental Autoimmune Uveoretinitis

    PubMed Central

    Oh, Keunhee; Kim, Yon Su

    2011-01-01

    Background Endogenous uveitis is a chronic inflammatory eye disease of human, which frequently leads to blindness. Experimental autoimmune uveoretinitis (EAU) is an animal disease model of human endogenous uveitis and can be induced in susceptible animals by immunization with retinal antigens. EAU resembles the key immunological characteristics of human disease in that both are CD4+ T-cell mediated diseases. Dendritic cells (DCs) are specialized antigen-presenting cells that are uniquely capable of activating naïve T cells. Regulation of immune responses through modulation of DCs has thus been tried extensively. Recently our group reported that donor strain-derived immature DC pretreatment successfully controlled the adverse immune response during allogeneic transplantation. Methods EAU was induced by immunization with human interphotoreceptor retinoid-binding protein (IRBP) peptide1-20. Dendritic cells were differentiated from bone marrow in the presence of recombinant GM-CSF. Results In this study, we used paraformaldehyde-fixed bone marrow-derived DCs to maintain them in an immature state. Pretreatment with fixed immature DCs, but not fixed mature DCs, ameliorated the disease progression of EAU by inhibiting uveitogenic CD4+ T cell activation and differentiation. Conclusion Application of iBMDC prepared according to the protocol of this study would provide an important treatment modality for the autoimmune diseases and transplantation rejection. PMID:22346781

  14. The serotonin receptor 5-HT₇R regulates the morphology and migratory properties of dendritic cells.

    PubMed

    Holst, Katrin; Guseva, Daria; Schindler, Susann; Sixt, Michael; Braun, Armin; Chopra, Himpriya; Pabst, Oliver; Ponimaskin, Evgeni

    2015-08-01

    Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7R, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7R enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7R-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7R could be a new target for treatment of a variety of inflammatory and immune disorders.

  15. Leukemia-derived immature dendritic cells differentiate into functionally competent mature dendritic cells that efficiently stimulate T cell responses.

    PubMed

    Cignetti, Alessandro; Vallario, Antonella; Roato, Ilaria; Circosta, Paola; Allione, Bernardino; Casorzo, Laura; Ghia, Paolo; Caligaris-Cappio, Federico

    2004-08-15

    Primary acute myeloid leukemia cells can be induced to differentiate into dendritic cells (DC). In the presence of GM-CSF, TNF-alpha, and/or IL-4, leukemia-derived DC are obtained that display features of immature DC (i-DC). The aim of this study was to determine whether i-DC of leukemic origin could be further differentiated into mature DC (m-DC) and to evaluate the possibility that leukemic m-DC could be effective in vivo as a tumor vaccine. Using CD40L as maturating agent, we show that leukemic i-DC can differentiate into cells that fulfill the phenotypic criteria of m-DC and, compared with normal counterparts, are functionally competent in vitro in terms of: 1) production of cytokines that support T cell activation and proliferation and drive Th1 polarization; 2) generation of autologous CD8(+) CTLs and CD4(+) T cells that are MHC-restricted and leukemia-specific; 3) migration from tissues to lymph nodes; 4) amplification of Ag presentation by monocyte attraction; 5) attraction of naive/resting and activated T cells. Irradiation of leukemic i-DC after CD40L stimulation did not affect their differentiating and functional capacity. Our data indicate that acute myeloid leukemia cells can fully differentiate into functionally competent m-DC and lay the ground for testing their efficacy as a tumor vaccine.

  16. Interleukin-4 Inhibits Regulatory T Cell Differentiation through Regulating CD103+ Dendritic Cells

    PubMed Central

    Tu, Lei; Chen, Jie; Zhang, Hongwei; Duan, Lihua

    2017-01-01

    CD103+ dendritic cells (DCs) have been shown to play a crucial role in the pathogenesis of inflammatory bowel diseases (IBDs) through educating regulatory T (Treg) cells differentiation. However, the mechanism of CD103+ DCs subsets differentiation remains elusive. Interleukin (IL)-4 is a pleiotropic cytokine that is upregulated in certain types of inflammation, including IBDs and especially ulcerative colitis. However, the precise role of IL-4 in the differentiation of CD103+ DCs subpopulation remains unknown. In this study, we observed a repressive role of IL-4 on the CD103+ DCs differentiation in both mouse and human. High-dose IL-4 inhibited the CD103+ DC differentiation. In comparison to CD103− DCs, CD103+ DCs expressed high levels of the co-stimulatory molecules and indoleamine 2,3-dioxygenase (IDO). Interestingly, IL-4 diminished IDO expression on DCs in a dose-dependent manner. Besides, high-dose IL-4-induced bone marrow-derived DCs, and monocyte-derived DCs revealed mature DCs profiles, characterized by increased co-stimulatory molecules and decreased pinocytotic function. Furthermore, DCs generated under low concentrations of IL-4 favored Treg cells differentiation, which depend on IDO produced by CD103+ DCs. Consistently, IL-4 also reduced the frequency of CD103+ DC in vivo. Thus, we here demonstrated that the cytokine IL-4 involved in certain types of inflammatory diseases by orchestrating the functional phenotype of CD103+ DCs subsets. PMID:28316599

  17. Immunostimulatory conventional dendritic cells evolve into regulatory macrophage-like cells.

    PubMed

    Diao, Jun; Mikhailova, Anastassia; Tang, Michael; Gu, Hongtao; Zhao, Jun; Cattral, Mark S

    2012-05-24

    Dendritic cell (DC) homeostasis in peripheral tissues reflect a balance between DC generation, migration, and death. The current model of DC ontogeny indicates that pre-cDCs are committed to become terminal conventional DCs (cDCs). Here, we report the unexpected finding that proliferating immunostimulatory CD11c(+) MHC class II(+) cDCs derived from pre-cDCs can lose their DC identity and generate progeny that exhibit morphologic, phenotypic, and functional characteristics of regulatory macrophages. DC-derived-macrophages (DC-d-Ms) potently suppress T-cell responses through the production of immunosuppressive molecules including nitric oxide, arginase, and IL-10. Relative deficiency of granulocyte-macrophage colony stimulating factor (GM-CSF) provided a permissive signal for DC-d-M generation. Using a transgenic mouse model that allows tracking of CD11c(+) cells in vivo, we found that DC-d-M development occurs commonly in cancer, but not in lymphoid or nonlymphoid tissues under steady-state conditions. We propose that this developmental pathway serves as an alternative mechanism of regulating DC homeostasis during inflammatory processes.

  18. Direct depolarization and antidromic action potentials transiently suppress dendritic IPSPs in hippocampal CA1 pyramidal cells.

    PubMed

    Morishita, W; Alger, B E

    2001-01-01

    Whole-cell current-clamp recordings were made from distal dendrites of rat hippocampal CA1 pyramidal cells. Following depolarization of the dendritic membrane by direct injection of current pulses or by back-propagating action potentials elicited by antidromic stimulation, evoked gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) were transiently suppressed. This suppression had properties similar to depolarization-induced suppression of inhibition (DSI): it was enhanced by carbachol, blocked by dendritic hyperpolarization sufficient to prevent action potential invasion, and reduced by 4-aminopyridine (4-AP) application. Thus DSI or a DSI-like process can be recorded in CA1 distal dendrites. Moreover, localized application of TTX to stratum pyramidale blocked somatic action potentials and somatic IPSPs, but not dendritic IPSPs or DSI induced by direct dendritic depolarization, suggesting DSI is expressed in part in the dendrites. These data extend the potential physiological roles of DSI.

  19. Ablation of ErbB4 from excitatory neurons leads to reduced dendritic spine density in mouse prefrontal cortex

    PubMed Central

    Cooper, Margaret A.; Koleske, Anthony J.

    2014-01-01

    Dendritic spine loss is observed in many psychiatric disorders, including schizophrenia, and likely contributes to the altered sense of reality, disruption of working memory, and attention deficits that characterize these disorders. ErbB4, a member of the EGF family of receptor tyrosine kinases, is genetically associated0020with schizophrenia, suggesting that alterations in ErbB4 function contribute to the disease pathology. Additionally, ErbB4 functions in synaptic plasticity, leading us to hypothesize that disruption of ErbB4 signaling may affect dendritic spine development. We show that dendritic spine density is reduced in the dorsomedial prefrontal cortex of ErbB4 conditional whole-brain knockout mice. We find that ErbB4 localizes to dendritic spines of excitatory neurons in cortical neuronal cultures and is present in synaptic plasma membrane preparations. Finally, we demonstrate that selective ablation of ErbB4 from excitatory neurons leads to a decrease in the proportion of mature spines and an overall reduction in dendritic spine density in the prefrontal cortex of weanling (P21) mice that persists at 2 months of age. These results suggest that ErbB4 signaling in excitatory pyramidal cells is critical for the proper formation and maintenance of dendritic spines in excitatory pyramidal cells. PMID:24752666

  20. Redefining the role of dendritic cells in periodontics.

    PubMed

    Venkatesan, Gomathinayagam; Uppoor, Ashita; Naik, Dilip G

    2013-11-01

    A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed. DCs consist of a family of antigen presenting cells, which are bone-marrow-derived cells that patrol all tissues of the body with the possible exceptions of the brain and testes. DCs function to capture bacteria and other pathogens for processing and presentation to T cells in the secondary lymphoid organs. They serve as an essential link between innate and adaptive immune systems and induce both primary and secondary immune responses. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. This review addresses the origins and migration of DCs to target sites, their basic biology and plasticity in playing a key role in periodontal diseases, and finally, selected strategies being pursued to harness its ability to prevent periodontal diseases.

  1. Integrin-mediated interactions between B cells and follicular dendritic cells influence germinal center B cell fitness1

    PubMed Central

    Wang, Xiaoming; Rodda, Lauren; Bannard, Oliver; Cyster, Jason G.

    2014-01-01

    Integrin-ligand interactions between germinal center (GC) B cells and antigen-presenting follicular dendritic cells (FDCs) have been suggested to play central roles during GC responses but their in vivo requirement has not been directly tested. Here we show that while integrins αLβ2 and α4β1 are highly expressed and functional on mouse GC B cells, removal of single integrins or their ligands had little effect on B cell participation in the GC response. Combined β2-integrin deficiency and α4-integrin blockade also did not affect the GC response against a particulate antigen. However, the combined integrin deficiency did cause B cells to be outcompeted in splenic GC responses against a soluble protein antigen and in mesenteric lymph node GC responses against gut-derived antigens. Similar findings were made for β2-deficient B cells in mice lacking VCAM1 on FDCs. The reduced fitness of the GC B cells did not appear to be due to decreased antigen acquisition, proliferation rates or pAKT levels. In summary, our findings provide evidence that αLβ2 and α4β1 play overlapping and context-dependent roles in supporting interactions with FDCs that can augment the fitness of responding GC B cells. We also find that mouse GC B cells upregulate αvβ3 and adhere to vitronectin and milk fat globule EGF-factor-8 protein. Integrin β3-deficient B cells contributed in a slightly exaggerated manner to GC responses suggesting this integrin has a regulatory function in GC B cells. PMID:24740506

  2. Distinct mechanisms of neonatal tolerance induced by dendritic cells and thymic B cells

    PubMed Central

    1991-01-01

    To assess the role of different types of antigen-presenting cells (APC) in the induction of tolerance, we isolated B cells, macrophages, and dendritic cells from thymus and spleen, and injected these into neonatal BALB/c mice across an Mls-1 antigenic barrier. One week after injection of APC from Mls-1-incompatible mice or from control syngeneic mice, we measured the number of thymic, Mls-1a-reactive, V beta 6+ T cells and the capacity of thymocytes to induce a graft-vs.-host (GVH) reaction in popliteal lymph nodes of Mls-1a mice. Injection of thymic but not spleen B cells deleted thymic, Mls-1a-reactive V beta 6+ T cells and induced tolerance in the GVH assay. The thymic B cells were primarily of the CD5+ type, and fluorescence-activated cell sorter- purified CD5+ thymic B cells were active. Injection of dendritic cells from spleen or thymus also induced tolerance, but the V beta 6 cells were anergized rather than deleted. Macrophages from thymus did not induce tolerance. Dendritic cells and thymic B cells were also effective in inducing tolerance even when injected into Mls-, major histocompatibility complex-incompatible, I-E- mice, but only thymic B cells depleted V beta 6-expressing T cells. Therefore, different types of bone marrow-derived APC have different capacities for inducing tolerance, and the active cell types (dendritic cells and CD5+ thymic B cells) can act by distinct mechanisms. PMID:1900075

  3. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions

    PubMed Central

    Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc

    2015-01-01

    Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and

  4. Neural stem cell transplantation in mouse brain.

    PubMed

    Lee, Jean-Pyo; McKercher, Scott; Muller, Franz-Josef; Snyder, Evan Y

    2008-01-01

    Neural stem cells (NSCs) are the most primordial, least committed cells of the nervous system, and transplantation of these multipotent cells holds the promise of regenerative therapy for many central nervous system (CNS) diseases. This unit describes methods for NSC transplantation into neonatal mouse pups, embryonic mouse brain, and adult mouse brain. A description of options for detection of labeled donor cells in engrafted mouse brain is provided along with an example protocol for detecting lacZ-expressing cells in situ. Also included is a protocol for preparing NSCs for transplantation.

  5. Methods of analysis of dendritic cell-derived exosome-shuttle microRNA and its horizontal propagation between dendritic cells.

    PubMed

    Montecalvo, Angela; Larregina, Adriana T; Morelli, Adrian E

    2013-01-01

    Exosomes are extremely small (<100 nm) membrane vesicles, generated in the endocytic compartment that are released to the extracellular milieu by living cells. Although the biological function of exosomes in vivo remains unclear, they seem to function as mechanisms of cell-to-cell communication for horizontal transfer of proteins, antigens, prions, morphogens, mRNA, and noncoding regulatory RNAs, including microRNAs (miRNAs) (also known as exosome-shuttle miRNAs). Dendritic cells (DCs), the most potent professional antigen-presenting leukocytes of the immune system, release relatively high levels of exosomes and also interact with free exosomes present in the extracellular space. Therefore, DCs constitute a good model for the analysis of exosome-shuttle miRNAs and their horizontal propagation between cells. This chapter provides basic protocols for purification of exosomes released by mouse bone marrow-derived DCs, analysis of their miRNA content, and assessment of the function of exosome-shuttle miRNAs, once they are transferred to target/acceptor DCs.

  6. Building on Dendritic Cell Subsets to Improve Cancer Vaccines

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Zurawski, Gerard; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating that the immune system can be harnessed for cancer therapy. However, such passive immunotherapy is unlikely to maintain memory T cells that might control tumor outgrowth on the long term. Active immunotherapy with vaccines has the potential to induce tumor-specific effector and memory T cells. Vaccines act through dendritic cells (DCs) which induce, regulate and maintain T cell immunity. Clinical trials testing first generation DC vaccines pulsed with tumor antigens provided a proof-of-principle that therapeutic immunity can be elicited. The increased knowledge of the DC system, including the existence of distinct DC subsets is leading to new trials which aim at improved immune and clinical outcomes. PMID:20226644

  7. Radiation tolerance of boron doped dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  8. Regulation of intestinal immune system by dendritic cells.

    PubMed

    Ko, Hyun-Jeong; Chang, Sun-Young

    2015-02-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell.

  9. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  10. Immune modulation by dendritic-cell-based cancer vaccines.

    PubMed

    Kumar, Chaitanya; Kohli, Sakshi; Bapsy, Poonamalle Parthasarathy; Vaid, Ashok Kumar; Jain, Minish; Attili, Venkata Sathya Suresh; Sharan, Bandana

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells by modulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing the recombinant human immune system components to target the pro-tumour microenvironment or by revitalizing the immune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review, current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines are discussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishing tumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy, radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents, might be beneficial to the patient.

  11. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    PubMed Central

    Svensson, Mattias; Chen, Puran; Hammarfjord, Oscar

    2010-01-01

    Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC). Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes. PMID:27713374

  12. Resistivity and thickness effects in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  13. Allogeneic IgG combined with dendritic cell stimuli induces anti-tumor T cell immunity

    PubMed Central

    Carmi, Yaron; Spitzer, Matthew H.; Linde, Ian L.; Burt, Bryan M; Prestwood, Tyler R.; Perlman, Nikola; Davidson, Matthew G.; Kenkel, Justin A.; Segal, Ehud; Pusapati, Ganesh V.; Bhattacharya, Nupur; Engleman, Edgar G.

    2015-01-01

    While cancers grow in their hosts and evade host immunity through immunoediting and immunosuppression1–5, tumors are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumors are reliably rejected by host T cells, even when the tumor and host share the same major histocompatibility complex (MHC) alleles, the most potent determinants of transplant rejection6–10. How such tumor-eradicating immunity is initiated remains unknown, though elucidating this process could provide a roadmap for inducing similar responses against naturally arising tumors. We found that allogeneic tumor rejection is initiated by naturally occurring tumor-binding IgG antibodies, which enable dendritic cells (DC) to internalize tumor antigens and subsequently activate tumor-reactive T cells. We exploited this mechanism to successfully treat autologous and autochthonous tumors. Either systemic administration of DC loaded with allogeneic IgG (alloIgG)-coated tumor cells or intratumoral injection of alloIgG in combination with DC stimuli induced potent T cell mediated anti-tumor immune responses, resulting in tumor eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumors and metastases, as well as the injected primary tumors. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumor antigens after culture with alloIgG-loaded DC, recapitulating our findings in mice. These results reveal that tumor-binding alloIgG can induce powerful anti-tumor immunity that can be exploited for cancer immunotherapy. PMID:25924063

  14. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures.

    PubMed Central

    Langhoff, E; Terwilliger, E F; Bos, H J; Kalland, K H; Poznansky, M C; Bacon, O M; Haseltine, W A

    1991-01-01

    The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection. Images PMID:1910172

  15. Differential distribution of NCX1 contributes to spine–dendrite compartmentalization in CA1 pyramidal cells

    PubMed Central

    Lőrincz, Andrea; Rózsa, Balázs; Katona, Gergely; Vizi, E. Sylvester; Tamás, Gábor

    2007-01-01

    Compartmentalization of Ca2+ between dendritic spines and shafts is governed by diffusion barriers and a range of Ca2+ extrusion mechanisms. The distinct contribution of different Ca2+ clearance systems to Ca2+ compartmentalization in dendritic spines versus shafts remains elusive. We applied a combination of ultrastructural and functional imaging methods to assess the subcellular distribution and role of NCX1 in rat CA1 pyramidal cells. Quantitative electron microscopic analysis of preembedding immunogold reactions revealed uniform densities of NCX1 along the shafts of apical and basal dendrites, but densities in dendritic shafts were approximately seven times higher than in dendritic spines. In line with these results, two-photon imaging of synaptically activated Ca2+ transients during NCX blockade showed preferential action localized to the dendritic shafts for NCXs in regulating spine–dendrite coupling. PMID:17215351

  16. Topical vaccination with functionalized particles targeting dendritic cells.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens.

  17. Impact of TRPV3 on the development of allergic dermatitis as a dendritic cell modulator.

    PubMed

    Yamamoto-Kasai, Erika; Yasui, Kiyoshi; Shichijo, Michitaka; Sakata, Tsuneaki; Yoshioka, Takeshi

    2013-12-01

    The transient receptor potential channel vanilloid subfamily V member 3 (TRPV3), which functions as a thermosensor in keratinocytes, plays an important role in the development of allergic and itchy dermatitis in rodents. Although real-time PCR analysis using lesional and non-lesional skin samples from patients with atopic dermatitis showed that TRPV3 was expressed in lesional skin, the role that TRPV3 plays in patients with dermatitis is still relatively obscure. Here, we determined whether TRPV3 was a dendritic cell (DC) modulator using DS-Nh mice with a gain-of-function mutation in TRPV3 (TRPV3Gly573Ser), because increasing skin temperature is associated with the modulation of dermal dendritic cells (DCs). Interestingly, increased responses to haptens by skin and DCs were observed in DS-Nh mice compared with those from DS mice with wild-type TRPV3. Increased thymic stromal lymphopoietin (TSLP) responses were also observed in keratinocytes from DS-Nh mice compared with those from DS mice. Taken together, we propose that the DS-Nh mouse is a good model to use in order to better understand the role of this orphan channel and that TRPV3 may represent a new therapeutic target in certain types of dermatitis through the control of DCs.

  18. [In vitro culture of human dendritic cells by using a HydroCell™].

    PubMed

    Aruga, Atsushi; Kogen, Yumi; Sakai, Mayuko; Kotera, Yoshihito; Yamamoto, Masakazu

    2011-11-01

    Cancer Immunotherapy using dendritic cells would be a feasible and useful tool for cancer treatment. However, no immunotherapy has been approved in Japan because of a lack of any randomized clinical studies. We are now trying to develop an automatic dendritic cell culture system in order to perform a large-scale randomized clinical trial. In this study, we investigated the utility of a HydroCell™ for in vitro culture of human dendritic cells induced from peripheral blood monocytes. The dendritic cells grew one and a half times when they were cultured in a HydroCell™. All the cells were floating and harvested easily without any enzymes. The cells expressed the CD80 and CD83 molecules on their surface and still had strong phagocytosis. This results demonstrated that a HydroCell™ was a useful tool for in vitro culture of dendritic cells.

  19. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  20. Tolerogenic and Activatory Plasmacytoid Dendritic Cells in Autoimmunity

    PubMed Central

    Guéry, Leslie; Hugues, Stéphanie

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are a particular subset of DCs that link innate and adaptive immunity. They are responsible for the substantial production of type 1 interferon (IFN-I) in response to viral RNA or DNA through activation of TLR7 and 9. Furthermore, pDCs present antigens (Ag) and induce naïve T cell differentiation. It has been demonstrated that pDCs can induce immunogenic T cell responses through differentiation of cytotoxic CD8+ T cells and effector CD4+ T cells. Conversely, pDCs exhibit strong tolerogenic functions by inducing CD8+ T cell deletion, CD4+ T cell anergy, and Treg differentiation. However, since IFN-I produced by pDCs efficiently activates and recruits conventional DCs, B cells, T cells, and NK cells, pDCs also indirectly affect the nature and the amplitude of adaptive immune responses. As a consequence, the precise role of Ag-presenting functions of pDCs in adaptive immunity has been difficult to dissect in vivo. Additionally, different experimental procedures led to conflicting results regarding the outcome of T cell responses induced by pDCs. During the development of autoimmunity, pDCs have been shown to play both immunogenic and tolerogenic functions depending on disease, disease progression, and the experimental conditions. In this review, we will discuss the relative contribution of innate and adaptive pDC functions in modulating T cell responses, particularly during the development of autoimmunity. PMID:23508732

  1. Dendritic cell specific targeting of MyD88 signalling pathways in vivo.

    PubMed

    Arnold-Schrauf, Catharina; Berod, Luciana; Sparwasser, Tim

    2015-01-01

    Dendritic cells (DCs) are key regulators of both innate and adaptive immunity. During infection, DCs recognise pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs) including the Toll-like receptor (TLR) family. TLRs mainly signal via the adaptor protein MyD88. This signalling pathway is required for immune protection during many infections, which are lethal in the absence of MyD88. However, the cell type specific importance of this pathway during both innate and adaptive immune responses against pathogens in vivo remains ill-defined. We discuss recent findings from conditional KO or gain-of-function mouse models targeting TLR/MyD88 signalling pathways in DCs and other myeloid cells during infection. While the general assumption that MyD88-dependent recognition by DCs is essential for inducing protective immunity holds true in some instances, the results surprisingly indicate a much more complex context-dependent requirement for this pathway in DCs and other myeloid or lymphoid cell-types in vivo. Furthermore, we highlight the advantages of Cre-mediated DC targeting approaches and their possible limitations. We also present future perspectives on the development of new genetic mouse models to target distinct DC subsets in vivo. Such models will serve to understand the functional heterogeneity of DCs in vivo.

  2. Interaction of Salmonella enterica Serotype Typhimurium with Dendritic Cells Is Defined by Targeting to Compartments Lacking Lysosomal Membrane Glycoproteins

    PubMed Central

    García-Del Portillo, Francisco; Jungnitz, Heidrun; Rohde, Manfred; Guzmán, Carlos A.

    2000-01-01

    Dendritic cells (DCs) play a central role in the generation of acquired immunity to infections by pathogenic microorganisms. Salmonella enterica serotype Typhimurium is known to survive and proliferate intracellularly within macrophages and nonphagocytic cells, but no data exist on how this pathogen interacts with DCs. In this report, we show the capacity of serotype Typhimurium to survive within the established mouse DC line CB1. In contrast to the case for the macrophage model, the compartments of DCs containing serotype Typhimurium are devoid of lysosomal membrane glycoproteins and the PhoPQ two-component regulatory system is not essential for pathogen intracellular survival. PMID:10768999

  3. Active specific T-cell-based immunotherapy for cancer: nucleic acids, peptides, whole native proteins, recombinant viruses, with dendritic cell adjuvants or whole tumor cell-based vaccines. Principles and future prospects.

    PubMed

    Fernandez, N; Duffour, M T; Perricaudet, M; Lotze, M T; Tursz, T; Zitvogel, L

    1998-03-01

    Whereas tumor cells are poor immunogens, recombinant tumor cells or dendritic cells as well as engineered viruses have been demonstrated to elicit specific antitumor immune responses leading to tumor growth suppression and long-lasting immunity in mouse tumor models. Single cytotoxic T lymphocyte-defined epitope-based strategies have proved useful for immunization in tumor-bearing mice. This strategy is under investigation in human melanoma, along with adjuvants such as cytokines or dendritic cells. Flt3L is an in vivo dendritic-cell growth factor that offers new prospects in the field of active specific immunotherapy. These immunotherapeutic approaches are being tested in clinical trials, and may open up novel avenues for disease-free patients with poor prognostic factors.

  4. Dendritic-tumor fusion cells in cancer immunotherapy.

    PubMed

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  5. Dendritic cells in autoimmune disorders and cancer of the thyroid.

    PubMed

    Lewinski, Andrzej; Sliwka, Przemyslaw Wiktor; Stasiolek, Mariusz

    2014-01-01

    Dendritic cells (DCs), considered as one of the crucial immune regulatory populations, are implicated in the immune pathology of various disorders. Also in the thyroid gland, DCs were shown to be involved in early and chronic phases of various types of autoimmunity - including Hashimoto's thyroiditis and Graves' disease. In thyroid malignant processes, DCs are suggested as an important element of both tumour defence and tumour immune evasion mechanisms. Recent findings emphasize a crucial role of interactions between particular DC subsets and other regulatory cell populations (e.g. FoxP3+ regulatory T cells) in thyroid pathology. Additionally, an increasing attention has been paid to the control of DC function by thyrometabolic conditions.

  6. Role of plasmacytoid dendritic cells in lung-associated inflammation.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Pinto, Aldo

    2010-06-01

    Plasmacytoid Dendritic Cells (pDCs) are important immune orchestrators. One of the most important features of pDCs is the high production of IFN type I that can promote the polarization of T cells towards a Th1 phenotype. Recent evidence has highlighted the relevance of pDCs in therapy for asthma, lung infections and cancer. However, it is to note that pDCs can also participate in suppressive networks via the recruitment of T regulatory cells. Further studies are needed to understand pDCs activity in the lung, not only to elucidate pathological mechanisms, but also to lead towards new therapeutic approaches for lung inflammatory-based diseases. The article also outlines recent patents on plasmacytoid DCs.

  7. Aligning bona fide dendritic cell populations across species.

    PubMed

    Dutertre, Charles-Antoine; Wang, Lin-Fa; Ginhoux, Florent

    2014-01-01

    Dendritic cells (DC) are professional antigen sensing and presenting cells that link innate and adaptive immunity. Consisting of functionally specialized subsets, they form a complex cellular network capable of integrating multiple environmental signals leading to immunity or tolerance. Much of DC research so far has been carried out in mice and increasing efforts are now being devoted to translating the findings into humans and other species. Recent studies have aligned these cellular networks across species at multiple levels from phenotype, gene expression program, ontogeny and functional specializations. In this review, we focus on recent advances in the definition of bona fide DC subsets across species. The understanding of functional similarities and differences of specific DC subsets in different animals not only brings light in the field of DC biology, but also paves the way for the design of future effective therapeutic strategies targeting these cells.

  8. Supravital uptake of methylene blue by dendritic cells within stratified squamous epithelia: a light and electron microscope study.

    PubMed

    Müller, T

    1996-03-01

    Electron microscopic data on methylene blue staining of dendritic cells in the epithelia of the soft palate and skin of the mouse after supravital dye injection are presented. The ultra-structural details were compared with corresponding light microscopic findings. Methylene blue stained tissue was fixed by immersion in a paraformaldehyde-glutaraldehyde solution containing phosphomolybdic acid. The ensuing dye precipitate was stabilized by ammonium heptamolybdate. The light microscopic investigation revealed that selective staining of dendritic cells depended on the presence of ambient oxygen. In addition, delicate morphological characteristics, like spinous structures of the dendrites, were visible. Some cells also showed terminal enlargements of the dendrites close to the surface of the epithelium. In general, visualization of morphological detail was superior to that obtained by conventional histological and immunohistochemical procedures. Nerve fibers were also stained within the epithelium as well as the subepithelial connective tissue. At the electron microscopic level, the dye was clearly identified as an electron dense precipitate that accumulated primarily within the cytoplasm near the plasma membrane. Furthermore, it was bound to the chromatin of the nuclei. No significant staining of mitochondria or other organelles was seen. Within the cytoplasm, the oxygen-dependent binding sites may be associated with heme proteins that attract both the dye in its reduced lipophilic leuco form and oxygen, followed by generation of oxygen radicals and a reoxidation of the leuco form to the cationic blue dye. Because of its selectivity for intraepithelial dendritic cells, the method described here supplements immunocytochemical procedures at both the light and electron microscopic levels.

  9. Broncho Alveolar Dendritic Cells and Macrophages Are Highly Similar to Their Interstitial Counterparts

    PubMed Central

    Maisonnasse, Pauline; Bordet, Elise; Bouguyon, Edwige; Bertho, Nicolas

    2016-01-01

    In human medicine, bronchoalveolar lavage is the main non-traumatic procedure allowing an insight into the respiratory Dendritic Cells (DC) and Macrophages populations. However, it has never been demonstrated in a relevant model that alveolar DC subpopulations were comparable to their interstitial counterparts. In a precedent work we observed that respiratory pig DC and Macrophages were more similar to the human ones than to the mouse ones. In the present work, thanks to our animal model, we were able to collect the rare bronchoalveolar DC and compare them to their interstitial counterparts. We observed that DC presented very similar gene-expression patterns in the alveolar and interstitial compartments, validating the study of human bronchoalveolar DC as surrogate of their interstitium counterparts. PMID:27992536

  10. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    SciTech Connect

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  11. Epstein-Barr Virus–induced Molecule 1 Ligand Chemokine Is Expressed by Dendritic Cells in Lymphoid Tissues and Strongly Attracts Naive T Cells and Activated B Cells

    PubMed Central

    Ngo, Vu N.; Lucy Tang, H.; Cyster, Jason G.

    1998-01-01

    Movement of T and B lymphocytes through secondary lymphoid tissues is likely to involve multiple cues that help the cells navigate to appropriate compartments. Epstein-Barr virus– induced molecule 1 (EBI-1) ligand chemokine (ELC/MIP3β) is expressed constitutively within lymphoid tissues and may act as such a guidance cue. Here, we have isolated mouse ELC and characterized its expression pattern and chemotactic properties. ELC is expressed constitutively in dendritic cells within the T cell zone of secondary lymphoid tissues. Recombinant ELC was strongly chemotactic for naive (L-selectinhi) CD4 T cells and for CD8 T cells and weakly attractive for resting B cells and memory (L-selectinlo) CD4 T cells. After activation through the B cell receptor, the chemotactic response of B cells was enhanced. Like its human counterpart, murine ELC stimulated cells transfected with EBI-1/CC chemokine receptor 7 (CCR7). Our findings suggest a central role for ELC in promoting encounters between recirculating T cells and dendritic cells and in the migration of activated B cells into the T zone of secondary lymphoid tissues. PMID:9653094

  12. Democracy-independence trade-off in oscillating dendrites and its implications for grid cells.

    PubMed

    Remme, Michiel W H; Lengyel, Máté; Gutkin, Boris S

    2010-05-13

    Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals.

  13. Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells.

    PubMed

    Park, Sung Nam; Noh, Kyung Tae; Jeong, Young-Il; Jung, In Duk; Kang, Hyun Kyu; Cha, Gil Sun; Lee, Su Jung; Seo, Jong Keun; Kang, Dae Hwan; Hwang, Tae-Ho; Lee, Eun Kyung; Kwon, Byungsuk; Park, Yeong-Min

    2013-02-08

    We evaluated the effectiveness of rhamnogalacturonan II (RG-II)-stimulated bone marrow-derived dendritic cells (BMDCs) vaccination on the induction of antitumor immunity in a mouse lymphoma model using EG7-lymphoma cells expressing ovalbumin (OVA). BMDCs treated with RG-II had an activated phenotype. RG-II induced interleukin (IL)-12, IL-1β, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production during dendritic cell (DC) maturation. BMDCs stimulated with RG-II facilitate the proliferation of CD8+ T cells. Using BMDCs from the mice deficient in Toll-like receptors (TLRs), we revealed that RG-II activity is dependent on TLR4. RG-II showed a preventive effect of immunization with OVA-pulsed BMDCs against EG7 lymphoma. These results suggested that RG-II expedites the DC-based immune response through the TLR4 signaling pathway.

  14. Airway epithelial IL-15 transforms monocytes into dendritic cells.

    PubMed

    Regamey, Nicolas; Obregon, Carolina; Ferrari-Lacraz, Sylvie; van Leer, Coretta; Chanson, Marc; Nicod, Laurent P; Geiser, Thomas

    2007-07-01

    IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.

  15. The dendritic cell side of the immunological synapse.

    PubMed

    Verboogen, Danielle R J; Dingjan, Ilse; Revelo, Natalia H; Visser, Linda J; ter Beest, Martin; van den Bogaart, Geert

    2016-02-01

    Immune responses are initiated by the interactions between antigen-presenting cells (APCs), such as dendritic cells (DCs), with responder cells, such as T cells, via a tight cellular contact interface called the immunological synapse. The immunological synapse is a highly organized subcellular structure that provides a platform for the presentation of antigen in major histocompatibility class I and II complexes (MHC class I and II) on the surface of the APC to receptors on the surface of the responder cells. In T cells, these contacts lead to highly polarized membrane trafficking that results in the local release of lytic granules and in the delivery and recycling of T cell receptors at the immunological synapse. Localized trafficking also occurs at the APC side of the immunological synapse, especially in DCs where antigen loaded in MHC class I and II is presented and cytokines are released specifically at the synapse. Whereas the molecular mechanisms underlying polarized membrane trafficking at the T cell side of the immunological synapse are increasingly well understood, these are still very unclear at the APC side. In this review, we discuss the organization of the APC side of the immunological synapse. We focus on the directional trafficking and release of membrane vesicles carrying MHC molecules and cytokines at the immunological synapses of DCs. We hypothesize that the specific delivery of MHC and the release of cytokines at the immunological synapse mechanistically resemble that of lytic granule release from T cells.

  16. The diverging roles of dendritic cells in kidney allotransplantation.

    PubMed

    Podestà, Manuel Alfredo; Cucchiari, David; Ponticelli, Claudio

    2015-07-01

    Dendritic cells (DCs) are a family of antigen presenting cells that play a paramount role in bridging innate and adaptive immunity. In murine models several subtypes of DCs have been identified, including classical DCs, monocyte-derived DCs, and plasmacytoid DCs. Quiescent, immature DCs and some subtypes of plasmacytoid cells favor the expression of regulatory T cells, but in an inflammatory milieu DCs become mature and after intercepting the antigen migrate to lymphatic system where they present the antigen to naïve T cells. Transplant rejection largely depends on the phenotype and maturation of DCs. The ischemia-reperfusion injury causes the release of endogenous molecules that are recognized as danger signals by the pattern recognition receptor of the innate immunity with subsequent activation of inflammatory cells and mediators. In this environment DCs become mature and migrate to lymphonodes where they present the alloantigen to T cells and direct their differentiation towards Th1 and Th17 effector cells. On the other hand, manipulation of DCs may favor T cell differentiation towards tolerant Th2 and T regulators (Treg). Experimental studies in murine models showed the possibility of inducing an operational tolerance by injecting immature tolerogenic DCs. Recently, such a possibility has been also confirmed in primates. Although manipulation of DCs may represent an important step ahead in kidney transplantation, a number of technical and ethical issues should be solved before its clinical application.

  17. Oral prion disease pathogenesis is impeded in the specific absence of CXCR5-expressing dendritic cells.

    PubMed

    Bradford, Barry M; Reizis, Boris; Mabbott, Neil A

    2017-03-08

    After oral exposure the early replication of certain prion strains upon stromal-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c(+) conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. But whether these cells conveyed orally-acquired prions towards FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells towards the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which CXCR5-deficiency was specifically restricted to CD11c(+) cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions towards FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally-administered prions towards FDC within Peyer's patches in order to establish host infection.IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish infection was

  18. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    NASA Astrophysics Data System (ADS)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  19. Optimizing dendritic cell-based immunotherapy for cancer.

    PubMed

    Zhong, Hua; Shurin, Michael R; Han, Baohui

    2007-06-01

    Dendritic cells (DCs) are the most powerful professional antigen-presenting cells and are unique in their capability to initiate, maintain and regulate the intensity of primary immune responses, including specific antitumor responses. Development of practical procedures to prepare sufficient numbers of functional human DCs in culture from the peripheral blood precursors, paved the way for clinical trials to evaluate various DC-based strategies in patients with malignant diseases. However, no definite conclusions regarding the clinical and even immunological efficacy of DC vaccination can be stated, despite the fact that 12 years have passed since the first clinical trial utilizing DCs in cancer patients. Many unanswered questions hamper the development of DC-based vaccines, including the source of DC preparation and protocols for DC generation, activation and loading with tumor antigens, source of tumor antigens, route of vaccine administration and methods of immunomonitoring. Fortunately, in spite of the many obstacles, DC vaccines continue to hold promise for cancer therapy.

  20. Curcumin prevents human dendritic cell response to immune stimulants

    SciTech Connect

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-09-26

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14{sup +} monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4{sup +} T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.

  1. Engineered Lentivector Targeting of Dendritic Cells for In Vivo Immunization

    PubMed Central

    Yang, Lili; Yang, Haiguang; Rideout, Kendra; Cho, Taehoon; Joo, Kye il; Ziegler, Leslie; Elliot, Abigail; Walls, Anthony; Yu, Dongzi; Baltimore, David; Wang, Pin

    2008-01-01

    We report a method of inducing antigen production in dendritic cells (DCs) by in vivo targeting with lentiviral vectors that specifically bind to the DC surface protein, DC-SIGN. To target the DCs, the lentivector was enveloped with a viral glycoprotein from Sindbis virus, engineered to be DC-SIGN-specific. In vitro, this lentivector specifically transduced DCs and induced DC maturation. A remarkable frequency (up to 12%) of ovalbumin (OVA)-specific CD8+ T cells and a significant antibody response were observed 2 weeks following injection of a targeted lentiviral vector encoding an OVA transgene into naïve mice. These mice were solidly protected against the growth of the OVA-expressing E.G7 tumor and this methodology could even induce regression of an established tumor. Thus, lentiviral vectors targeting DCs provide a simple method of producing effective immunity and may provide an alternative route for immunization with protein antigens. PMID:18297056

  2. Optimizing Dendritic Cell-Based Approaches for Cancer Immunotherapy

    PubMed Central

    Datta, Jashodeep; Terhune, Julia H.; Lowenfeld, Lea; Cintolo, Jessica A.; Xu, Shuwen; Roses, Robert E.; Czerniecki, Brian J.

    2014-01-01

    Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes. PMID:25506283

  3. Metabolic reprogramming in macrophages and dendritic cells in innate immunity

    PubMed Central

    Kelly, Beth; O'Neill, Luke AJ

    2015-01-01

    Activation of macrophages and dendritic cells (DCs) by pro-inflammatory stimuli causes them to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS), similar to the Warburg effect in tumors. However, it is only recently that the mechanisms responsible for this metabolic reprogramming have been elucidated in more detail. The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays an important role under conditions of both hypoxia and normoxia. The withdrawal of citrate from the tricarboxylic acid (TCA) cycle has been shown to be critical for lipid biosynthesis in both macrophages and DCs. Interference with this process actually abolishes the ability of DCs to activate T cells. Another TCA cycle intermediate, succinate, activates HIF-1α and promotes inflammatory gene expression. These new insights are providing us with a deeper understanding of the role of metabolic reprogramming in innate immunity. PMID:26045163

  4. Deciphering the transcriptional network of the dendritic cell lineage.

    PubMed

    Miller, Jennifer C; Brown, Brian D; Shay, Tal; Gautier, Emmanuel L; Jojic, Vladimir; Cohain, Ariella; Pandey, Gaurav; Leboeuf, Marylene; Elpek, Kutlu G; Helft, Julie; Hashimoto, Daigo; Chow, Andrew; Price, Jeremy; Greter, Melanie; Bogunovic, Milena; Bellemare-Pelletier, Angelique; Frenette, Paul S; Randolph, Gwendalyn J; Turley, Shannon J; Merad, Miriam

    2012-09-01

    Although much progress has been made in the understanding of the ontogeny and function of dendritic cells (DCs), the transcriptional regulation of the lineage commitment and functional specialization of DCs in vivo remains poorly understood. We made a comprehensive comparative analysis of CD8(+), CD103(+), CD11b(+) and plasmacytoid DC subsets, as well as macrophage DC precursors and common DC precursors, across the entire immune system. Here we characterized candidate transcriptional activators involved in the commitment of myeloid progenitor cells to the DC lineage and predicted regulators of DC functional diversity in tissues. We identified a molecular signature that distinguished tissue DCs from macrophages. We also identified a transcriptional program expressed specifically during the steady-state migration of tissue DCs to the draining lymph nodes that may control tolerance to self tissue antigens.

  5. The role of the vascular dendritic cell network in atherosclerosis

    PubMed Central

    Alberts-Grill, Noah; Denning, Timothy L.; Rezvan, Amir

    2013-01-01

    A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only recently beginning to emerge. Here, we review the available literature, characterizing the origin and function of known vascular DC subsets and their important role contributing to the balance of immune activation and immune tolerance governing vascular homeostasis under healthy conditions. We then discuss how homeostatic DC functions are disrupted during atherogenesis, leading to atherosclerosis. The effectiveness of DC-based “atherosclerosis vaccine” therapies in the treatment of atherosclerosis is also reviewed. We further provide suggestions for distinguishing DCs from macrophages and discuss important future directions for the field. PMID:23552284

  6. Dendritic cell MST1 inhibits Th17 differentiation

    PubMed Central

    Li, Chunxiao; Bi, Yujing; Li, Yan; Yang, Hui; Yu, Qing; Wang, Jian; Wang, Yu; Su, Huilin; Jia, Anna; Hu, Ying; Han, Linian; Zhang, Jiangyuan; Li, Simin; Tao, Wufan; Liu, Guangwei

    2017-01-01

    Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. PMID:28145433

  7. The role of dendritic cells in CNS autoimmunity

    PubMed Central

    Zozulya, Alla L.; Clarkson, Benjamin D.; Ortler, Sonja; Fabry, Zsuzsanna

    2010-01-01

    Multiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS). Dendritic cells (DC) have recently emerged as key modulators of this immunopathological cascade, as supported by studies in humans and experimental disease models. In one such model, experimental autoimmune encephalomyelitis (EAE), CNS microvessel-associated DC have been shown to be essential for local antigen recognition by myelin-reactive T cells. Moreover, the functional state and compartmental distribution of DC derived from CNS and associated lymphatics seem to be limiting factors in both the induction and effector phases of EAE. Moreover, DC modulate and balance the recruitment of encephalitogenic and regulatory T cells into CNS tissue. This capacity is critically influenced by DC surface expression of co-stimulatory or co-inhibitory molecules. The fact that DC accumulate in the CNS before T cells and can direct T-cell responses suggests that they are key determinants of CNS autoimmune outcomes. Here we provide a comprehensive review of recent advances in our understanding of CNS-derived DC and their relevance to neuroinflammation. PMID:20217033

  8. Uncoupling Dendrite Growth and Patterning: Single Cell Knockout Analysis of NMDA Receptor 2B

    PubMed Central

    Espinosa, J. Sebastian; Wheeler, Damian G.; Tsien, Richard W.; Luo, Liqun

    2009-01-01

    SUMMARY N-Methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use MADM (Mosaic Analysis with Double Markers) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell-autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching. PMID:19409266

  9. Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B.

    PubMed

    Espinosa, J Sebastian; Wheeler, Damian G; Tsien, Richard W; Luo, Liqun

    2009-04-30

    N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length, and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching.

  10. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2014-07-01

    by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine...ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on human dendritic cells (DCs) to optimize Listeria - based

  11. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  12. Altered heme-mediated modulation of dendritic cell function in sickle cell alloimmunization

    PubMed Central

    Godefroy, Emmanuelle; Liu, Yunfeng; Shi, Patricia; Mitchell, W. Beau; Cohen, Devin; Chou, Stella T.; Manwani, Deepa; Yazdanbakhsh, Karina

    2016-01-01

    Transfusions are the main treatment for patients with sickle cell disease. However, alloimmunization remains a major life-threatening complication for these patients, but the mechanism underlying pathogenesis of alloimmunization is not known. Given the chronic hemolytic state characteristic of sickle cell disease, resulting in release of free heme and activation of inflammatory cascades, we tested the hypothesis that anti-inflammatory response to heme is compromised in alloimmunized sickle patients, increasing their risk of alloimmunization. Heme-exposed monocyte-derived dendritic cells from both non-alloimmunized sickle patients and healthy donors inhibited priming of pro-inflammatory CD4+ type 1 T cells, and exhibited significantly reduced levels of the maturation marker CD83. In contrast, in alloimmunized patients, heme did not reverse priming of pro-inflammatory CD4+ cells by monocyte-derived dendritic cells or their maturation. Furthermore, heme dampened NF-κB activation in non-alloimmunized, but not in alloimmunized monocyte-derived dendritic cells. Heme-mediated CD83 inhibition depended on Toll-like receptor 4 but not heme oxygenase 1. These data suggest that extracellular heme limits CD83 expression on dendritic cells in non-alloimmunized sickle patients through a Toll-like receptor 4-mediated pathway, involving NF-κB, resulting in dampening of pro-inflammatory responses, but that in alloimmunized patients this pathway is defective. This opens up the possibility of developing new therapeutic strategies to prevent sickle cell alloimmunization. PMID:27229712

  13. Clinical significance of circulating dendritic cells in patients with systemic lupus erythematosus.

    PubMed Central

    Robak, E; Smolewski, P; Woźniacka, A; Sysa-Jedrzejowska, A; Robak, T

    2004-01-01

    Dendritic cells are a complex group of mainly bone-marrow-derived leukocytes that play a role in autoimmune diseases. The total number of circulating dendritic cells (tDC), and their plasmacytoid dendritic cell (pDC) and myeloid dendritic cell (mDC1 and mDC2) subpopulations were assessed using flow cytometry. The number of tDC and their subsets were significantly lower in systemic lupus erythematosus patients than in the control group. The count of tDC and their subsets correlated with the number of T cells. The number of tDC and pDC subpopulation were lower in the patients with lymphopenia and leukopenia than in the patients without these symptoms. Our data suggest that fluctuations in blood dendritic cell count in systemic lupus erythematosus patients are much more significant in pDC than in mDC, what may be caused by their migration to the sites of inflammation including skin lesions. Positive correlation between dendritic cell number and TCD4+, TCD8+ and CD19+ B cells, testify of their interactions and influence on SLE pathogenesis. The association between dendritic cell number and clinical features seems to be less clear. PMID:15223608

  14. Dendritic cell-based immunotherapy for cancer and relevant challenges for transfusion medicine.

    PubMed

    Voss, Ching Y; Albertini, Mark R; Malter, James S

    2004-07-01

    The encouraging results from dendritic cell-related cancer immunotherapy have created tremendous interest for its broad clinical application. Dendritic cells are the most potent antigen-presenting cells. In cancer patients, dendritic cell production and function along with other antitumor immune defenses are compromised. Autologous dendritic cells enriched and sensitized in vitro with tumor-associated antigens can effectively elicit host cellular immunity against cancer and result in clinical antitumor responses through either direct injection or ex vivo generation of antitumor T lymphocytes. In small group studies, clinical response rates have reached 50% in patients with advanced stage of cancer. These cellular products caused minimal side effects and were well tolerated. The isolation and preparation of clinical grade dendritic cells have been driven by transfusion medicine specialists who are well versed in similar processes for hematopoietic stem-cell preparation. The purpose of this article is to review the mechanisms of tumor immune surveillance and the biology of dendritic cells relevant to tumor antigen presentation, sensitization, and T-lymphocyte stimulation. Information on tumor-associated antigens and clinical trial results with dendritic cell-based cancer immunotherapy are summarized. The potential challenges for blood banking/transfusion medicine involving both technical and regulatory issues are discussed.

  15. GABAergic Signaling Is Linked to a Hypermigratory Phenotype in Dendritic Cells Infected by Toxoplasma gondii

    PubMed Central

    Kumar Mendu, Suresh; Jin, Zhe; Wallin, Robert P. A.; Rethi, Bence; Birnir, Bryndis; Barragan, Antonio

    2012-01-01

    During acute infection in human and animal hosts, the obligate intracellular protozoan Toxoplasma gondii infects a variety of cell types, including leukocytes. Poised to respond to invading pathogens, dendritic cells (DC) may also be exploited by T. gondii for spread in the infected host. Here, we report that human and mouse myeloid DC possess functional γ-aminobutyric acid (GABA) receptors and the machinery for GABA biosynthesis and secretion. Shortly after T. gondii infection (genotypes I, II and III), DC responded with enhanced GABA secretion in vitro. We demonstrate that GABA activates GABAA receptor-mediated currents in T. gondii-infected DC, which exhibit a hypermigratory phenotype. Inhibition of GABA synthesis, transportation or GABAA receptor blockade in T. gondii-infected DC resulted in impaired transmigration capacity, motility and chemotactic response to CCL19 in vitro. Moreover, exogenous GABA or supernatant from infected DC restored the migration of infected DC in vitro. In a mouse model of toxoplasmosis, adoptive transfer of infected DC pre-treated with GABAergic inhibitors reduced parasite dissemination and parasite loads in target organs, e.g. the central nervous system. Altogether, we provide evidence that GABAergic signaling modulates the migratory properties of DC and that T. gondii likely makes use of this pathway for dissemination. The findings unveil that GABA, the principal inhibitory neurotransmitter in the brain, has activation functions in the immune system that may be hijacked by intracellular pathogens. PMID:23236276

  16. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells

    PubMed Central

    Bosch, Carles; Masachs, Nuria; Exposito-Alonso, David; Martínez, Albert; Teixeira, Cátia M.; Fernaud, Isabel; Pujadas, Lluís; Ulloa, Fausto; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2016-01-01

    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic

  17. Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells

    PubMed Central

    Roider, Tobias; Katzfuß, Michael; Matos, Carina; Singer, Katrin; Renner, Kathrin; Oefner, Peter J.; Dettmer-Wilde, Katja; Herr, Wolfgang; Holler, Ernst; Kreutz, Marina; Peter, Katrin

    2016-01-01

    Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon®) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo. PMID:27973435

  18. Follicular Dendritic Cells Emerge from Ubiquitous Perivascular Precursors

    PubMed Central

    Krautler, Nike Julia; Kana, Veronika; Kranich, Jan; Tian, Yinghua; Perera, Dushan; Lemm, Doreen; Schwarz, Petra; Armulik, Annika; Browning, Jeffrey L.; Tallquist, Michelle; Buch, Thorsten; Oliveira-Martins, José B.; Zhu, Caihong; Hermann, Mario; Wagner, Ulrich; Brink, Robert; Heikenwalder, Mathias; Aguzzi, Adriano

    2013-01-01

    Summary The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ+-derived cells abolished FDC, indicating that FDC originate from PDGFRβ+ cells. Lymphotoxin-α-overexpressing prion protein (PrP)+ kidneys developed PrP+ FDC after transplantation into PrP mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRβ+ stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin β receptor (LTβR) kidney capsules, differentiated into Mfge8+CD21/35+ FcγRIIβ+PrP+ FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRβ+ FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation. PMID:22770220

  19. Hypergravity Effects on Dendritic Cells and Vascular Wall Interactions

    NASA Astrophysics Data System (ADS)

    Bellik, L.; Parenti, A.; Ledda, F.; Basile, V.; Romano, G.; Fusi, F.; Monici, M.

    2009-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells inducing specific immune responses, are involved in the pathogenesis of atherosclerosis. In this inflammatory disease, DCs increase in number, being particularly abundant in the shoulder regions of plaques. Since the exposure to altered gravitational conditions results in a significant impairment of the immune function, the aim of this study was to investigate the effects of hypergravity on both the function of DCs and their interactions with the vascular wall cells. Monocytes from peripheral blood mononuclear cells of healthy volunteers were sorted by CD14+ magnetic beads selection, cultured for 6 days in medium supplemented with GM-CSF and IL-4, followed by a further maturation stimulus. DC phenotype, assessed by flow cytometry, showed a high expression of the specific DC markers CD80, CD86, HLA-DR and CD83. The DCs obtained were then exposed to hypergravitational stimuli and their phenotype, cytoskeleton, ability to activate lymphocytes and interaction with vascular wall cells were investigated. The findings showed that the exposure to hypergravity conditions resulted in a significant impairment of DC cytoskeletal organization, without affecting the expression of DC markers. Moreover, an increase in DC adhesion to human vascular smooth muscle cells and in their ability to activate lymphocytes was observed.

  20. Dendritic Cell-Mediated In Vivo Bone Resorption

    PubMed Central

    Maitra, Radhashree; Follenzi, Antonia; Yaghoobian, Arash; Montagna, Cristina; Merlin, Simone; Cannizzo, Elvira S.; Hardin, John A.; Cobelli, Neil; Stanley, E. Richard; Santambrogio, Laura

    2013-01-01

    Osteoclasts are resident cells of the bone that are primarily involved in the physiological and pathological remodeling of this tissue. Mature osteoclasts are multinucleated giant cells that are generated from the fusion of circulating precursors originating from the monocyte/macrophage lineage. During inflammatory bone conditions in vivo, de novo osteoclastogenesis is observed but it is currently unknown whether, besides increased osteoclast differentiation from undifferentiated precursors, other cell types can generate a multinucleated giant cell phenotype with bone resorbing activity. In this study, an animal model of calvaria-induced aseptic osteolysis was used to analyze possible bone resorption capabilities of dendritic cells (DCs). We determined by FACS analysis and confocal microscopy that injected GFP-labeled immature DCs were readily recruited to the site of osteolysis. Upon recruitment, the cathepsin K-positive DCs were observed in bone-resorbing pits. Additionally, chromosomal painting identified nuclei from female DCs, previously injected into a male recipient, among the nuclei of giant cells at sites of osteolysis. Finally, osteolysis was also observed upon recruitment of CD11c-GFP conventional DCs in Csf1r–/– mice, which exhibit a severe depletion of resident osteoclasts and tissue macrophages. Altogether, our analysis indicates that DCs may have an important role in bone resorption associated with various inflammatory diseases. PMID:20581147

  1. Defining human dendritic cell progenitors by multiparametric flow cytometry

    PubMed Central

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-01-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3–7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  2. Dendritic cell targeted vaccines: Recent progresses and challenges

    PubMed Central

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  3. Aging and the Dendritic Cell System: Implications for Cancer

    PubMed Central

    Shurin, Michael R.; Shurin, Galina V.; Chatta, Gurkamal S.

    2007-01-01

    The immune system shows a decline in responsiveness to antigens both with aging, as well as in the presence of tumors. The malfunction of the immune system with age can be attributed to developmental and functional alterations in several cell populations. Previous studies have shown defects in humoral responses and abnormalities in T cell function in aged individuals, but have not distinguished between abnormalities in antigen presentation and intrinsic T cell or B cell defects in aged individuals. Dendritic cells (DC) play a pivotal role in regulating immune responses by presenting antigens to naïve T lymphocytes, modulating Th1/Th2/Treg balance, producing numerous regulatory cytokines and chemokines, and modifying survival of immune effectors. DC are receiving increased attention due to their involvement in the immunobiology of tolerance and autoimmunity, as well as their potential role as biological adjuvants in tumor vaccines. Recent advances in the molecular and cell biology of different DC populations allow for addressing the issue of DC and aging both in rodents and humans. Since DC play a crucial role in initiating and regulating immune responses, it is reasonable to hypothesize that they are directly involved in altered antitumor immunity in aging. However, the results of studies focusing on DC in the elderly are conflicting. The present review summarizes the available human and experimental animal data on quantitative and qualitative alterations of DC in aging and discusses the potential role of the DC system in the increased incidence of cancer in the elderly. PMID:17446082

  4. Mouse models of sickle cell disease.

    PubMed

    Beuzard, Y

    2008-01-01

    In the absence of a natural animal model for sickle cell disease, transgenic mouse models have been generated to better understand the complex pathophysiology of the disease and to evaluate potential specific therapies. In the early nineties, the simple addition of human globin genes induced the expression of hemoglobin S (HbS) or HbS-related human hemoglobins in mice still expressing mouse hemoglobin. To increase the proportion of human hemoglobin and the severity of the mouse sickle cell syndrome, the proportion of mouse hemoglobin could be decreased by a combination of mouse alpha- and beta-thalassemic defects, leading to complex genotypes and mild disease. Following the discovery of gene targeting in the mouse embryonic stem cells (ES cells), it was made possible to knock out all mouse adult globin genes (2alpha and 2beta) and to add the human homologous genes elsewhere in the mouse genome. In addition, the human gamma gene of fetal hemoglobin was protecting the fetus from HbS polymer formation. Accordingly, the resulting adult mouse models obtained in 1997, expressing human HbS-only, had a very severe anemia (Hb=5-6 g/dL). In order to survive, these "HbS-only mice" had to reduce the HbS concentration within the red blood cells. The phenotype could be less severe by adding modified human gamma genes, still expressed in adult mice. In 2006, a last "S-only" model was obtained by homologous knock in, replacing the mouse globin genes by human genes. This array of models contributes to better understand the role of different interacting factors in the complexity of sickle cell events, such as red cell defects, changes in blood flow and vaso-occlusion, hyperhemolysis, vascular tone dysregulation, oxidations, inflammation, activation and adhesion of cells, ischemia, reperfusion... In addition, each model has an appropriate usefulness to evaluate experimental therapies in vivo and to perform preclinical studies.

  5. In vitro generation of cytotoxic T lymphocyte response using dendritic cell immunotherapy in osteosarcoma

    PubMed Central

    He, Ye-Teng; Zhang, Qing-Min; Kou, Quan-Chun; Tang, Bo

    2016-01-01

    Immunotherapy with tumor lysate-pulsed dendritic cells (DCs) is one of the breakthrough strategies used in the treatment of cancer. However, DC-based immunotherapies for osteosarcoma are limited. In the present study, preclinical studies of a C3H osteosarcoma mouse model (produced by subcutaneous injection of LM8 murine osteosarcoma cells) validated the concept that LM8 cell lysate-pulsed bone marrow-derived DCs may evoke a more potent immune response compared with DCs that have been matured using polyinosinic:polycytidylic acid (poly I:C). A cytotoxic T lymphocyte (CTL) response was established using two groups of C3H mice (n=9) with osteosarcoma; the treatment group consisted of LM8 cell lysate-pulsed DCs and the control group consisted of DCs matured using poly I:C. Each group was immunized with doses of 1×106 cells twice per week for 3 weeks. No difference in the expression of cluster of differentiation markers was identified in the two groups. DCs pulsed with LM8 cell lysate were associated with the increased induction of CTL activity. Serum interferon-γ levels were increased in mice that received DCs pulsed with LM8 cell lysate compared with that in the poly I:C-matured DC group (P<0.041). Serum interleukin-4 was decreased in the treatment group vs. the control group (P<0.033). A mixed lymphocyte reaction assay confirmed that LM8-DC immunotherapy may evoke a significant antigen-specific immune response in a mouse model. The present study reveals promising data on efficacy of a DC-based immunotherapy in the treatment of osteosarcoma; however, further clinical studies are warranted. PMID:27446401

  6. Designing vaccines based on biology of human dendritic cell subsets

    PubMed Central

    Palucka, Karolina; Banchereau, Jacques; Mellman, Ira

    2010-01-01

    The effective vaccines developed against a variety of infectious agents, including polio, measles and Hepatitis B, represent major achievements in medicine. These vaccines, usually composed of microbial antigens, are often associated with an adjuvant that activates dendritic cells (DCs). Many infectious diseases are still in need of an effective vaccine including HIV, malaria, hepatitis C and tuberculosis. In some cases, the induction of cellular rather than humoral responses may be more important as the goal is to control and eliminate the existing infection rather than to prevent it. Our increased understanding of the mechanisms of antigen presentation, particularly with the description of DC subsets with distinct functions, as well as their plasticity in responding to extrinsic signals, represent opportunities to develop novel vaccines. In addition, we foresee that this increased knowledge will permit us to design vaccines that will reprogram the immune system to intervene therapeutically in cancer, allergy and autoimmunity. PMID:21029958

  7. Increased plasmacytoid dendritic cells in Guillain-Barré syndrome.

    PubMed

    Wang, Yu-Zhong; Feng, Xun-Gang; Wang, Qian; Xing, Chun-Ye; Shi, Qi-Guang; Kong, Qing-Xia; Cheng, Pan-Pan; Zhang, Yong; Hao, Yan-Lei; Yuki, Nobuhiro

    2015-06-15

    Guillain-Barré syndrome (GBS) is a post-infectious autoimmune disease. Dendritic cells (DCs) can recognize the pathogen and modulate the host immune response. Exploring the role of DCs in GBS will help our understanding of the disease development. In this study, we aimed to analyze plasmacytoid and conventional DCs in peripheral blood of patients with GBS at different stages of the disease: acute phase as well as early and late recovery phases. There was a significant increase of plasmacytoid DCs in the acute phase (p=0.03 vs healthy donors). There was a positive correlation between percentage of plasmacytoid DCs and the clinical severity of patients with GBS (r=0.61, p<0.001). Quantitative polymerase chain reaction and flow cytometry confirmed the aberrant plasmacytoid DCs in GBS. Thus, plasmacytoid DCs may participate in the development of GBS.

  8. New generation of oral mucosal vaccines targeting dendritic cells

    PubMed Central

    Owen, Jennifer L.; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-01-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including B. anthracis in experimental models of disease. PMID:23835515

  9. New generation of oral mucosal vaccines targeting dendritic cells.

    PubMed

    Owen, Jennifer L; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-12-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease.

  10. Differential functional effects of biomaterials on dendritic cell maturation.

    PubMed

    Park, Jaehyung; Babensee, Julia E

    2012-10-01

    The immunological outcome of dendritic cell (DC) treatment with different biomaterials was assessed to demonstrate the range of DC phenotypes induced by biomaterials commonly used in combination products. Immature DCs (iDCs) were derived from human peripheral blood monocytes, and treated with different biomaterial films of alginate, agarose, chitosan, hyaluronic acid (HA), or 75:25 poly(lactic-co-glycolic acid) (PLGA) and a comprehensive battery of phenotypic functional outcomes was assessed. Different levels of functional changes in DC phenotype were observed depending on the type of biomaterial films used to treat the DCs. Treatment of DCs with PLGA or chitosan films supported DC maturation, with higher levels of DC allostimulatory capacity, pro-inflammatory cytokine release, and expression of CD80, CD86, CD83, HLA-DQ and CD44 compared with iDCs, and lower endocytic ability compared with iDCs. Alginate film induced pro-inflammatory cytokine release from DCs at levels higher than from iDCs. Dendritic cells treated with HA film expressed lower levels of CD40, CD80, CD86 and HLA-DR compared with iDCs. They also exhibited lower endocytic ability and CD44 expression than iDCs, possibly due to an insolubilized (cross-linked) form of high molecular weight HA. Interestingly, treatment of DCs with agarose film maintained the DC functional phenotype at levels similar to iDCs except for CD44 expression, which was lower than that of iDCs. Taken together, these results can provide selection criteria for biomaterials to be used in immunomodulating applications and can inform potential outcomes of biomaterials within combination products on associated immune responses as desired by the application.

  11. Role of Dendritic Cells in the Pathogenesis of Whipple's Disease

    PubMed Central

    Schinnerling, Katina; Geelhaar-Karsch, Anika; Allers, Kristina; Friebel, Julian; Conrad, Kristina; Loddenkemper, Christoph; Kühl, Anja A.; Erben, Ulrike; Ignatius, Ralf; Schneider, Thomas

    2014-01-01

    Accumulation of Tropheryma whipplei-stuffed macrophages in the duodenum, impaired T. whipplei-specific Th1 responses, and weak secretion of interleukin-12 (IL-12) are hallmarks of classical Whipple's disease (CWD). This study addresses dendritic cell (DC) functionality during CWD. We documented composition, distribution, and functionality of DC ex vivo or after in vitro maturation by fluorescence-activated cell sorting (FACS) and by immunohistochemistry in situ. A decrease in peripheral DC of untreated CWD patients compared to healthy donors was due to reduced CD11chigh myeloid DC (M-DC). Decreased maturation markers CD83, CD86, and CCR7, as well as low IL-12 production in response to stimulation, disclosed an immature M-DC phenotype. In vitro-generated monocyte-derived DC from CWD patients showed normal maturation and T cell-stimulatory capacity under proinflammatory conditions but produced less IL-12 and failed to activate T. whipplei-specific Th1 cells. In duodenal and lymphoid tissues, T. whipplei was found within immature DC-SIGN+ DC. DC and proliferating lymphocytes were reduced in lymph nodes of CWD patients compared to levels in controls. Our results indicate that dysfunctional IL-12 production by DC provides suboptimal conditions for priming of T. whipplei-specific T cells during CWD and that immature DC carrying T. whipplei contribute to the dissemination of the bacterium. PMID:25385798

  12. Thrombin regulates the function of human blood dendritic cells

    SciTech Connect

    Yanagita, Manabu; Kobayashi, Ryohei; Kashiwagi, Yoichiro; Shimabukuro, Yoshio; Murakami, Shinya E-mail: ipshinya@dent.osaka-u.ac.jp

    2007-12-14

    Thrombin is the key enzyme in the coagulation cascade and activates endothelial cells, neutrophils and monocytes via protease-activated receptors (PARs). At the inflammatory site, immune cells have an opportunity to encounter thrombin. However little is known about the effect of thrombin for dendritic cells (DC), which are efficient antigen-presenting cells and play important roles in initiating and regulating immune responses. The present study revealed that thrombin has the ability to stimulate blood DC. Plasmacytoid DC (PDC) and myeloid DC (MDC) isolated from PBMC expressed PAR-1 and released MCP-1, IL-10, and IL-12 after thrombin stimulation. Unlike blood DC, monocyte-derived DC (MoDC), differentiated in vitro did not express PAR-1 and were unresponsive to thrombin. Effects of thrombin on blood DC were significantly diminished by the addition of anti-PAR-1 Ab or hirudin, serine protease inhibitor. Moreover, thrombin induced HLA-DR and CD86 expression on DC and the thrombin-treated DC induced allogenic T cell proliferation. These findings indicate that thrombin plays a role in the regulation of blood DC functions.

  13. Dendritic cells therapy confers a protective microenvironment in murine pregnancy.

    PubMed

    Miranda, S; Litwin, S; Barrientos, G; Szereday, L; Chuluyan, E; Bartho, J S; Arck, P C; Blois, S M

    2006-11-01

    The fetal-placental unit is a semi-allograft and immunological recognition of pregnancy, together with the subsequent response of the maternal immune system, is necessary for a successful pregnancy. Dendritic cells (DC) show a biological plasticity that confers them special characteristics regulating both immunity and tolerance. Therapy employing DC proved to diminish the abortion in the DBA/2J-mated CBA/J females; however, the underlying mechanisms remain unknown. Here, we evaluated whether DC therapy influences the presence of immunoregulatory populations of cells at the fetal-maternal interface. To address this hypothesis, we analysed the pregnancy-protective CD8, gammadelta cell populations as well as transforming growth factor (TGF)-beta1 and progesterone-induced blocking factor (PIBF) expression at the fetal-maternal interface from abortion-prone female mice that had previously received adoptive transfer of syngeneic DC. Syngeneic DC therapy induced an increase in the number of CD8 and gammadelta cells. Additionally, an upregulation of TGF-beta1 and PIBF expression could be detected after DC transfer. We suggest that DC therapy differentially upregulates a regulatory/protective population of cells at the fetal-maternal interface. It is reasonable to assure that this mechanism would be responsible for the lower abortion rate.

  14. Probiotic modulation of dendritic cell function is influenced by ageing.

    PubMed

    You, Jialu; Dong, Honglin; Mann, Elizabeth R; Knight, Stella C; Yaqoob, Parveen

    2014-02-01

    Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, Lactobacillus rhamnosus GG (L.GG) and L. casei Shirota (LcS), on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-β, TNF-α) by old DCs only. LcS induced IL-12 and IFNγ production by DC to a greater degree than other strains, while B. longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR.

  15. Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells.

    PubMed

    Ohashi, Ryo; Sakata, Shin-ichi; Naito, Asami; Hirashima, Naohide; Tanaka, Masahiko

    2014-04-01

    Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca(2+) release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single-cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain-derived neurotrophic factor (BDNF) in the culture medium. The ryanodine-induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells.

  16. Novel immunomodulatory effects of adiponectin on dendritic cell functions.

    PubMed

    Tsang, Julia Yuen Shan; Li, Daxu; Ho, Derek; Peng, Jiao; Xu, Aimin; Lamb, Jonathan; Chen, Yan; Tam, Paul Kwong Hang

    2011-05-01

    Adiponectin (ADN) is an adipocytokine with anti-inflammatory properties. Although it has been reported that ADN can inhibit the immunostimulatory function of monocytes and macrophages, little is known of its effect on dendritic cells (DC). Recent data suggest that ADN can regulate immune responses. DCs are uniquely specialised antigen presenting cells that play a central role in the initiation of immunity and tolerance. In this study, we have investigated the immuno- modulatory effects of ADN on DC functions. We found that ADN has only moderate effect on the differentiation of murine bone marrow (BM) derived DCs but altered the phenotype of DCs. The expression of major histocompatibilty complex class II (MHCII), CD80 and CD86 on ADN conditioned DCs (ADN-DCs) was lower than that on untreated cells. The production of IL-12p40 was also suppressed in ADN-DCs. Interestingly, ADN treated DCs showed an increase in the expression of the inhibitory molecule, programmed death-1 ligand (PDL-1) compared to untreated cells. In vitro co-culture of ADN-DCs with allogeneic T cells led to a decrease in T cell proliferation and reduction of IL-2 production. Concomitant with that, a higher percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) was detected in co-cultures of T cells and ADN-DCs. Blocking PD-1/PDL-1 pathway could partially restore T cell function. These findings suggest that the immunomodulatory effect of ADN on immune responses could be at least partially be mediated by its ability to alter DC function. The PD-1/PDL-1 pathway and the enhancement of Treg expansion are implicated in the immunomodulatory mechanisms.

  17. Regulation of Neonatal Development of Retinal Ganglion Cell Dendrites by Neurotrophin-3 Overexpression

    PubMed Central

    Liu, Xiaorong; Robinson, Michael L.; Schreiber, Ann Marie; Wu, Vincent; LaVail, Matthew M.; Cang, Jianhua; Copenhagen, David R.

    2009-01-01

    The morphology of dendrites constrains and reflects the nature of synaptic inputs to neurons. The visual system has served as a useful model to show how visual function is determined by the arborization patterns of neuronal processes. In retina, light ON and light OFF responding ganglion cells selectively elaborate their dendritic arbors in distinct sublamina, where they receive, respectively, inputs from ON and OFF bipolar cells. During neonatal maturation, the bi-laminarly distributed dendritic arbors of ON-OFF RGCs are refined to more narrowly localized monolaminar structures characteristic of ON or OFF RGCs. Recently, brain-derived neurotrophic factor (BDNF) has been shown to regulate this laminar refinement, and, additionally, to enhance the development of dendritic branches selectively of ON RGCs. Although other related neurotrophins are known to regulate neuronal process formation in the central nervous system, little is known about their action in maturing retina. Here, we report that overexpression of neurotrophin-3 (NT-3) in the eye accelerates RGC laminar refinement before eye opening. Furthermore, NT-3 overexpression increases dendritic branch number but reduces dendritic elongation preferentially in ON-OFF RGCs, a process that also occurs before eye opening. NT-3 overexpression does affect dendritic maturation in ON RGCs, but to a much less degree. Taken together, our results suggest that NT-3 and BDNF exhibit overlapping effects in laminar refinement but distinct RGC-cell-type specific effects in shaping dendritic arborization during postnatal development. PMID:19350645

  18. Autologous Dendritic Cells Prolong Allograft Survival Through Tmem176b-Dependent Antigen Cross-Presentation

    PubMed Central

    Charnet, P.; Savina, A.; Tilly, G.; Gautreau, L.; Carretero-Iglesia, L.; Beriou, G.; Cebrian, I.; Cens, T.; Hepburn, L.; Chiffoleau, E.; Floto, R. A.; Anegon, I.; Amigorena, S.; Hill, M.; Cuturi, M. C.

    2015-01-01

    The administration of autologous (recipient-derived) tolerogenic dendritic cells (ATDCs) is under clinical evaluation. However, the molecular mechanisms by which these cells prolong graft survival in a donor-specific manner is unknown. Here, we tested mouse ATDCs for their therapeutic potential in a skin transplantation model. ATDC injection in combination with anti-CD3 treatment induced the accumulation of CD8+CD11c+ T cells and significantly prolonged allograft survival. TMEM176B is an intracellular protein expressed in ATDCs and initially identified in allograft tolerance. We show that Tmem176b−/− ATDCs completely failed to trigger both phenomena but recovered their effect when loaded with donor peptides before injection. These results strongly suggested that ATDCs require TMEM176B to cross-present antigens in a tolerogenic fashion. In agreement with this, Tmem176b−/− ATDCs specifically failed to cross-present male antigens or ovalbumin to CD8+ T cells. Finally, we observed that a Tmem176b-dependent cation current controls phagosomal pH, a critical parameter in cross-presentation. Thus, ATDCs require TMEM176B to cross-present donor antigens to induce donor-specific CD8+CD11c+ T cells with regulatory properties and prolong graft survival. PMID:24731243

  19. Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes

    PubMed Central

    Alfaro, Carlos; Suarez, Natalia; Oñate, Carmen; Perez-Gracia, Jose L.; Martinez-Forero, Ivan; Hervas-Stubbs, Sandra; Rodriguez, Inmaculada; Perez, Guiomar; Bolaños, Elixabet; Palazon, Asis; de Sanmamed, Miguel Fernandez; Morales-Kastresana, Aizea; Gonzalez, Alvaro; Melero, Ignacio

    2011-01-01

    Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2d) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2d) are coinjected in the footpad of mice with autologous DC (H-2b). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC. PMID:22206007

  20. Dendritic cells in hyperplastic thymuses from patients with myasthenia gravis.

    PubMed

    Nagane, Yuriko; Utsugisawa, Kimiaki; Obara, Daiji; Yamagata, Munehisa; Tohgi, Hideo

    2003-05-01

    To investigate the role of dendritic cells (DCs) in the hyperplastic myasthenia gravis (MG) thymus, we studied the frequency and distribution of three mature DC phenotypes (CD83(+)CD11c(+), CD86(+)CD11c(+), and HLA-DR(+)CD11c(+)) in samples from patients with MG whose symptoms dramatically improved following thymectomy and in non-MG control thymuses. In hyperplastic MG thymuses, mature DCs were much more numerous in nonmedullary areas, such as the subcapsular/outer cortex; around the germinal centers; and in extralobular connective tissue, particularly around blood vessels. Mature DCs strongly coexpressed CD44 and appeared to be components of a CD44-highly positive (CD44(high)) cell population migrating from the vascular system. Furthermore, in the hyperplastic MG thymus, the expression of secondary lymphoid-tissue chemokine (SLC) markedly increased especially around extralobular blood vessels, where the CD44(high) cell population accumulated. These findings suggest that DCs may migrate into the hyperplastic thymus from the vascular system via mechanisms that involve CD44 and SLC. DCs may present self-antigens, thereby promoting the priming and/or boosting of potentially autoreactive T cells against the acetylcholine receptor.

  1. Immunogenicity is preferentially induced in sparse dendritic cell cultures

    PubMed Central

    Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence

    2017-01-01

    We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation. PMID:28276533

  2. Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance

    PubMed Central

    Mackern-Oberti, Juan P.; Vega, Fabián; Llanos, Carolina; Bueno, Susan M.; Kalergis, Alexis M.

    2014-01-01

    Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs) play a major role in promoting immune tolerance against self-antigens (self-Ags), current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs) during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders. PMID:25229821

  3. Candida albicans mannoprotein influences the biological function of dendritic cells.

    PubMed

    Pietrella, Donatella; Bistoni, Giovanni; Corbucci, Cristina; Perito, Stefano; Vecchiarelli, Anna

    2006-04-01

    Cell wall components of fungi involved in induction of host immune response are predominantly proteins and glycoproteins, the latter being mainly mannoproteins (MP). In this study we analyse the interaction of the MP from Candida albicans (MP65) with dendritic cells (DC) and demonstrate that MP65 stimulates DC and induces the release of TNF-alpha, IL-6 and the activation of IL-12 gene, with maximal value 6 h post treatment. MP65 induces DC maturation by increasing costimulatory molecules and decreasing CD14 and FcgammaR molecule expression. The latter effect is partly mediated by toll-like receptor 2 (TLR2) and TLR4, and the MyD88-dependent pathway is involved in the process. MP65 enables DC to activate T cell response, its protein core is essential for induction of T cell activation, while its glycosylated portion primarily promotes cytokine production. The mechanisms involved in induction of protective response against C. albicans could be mediated by the MP65 antigen, suggesting that MP65 may be a suitable candidate vaccine.

  4. Dermal Neutrophil, Macrophage and Dendritic Cell Responses to Yersinia pestis Transmitted by Fleas

    PubMed Central

    Shannon, Jeffrey G.; Bosio, Christopher F.; Hinnebusch, B. Joseph

    2015-01-01

    Yersinia pestis, the causative agent of plague, is typically transmitted by the bite of an infected flea. Many aspects of mammalian innate immune response early after Y. pestis infection remain poorly understood. A previous study by our lab showed that neutrophils are the most prominent cell type recruited to the injection site after intradermal needle inoculation of Y. pestis, suggesting that neutrophil interactions with Y. pestis may be important in bubonic plague pathogenesis. In the present study, we developed new tools allowing for intravital microscopy of Y. pestis in the dermis of an infected mouse after transmission by its natural route of infection, the bite of an infected flea. We found that uninfected flea bites typically induced minimal neutrophil recruitment. The magnitude of neutrophil response to flea-transmitted Y. pestis varied considerably and appeared to correspond to the number of bacteria deposited at the bite site. Macrophages migrated towards flea bite sites and interacted with small numbers of flea-transmitted bacteria. Consistent with a previous study, we observed minimal interaction between Y. pestis and dendritic cells; however, dendritic cells did consistently migrate towards flea bite sites containing Y. pestis. Interestingly, we often recovered viable Y. pestis from the draining lymph node (dLN) 1 h after flea feeding, indicating that the migration of bacteria from the dermis to the dLN may be more rapid than previously reported. Overall, the innate cellular host responses to flea-transmitted Y. pestis differed from and were more variable than responses to needle-inoculated bacteria. This work highlights the importance of studying the interactions between fleas, Y. pestis and the mammalian host to gain a better understanding of the early events in plague pathogenesis. PMID:25781984

  5. Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas.

    PubMed

    Shannon, Jeffrey G; Bosio, Christopher F; Hinnebusch, B Joseph

    2015-03-01

    Yersinia pestis, the causative agent of plague, is typically transmitted by the bite of an infected flea. Many aspects of mammalian innate immune response early after Y. pestis infection remain poorly understood. A previous study by our lab showed that neutrophils are the most prominent cell type recruited to the injection site after intradermal needle inoculation of Y. pestis, suggesting that neutrophil interactions with Y. pestis may be important in bubonic plague pathogenesis. In the present study, we developed new tools allowing for intravital microscopy of Y. pestis in the dermis of an infected mouse after transmission by its natural route of infection, the bite of an infected flea. We found that uninfected flea bites typically induced minimal neutrophil recruitment. The magnitude of neutrophil response to flea-transmitted Y. pestis varied considerably and appeared to correspond to the number of bacteria deposited at the bite site. Macrophages migrated towards flea bite sites and interacted with small numbers of flea-transmitted bacteria. Consistent with a previous study, we observed minimal interaction between Y. pestis and dendritic cells; however, dendritic cells did consistently migrate towards flea bite sites containing Y. pestis. Interestingly, we often recovered viable Y. pestis from the draining lymph node (dLN) 1 h after flea feeding, indicating that the migration of bacteria from the dermis to the dLN may be more rapid than previously reported. Overall, the innate cellular host responses to flea-transmitted Y. pestis differed from and were more variable than responses to needle-inoculated bacteria. This work highlights the importance of studying the interactions between fleas, Y. pestis and the mammalian host to gain a better understanding of the early events in plague pathogenesis.

  6. Immunomodulatory Effects of Polysaccharide from Marine Fungus Phoma herbarum YS4108 on T Cells and Dendritic Cells

    PubMed Central

    Chen, Song; Zhou, Yan; Zhang, Xian; Zhu, Rui; Gao, Xiang-Dong

    2014-01-01

    YCP, as a kind of natural polysaccharides from the mycelium of marine filamentous fungus Phoma herbarum YS4108, has great antitumor potential via enhancement of host immune response, but little is known about the molecular mechanisms. In the present study, we mainly focused on the effects and mechanisms of YCP on the specific immunity mediated by dendritic cells (DCs) and T cells. T cell /DC activation-related factors including interferon- (IFN-) γ, interleukin-12 (IL-12), and IL-4 were examined with ELISA. Receptor knock-out mice and fluorescence-activated cell sorting are used to analyze the YCP-binding receptor of T cells and DCs. RT-PCR is utilized to measure MAGE-A3 for analyzing the tumor-specific killing effect. In our study, we demonstrated YCP can provide the second signal for T cell activation, proliferation, and IFN-γ production through binding to toll-like receptor- (TLR-) 2 and TLR-4. YCP could effectively promote IL-12 secretion and expression of markers (CD80, CD86, and MHC II) via TLR-4 on DCs. Antigen-specific immunity against mouse melanoma cells was strengthened through the activation of T cells and the enhancement of capacity of DCs by YCP. The data supported that YCP can exhibit specific immunomodulatory capacity mediated by T cells and DCs. PMID:25525304

  7. Impairment in natural killer cells editing of immature dendritic cells by infection with a virulent Trypanosoma cruzi population.

    PubMed

    Batalla, Estela I; Pino Martínez, Agustina M; Poncini, Carolina V; Duffy, Tomás; Schijman, Alejandro G; González Cappa, Stella M; Alba Soto, Catalina D

    2013-01-01

    Early interactions between natural killer (NK) and dendritic cells (DC) shape the immune response at the frontier of innate and adaptive immunity. Activated NK cells participate in maturation or deletion of DCs that remain immature. We previously demonstrated that infection with a high virulence (HV) population of the protozoan parasite Trypanosoma cruzi downmodulates DC maturation and T-cell activation capacity. Here, we evaluated the role of NK cells in regulating the maturation level of DCs. Shortly after infection with HV T. cruzi, DCs in poor maturation status begin to accumulate in mouse spleen. Although infection induces NK cell cytotoxicity and cytokine production, NK cells from mice infected with HV T. cruzi exhibit reduced ability to lyse and fail to induce maturation of bone marrow-derived immature DCs (iDCs). NK-mediated lysis of iDCs is restored by in vitro blockade of the IL-10 receptor during NK-DC interaction or when NK cells are obtained from T. cruzi-infected IL-10 knockout mice. These results suggest that infection with a virulent T. cruzi strain alters NK cell-mediated regulation of the adaptive immune response induced by DCs. This regulatory circuit where IL-10 appears to participate might lead to parasite persistence but can also limit the induction of a vigorous tissue-damaging T-cell response.

  8. Reprogramming tumor-infiltrating dendritic cells for CD103+ CD8+ mucosal T-cell differentiation and breast cancer rejection.

    PubMed

    Wu, Te-Chia; Xu, Kangling; Banchereau, Romain; Marches, Florentina; Yu, Chun I; Martinek, Jan; Anguiano, Esperanza; Pedroza-Gonzalez, Alexander; Snipes, G Jackson; O'Shaughnessy, Joyce; Nishimura, Stephen; Liu, Yong-Jun; Pascual, Virginia; Banchereau, Jacques; Oh, Sangkon; Palucka, Karolina

    2014-05-01

    Our studies showed that tumor-infiltrating dendritic cells (DC) in breast cancer drive inflammatory Th2 (iTh2) cells and protumor inflammation. Here, we show that intratumoral delivery of the β-glucan curdlan, a ligand of dectin-1, blocks the generation of iTh2 cells and prevents breast cancer progression in vivo. Curdlan reprograms tumor-infiltrating DCs via the ligation of dectin-1, enabling the DCs to become resistant to cancer-derived thymic stromal lymphopoietin (TSLP), to produce IL-12p70, and to favor the generation of Th1 cells. DCs activated via dectin-1, but not those activated with TLR-7/8 ligand or poly I:C, induce CD8+ T cells to express CD103 (αE integrin), a ligand for cancer cells, E-cadherin. Generation of these mucosal CD8+ T cells is regulated by DC-derived integrin αvβ8 and TGF-β activation in a dectin-1-dependent fashion. These CD103+ CD8+ mucosal T cells accumulate in the tumors, thereby increasing cancer necrosis and inhibiting cancer progression in vivo in a humanized mouse model of breast cancer. Importantly, CD103+ CD8+ mucosal T cells elicited by reprogrammed DCs can reject established cancer. Thus, reprogramming tumor-infiltrating DCs represents a new strategy for cancer rejection.

  9. Inflammatory pseudotumour-like follicular dendritic cell tumour of the spleen

    PubMed Central

    Nishiyama, Raisuke; Baba, Satoshi; Watahiki, Yoichi; Maruo, Hirotoshi

    2015-01-01

    We describe an unusual case of a 73-year-old woman presenting with a solitary splenic mass 8 cm in diameter and an elevation of serum soluble interleukin-2 receptor level. The preoperative diagnosis was primary malignant lymphoma of the spleen. Splenectomy was conducted. Histological analysis confirmed an inflammatory pseudotumour-like follicular dendritic cell tumour that showed different clinicopathological features from those of the classic follicular dendritic cell tumour. Only 33 cases of inflammatory pseudotumour-like follicular dendritic cell tumour have so far been reported. We discuss the incidence, presentation and management of this rare disease. PMID:25766434

  10. [Morphofunctional changes of dendritic cells induced by sulfated polysaccharides of brown algae].

    PubMed

    Makarenkova, I D; Akhmatova, N K; Ermakova, S P; Besednova, N N

    2017-01-01

    The effects of various sulfated polysaccharides of brown algae Fucus evanescens, Saccharina cichorioides and Saccharina japonica on the morphofunctional changes of dendritic cells have been investigated using flow cytometry and phase-contrast microscopy. The dendritic cells are characterized by larger sizes, vacuolated cytoplasm, eccentrically located nucleus, and also by the presence of numerous cytoplasmic pseudopodia of various shapes. They express surface markers, indicating their maturation (CD83, CD11c, HLA-DR, CD86). Increased production of immunoregulatory (IL-12) and proinflammatory TNF-a, IL-6) cytokines (by dendritic cells polarizes the development of the Th-1 type immune response.

  11. RORα Regulates Multiple Aspects of Dendrite Development in Cerebellar Purkinje Cells In Vivo.

    PubMed

    Takeo, Yukari H; Kakegawa, Wataru; Miura, Eriko; Yuzaki, Michisuke

    2015-09-09

    The establishment of cell-type-specific dendritic arbors is fundamental for proper neural circuit formation. Here, using temporal- and cell-specific knock-down, knock-out, and overexpression approaches, we show that multiple aspects of the dendritic organization of cerebellar Purkinje cells (PCs) are controlled by a single transcriptional factor, retinoic acid-related orphan receptor-alpha (RORα), a gene defective in staggerer mutant mice. As reported earlier, RORα was required for regression of primitive dendrites before postnatal day 4 (P4). RORα was also necessary for PCs to form a single Purkinje layer from P0 to P4. The knock-down of RORα from P4 impaired the elimination of perisomatic dendrites and maturation of single stem dendrites in PCs at P8. Filopodia and spines were also absent in these PCs. The knock-down of RORα from P8 impaired the formation and maintenance of terminal dendritic branches of PCs at P14. Finally, even after dendrite formation was completed at P21, RORα was required for PCs to maintain dendritic complexity and functional synapses, but their mature innervation pattern by single climbing fibers was unaffected. Interestingly, overexpression of RORα in PCs at various developmental stages did not facilitate dendrite development, but had specific detrimental effects on PCs. Because RORα deficiency during development is closely related to the severity of spinocerebellar ataxia type 1, delineating the specific roles of RORα in PCs in vivo at different time windows during development and throughout adulthood would facilitate our understanding of the pathogenesis of cerebellar disorders. Significance statement: The genetic programs by which each neuron subtype develops and maintains dendritic arbors have remained largely unclear. This is partly because dendrite development is modulated dynamically by neuronal activities and interactions with local environmental cues in vivo. In addition, dendrites are formed and maintained by the

  12. TLR ligand–induced podosome disassembly in dendritic cells is ADAM17 dependent

    PubMed Central

    West, Michele A.; Prescott, Alan R.; Chan, Kui Ming; Zhou, Zhongjun; Rose-John, Stefan; Scheller, Jürgen; Watts, Colin

    2008-01-01

    Toll-like receptor (TLR) signaling induces a rapid reorganization of the actin cytoskeleton in cultured mouse dendritic cells (DC), leading to enhanced antigen endocytosis and a concomitant loss of filamentous actin–rich podosomes. We show that as podosomes are lost, TLR signaling induces prominent focal contacts and a transient reduction in DC migratory capacity in vitro. We further show that podosomes in mouse DC are foci of pronounced gelatinase activity, dependent on the enzyme membrane type I matrix metalloprotease (MT1-MMP), and that DC transiently lose the ability to degrade the extracellular matrix after TLR signaling. Surprisingly, MMP inhibitors block TLR signaling–induced podosome disassembly, although stimulated endocytosis is unaffected, which demonstrates that the two phenomena are not obligatorily coupled. Podosome disassembly caused by TLR signaling occurs normally in DC lacking MT1-MMP, and instead requires the tumor necrosis factor α–converting enzyme ADAM17 (a disintegrin and metalloprotease 17), which demonstrates a novel role for this “sheddase” in regulating an actin-based structure. PMID:18762577

  13. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    PubMed

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity.

  14. Spatial modelling of brief and long interactions between T cells and dendritic cells.

    PubMed

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2007-06-01

    In the early phases of an immune response, T cells of appropriate antigen specificity become activated by antigen-presenting cells in secondary lymphoid organs. Two-photon microscopy imaging experiments have shown that this stimulation occurs in distinct stages during which T cells exhibit different motilities and interactions with dendritic cells (DCs). In this paper, we utilize the Cellular Potts Model, a model formalism that takes cell shapes and cellular interactions explicitly into account, to simulate the dynamics of, and interactions between, T cells and DCs in the lymph node paracortex. Our three-dimensional simulations suggest that the initial decrease in T-cell motility after antigen appearance is due to "stop signals" transmitted by activated DCs to T cells. The long-lived interactions that occur at a later stage can only be explained by the presence of both stop signals and a high adhesion between specific T cells and antigen-bearing DCs. Furthermore, our results indicate that long-lasting contacts with T cells are promoted when DCs retract dendrites that detect a specific contact at lower velocities than other dendrites. Finally, by performing long simulations (after prior fitting to short time scale data) we are able to provide an estimate of the average contact duration between T cells and DCs.

  15. Pancreatic islet expression of chemokine CCL2 suppresses autoimmune diabetes via tolerogenic CD11c+ CD11b+ dendritic cells.

    PubMed

    Kriegel, Martin A; Rathinam, Chozhavendan; Flavell, Richard A

    2012-02-28

    Development of type 1 diabetes in the nonobese diabetic (NOD) mouse is preceded by an immune cell infiltrate in the pancreatic islets. The exact role of the attracted cells is still poorly understood. Chemokine CCL2/MCP-1 is known to attract CCR2(+) monocytes and dendritic cells (DCs). We have previously shown that transgenic expression of CCL2 in pancreatic islets via the rat insulin promoter induces nondestructive insulitis on a nonautoimmune background. We report here an unexpected reduction of diabetes development on the NOD background despite an increased islet cell infiltrate with markedly increased numbers of CD11c(+) CD11b(+) DCs. These DCs exhibited a hypoactive phenotype with low CD40, MHC II, CD80/CD86 expression, and reduced TNF-α but elevated IL-10 secretions. They failed to induce proliferation of diabetogenic CD4(+) T cells in vitro. Pancreatic lymph node CD4(+) T cells were down-regulated ex vivo and expressed the anergy marker Grail. By using an in vivo transfer system, we show that CD11c(+) CD11b(+) DCs from rat insulin promoter-CCL2 transgenic NOD mice were the most potent cells suppressing diabetes development. These findings support an unexpected beneficial role for CCL2 in type 1 diabetes with implications for current strategies interfering with the CCL2/CCR2 axis in humans, and for dendritic cell biology in autoimmunity.

  16. Expression of the RelB transcription factor correlates with the activation of human dendritic cells

    PubMed Central

    Clark, G J; Gunningham, S; Troy, A; Vuckovic, S; Hart, D N J

    1999-01-01

    The RelB gene product is a member of the nuclear factor (NF)-κB family of transcription factors. It has been identified recently within mouse antigen-presenting cells and human monocyte-derived dendritic cells (DC). Disruption of the mouse RelB gene is accompanied, amongst other phenotypes, by abnormalities in the antigen-presenting cell lineages. In order to define RelB expression during human DC differentiation, we have analysed RelB mRNA by reverse transcriptase–polymerase chain reaction and RelB protein by intracellular staining in CD34+ precursors and different types of DC preparations. RelB mRNA was not detected in CD34+ precursor populations. Fresh blood DC (lineage−human leucocyte antigen-DR+ (lin−HLA-DR+)) lacked RelB mRNA and cytoplasmic RelB protein but a period of in vitro culture induced RelB expression in blood DC. Purified Langerhans’ cells (LC) (CD1a+ HLA-DR+) failed to express RelB mRNA. Immunocytochemical staining identified RelB protein in human skin epithelium. RelB protein was expressed in a very few CD1a+, CD83+ or CMRF-44+ dermal DC but was not present in CD1a+ LC. Tonsil DC (lin−HLA-DR+ CMRF-44+) were positive for RelB mRNA and RelB protein. Intestinal DC (HLA-DR+) also lacked immunoreactive RelB protein. The majority of interdigitating CD83+, CMRF-44+, CMRF-56+ or p55+ DC located in paracortical T-lymphocyte areas of lymph node and tonsil contained RelB protein. The expression of RelB mRNA and RelB protein correlates with the activated phase of blood DC and the postmigration cell (activated) stage of tissue DC development. PMID:10540217

  17. Identification of a unique B-cell-stimulating factor produced by a cloned dendritic cell.

    PubMed Central

    Clayberger, C; DeKruyff, R H; Fay, R; Cantor, H

    1985-01-01

    We describe a cloned dendritic cell, clone Den-1, which is a potent accessory cell for some B-cell responses. Clone Den-1 produces a unique lymphokine that induces polyclonal B-cell proliferation in the absence of other costimulators. This clone or factors produced by it also stimulate purified B cells to develop plaque-forming cell responses to type 2 antigens. The effect of this factor(s) on various B-cell populations and its relationship to previously described B-cell-stimulating factors is discussed. Images PMID:3871522

  18. Extracellular transport of cell-size particles and tumor cells by dendritic cells in culture.

    PubMed

    Thacker, Robert I; Retzinger, Andrew C; Cash, James G; Dentler, Michael D; Retzinger, Gregory S

    2013-12-01

    Many particulate materials of sizes approximating that of a cell disseminate after being introduced into the body. While some move about within phagocytic inflammatory cells, others appear to move about outside of, but in contact with, such cells. In this report, we provide unequivocal photomicroscopic evidence that cultured, mature, human dendritic cells can transport in extracellular fashion over significant distances both polymeric beads and tumor cells. At least in the case of polymeric beads, both fibrinogen and the β2-integrin subunit, CD18, appear to play important roles in the transport process. These discoveries may yield insight into a host of disease-related phenomena, including and especially tumor cell invasion and metastasis.

  19. Identification of novel dendritic cell subset markers in human blood.

    PubMed

    Schütz, Fabian; Hackstein, Holger

    2014-01-10

    Human dendritic cells (DC) are key regulators of innate and adaptive immunity that can be divided in at least three major subpopulations: plasmacytoid DC (pDC), myeloid type 1 DC (mDC1) and myeloid type 2 DC (mDC2) exhibiting different functions. However, research, diagnostic and cell therapeutic studies on human DC subsets are limited because only few DC subset markers have been identified so far. Especially mDC2 representing the rarest blood DC subset are difficult to be separated from mDC1 and pDC due to a paucity of mDC2 markers. We have combined multiparameter flow cytometry analysis of human blood DC subsets with systematic expression analysis of 332 surface antigens in magnetic bead-enriched blood DC samples. The initial analysis revealed eight novel putative DC subset markers CD26, CD85a, CD109, CD172a, CD200, CD200R, CD275 and CD301 that were subsequently tested in bulk peripheral blood mononuclear cell (PBMC) samples from healthy blood donors. Secondary analysis of PBMC samples confirmed three novel DC subset markers CD26 (dipeptidyl peptidase IV), CD85a (Leukocyte immunoglobulin-like receptor B3) and CD275 (inducible costimulator ligand). CD85a is specifically expressed in mDC1 and CD26 and CD275 represent novel mDC2 markers. These markers will facilitate human DC subset discrimination and additionally provide insight into potentially novel DC subset-specific functions.

  20. Adiponectin Receptor Signaling on Dendritic Cells Blunts Antitumor Immunity

    PubMed Central

    Tan, Peng H.; Tyrrell, Helen E.J.; Gao, Liquan; Xu, Danmei; Quan, Jianchao; Gill, Dipender; Rai, Lena; Ding, Yunchuan; Plant, Gareth; Chen, Yuan; Xue, John Z.; Handa, Ashok I.; Greenall, Michael J.; Walsh, Kenneth; Xue, Shao-An

    2015-01-01

    Immune escape is a fundamental trait of cancer. Dendritic cells (DC) that interact with T cells represent a crucial site for the development of tolerance to tumor antigens, but there remains incomplete knowledge about how DC-tolerizing signals evolve during tumorigenesis. In this study, we show that DCs isolated from patients with metastatic or locally advanced breast cancer express high levels of the adiponectin receptors AdipoR1 and AdipoR2, which are sufficient to blunt antitumor immunity. Mechanistic investigations of ligand–receptor interactions on DCs revealed novel signaling pathways for each receptor. AdipoR1 stimulated IL10 production by activating the AMPK and MAPKp38 pathways, whereas AdipoR2 modified inflammatory processes by activating the COX-2 and PPARγ pathways. Stimulation of these pathways was sufficient to block activation of NF-κB in DC, thereby attenuating their ability to stimulate antigen-specific T-cell responses. Together, our findings reveal novel insights into how DC-tolerizing signals evolve in cancer to promote immune escape. Furthermore, by defining a critical role for adiponectin signaling in this process, our work suggests new and broadly applicable strategies for immunometabolic therapy in patients with cancer. PMID:25261236

  1. Epigenetic program and transcription factor circuitry of dendritic cell development

    PubMed Central

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G.; Gusmao, Eduardo G.; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  2. Cancer immunotherapy using dendritic cell-derived exosomes.

    PubMed

    Amigorena, S

    2000-01-01

    Dendritic cells (DCs) are the most potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses. We found that DCs secrete a population of membrane vesicles, called exosomes. Exosomes are 60-80 nm vesicles of endocytic origin. The protein composition of exosomes was subjected to a systematic proteomic analysis. Besides MHC and co-stimulatory molecules, exosomes bear several adhesion proteins, most likely involved in their specific subjected to targeting. We also found that exosomes accumulate several cytosolic factors, probably involved in their endosomal biogenesis. Like DCs, exosomes induced immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced potent anti tumor immune responses in mice and the eradication of established tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome-treated mice, and the anti tumor effect of exosomes was sensitive to in vivo depletion of CD8+ T cells. These results show that exosomes induce potent anti tumor effects in vivo, and strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.

  3. Targeting dendritic cells for improved HIV-1 vaccines.

    PubMed

    Smed-Sörensen, Anna; Loré, Karin

    2013-01-01

    As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen.

  4. Study of dendritic cell migration using micro-fabrication.

    PubMed

    Vargas, Pablo; Chabaud, Mélanie; Thiam, Hawa-Racine; Lankar, Danielle; Piel, Matthieu; Lennon-Dumenil, Ana-Maria

    2016-05-01

    Cell migration is a hallmark of dendritic cells (DCs) function. It is needed for DCs to scan their environment in search for antigens as well as to reach lymphatic organs in order to trigger T lymphocyte's activation. Such interaction leads to tolerance in the case of DCs migrating under homeostatic conditions or to immunity in the case of DCs migrating upon encounter with pathogen-associated molecular patterns. Cell migration is therefore essential for DCs to transfer information from peripheral tissues to lymphoid organs, thereby linking innate to adaptive immunity. This stresses the need to unravel the molecular mechanisms involved. However, the tremendous complexity of the tissue microenvironment as well as the limited spatio-temporal resolution of in vivo imaging techniques has made this task difficult. To bypass this problem, we have developed microfabrication-based experimental tools that are compatible with high-resolution imaging. Here, we will discuss how such devices can be used to study DC migration under controlled conditions that mimic their physiological environment in a robust quantitative manner.

  5. MicroRNAs affect dendritic cell function and phenotype

    PubMed Central

    Smyth, Lesley A; Boardman, Dominic A; Tung, Sim L; Lechler, Robert; Lombardi, Giovanna

    2015-01-01

    MicroRNA (miRNA) are small, non-coding RNA molecules that have been linked with immunity through regulating/modulating gene expression. A role for these molecules in T-cell and B-cell development and function has been well established. An increasing body of literature now highlights the importance of specific miRNA in dendritic cell (DC) development as well as their maturation process, antigen presentation capacity and cytokine release. Given the unique role of DC within the immune system, linking the innate and adaptive immune responses, understanding how specific miRNA affect DC function is of importance for understanding disease. In this review we summarize recent developments in miRNA and DC research, highlighting the requirement of miRNA in DC lineage commitment from bone marrow progenitors and for the development of subsets such as plasmacytoid DC and conventional DC. In addition, we discuss how infections and tumours modulate miRNA expression and consequently DC function. PMID:25244106

  6. GM-CSF alters dendritic cells in autoimmune diseases.

    PubMed

    Li, Bao-Zhu; Ye, Qian-Ling; Xu, Wang-Dong; Li, Jie-Hua; Ye, Dong-Qing; Xu, Yuekang

    2013-11-01

    Autoimmune diseases arise from an inappropriate immune response against self components, including macromolecules, cells, tissues, organs etc. They are often triggered or accompanied by inflammation, during which the levels of granulocyte macrophage colony-stimulating factor (GM-CSF) are elevated. GM-CSF is an inflammatory cytokine that has profound impact on the differentiation of immune system cells of myeloid lineage, especially dendritic cells (DCs) that play critical roles in immune initiation and tolerance, and is involved in the pathogenesis of autoimmune diseases. Although GM-CSF was discovered decades ago, recent studies with some new findings have shed an interesting light on the old hematopoietic growth factor. In the inflammatory autoimmune diseases, GM-CSF redirects the normal developmental pathway of DCs, conditions their antigen presentation capacities and endows them with unique cytokine signatures to affect autoimmune responses. Here we review the latest advances in the field, with the aim of demonstrating the effects of GM-CSF on DCs and their influences on autoimmune diseases. The summarized knowledge will help to design DC-based strategies for the treatment of autoimmune diseases.

  7. Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina.

    PubMed

    Whitney, Irene E; Keeley, Patrick W; St John, Ace J; Kautzman, Amanda G; Kay, Jeremy N; Reese, Benjamin E

    2014-07-23

    The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer.

  8. Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis

    PubMed Central

    Kirchner, Florian R.; Becattini, Simone; Rülicke, Thomas; Sallusto, Federica; LeibundGut-Landmann, Salomé

    2015-01-01

    Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC) we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs) present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity. PMID:26431538

  9. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc.

  10. Recruitment and endo-lysosomal activation of TLR9 in dendritic cells infected with Trypanosoma cruzi.

    PubMed

    Bartholomeu, Daniella C; Ropert, Catherine; Melo, Mariane B; Parroche, Peggy; Junqueira, Caroline F; Teixeira, Santuza M R; Sirois, Cherilyn; Kasperkovitz, Pia; Knetter, Cathrine F; Lien, Egil; Latz, Eicke; Golenbock, Douglas T; Gazzinelli, Ricardo T

    2008-07-15

    TLR9 is critical in parasite recognition and host resistance to experimental infection with Trypanosoma cruzi. However, no information is available regarding nucleotide sequences and cellular events involved on T. cruzi recognition by TLR9. In silico wide analysis associated with in vitro screening of synthetic oligonucleotides demonstrates that the retrotransposon VIPER elements and mucin-like glycoprotein (TcMUC) genes in the T. cruzi genome are highly enriched for CpG motifs that are immunostimulatory for mouse and human TLR9, respectively. Importantly, infection with T. cruzi triggers high levels of luciferase activity under NF-kappaB-dependent transcription in HEK cells cotransfected with human TLR9, but not in control (cotransfected with human MD2/TLR4) HEK cells. Further, we observed translocation of TLR9 to the lysosomes during invasion/uptake of T. cruzi parasites by dendritic cells. Consistently, potent proinflammatory activity was observed when highly unmethylated T. cruzi genomic DNA was delivered to the endo-lysosomal compartment of host cells expressing TLR9. Thus, together our results indicate that the unmethylated CpG motifs found in the T. cruzi genome are likely to be main parasite targets and probably become available to TLR9 when parasites are destroyed in the lysosome-fused vacuoles during parasite invasion/uptake by phagocytes.

  11. Efficiency of Dendritic Cell Vaccination against B16 Melanoma Depends on the Immunization Route

    PubMed Central

    Edele, Fanny; Dudda, Jan C.; Bachtanian, Eva; Jakob, Thilo; Pircher, Hanspeter; Martin, Stefan F.

    2014-01-01

    Dendritic cells (DC) presenting tumor antigens are crucial to induce potent T cell-mediated anti-tumor immune responses. Therefore DC-based cancer vaccines have been established for therapy, however clinical outcomes are often poor and need improvement. Using a mouse model of B16 melanoma, we found that the route of preventive DC vaccination critically determined tumor control. While repeated DC vaccination did not show an impact of the route of DC application on the prevention of tumor growth, a single DC vaccination revealed that both the imprinting of skin homing receptors and an enhanced proliferation state of effector T cells was seen only upon intracutaneous but not intravenous or intraperitoneal immunization. Tumor growth was prevented only by intracutaneous DC vaccination. Our results indicate that under suboptimal conditions the route of DC vaccination crucially determines the efficiency of tumor defense. DC-based strategies for immunotherapy of cancer should take into account the immunization route in order to optimize tissue targeting of tumor antigen specific T cells. PMID:25121970

  12. Mannose receptor-mediated gene delivery into antigen presenting dendritic cells.

    PubMed

    Diebold, Sandra S; Plank, Christian; Cotten, Matt; Wagner, Ernst; Zenke, Martin

    2002-11-01

    Dendritic cells are professional antigen presenting cells and are unique in their ability to prime naïve T cells. Gene modification of dendritic cells is of particular interest for immunotherapy of diseases where the immune system has failed or is aberrantly regulated, such as in cancer or autoimmune disease, respectively. Dendritic cells abundantly express mannose receptor and mannose receptor-related receptors, and receptor-mediated gene transfer via mannose receptor offers a versatile tool for targeted gene delivery into these cells. Accordingly, mannose polyethylenimine DNA transfer complexes were generated and used for gene delivery into dendritic cells. Mannose receptor belongs to the group of scavenger receptors that allow dendritic cells to take up pathogenic material, which is directed for degradation and MHC class II presentation. Therefore, a limiting step of transgene expression by mannose receptor-mediated gene delivery is endosomal degradation of DNA. Several strategies have been explored to overcome this limitation including the addition of endosomolytic components to DNA transfer complexes like adenovirus particles and influenza peptides. Here, we review the current understanding of mannose receptor-mediated gene delivery into dendritic cells and discuss strategies to identify appropriate endosomolytic agents to improve DNA transfer efficacy.

  13. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine

    PubMed Central

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-01-01

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4+CD25−Fopx3+) and CD4+ and CD8+ T cells were significantly decreased and increased, respectively. HPV-16-specific CD8+ T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice. PMID:28272545

  14. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine.

    PubMed

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-03-08

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)) and CD4(+) and CD8(+) T cells were significantly decreased and increased, respectively. HPV-16-specific CD8(+) T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice.

  15. Infection of Dendritic Cells by Lymphocytic Choriomeningitis Virus

    PubMed Central

    Sevilla, N.; Kunz, S.; McGavern, D.

    2017-01-01

    Dendritic cells (DCs) comprise the major antigen-presenting cells (APCs) of the host, uniquely programmed to stimulate immunologically naïve T lymphocytes. Viruses that can target and disorder the function of these cells enjoy a selective advantage. The cellular receptor for lymphocytic choriomeningitis virus (LCMV), Lassa fever virus (LFV), and several other arenaviruses is α-dystroglycan (α-DG). Among cells of the immune system, CD11c+ and DEC-205+ DCs primarily and preferentially express α-DG. By selection, strains and variants of LCMV generated as quasi-species that bind α-DG with high affinity replicate in the majority of CD11c+ and DEC-205+ (>75%) DCs, causing a generalized immunosuppression, and establish a persistent infection. In contrast, viral strains and variants that bind with low affinity to α-DG display minimal replication in CD11c+ and DEC-205+ DCs (<10%), rarely replicate in the white pulp, and generate a robust anti-LCMV CTL response that clears the virus infection. Hence, receptor-virus interaction on DCs in vivo is an essential step in the initiation of virus-induced immunosuppression and viral persistence. Investigation into the mechanism of how virus-infected DCs cause immunosuppression reveals loss of MHC class II surface expression and costimulatory molecules on surface of such DCs. As a consequence DCs are unable to act as APCs, initiate immune responses, and have a defect in migration into the T cell area. These data indicate that LCMV infection influences DC maturation and migration, leading to decreased T cell stimulatory capacity of DCs, events essential for the initiation of immune responses. Because several other viruses known to cause immunosuppression (HIV, measles) interact with DCs, the observations noted here are likely a common selective mechanism by which viruses also are able to evade the host s immune system. PMID:12797446

  16. Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures.

    PubMed

    Hamad, Mohammad I K; Jack, Alexander; Klatt, Oliver; Lorkowski, Markus; Strasdeit, Tobias; Kott, Sabine; Sager, Charlotte; Hollmann, Michael; Wahle, Petra

    2014-04-01

    The ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptors (AMPARs) have been implicated in the establishment of dendritic architecture. The transmembrane AMPA receptor regulatory proteins (TARPs) regulate AMPAR function and trafficking into synaptic membranes. In the current study, we employ type I and type II TARPs to modulate expression levels and function of endogenous AMPARs and investigate in organotypic cultures (OTCs) of rat occipital cortex whether this influences neuronal differentiation. Our results show that in early development [5-10 days in vitro (DIV)] only the type I TARP γ-8 promotes pyramidal cell dendritic growth by increasing spontaneous calcium amplitude and GluA2/3 expression in soma and dendrites. Later in development (10-15 DIV), the type I TARPs γ-2, γ-3 and γ-8 promote dendritic growth, whereas γ-4 reduced dendritic growth. The type II TARPs failed to alter dendritic morphology. The TARP-induced dendritic growth was restricted to the apical dendrites of pyramidal cells and it did not affect interneurons. Moreover, we studied the effects of short hairpin RNA-induced knockdown of endogenous γ-8 and showed a reduction of dendritic complexity and amplitudes of spontaneous calcium transients. In addition, the cytoplasmic tail (CT) of γ-8 was required for dendritic growth. Single-cell calcium imaging showed that the γ-8 CT domain increases amplitude but not frequency of calcium transients, suggesting a regulatory mechanism involving the γ-8 CT domain in the postsynaptic compartment. Indeed, the effect of γ-8 overexpression was reversed by APV, indicating a contribution of NMDA receptors. Our results suggest that selected type I TARPs influence activity-dependent dendritogenesis of immature pyramidal neurons.

  17. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    PubMed Central

    2017-01-01

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we have investigated the importance of multivalent binding on T-cell activation. Using antibody-functionalized sDCs, we have tested the influence of polymer length and antibody density. Increasing the multivalent character of the antibody-functionalized polymer lowered the effective concentration required for T-cell activation. This was evidenced for both early and late stages of activation. The most important effect observed was the significantly prolonged activation of the stimulated T cells, indicating that multivalent sDCs sustain T-cell signaling. Our results highlight the importance of multivalency for the design of aAPCs and will ultimately allow for better mimics of natural dendritic cells that can be used as vaccines in cancer treatment. PMID:28393131

  18. Redundant Function of Plasmacytoid and Conventional Dendritic Cells Is Required To Survive a Natural Virus Infection

    PubMed Central

    Kaminsky, Lauren W.; Sei, Janet J.; Parekh, Nikhil J.; Davies, Michael L.; Reider, Irene E.; Krouse, Tracy E.

    2015-01-01

    ABSTRACT Viruses that spread systemically from a peripheral site of infection cause morbidity and mortality in the human population. Innate myeloid cells, including monocytes, macrophages, monocyte-derived dendritic cells (mo-DC), and dendritic cells (DC), respond early during viral infection to control viral replication, reducing virus spread from the peripheral site. Ectromelia virus (ECTV), an orthopoxvirus that naturally infects the mouse, spreads systemically from the peripheral site of infection and results in death of susceptible mice. While phagocytic cells have a requisite role in the response to ECTV, the requirement for individual myeloid cell populations during acute immune responses to peripheral viral infection is unclear. In this study, a variety of myeloid-specific depletion methods were used to dissect the roles of individual myeloid cell subsets in the survival of ECTV infection. We showed that DC are the primary producers of type I interferons (T1-IFN), requisite cytokines for survival, following ECTV infection. DC, but not macrophages, monocytes, or granulocytes, were required for control of the virus and survival of mice following ECTV infection. Depletion of either plasmacytoid DC (pDC) alone or the lymphoid-resident DC subset (CD8α+ DC) alone did not confer lethal susceptibility to ECTV. However, the function of at least one of the pDC or CD8α+ DC subsets is required for survival of ECTV infection, as mice depleted of both populations were susceptible to ECTV challenge. The presence of at least one of these DC subsets is sufficient for cytokine production that reduces ECTV replication and virus spread, facilitating survival following infection. IMPORTANCE Prior to the eradication of variola virus, the orthopoxvirus that causes smallpox, one-third of infected people succumbed to the disease. Following successful eradication of smallpox, vaccination rates with the smallpox vaccine have significantly dropped. There is now an increasing

  19. Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity

    PubMed Central

    Chavlis, Spyridon; Petrantonakis, Panagiotis C.

    2016-01-01

    ABSTRACT The hippocampus plays a key role in pattern separation, the process of transforming similar incoming information to highly dissimilar, nonverlapping representations. Sparse firing granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this computation, but little is known about which of their properties influence pattern separation. Dendritic atrophy has been reported in diseases associated with pattern separation deficits, suggesting a possible role for dendrites in this phenomenon. To investigate whether and how the dendrites of GCs contribute to pattern separation, we build a simplified, biologically relevant, computational model of the DG. Our model suggests that the presence of GC dendrites is associated with high pattern separation efficiency while their atrophy leads to increased excitability and performance impairments. These impairments can be rescued by restoring GC sparsity to control levels through various manipulations. We predict that dendrites contribute to pattern separation as a mechanism for controlling sparsity. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27784124

  20. Dissecting thyroid hormone transport and metabolism in dendritic cells.

    PubMed

    Gigena, Nicolás; Alamino, Vanina A; Montesinos, María Del Mar; Nazar, Magalí; Louzada, Ruy A; Wajner, Simone M; Maia, Ana L; Masini-Repiso, Ana M; Carvalho, Denise P; Cremaschi, Graciela A; Pellizas, Claudia G

    2017-02-01

    We reported thyroid hormone (TH) receptor expression in murine dendritic cells (DCs) and 3,5,3'-triiodothyronine (T3)-dependent stimulation of DC maturation and ability to develop a Th1-type adaptive response. Moreover, an increased DC capacity to promote antigen-specific cytotoxic T-cell activity, exploited in a DC-based antitumor vaccination protocol, was revealed. However, putative effects of the main circulating TH, l-thyroxine (T4) and the mechanisms of TH transport and metabolism at DC level, crucial events for TH action at target cell level, were not known. Herein, we show that T4 did not reproduce those registered T3-dependent effects, finding that may reflect a homoeostatic control to prevent unspecific systemic activation of DCs. Besides, DCs express MCT10 and LAT2 TH transporters, and these cells mainly transport T3 with a favored involvement of MCT10 as its inhibition almost prevented T3 saturable uptake mechanism and reduced T3-induced IL-12 production. In turn, DCs express iodothyronine deiodonases type 2 and 3 (D2, D3) and exhibit both enzymatic activities with a prevalence towards TH inactivation. Moreover, T3 increased MCT10 and LAT2 expression and T3 efflux from DCs but not T3 uptake, whereas it induced a robust induction of D3 with a parallel slight reduction in D2. These findings disclose pivotal events involved in the mechanism of action of THs on DCs, providing valuable tools for manipulating the immunogenic potential of these cells. Furthermore, they broaden the knowledge of the TH mechanism of action at the immune system network.

  1. Dendritic cell based vaccines for HIV infection: the way ahead.

    PubMed

    García, Felipe; Plana, Montserrat; Climent, Nuria; León, Agathe; Gatell, Jose M; Gallart, Teresa

    2013-11-01

    Dendritic cells have a central role in HIV infection. On one hand, they are essential to induce strong HIV-specific CD4⁺ helper T-cell responses that are crucial to achieve a sustained and effective HIV-specific CD8⁺ cytotoxic T-lymphocyte able to control HIV replication. On the other hand, DCs contribute to virus dissemination and HIV itself could avoid a correct antigen presentation. As the efficacy of immune therapy and therapeutic vaccines against HIV infection has been modest in the best of cases, it has been hypothesized that ex vivo generated DC therapeutic vaccines aimed to induce effective specific HIV immune responses might overcome some of these problems. In fact, DC-based vaccine clinical trials have yielded the best results in this field. However, despite these encouraging results, functional cure has not been reached with this strategy in any patient. In this Commentary, we discuss new approaches to improve the efficacy and feasibility of this type of therapeutic vaccine.

  2. Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy

    PubMed Central

    Mohammad, Mohammad G.; Hassanpour, Masoud; Tsai, Vicky W. W.; Li, Hui; Ruitenberg, Marc J.; Booth, David R.; Serrats, Jordi; Hart, Prue H.; Symonds, Geoffrey P.; Sawchenko, Paul E.; Breit, Samuel N.; Brown, David A.

    2013-01-01

    Multiple sclerosis (MS) is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs), the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined. PMID:23271370

  3. Impact of Aging on Dendritic Cell Functions in humans

    PubMed Central

    Agrawal, Anshu; Gupta, Sudhir

    2010-01-01

    Aging is a paradox of reduced immunity and chronic inflammation. Dendritic cells are central orchestrators of the immune response with a key role in the generation of immunity and maintenance of tolerance. The functions of DCs are compromised with age. There is no major effect on the numbers and phenotype of DC subsets in aged subjects; nevertheless, their capacity to phagocytose antigens and migrate is impaired with age. There is aberrant cytokine secretion by various DC subsets with CDCs secreting increased basal level of pro-inflammatory cytokines but the response on stimulation to foreign antigens is decreased. In contrast, the response to self antigens is increased suggesting erosion of peripheral self tolerance. PDC subset also secretes reduced IFN-alpha in response to viruses. The capacity of DCs to prime T cell responses is also affected. Aging thus has a profound affect on DC functions. Present review summarizes the effect of advancing age on DC functions in humans in the context of both immunity and tolerance. PMID:20619360

  4. Evidence of dysregulation of dendritic cells in primary HIV infection

    PubMed Central

    Sabado, Rachel Lubong; O'Brien, Meagan; Subedi, Abhignya; Qin, Li; Hu, Nan; Taylor, Elizabeth; Dibben, Oliver; Stacey, Andrea; Fellay, Jacques; Shianna, Kevin V.; Siegal, Frederick; Shodell, Michael; Shah, Kokila; Larsson, Marie; Lifson, Jeffrey; Nadas, Arthur; Marmor, Michael; Hutt, Richard; Margolis, David; Garmon, Donald; Markowitz, Martin; Valentine, Fred; Borrow, Persephone

    2010-01-01

    Myeloid and plasmacytoid dendritic cells (DCs) are important mediators of both innate and adaptive immunity against pathogens such as HIV. During the course of HIV infection, blood DC numbers fall substantially. In the present study, we sought to determine how early in HIV infection the reduction occurs and whether the remaining DC subsets maintain functional capacity. We find that both myeloid DC and plasmacytoid DC levels decline very early during acute HIV in-fection. Despite the initial reduction in numbers, those DCs that remain in circulation retain their function and are able to stimulate allogeneic T-cell responses, and up-regulate maturation markers plus produce cytokines/chemokines in response to stimulation with TLR7/8 agonists. Notably, DCs from HIV-infected subjects produced significantly higher levels of cytokines/chemokines in response to stimulation with TLR7/8 agonists than DCs from uninfected controls. Further examination of gene expression profiles indicated in vivo activation, either directly or indirectly, of DCs during HIV infection. Taken together, our data demonstrate that despite the reduction in circulating DC numbers, those that remain in the blood display hyperfunctionality and implicates a possible role for DCs in promoting chronic immune activation. PMID:20693428

  5. Evidence of dysregulation of dendritic cells in primary HIV infection.

    PubMed

    Sabado, Rachel Lubong; O'Brien, Meagan; Subedi, Abhignya; Qin, Li; Hu, Nan; Taylor, Elizabeth; Dibben, Oliver; Stacey, Andrea; Fellay, Jacques; Shianna, Kevin V; Siegal, Frederick; Shodell, Michael; Shah, Kokila; Larsson, Marie; Lifson, Jeffrey; Nadas, Arthur; Marmor, Michael; Hutt, Richard; Margolis, David; Garmon, Donald; Markowitz, Martin; Valentine, Fred; Borrow, Persephone; Bhardwaj, Nina

    2010-11-11

    Myeloid and plasmacytoid dendritic cells (DCs) are important mediators of both innate and adaptive immunity against pathogens such as HIV. During the course of HIV infection, blood DC numbers fall substantially. In the present study, we sought to determine how early in HIV infection the reduction occurs and whether the remaining DC subsets maintain functional capacity. We find that both myeloid DC and plasmacytoid DC levels decline very early during acute HIV infection. Despite the initial reduction in numbers, those DCs that remain in circulation retain their function and are able to stimulate allogeneic T-cell responses, and up-regulate maturation markers plus produce cytokines/chemokines in response to stimulation with TLR7/8 agonists. Notably, DCs from HIV-infected subjects produced significantly higher levels of cytokines/chemokines in response to stimulation with TLR7/8 agonists than DCs from uninfected controls. Further examination of gene expression profiles indicated in vivo activation, either directly or indirectly, of DCs during HIV infection. Taken together, our data demonstrate that despite the reduction in circulating DC numbers, those that remain in the blood display hyperfunctionality and implicates a possible role for DCs in promoting chronic immune activation.

  6. Dendritic cells and vaccine design for sexually-transmitted diseases.

    PubMed

    Duluc, Dorothee; Gannevat, Julien; Joo, Hyemee; Ni, Ling; Upchurch, Katherine; Boreham, Muriel; Carley, Michael; Stecher, Jack; Zurawski, Gerard; Oh, Sangkon

    2013-05-01

    Dendritic cells (DCs) are major antigen presenting cells (APCs) that can initiate and control host immune responses toward either immunity or tolerance. These features of DCs, as immune orchestrators, are well characterized by their tissue localizations as well as by their subset-dependent functional specialties and plasticity. Thus, the level of protective immunity to invading microbial pathogens can be dependent on the subsets of DCs taking up microbial antigens and their functional plasticity in response to microbial products, host cellular components and the cytokine milieu in the microenvironment. Vaccines are the most efficient and cost-effective preventive medicine against infectious diseases. However, major challenges still remain for the diseases caused by sexually-transmitted pathogens, including HIV, HPV, HSV and Chlamydia. We surmise that the establishment of protective immunity in the female genital mucosa, the major entry and transfer site of these pathogens, will bring significant benefit for the protection against sexually-transmitted diseases. Recent progresses made in DC biology suggest that vaccines designed to target proper DC subsets may permit us to establish protective immunity in the female genital mucosa against sexually-transmitted pathogens.

  7. Trial watch: Dendritic cell-based anticancer therapy

    PubMed Central

    Bloy, Norma; Pol, Jonathan; Aranda, Fernando; Eggermont, Alexander; Cremer, Isabelle; Fridman, Wolf Hervé; Fučíková, Jitka; Galon, Jérôme; Tartour, Eric; Spisek, Radek; Dhodapkar, Madhav V.; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics. PMID:25941593

  8. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation.

    PubMed

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-02-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IkappaBalpha phosphorylation, which is necessary for nuclear factor kappaB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi.

  9. Mannoproteins from Cryptococcus neoformans Promote Dendritic Cell Maturation and Activation

    PubMed Central

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-01-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IκBα phosphorylation, which is necessary for nuclear factor κB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi. PMID:15664921

  10. Water-soluble and fluorescent dendritic perylene bisimides for live-cell imaging.

    PubMed

    Gao, Baoxiang; Li, Hongxia; Liu, Hongmei; Zhang, Licui; Bai, Qianqian; Ba, Xinwu

    2011-04-07

    We prepared dendritic perylene bisimide probes with triblock structures: perylene bisimides fluorescence cores, branched oligo(glutamic acid)s and polyethylene glycol chains. These probes showed good water solubility, low cytotoxicity and strong fluorescence in live cells.

  11. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    PubMed

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression.

  12. Mature dendritic cell derived from cryopreserved immature dendritic cell shows impaired homing ability and reduced anti-viral therapeutic effects

    PubMed Central

    Zhou, Qianqian; Zhang, Yulong; Zhao, Man; Wang, Xiaohui; Ma, Cong; Jiang, Xinquan; Wu, Tao; Wang, Donggen; Zhan, Linsheng

    2016-01-01

    Cryopreservation is critical in reducing redundant operations and also in quality control in dendritic cell (DC) therapy. Full maturation and efficient homing of DCs to T cell-region constitute a crucial aspect of DC immunotherapy; however, the in vivo migration and distribution pattern, as well as the anti-viral effect of DCs that matured from cryopreserved immature DCs (cryoim-mDCs) remain to be revealed. In the present study, we compared cryoim-mDCs with DCs matured from fresh immature DCs (fmDCs) in the aspects of phenotypes, in vivo homing capacities as well as the anti-viral therapeutic effects to further clarify the effect of cryopreservation on DC-based cytotherapy. The results showed that cryopreservation impaired the homing ability of DCs which was associated with the reduced expression of CCR7 and disturbed cytoskeleton arrangement. Moreover, the antigen-specific CD8+ T cell response induced by cryoim-mDCs was much weaker than that induced by fmDCs in both the spleen and liver draining lymph nodes, which provided reduced protection from viral invasions. In conclusion, cryopreservation is a good method to keep the viability of immature DCs, however, the in vivo homing capacity and anti-viral therapeutic effect of DCs matured from frozen immature DCs were hindered to some extent. PMID:27958383

  13. LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis

    PubMed Central

    Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine

    2016-01-01

    Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate–binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. PMID:27702801

  14. Molecular and Cellular Mechanisms of Antitumor Immune Response Activation by Dendritic Cells

    PubMed Central

    Markov, O. V.; Mironova, N. L.; Vlasov, V. V.; Zenkova, M. A.

    2016-01-01

    Dendritic cells (DCs) play a crucial role in the initiation and regulation of the antitumor immune response. Already , DC-based antitumor vaccines have been thoroughly explored both in animal tumor models and in clinical trials. DC-based vaccines are commonly produced from DC progenitors isolated from peripheral blood or bone marrow by culturing in the presence of cytokines, followed by loading the DCs with tumor-specific antigens, such as DNA, RNA, viral vectors, or a tumor cell lysate. However, the efficacy of DC-based vaccines remains low. Undoubtedly, a deeper understanding of the molecular mechanisms by which DCs function would allow us to enhance the antitumor efficacy of DC-based vaccines in clinical applications. This review describes the origin and major subsets of mouse and human DCs, as well as the differences between them. The cellular mechanisms of presentation and cross-presentation of exogenous antigens by DCs to T cells are described. We discuss intracellular antigen processing in DCs, cross-dressing, and the acquisition of the antigen cross-presentation function. A particular section in the review describes the mechanisms of tumor escape from immune surveillance through the suppression of DCs functions. PMID:27795841

  15. Characterization of Dendritic Cells Subpopulations in Skin and Afferent Lymph in the Swine Model

    PubMed Central

    Marquet, Florian; Bonneau, Michel; Pascale, Florentina; Urien, Celine; Kang, Chantal; Schwartz-Cornil, Isabelle; Bertho, Nicolas

    2011-01-01

    Transcutaneous delivery of vaccines to specific skin dendritic cells (DC) subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine field. In this study, we showed that pig skin DC comprise the classical epidermal langerhans cells (LC) and dermal DC (DDC) that could be divided in 3 subsets according to their phenotypes: (1) the CD163neg/CD172aneg, (2) the CD163highCD172apos and (3) the CD163lowCD172apos DDC. These subtypes have the capacity to migrate from skin to lymph node since we detected them in pseudo-afferent lymph. Extensive phenotyping with a set of markers suggested that the CD163high DDC resemble the antibody response-inducing human skin DC/macrophages whereas the CD163negCD172low DDC share properties with the CD8+ T cell response-inducing murine skin CD103pos DC. This work, by showing similarities between human, mouse and swine skin DC, establishes pig as a model of choice for the development of transcutaneous immunisation strategies targeting DC. PMID:21298011

  16. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia

    PubMed Central

    Saulep-Easton, Damien; Vincent, Fabien B.; Le Page, Melanie; Wei, Andrew; Ting, Stephen B.; Croce, Carlo M.; Tam, Constantine; Mackay, Fabienne

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD5+CD19+ B cells in the peripheral blood, and in primary and secondary lymphoid organs. A major complication associated with CLL is severe recurrent infections, which are often fatal. Vulnerability to infection is due to a wide variety of immunological defects, yet the initiating events of immunodeficiency in CLL are unclear. Using CLL patient samples and a mouse model of CLL, we have discovered that plasmacytoid dendritic cells (pDCs), which underpin the activity of effector immune cells critical for anti-viral immunity and anti-tumor responses, are reduced in number and functionally impaired in progressive CLL. As a result, the levels of interferon alpha (IFNα) production, a cytokine critical for immunity, are markedly reduced. Lower pDC numbers with impaired IFNα production was due to the decreased expression of FMS-like tyrosine kinase 3 receptor (Flt3) and Toll-like receptor 9 (TLR9), respectively. Reduced Flt3 expression was reversed using inhibitors of TGF-β and TNF, an effect correlating with a reduction in tumor load. Defects in pDC numbers and function offer a new insight into mechanisms underpinning the profound immunodeficiency affecting CLL patients and provide a potentially novel avenue for restoring immuno-competency in CLL. PMID:24721775

  17. Human parainfluenza virus type 2 vector induces dendritic cell maturation without viral RNA replication/transcription.

    PubMed

    Hara, Kenichiro; Fukumura, Masayuki; Ohtsuka, Junpei; Kawano, Mitsuo; Nosaka, Tetsuya

    2013-07-01

    The dendritic cell (DC), a most potent antigen-presenting cell, plays a key role in vaccine therapy against infectious diseases and malignant tumors. Although advantages of viral vectors for vaccine therapy have been reported, potential risks for adverse effects prevent them from being licensed for clinical use. Human parainfluenza virus type 2 (hPIV2), one of the members of the Paramyxoviridae family, is a nonsegmented and negative-stranded RNA virus. We have developed a reverse genetics system for the production of infectious hPIV2 lacking the F gene (hPIV2ΔF), wherein various advantages for vaccine therapy exist, such as cytoplasmic replication/transcription, nontransmissible infectivity, and extremely high transduction efficacy in various types of target cells. Here we demonstrate that hPIV2ΔF shows high transduction efficiency in human DCs, while not so high in mouse DCs. In addition, hPIV2ΔF sufficiently induces maturation of both human and murine DCs, and the maturation state of both human and murine DCs is almost equivalent to that induced by lipopolysaccharide. Moreover, alkylating agent β-propiolactone-inactivated hPIV2ΔF (BPL-hPIV2ΔF) elicits DC maturation without viral replication/transcription. These results suggest that hPIV2ΔF may be a useful tool for vaccine therapy as a novel type of paramyxoviral vector, which is single-round infectious vector and has potential adjuvant activity.

  18. Interaction of dendritic cells and T lymphocytes for the therapeutic effect of Dangguiliuhuang decoction to autoimmune diabetes.

    PubMed

    Liu, Tingting; Cao, Hui; Ji, Yachun; Pei, Yufeng; Yu, Zhihong; Quan, Yihong; Xiang, Ming

    2015-09-11

    In traditional Chinese medicine (TCM), Dangguiliuhuang decoction (DGLHD) is an effective treatment of autoimmune diabetes. Here, we studied potential anti-diabetic mechanisms of DGLHD in a non-obese diabetic (NOD) mouse model. In vitro, DGLHD and individual active ingredients enhanced glucose uptake in HepG2 cells, inhibited T lymphocyte proliferation, and suppressed dendritic cells (DCs) function. In vivo, DGLHD significantly inhibited insulitis, delayed the onset and development of diabetes, promoted insulin secretion and sensitivity, and balanced partially normalized Th1 and Th2 cytokines in NOD mice. In addition, DGLHD increased α1-antitrypsin (AAT-1), Bcl-2, and CyclinD1, and decreased Bax levels in pancreas, spleen, thymus, DCs, and a NIT-1 cell line, all consistent with protecting and repairing islet β cell. More detailed studies indicated that DGLHD regulated the maturation and function of DCs, decreased the percentage of merocytic dendritic cells (mcDCs) subset, and increased programmed death ligand-1 (PD-L1) expression in DCs. DGLHD also impeded T lymphocyte proliferation and promoted regulatory T cells (T(regs)) differentiation in vivo. A JAK2-STAT3-dependent pathway was involved in the suppression by DGLHD of interactions between DCs and T lymphocyte. The experiments implicated five active ingredients in specific anti-diabetic actions of DGLHD. The results demonstrated the reasonable composition of the formula.

  19. Activation and measurement of NLRP3 inflammasome activity using IL-1β in human monocyte-derived dendritic cells.

    PubMed

    Fernandez, Melissa V; Miller, Elizabeth A; Bhardwaj, Nina

    2014-05-22

    Inflammatory processes resulting from the secretion of Interleukin (IL)-1 family cytokines by immune cells lead to local or systemic inflammation, tissue remodeling and repair, and virologic control(1) (,) (2) . Interleukin-1β is an essential element of the innate immune response and contributes to eliminate invading pathogens while preventing the establishment of persistent infection(1-5). Inflammasomes are the key signaling platform for the activation of interleukin 1 converting enzyme (ICE or Caspase-1). The NLRP3 inflammasome requires at least two signals in DCs to cause IL-1β secretion(6). Pro-IL-1β protein expression is limited in resting cells; therefore a priming signal is required for IL-1β transcription and protein expression. A second signal sensed by NLRP3 results in the formation of the multi-protein NLRP3 inflammasome. The ability of dendritic cells to respond to the signals required for IL-1β secretion can be tested using a synthetic purine, R848, which is sensed by TLR8 in human monocyte derived dendritic cells (moDCs) to prime cells, followed by activation of the NLRP3 inflammasome with the bacterial toxin and potassium ionophore, nigericin. Monocyte derived DCs are easily produced in culture and provide significantly more cells than purified human myeloid DCs. The method presented here differs from other inflammasome assays in that it uses in vitro human, instead of mouse derived, DCs thus allowing for the study of the inflammasome in human disease and infection.

  20. Interaction of dendritic cells and T lymphocytes for the therapeutic effect of Dangguiliuhuang decoction to autoimmune diabetes

    PubMed Central

    Liu, Tingting; Cao, Hui; Ji, Yachun; Pei, Yufeng; Yu, Zhihong; Quan, Yihong; Xiang, Ming

    2015-01-01

    In traditional Chinese medicine (TCM), Dangguiliuhuang decoction (DGLHD) is an effective treatment of autoimmune diabetes. Here, we studied potential anti-diabetic mechanisms of DGLHD in a non-obese diabetic (NOD) mouse model. In vitro, DGLHD and individual active ingredients enhanced glucose uptake in HepG2 cells, inhibited T lymphocyte proliferation, and suppressed dendritic cells (DCs) function. In vivo, DGLHD significantly inhibited insulitis, delayed the onset and development of diabetes, promoted insulin secretion and sensitivity, and balanced partially normalized Th1 and Th2 cytokines in NOD mice. In addition, DGLHD increased α1-antitrypsin (AAT-1), Bcl-2, and CyclinD1, and decreased Bax levels in pancreas, spleen, thymus, DCs, and a NIT-1 cell line, all consistent with protecting and repairing islet β cell. More detailed studies indicated that DGLHD regulated the maturation and function of DCs, decreased the percentage of merocytic dendritic cells (mcDCs) subset, and increased programmed death ligand-1 (PD-L1) expression in DCs. DGLHD also impeded T lymphocyte proliferation and promoted regulatory T cells (Tregs) differentiation in vivo. A JAK2-STAT3-dependent pathway was involved in the suppression by DGLHD of interactions between DCs and T lymphocyte. The experiments implicated five active ingredients in specific anti-diabetic actions of DGLHD. The results demonstrated the reasonable composition of the formula. PMID:26358493

  1. Dendritic cell potentials of early lymphoid and myeloid progenitors.

    PubMed

    Manz, M G; Traver, D; Miyamoto, T; Weissman, I L; Akashi, K

    2001-06-01

    It has been proposed that there are at least 2 classes of dendritic cells (DCs), CD8alpha(+) DCs derived from the lymphoid lineage and CD8alpha(-) DCs derived from the myeloid lineage. Here, the abilities of lymphoid- and myeloid-restricted progenitors to generate DCs are compared, and their overall contributions to the DC compartment are evaluated. It has previously been shown that primitive myeloid-committed progenitors (common myeloid progenitors [CMPs]) are efficient precursors of both CD8alpha(+) and CD8alpha(-) DCs in vivo. Here it is shown that the earliest lymphoid-committed progenitors (common lymphoid progenitors [CLPs]) and CMPs and their progeny granulocyte-macrophage progenitors (GMPs) can give rise to functional DCs in vitro and in vivo. CLPs are more efficient in generating DCs than their T-lineage descendants, the early thymocyte progenitors and pro-T cells, and CMPs are more efficient DC precursors than the descendant GMPs, whereas pro-B cells and megakaryocyte-erythrocyte progenitors are incapable of generating DCs. Thus, DC developmental potential is preserved during T- but not B-lymphoid differentiation from CLP and during granulocyte-macrophage but not megakaryocyte-erythrocyte development from CMP. In vivo reconstitution experiments show that CLPs and CMPs can reconstitute CD8alpha(+) and CD8alpha(-) DCs with similar efficiency on a per cell basis. However, CMPs are 10-fold more numerous than CLPs, suggesting that at steady state, CLPs provide only a minority of splenic DCs and approximately half the DCs in thymus, whereas most DCs, including CD8alpha(+) and CD8alpha(-) subtypes, are of myeloid origin. (Blood. 2001;97:3333-3341)

  2. Simple chemicals can induce maturation and apoptosis of dendritic cells

    PubMed Central

    Manome, H; Aiba, S; Tagami, H

    1999-01-01

    As is well known in the case of Langerhans cells, dendritic cells (DCs) play a crucial role in the initiation of immunity to simple chemicals such as noted in the contact hypersensitivity. Because DCs are scattered in non‐lymphoid organs as immature cells, they must be activated to initiate primary antigen‐specific immune reactions. Therefore, we hypothesized that some simple chemicals must affect the function of DCs. In this paper, we first demonstrated that human monocyte‐derived DCs responded to such simple chemicals as 2,4‐dinitrochlorobenzene (DNCB), 2,4,6‐trinitrochlorobenzene (TNCB), 2,4‐dinitrofluorobenzene (DNFB), NiCl2, MnCl2, CoCl2, SnCl2, and CdSO4 by augmenting their expression of CD86 or human leucocyte antigen‐DR (HLA‐DR), down‐regulating c‐Fms expression or increasing their production of tumour necrosis factor‐α (TNF‐α). In addition, the DCs stimulated with the chemicals demonstrated increased allogeneic T‐cell stimulatory function. Next, we found that, among these chemicals, only NiCl2 and CoCl2 induced apoptosis in them. Finally, we examined the effects of these chemicals on CD86 expression by three different macrophage subsets and DCs induced from the cultures of human peripheral blood monocytes in the presence of macrophage colony‐stimulating factor (M‐CSF), M‐CSF + interleukin‐4 (IL‐4), granulocyte–macrophage colony‐stimulating factor (GM‐CSF), and GM‐CSF + IL‐4, respectively. Among them, only DCs dramatically augmented their expression of CD86. These observations have revealed unique characteristics of DCs, which convert chemical stimuli to augmentation of their antigen presenting function, although their responses to different chemicals were not necessarily uniform in the phenotypic changes, cytokine production or in the induction of apoptosis. PMID:10594678

  3. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro.

    PubMed

    Marton, Annamaria; Vizler, Csaba; Kusz, Erzsebet; Temesfoi, Viktoria; Szathmary, Zsuzsa; Nagy, Krisztina; Szegletes, Zsolt; Varo, Gyorgy; Siklos, Laszlo; Katona, Robert L; Tubak, Vilmos; Howard, O M Zack; Duda, Erno; Minarovits, Janos; Nagy, Katalin; Buzas, Krisztina

    2012-01-01

    To clarify controversies in the literature of the field, we have purified and characterized B16F1 melanoma cell derived exosomes (mcd-exosomes) then we attempted to dissect their immunological activities. We tested how mcd-exosomes influence CD4+ T cell proliferation induced by bone marrow derived dendritic cells; we quantified NF-κB activation in mature macrophages stimulated with mcd-exosomes, and we compared the cytokine profile of LPS-stimulated, IL-4 induced, and mcd-exosome treated macrophages. We observed that mcd-exosomes helped the maturation of dendritic cells, enhancing T cell proliferation induced by the treated dendritic cells. The exosomes also activated macrophages, as measured by NF-κB activation. The cytokine and chemokine profile of macrophages treated with tumor cell derived exosomes showed marked differences from those induced by either LPS or IL-4, and it suggested that exosomes may play a role in the tumor progression and metastasis formation through supporting tumor immune escape mechanisms.

  4. Simulated Responses of Cerebellar Purkinje Cells are Independent of the Dendritic Location of Granule Cell Synaptic Inputs

    NASA Astrophysics Data System (ADS)

    de Schutter, Erik; Bower, James M.

    1994-05-01

    Cerebellar Purkinje cell responses to granule cell synaptic inputs were examined with a computer model including active dendritic conductances. Dendritic P-type Ca2+ channels amplified postsynaptic responses when the model was firing at a physiological rate. Small synchronous excitatory inputs applied distally on the large dendritic tree resulted in somatic responses of similar size to those generated by more proximal inputs. In contrast, in a passive model the somatic postsynaptic potentials to distal inputs were 76% smaller. The model predicts that the somatic firing response of Purkinje cells is relatively insensitive to the exact dendritic location of synaptic inputs. We describe a mechanism of Ca2+-mediated synaptic amplification, based on the subspiking threshold recruitment of P-type Ca2+ channels in the dendritic branches surrounding the input site.

  5. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth.

    PubMed

    Jiang, Nan; Soba, Peter; Parker, Edward; Kim, Charles C; Parrish, Jay Z

    2014-07-01

    As animals grow, many early born structures grow by cell expansion rather than cell addition; thus growth of distinct structures must be coordinated to maintain proportionality. This phenomenon is particularly widespread in the nervous system, with dendrite arbors of many neurons expanding in concert with their substrate to sustain connectivity and maintain receptive field coverage as animals grow. After rapidly growing to establish body wall coverage, dendrites of Drosophila class IV dendrite arborization (C4da) neurons grow synchronously with their substrate, the body wall epithelium, providing a system to study how proportionality is maintained during animal growth. Here, we show that the microRNA bantam (ban) ensures coordinated growth of C4da dendrites and the epithelium through regulation of epithelial endoreplication, a modified cell cycle that entails genome amplification without cell division. In Drosophila larvae, epithelial endoreplication leads to progressive changes in dendrite-extracellular matrix (ECM) and dendrite-epithelium contacts, coupling dendrite/substrate expansion and restricting dendrite growth beyond established boundaries. Moreover, changes in epithelial expression of cell adhesion molecules, including the beta-integrin myospheroid (mys), accompany this developmental transition. Finally, endoreplication and the accompanying changes in epithelial mys expression are required to constrain late-stage dendrite growth and structural plasticity. Hence, modulating epithelium-ECM attachment probably influences substrate permissivity for dendrite growth and contributes to the dendrite-substrate coupling that ensures proportional expansion of the two cell types.

  6. Endogenous Galectin-3 Is Localized in Membrane Lipid Rafts and Regulates Migration of Dendritic Cells

    PubMed Central

    Hsu, Daniel K.; Chernyavsky, Alexander I.; Chen, Huan-Yuan; Yu, Lan; Grando, Sergei A.; Liu, Fu-Tong

    2008-01-01

    This study reveals a function of endogenous galectin-3, an animal lectin recognizing β-galactosides, in regulating dendritic cell motility both in vitroand in vivo,which to our knowledge is unreported. First, galectin-3-deficient (gal3−/−) bone marrow-derived dendritic cells exhibited defective chemotaxis compared to gal3+/+ cells. Second, cutaneous dendritic cells in gal3−/− mice displayed reduced migration to draining lymph nodes upon hapten stimulation compared to gal3+/+ mice. Moreover, gal3−/− mice were impaired in the development of contact hypersensitivity relative to gal3+/+ mice in response to a hapten, a process in which dendritic cell trafficking to lymph nodes is critical. In addition, defective signaling was detected in gal3−/− cells upon chemokine receptor activation. By immunofluorescence microscopy, we observed that galectin-3 is localized in membrane ruffles and lamellipodia in stimulated dendritic cells and macrophages. Furthermore, galectin-3 was enriched in lipid raft domains under these conditions. Finally, we determined that ruffles on gal3−/− cells contained structures with lower complexity compared to gal3+/+ cells. In view of the participation of membrane ruffles in signal transduction and cell motility, we conclude that galectin-3 regulates cell migration by functioning at these structures. PMID:18843294

  7. Programming of donor T cells using allogeneic δ-like ligand 4-positive dendritic cells to reduce GVHD in mice.

    PubMed

    Mochizuki, Kazuhiro; Meng, Lijun; Mochizuki, Izumi; Tong, Qing; He, Shan; Liu, Yongnian; Purushe, Janaki; Fung, Henry; Zaidi, M Raza; Zhang, Yanyun; Reshef, Ran; Blazar, Bruce R; Yagita, Hideo; Mineishi, Shin; Zhang, Yi

    2016-06-23

    Alloreactive T cells play a critical role in eliminating hematopoietic malignant cells but are also the mediators of graft-versus-host disease (GVHD), a major complication that subverts the success of allogeneic hematopoietic stem cell transplantation (HSCT). However, induction of alloreactive T cells does not necessarily lead to GVHD. Here we report the development of a cellular programming approach to render alloreactive T cells incapable of causing severe GVHD in both major histocompatibility complex (MHC)-mismatched and MHC-identical but minor histocompatibility antigen-mismatched mouse models. We established a novel platform that produced δ-like ligand 4-positive dendritic cells (Dll4(hi)DCs) from murine bone marrow using Flt3 ligand and Toll-like receptor agonists. Upon allogeneic Dll4(hi)DC stimulation, CD4(+) naïve T cells underwent effector differentiation and produced high levels of interferon γ (IFN-γ) and interleukin-17 in vitro, depending on Dll4 activation of Notch signaling. Following transfer, allogeneic Dll4(hi)DC-induced T cells were unable to mediate severe GVHD but preserved antileukemic activity, significantly improving the survival of leukemic mice undergoing allogeneic HSCT. This effect of Dll4(hi)DC-induced T cells was associated with their impaired expansion in GVHD target tissues. IFN-γ was important for Dll4(hi)DC programming to reduce GVHD toxicities of alloreactive T cells. Absence of T-cell IFN-γ led to improved survival and expansion of Dll4(hi)DC-induced CD4(+) T cells in transplant recipients and caused lethal GVHD. Our findings demonstrate that Dll4(hi)DC programming can overcome GVHD toxicity of donor T cells and produce leukemia-reactive T cells for effective immunotherapy.

  8. Modulation of respiratory dendritic cells during Klebsiella pneumonia infection

    PubMed Central

    2013-01-01

    Background Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity. Method By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsiella pneumonia infection. Results Data indicate that pDCs and MoDC were markedly elevated in the post acute pneumonia phase when compared to mock-infected controls. Analysis of draining mediastinal lymph nodes revealed a rapid increase of activated CD103+ DC, CD11b+ DC and MoDC within 48 h post infection. Lung pDC identification during bacterial pneumonia was confirmed by extended phenotyping for 120G8, mPDCA-1 and Siglec-H expression and by demonstration of high Interferon-alpha producing capacity after cell sorting. Cytokine expression analysis of ex vivo-sorted respiratory DC subpopulations from infected animals revealed elevated Interferon-alpha in pDC, elevated IFN-gamma, IL-4 and IL-13 in CD103+ DC and IL-19 and IL-12p35 in CD11b+ DC subsets in comparison to CD11c+ MHC-class IIlow cells indicating distinct functional roles. Antigen-specific naive CD4+ T cell stimulatory capacity of purified respiratory DC subsets was analysed in a model system with purified ovalbumin T cell receptor transgenic naive CD4+ responder T cells and respiratory DC subsets, pulsed with ovalbumin and matured with Klebsiella pneumoniae lysate. CD103+ DC and CD11b+ DC subsets represented the most potent naive CD4+ T helper cell activators. Conclusion These results provide novel insight into the activation of respiratory DC subsets during Klebsiella pneumonia infection. The detection of increased respiratory pDC numbers in bacterial pneumonia may indicate possible novel pDC functions with respect to lung repair

  9. Cryptococcus gattii is killed by dendritic cells, but evades adaptive immunity by failing to induce dendritic cell maturation.

    PubMed

    Huston, Shaunna M; Li, Shu Shun; Stack, Danuta; Timm-McCann, Martina; Jones, Gareth J; Islam, Anowara; Berenger, Byron M; Xiang, Richard F; Colarusso, Pina; Mody, Christopher H

    2013-07-01

    During adaptive immunity to pathogens, dendritic cells (DCs) capture, kill, process, and present microbial Ags to T cells. Ag presentation is accompanied by DC maturation driven by appropriate costimulatory signals. However, current understanding of the intricate regulation of these processes remains limited. Cryptococcus gattii, an emerging fungal pathogen in the Pacific Northwest of Canada and the United States, fails to stimulate an effective immune response in otherwise healthy hosts leading to morbidity or death. Because immunity to fungal pathogens requires intact cell-mediated immunity initiated by DCs, we asked whether C. gattii causes dysregulation of DC functions. C. gattii was efficiently bound and internalized by human monocyte-derived DCs, trafficked to late phagolysosomes, and killed. Yet, even with this degree of DC activation, the organism evaded pathways leading to DC maturation. Despite the ability to recognize and kill C. gattii, immature DCs failed to mature; there was no increased expression of MHC class II, CD86, CD83, CD80, and CCR7, or decrease of CD11c and CD32, which resulted in suboptimal T cell responses. Remarkably, no increase in TNF-α was observed in the presence of C. gattii. However, addition of recombinant TNF-α or stimulation that led to TNF-α production restored DC maturation and restored T cell responses. Thus, despite early killing, C. gattii evades DC maturation, providing a potential explanation for its ability to infect immunocompetent individuals. We have also established that DCs retain the ability to recognize and kill C. gattii without triggering TNF-α, suggesting independent or divergent activation pathways among essential DC functions.

  10. Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype

    PubMed Central

    Harfuddin, Zulkarnain; Dharmadhikari, Bhushan; Wong, Siew Cheng; Duan, Kaibo; Poidinger, Michael; Kwajah, Shaqireen; Schwarz, Herbert

    2016-01-01

    The importance of monocyte-derived dendritic cells (DCs) is evidenced by the fact that they are essential for the elimination of pathogens. Although in vitro DCs can be generated by treatment of monocytes with GM-CSF and IL-4, it is unknown what stimuli induce differentiation of DCs in vivo. CD137L-DCs are human monocyte-derived DC that are generated by CD137 ligand (CD137L) signaling. We demonstrate that the gene signature of in vitro generated CD137L-DCs is most similar to those of GM-CSF and IL-4-generated immature DCs and of macrophages. This is reminiscent of in vivo inflammatory DC which also have been reported to share gene signatures with monocyte-derived DCs and macrophages. Performing direct comparison of deposited human gene expression data with a CD137L-DC dataset revealed a significant enrichment of CD137L-DC signature genes in inflammatory in vivo DCs. In addition, surface marker expression and cytokine secretion by CD137L-DCs resemble closely those of inflammatory DCs. Further, CD137L-DCs express high levels of adhesion molecules, display strong attachment, and employ the adhesion molecule ALCAM to stimulate T cell proliferation. This study characterizes the gene expression profile of CD137L-DCs, and identifies significant similarities of CD137L-DCs with in vivo inflammatory monocyte-derived DCs and macrophages. PMID:27431276

  11. [Establishment of induced pluripotent stem cells from adipose tissue-derived stem cells for dendritic cell-based cancer vaccines].

    PubMed

    Matsushita, Norimasa; Kobayashi, Hajime; Aruga, Atsushi; Yamamoto, Masakazu

    2014-04-01

    Recently, studies on regenerative stem cell therapy are being encouraged, and efforts to generate dendritic cells, which play important roles in cancer immunotherapy, from stem cells are being made in the field of tumor immunology. Therapeutic acquisition of stem cells has important clinical applications. Studies on induced pluripotent stem(iPS)cells generated from somatic cells with pluripotent genes have advanced in recent years. Stem cells are reported to be found in adipose tissue (adipose-derived stem cells, ADSC). Our goal is to develop a new cancer vaccine by using dendritic cells generated from ADSC. In a preliminary study, we examined whether iPS cells can be generated from ADSC to serve as a source of dendritic cells.We introduced a plasmid with pluripotent genes(OCT3/4, KLF4, SOX2, L-MYC, LIN28, p53-shRNA)into an ADSC strain derived from adipose tissue by electroporation and subsequently cultured the cells for further examination. A colony sugges- tive of iPS cells from ADSC was observed. OCT3/4, KLF4, SOX2, L-MYC, and LIN28 mRNAs were expressed in the cultured cells, as confirmed by reverse transcriptase-polymerase chain reaction(RT-PCR). On the basis of these results, we confirmed that iPS cells were generated from ADSC. The method of inducing dendritic cells from iPS cells has already been reported, and the results of this study suggest that ADSC is a potential source of dendritic cells.

  12. Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of Huntington's disease.

    PubMed

    Murmu, Reena Prity; Li, Wen; Szepesi, Zsuzsanna; Li, Jia-Yi

    2015-01-07

    A key question in Huntington's disease (HD) is what underlies the early cognitive deficits that precede the motor symptoms and the characteristic neuronal death observed in HD. The mechanisms underlying cognitive symptoms in HD remain unknown. Postmortem HD brain and animal model studies demonstrate pathologies in dendritic spines and abnormal synaptic plasticity before motor symptoms and neurodegeneration. Experience-dependent synaptic plasticity caused by mechanisms such as LTP or novel sensory experience potentiates synaptic strength, enhances new dendritic spine formation and stabilization, and may contribute to normal cognitive processes, such as learning and memory. We have previously reported that under baseline conditions (without any sensory manipulation) neuronal circuitry in HD (R6/2 mouse model) was highly unstable, which led to a progressive loss of persistent spines in these mice, and that mutant huntingtin was directly involved in the process. Here, we investigated whether pathological processes of HD interfere with the normal experience-dependent plasticity of dendritic spines in the R6/2 model. Six weeks of two-photon in vivo imaging before and after whisker trimming revealed that sensory deprivation exacerbates loss of persistent-type, stable spines in R6/2 mice compared with wild-type littermates. In addition, sensory deprivation leads to impaired transformation of newly generated spines into persistent spines in R6/2 mice. As a consequence, reduced synaptic density and decreased PSD-95 protein levels are evident in their barrel cortical neurons. These data suggest that mutant huntingtin is implicated in maladaptive synaptic plasticity, which could be one of the plausible mechanisms underlying early cognitive deficits in HD.

  13. Regulation of Dendritic Cell Function by Dietary Polyphenols.

    PubMed

    del Cornò, Manuela; Scazzocchio, Beatrice; Masella, Roberta; Gessani, Sandra

    2016-01-01

    Marked changes in socioeconomic status, cultural traditions, population growth, and agriculture have been affecting diets worldwide. Nutrition is known to play a pivotal role in the pathogenesis of several chronic diseases, and the use of bioactive food compounds at pharmacologic doses is emerging as a preventive and/or therapeutic approach to target metabolic dysregulations occurring in aging, obesity-related chronic diseases, and cancer. Only recently have data on the effects of specific nutrients or food on the immune system become available, and studies regarding the human immune system are still in their infancy. Beyond providing essential nutrients, diet can actively influence the immune system. Understanding how diet and nutritional status influence the innate and adaptive arms of our immune system represents an area of scientific need, opportunity, and challenge. The insights gleaned should help to address several pressing global health problems. Recently, biologically active polyphenols, which are widespread constituents of fruit and vegetables, have gained importance as complex regulators of various cellular processes, critically involved in the maintenance of body homeostasis. This review outlines the potential effects of polyphenols on the function of dendritic cells (DCs), key players in the orchestration of the immune response. Their effects on different aspects of DC biology including differentiation, maturation, and DC capacity to shift immune response toward tolerance or immune activation will be outlined.

  14. Phenotypic Characterization of Five Dendritic Cell Subsets in Human Tonsils

    PubMed Central

    Summers, Kelly L.; Hock, Barry D.; McKenzie, Judith L.; Hart, Derek N. J.

    2001-01-01

    Heterogeneous expression of several antigens on the three currently defined tonsil dendritic cell (DC) subsets encouraged us to re-examine tonsil DCs using a new method that minimized DC differentiation and activation during their preparation. Three-color flow cytometry and dual-color immunohistology was used in conjunction with an extensive panel of antibodies to relevant DC-related antigens to analyze lin− HLA-DR+ tonsil DCs. Here we identify, quantify, and locate five tonsil DC subsets based on their relative expression of the HLA-DR, CD11c, CD13, and CD123 antigens. In situ localization identified four of these DC subsets as distinct interdigitating DC populations. These included three new interdigitating DC subsets defined as HLA-DRhi CD11c+ DCs, HLA-DRmod CD11c+ CD13+ DCs, and HLA-DRmod CD11c− CD123− DCs, as well as the plasmacytoid DCs (HLA-DRmod CD11c− CD123+). These subsets differed in their expression of DC-associated differentiation/activation antigens and co-stimulator molecules including CD83, CMRF-44, CMRF-56, 2-7, CD86, and 4-1BB ligand. The fifth HLA-DRmod CD11c+ DC subset was identified as germinal center DCs, but contrary to previous reports they are redefined as lacking the CD13 antigen. The definition and extensive phenotypic analysis of these five DC subsets in human tonsil extends our understanding of the complexity of DC biology. PMID:11438475

  15. The Influence of Ouabain on Human Dendritic Cells Maturation

    PubMed Central

    Nascimento, C. R.; Valente, R. C.; Echevarria-Lima, J.; Fontes, C. F. L.; de Araujo-Martins, L.; Araujo, E. G.; Rumjanek, V. M.

    2014-01-01

    Although known as a Na,K-ATPase inhibitor, several other cellular and systemic actions have been ascribed to the steroid Ouabain (Oua). Particularly in the immune system, our group showed that Ouabain acts on decreasing lymphocyte proliferation, synergizing with glucocorticoids in spontaneous thymocyte apoptosis, and also lessening CD14 expression and blocking CD16 upregulation on human monocytes. However, Ouabain effects on dendritic cells (DCs) were not explored so far. Considering the peculiar plasticity and the importance of DCs in immune responses, the aim of our study was to investigate DC maturation under Ouabain influence. To generate immature DCs, human monocytes were cultured with IL-4 and GM-CSF (5 days). To investigate Ouabain role on DC activation, DCs were stimulated with TNF-α for 48 h in the presence or absence of Ouabain. TNF-induced CD83 expression and IL-12 production were abolished in DCs incubated with 100 nM Ouabain, though DC functional capacity concerning lymphocyte activation remained unaltered. Nevertheless, TNF-α-induced antigen capture downregulation, another maturation marker, occurred even in the presence of Ouabain. Besides, Ouabain increased HLA-DR and CD86 expression, whereas CD80 expression was maintained. Collectively, our results suggest that DCs respond to Ouabain maturating into a distinct category, possibly contributing to the balance between immunity and tolerance. PMID:25609892

  16. Adipose Recruitment and Activation of Plasmacytoid Dendritic Cells Fuel Metaflammation.

    PubMed

    Ghosh, Amrit Raj; Bhattacharya, Roopkatha; Bhattacharya, Shamik; Nargis, Titli; Rahaman, Oindrila; Duttagupta, Pritam; Raychaudhuri, Deblina; Liu, Chinky Shiu Chen; Roy, Shounak; Ghosh, Parasar; Khanna, Shashi; Chaudhuri, Tamonas; Tantia, Om; Haak, Stefan; Bandyopadhyay, Santu; Mukhopadhyay, Satinath; Chakrabarti, Partha; Ganguly, Dipyaman

    2016-11-01

    In obese individuals, visceral adipose tissue (VAT) is the seat of chronic low-grade inflammation (metaflammation), but the mechanistic link between increased adiposity and metaflammation largely remains unclear. In obese individuals, deregulation of a specific adipokine, chemerin, contributes to innate initiation of metaflammation by recruiting circulating plasmacytoid dendritic cells (pDCs) into VAT through chemokine-like receptor 1 (CMKLR1). Adipose tissue-derived high-mobility group B1 (HMGB1) protein activates Toll-like receptor 9 (TLR9) in the adipose-recruited pDCs by transporting extracellular DNA through receptor for advanced glycation end products (RAGE) and induces production of type I interferons (IFNs). Type I IFNs in turn help in proinflammatory polarization of adipose-resident macrophages. IFN signature gene expression in VAT correlates with both adipose tissue and systemic insulin resistance (IR) in obese individuals, which is represented by ADIPO-IR and HOMA2-IR, respectively, and defines two subgroups with different susceptibility to IR. Thus, this study reveals a pathway that drives adipose tissue inflammation and consequent IR in obesity.

  17. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity

    PubMed Central

    Ma, Yijie; Chen, Min; Jin, Huali; Prabhakar, Bellur S.; Valyi-Nagy, Tibor; He, Bin

    2017-01-01

    Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity. PMID:28150813

  18. Exopolysaccharide from Trichoderma pseudokoningii promotes maturation of murine dendritic cells.

    PubMed

    Xu, Yanghui; Li, Jing; Ju, Jing; Shen, Bingxiang; Chen, Guochuang; Qian, Wen; Zhu, Lei; Lu, Jingbo; Liu, Chunyan; Qin, Guozheng; Wang, Guodong; Chen, Kaoshan

    2016-11-01

    Dendritic cells (DCs) are the key regulators of immune responses. In this study, the effect of an exopolysaccharide (EPS) from the culture broth of Trichoderma pseudokoningii on the phenotypic and functional maturation of murine DCs and its underlying molecular mechanisms were investigated. It showed that EPS induced the morphological changes of DCs and the enhanced expression of DCs featured surface molecules CD11c, CD86, CD80 and major histocompatibility complex II (MHC-II). Flow cytometry analysis showed that the treatment with EPS could reduce FITC-dextran uptake by DCs. Sequentially, the results of ELISA indicated that EPS could increase the production of interleukin-12p70 (IL-12p70) in culture supernatant of DCs. Immunofluorescence staining and western blot analysis further revealed that EPS significantly prompted nuclear factor (NF)-κB subunit p65 translocation, IκB-α protein degradation, and p38 mitogen-activated protein kinase (MAPK) phosphorylation. And the production of IL-12p70 was significantly decreased in condition of the inhibition of p38 or NF-κB signaling pathway. These findings suggested that EPS could induce DCs maturation through both p38 MAPK and NF-κB signaling pathways.

  19. Surfactin induces maturation of dendritic cells in vitro

    PubMed Central

    Xu, Wenwen; Liu, Haofei; Wang, Xiaoqing; Yang, Qian

    2016-01-01

    Surfactin has multiple immune activities, such as triggering immune-related defense responses and enhancing humoral and cellular immune responses. Although, the mechanisms are still unclear. The maturation of dendritic cells (DCs) is essential for inducing downstream immune response. To shed light on the mechanisms of surfactin-induced immune activities, we verified the influences of surfactin on DCs maturation. The results showed that after stimulated with 20 μg/ml surfactin for 24 h, DCs were conferred morphologic and phenotypic characteristics of a mature state, showing an increased shape index and up-regulated expressions of major histocompatibility complex II (MHCII) and CD40. Moreover, surfactin also induced DCs to release IL-6 and tumour necrosis factor-α (TNF-α), indicating that DCs were functionally mature. In addition, the IκB-α level in surfactin-treated DCs was significantly reduced whereas the nuclear p65 level was notably increased, preliminarily indicating that nuclear factor-kappa B (NF-κB) signalling pathway might play an important role in surfactin-induced DCs maturation. PMID:27534429

  20. Rotavirus activates dendritic cells derived from umbilical cord blood monocytes.

    PubMed

    Rosales-Martinez, D; Gutierrez-Xicotencatl, L; Badillo-Godinez, O; Lopez-Guerrero, D; Santana-Calderon, A; Cortez-Gomez, R; Ramirez-Pliego, O; Esquivel-Guadarrama, F

    2016-10-01

    Rotavirus is the most common cause of acute infectious diarrhea in human neonates and infants. However, the studies aimed at dissecting the anti-virus immune response have been mainly performed in adults. Dendritic cells (DCs) play a crucial role in innate and acquired immune responses. Therefore, it is very important to determine the response of neonatal and infant DCs to rotavirus and to compare it to the response of adult DCs. Thus, we determined the response of monocyte-derived DCs from umbilical cord blood (UCB) and adult peripheral blood (PB) to rotavirus in vitro. It was found that the rotavirus and its genome, composed of segmented doubled stranded RNA (dsRNA), induced the activation of neonatal DCs, as these cells up-regulated the levels of CD40, CD86, MHC II, TLR-3 and TLR-4, the production of cytokines IL-6, IL-12/23p40, IL-10, TGF-β (but not of IL-12p70), and the message for TNF-α and IFN-β. This activation enabled the neonatal DCs to induce a strong proliferation of allogeneic CD4(+) T cells and the production of IFN-γ. Moreover, neonatal DCs could be infected by rotavirus and sustain its replication. Neonatal DCs had a similar response as adult DCs towards rotavirus and its genome. However, adult DCs had a biased pro-inflammatory response compared to neonatal DCs, which showed a biased regulatory profile, as they produced higher levels of IL-10 and TGF-β, and were less efficient in inducing a Th1 type response. So it can be concluded that rotavirus and its genome can induce the activation of neonatal DCs in spite of their tolerogenic bias.

  1. Molecular Characterization of Dendritic Cell-Derived Exosomes

    PubMed Central

    Théry, Clotilde; Regnault, Armelle; Garin, Jérôme; Wolfers, Joseph; Zitvogel, Laurence; Ricciardi-Castagnoli, Paola; Raposo, Graça; Amigorena, Sebastian

    1999-01-01

    Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Dendritic cell (DC)-derived exosomes induce potent antitumor immune responses in mice, resulting in the regression of established tumors (Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Nat. Med. 4:594–600). To unravel the molecular basis of exosome-induced immune stimulation, we now analyze the regulation of their production during DC maturation and characterize extensively their protein composition by peptide mass mapping. Exosomes contain several cytosolic proteins (including annexin II, heat shock cognate protein hsc73, and heteromeric G protein Gi2α), as well as different integral or peripherally associated membrane proteins (major histocompatiblity complex class II, Mac-1 integrin, CD9, milk fat globule-EGF-factor VIII [MFG-E8]). MFG-E8, the major exosomal component, binds integrins expressed by DCs and macrophages, suggesting that it may be involved in exosome targeting to these professional antigen-presenting cells. Another exosome component is hsc73, a cytosolic heat shock protein (hsp) also present in DC endocytic compartments. hsc73 was shown to induce antitumor immune responses in vivo, and therefore could be involved in the exosome's potent antitumor effects. Finally, exosome production is downregulated upon DC maturation, indicating that in vivo, exosomes are produced by immature DCs in peripheral tissues. Thus, DC-derived exosomes accumulate a defined subset of cellular proteins reflecting their endosomal biogenesis and accounting for their biological function. PMID:10545503

  2. Haemophilus ducreyi partially activates human myeloid dendritic cells.

    PubMed

    Banks, Keith E; Humphreys, Tricia L; Li, Wei; Katz, Barry P; Wilkes, David S; Spinola, Stanley M

    2007-12-01

    Dendritic cells (DC) orchestrate innate and adaptive immune responses to bacteria. How Haemophilus ducreyi, which causes genital ulcers and regional lymphadenitis, interacts with DC is unknown. H. ducreyi evades uptake by polymorphonuclear leukocyte and macrophage-like cell lines by secreting LspA1 and LspA2. Many H. ducreyi strains express cytolethal distending toxin (CDT), and recombinant CDT causes apoptosis of DC in vitro. Here, we examined interactions between DC and H. ducreyi 35000HP, which produces LspA1, LspA2, and CDT. In human volunteers infected with 35000HP, the ratio of myeloid DC to plasmacytoid DC was 2.8:1 in lesions, compared to a ratio of 1:1 in peripheral blood. Using myeloid DC derived from monocytes as surrogates for lesional DC, we found that DC infected with 35000HP remained as viable as uninfected DC for up to 48 h. Gentamicin protection and confocal microscopy assays demonstrated that DC ingested and killed 35000HP, but killing was incomplete at 48 h. The expression of LspA1 and LspA2 did not inhibit the uptake of H. ducreyi, despite inactivating Src kinases. Infection of DC with live 35000HP caused less cell surface marker activation than infection with heat-killed 35000HP and lipopolysaccharide (LPS) and inhibited maturation by LPS. However, infection of DC with live bacteria caused the secretion of significantly higher levels of interleukin-6 and tumor necrosis factor alpha than infection with heat-killed bacteria and LPS. The survival of H. ducreyi in DC may provide a mechanism by which the organism traffics to lymph nodes. Partial activation of DC may abrogate the establishment of a full Th1 response and an environment that promotes phagocytosis.

  3. Clinical grade of generation of dendritic cells for immunotherapy.

    PubMed

    Tang, Duozhuang; Tao, Si; Cao, Yang; Zhou, Jianfeng; Ma, Ding; Huang, Wei

    2007-06-01

    In order to develop a protocol for clinical grade generation of dendritic cells (DCs) for cancer immunotherapy, aphereses were performed with the continuous flow cell separator and materials were derived from 10 leukemia patients that had achieved complete remission. Peripheral blood monocytes were cultured in vitro with GM-CSF, IL-4 for 6 days, then TNF-(the TNF-group) or TNF-, IL-1, IL-6, PGE2 (the cytokine mixture group) were added to promote maturation. Cell number was counted by hematology analyzer, and phenotype study (CD1a, CD14, CD83) was carried out by flow cytometry, and the function of DCs was examined by mixed lymphocyte reaction. The results showed that (0.70+/-0.13)x10(7)/mL (the TNF-alpha group) and (0.79+/-0.04)x10(7)/mL (the cytokine mixture group) DCs were generated respectively in peripheral blood obtained by leucapheresis. The phenotypes were as follows: CD1a+ (74.65+/-4.45)%, CD83+ (39.50+/-4.16)%, CD14+ (2.90+/-1.76)% in TNF-alpha group, and CD1a+ (81.86+/-5.87)%, CD83+ (81.65+/-6.36)%, CD14+ (2.46+/-1.68)% in the cytokine mixture group. It was concluded that leucapheresis may be a feasible way to provide large number of peripheral blood monocytes for DC generation, and combined administration of TNF-, IL-1, IL-6, and PGE2 may greatly promote maturity.

  4. Plasmacytoid dendritic cells in skin lesions of classic Kaposi's sarcoma.

    PubMed

    Karouni, Mirna; Kurban, Mazen; Abbas, Ossama

    2016-09-01

    Plasmacytoid dendritic cells (pDCs) are the most potent producers of type I interferons (IFNs), which allows them to provide anti-viral resistance and to link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer cells. pDCs are involved in the pathogenesis of several infectious [especially viral, such as Molluscum contagiosum (MC)], inflammatory/autoimmune, and neoplastic entities. Kaposi's sarcoma (KS) is a multifocal, systemic lympho-angioproliferative tumor associated with Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Microscopy typically exhibits a chronic inflammatory lymphoplasmacytic infiltrate in addition to the vascular changes and spindle cell proliferation. Despite the extensive research done on the immune evasion strategies employed by KSHV, pDCs role in relation to KS has only rarely been investigated. Given this, we intend to investigate pDC occurrence and activity in the skin lesions of KS. Immunohistochemical staining for BDCA-2 (specific pDC marker) and MxA (surrogate marker for local type I IFN production) was performed on classic KS (n = 20) with the control group comprising inflamed MC (n = 20). As expected, BDCA-2+ pDCs were present in abundance with diffuse and intense MxA expression (indicative of local type I IFN production) in all inflamed MC cases (20 of 20, 100 %). Though present in all the KS cases, pDCs were significantly less abundant in KS than in inflamed MC cases, and MxA expression was patchy/weak in most KS cases. In summary, pDCs are part of the inflammatory host response in KS; however, they were generally low in number with decreased type I IFN production which is probably related to KSHV's ability to evade the immune system through the production of different viral proteins capable of suppressing IFN production as well as pDC function.

  5. Regulation of AMPA and NMDA receptor-mediated EPSPs in dendritic trees of thalamocortical cells

    PubMed Central

    Lajeunesse, Francis; Kröger, Helmut

    2013-01-01

    Two main excitatory synapses are formed at the dendritic arbor of first-order nuclei thalamocortical (TC) neurons. Ascending sensory axons primarily establish contacts at large proximal dendrites, whereas descending corticothalamic fibers form synapses on thin distal dendrites. With the use of a multicomparment computational model based on fully reconstructed TC neurons from the ventroposterolateral nucleus of the cat, we compared local responses at the site of stimulation as well as somatic responses induced by both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and N-methyl-d-aspartate receptor (NMDAR)-mediated currents. We found that AMPAR-mediated responses, when synapses were located at proximal dendrites, induced a larger depolarization at the level of soma, whereas NMDAR-mediated responses were more efficient for synapses located at distal dendrites. The voltage transfer and transfer impedance were higher for NMDAR than for AMPAR activation at any location. For both types of synaptic current and for both input locations at the dendritic arbor, somatic responses were characterized by a low variability despite the large variability found in local responses in dendrites. The large neurons had overall smaller somatic responses than small neurons, but this relation was not found in local dendritic responses. We conclude that in TC cells, the dendritic location of small synaptic inputs does not play a major role in the amplitude of a somatic response, but the size of the neuron does. The variability of response amplitude between cells was much larger than the variability within cells. This suggests possible functional segregation of TC neurons of different size. PMID:23100131

  6. Mapping the accumulation of co-infiltrating CNS dendritic cells and encephalitogenic T cells during EAE

    PubMed Central

    Clarkson, Benjamin D; Walker, Alec; Harris, Melissa; Rayasam, Aditya; Sandor, Matyas; Fabry, Zsuzsanna

    2014-01-01

    Evidence from experimental autoimmune encephalomyelitis (EAE) suggests that CNS-infiltrating dendritic cells (DCs) are crucial for restimulation of coinfiltrating T cells. Here we systematically quantified and visualized the distribution and interaction of CNS DCs and T cells during EAE. We report marked periventricular accumulation of DCs and myelin-specific T cells during EAE disease onset prior to accumulation in the spinal cord, indicating that the choroid plexus-CSF axis is a CNS entry portal. Moreover, despite emphasis on spinal cord inflammation in EAE and in correspondence with MS pathology, inflammatory lesions containing interacting DCs and T cells are present in specific brain regions. PMID:25288303

  7. Apigenin, a Natural Flavonoid, Attenuates EAE Severity Through the Modulation of Dendritic Cell and Other Immune Cell Functions.

    PubMed

    Ginwala, Rashida; McTish, Emily; Raman, Chander; Singh, Narendra; Nagarkatti, Mitzi; Nagarkatti, Prakash; Sagar, Divya; Jain, Pooja; Khan, Zafar K

    2016-03-01

    Apigenin, a natural flavonoid, found in several plants, fruits, vegetables, herbs, and spices, is known to have anti-oxidant and anti-inflammatory properties that are evident in the use of these substances for centuries as medicinal approaches to treat asthma, insomnia, Parkinson's disease, neuralgia, and shingles. However, there is a considerable dearth of information regarding its effect on immune cells, especially dendritic cells (DC) that maintain the critical balance between an immunogenic and tolerogenic immune response, in an immunospecialized location like the central nervous system (CNS). In this paper we looked at the anti-inflammatory properties of Apigenin in restoration of immune function and the resultant decrease in neuroinflammation. In vivo, a significant reduction in severity of experimental autoimmune encephalomyelitis (EAE) progression and relapse was observed in C57BL/6 (progressive) and SJL/J (relapse-remitting) mouse models of multiple sclerosis upon treatment with Apigenin. Apigenin treated EAE mice show decreased expression of α4 integrin and CLEC12A on splenic DCs and an increased retention of immune cells in the periphery compared to untreated EAE mice. This correlated consequently with immunohistochemistry findings of decreased immune cell infiltration and reduced demyelination in the CNS. These results indicate a protective role of Apigenin against the neurodegenerative effects resulting from the entry of DC stimulated pathogenic T cells into the CNS thus implicating a potential therapy for neuroinflammatory disease.

  8. Phenotype and Function of CD209+ Bovine Blood Dendritic Cells, Monocyte-Derived-Dendritic Cells and Monocyte-Derived Macrophages

    PubMed Central

    Bannantine, John P.; Mack, Victoria; Fry, Lindsay M.; Davis, William C.

    2016-01-01

    Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny and function: conventional DC (cDC1 and cDC2), plasmacytoid DC (pDC), and monocyte derived DC (MoDC). DC of Artiodactyla (pigs and ruminants) can also be sub-classified using this system, allowing direct functional and phenotypic comparison of MoDC and other DC subsets trafficking in blood (bDC). Because of the high volume of blood collections required to study DC, cattle offer the best opportunity to further our understanding of bDC and MoDC function in an outbred large animal species. As reported here, phenotyping DC using a monoclonal antibody (mAb) to CD209 revealed CD209 is expressed on the major myeloid population of DC present in blood and MoDC, providing a phenotypic link between these two subsets. Additionally, the present study demonstrates that CD209 is also expressed on monocyte derived macrophages (MoΦ). Functional analysis revealed each of these populations can take up and process antigens (Ags), present them to CD4 and CD8 T cells, and elicit a T-cell recall response. Thus, bDC, MoDC, and MoΦ pulsed with pathogens or candidate vaccine antigens can be used to study factors that modulate DC-driven T-cell priming and differentiation ex vivo. PMID:27764236

  9. Rotavirus Infection Activates Dendritic Cells from Peyer's Patches in Adult Mice ▿ †

    PubMed Central

    Lopez-Guerrero, Delia V.; Meza-Perez, Selene; Ramirez-Pliego, Oscar; Santana-Calderon, Maria A.; Espino-Solis, Pavel; Gutierrez-Xicotencatl, Lourdes; Flores-Romo, Leopoldo; Esquivel-Guadarrama, Fernando R.

    2010-01-01

    This study used an in vivo mouse model to analyze the response of dendritic cells (DCs) in Peyer's patches (PPs) within the first 48 h of infection with the wild-type murine rotavirus EDIM (EDIMwt). After the infection, the absolute number of DCs was increased by 2-fold in the PPs without a modification of their relative percentage of the total cell number. Also, the DCs from PPs of infected mice showed a time-dependent migration to the subepithelial dome (SED) and an increase of the surface activation markers CD40, CD80, and CD86. This response was more evident at 48 h postinfection (p.i.) and depended on viral replication, since DCs from PPs of mice inoculated with UV-treated virus did not show this phenotype. As a result of the activation, the DCs showed an increase in the expression of mRNA for the proinflammatory cytokines interleukin-12/23p40 (IL-12/23p40), tumor necrosis factor alpha (TNF-α), and beta interferon (IFN-β), as well as for the regulatory cytokine IL-10. These results suggest that, a short time after rotavirus infection, the DCs from PPs play a critical role in controlling the infection and, at the same time, avoiding an excessive inflammatory immune response. PMID:20007263

  10. Sirtuin 1 Regulates Dendritic Cell Activation and Autophagy during Respiratory Syncytial Virus-Induced Immune Responses.

    PubMed

    Owczarczyk, Anna B; Schaller, Matthew A; Reed, Michelle; Rasky, Andrew J; Lombard, David B; Lukacs, Nicholas W

    2015-08-15

    Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in children worldwide. Sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, has been associated with the induction of autophagy and the regulation of inflammatory mediators. We found that Sirt1 was upregulated in mouse lung after RSV infection. Infected animals that received EX-527, a selective SIRT1 inhibitor, displayed exacerbated lung pathology, with increased mucus production, elevated viral load, and enhanced Th2 cytokine production. Gene expression analysis of isolated cell populations revealed that Sirt1 was most highly upregulated in RSV-treated dendritic cells (DCs). Upon RSV infection, EX-527-treated DCs, Sirt1 small interfering RNA-treated DCs, or DCs from conditional knockout (Sirt1(f/f)-CD11c-Cre(+)) mice showed downregulated inflammatory cytokine gene expression and attenuated autophagy. Finally, RSV infection of Sirt1(f/f)-CD11c-Cre(+) mice resulted in altered lung and lymph node cytokine responses, leading to exacerbated pathology. These data indicate that SIRT1 promotes DC activation associated with autophagy-mediated processes during RSV infection, thereby directing efficient antiviral immune responses.

  11. Central Role of Conventional Dendritic Cells in Regulation of Bone Marrow Release and Survival of Neutrophils

    PubMed Central

    Jiao, Jingjing; Dragomir, Ana-Cristina; Kocabayoglu, Peri; Rahman, Adeeb H.; Chow, Andrew; Hashimoto, Daigo; Leboeuf, Marylene; Kraus, Thomas; Moran, Thomas; Carrasco-Avino, Gonzalo; Friedman, Scott L.; Merad, Miriam; Aloman, Costica

    2014-01-01

    Neutrophils are the most abundant cell type in the immune system and play an important role in the innate immune response. Using a diverse range of mouse models with either defective DC development or conditional DC depletion, we provide in vivo evidence indicating that conventional dendritic cells (cDC) play an important role in the regulation of neutrophil homeostasis. Flk2, Flt3L and Batf3 knockout mice, which have defects in DC development, have increased numbers of liver neutrophils in the steady state. Conversely, neutrophil frequency is reduced in DC-specific PTEN knockout mice, which have an expansion of CD8+ and CD103+ DCs. In chimeric CD11c-DTR mice, cDC depletion results in a systemic increase of neutrophils in peripheral organs in the absence of histological inflammation or an increase in pro-inflammatory cytokines. This effect is also present in splenectomized chimeric CD11c-DTR mice and is absent in chimeric mice with 50% normal bone marrow. In chimeric CD11c-DTR mice, DT treatment results in enhanced neutrophil trafficking from the bone marrow into circulation and increased neutrophil recruitment. Moreover, there is an increased expression of chemokines/cytokines involved in neutrophil homeostasis and reduced neutrophil apoptosis. These data underscore the role of the DC pool in regulating the neutrophil compartment in non-lymphoid organs. PMID:24591364

  12. Differential Requirements of TCR Signaling in Homeostatic Maintenance and Function of Dendritic Epidermal T Cells.

    PubMed

    Zhang, Baojun; Wu, Jianxuan; Jiao, Yiqun; Bock, Cheryl; Dai, Meifang; Chen, Benny; Chao, Nelson; Zhang, Weiguo; Zhuang, Yuan

    2015-11-01

    Dendritic epidermal T cells (DETCs) are generated exclusively in the fetal thymus and maintained in the skin epithelium throughout postnatal life of the mouse. DETCs have restricted antigenic specificity as a result of their exclusive usage of a canonical TCR. Although the importance of the TCR in DETC development has been well established, the exact role of TCR signaling in DETC homeostasis and function remains incompletely defined. In this study, we investigated TCR signaling in fully matured DETCs by lineage-restricted deletion of the Lat gene, an essential signaling molecule downstream of the TCR. We found that Lat deletion impaired TCR-dependent cytokine gene activation and the ability of DETCs to undergo proliferative expansion. However, linker for activation of T cells-deficient DETCs were able to maintain long-term population homeostasis, although with a reduced proliferation rate. Mice with Lat deletion in DETCs exhibited delayed wound healing accompanied by impaired clonal expansion within the wound area. Our study revealed differential requirements for TCR signaling in homeostatic maintenance of DETCs and in their effector function during wound healing.

  13. SATB1 OVEREXPRESSION DRIVES TUMOR-PROMOTING ACTIVITIES IN CANCER-ASSOCIATED DENDRITIC CELLS

    PubMed Central

    Tesone, Amelia J.; Rutkowski, Melanie R.; Brencicova, Eva; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Stephen, Tom L.; Allegrezza, Michael J.; Payne, Kyle K.; Nguyen, Jenny M.; Wickramasinghe, Jayamanna; Tchou, Julia; Borowsky, Mark E.; Rabinovich, Gabriel A.; Kossenkov, Andrew V.; Conejo-Garcia, Jose R.

    2016-01-01

    SUMMARY Special AT-rich sequence-binding protein-1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating MHC-II expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC-II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46+ inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression. PMID:26876172

  14. Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species.

    PubMed

    Guilliams, Martin; Dutertre, Charles-Antoine; Scott, Charlotte L; McGovern, Naomi; Sichien, Dorine; Chakarov, Svetoslav; Van Gassen, Sofie; Chen, Jinmiao; Poidinger, Michael; De Prijck, Sofie; Tavernier, Simon J; Low, Ivy; Irac, Sergio Erdal; Mattar, Citra Nurfarah; Sumatoh, Hermi Rizal; Low, Gillian Hui Ling; Chung, Tam John Kit; Chan, Dedrick Kok Hong; Tan, Ker Kan; Hon, Tony Lim Kiat; Fossum, Even; Bogen, Bjarne; Choolani, Mahesh; Chan, Jerry Kok Yen; Larbi, Anis; Luche, Hervé; Henri, Sandrine; Saeys, Yvan; Newell, Evan William; Lambrecht, Bart N; Malissen, Bernard; Ginhoux, Florent

    2016-09-20

    Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.

  15. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins

    PubMed Central

    McCormick, Sarah M.; Heller, Nicola M.

    2015-01-01

    Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte–macrophage phenotype and function are highlighted. PMID:26579124

  16. Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer's disease.

    PubMed

    Zou, Chengyu; Montagna, Elena; Shi, Yuan; Peters, Finn; Blazquez-Llorca, Lidia; Shi, Song; Filser, Severin; Dorostkar, Mario M; Herms, Jochen

    2015-06-01

    Alzheimer's disease (AD) is thought to be caused by accumulation of amyloid-β protein (Aβ), which is a cleavage product of amyloid precursor protein (APP). Transgenic mice overexpressing APP have been used to recapitulate amyloid-β pathology. Among them, APP23 and APPswe/PS1deltaE9 (deltaE9) mice are extensively studied. APP23 mice express APP with Swedish mutation and develop amyloid plaques late in their life, while cognitive deficits are observed in young age. In contrast, deltaE9 mice with mutant APP and mutant presenilin-1 develop amyloid plaques early but show typical cognitive deficits in old age. To unveil the reasons for different progressions of cognitive decline in these commonly used mouse models, we analyzed the number and turnover of dendritic spines as important structural correlates for learning and memory. Chronic in vivo two-photon imaging in apical tufts of layer V pyramidal neurons revealed a decreased spine density in 4-5-month-old APP23 mice. In age-matched deltaE9 mice, in contrast, spine loss was only observed on cortical dendrites that were in close proximity to amyloid plaques. In both cases, the reduced spine density was caused by decreased spine formation. Interestingly, the patterns of alterations in spine morphology differed between these two transgenic mouse models. Moreover, in APP23 mice, APP was found to accumulate intracellularly and its content was inversely correlated with the absolute spine density and the relative number of mushroom spines. Collectively, our results suggest that different pathological mechanisms, namely an intracellular accumulation of APP or extracellular amyloid plaques, may lead to spine abnormalities in young adult APP23 and deltaE9 mice, respectively. These distinct features, which may represent very different mechanisms of synaptic failure in AD, have to be taken into consideration when translating results from animal studies to the human disease.

  17. The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons.

    PubMed

    Parrish, Jay Z; Xu, Peizhang; Kim, Charles C; Jan, Lily Yeh; Jan, Yuh Nung

    2009-09-24

    In addition to establishing dendritic coverage of the receptive field, neurons need to adjust their dendritic arbors to match changes of the receptive field. Here, we show that dendrite arborization (da) sensory neurons establish dendritic coverage of the body wall early in Drosophila larval development and then grow in precise proportion to their substrate, the underlying body wall epithelium, as the larva more than triples in length. This phenomenon, referred to as scaling growth of dendrites, requires the function of the microRNA (miRNA) bantam (ban) in the epithelial cells rather than the da neurons themselves. We further show that ban in epithelial cells dampens Akt kinase activity in adjacent neurons to influence dendrite growth. This signaling between epithelial cells and neurons receiving sensory input from the body wall synchronizes their growth to ensure proper dendritic coverage of the receptive field.

  18. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    PubMed Central

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response. PMID:27127520

  19. Dendritic mitochondria reach stable positions during circuit development.

    PubMed

    Faits, Michelle C; Zhang, Chunmeng; Soto, Florentina; Kerschensteiner, Daniel

    2016-01-07

    Mitochondria move throughout neuronal dendrites and localize to sites of energy demand. The prevailing view of dendritic mitochondria as highly motile organelles whose distribution is continually adjusted by neuronal activity via Ca(2+)-dependent arrests is based on observations in cultured neurons exposed to artificial stimuli. Here, we analyze the movements of mitochondria in ganglion cell dendrites in the intact retina. We find that whereas during development 30% of mitochondria are motile at any time, as dendrites mature, mitochondria all but stop moving and localize stably to synapses and branch points. Neither spontaneous nor sensory-evoked activity and Ca(2+) transients alter motility of dendritic mitochondria; and pathological hyperactivity in a mouse model of retinal degeneration elevates rather than reduces motility. Thus, our findings indicate that dendritic mitochondria reach stable positions during a critical developmental period of high motility, and challenge current views about the role of activity in regulating mitochondrial transport in dendrites.

  20. Conditional control of dendritic cell factor 1 expression by a tetracycline-inducible system.

    PubMed

    Yan, H; Huang, C; Yang, M; Guo, J; Wang, J; Feng, R; Wen, T

    2015-05-08

    Dendritic cell factor 1 plays important roles in neural stem cells differentiation and in glioma cells proliferation, migration, and invasion. Here, we used a tetracycline—inducible system that regulates the expression of Dendritic cell factor 1 in glioma cells. We constructed two tet—inducible vectors, pTRE—EGFP—DCF1 and pTRE—LJM1—DCF1, by modifying the promoter PCMV. In the absence of tetracycline or doxycycline, the expression of Dendritic cell factor 1 in cells co—transfected with pTRE—EGFP—DCF1 or pTRE—LJM1—EGFP—DCF1 and ptTS—Neo was suppressed through binding of the tetracyline—controlled transcriptional suppressor to tetracycline response element, and the suppression was released by the addition of doxycycline. Our work has laid foundations for potential clinical application of cancer therapy in realizing artificial regulation of gene.

  1. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo

    PubMed Central

    McDole, Brittnee; Isgor, Ceylan; Pare, Christopher; Guthrie, Kathleen

    2015-01-01

    Olfactory bulb granule cells are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on granule cell spines. These contacts are established in the distal apical dendritic compartment, while granule cell basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong granule cell neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb granule cell spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF produces a marked increase in granule cell spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on granule cells, suggesting a role for this factor in modulating granule cell functional connectivity within adult olfactory circuitry. PMID:26211445

  2. Dendritic cell targeting vaccine for HPV-associated cancer

    PubMed Central

    Yin, Wenjie; Duluc, Dorothée; Joo, HyeMee; Oh, SangKon

    2017-01-01

    Dendritic cells (DCs) are major antigen presenting cells that can efficiently prime and activate cellular immune responses. Delivering antigens to in vivo DCs has thus been considered as a promising strategy that could allow us to mount T cell-mediated therapeutic immunity against cancers in patients. Successful development of such types of cancer vaccines that can target in vivo DCs, however, requires a series of outstanding questions that need to be addressed. These include the proper selection of which DC surface receptors, specific DC subsets and DC activators that can further enhance the efficacy of vaccines by promoting effector T cell infiltration and retention in tumors and their actions against tumors. Supplementing these areas of research with additional strategies that can counteract tumor immune evasion mechanisms is also expected to enhance the efficacy of such therapeutic vaccines against cancers. After more than a decade of study, we have concluded that antigen targeting to DCs via CD40 to evoke cellular responses is more efficient than targeting antigens to the same types of DCs via eleven other DC surface receptors tested. In recent work, we have further demonstrated that a prototype vaccine (anti-CD40-HPV16.E6/7, a recombinant fusion protein of anti-human CD40 and HPV16.E6/7 protein) for HPV16-associated cancers can efficiently activate HPV16.E6/7-specific T cells, particularly CD8+ T cells, from the blood of HPV16+ head-and-neck cancer patients. Moreover, anti-CD40-HPV16.E6/7 plus poly(I:C) can mount potent therapeutic immunity against TC-1 tumor expressing HPV16.E6/7 protein in human CD40 transgenic mice. In this manuscript, we thus highlight our recent findings for the development of novel CD40 targeting immunotherapeutic vaccines for HPV16-associated malignancies. In addition, we further discuss several of key questions that still remain to be addressed for enhancing therapeutic immunity elicited by our prototype vaccine against HPV16

  3. Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells.

    PubMed

    Véron, Philippe; Segura, Elodie; Sugano, Gaël; Amigorena, Sebastian; Théry, Clotilde

    2005-01-01

    Exosomes are vesicles of endocytic origin secreted spontaneously by dendritic cells (DCs). We have shown previously that exosomes can transfer antigen or MHC-peptide complexes between DCs, thus potentially amplifying the immune response. We had also identified milk fat globule EGF/factor VIII (MFG-E8), also called lactadherin, as one of the major exosomal proteins. MFG-E8 has two domains: an Arg-Gly-Asp sequence that binds integrins alphavbeta3 and alphavbeta5 (expressed by human DCs and macrophages) and a phosphatidyl-serine (PS) binding sequence through which it associates to PS-containing membranes (among which exosomes). MFG-E8 is thus a good candidate molecule to address exosomes to DCs. Here, we show that MFG-E8 is expressed by immature bone-marrow-derived DCs (BMDCs) and secreted in association with exosomes in vitro. We have generated mice expressing an inactive form of MFG-E8, fused to beta-galactosidase. Analyzing these mice, we demonstrate that MFG-E8 is expressed in vivo in splenic DCs. In a mouse DC-dependent, antigen-specific, CD4 T cell-stimulation assay, exosomes produced by MFG-E8-deficient BMDCs were barely less efficient than exosomes bearing MFG-E8. We conclude that MFG-E8 is efficiently targeted to exosomes but is not essential to address exosomes to mouse BMDCs. Involvement of MFG-E8/lactadherin in exosome targeting to other DC subpopulations, or to human DCs, is still possible.

  4. Adoptive transfer of MART-1 T cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma

    PubMed Central

    Chodon, Thinle; Comin-Anduix, Begonya; Chmielowski, Bartosz; Koya, Richard C; Wu, Zhongqi; Auerbach, Martin; Ng, Charles; Avramis, Earl; Seja, Elizabeth; Villanueva, Arturo; McCannel, Tara A.; Ishiyama, Akira; Czernin, Johannes; Radu, Caius G.; Wang, Xiaoyan; Gjertson, David W.; Cochran, Alistair J.; Cornetta, Kenneth; Wong, Deborah J.L.; Kaplan-lefko, Paula; Hamid, Omid; Samlowski, Wolfram; Cohen, Peter A.; Daniels, Gregory A.; Mukherji, Bijay; Yang, Lili; Zack, Jerome A.; Kohn, Donald B.; Heath, James R.; Glaspy, John A.; Witte, Owen N.; Baltimore, David; Economou, James S.; Ribas, Antoni

    2014-01-01

    Purpose It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short one-week manufacture protocol to determine the feasibility, safety and antitumor efficacy of this double cell therapy. Experimnetal Design A clinical trial (NCT00910650) adoptively transferring MART-1 T cell receptor (TCR) transgenic lymphocytes together with MART-1 peptide pulsed DC vaccination in HLA-A2.1 patients with metastatic melanoma. Autologous TCR transgenic cells were manufactured in 6 to 7 days using retroviral vector gene transfer, and re-infused with (n = 10) or without (n = 3) prior cryopreservation. Results 14 patients with metastatic melanoma were enrolled and nine out of 13 treated patients (69%) showed evidence of tumor regression. Peripheral blood reconstitution with MART-1-specific T cells peaked within two weeks of ACT indicating rapid in vivo expansion. Administration of freshly manufactured TCR transgenic T cells resulted in a higher persistence of MART-1-specific T cells in the blood as compared to cryopreserved. Evidence that DC vaccination could cause further in vivo expansion was only observed with ACT using non-cryopreserved T cells. Conclusion Double cell therapy with ACT of TCR engineered T cells with a very short ex vivo manipulation and DC vaccines is feasible and results in antitumor activity, but improvements are needed to maintain tumor responses. PMID:24634374

  5. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy.

    PubMed

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient's against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers.

  6. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy

    PubMed Central

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient’s against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers. PMID:28187172

  7. PGE2 Elevates IL-23 Production in Human Dendritic Cells via a cAMP Dependent Pathway

    PubMed Central

    Shi, Quanxing; Yin, Zhao; Zhao, Bei; Sun, Fei; Yu, Haisheng; Yin, Xiangyun; Zhang, Liguo; Wang, Shouli

    2015-01-01

    PGE2 elevates IL-23 production in mouse dendritic cells while inhibits IL-23 production in isolated human monocytes. Whether this differential effect of PGE2 on IL-23 production is cell-type- or species-specific has not been investigated in detail. The present study was designed to investigate the effect of PGE2 on IL-23 production in human DCs and the possible underlying mechanisms. Human monocytes derived dendritic cells (Mo-DCs) were pretreated with or without PGE2. Then the cells were incubated with zymosan. Our results demonstrated that PGE2 promoted zymosan-induced IL-23 production in a concentration dependent manner. In addition, it was found that PGE2 is also able to elevate MyD88-mediated IL-23 p19 promoter activity. More importantly, ELISA data demonstrated that db-cAMP, a cAMP analog, and forskolin, an adenylate cyclase activator, can mimic the effect of PGE2 on zymosan-induced IL-23 production, and rp-cAMP, a protein kinase A (PKA) inhibitor, can block the effect of PGE2. Moreover, PGE2 can increase zymosan-induced expression of the mRNA levels of both p19 and p40 subunits, which was mimicked by db-cAMP and forskolin. Our data suggest that PGE2 elevates the production of IL-23 in human Mo-DCs via a cAMP dependent pathway. PMID:26412948

  8. Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A1[S

    PubMed Central

    Salvatore, Giulia; Bernoud-Hubac, Nathalie; Bissay, Nathalie; Debard, Cyrille; Daira, Patricia; Meugnier, Emmanuelle; Proamer, Fabienne; Hanau, Daniel; Vidal, Hubert; Aricò, Maurizio; Delprat, Christine; Mahtouk, Karène

    2015-01-01

    Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2–12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells “foamy DCs” and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A. PMID:25833686

  9. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells

    PubMed Central

    Gong, Jianlin; Avigan, David; Chen, Dongshu; Wu, Zekui; Koido, Shigeo; Kashiwaba, Masahiro; Kufe, Donald

    2000-01-01

    We have reported that fusions of murine dendritic cells (DCs) and murine carcinoma cells reverse unresponsiveness to tumor-associated antigens and induce the rejection of established metastases. In the present study, fusions were generated with primary human breast carcinoma cells and autologous DCs. Fusion cells coexpressed tumor-associated antigens and DC-derived costimulatory molecules. The fusion cells also retained the functional potency of DCs and stimulated autologous T cell proliferation. Significantly, the results show that autologous T cells are primed by the fusion cells to induce MHC class I-dependent lysis of autologous breast tumor cells. These findings demonstrate that fusions of human breast cancer cells and DCs activate T cell responses against autologous tumors. PMID:10688917

  10. Influence of benzoporphyrin-derivative monoacid ring A (BPD-MA, verteporfin) on murine dendritic cells

    NASA Astrophysics Data System (ADS)

    Hunt, David W. C.; King, Diane E.; Levy, Julia G.

    1997-05-01

    The impact of bensoporphyrin derivative monoacid ring A, and visible light was determined for mouse splenic dendritic cells (DC), potent antigen-presenting cells (APC) of the immune system. It was discovered that sub-lethal doses of BPD-MA and light significantly altered the surface receptor pattern of DC as well as diminishing the capacity of these cells to activate allogeneic T cells. Treatment of highly purified DC with BPD-MA and 690 nm wavelength light decreased DC expression of major histocompatibility (MHC) Class I and II antigens, leukocyte common antigen CD45, intercellular adhesion molecule-1 (ICAM-1, CD54), the co- stimulatory molecules CD80 and CD86, CD95 as well as integrin CD11c. In contrast, DC expression of leukocyte function-associated-1 (LFA-1, CD11a), CD11b, CD18, CD40, and the DC DEC-205 receptor increased after the treatment. Changes in receptor levels occurred rapidly. DC MHC Class I and ICAM-1 expression declined to 40 percent of control levels by 2 hours post-PDT. DC treated with BPD-MA and light were poor stimulators of allogeneic T cells in the mixed leukocyte reaction. BPD-MA, in the absence of light, had no effect on the immunostimulatory properties of these cells. The changes in DC receptor expression pattern produced by BPD-MA and light were comparable to those produced by ultraviolet B light, a treatment known to alter the immunostimulatory characteristics of DC. Photodynamic therapy with BPD-MA represents an innovative approach for the modification of immune reactivity.

  11. Functional polarity of dendrites and axons of primate A1 amacrine cells

    PubMed Central

    Davenport, Christopher M.; Detwiler, Peter B.; Dacey, Dennis M.

    2011-01-01

    The A1 cell is an axon-bearing amacrine cell of the primate retina with a diffusely stratified, moderately branched dendritic tree (~400 µm diameter). Axons arise from proximal dendrites forming a second concentric, larger arborization (>4 mm diameter) of thin processes with bouton-like swellings along their length. A1 cells are ON-OFF transient cells that fire a brief high frequency burst of action potentials in response to light (Stafford & Dacey, 1997). It has been hypothesized that A1 cells receive local input to their dendrites, with action potentials propagating output via the axons across the retina, serving a global inhibitory function. To explore this hypothesis we recorded intracellularly from A1 cells in an in vitro macaque monkey retina preparation. A1 cells have an antagonistic center-surround receptive field structure for the ON and OFF components of the light response. Blocking the ON pathway with L-AP4 eliminated ON center responses but not OFF center responses or ON or OFF surround responses. Blocking GABAergic inhibition with picrotoxin increased response amplitudes without affecting receptive field structure. TTX abolished action potentials, with little effect on the sub-threshold light response or basic receptive field structure. We also used multi-photon laser scanning microscopy to record light-induced calcium transients in morphologically identified dendrites and axons of A1 cells. TTX completely abolished such calcium transients in the axons but not in the dendrites. Together these results support the current model of A1 function, whereby the dendritic tree receives synaptic input that determines the center-surround receptive field; and action potentials arise in the axons, which propagate away from the dendritic field across the retina. PMID:17550636

  12. Retrograde plasticity and differential competition of bipolar cell dendrites and axons in the developing retina.

    PubMed

    Johnson, Robert E; Kerschensteiner, Daniel

    2014-10-06

    Most neurons function in the context of pathways that process and propagate information through a series of stages, e.g., from the sensory periphery to cerebral cortex. Because activity at each stage of a neural pathway depends on connectivity at the preceding one, we hypothesized that during development, axonal output of a neuron may regulate synaptic development of its dendrites (i.e., retrograde plasticity). Within pathways, neurons often receive input from multiple partners and provide output to targets shared with other neurons (i.e., convergence). Converging axons can intermingle or occupy separate territories on target dendrites. Activity-dependent competition has been shown to bias target innervation by overlapping axons in several systems. By contrast, whether territorial axons or dendrites compete for targets and inputs, respectively, has not been tested. Here, we generate transgenic mice in which glutamate release from specific sets of retinal bipolar cells (BCs) is suppressed. We find that dendrites of silenced BCs recruit fewer inputs when their neighbors are active and that dendrites of active BCs recruit more inputs when their neighbors are silenced than either active or silenced BCs with equal neighbors. By contrast, axons of silenced BCs form fewer synapses with their targets, irrespective of the activity of their neighbors. These findings reveal that retrograde plasticity guides BC dendritic development in vivo and demonstrate that dendrites, but not territorial axons, in a convergent neural pathway engage in activity-dependent competition. We propose that at a population level, retrograde plasticity serves to maximize functional representation of inputs.

  13. Expression of CD86 on human marrow CD34(+) cells identifies immunocompetent committed precursors of macrophages and dendritic cells.

    PubMed

    Ryncarz, R E; Anasetti, C

    1998-05-15

    Macrophages and dendritic cells derive from a hematopoietic stem cell and the existence of a common committed progenitor has been hypothesized. We have recently found in normal human marrow a subset of CD34(+) cells that constitutively expresses HLA-DR and low levels of CD86, a natural ligand for the T cell costimulation receptor CD28. This CD34(+) subset can elicit responses from allogeneic T cells. In this study, we show that CD34(+)/CD86(+) cells can also present tetanus toxoid antigen to memory CD4(+) T cells. CD86 is expressed at low levels in macrophages and high levels in dendritic cells. Therefore, we have tested the hypothesis that CD34(+)/CD86(+) cells are the common precursors of both macrophages and dendritic cells. CD34(+)/CD86(+) marrow cells cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF)-generated macrophages. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF generated a predominant population of granulocytes. CD34(+)/CD86(+) cells cultured in GM-CSF plus tumor necrosis factor-alpha (TNF-alpha) generated almost exclusively CD1a+/CD83(+) dendritic cells. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF plus TNF-alpha generated a variety of cell types, including a small population of dendritic cells. In addition, CD34(+)/CD86(+) cells cultured in granulocyte colony-stimulating factor failed to generate CD15(+) granulocytes. Therefore, CD34(+)/CD86(+) cells are committed precursors of both macrophages and dendritic cells. The ontogeny of dendritic cells was recapitulated by stimulation of CD34(+)/CD86(-) cells with TNF-alpha that induced expression of CD86. Subsequent costimulation of CD86(+) cells with GM-CSF plus TNF-alpha lead to expression of CD83 and produced terminal dendritic cell differentiation. Thus, expression of CD86 on hematopoietic progenitor cells is regulated by TNF-alpha and denotes differentiation towards the macrophage or dendritic cell lineages.

  14. Dendritic cell immunotherapy versus bevacizumab plus irinotecan in recurrent malignant glioma patients: a survival gain analysis

    PubMed Central

    Artene, Stefan-Alexandru; Turcu-Stiolica, Adina; Hartley, Richard; Ciurea, Marius Eugen; Daianu, Oana; Brindusa, Corina; Alexandru, Oana; Tataranu, Ligia Gabriela; Purcaru, Stefana Oana; Dricu, Anica

    2016-01-01

    Background The bevacizumab and irinotecan protocol is considered a standard treatment regimen for recurrent malignant glioma. Recent advances in immunotherapy have hinted that vaccination with dendritic cells could become an alternative salvage therapy for the treatment of recurrent malignant glioma. Methods A search was performed on PubMed, Cochrane Library, Web of Science, ScienceDirect, and Embase in order to identify studies with patients receiving bevacizumab plus irinotecan or dendritic cell therapy for recurrent malignant gliomas. The data obtained from these studies were used to perform a systematic review and survival gain analysis. Results Fourteen clinical studies with patients receiving either bevacizumab plus irinotecan or dendritic cell vaccination were identified. Seven studies followed patients that received bevacizumab plus irinotecan (302 patients) and seven studies included patients that received dendritic cell immunotherapy (80 patients). For the patients who received bevacizumab plus irinotecan, the mean reported median overall survival was 7.5 (95% confidence interval [CI] 4.84–10.16) months. For the patients who received dendritic cell immunotherapy, the mean reported median overall survival was 17.9 (95% CI 11.34–24.46) months. For irinotecan + bevacizumab group, the mean survival gain was −0.02±2.00, while that for the dendritic cell immunotherapy group was −0.01±4.54. Conclusion For patients with recurrent malignant gliomas, dendritic cell immunotherapy treatment does not have a significantly different effect when compared with bevacizumab and irinotecan in terms of survival gain (P=0.535) and does not improve weighted survival gain (P=0.620). PMID:27877052

  15. Monocyte-derived dendritic cells identified as booster of T follicular helper cell differentiation

    PubMed Central

    Fillatreau, Simon

    2014-01-01

    Adjuvants play an essential role in the induction of acquired immunity upon vaccination with protein antigen. In this issue of EMBO Molecular Medicine, a classical type of adjuvant made of DNA oligonucleotide containing CpG motifs, which has already been used in humans, is shown to boost humoral immunity primarily by acting on monocyte-derived dendritic cells. This study provides novel insight on the mode of action of adjuvant targeting Toll-like receptors. PMID:24803394

  16. Aeroallergen challenge promotes dendritic cell proliferation in the airways.

    PubMed

    Veres, Tibor Z; Voedisch, Sabrina; Spies, Emma; Valtonen, Joona; Prenzler, Frauke; Braun, Armin

    2013-02-01

    Aeroallergen provocation induces the rapid accumulation of CD11c(+)MHC class II (MHC II)(+) dendritic cells (DCs) in the lungs, which is driven by an increased recruitment of blood-derived DC precursors. Recent data show, however, that well-differentiated DCs proliferate in situ in various tissues. This may also contribute to their allergen-induced expansion; therefore, we studied DC proliferation in the airways of mice in the steady state and after local aeroallergen provocation. Confocal whole-mount microscopy was used to visualize proliferating DCs in different microanatomical compartments of the lung. We demonstrate that in the steady state, CD11c(+)MHC II(+) DCs proliferate in both the epithelial and subepithelial layers of the airway mucosa as well as in the lung parenchyma. A 1-h pulse of the nucleotide 5-ethynyl-2'-deoxyuridine was sufficient to label 5% of DCs in both layers of the airway mucosa. On the level of whole-lung tissue, 3-5% of both CD11b(+) and CD11b(-) DC populations and 0.3% of CD11c(+)MHC II(low) lung macrophages incorporated 5-ethynyl-2'-deoxyuridine. Aeroallergen provocation caused a 3-fold increase in the frequency of locally proliferating DCs in the airway mucosa. This increase in mucosal DC proliferation was later followed by an elevation in the number of DCs. The recruitment of monocyte-derived inflammatory DCs contributed to the increasing number of DCs in the lung parenchyma, but not in the airway mucosa. We conclude that local proliferation significantly contributes to airway DC homeostasis in the steady state and that it is the major mechanism underlying the expansion of the mucosal epithelial/subepithelial DC network in allergic inflammation.

  17. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis

    PubMed Central

    Bell, G M; Anderson, A E; Diboll, J; Reece, R; Eltherington, O; Harry, R A; Fouweather, T; MacDonald, C; Chadwick, T; McColl, E; Dunn, J; Dickinson, A M; Hilkens, C M U; Isaacs, John D

    2017-01-01

    Objectives To assess the safety of intra-articular (IA) autologous tolerogenic dendritic cells (tolDC) in patients with inflammatory arthritis and an inflamed knee; to assess the feasibility and acceptability of the approach and to assess potential effects on local and systemic disease activities. Methods An unblinded, randomised, controlled, dose escalation Phase I trial. TolDC were differentiated from CD14+ monocytes and loaded with autologous synovial fluid as a source of autoantigens. Cohorts of three participants received 1×106, 3×106 or 10×106 tolDC arthroscopically following saline irrigation of an inflamed (target) knee. Control participants received saline irrigation only. Primary outcome was flare of disease in the target knee within 5 days of treatment. Feasibility was assessed by successful tolDC manufacture and acceptability via patient questionnaire. Potential effects on disease activity were assessed by arthroscopic synovitis score, disease activity score (DAS)28 and Health Assessment Questionnaire (HAQ). Immunomodulatory effects were sought in peripheral blood. Results There were no target knee flares within 5 days of treatment. At day 14, arthroscopic synovitis was present in all participants except for one who received 10×106 tolDC; a further participant in this cohort declined day 14 arthroscopy because symptoms had remitted; both remained stable throughout 91 days of observation. There were no trends in DAS28 or HAQ score or consistent immunomodulatory effects in peripheral blood. 9 of 10 manufactured products met quality control release criteria; acceptability of the protocol by participants was high. Conclusion IA tolDC therapy appears safe, feasible and acceptable. Knee symptoms stabilised in two patients who received 10×106 tolDC but no systemic clinical or immunomodulatory effects were detectable. Trial registration number NCT01352858. PMID:27117700

  18. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells

    PubMed Central

    Calero-Acuña, Carmen; Moreno-Mata, Nicolás; Gómez-Izquierdo, Lourdes; Sánchez-López, Verónica; López-Ramírez, Cecilia; Tobar, Daniela; López-Villalobos, José Luis; Gutiérrez, Cesar; Blanco-Orozco, Ana; López-Campos, José Luis

    2016-01-01

    Background Conflicting data exist on the role of pulmonary dendritic cells (DCs) and their maturation in patients with chronic obstructive pulmonary disease (COPD). Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer. Materials and Methods A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes—including BDCA1-positive myeloid DCs (mDCs), BDCA3-positive mDCs, and plasmacytoid DCs (pDCs)—and determine their maturation markers (CD40, CD80, CD83, and CD86) in all participants. We also identified follicular DCs (fDCs), Langerhans DCs (LDCs), and pDCs in 42 patients by immunohistochemistry. Results COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers), whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers). The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively). Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects. Conclusions Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung. PMID:27058955

  19. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors.

    PubMed

    Liu, Yong-Jun

    2005-01-01

    Type 1 interferon-(alpha, beta, omega)-producing cells (IPCs), also known as plasmacytoid dendritic cell precursors (pDCs), represent 0.2%-0.8% of peripheral blood mononuclear cells in both humans and mice. IPCs display plasma cell morphology, selectively express Toll-like receptor (TLR)-7 and TLR9, and are specialized in rapidly secreting massive amounts of type 1 interferon following viral stimulation. IPCs can promote the function of natural killer cells, B cells, T cells, and myeloid DCs through type 1 interferons during an antiviral immune response. At a later stage of viral infection, IPCs differentiate into a unique type of mature dendritic cell, which directly regulates the function of T cells and thus links innate and adaptive immune responses. After more than two decades of effort by researchers, IPCs finally claim their place in the hematopoietic chart as the most important cell type in antiviral innate immunity. Understanding IPC biology holds future promise for developing cures for infectious diseases, cancer, and autoimmune diseases.

  20. [Effects of IFN-γ treatment on biological characteristics and functions of dendritic cells].

    PubMed