Gao, J; Naglich, J G; Laidlaw, J; Whaley, J M; Seizinger, B R; Kley, N
1995-02-15
The human von Hippel-Lindau disease (VHL) gene has recently been identified and, based on the nucleotide sequence of a partial cDNA clone, has been predicted to encode a novel protein with as yet unknown functions [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. The length of the encoded protein and the characteristics of the cellular expressed protein are as yet unclear. Here we report the cloning and characterization of a mouse gene (mVHLh1) that is widely expressed in different mouse tissues and shares high homology with the human VHL gene. It predicts a protein 181 residues long (and/or 162 amino acids, considering a potential alternative start codon), which across a core region of approximately 140 residues displays a high degree of sequence identity (98%) to the predicted human VHL protein. High stringency DNA and RNA hybridization experiments and protein expression analyses indicate that this gene is the most highly VHL-related mouse gene, suggesting that it represents the mouse VHL gene homologue rather than a related gene sharing a conserved functional domain. These findings provide new insights into the potential organization of the VHL gene and nature of its encoded protein.
Liu, G Y; Gao, S Z
2009-01-01
The complete coding sequences of three sheep genes- BCKDHA, NAGA and HEXA were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR), based on the conserved sequence information of the mouse or other mammals. The nucleotide sequences of these three genes revealed that the sheep BCKDHA gene encodes a protein of 313 amino acids which has high homology with the BCKDHA gene that encodes a protein of 447 amino acids that has high homology with the Branched chain keto acid dehydrogenase El, alpha polypeptide (BCKDHA) of five species chimpanzee (93%), human (96%), crab-eating macaque (93%), bovine (98%) and mouse (91%). The sheep NAGA gene encodes a protein of 411 amino acids that has high homology with the alpha-N-acetylgalactosaminidase (NAGA) of five species human (85%), bovine (94%), mouse (91%), rat (83%) and chicken (74%). The sheep HEXA gene encodes a protein of 529 amino acids that has high homology with the hexosaminidase A(HEXA) of five species bovine (98%), human (84%), Bornean orangután (84%), rat (80%) and mouse (81%). Finally these three novel sheep genes were assigned to GenelDs: 100145857, 100145858 and 100145856. The phylogenetic tree analysis revealed that the sheep BCKDHA, NAGA, and HEXA all have closer genetic relationships to the BCKDHA, NAGA, and HEXA of bovine. Tissue expression profile analysis was also carried out and results revealed that sheep BCKDHA, NAGA and HEXA genes were differentially expressed in tissues including muscle, heart, liver, fat, kidney, lung, small and large intestine. Our experiment is the first to establish the primary foundation for further research on these three sheep genes.
Characterization and mapping of the mouse NDP (Norrie disease) locus (Ndp).
Battinelli, E M; Boyd, Y; Craig, I W; Breakefield, X O; Chen, Z Y
1996-02-01
Norrie disease is a severe X-linked recessive neurological disorder characterized by congenital blindness with progressive loss of hearing. Over half of Norrie patients also manifest different degrees of mental retardation. The gene for Norrie disease (NDP) has recently been cloned and characterized. With the human NDP cDNA, mouse genomic phage libraries were screened for the homolog of the gene. Comparison between mouse and human genomic DNA blots hybridized with the NDP cDNA, as well as analysis of phage clones, shows that the mouse NDP gene is 29 kb in size (28 kb for the human gene). The organization in the two species is very similar. Both have three exons with similar-sized introns and identical exon-intron boundaries between exon 2 and 3. The mouse open reading frame is 393 bp and, like the human coding sequence, is encoded in exons 2 and 3. The absence of six nucleotides in the second mouse exon results in the encoded protein being two amino acids smaller than its human counterpart. The overall homology between the human and mouse NDP protein is 95% and is particularly high (99%) in exon 3, consistent with the apparent functional importance of this region. Analysis of transcription initiation sites suggests the presence of multiple start sites associated with expression of the mouse NDP gene. Pedigree analysis of an interspecific mouse backcross localizes the mouse NDP gene close to Maoa in the conserved segment, which runs from CYBB to PFC in both human and mouse.
Capturing novel mouse genes encoding chromosomal and other nuclear proteins.
Tate, P; Lee, M; Tweedie, S; Skarnes, W C; Bickmore, W A
1998-09-01
The burgeoning wealth of gene sequences contrasts with our ignorance of gene function. One route to assigning function is by determining the sub-cellular location of proteins. We describe the identification of mouse genes encoding proteins that are confined to nuclear compartments by splicing endogeneous gene sequences to a promoterless betageo reporter, using a gene trap approach. Mouse ES (embryonic stem) cell lines were identified that express betageo fusions located within sub-nuclear compartments, including chromosomes, the nucleolus and foci containing splicing factors. The sequences of 11 trapped genes were ascertained, and characterisation of endogenous protein distribution in two cases confirmed the validity of the approach. Three novel proteins concentrated within distinct chromosomal domains were identified, one of which appears to be a serine/threonine kinase. The sequence of a gene whose product co-localises with splicesome components suggests that this protein may be an E3 ubiquitin-protein ligase. The majority of the other genes isolated represent novel genes. This approach is shown to be a powerful tool for identifying genes encoding novel proteins with specific sub-nuclear localisations and exposes our ignorance of the protein composition of the nucleus. Motifs in two of the isolated genes suggest new links between cellular regulatory mechanisms (ubiquitination and phosphorylation) and mRNA splicing and chromosome structure/function.
Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus
Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting
2017-01-01
Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391
1985-01-01
We have determined the DNA sequence of a gene encoding a thymus leukemia (TL) antigen in the BALB/c mouse, and have more definitively mapped the cloned BALB/c Tla-region class I gene clusters. Analysis of the sequence shows that the Tla gene is less closely related to the H-2 genes than H-2 genes are to one another or to a Qa-2,3-region genes. The Tla gene, 17.3A, contains an apparent gene conversion. Comparison of the BALB/c Tla genes with those from C57BL shows that BALB/c has more Tla-region class I genes, and that one of the genes absent in C57BL is gene 17.3A. PMID:3894562
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labosky, P.A.; Sakaki, Hiroshi; Hogan, B.L.M.
1996-06-01
Members of the winged helix family of transcription factors are required for the normal embryonic development of the mouse. Using the interspecific backcross panel from The Jackson Laboratory, we have determined the chromosomal locations of four genes that encode winged helix containing proteins. Mf1 was assigned to mouse Chromosome 8, Mf2 to Chromosome 4, Mf3 to Chromosome 9, and Mf4 to Chromosome 13. Since Mf3 is located in a region of Chromosome 9 containing many well-characterized mouse mutations such as short ear (se), ashen (ash), and dilute (d), we have analyzed deletion mutants to determine the location of Mf3 moremore » precisely. 14 refs., 3 figs.« less
Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier
2016-05-01
Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.
Evolution and Variation of Renin Genes in Mice
Dickinson, Douglas P.; Gross, Kenneth W.; Piccini, Nina; Wilson, Carol M.
1984-01-01
Inbred strains of mice carry Ren-1, a gene encoding the thermostable Renin-1 isozyme. Ren-1 is expressed at relatively low levels in mouse submandibular gland and kidney. Some strains also carry Ren-2, a gene encoding the thermolabile Renin-2 isozyme. Ren-2 is expressed at high levels in the mouse submandibular gland and at very low levels, if at all, in the kidney. Ren-1 and Ren-2 are closely linked on mouse chromosome 1, show extensive homology in coding and noncoding regions and provide a model for studying the regulation of gene expression. An investigation of renin genes and enzymatic activity in wild-derived mice identified several restriction site polymorphisms as well as putative variants in renin gene expression and protein structure. The number of renin genes carried by different subpopulations of wild-derived mice is consistent with the occurrence of a gene duplication event prior to the divergence of M. spretus (2.75–5.5 million yr ago). This conclusion is in agreement with a prior estimate based upon comparative sequence analysis of Ren-1 and Ren-2 from inbred laboratory mice. PMID:6389258
Properties of genes essential for mouse development
Kabir, Mitra; Barradas, Ana; Tzotzos, George T.; Hentges, Kathryn E.
2017-01-01
Essential genes are those that are critical for life. In the specific case of the mouse, they are the set of genes whose deletion means that a mouse is unable to survive after birth. As such, they are the key minimal set of genes needed for all the steps of development to produce an organism capable of life ex utero. We explored a wide range of sequence and functional features to characterise essential (lethal) and non-essential (viable) genes in mice. Experimental data curated manually identified 1301 essential genes and 3451 viable genes. Very many sequence features show highly significant differences between essential and viable mouse genes. Essential genes generally encode complex proteins, with multiple domains and many introns. These genes tend to be: long, highly expressed, old and evolutionarily conserved. These genes tend to encode ligases, transferases, phosphorylated proteins, intracellular proteins, nuclear proteins, and hubs in protein-protein interaction networks. They are involved with regulating protein-protein interactions, gene expression and metabolic processes, cell morphogenesis, cell division, cell proliferation, DNA replication, cell differentiation, DNA repair and transcription, cell differentiation and embryonic development. Viable genes tend to encode: membrane proteins or secreted proteins, and are associated with functions such as cellular communication, apoptosis, behaviour and immune response, as well as housekeeping and tissue specific functions. Viable genes are linked to transport, ion channels, signal transduction, calcium binding and lipid binding, consistent with their location in membranes and involvement with cell-cell communication. From the analysis of the composite features of essential and viable genes, we conclude that essential genes tend to be required for intracellular functions, and viable genes tend to be involved with extracellular functions and cell-cell communication. Knowledge of the features that are over-represented in essential genes allows for a deeper understanding of the functions and processes implemented during mammalian development. PMID:28562614
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Hanne; Schwemmer, M.; Tessmann, D.
1996-03-01
The mitochondrial capsule selenoprotein (MCS) (HGMW-approved symbol MCSP) is one of three proteins that are important for the maintenance and stabilization of the crescent structure of the sperm mitochondria. We describe here the isolation of a cDNA, the exon-intron organization, the expression, and the chromosomal localization of the human MCS gene. Nucleotide sequence analysis of the human and mouse MCS cDNAs reveals that the 5{prime}- and 3{prime}-untranslated sequences are more conserved (71%) than the coding sequences (59%). The open reading frame encodes a 116-amino-acid protein and lacks the UGA codons, which have been reported to encode the selenocysteines in themore » N-terminal of the deduced mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein (39%). The most striking homology lies in the dicysteine motifs. Northern and Southern zooblot analyses reveal that the MCS gene in human, baboon, and bovine is more conserved than its counterparts in mouse and rat. The single intron in the human MCS gene is approximately 6 kb and interrupts the 5{prime}-untranslated region at a position equivalent to that in the mouse and rat genes. Northern blot and in situ hybridization experiments demonstrate that the expression of the human MCS gene is restricted to haploid spermatids. The human gene was assigned to q21 of chromosome 1. 30 refs., 9 figs.« less
Linkage of genes for laminin B1 and B2 subunits on chromosome 1 in mouse.
Elliott, R W; Barlow, D; Hogan, B L
1985-08-01
We have used cDNA clones for the B1 and B2 subunits of laminin to find restriction fragment length DNA polymorphisms for the genes encoding these polypeptides in the mouse. Three alleles were found for LamB2 and two for LamB1 among the inbred mouse strains. The segregation of these polymorphisms among recombinant inbred strains showed that these genes are tightly linked in the central region of mouse Chromosome 1 between Sas-1 and Ly-m22, 7.4 +/- 3.2 cM distal to the Pep-3 locus. There is no evidence in the mouse for pseudogenes for these proteins.
New TFII-I family target genes involved in embryonic development.
Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg
2009-09-04
Two members of the TFII-I family transcription factor genes, GTF2I and GTF2IRD1, are the prime candidates responsible for the craniofacial and cognitive abnormalities of Williams syndrome patients. We have previously generated mouse lines with targeted disruption of Gtf2i and Gtf2ird1. Microarray analysis revealed significant changes in the expression profile of mutant embryos. Here we described three unknown genes that were dramatically down-regulated in mutants. The 2410018M08Rik/Scand3 gene encodes a protein of unknown function with CHCH and hATC domains. Scand3 is down-regulated during mouse embryonic stem cell (ES) differentiation. 4933436H12Rik is a testis-specific gene, which encodes a protein with no known domains. It is expressed in mouse ES cells. 1110008P08Rik/Kbtbd7 encodes an adapter protein with BTB/POZ, BACK, and Kelch motifs, previously shown to recruit substrates to the enzymatic complexes of the histone modifying or E3 ubiquitin ligase activities. Based on its expression pattern Kbtbd7 may have a specific role in brain development and function. All three genes possess well-conserved TFII-I-binding consensus sites within proximal promoters. Therefore our analysis suggests that these genes can be direct targets of TFII-I proteins and their impaired expression, as a result of the GTF2I and GTF2IRD1 haploinsufficiency, could contribute to the etiology of Williams syndrome.
Cloning, structure, and chromosome localization of the mouse glutaryl-CoA dehydrogenase gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeller, D.M.; DiGiulio, A.; Frerman, F.E.
Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, and inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains and open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdhmore » was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped. 14 refs., 3 figs.« less
DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse.
Corcoran, Martin M; Hammarsund, Marianne; Zhu, Chaoyong; Lerner, Mikael; Kapanadze, Bagrat; Wilson, Bill; Larsson, Catharina; Forsberg, Lars; Ibbotson, Rachel E; Einhorn, Stefan; Oscier, David G; Grandér, Dan; Sangfelt, Olle
2004-08-01
Our group previously identified two novel genes, RFP2/LEU5 and DLEU2, within a 13q14.3 genomic region of loss seen in various malignancies. However, no specific inactivating mutations were found in these or other genes in the vicinity of the deletion, suggesting that a nonclassical tumor-suppressor mechanism may be involved. Here, we present data showing that the DLEU2 gene encodes a putative noncoding antisense RNA, with one exon directly overlapping the first exon of the RFP2/LEU5 gene in the opposite orientation. In addition, the RFP2/LEU5 transcript can be alternatively spliced to produce either several monocistronic transcripts or a putative bicistronic transcript encoding two separate open-reading frames, adding to the complexity of the locus. The finding that these gene structures are conserved in the mouse, including the putative bicistronic RFP2/LEU5 transcript as well as the antisense relationship with DLEU2, further underlines the significance of this unusual organization and suggests a biological function for DLEU2 in the regulation of RFP2/LEU5. Copyright 2004 Wiley-Liss, Inc.
Gluck, Christian; Min, Sangwon; Oyelakin, Akinsola; Smalley, Kirsten; Sinha, Satrajit; Romano, Rose-Anne
2016-11-16
Mouse models have served a valuable role in deciphering various facets of Salivary Gland (SG) biology, from normal developmental programs to diseased states. To facilitate such studies, gene expression profiling maps have been generated for various stages of SG organogenesis. However these prior studies fall short of capturing the transcriptional complexity due to the limited scope of gene-centric microarray-based technology. Compared to microarray, RNA-sequencing (RNA-seq) offers unbiased detection of novel transcripts, broader dynamic range and high specificity and sensitivity for detection of genes, transcripts, and differential gene expression. Although RNA-seq data, particularly under the auspices of the ENCODE project, have covered a large number of biological specimens, studies on the SG have been lacking. To better appreciate the wide spectrum of gene expression profiles, we isolated RNA from mouse submandibular salivary glands at different embryonic and adult stages. In parallel, we processed RNA-seq data for 24 organs and tissues obtained from the mouse ENCODE consortium and calculated the average gene expression values. To identify molecular players and pathways likely to be relevant for SG biology, we performed functional gene enrichment analysis, network construction and hierarchal clustering of the RNA-seq datasets obtained from different stages of SG development and maturation, and other mouse organs and tissues. Our bioinformatics-based data analysis not only reaffirmed known modulators of SG morphogenesis but revealed novel transcription factors and signaling pathways unique to mouse SG biology and function. Finally we demonstrated that the unique SG gene signature obtained from our mouse studies is also well conserved and can demarcate features of the human SG transcriptome that is different from other tissues. Our RNA-seq based Atlas has revealed a high-resolution cartographic view of the dynamic transcriptomic landscape of the mouse SG at various stages. These RNA-seq datasets will complement pre-existing microarray based datasets, including the Salivary Gland Molecular Anatomy Project by offering a broader systems-biology based perspective rather than the classical gene-centric view. Ultimately such resources will be valuable in providing a useful toolkit to better understand how the diverse cell population of the SG are organized and controlled during development and differentiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayne, M.L.; Cascieri, M.A.; Kelder, B.
1987-05-01
A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less
Holmes, Roger S; Wright, Matthew W; Laulederkind, Stanley J F; Cox, Laura A; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J; Potter, Phillip M; Redinbo, Matthew R; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J
2010-10-01
Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.
Mapping of the Tuple1 gene to mouse chromosome 16A-B1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattei, M.G.; Halford, S.; Scambler, P.J.
The human TUPLE1 gene encodes a putative transcriptional regulator and maps to chromosome 22, and therefore may play a role in Di-George syndrome (DGS), relo-cardio-facial syndrome (VCFS), or a related pathology. The murine TUPLE1 gene has also been cloned and shows strong sequence similarity to TUPLE1. Comparative mapping is useful in the study of chromosome evolution and is sometimes able to indicate possible mouse mutations that are potential models of human genetic disorders. As TIPLE1 is a candidate gene for the haploinsufficient phenotype in DGS, we mapped TUPLE1 to mouse chromosome 16A-B1. 6 refs., 1 fig.
Pecker, I; Avraham, K B; Gilbert, D J; Savitsky, K; Rotman, G; Harnik, R; Fukao, T; Schröck, E; Hirotsune, S; Tagle, D A; Collins, F S; Wynshaw-Boris, A; Ried, T; Copeland, N G; Jenkins, N A; Shiloh, Y; Ziv, Y
1996-07-01
Atm, the mouse homolog of the human ATM gene defective in ataxia-telangiectasia (A-T), has been identified. The entire coding sequence of the Atm transcript was cloned and found to contain an open reading frame encoding a protein of 3066 amino acids with 84% overall identity and 91% similarity to the human ATM protein. Variable levels of expression of Atm were observed in different tissues. Fluorescence in situ hybridization and linkage analysis located the Atm gene on mouse chromosome 9, band 9C, in a region homologous to the ATM region on human chromosome 11q22-q23.
Walker, M D; Park, C W; Rosen, A; Aronheim, A
1990-01-01
Cell specific expression of the insulin gene is achieved through transcriptional mechanisms operating on multiple DNA sequence elements located in the 5' flanking region of the gene. Of particular importance in the rat insulin I gene are two closely similar 9 bp sequences (IEB1 and IEB2): mutation of either of these leads to 5-10 fold reduction in transcriptional activity. We have screened an expression cDNA library derived from mouse pancreatic endocrine beta cells with a radioactive DNA probe containing multiple copies of the IEB1 sequence. A cDNA clone (A1) isolated by this procedure encodes a protein which shows efficient binding to the IEB1 probe, but much weaker binding to either an unrelated DNA probe or to a probe bearing a single base pair insertion within the recognition sequence. DNA sequence analysis indicates a protein belonging to the helix-loop-helix family of DNA-binding proteins. The ability of the protein encoded by clone A1 to recognize a number of wild type and mutant DNA sequences correlates closely with the ability of each sequence element to support transcription in vivo in the context of the insulin 5' flanking DNA. We conclude that the isolated cDNA may encode a transcription factor that participates in control of insulin gene expression. Images PMID:2181401
The gene encoding PBP74/CSA/motalin-1, a novel mouse hsp70, maps to mouse chromosome 18
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Manabu; Oyanagi, Mitsuru; Kominami, Ryo
1995-11-20
The 70-kDa heat shock proteins (hsp70) function in folding of peptides and the assembly and disassembly of protein complexes. They are encoded by a multigene family comprising both heat-inducible and constitutively expressed genes. Different family members function in different organelles: hsp70 members such as hsp70 and hsc70 are present in the cytoplasm, BiP/GRP78 in the endoplasmic reticulum, and GRP75 in the mitochondria. PBP74/CSA/motalin-1 is a novel mouse hsp70 protein that was identified by three different groups. PBP74 was found to be a peptide-binding protein implicated in antigen processing. CSA is an antigen specific for the CM strain, and motalin-1 ismore » a protein associated with cellular mortality. 10 refs., 1 fig.« less
Nishibuchi, M; Murakami, A; Arita, M; Jikuya, H; Takano, J; Honda, T; Miwatani, T
1989-01-01
We examined variations in the genes encoding heat-stable enterotoxin (ST) and heat-labile enterotoxin (LT) in 88 strains of Escherichia coli isolated from individuals with traveler's diarrhea to find suitable sequences for use as oligonucleotide probes. Four oligonucleotide probes of the gene encoding ST of human origin (STIb or STh), one oligonucleotide probe of the gene encoding ST of porcine origin (STIa or STp), and three oligonucleotide probes of the gene encoding LT of human origin (LTIh) were used in DNA colony hybridization tests. In 15 of 22 strains possessing the STh gene and 28 of 42 strains producing LT, the sequences of all regions tested were identical to the published sequences. One region in the STh gene examined with a 18-mer probe was relatively well conserved and was shown to be closely associated with the enterotoxicity of the E. coli strains in suckling mice. This oligonucleotide, however, hybridized with strains of Vibrio cholerae O1, V. parahaemolyticus, and Yersinia enterocolitica that gave negative results in the suckling mouse assay. PMID:2685027
Hayes, C; Rump, A; Cadman, M R; Harrison, M; Evans, E P; Lyon, M F; Morriss-Kay, G M; Rosenthal, A; Brown, S D
2001-12-01
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0.4-cM (+/-0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.
Structure and chromosomal localization of the human PD-1 gene (PDCD1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinohara, T.; Ishida, Y.; Kawaichi, M.
1994-10-01
A cDNA encoding mouse PD-1, a member of the immunoglobulin superfamily, was previously isolated from apoptosis-induced cells by subtractive hybridization. To determine the structure and chromosomal location of the human PD-1 gene, we screened a human T cell cDNA library by mouse PD-1 probe and isolated a cDNA coding for the human PD-1 protein. The deduced amino acid sequence of human PD-1 was 60% identical to the mouse counterpart, and a putative tyrosine kinase-association motif was well conserved. The human PD-1 gene was mapped to 2q37.3 by chromosomal in situ hybridization. 7 refs., 3 figs.
Chin, H; Krall, M; Kim, H L; Kozak, C A; Mock, B
1992-12-01
Cchl1a3 encodes the dihydropyridine-sensitive calcium channel alpha 1 subunit isoform predominantly expressed in skeletal muscle. mdg (muscular dysgenesis) has previously been implicated as a mutant allele of this gene. Hybridization of a rat brain cDNA probe for Cchl1a3 to Southern blots of DNAs from a panel of Chinese hamster x mouse somatic cell hybrids suggested that this gene maps to mouse Chromosome 1. Analysis of the progeny of an inbred strain cross-positioned Cchl1a3 1.3 cM proximal to the Pep-3 locus on Chr 1.
Reciprocal Expression of lin-41 and the microRNAs let-7 and mir-125 During Mouse Embryogenesis
Schulman, Betsy R. Maller; Esquela-Kerscher, Aurora; Slack, Frank J.
2008-01-01
In C. elegans, heterochronic genes control the timing of cell fate determination during development. Two heterochronic genes, let-7 and lin-4, encode microRNAs (miRNAs) that down-regulate a third heterochronic gene lin-41 by binding to complementary sites in its 3’UTR. let-7 and lin-4 are conserved in mammals. Here we report the cloning and sequencing of mammalian lin-41 orthologs. We find that mouse and human lin-41 genes contain predicted conserved complementary sites for let-7 and the lin-4 ortholog, mir-125, in their 3’UTRs. Mouse lin-41 (Mlin-41) is temporally expressed in developing mouse embryos, most dramatically in the limb buds. Mlin-41 is down-regulated during mid-embryogenesis at the time when mouse let-7c and mir-125 RNA levels are up-regulated. Our results suggest that mammalian lin-41 is temporally regulated by miRNAs in order to direct key developmental events such as limb formation. PMID:16247770
Cloning of apg-2 encoding a novel member of heat shock protein 110 family.
Kaneko, Y; Kimura, T; Kishishita, M; Noda, Y; Fujita, J
1997-04-11
Chinese hamster heat shock protein 110-encoding gene (hsp110), mouse apg-1 and human hsp70RY are structurally related genes, with the first two encoding about 110-kDa HSPs [Yoon et al. (1995) J. Biol. Chem. 270, 15725-15733; Kaneko et al. (1997) J. Biol. Chem., in press; Fathallah et al. (1993) J. Immunol. 151, 810-813]. Using apg-1 cDNA as a probe, we isolated a novel cDNA, apg-2 from a mouse testis cDNA library, which was highly homologous to human hsp70RY. However, the predicted amino acid (aa) sequence of APG-2 was longer (841 aa) than that of HSP70RY (701 aa) and comparable to those of HSP110 and APG-1. Northern blot analysis revealed that the expression of apg-2 transcripts was ubiquitous in various mouse tissues, and most abundant in the testis and ovary. While induction of hsp70 transcripts was observed in mouse TAMA26 Sertoli cells and NIH/3T3 fibroblasts on temperature shift from 37 degrees C to 42 degrees C (traditional heat shock) or from 32 degrees C to 39 degrees C, apg-2 transcripts were not induced under either condition. These results suggest that apg-2 is an isoform of mouse homolog of hsp70RY, but that it belongs to the hsp110 family instead of hsp70 family, and that it plays a role under non-stress conditions.
Crosby, J L; Bleackley, R C; Nadeau, J H
1990-02-01
A complex of genes encoding serine proteases that are preferentially expressed in cytotoxic T-cells was shown to be closely linked to the T-cell receptor alpha- and delta-chain genes on mouse chromosome 14. A striking difference in recombination frequencies among linkage crosses was reported. Two genes, Np-1 and Tcra, which fail to recombine in crosses involving conventional strains of mice, were shown to recombine readily in interspecific crosses involving Mus spretus. This difference in recombination frequency suggests chromosomal rearrangements that suppress recombination in conventional crosses, recombination hot spots in interspecific crosses, or selection against recombinant haplotypes during development of recombinant inbred strains. Finally, a mutation called disorganization, which is located near the serine protease complex, is of considerable interest because it causes an extraordinarily wide variety of congenital defects. Because of the involvement of serine protease loci in several homeotic mutations in Drosophila, disorganization must be considered a candidate for a mutation in a serine protease-encoding gene.
Dron, Michel; Meritet, Jean François; Dandoy-Dron, Françoise; Meyniel, Jean-Philippe; Maury, Chantal; Tovey, Michael G
2002-03-01
The expression of the previously uncharacterized gene Adir (for ATP dependent interferon responsive gene) was increased by 5- to 15-fold in tissue of the oral cavity or in spleen and liver of mice treated orally or intraperitoneally with IFN-alpha, and in mouse cells treated in vitro with IFN-alpha or IFN-gamma. The level of Adir mRNA was also increased 20- to 40-fold in the brains of animals infected with encephalomyocarditis virus. Adir is expressed ubiquitously in mouse tissues as 1.9-, 2.4-, and 3.5-kb mRNA transcripts encoding a 385-amino-acid protein with a conserved ATP binding domain containing typical nucleotide and Mg(2+) binding sites. We also characterized the human ortholog, ADIR, which is located on chromosome 1q25-q31 and contains six exons encoding a 397-amino-acid protein with 80% homology to the mouse protein. A single 2.3-kb mRNA was detected in all human tissues examined, except for placenta, which also contained a 1.25-kb tissue-specific transcript generated by alternative splicing and encoding a putative 336-amino-acid protein. Although ADIR exhibits low homology to DYT1 and TOR1B, the deduced ADIR protein sequences are highly homologous to torsin A and torsin B and more distantly related to members of the Clp/HSP100 family of proteins, suggesting that ADIR, like torsins, is related to the AAA chaperone-like family of ATPases. An ADIR-EGFP fusion protein expressed in HeLa cells was shown to be associated with the endoplasmic reticulum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin; He, Lei; Dong, Hongbin
2011-07-01
Highlights: {yields} The mouse Slc39a8 gene encodes the ZIP8 transporter. {yields} ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter. {yields} A Slc39a8(neo/neo) hypomorph mouse, due to retention of the neo mini-gene, has been created. {yields} ZIP8 expression in utero is {approx}90% decreased in all tissues examined. {yields} This mouse model will be useful for studying developmental and in utero physiological functions of ZIP8. -- Abstract: Previously this laboratory has identified the mouse Slc39a8 gene encoding the ZIP8 transporter, important in cadmium uptake. ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter, moving bothmore » ions into the cell. The overall physiological importance of ZIP8 remains unclear. Herein we describe generation of a mouse line carrying the Slc39a8(neo) allele, containing the Frt-flanked neomycin-resistance (neo) mini-cassette in intron 3 and loxP sites in introns 3 and 6. Cre recombinase functions correctly in Escherichia coli and in adeno-Cre-infected mouse fetal fibroblasts, but does not function in the intact mouse for reasons not clear. Slc39a8(neo) is a hypomorphic allele, because Slc39a8(neo/neo) homozygotes exhibit dramatically decreased ZIP8 expression in embryo, fetus, and visceral yolk sac - in comparison to their littermate wild-type controls. This ZIP8 hypomorph will be instrumental in studying developmental and in utero physiological functions of the ZIP8 transporter.« less
Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A; Díaz, Begoña
2014-01-01
Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5'RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene.
Cejudo-Martin, Pilar; Yuen, Angela; Vlahovich, Nicole; Lock, Peter; Courtneidge, Sara A.; Díaz, Begoña
2014-01-01
Tks5 is a scaffold protein and Src substrate involved in cell migration and matrix degradation through its essential role in invadosome formation and function. We have previously described that Tks5 is fundamental for zebrafish neural crest cell migration in vivo. In the present study, we sought to investigate the function of Tks5 in mammalian development by analyzing mice mutant for sh3pxd2a, the gene encoding Tks5. Homozygous disruption of the sh3pxd2a gene by gene-trapping in mouse resulted in neonatal death and the presence of a complete cleft of the secondary palate. Interestingly, embryonic fibroblasts from homozygous gene-trap sh3pxd2a mice lacked only the highest molecular weight band of the characteristic Tks5 triplet observed in protein extracts, leaving the lower molecular weight bands unaffected. This finding, together with the existence of two human Expressed Sequence Tags lacking the first 5 exons of SH3PXD2A, made us hypothesize about the presence of a second alternative transcription start site located in intron V. We performed 5′RACE on mouse fibroblasts and isolated a new transcript of the sh3pxd2a gene encoding a novel Tks5 isoform, that we named Tks5β. This novel isoform diverges from the long form of Tks5 in that it lacks the PX-domain, which confers affinity for phosphatidylinositol-3,4-bisphosphate. Instead, Tks5β has a short unique amino terminal sequence encoded by the newly discovered exon 6β; this exon includes a start codon located 29 bp from the 5'-end of exon 6. Tks5β mRNA is expressed in MEFs and all mouse adult tissues analyzed. Tks5β is a substrate for the Src tyrosine kinase and its expression is regulated through the proteasome degradation pathway. Together, these findings indicate the essentiality of the larger Tks5 isoform for correct mammalian development and the transcriptional complexity of the sh3pxd2a gene. PMID:25259869
The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.
Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter
2014-06-01
The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.
Makeyev, A V; Liebhaber, S A
2000-08-01
We have identified two novel human genes encoding proteins with a high level of sequence identity to two previously characterized RNA-binding proteins, alphaCP-1 and alphaCP-2. Both of these novel genes, alphaCP-3 and alphaCP-4, are predicted to encode proteins with triplicated KH domains. The number and organization of the KH domains, their sequences, and the sequences of the contiguous regions are conserved among all four alphaCP proteins. The common evolutionary origin of these proteins is substantiated by conservation of exon-intron organization in the corresponding genes. The map positions of alphaCP-1 and alphaCP-2 (previously reported) and those of alphaCP-3 and alphaCP-4 (present report) reveal that the four alphaCP loci are dispersed in the human genome; alphaCP-3 and alphaCP-4 mapped to 21q22.3 and 3p21, and the respective mouse orthologues mapped to syntenic regions of the mouse genome, 10B5 and 9F1-F2, respectively. Two additional loci in the human genome were identified as alphaCP-2 processed pseudogenes (PCBP2P1, 21q22.3, and PCBP2P2, 8q21-q22). Although the overall levels of alphaCP-3 and alphaCP-4 mRNAs are substantially lower than those of alphaCP-1 and alphaCP-2, transcripts of alphaCP-3 and alphaCP-4 were found in all mouse tissues tested. These data establish a new subfamily of genes predicted to encode closely related KH-containing RNA-binding proteins with potential functions in posttranscriptional controls. Copyright 2000 Academic Press.
Homez, a homeobox leucine zipper gene specific to the vertebrate lineage.
Bayarsaihan, Dashzeveg; Enkhmandakh, Badam; Makeyev, Aleksandr; Greally, John M; Leckman, James F; Ruddle, Frank H
2003-09-02
This work describes a vertebrate homeobox gene, designated Homez (homeodomain leucine zipper-encoding gene), that encodes a protein with an unusual structural organization. There are several regions within Homez, including three atypical homeodomains, two leucine zipper-like motifs, and an acidic domain. The gene is ubiquitously expressed in human and murine tissues, although the expression pattern is more restricted during mouse development. Genomic analysis revealed that human and mouse genes are located at 14q11.2 and 14C, respectively, and are composed of two exons. The zebrafish and pufferfish homologs share high similarity to mammalian sequences, particularly within the homeodomain sequences. Based on homology of homeodomains and on the similarity in overall protein structure, we delineate Homez and members of ZHX family of zinc finger homeodomain factors as a subset within the superfamily of homeobox-containing proteins. The type and composition of homeodomains in the Homez subfamily are vertebrate-specific. Phylogenetic analysis indicates that Homez lineage was separated from related genes >400 million years ago before separation of ray- and lobe-finned fishes. We apply a duplication-degeneration-complementation model to explain how this family of genes has evolved.
Cloning and characterization of the mouse XPAC gene.
van Oostrom, C T; de Vries, A; Verbeek, S J; van Kreijl, C F; van Steeg, H
1994-01-01
Xeroderma Pigmentosum is a human disease, which is, among others, characterized by a high incidence of (sunlight induced) skin cancer, due to a defect in nucleotide excision repair (NER). The human DNA repair gene XPAC corrects this defect in cells isolated from Xeroderma Pigmentosum complementation group A (XP-A) patients. To enable the development of a transgenic mouse model for XP-A by gene targeting in embryonic stem cells, we cloned and characterized the mouse homologue of the XPAC gene. The mouse XPAC gene was found to consist of 6 exons, spanning approximately 21 kb. The nucleotide sequence of the exons is identical to that of the also cloned the mouse XPAC cDNA. Furthermore, the deduced amino acid sequence of the XPAC protein is the same as the one published previously by Tanaka et al. From CAT assay analysis, the promoter of the XPAC gene appeared to be located within 313 bp upstream of the assumed transcriptional start site. Like the promoters of other eukaryotic DNA repair genes (i.e. ERCC-1 and XPBC/ERCC-3), the mouse XPAC promoter region lacks classical promoter elements like TATA-, GC- and CAAT boxes. However, it contains an unique polypyrimidine-rich box, which is so far only found in genes encoding DNA repair enzymes. The function of this box in the regulation of transcription is still unclear. PMID:8127648
Minchenko, Dmytro O; Tsymbal, D O; Yavorovsky, O P; Solokha, N V; Minchenko, O H
2017-04-25
The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.
Hrycay, E G; Bandiera, S M
2009-12-01
The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.
Zygote arrest 1 (Zar1) is an evolutionarily conserved gene expressed in vertebrate ovaries.
Wu, Xuemei; Wang, Pei; Brown, Christopher A; Zilinski, Carolyn A; Matzuk, Martin M
2003-09-01
Zygote arrest 1 (ZAR1) is an ovary-specific maternal factor that plays essential roles during the oocyte-to-embryo transition. In mice, the Zar1 mRNA is detected as a 1.4-kilobase (kb) transcript that is synthesized exclusively in growing oocytes. To further understand the functions of ZAR1, we have cloned the orthologous Zar1 cDNA and/or genes for mouse, rat, human, frog, zebrafish, and pufferfish. The entire mouse Zar1 gene and a related pseudogene span approximately 4.0 kb, contain four exons, and map to adjacent loci on mouse chromosome 5. The human ZAR1 orthologous gene similarly consists of four exons and resides on human chromosome 4p12, which is syntenic with the mouse Zar1 chromosomal locus. Rat (Rattus norvegicus) and pufferfish (Fugu rubripes) Zar1 genes were recognized by database mining and deduced protein alignment analysis. The rat Zar1 gene also maps to a region that is syntenic with the mouse Zar1 gene locus on rat chromosome 14. Frog (Xenopus laevis) and zebrafish (Danio rerio) Zar1 orthologs were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends analysis of ovarian mRNA. Unlike mouse and human, the frog Zar1 is detected in multiple tissues, including lung, muscle, and ovary. The Zar1 mRNA appears in the cytoplasm of oocytes and persists until the tailbud stage during frog embryogenesis. Mouse, rat, human, frog, zebrafish, and pufferfish Zar1 genes encode proteins of 361, 361, 424, 295, 329, and 320 amino acids, respectively, and share 50.8%-88.1% amino acid identity. Regions of the N-termini of these ZAR1 orthologs show high sequence identity among these various proteins. However, the C-terminal 103 amino acids of these proteins, encoded by exons 2-4, contain an atypical eight-cysteine Plant Homeo Domain motif and are highly conserved, sharing 80.6%-98.1% identity among these species. These findings suggest that the carboxyl-termini of these ZAR1 proteins contain an important functional domain that is conserved through vertebrate evolution and that may be necessary for normal female reproduction in the transition from oocyte to embryonic life.
Turgeon, B; Saba-El-Leil, M K; Meloche, S
2000-02-15
MAP (mitogen-activated protein) kinases are a family of serine/threonine kinases that have a pivotal role in signal transduction. Here we report the cloning and characterization of a mouse homologue of extracellular-signal-regulated protein kinase (ERK)3. The mouse Erk3 cDNA encodes a predicted protein of 720 residues, which displays 94% identity with human ERK3. Transcription and translation of this cDNA in vitro generates a 100 kDa protein similar to the human gene product ERK3. Immunoblot analysis with an antibody raised against a unique sequence of ERK3 also recognizes a 100 kDa protein in mouse tissues. A single transcript of Erk3 was detected in every adult mouse tissue examined, with the highest expression being found in the brain. Interestingly, expression of Erk3 mRNA is acutely regulated during mouse development, with a peak of expression observed at embryonic day 11. The mouse Erk3 gene was mapped to a single locus on central mouse chromosome 9, adjacent to the dilute mutation locus and in a region syntenic to human chromosome 15q21. Finally, we provide several lines of evidence to support the existence of a unique Erk3 gene product of 100 kDa in mammalian cells.
Hendrickson, Peter G; Doráis, Jessie A; Grow, Edward J; Whiddon, Jennifer L; Lim, Jong-Won; Wike, Candice L; Weaver, Bradley D; Pflueger, Christian; Emery, Benjamin R; Wilcox, Aaron L; Nix, David A; Peterson, C Matthew; Tapscott, Stephen J; Carrell, Douglas T; Cairns, Bradley R
2017-06-01
To better understand transcriptional regulation during human oogenesis and preimplantation development, we defined stage-specific transcription, which highlighted the cleavage stage as being highly distinctive. Here, we present multiple lines of evidence that a eutherian-specific multicopy retrogene, DUX4, encodes a transcription factor that activates hundreds of endogenous genes (for example, ZSCAN4, KDM4E and PRAMEF-family genes) and retroviral elements (MERVL/HERVL family) that define the cleavage-specific transcriptional programs in humans and mice. Remarkably, mouse Dux expression is both necessary and sufficient to convert mouse embryonic stem cells (mESCs) into 2-cell-embryo-like ('2C-like') cells, measured here by the reactivation of '2C' genes and repeat elements, the loss of POU5F1 (also known as OCT4) protein and chromocenters, and the conversion of the chromatin landscape (as assessed by transposase-accessible chromatin using sequencing (ATAC-seq)) to a state strongly resembling that of mouse 2C embryos. Thus, we propose mouse DUX and human DUX4 as major drivers of the cleavage or 2C state.
Dron, M; Tartare, X; Guillo, F; Haik, S; Barbin, G; Maury, C; Tovey, M; Dandoy-Dron, F
2000-11-15
We have previously reported a transcript of a novel mouse gene (Scrg1) with increased expression in transmissible spongiform encephalopathies and the cloning of the human mRNA analogue. In this paper, we present the genomic organization of the mouse and human SCRG1 loci, which exhibit a high degree of conservation. The genes are composed of three exons; the two downstream exons contain the protein coding region. The mouse gene is expressed in brain tissue essentially as a 0.7-kb message but also as a minor 2.6-kb mRNA. We have sequenced 20 kb of DNA at the mouse Scrg1 locus and found that the longer transcript is the prolongation of the 0.7-kb mRNA to a polyadenylation site located about 2 kb further downstream. Sequencing revealed that the mouse Scrg1 gene is physically linked to Sap30, a gene that encodes a protein of the histone deacetylase complex, and genetic linkage mapping assigned the localization of Scrg1 to chromosome 8 between Ant1 and Hmg2. Northern blot analysis showed that Scrg1 is under strict developmental control in mouse embryo and is expressed by cells of neuronal origin in vitro. Comparison of the rat, mouse, and human SCRG1 proteins identified a box of 35 identical contiguous amino acids and a characteristic cysteine distribution pattern defining a new protein signature. Copyright 2000 Academic Press.
Expression of glutathione peroxidase I gene in selenium-deficient rats.
Reddy, A P; Hsu, B L; Reddy, P S; Li, N Q; Thyagaraju, K; Reddy, C C; Tam, M F; Tu, C P
1988-01-01
We have characterized a cDNA pGPX1211 encoding rat glutathione peroxidase I. The selenocysteine in the protein corresponded to a TGA codon in the coding region of the cDNA, similar to earlier findings in mouse and human genes, and a gene encoding the formate dehydrogenase from E. coli, another selenoenzyme. The rat GSH peroxidase I has a calculated subunit molecular weight of 22,155 daltons and shares 95% and 86% sequence homology with the mouse and human subunits, respectively. The 3'-noncoding sequence (greater than 930 bp) in pGPX1211 is much longer than that of the human sequences. We found that glutathione peroxidase I mRNA, but not the polypeptide, was expressed under nutritional stress of selenium deficiency where no glutathione peroxidase I activity can be detected. The failure of detecting any apoprotein for the glutathione peroxidase I under selenium deficiency and results published from other laboratories supports the proposal that selenium may be incorporated into the glutathione peroxidase I co-translationally. Images PMID:2838821
Recombination and mutation of class II histocompatibility genes in wild mice.
Wakeland, E K; Darby, B R
1983-12-01
We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.
Feng, Ying; Sakamoto, Naoya; Wu, Rong; Liu, Jie-yu; Wiese, Alexandra; Green, Maranne E.; Green, Megan; Akyol, Aytekin; Roy, Badal C.; Zhai, Yali; Cho, Kathleen R.; Fearon, Eric R.
2015-01-01
Adenomatous polyposis coli (APC) inactivating mutations are present in most human colorectal cancers and some other cancers. The APC protein regulates the β-catenin protein pool that functions as a co-activator of T cell factor (TCF)-regulated transcription in Wnt pathway signaling. We studied effects of reduced dosage of the Ctnnb1 gene encoding β-catenin in Apc-mutation-induced colon and ovarian mouse tumorigenesis and cell culture models. Concurrent somatic inactivation of one Ctnnb1 allele, dramatically inhibited Apc mutation-induced colon polyposis and greatly extended Apc-mutant mouse survival. Ctnnb1 hemizygous dose markedly inhibited increases in β-catenin levels in the cytoplasm and nucleus following Apc inactivation in colon epithelium, with attenuated expression of key β-catenin/TCF-regulated target genes, including those encoding the EphB2/B3 receptors, the stem cell marker Lgr5, and Myc, leading to maintenance of crypt compartmentalization and restriction of stem and proliferating cells to the crypt base. A critical threshold for β-catenin levels in TCF-regulated transcription was uncovered for Apc mutation-induced effects in colon epithelium, along with evidence of a feed-forward role for β-catenin in Ctnnb1 gene expression and CTNNB1 transcription. The active β-catenin protein pool was highly sensitive to CTNNB1 transcript levels in colon cancer cells. In mouse ovarian endometrioid adenocarcinomas (OEAs) arising from Apc- and Pten-inactivation, while Ctnnb1 hemizygous dose affected β-catenin levels and some β-catenin/TCF target genes, Myc induction was retained and OEAs arose in a fashion akin to that seen with intact Ctnnb1 gene dose. Our findings indicate Ctnnb1 gene dose exerts tissue-specific differences in Apc mutation-instigated tumorigenesis. Differential expression of selected β-catenin/TCF-regulated genes, such as Myc, likely underlies context-dependent effects of Ctnnb1 gene dosage in tumorigenesis. PMID:26528816
Munfus, Delicia L; Haga, Christopher L; Burrows, Peter D; Cooper, Max D
2007-01-01
Background In mouse the cytokine interleukin-7 (IL-7) is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER). The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR), a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules. PMID:17854505
Graham, Morag R; Smoot, Laura M; Migliaccio, Cristi A Lux; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Federle, Michael J; Adams, Gerald J; Scott, June R; Musser, James M
2002-10-15
Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.
A Comparative Encyclopedia of DNA Elements in the Mouse Genome
Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing
2014-01-01
Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824
A comparative encyclopedia of DNA elements in the mouse genome.
Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing
2014-11-20
The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.
Goodhardt, M; Babinet, C; Lutfalla, G; Kallenbach, S; Cavelier, P; Rougeon, F
1989-01-01
We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo. Images PMID:2508061
Morikawa, Yuka; Zhang, Min; Heallen, Todd; Leach, John; Tao, Ge; Xiao, Yang; Bai, Yan; Li, Wei; Willerson, James T.; Martin, James F.
2015-01-01
The mammalian heart regenerates poorly, and damage commonly leads to heart failure. Hippo signaling is an evolutionarily conserved kinase cascade that regulates organ size during development and prevents adult mammalian cardiomyocyte regeneration by inhibiting the transcriptional coactivator Yap, which also responds to mechanical signaling in cultured cells to promote cell proliferation. To identify Yap target genes that are activated during cardiomyocyte renewal and regeneration, we performed Yap chromatin immunoprecipitation sequencing (ChIP-Seq) and mRNA expression profiling in Hippo signaling-deficient mouse hearts. We found that Yap directly regulated genes encoding cell cycle progression proteins, as well as genes encoding proteins that promote F-actin polymerization and that link the actin cytoskeleton to the extracellular matrix. Included in the latter group were components of the dystrophin glycoprotein complex (DGC), a large molecular complex that, when defective, results in muscular dystrophy in humans. Cardiomyocytes near scar tissue of injured Hippo signaling-deficient mouse hearts showed cellular protrusions suggestive of cytoskeletal remodeling. The hearts of mdx mutant mice, which lack functional dystrophin and are a model for muscular dystrophy, showed impaired regeneration and cytoskeleton remodeling, but normal cardiomyocyte proliferation after injury. Our data showed that, in addition to genes encoding cell cycle progression proteins, Yap regulated genes that enhance cytoskeletal remodeling Thus, blocking the Hippo pathway input to Yap may tip the balance so that Yap responds to the mechanical changes associated with heart injury to promote repair. PMID:25943351
Ichinose, H; Ohye, T; Matsuda, Y; Hori, T; Blau, N; Burlina, A; Rouse, B; Matalon, R; Fujita, K; Nagatsu, T
1995-04-28
GTP cyclohydrolase I is the first and rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin in mammals. Previously, we reported three species of human GTP cyclohydrolase I cDNA in a human liver cDNA library (Togari, A., Ichinose, H., Matsumoto, S., Fujita, K., and Nagatsu, T. (1992) Biochem. Biophys. Res. Commun. 187, 359-365). Furthermore, very recently, we found that the GTP cyclohydrolase I gene is causative for hereditary progressive dystonia with marked diurnal fluctuation, also known as DOPA-responsive dystonia (Ichinose, H., Ohye, T., Takahashi, E., Seki, N., Hori, T., Segawa, M., Nomura, Y., Endo, K., Tanaka, H., Tsuji, S., Fujita, K., and Nagatsu, T. (1994) Nature Genetics 8, 236-242). To clarify the mechanisms that regulate transcription of the GTP cyclohydrolase I gene and to generate multiple species of mRNA, we isolated genomic DNA clones for the human and mouse GTP cyclohydrolase I genes. Structural analysis of the isolated clones revealed that the GTP cyclohydrolase I gene is encoded by a single copy gene and is composed of six exons spanning approximately 30 kilobases. We sequenced all exon/intron boundaries of the human and mouse genes. Structural analysis also demonstrated that the heterogeneity of GTP cyclohydrolase I mRNA is caused by an alternative usage of the splicing acceptor site at the sixth exon. The transcription start site of the mouse GTP cyclohydrolase I gene and the 5'-flanking sequences of the mouse and human genes were determined. We performed regional mapping of the mouse gene by fluorescence in situ hybridization, and the mouse GTP cyclohydrolase I gene was assigned to region C2-3 of mouse chromosome 14. We identified missense mutations in patients with GTP cyclohydrolase I deficiency and expressed mutated enzymes in Escherichia coli to confirm alterations in the enzyme activity.
Kwon, Jun Tae; Ham, Sera; Jeon, Suyeon; Kim, Youil; Oh, Seungmin; Cho, Chunghee
2017-01-01
The identification and characterization of germ cell-specific genes are essential if we hope to comprehensively understand the mechanisms of spermatogenesis and fertilization. Here, we searched the mouse UniGene databases and identified 13 novel genes as being putatively testis-specific or -predominant. Our in silico and in vitro analyses revealed that the expressions of these genes are testis- and germ cell-specific, and that they are regulated in a stage-specific manner during spermatogenesis. We generated antibodies against the proteins encoded by seven of the genes to facilitate their characterization in male germ cells. Immunoblotting and immunofluorescence analyses revealed that one of these proteins was expressed only in testicular germ cells, three were expressed in both testicular germ cells and testicular sperm, and the remaining three were expressed in sperm of the testicular stages and in mature sperm from the epididymis. Further analysis of the latter three proteins showed that they were all associated with cytoskeletal structures in the sperm flagellum. Among them, MORN5, which is predicted to contain three MORN motifs, is conserved between mouse and human sperm. In conclusion, we herein identify 13 authentic genes with male germ cell-specific expression, and provide comprehensive information about these genes and their encoded products. Our finding will facilitate future investigations into the functional roles of these novel genes in spermatogenesis and sperm functions.
Transcriptomes of Mouse Olfactory Epithelium Reveal Sexual Differences in Odorant Detection
Shiao, Meng-Shin; Chang, Andrew Ying-Fei; Liao, Ben-Yang; Ching, Yung-Hao; Lu, Mei-Yeh Jade; Chen, Stella Maris; Li, Wen-Hsiung
2012-01-01
To sense numerous odorants and chemicals, animals have evolved a large number of olfactory receptor genes (Olfrs) in their genome. In particular, the house mouse has ∼1,100 genes in the Olfr gene family. This makes the mouse a good model organism to study Olfr genes and olfaction-related genes. To date, whether male and female mice possess the same ability in detecting environmental odorants is still unknown. Using the next generation sequencing technology (paired-end mRNA-seq), we detected 1,088 expressed Olfr genes in both male and female olfactory epithelium. We found that not only Olfr genes but also odorant-binding protein (Obp) genes have evolved rapidly in the mouse lineage. Interestingly, Olfr genes tend to express at a higher level in males than in females, whereas the Obp genes clustered on the X chromosome show the opposite trend. These observations may imply a more efficient odorant-transporting system in females, whereas a more active Olfr gene expressing system in males. In addition, we detected the expression of two genes encoding major urinary proteins, which have been proposed to bind and transport pheromones or act as pheromones in mouse urine. This observation suggests a role of main olfactory system (MOS) in pheromone detection, contrary to the view that only accessory olfactory system (AOS) is involved in pheromone detection. This study suggests the sexual differences in detecting environmental odorants in MOS and demonstrates that mRNA-seq provides a powerful tool for detecting genes with low expression levels and with high sequence similarities. PMID:22511034
Preclinical Testing of Novel Oxytocin Receptor Activators in Models of Autism Phenotypes
2014-09-01
AD_________________ Award Number: TITLE: Preclinical Testing of Novel Oxytocin Receptor Activators in Models of Autism ...AUG 2013-7 Aug 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Preclinical Testing of Novel Oxytocin Receptor Activators in Models of Autism ...a genetic mouse model of autism -like phenotypes, the Grin1 knockdown mouse. The Grin1 gene encodes the NR1 subunit of the NMDA receptor . In the
Wang, Longqiong; Jing, Jinzhong; Yan, Hui; Tang, Jiayong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Tian, Gang; Cai, Jingyi; Shang, Haiying; Zhao, Hua
2018-04-18
This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P < 0.05) mRNA profiles of 9 inflammation-related genes in cells, while short-time Se pretreatment modestly reversed (P < 0.05) the LPS-induced upregulation of 7 genes (COX-2, ICAM-1, IL-1β, IL-6, IL-10, iNOS, and MCP-1) and further increased (P < 0.05) expression of IFN-β and TNF-α in stressed cells. Meanwhile, LPS decreased (P < 0.05) mRNA levels of 18 selenoprotein encoding genes and upregulated mRNA levels of TXNRD1 and TXNRD3 in cells. Se pretreatment recovered (P < 0.05) expression of 3 selenoprotein encoding genes (GPX1, SELENOH, and SELENOW) in a dose-dependent manner and increased (P < 0.05) expression of another 5 selenoprotein encoding genes (SELENOK, SELENOM, SELENOS, SELENOT, and TXNRD2) only at a high level (2.0 μmol Se/L). Taken together, LPS-induced immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.
Gfi1-Cre knock-in mouse line: A tool for inner ear hair cell-specific gene deletion
Yang, Hua; Gan, Jean; Xie, Xiaoling; Deng, Min; Feng, Liang; Chen, Xiaowei; Gao, Zhiqiang; Gan, Lin
2010-01-01
Summary Gfi1encodes a zinc-finger transcription factor essential for the development and maintenance of haematopoiesis and the inner ear. In mouse inner ear, Gfi1 expression is confined to hair cells during development and in adulthood. To construct a genetic tool for inner ear hair cell-specific gene deletion, we generated a Gfi1-Cre mouse line by knocking-in Cre coding sequences into the Gfi1 locus and inactivating the endogenous Gfi1. The specificity and efficiency of Gfi1-Cre recombinase-mediated recombination in the developing inner ear was revealed through the expression of the conditional R26R-lacZ reporter gene. The onset of lacZ expression in the Gfi1Cre/+ inner ear was first detected at E13.5 in the vestibule and at E15.5 in the cochlea, coinciding with the generation of hair cells. Throughout inner ear development, lacZ expression was detected only in hair cells. Thus, Gfi1-Cre knock-in mouse line provides a useful tool for gene manipulations specifically in inner ear hair cells. PMID:20533399
Overexpression of mouse TTF-2 gene causes cleft palate
Meng, Tian; Shi, Jia-Yu; Wu, Min; Wang, Yan; Li, Ling; Liu, Yan; Zheng, Qian; Huang, Lei; Shi, Bing
2012-01-01
In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate. PMID:22304410
Pezer, Željka; Chung, Amanda G.; Karn, Robert C.
2017-01-01
Abstract The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. PMID:28575204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steeghs, K.; Wieringa, B.; Merkx, G.
1994-11-01
Members of the creatine kinase isoenzyme family (CKs; EC 2.7.3.2) are found in mitochondria and specialized subregions of the cytoplasm and catalyze the reversible exchange of high-energy phosphoryl between ATP and phosphocreatine. At least four functionally active genes, which encode the distinct CK subunits CKB, CKM, CKMT1 (ubiquitous), and CKMT2 (sarcomeric), and a variable number of CKB pseudogenes have been identified. Here, we report the use of a CKMT1 containing phage to map the CKMT1 gene by in situ hybridization on both human and mouse chromosomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Michihiro C.; Wada, Makio; Satoh, Hitoshi
1988-07-01
The human HST1 gene, previously designated the hst gene, and now assigned the name HSTF1 for heparin-binding secretory transforming factor in human gene nomenclature, was originally identified as a transforming gene in DNAs from human stomach cancers by transfection assay with mouse NIH 3T3 cells. The amino acid sequence of the product deduced from DNA sequences of the HST1 cDNA and genomic clones had approximately 40% homology to human basic and acidic fibroblast growth factors and mouse Int-2-encoded protein. The authors have mapped the human HST1 gene to chromosome 11 at band q13.3 by Southern blot hybridization analysis of amore » panel of human and mouse somatic cell hybrids and in situ hybridization with an HST1 cDNA probe. The HST1 gene was found to be amplified in DNAs obtained from a stomach cancer and a vulvar carcinoma cell line, A431. In all of these samples of DNA, the INT2 gene, previously mapped to human chromosome 11q13, was also amplified to the same degree as the HST1 gene.« less
Defining the Role of Essential Genes in Human Disease
Robertson, David L.; Hentges, Kathryn E.
2011-01-01
A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases. PMID:22096564
Ji, Xinglai; Tang, Jie; Halberg, Richard; Busam, Dana; Ferriera, Steve; Peña, Maria Marjorette O; Venkataramu, Chinnambally; Yeatman, Timothy J; Zhao, Shaying
2010-08-13
We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2. We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors. These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates.
Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude
2013-01-01
The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo.
Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude
2013-01-01
The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo. PMID:24265691
Yoneyama, T; Akatsuka, T; Miyamura, T
1988-08-01
The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.
Differential splicing generates a nervous system-specific form of Drosophila neuroglian.
Hortsch, M; Bieber, A J; Patel, N H; Goodman, C S
1990-05-01
We recently described the characterization and cloning of Drosophila neuroglian, a member of the immunoglobulin superfamily. Neuroglian contains six immunoglobulin-like domains and five fibronectin type III domains and shows strong sequence homology to the mouse neural cell adhesion molecule L1. Here we show that the neuroglian gene generates at least two different protein products by tissue-specific alternative splicing. The two protein forms differ in their cytoplasmic domains. The long form is restricted to the surface of neurons in the CNS and neurons and some support cells in the PNS; in contrast, the short form is expressed on a wide range of other cells and tissues. Thus, whereas the mouse L1 gene appears to encode only one protein that functions largely as a neural cell adhesion molecule, its Drosophila homolog, the neuroglian gene, encodes at least two protein forms that may play two different roles, one as a neural cell adhesion molecule and the other as a more general cell adhesion molecule involved in other tissues and imaginal disc morphogenesis.
Tiner, Bethany L.; Kirtley, Michelle L.; Erova, Tatiana E.; Popov, Vsevolod L.; Baze, Wallace B.; van Lier, Christina J.; Ponnusamy, Duraisamy; Andersson, Jourdan A.; Motin, Vladimir L.; Chauhan, Sadhana
2015-01-01
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. PMID:25605764
Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K
2015-04-01
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LaPolla, R J; Mayne, K M; Davidson, N
1984-01-01
A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, L.; Desbarats, M.; Viel, J.
1996-08-15
The recently identified human PEX g ene apparently encodes for a neutral endopeptidase that is mutated in patients with X-linked hypophosphatemia. The 3{prime} and 5{prime} ends of the coding region of PEX have not been cloned, nor has the tissue expression of the gene been identified. Here we report the isolation and characterization of the complete open reading frame of the mouse Pex gene and the demonstration of its expression in bone. Mouse Pex cDNA is predicted to encode a protein of 749 amino acids with 95% identity to the available human PEX sequence and significant homology to members ofmore » the membrane-bound metalloendopeptidase family. Northern blot analysis revealed a 6.6-kb transcript in bone and in cultured osteoblasts from normal mice that was not detectable in samples from the Hyp mouse, the murine homolog of human X-linked hypophosphatemia. Pex transcripts were, however, detectable in Hyp bone by RT-PCR amplification. Of particular interest, a cDNA clone from rat incisor shows 93% sequence identity to the 5{prime} end of Pex cDNA, suggesting that Pex may be expressed in another calcified tissue, the tooth. The association of impaired mineralization of bone and teeth and disturbed renal phosphate reabsorption with altered expression of Pex suggests that the Pex gene product may play a critical role in these processes. 47 refs., 2 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki
1996-06-01
Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequencesmore » in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.« less
A new yeast gene with a myosin-like heptad repeat structure.
Kölling, R; Nguyen, T; Chen, E Y; Botstein, D
1993-03-01
We isolated a gene encoding a 218 kDa myosin-like protein from Saccharomyces cerevisiae using a monoclonal antibody directed against human platelet myosin as a probe. The protein sequence encoded by the MLP1 gene (for myosin-like protein) contains extensive stretches of a heptad-repeat pattern suggesting that the protein can form coiled coils typical of myosins. Immunolocalization experiments using affinity-purified antibodies raised against a TrpE-MLP1 fusion protein showed a dot-like structure adjacent to the nucleus in yeast cells bearing the MLP1 gene on a multicopy plasmid. In mouse epithelial cells the yeast anti-MLP1 antibodies stained the nucleus. Mutants bearing disruptions of the MLP1 gene were viable, but more sensitive to ultraviolet light than wild-type strains, suggesting an involvement of MLP1 in DNA repair. The MLP1 gene was mapped to chromosome 11, 25 cM from met1.
Robbens, Johan; Louahed, Jamila; De Pestel, Kathleen; Van Colen, Inge; Ampe, Christophe; Vandekerckhove, Joel; Renauld, Jean-Christophe
1998-01-01
We identified a number of upregulated genes by differential screening of interleukin-9-stimulated T-helper lymphocytes. Interestingly, two of these messengers encode proteins that are similar to proteins of the gelsolin family. The first displays a typical structure of six homologous domains and shows a high level of identity (90%) with bovine adseverin (or scinderin) and may therefore be considered the murine adseverin homolog. The second encodes a protein with only five segments. Sequence comparison shows that most of the fifth segment and a short amino-terminal part of the sixth segment (amino acids 528 to 628 of adseverin) are missing, and thus, this form may represent an alternatively spliced product derived from the same gene. The corresponding protein is called mouse adseverin (D5). We expressed both proteins in Escherichia coli and show that mouse adseverin displays the typical characteristics of all members of the gelsolin family with respect to actin binding (capping, severing, and nucleation) and its regulation by Ca2+. In contrast, mouse adseverin (D5) fails to nucleate actin polymerization, although like mouse adseverin and gelsolin, it severs and caps actin filaments in a Ca2+-dependent manner. Adseverin is present in all of the tissues and most of the cell lines tested, although at low concentrations. Mouse adseverin (D5) was found only in blood cells and in cell lines derived from T-helper lymphocytes and mast cells, where it is weakly expressed. In a gel filtration experiment, we demonstrated that mouse adseverin forms a 1:2 complex with G actin which is stable only in the presence of Ca2+, while no stable complex was observed for mouse adseverin (D5). PMID:9671468
Karn, Robert C; Laukaitis, Christina M
2012-01-01
Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.
Pezer, Željka; Chung, Amanda G; Karn, Robert C; Laukaitis, Christina M
2017-06-01
The Androgen-binding protein ( Abp ) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus ( Mmd ) and Mus musculus musculus ( Mmm ), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd , primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm , Mus musculus castaneus and an outgroup, Mus spretus , although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Stefan, Mihaela; Simmons, Rebecca A; Bertera, Suzanne; Trucco, Massimo; Esni, Farzad; Drain, Peter; Nicholls, Robert D
2011-05-01
Prader-Willi syndrome (PWS) is a multisystem disorder caused by genetic loss of function of a cluster of imprinted, paternally expressed genes. Neonatal failure to thrive in PWS is followed by childhood-onset hyperphagia and obesity among other endocrine and behavioral abnormalities. PWS is typically assumed to be caused by an unknown hypothalamic-pituitary dysfunction, but the underlying pathogenesis remains unknown. A transgenic deletion mouse model (TgPWS) has severe failure to thrive, with very low levels of plasma insulin and glucagon in fetal and neonatal life prior to and following onset of progressive hypoglycemia. In this study, we tested the hypothesis that primary deficits in pancreatic islet development or function may play a fundamental role in the TgPWS neonatal phenotype. Major pancreatic islet hormones (insulin, glucagon) were decreased in TgPWS mice, consistent with plasma levels. Immunohistochemical analysis of the pancreas demonstrated disrupted morphology of TgPWS islets, with reduced α- and β-cell mass arising from an increase in apoptosis. Furthermore, in vivo and in vitro studies show that the rate of insulin secretion is significantly impaired in TgPWS β-cells. In TgPWS pancreas, mRNA levels for genes encoding all pancreatic hormones, other secretory factors, and the ISL1 transcription factor are upregulated by either a compensatory response to plasma hormone deficiencies or a primary effect of a deleted gene. Our findings identify a cluster of imprinted genes required for the development, survival, coordinate regulation of genes encoding hormones, and secretory function of pancreatic endocrine cells, which may underlie the neonatal phenotype of the TgPWS mouse model.
Szabo, R; Samson, A L; Lawrence, D A; Medcalf, R L; Bugge, T H
2016-08-01
Essentials C57BL/6J-tissue plasminogen activator (tPA)-deficient mice are widely used to study tPA function. Congenic C57BL/6J-tPA-deficient mice harbor large 129-derived chromosomal segments. The 129-derived chromosomal segments contain gene mutations that may confound data interpretation. Passenger mutation-free isogenic tPA-deficient mice were generated for study of tPA function. Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density single nucleotide polymorphism (SNP) analysis, bioinformatics and genome editing were used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat(-/-) mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel 'passenger mutation'-free isogenic C57BL/6J-Plat(-/-) and FVB/NJ-Plat(-/-) mouse strains by introducing an 11 bp deletion into the exon encoding the signal peptide. These novel mouse strains will be a useful community resource for further exploration of tPA function in physiological and pathological processes. © 2016 International Society on Thrombosis and Haemostasis.
Canella, Donatella; Bernasconi, David; Gilardi, Federica; LeMartelot, Gwendal; Migliavacca, Eugenia; Praz, Viviane; Cousin, Pascal; Delorenzi, Mauro; Hernandez, Nouria; Hernandez, Nouria; Delorenzi, Mauro; Deplancke, Bart; Desvergne, Béatrice; Guex, Nicolas; Herr, Winship; Naef, Felix; Rougemont, Jacques; Schibler, Ueli; Deplancke, Bart; Guex, Nicolas; Herr, Winship; Guex, Nicolas; Andersin, Teemu; Cousin, Pascal; Gilardi, Federica; Gos, Pascal; Le Martelot, Gwendal; Lammers, Fabienne; Canella, Donatella; Gilardi, Federica; Raghav, Sunil; Fabbretti, Roberto; Fortier, Arnaud; Long, Li; Vlegel, Volker; Xenarios, Ioannis; Migliavacca, Eugenia; Praz, Viviane; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; David, Fabrice; Jarosz, Yohan; Kuznetsov, Dmitry; Liechti, Robin; Martin, Olivier; Ross, Frederick; Sinclair, Lucas; Cajan, Julia; Krier, Irina; Leleu, Marion; Migliavacca, Eugenia; Molina, Nacho; Naldi, Aurélien; Rey, Guillaume; Symul, Laura; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; Bernasconi, David; Delorenzi, Mauro; Andersin, Teemu; Canella, Donatella; Gilardi, Federica; Le Martelot, Gwendal; Lammers, Fabienne; Raghav, Sunil
2012-01-01
The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes. PMID:22287103
2017-10-01
CRISPR Subtask 1A: i) design and produce mammalian expression plasmids encoding the Cas9 protein and specially...duration in SOW: 2017 Q4 – 2018 Q1 Subtask 2A: i) produce mouse myocyte cell lines that have undergone gene disruption via a technique named CRISPR ii...named CRISPR ii) confirm gene disruption and GFP expression iii) select multiple individual clones characterized with quantitative gene
Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts
Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W
2011-01-01
Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's functions. PMID:21892412
Generation of the first Autosomal Dominant Osteopetrosis Type II (ADO2) disease models
Alam, Imranul; Gray, Amie K.; Chu, Kang; Ichikawa, Shoji; Mohammad, Khalid S.; Capannolo, Marta; Capulli, Mattia; Maurizi, Antonio; Muraca, Maurizio; Teti, Anna; Econs, Michael J.; Fattore, Andrea Del
2013-01-01
Autosomal Dominant Osteopetrosis Type II (ADO2) is a heritable osteosclerotic disorder dependent on osteoclast impairment. In most patients it results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene, encoding for a 2Cl−/1H+ antiporter. By a knock-in strategy inserting a missense mutation in the Clcn7 gene, our two research groups independently generated mouse models of ADO2 on different genetic backgrounds carrying the homolog of the most frequent heterozygous mutation (p.G213R) in the Clcn7 gene found in humans. Our results demonstrate that the heterozygous model holds true presenting with higher bone mass, increased numbers of poorly resorbing osteoclasts and a lethal phenotype in the homozygous state. Considerable variability is observed in the heterozygous mice according with the mouse background, suggesting that modifier genes could influence the penetrance of the disease gene. PMID:24185277
Comparative mRNA analysis of behavioral and genetic mouse models of aggression.
Malki, Karim; Tosto, Maria G; Pain, Oliver; Sluyter, Frans; Mineur, Yann S; Crusio, Wim E; de Boer, Sietse; Sandnabba, Kenneth N; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C; Asherson, Philip
2016-04-01
Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors. © 2016 Wiley Periodicals, Inc.
Gene repressive mechanisms in the mouse brain involved in memory formation
Yu, Nam-Kyung; Kaang, Bong-Kiun
2016-01-01
Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200] PMID:26949020
Gene repressive mechanisms in the mouse brain involved in memory formation.
Yu, Nam-Kyung; Kaang, Bong-Kiun
2016-04-01
Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200].
Malcov, Mira; Cesarkas, Karen; Stelzer, Gil; Shalom, Sarah; Dicken, Yosef; Naor, Yaniv; Goldstein, Ronald S; Sagee, Shira; Kassir, Yona; Don, Jeremy
2004-12-01
Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.
Nakamura, Noriko; Dai, Qunsheng; Williams, Jason; Goulding, Eugenia H.; Willis, William D.; Brown, Paula R.; Eddy, Edward M.
2013-01-01
ABSTRACT Sperm utilize glycolysis to generate ATP required for motility, and several spermatogenic cell-specific glycolytic isozymes are associated with the fibrous sheath (FS) in the principal piece of the sperm flagellum. We used proteomics and molecular biology approaches to confirm earlier reports that a novel enolase is present in mouse sperm. We then found that a pan-enolase antibody, but not antibodies to ENO2 and ENO3, recognized a protein in the principal piece of the mouse sperm flagellum. Database analyses identified two previously uncharacterized enolase family-like candidate genes, 64306537H0Rik and Gm5506. Northern analysis indicated that 64306537H0Rik (renamed Eno4) was transcribed in testes of mice by Postnatal Day 12. To determine the role of ENO4, we generated mice using embryonic stem cells in which an Eno4 allele was disrupted by a gene trap containing a beta galactosidase (beta-gal) reporter (Eno4+/Gt). Expression of beta-gal occurred in the testis, and male mice homozygous for the gene trap allele (Eno4Gt/Gt) were infertile. Epididymal sperm numbers were 2-fold lower and sperm motility was reduced substantially in Eno4Gt/Gt mice compared to wild-type mice. Sperm from Eno4Gt/Gt mice had a coiled flagellum and a disorganized FS. The Gm5506 gene encodes a protein identical to ENO1 and also is transcribed at a low level in testis. We conclude that ENO4 is required for normal assembly of the FS and provides most of the enolase activity in sperm and that Eno1 and/or Gm5506 may encode a minor portion of the enolase activity in sperm. PMID:23446454
2015-10-01
signaling protein as defined by in vitro assays and mouse xenograft studies, ii) is associated with worse prognosis in patients, and iii) is resistant to...available. Specific Aim 2. To characterize oncogenic differences of splice variant pairs in vivo using xenograft animal models. Task 1. Validate...idelalisib as defined by in vitro assays and mouse xenograft models. In contrast, the corresponding EA isoform (PI3Kδ-L) encodes a less aggressive isoform
Alvarez, A M; Fukuhara, E; Nakase, M; Adachi, T; Aoki, N; Nakamura, R; Matsuda, T
1995-07-01
Four rice seed proteins encoded by cDNAs belonging to the alpha-amylase/trypsin inhibitor gene family were overexpressed as TrpE-fusion proteins in E. coli. The expressed rice proteins were detected by SDS-PAGE as major proteins in bacterial cell lysates. Western blot analyses showed that all the recombinant proteins were immunologically reactive to rabbit polyclonal antibodies and to a mouse monoclonal antibody (25B9) specific for a previously isolated rice allergen of 16 kDa. Some truncated proteins from deletion mutants of the cDNAs retained their reactivity to the specific antibodies. These results suggest that the cDNAs encode potential rice allergens and that some epitopes of the recombinant proteins are still immunoreactive when they are expressed as their fragments.
The mouse arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a ~ 43 kDa protein that catalyzes conversion of inorganic arsenic into methylated products. Heterologous expression of AS3MT or its silencing by RNA interference controls arsenic methylation phenotypes...
Zhou, Yongdong; Sheets, Kristopher G.; Knott, Eric J.; Regan, Cornelius E.; Tuo, Jingsheng; Chan, Chi-Chao; Gordon, William C.; Bazan, Nicolas G.
2011-01-01
Retinal pathologies common to human eye diseases, including abnormal retinal pigment epithelial (RPE) cells, drusen-like accumulation, photoreceptor atrophy, and choroidal neovascularization, have been reported in the Ccl2/Cx3cr1-deficient mouse. The Ccl2 gene encodes the pro-inflammatory chemokine CCL2 (MCP-1), which is responsible for chemotactic recruitment of monocyte-derived macrophages to sites of inflammation. The Cx3cr1 gene encodes the fractalkine receptor, CX3CR1, and is required for accumulation of monocytes and microglia recruited via CCL2. Chemokine-mediated inflammation is implicated in retinal degenerative diseases such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and uveoretinitis, and proper chemokine signaling from the RPE, Müller glia, and astrocytes is necessary to regulate leukocyte trafficking. Therefore, this mouse, possessing aberrant chemokine signaling coupled with retinal degenerative pathologies, presents an ideal opportunity to investigate the effect of altered signaling on retinal homeostasis and photoreceptor degeneration. Since this mouse is a recent development, more data covering the onset, location, and progression rate of pathologies is needed. In the present study we establish these parameters and show two photoreceptor cell death processes. Our observations of decreased glutamine synthetase and increased glial fibrillary acidic protein suggest that Müller cells respond very early within regions where lesions are forming. Finally, we demonstrate that retinal angiomatous proliferation contributes to pathological angiogenesis in this Ccl2/Cx3cr1-deficient mouse. PMID:21854772
Cellular responses to oxidative stress: the [Ah] gene battery as a paradigm.
Nebert, D W; Petersen, D D; Fornace, A J
1990-01-01
A major source of oxidative stress in animals is plant stress metabolites, also termed phytoalexins. The aromatic hydrocarbon-responsive [Ah] gene battery is considered here as a model system in which we can study metabolically coordinated enzymes that respond to phytoalexin-induced oxidative stress. In the mouse, the [Ah] battery comprises at least six genes: two Phase I genes, CYP1A1 and CYP1A2; and four Phase II genes, Nmo-1, Aldh-1, Ugt-1, and Gt-1. All six genes appear to be regulated positively by inducers such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other ligands of the Ah receptor. In the absence of foreign inducer, the control of Nmo-1 gene expression is independent of the control of CYP1A1 and CYP1A2 gene expression. The radiation deletion homozygote c14CoS/c14CoS mouse is lacking about 1.1 centiMorgans of chromosome 7. Although having no detectable CYP1A1 or CYP1A2 activation, the untreated c14CoS/c14CoS mouse exhibits markedly elevated transcripts of the Nmo-1 gene and three growth arrest- and DNA damage-inducible (gadd) genes. These data suggest that the missing region on chromosome 7 in the c14CoS/c14CoS mouse contains a gene(s), which we propose to call Nmo-1n, encoding a trans-acting factor(s) that is a negative effector of the Nmo-1 and gadd genes. The three other [Ah] battery Phase II genes behave similarly to Nmo-1 in the c14CoS/c14CoS mouse. This coordinated response to oxidative stress and DNA damage, by way of the release of a mammalian battery of genes from negative control, bears an interesting resemblance to the SOS response in bacteria. PMID:2272308
Structure and polymorphism of the mouse prion protein gene.
Westaway, D; Cooper, C; Turner, S; Da Costa, M; Carlson, G A; Prusiner, S B
1994-01-01
Missense mutations in the prion protein (PrP) gene, overexpression of the cellular isoform of PrP (PrPC), and infection with prions containing the scrapie isoform of PrP (PrPSc) all cause neurodegenerative disease. To understand better the physiology and expression of PrPC, we retrieved mouse PrP gene (Prn-p) yeast artificial chromosome (YAC), cosmid, phage, and cDNA clones. Physical mapping positions Prn-p approximately 300 kb from ecotropic virus integration site number 4 (Evi-4), compatible with failure to detect recombination between Prn-p and Evi-4 in genetic crosses. The Prn-pa allele encompasses three exons, with exons 1 and 2 encoding the mRNA 5' untranslated region. Exon 2 has no equivalent in the Syrian hamster and human PrP genes. The Prn-pb gene shares this intron/exon structure but harbors an approximately 6-kb deletion within intron 2. While the Prn-pb open reading frame encodes two amino acid substitutions linked to prolonged scrapie incubation periods, a deletion of intron 2 sequences also characterizes inbred strains such as RIII/S and MOLF/Ei with shorter incubation periods, making a relationship between intron 2 size and scrapie pathogenesis unlikely. The promoter regions of a and b Prn-p alleles include consensus Sp1 and AP-1 sites, as well as other conserved motifs which may represent binding sites for as yet unidentified transcription factors. Images PMID:7912827
Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study
Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn
2009-01-01
SUMMARY Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-GFP fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by FACS. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. SIGNIFICANCE In this study we have developed and identified lentiviral vectors that allow labeled mouse melanoma cells to maintain long-term and consistent expression of a bifunctional luciferase-GFP marker gene, even in syngeneic mice with an intact immune function. This cell-labeling system can be used to build immunocompetent mouse melanoma models that permit both tumor monitoring and FACS-based tumor cell isolation from tissues, greatly facilitating the in vivo study of melanoma. PMID:19175523
Lu, L; Komada, M; Kitamura, N
1998-06-15
Hrs is a 115kDa zinc finger protein which is rapidly tyrosine phosphorylated in cells stimulated with various growth factors. We previously purified the protein from a mouse cell line and cloned its cDNA. In the present study, we cloned a human Hrs cDNA from a human placenta cDNA library by cross-hybridization, using the mouse cDNA as a probe, and determined its nucleotide sequence. The human Hrs cDNA encoded a 777-amino-acid protein whose sequence was 93% identical to that of mouse Hrs. Northern blot analysis showed that the Hrs mRNA was about 3.0kb long and was expressed in all the human adult and fetal tissues tested. In addition, we showed by genomic Southern blot analysis that the human Hrs gene was a single-copy gene with a size of about 20kb. Furthermore, the human Hrs gene was mapped to chromosome 17 by Southern blotting of genomic DNAs from human/rodent somatic cell hybrids. Copyright 1998 Elsevier Science B.V. All rights reserved.
The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases.
Wang, Tao; Xiong, Jian-Qiong
2016-02-01
The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated by TLX and its homologues in specific tissues during various developmental stages. This review aims to summarize previous studies including many recent updates from different aspects concerning TLX and its homologues in Drosophila and mouse.
Chinnam, Meenalakshmi; Povinelli, Benjamin J.; Fisher, Daniel T.; Golding, Michelle; Appenheimer, Michelle M.; Nemeth, Michael J.; Evans, Sharon; Goodrich, David W.
2014-01-01
Co-transcriptionally assembled ribonucleoprotein (RNP) complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover. PMID:24830368
Pitzonka, Laura; Ullas, Sumana; Chinnam, Meenalakshmi; Povinelli, Benjamin J; Fisher, Daniel T; Golding, Michelle; Appenheimer, Michelle M; Nemeth, Michael J; Evans, Sharon; Goodrich, David W
2014-01-01
Co-transcriptionally assembled ribonucleoprotein (RNP) complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.
Expression of mouse Tla region class I genes in tissues enriched for gamma delta cells.
Eghtesady, P; Brorson, K A; Cheroutre, H; Tigelaar, R E; Hood, L; Kronenberg, M
1992-01-01
The Tla region of the BALB/c mouse major histocompatibility complex contains at least 20 class I genes. The function of the products of these genes is unknown, but recent evidence demonstrates that some Tla region gene products could be involved in presentation of antigens to gamma delta T cells. We have generated a set of polymerase chain reaction (PCR) oligonucleotide primers and hybridization probes that permit us to specifically amplify and detect expression of 11 of the 20 BALB/c Tla region genes. cDNA prepared from 12 adult and fetal tissues and from seven cell lines was analyzed. In some cases, northern blot analysis or staining with monoclonal antibodies specific for the Tla-encoded thymus leukemia (TL) antigen were used to confirm the expression pattern of several of the genes as determined by PCR. Some Tla region genes, such as T24d and the members of the T10d/T22d gene pair, are expressed in a wide variety of tissues in a manner similar to the class I transplantation antigens. The members of the TL antigen encoding gene pair, T3d/T18d, are expressed in only a limited number of organs, including several sites enriched for gamma delta T cells. Other Tla region genes, including T1d, T2d, T16d, and T17d, are transcriptionally silent and transcripts from the T8d/T20d gene pair do not undergo proper splicing. In general, sites that contain gamma delta T lymphocytes have Tla region transcripts. The newly identified pattern of expression of the genes analyzed in sites containing gamma delta T cells further extends the list of potential candidates for antigen presentation to gamma delta T cells.
Basarkar, Ashwin; Singh, Jagdish
2009-01-01
Determine the efficiency of cationic nanoparticles prepared by blending poly (lactide-co-glycolide; PLGA) and methacrylate copolymer (Eudragit(R) E100) to deliver a therapeutic gene encoding mouse interleukin-10, in vitro and in vivo. Nanoparticles prepared with PLGA and E100 were evaluated for delivery of plasmid DNA encoding mouse interleukin-10 in vitro and in vivo in mice upon intramuscular injection. Blood-glucose, serum interferon-gamma levels and histology of pancreas were studied to determine therapeutic efficacy. Histological evaluation of skeletal muscle from the injection site was performed to assess the biocompatibility of nanoparticles. PLGA/E100 nanoparticles showed endosomal escape evidenced by confocal microscopy and buffering ability. Transfecting HEK293 cells with plasmid-loaded PLGA/E100 nanoparticles resulted in significantly (p < 0.05) greater expression of interleukin-10 compared to PLGA nanoparticles. Mice treated with PLGA/E100 nanoparticles displayed higher serum levels of interleukin-10 and lower blood glucose levels compared to those treated with interleukin-10 plasmid alone or PLGA nanoparticles. High expression of interleukin-10 facilitated suppression of interferon-gamma levels and reduced islet infiltration. Histology of muscle showed that nanoparticles were biocompatible and did not cause chronic inflammatory response. Nanoparticles prepared by blending PLGA with methacrylate can efficiently and safely deliver plasmid DNA encoding mouse interleukin-10 leading to prevention of autoimmune diabetes.
PI3K/Akt-dependent functions of TFII-I transcription factors in mouse embryonic stem cells.
Chimge, Nyam-Osor; Makeyev, Aleksandr V; Waigel, Sabine J; Enkhmandakh, Badam; Bayarsaihan, Dashzeveg
2012-04-01
Activation of PI3K/Akt signaling is sufficient to maintain the pluripotency of mouse embryonic stem cells (mESC) and results in down-regulation of Gtf2i and Gtf2ird1 encoding TFII-I family transcription factors. To investigate how these genes might be involved in the process of embryonic stem cell differentiation, we performed expression microarray profiling of mESC upon inhibition of PI3K by LY294002. This analysis revealed significant alterations in expression of genes for specific subsets of chromatin-modifying enzymes. Surprisingly, genome-wide promoter ChIP-chip mapping indicated that the majority of differently expressed genes could be direct targets of TFII-I regulation. The data support the hypothesis that upregulation of TFII-I factors leads to activation of a specific group of developmental genes during mESC differentiation. © 2011 Wiley Periodicals, Inc.
Identification and characterization of Rhox13, a novel X-linked mouse homeobox gene
Geyer, Christopher B.; Eddy, Edward M.
2008-01-01
Homeobox genes encode transcription factors whose expression organizes programs of development. A number of homeobox genes expressed in reproductive tissues have been identified recently, including a colinear cluster on the X chromosome in mice. This has led to an increased interest in understanding the role(s) of homeobox genes in regulating development of reproductive tissues including the testis, ovary, and placenta. Here we report the identification and characterization of a novel homeobox gene of the paired-like class on the X chromosome distal to the reproductive homeobox (Rhox) cluster in mice. Transcripts are found in the testis and ovary as early as 13.5 days post-coitum (dpc). Transcription ceases in the ovary by 3 days post-partum (dpp), but continues in the testis through adulthood. The Rhox13 gene encodes a 25.3 kDa protein expressed in the adult testis in germ cells at the basal aspect of the seminiferous epithelium. PMID:18675325
Cao, Heping; Graves, Donald J; Anderson, Richard A
2010-11-01
Cinnamon extracts (CE) are reported to have beneficial effects on people with normal and impaired glucose tolerance, the metabolic syndrome, type 2 diabetes, and insulin resistance. However, clinical results are controversial. Molecular characterization of CE effects is limited. This study investigated the effects of CE on gene expression in cultured mouse adipocytes. Water-soluble CE was prepared from ground cinnamon (Cinnamomum burmannii). Quantitative real-time PCR was used to investigate CE effects on the expression of genes coding for adipokines, glucose transporter (GLUT) family, and insulin-signaling components in mouse 3T3-L1 adipocytes. CE (100 μg/ml) increased GLUT1 mRNA levels 1.91±0.15, 4.39±0.78, and 6.98±2.18-fold of the control after 2-, 4-, and 16-h treatments, respectively. CE decreased the expression of further genes encoding insulin-signaling pathway proteins including GSK3B, IGF1R, IGF2R, and PIK3R1. This study indicates that CE regulates the expression of multiple genes in adipocytes and this regulation could contribute to the potential health benefits of CE. Published by Elsevier GmbH.
Rella, Monika; Elliot, Joann L; Revett, Timothy J; Lanfear, Jerry; Phelan, Anne; Jackson, Richard M; Turner, Anthony J; Hooper, Nigel M
2007-01-01
Background Mammalian angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple sequence alignment and molecular modelling have been employed to characterise the predicted ACE3 protein. In mouse, rat, cow and dog, the predicted protein has mutations in some of the critical residues involved in catalysis, including the catalytic Glu in the HEXXH zinc binding motif which is Gln, and ESTs or reverse-transcription PCR indicate that the gene is expressed. In humans, the predicted ACE3 protein has an intact HEXXH motif, but there are other deletions and insertions in the gene and no ESTs have been identified. Conclusion In the genomes of several mammalian species there is a gene that encodes a novel, single domain ACE-like protein, ACE3. In mouse, rat, cow and dog ACE3, the catalytic Glu is replaced by Gln in the putative zinc binding motif, indicating that in these species ACE3 would lack catalytic activity as a zinc metalloprotease. In humans, no evidence was found that the ACE3 gene is expressed and the presence of deletions and insertions in the sequence indicate that ACE3 is a pseudogene. PMID:17597519
Computational analyses of mammalian lactate dehydrogenases: human, mouse, opossum and platypus LDHs.
Holmes, Roger S; Goldberg, Erwin
2009-10-01
Computational methods were used to predict the amino acid sequences and gene locations for mammalian lactate dehydrogenase (LDH) genes and proteins using genome sequence databanks. Human LDHA, LDHC and LDH6A genes were located in tandem on chromosome 11, while LDH6B and LDH6C genes were on chromosomes 15 and 12, respectively. Opossum LDHC and LDH6B genes were located in tandem with the opossum LDHA gene on chromosome 5 and contained 7 (LDHA and LDHC) or 8 (LDH6B) exons. An amino acid sequence prediction for the opossum LDH6B subunit gave an extended N-terminal sequence, similar to the human and mouse LDH6B sequences, which may support the export of this enzyme into mitochondria. The platypus genome contained at least 3 LDH genes encoding LDHA, LDHB and LDH6B subunits. Phylogenetic studies and sequence analyses indicated that LDHA, LDHB and LDH6B genes are present in all mammalian genomes examined, including a monotreme species (platypus), whereas the LDHC gene may have arisen more recently in marsupial mammals.
Computational analyses of mammalian lactate dehydrogenases: human, mouse, opossum and platypus LDHs
Holmes, Roger S; Goldberg, Erwin
2009-01-01
Computational methods were used to predict the amino acid sequences and gene locations for mammalian lactate dehydrogenase (LDH) genes and proteins using genome sequence databanks. Human LDHA, LDHC and LDH6A genes were located in tandem on chromosome 11, while LDH6B and LDH6C genes were on chromosomes 15 and 12, respectively. Opossum LDHC and LDH6B genes were located in tandem with the opossum LDHA gene on chromosome 5 and contained 7 (LDHA and LDHC) or 8 (LDH6B) exons. An amino acid sequence prediction for the opossum LDH6B subunit gave an extended N-terminal sequence, similar to the human and mouse LDH6B sequences, which may support the export of this enzyme into mitochondria. The platypus genome contained at least 3 LDH genes encoding LDHA, LDHB and LDH6B subunits. Phylogenetic studies and sequence analyses indicated that LDHA, LDHB and LDH6B genes are present in all mammalian genomes examined, including a monotreme species (platypus), whereas the LDHC gene may have arisen more recently in marsupial mammals. PMID:19679512
Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database
Drabkin, Harold J.; Blake, Judith A.
2012-01-01
The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as ‘GO’ or ‘homology’ or ‘phenotype’. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as ‘papers selected for GO that refer to genes with NO GO annotation’. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported with statements of evidence as well as access to source publications. PMID:23110975
Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database.
Drabkin, Harold J; Blake, Judith A
2012-01-01
The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as 'GO' or 'homology' or 'phenotype'. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as 'papers selected for GO that refer to genes with NO GO annotation'. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported with statements of evidence as well as access to source publications.
T-cell receptor gene therapy: critical parameters for clinical success.
Linnemann, Carsten; Schumacher, Ton N M; Bendle, Gavin M
2011-09-01
T-cell receptor (TCR) gene therapy aims to induce immune reactivity against tumors by introducing genes encoding a tumor-reactive TCR into patient T cells. This approach has been extensively tested in preclinical mouse models, and initial clinical trials have demonstrated the feasibility and potential of TCR gene therapy as a cancer treatment. However, data obtained from preclinical and clinical studies suggest that both the therapeutic efficacy and the safety of TCR gene therapy can be and needs to be further enhanced. This review highlights those strategies that can be followed to develop TCR gene therapy into a clinically relevant treatment option for cancer patients.
Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat
2015-01-01
Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970
Transgenic mouse models in the study of reproduction: insights into GATA protein function.
Tevosian, Sergei G
2014-07-01
For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or 'floxed' by loxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent. © 2014 Society for Reproduction and Fertility.
Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D.
Bolz, H; von Brederlow, B; Ramírez, A; Bryda, E C; Kutsche, K; Nothwang, H G; Seeliger, M; del C-Salcedó Cabrera, M; Vila, M C; Molina, O P; Gal, A; Kubisch, C
2001-01-01
Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.
An animal model for Norrie disease (ND): gene targeting of the mouse ND gene.
Berger, W; van de Pol, D; Bächner, D; Oerlemans, F; Winkens, H; Hameister, H; Wieringa, B; Hendriks, W; Ropers, H H
1996-01-01
In order to elucidate the cellular and molecular processes which are involved in Norrie disease (ND), we have used gene targeting technology to generate ND mutant mice. The murine homologue of the ND gene was cloned and shown to encode a polypeptide that shares 94% of the amino acid sequence with its human counterpart. RNA in situ hybridization revealed expression in retina, brain and the olfactory bulb and epithelium of 2 week old mice. Hemizygous mice carrying a replacement mutation in exon 2 of the ND gene developed retrolental structures in the vitreous body and showed an overall disorganization of the retinal ganglion cell layer. The outer plexiform layer disappears occasionally, resulting in a juxtaposed inner and outer nuclear layer. At the same regions, the outer segments of the photoreceptor cell layer are no longer present. These ocular findings are consistent with observations in ND patients and the generated mouse line provides a faithful model for study of early pathogenic events in this severe X-linked recessive neurological disorder.
Rosemblat, S; Durham-Pierre, D; Gardner, J M; Nakatsu, Y; Brilliant, M H; Orlow, S J
1994-01-01
The pink-eyed dilution (p) locus in the mouse is critical to melanogenesis; mutations in the homologous locus in humans, P, are a cause of type II oculocutaneous albinism. Although a cDNA encoded by the p gene has recently been identified, nothing is known about the protein product of this gene. To characterize the protein encoded by the p gene, we performed immunoblot analysis of extracts of melanocytes cultured from wild-type mice with an antiserum from rabbits immunized with a peptide corresponding to amino acids 285-298 of the predicted protein product of the murine p gene. This antiserum recognized a 110-kDa protein. The protein was absent from extracts of melanocytes cultured from mice with two mutations (pcp and p) in which transcripts of the p gene are absent or greatly reduced. Introduction of the cDNA for the p gene into pcp melanocytes by electroporation resulted in expression of the 3.3-kb mRNA and the 110-kDa protein. Upon subcellular fractionation of cultured melanocytes, the 110-kDa protein was found to be present in melanosomes but absent from the vesicular fraction; phase separation performed with the nonionic detergent Triton X-114 confirmed the predicted hydrophobic nature of the protein. These results demonstrate that the p gene encodes a 110-kDa integral melanosomal membrane protein and establish a framework by which mutations at this locus, which diminish pigmentation, can be analyzed at the cellular and biochemical levels. Images PMID:7991586
Yoon, Young Geol; Koob, Michael D; Yoo, Young Hyun
2011-09-15
Mitochondrial transcription factor A (Tfam) binds to and organizes mitochondrial DNA (mtDNA) genome into a mitochondrial nucleoid (mt-nucleoid) structure, which is necessary for mtDNA transcription and maintenance. Here, we demonstrate the mtDNA-organizing activity of mouse Tfam and its transcript isoform (Tfam(iso)), which has a smaller high-mobility group (HMG)-box1 domain, using a yeast model system that contains a deletion of the yeast homolog of mouse Tfam protein, Abf2p. When the mouse Tfam genes were introduced into the ABF2 locus of yeast genome, the corresponding mouse proteins, Tfam and Tfam(iso), can functionally replace the yeast Abf2p and support mtDNA maintenance and mitochondrial biogenesis in yeast. Growth properties, mtDNA content and mitochondrial protein levels of genes encoded in the mtDNA were comparable in the strains expressing mouse proteins and the wild-type yeast strain, indicating that the proteins have robust mtDNA-maintaining and -expressing function in yeast mitochondria. These results imply that the mtDNA-organizing activities of the mouse mt-nucleoid proteins are structurally and evolutionary conserved, thus they can maintain the mtDNA of distantly related and distinctively different species, such as yeast. Copyright © 2011 Elsevier B.V. All rights reserved.
Liedtke, Wolfgang; Choe, Yong; Martí-Renom, Marc A.; Bell, Andrea M.; Denis, Charlotte S.; Šali, Andrej; Hudspeth, A. J.; Friedman, Jeffrey M.; Heller, Stefan
2008-01-01
SUMMARY The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nevous system, the channel is expressed neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells. PMID:11081638
The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function
Theos, Alexander C.; Truschel, Steven T.; Raposo, Graça; Marks, Michael S.
2009-01-01
Summary Mouse coat color mutants have led to the identification of more than 120 genes that encode proteins involved in all aspects of pigmentation, from the regulation of melanocyte development and differentiation to the transcriptional activation of pigment genes, from the enzymatic formation of pigment to the control of melanosome biogenesis and movement [Bennett and Lamoreux (2003) Pigment Cell Res. 16, 333]. One of the more perplexing of the identified mouse pigment genes is encoded at the Silver locus, first identified by Dunn and Thigpen [(1930) J. Heredity 21, 495] as responsible for a recessive coat color dilution that worsened with age on black backgrounds. The product of the Silver gene has since been discovered numerous times in different contexts, including the initial search for the tyrosinase gene, the characterization of major melanosome constituents in various species, and the identification of tumor-associated antigens from melanoma patients. Each discoverer provided a distinct name: Pmel17, gp100, gp95, gp85, ME20, RPE1, SILV and MMP115 among others. Although all its functions are unlikely to have yet been fully described, the protein clearly plays a central role in the biogenesis of the early stages of the pigment organelle, the melanosome, in birds, and mammals. As such, we will refer to the protein in this review simply as pre-melanosomal protein (Pmel). This review will summarize the structural and functional aspects of Pmel and its role in melanosome biogenesis. PMID:16162173
Divergent and nonuniform gene expression patterns in mouse brain
Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.
2010-01-01
Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311
Vaiman, Anne; Beauvallet, Christian; Floriot, Sandrine; Rodriguez, Sabrina; Vilotte, Marthe; Boulanger, Laurent; Albaric, Olivier; Guillaume, François; Boukadiri, Abdelhak; Richard, Laurence; Bertaud, Maud; Timsit, Edouard; Guatteo, Raphaël; Jaffrézic, Florence; Calvel, Pierre; Helary, Louise; Mahla, Rachid; Esquerré, Diane; Péchoux, Christine; Liuu, Sophie; Boichard, Didier; Slama, Abdelhamid; Vilotte, Jean-Luc
2017-01-01
Neuropathies are neurodegenerative diseases affecting humans and other mammals. Many genetic causes have been identified so far, including mutations of genes encoding proteins involved in mitochondrial dynamics. Recently, the “Turning calves syndrome”, a novel sensorimotor polyneuropathy was described in the French Rouge-des-Prés cattle breed. In the present study, we determined that this hereditary disease resulted from a single nucleotide substitution in SLC25A46, a gene encoding a protein of the mitochondrial carrier family. This mutation caused an apparent damaging amino-acid substitution. To better understand the function of this protein, we knocked out the Slc25a46 gene in a mouse model. This alteration affected not only the nervous system but also altered general metabolism, resulting in premature mortality. Based on optic microscopy examination, electron microscopy and on biochemical, metabolic and proteomic analyses, we showed that the Slc25a46 disruption caused a fusion/fission imbalance and an abnormal mitochondrial architecture that disturbed mitochondrial metabolism. These data extended the range of phenotypes associated with Slc25a46 dysfunction. Moreover, this Slc25a46 knock-out mouse model should be useful to further elucidate the role of SLC25A46 in mitochondrial dynamics. PMID:28376083
Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann
2009-09-01
Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.
Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann
2009-01-01
Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named “Dyc” for “Digit in Y and Carpe” phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over. PMID:19546318
Ponnusamy, Duraisamy; Fitts, Eric C.; Erova, Tatiana E.; Kozlova, Elena V.; Kirtley, Michelle L.; Tiner, Bethany L.; Andersson, Jourdan A.
2015-01-01
The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s). PMID:25754198
Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Erova, Tatiana E; Kozlova, Elena V; Kirtley, Michelle L; Tiner, Bethany L; Andersson, Jourdan A; Chopra, Ashok K
2015-05-01
The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jambaldorj, Jamiyansuren; Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585; Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar
2012-08-24
Highlights: Black-Right-Pointing-Pointer We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). Black-Right-Pointing-Pointer Taf1 mRNA was expressed in most tissues and cell lines. Black-Right-Pointing-Pointer N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. Black-Right-Pointing-Pointer Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1),more » which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.« less
Watkins-Chow, Dawn E.; Cooke, Joanna; Pidsley, Ruth; Edwards, Andrew; Slotkin, Rebecca; Leeds, Karen E.; Mullen, Raymond; Baxter, Laura L.; Campbell, Thomas G.; Salzer, Marion C.; Biondini, Laura; Gibney, Gretchen; Phan Dinh Tuy, Françoise; Chelly, Jamel; Morris, H. Douglas; Riegler, Johannes; Lythgoe, Mark F.; Arkell, Ruth M.; Loreni, Fabrizio; Flint, Jonathan
2013-01-01
The ribosome is an evolutionarily conserved organelle essential for cellular function. Ribosome construction requires assembly of approximately 80 different ribosomal proteins (RPs) and four different species of rRNA. As RPs co-assemble into one multi-subunit complex, mutation of the genes that encode RPs might be expected to give rise to phenocopies, in which the same phenotype is associated with loss-of-function of each individual gene. However, a more complex picture is emerging in which, in addition to a group of shared phenotypes, diverse RP gene-specific phenotypes are observed. Here we report the first two mouse mutations (Rps7Mtu and Rps7Zma) of ribosomal protein S7 (Rps7), a gene that has been implicated in Diamond-Blackfan anemia. Rps7 disruption results in decreased body size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations. These phenotypes are reported in other murine RP mutants and, as demonstrated for some other RP mutations, are ameliorated by Trp53 deficiency. Interestingly, Rps7 mutants have additional overt malformations of the developing central nervous system and deficits in working memory, phenotypes that are not reported in murine or human RP gene mutants. Conversely, Rps7 mouse mutants show no anemia or hyperpigmentation, phenotypes associated with mutation of human RPS7 and other murine RPs, respectively. We provide two novel RP mouse models and expand the repertoire of potential phenotypes that should be examined in RP mutants to further explore the concept of RP gene-specific phenotypes. PMID:23382688
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.H.; Wei, Li-Na; Copeland, N.G.
We have isolated and characterized overlapping genomic clones containing the complete transcribed region of a newly isolated mouse cDNA encoding an orphan receptor expressed specifically in midgestation embryos and adult testis. This gene spans a distance of more than 50 kb and is organized into 13 exons. The transcription initiation site is located at the 158th nucleotide upstream from the translation initiation codon. All the exon/intron junction sequences follow the GT/AG rule. Based upon Northern blot analysis and the size of the transcribed region of the gene, its transcript was determined to be approximately 2.5 kb. Within approximately 500 hpmore » upstream from the transcription initiation site, several immune response regulatory elements were identified but no TATA box was located. This gene was mapped to the distal region of mouse chromosome 10 and its locus has been designated Tr2-11. Immunohistochemical studies show that the Tr2-11 protein is present mainly in advanced germ cell populations of mature testes and that Tr2-11 gene expression is dramatically decreased in vitamin A-depleted animals. 23 refs., 7 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kazuo; Yasunami, Michio; Matsuda, Yoichi
1996-09-01
Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. Then multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in themore » 5{prime}-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf. 29 refs., 5 figs., 1 tab.« less
Suzuki, K; Yasunami, M; Matsuda, Y; Maeda, T; Kobayashi, H; Terasaki, H; Ohkubo, H
1996-09-01
Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. The multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in the 5'-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf.
Deletion of the Mouse Slc30a8 Gene Encoding Zinc Transporter-8 Results in Impaired Insulin Secretion
Pound, Lynley D.; Sarkar, Suparna; Benninger, Richard K. P.; Wang, Yingda; Suwanichkul, Adisak; Shadoan, Melanie K.; Printz, Richard L.; Oeser, James K.; Lee, Catherine E.; Piston, David W.; McGuinness, Owen P.; Hutton, John C.; Powell, David R.; O’Brien, Richard M.
2010-01-01
Synopsis The Slc30a8 gene encodes the islet-specific zinc transporter ZnT-8, which provides zinc for insulin-hexamer formation. Polymorphic variants in amino acid 325 of human ZnT-8 are associated with altered susceptibility to type 2 diabetes and ZnT-8 autoantibody epitope specificity changes in type 1 diabetes. To assess the physiological importance of ZnT-8, mice carrying a Slc30a8 exon 3 deletion were analyzed histologically and phenotyped for energy metabolism and pancreatic hormone secretion. No gross anatomical or behavioral changes or differences in body weight were observed between wild type and ZnT-8 −/− mice and ZnT-8 −/− mouse islets were indistinguishable from wild type in terms of their numbers, size and cellular composition. However, total zinc content was markedly reduced in ZnT-8 −/− mouse islets, as evaluated both by Timm’s histochemical staining of pancreatic sections and direct measurements in isolated islets. Blood glucose levels were unchanged in 16 week old, 6 hr fasted animals of either gender, however, plasma insulin concentrations were reduced in both female (~31%) and male (~47%) ZnT-8 −/− mice. Intraperitoneal glucose tolerance tests demonstrated no impairment in glucose clearance in male ZnT-8 −/− mice but glucose-stimulated insulin secretion from isolated islets was reduced ~33% relative to wild type littermates. In summary, Slc30a8 gene deletion is accompanied by a modest impairment in insulin secretion without major alterations in glucose metabolism. PMID:19450229
López-González, Irene; Viana, Rosa; Sanz, Pascual; Ferrer, Isidre
2017-07-01
Lafora progressive myoclonus epilepsy (Lafora disease, LD) is a fatal rare autosomal recessive neurodegenerative disorder characterized by the accumulation of insoluble ubiquitinated polyglucosan inclusions in the cytoplasm of neurons, which is most commonly associated with mutations in two genes: EPM2A, encoding the glucan phosphatase laforin, and EPM2B, encoding the E3-ubiquitin ligase malin. The present study analyzes possible inflammatory responses in the mouse lines Epm2a -/- (laforin knock-out) and Epm2b -/- (malin knock-out) with disease progression. Increased numbers of reactive astrocytes (expressing the GFAP marker) and microglia (expressing the Iba1 marker) together with increased expression of genes encoding cytokines and mediators of the inflammatory response occur in both mouse lines although with marked genotype differences. C3ar1 and CxCl10 messenger RNAs (mRNAs) are significantly increased in Epm2a -/- mice aged 12 months when compared with age-matched controls, whereas C3ar1, C4b, Ccl4, CxCl10, Il1b, Il6, Tnfα, and Il10ra mRNAs are significantly upregulated in Epm2b -/- at the same age. This is accompanied by increased protein levels of IL1-β, IL6, TNFα, and Cox2 particularly in Epm2b -/- mice. The severity of inflammatory changes correlates with more severe clinical symptoms previously described in Epm2b -/- mice. These findings show for the first time increased innate inflammatory responses in a neurodegenerative disease with polyglucosan intraneuronal deposits which increase with disease progression, in a way similar to what is seen in neurodegenerative diseases with abnormal protein aggregates. These findings also point to the possibility of using anti-inflammatory agents to mitigate the degenerative process in LD.
Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seong-Su; Tompkins, Van S.; Son, Dong-Ju
2013-07-12
Highlights: •Mouse model of human Burkitt lymphoma revealed cancer inhibition by PL. •Treatment with PL led to apoptosis of malignant but not normal B cells. •PL inhibited LMP1–NF-κB–Myc-dependent target genes including p21-encoding Cdkn1a. •PL holds promise for new interventions approaches to hematologic malignancies. -- Abstract: Piperlongumine (PL), isolated from the fruit of Long pepper, Piper longum, is a cancer-inhibiting compound that selectively kills tumor cells while sparing their normal counterparts. Here we evaluated the efficacy with which PL suppresses malignant B cells derived from a newly developed, double-transgenic mouse model of human endemic Burkitt lymphoma (BL), designated mCD40-LMP1/iMyc{sup Eμ}. PLmore » inhibited tumor cell proliferation in a concentration-dependent manner and induced apoptosis of neoplastic but not normal B cells. Treatment with PL resulted in downregulation of EBV-encoded LMP1, cellular Myc, constitutive NF-κB activity, and a host of LMP1-Myc-NF-κB-regulated target genes including Aurka, Bcat1, Bub1b, Ccnb1, Chek1, Fancd2, Tfrc and Xrcc6. Of note, p21{sup Cip1}-encoding Cdkn1a was suppressed independent of changes in Trp53 mRNA levels and p53 DNA-binding activity. Considering the central role of the LMP1–NF-κB–Myc axis in B-lineage neoplasia, these findings further our understanding of the mechanisms by which PL inhibits B-lymphoma and provide a preclinical rationale for the inclusion of PL in new interventions in blood cancers.« less
Latent Herpes Simplex Virus Infection of Sensory Neurons Alters Neuronal Gene Expression
Kramer, Martha F.; Cook, W. James; Roth, Frederick P.; Zhu, Jia; Holman, Holly; Knipe, David M.; Coen, Donald M.
2003-01-01
The persistence of herpes simplex virus (HSV) and the diseases that it causes in the human population can be attributed to the maintenance of a latent infection within neurons in sensory ganglia. Little is known about the effects of latent infection on the host neuron. We have addressed the question of whether latent HSV infection affects neuronal gene expression by using microarray transcript profiling of host gene expression in ganglia from latently infected versus mock-infected mouse trigeminal ganglia. 33P-labeled cDNA probes from pooled ganglia harvested at 30 days postinfection or post-mock infection were hybridized to nylon arrays printed with 2,556 mouse genes. Signal intensities were acquired by phosphorimager. Mean intensities (n = 4 replicates in each of three independent experiments) of signals from mock-infected versus latently infected ganglia were compared by using a variant of Student's t test. We identified significant changes in the expression of mouse neuronal genes, including several with roles in gene expression, such as the Clk2 gene, and neurotransmission, such as genes encoding potassium voltage-gated channels and a muscarinic acetylcholine receptor. We confirmed the neuronal localization of some of these transcripts by using in situ hybridization. To validate the microarray results, we performed real-time reverse transcriptase PCR analyses for a selection of the genes. These studies demonstrate that latent HSV infection can alter neuronal gene expression and might provide a new mechanism for how persistent viral infection can cause chronic disease. PMID:12915567
Targeting vector construction through recombineering.
Malureanu, Liviu A
2011-01-01
Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.
Mitochondrial transcription: Lessons from mouse models
Peralta, Susana; Wang, Xiao; Moraes, Carlos T.
2012-01-01
Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ∼ 16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. PMID:22120174
Dixon, J; Hovanes, K; Shiang, R; Dixon, M J
1997-05-01
The gene mutated in Treacher Collins syndrome, an autosomal dominant disorder of facial development, has recently been cloned. While the function of the predicted protein, Treacle, is unknown, it has been shown to share a number of features with the highly phosphorylated nucleolar phosphoproteins, which play a role in nucleolar-cytoplasmic transport. In the current study, the murine homologue of the Treacher Collins syndrome gene has been isolated and shown to encode a low complexity, serine/alanine-rich protein of 133 kDa. Interspecies comparison indicates that the proteins display 61.5% identity, with the level of conservation being greatest in the regions of acidic/basic amino acid repeats and nuclear localization signals. These features are shared with the nucleolar phosphoproteins. Confirmation that the gene isolated in the current study is orthologous with the Treacher Collins syndrome gene was provided by the demonstration that it mapped to central mouse chromosome 18 in a conserved syntenic region with human chromosome 5q21-q33. Expression analysis in the mouse indicated that the gene was expressed in a wide variety of embryonic and adult tissues. Peak levels of expression in the developing embryo were observed at the edges of the neural folds immediately prior to fusion, and also in the developing branchial arches at the times of critical morphogenetic events. These observations support a role for the gene in the development of the craniofacial complex and provide further evidence that the gene encodes a protein which may be involved in nucleolar-cytoplasmic transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yongyan; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi; Ai, Zhiying
2013-10-15
Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway bymore » stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.« less
Wells, Julie; Rivera, Miguel N; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A
2010-07-01
WT1 encodes a tumor suppressor first identified by its inactivation in Wilms' Tumor. Although one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three-amino acid (KTS) insertion. Using cells that conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning analysis to identify candidate WT1(+KTS)-regulated promoters. We identified the planar cell polarity gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33-nucleotide region within the Scribble promoter in mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Ying; Adachi, Hiroaki, E-mail: hadachi-ns@umin.org; Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555
Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with anmore » expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA. - Highlights: • HGF overexpression ameliorates the motor phenotypes of the SBMA mouse model. • HGF overexpression induces Akt phosphorylation in the SBMA mouse model. • This is the first report of combination therapy in a mouse model of polyQ diseases.« less
Molecular cloning, structure, and chromosomal localization of the mouse LIM/homeobox gene Lhx5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertuzzi, S.; Sheng, Hui Z.; Westphal, H.
1996-09-01
Lhx5, the mouse ortholog of the Xenopus Xlim-5, is a LIM/homeobox gene expressed in the central nervous system during both embryonic development and adulthood. During development its domain of expression is mainly localized at the most anterior portion of the neural tube, and it precedes the morphological differentiation of the forebrain; for this reason we believe that Lhx5 could play an important role in forebrain patterning. Here we present the structural organization and the chromosomal localization of the Lhx5 gene. The gene is composed of five exons spanning more than 10 kb of genomic sequence. The first and second LIMmore » domains are encoded by the first and second exon, while the codons of the homeobox are split between the third and the fourth exons. The structure of Lhx5 is similar to that of other LIM/homeodomain proteins, Lxh1/lim1 and Lhx3/lim3, but differs from that of other LIM genes, such as mec3 and LMO1/Rbtn1, in which the codons for the LIM domains are interrupted by introns. We have mapped Lhx5 to the central region of mouse chromosome 5. 38 refs., 4 figs.« less
Identification and characterization of an SPO11 homolog in the mouse.
Metzler-Guillemain, C; de Massy, B
2000-01-01
The SPO11/TOPVIA family includes proteins from archaebacteria and eukaryotes. The protein member from the archaebacterium Sulfulobus shibatae is the catalytic subunit of TopoVI DNA topoisomerase. In Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster, SPO11 is required for meiotic recombination, suggesting a conserved mechanism for the initiation step of this process. Indeed, S. cerevisiae SPO11 has been shown to be directly involved in the formation of meiotic DNA double-strand breaks that initiate meiotic recombination. Here, we report the identification of a Mus musculus Spo11 cDNA, which encodes a protein closely related to all members of the SPO11/TOPVIA family. cDNAs resulting from alternative splicing were detected, suggesting that there are potential variants of the mouse SPO11 protein. By RNA-blotting analysis, expression of the mouse Spo11 gene was detected only in the testis, in agreement with its predicted function in the initiation of meiotic recombination. We mapped the mouse Spo11 gene to chromosome 2, band H2-H4.
Rett syndrome treatment in mouse models: searching for effective targets and strategies.
Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni
2013-05-01
Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births; it represents the second most common cause of intellectual disability in females. Mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) have been identified as clear etiological factors in more than 90% of classical RTT cases. Whereas the mechanisms leading to the severe, progressive and specific neurological dysfunctions when this gene is mutated still remain to be elucidated, a series of different mouse models have been generated, bearing different Mecp2 mutation. Neurobehavioural analysis in these mouse lines have been carried out and phenotyping analysis can be now utilised to preclinically evaluate the effects of potential RTT treatments. This review summarizes the different results achieved in this research field taking into account different key targets identified to ameliorate RTT phenotype in mouse models, including those not directly downstream of MeCP2 and those limited to the early phases of postnatal development. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre–B ALL
Aghajanirefah, Ali; McLaughlin, Jami; Cheng, Donghui; Geng, Huimin; Eggesbø, Linn M.; Smale, Stephen T.; Müschen, Markus
2017-01-01
Inactivation of the tumor suppressor gene encoding the transcriptional regulator Ikaros (IKZF1) is a hallmark of BCR-ABL1+ precursor B cell acute lymphoblastic leukemia (pre–B ALL). However, the mechanisms by which Ikaros functions as a tumor suppressor in pre–B ALL remain poorly understood. Here, we analyzed a mouse model of BCR-ABL1+ pre–B ALL together with a new model of inducible expression of wild-type Ikaros in IKZF1 mutant human BCR-ABL1+ pre–B ALL. We performed integrated genome-wide chromatin and expression analyses and identified Ikaros target genes in mouse and human BCR-ABL1+ pre–B ALL, revealing novel conserved gene pathways associated with Ikaros tumor suppressor function. Notably, genetic depletion of different Ikaros targets, including CTNND1 and the early hematopoietic cell surface marker CD34, resulted in reduced leukemic growth. Our results suggest that Ikaros mediates tumor suppressor function by enforcing proper developmental stage–specific expression of multiple genes through chromatin compaction at its target genes. PMID:28190001
Molecular dissection of Norrie disease.
Berger, W
1998-01-01
Norrie disease (ND) is a severe form of congenital blindness accompanied by mental retardation and/or deafness in at least one third of the patients. This article summarizes advances in the molecular genetic analysis of this disease during the last 13 years, including mapping and cloning of the human gene and the generation and characterization of a mouse model. Genetic linkage studies and physical mapping strategies have assigned the ND locus to the proximal short arm of the human X chromosome. The identification of chromosomal rearrangements in several patients, such as microdeletions, enabled the isolation of the ND gene by a positional cloning approach. Numerous point mutations in this gene have been identified in three distinct clinical entities: (1) ND, (2) familial and sporadic exudative vitreoretinopathy, and (3) retinopathy of prematurity. The gene encodes a relatively small protein, consisting of 133 amino acids. The function of the gene product is yet unknown, although homologies with known proteins and molecular modelling data suggest a role in the regulation of cell interaction or differentiation processes. A mouse model has been generated to shed more light on early pathogenic events involved in ND and allelic disorders. The mouse homologous protein is highly identical (94%) to the human polypeptide. The gene is expressed in the neuronal layers of the mouse retina, the cerebellum and olfactory epithelium. Mutant mice show snowflake-like opacities within the vitreous, dysgenesis of the ganglion cell layer and occasionally degeneration of photoreceptor cells. The mouse phenotype does not include phthisis bulbi and, overall, resembles a mild form of ND. Electrophysiological studies revealed a severely altered electroretinogram b-wave. These results suggest a primary defect in the inner neuronal layers of the retina. Defects in the vitreous and photoreceptor cell layer are most likely secondary effects. Further histological, functional and molecular studies of the mouse model are needed to provide additional information on disease associated pathways.
Salido, Eduardo C.; Li, Xiao M.; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J.; Roy-Chowdhury, Jayanta
2006-01-01
Mutations in the alanine–glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt−/− mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443
A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease.
Huang, Kuan-Lin; Marcora, Edoardo; Pimenova, Anna A; Di Narzo, Antonio F; Kapoor, Manav; Jin, Sheng Chih; Harari, Oscar; Bertelsen, Sarah; Fairfax, Benjamin P; Czajkowski, Jake; Chouraki, Vincent; Grenier-Boley, Benjamin; Bellenguez, Céline; Deming, Yuetiva; McKenzie, Andrew; Raj, Towfique; Renton, Alan E; Budde, John; Smith, Albert; Fitzpatrick, Annette; Bis, Joshua C; DeStefano, Anita; Adams, Hieab H H; Ikram, M Arfan; van der Lee, Sven; Del-Aguila, Jorge L; Fernandez, Maria Victoria; Ibañez, Laura; Sims, Rebecca; Escott-Price, Valentina; Mayeux, Richard; Haines, Jonathan L; Farrer, Lindsay A; Pericak-Vance, Margaret A; Lambert, Jean Charles; van Duijn, Cornelia; Launer, Lenore; Seshadri, Sudha; Williams, Julie; Amouyel, Philippe; Schellenberg, Gerard D; Zhang, Bin; Borecki, Ingrid; Kauwe, John S K; Cruchaga, Carlos; Hao, Ke; Goate, Alison M
2017-08-01
A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function.
2008-01-01
Background The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) α, β and γ subunits. Further investigation of 14 α-like (Abpa) and 13 β- or γ-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Results Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. Conclusion We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification. PMID:18269759
Laukaitis, Christina M; Heger, Andreas; Blakley, Tyler D; Munclinger, Pavel; Ponting, Chris P; Karn, Robert C
2008-02-12
The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) alpha, beta and gamma subunits. Further investigation of 14 alpha-like (Abpa) and 13 beta- or gamma-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification.
Gonzales, Bianca; Yang, Hushan; Henning, Dale; Valdez, Benigno C
2005-10-10
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the TCOF1 gene, which encodes the nucleolar phosphoprotein treacle. We previously reported a function for mammalian treacle in ribosomal DNA gene transcription by its interaction with upstream binding factor. As an initial step in the development of a TCS model for frog the cDNA that encodes the Xenopus laevis treacle was cloned. Although the derived amino acid sequence shows a poor homology with its mammalian orthologues, Xenopus treacle has 11 highly homologous direct repeats near the center of the protein molecule similar to those present in its human, dog and mouse orthologues. Comparison of their amino acid compositions indicates conservation of predominant specific amino acid residues. Antisense-mediated down-regulation of treacle expression in X. laevis oocytes resulted in inhibition of rDNA gene transcription. The results suggest evolutionary conservation of the function of treacle in ribosomal RNA biogenesis in higher eukaryotes.
Haney, Matthew J; Zhao, Yuling; Harrison, Emily B; Mahajan, Vivek; Ahmed, Shaheen; He, Zhijian; Suresh, Poornima; Hingtgen, Shawn D; Klyachko, Natalia L; Mosley, R Lee; Gendelman, Howard E; Kabanov, Alexander V; Batrakova, Elena V
2013-01-01
The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA) encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD). This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.
Haney, Matthew J.; Zhao, Yuling; Harrison, Emily B.; Mahajan, Vivek; Ahmed, Shaheen; He, Zhijian; Suresh, Poornima; Hingtgen, Shawn D.; Klyachko, Natalia L.; Mosley, R. Lee; Gendelman, Howard E.; Kabanov, Alexander V.; Batrakova, Elena V.
2013-01-01
The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA) encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD). This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders. PMID:23620794
The mammalian homologue of mago nashi encodes a serum-inducible protein.
Zhao, X F; Colaizzo-Anas, T; Nowak, N J; Shows, T B; Elliott, R W; Aplan, P D
1998-01-15
The products of at least 11 maternal effect genes have been shown to be essential for proper germ plasm assembly in Drosophila melanogaster embryos. Here we report the isolation and characterization of the mammalian counterpart for one of these genes (named MAGOH for mago nashi homologue). The predicted amino acid sequence of mouse and human MAGOH are completely identical; MAGOH homologues from the nematode Caenorhabditis elegans and rice grain Oryza sativa also show a remarkable degree of amino acid conservation. MAGOH was mapped to chromosome 1p33-p34 in the human and a syntenic region of chromosome 4 in the mouse. Of note, MAGOH mRNA expression is not limited to germ plasm, but is expressed ubiquitously in adult tissues and can be induced by serum stimulation of quiescent fibroblasts.
Devault, A; Gros, P
1990-01-01
We report the cloning and functional analysis of a complete clone for the third member of the mouse mdr gene family, mdr3. Nucleotide and predicted amino acid sequence analyses showed that the three mouse mdr genes encode highly homologous membrane glycoproteins, which share the same length (1,276 residues), the same predicted functional domains, and overall structural arrangement. Regions of divergence among the three proteins are concentrated in discrete segments of the predicted polypeptides. Sequence comparison indicated that the three mouse mdr genes were created from a common ancestor by two independent gene duplication events, the most recent one producing mdr1 and mdr3. When transfected and overexpressed in otherwise drug-sensitive cells, the mdr3 gene, like mdr1 and unlike mdr2, conferred multidrug resistance to these cells. In independently derived transfected cell clones expressing similar amounts of either MDR1 or MDR3 protein, the drug resistance profile conferred by mdr3 was distinct from that conferred by mdr1. Cells transfected with and expressing MDR1 showed a marked 7- to 10-fold preferential resistance to colchicine and Adriamycin compared with cells expressing equivalent amounts of MDR3. Conversely, cells transfected with and expressing MDR3 showed a two- to threefold preferential resistance to actinomycin D over their cellular counterpart expressing MDR1. These results suggest that MDR1 and MDR3 are membrane-associated efflux pumps which, in multidrug-resistant cells and perhaps normal tissues, have overlapping but distinct substrate specificities. Images PMID:1969610
Evolution and functional divergence of NLRP genes in mammalian reproductive systems
2009-01-01
Background NLRPs (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing Proteins) are members of NLR (Nod-like receptors) protein family. Recent researches have shown that NLRP genes play important roles in both mammalian innate immune system and reproductive system. Several of NLRP genes were shown to be specifically expressed in the oocyte in mammals. The aim of the present work was to study how these genes evolved and diverged after their duplication, as well as whether natural selection played a role during their evolution. Results By using in silico methods, we have evaluated the evolution and functional divergence of NLRP genes, in particular of mouse reproduction-related Nlrp genes. We found that (1) major NLRP genes have been duplicated before the divergence of mammals, with certain lineage-specific duplications in primates (NLRP7 and 11) and in rodents (Nlrp1, 4 and 9 duplicates); (2) tandem duplication events gave rise to a mammalian reproduction-related NLRP cluster including NLRP2, 4, 5, 7, 8, 9, 11, 13 and 14 genes; (3) the function of mammalian oocyte-specific NLRP genes (NLRP4, 5, 9 and 14) might have diverged during gene evolution; (4) recent segmental duplications concerning Nlrp4 copies and vomeronasal 1 receptor encoding genes (V1r) have been undertaken in the mouse; and (5) duplicates of Nlrp4 and 9 in the mouse might have been subjected to adaptive evolution. Conclusion In conclusion, this study brings us novel information on the evolution of mammalian reproduction-related NLRPs. On the one hand, NLRP genes duplicated and functionally diversified in mammalian reproductive systems (such as NLRP4, 5, 9 and 14). On the other hand, during evolution, different lineages adapted to develop their own NLRP genes, particularly in reproductive function (such as the specific expansion of Nlrp4 and Nlrp9 in the mouse). PMID:19682372
Shapiro, D N; Sublett, J E; Li, B; Valentine, M B; Morris, S W; Noll, M
1993-09-01
The murine Pax-7 gene and the cognate human gene, formerly designated HuP1, are members of the multigene paired-box-containing class of developmental regulatory genes first identified in Drosophila. By analysis of somatic cell hybrids segregating human chromosomes, the gene encoding PAX7 was localized to human chromosome 1. Fluorescence in situ hybridization confirmed this assignment and allowed mapping of the gene to the terminal region of the short arm (1p36) of the chromosome. Additionally, these results confirm the extensive homology between human chromosome 1p and the distal segment of mouse chromosome 4, extending from bands C5 through E2.
Yu, Xing-Jiang; Yi, Zhaohong; Gao, Zheng; Qin, Dandan; Zhai, Yanhua; Chen, Xue; Ou-Yang, Yingchun; Wang, Zhen-Bo; Zheng, Ping; Zhu, Min-Sheng; Wang, Haibin; Sun, Qing-Yuan; Dean, Jurrien; Li, Lei
2014-09-11
Maternal effect genes play critical roles in early embryogenesis of model organisms where they have been intensively investigated. However, their molecular function in mammals remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6). Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is necessary for cleavage beyond the two-cell stage of development. We document that the SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central position of the spindle and ensures symmetric division of mouse zygotes. We further demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric division of the zygote in early mouse development.
Kerr, Bredford; Silva, Pamela A.; Walz, Katherina; Young, Juan I.
2010-01-01
Background Rett syndrome (RTT) is an X-linked postnatal neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2) and one of the leading causes of mental retardation in females. RTT is characterized by psychomotor retardation, purposeless hand movements, autistic-like behavior and abnormal gait. We studied the effects of environmental enrichment (EE) on the phenotypic manifestations of a RTT mouse model that lacks MeCP2 (Mecp2 −/y). Principal Findings We found that EE delayed and attenuated some neurological alterations presented by Mecp2 −/y mice and prevented the development of motor discoordination and anxiety-related abnormalities. To define the molecular correlate of this beneficial effect of EE, we analyzed the expression of several synaptic marker genes whose expression is increased by EE in several mouse models. Conclusions/Significance We found that EE induced downregulation of several synaptic markers, suggesting that the partial prevention of RTT-associated phenotypes is achieved through a non-conventional transcriptional program. PMID:20634955
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved
Long, Hannah K.; King, Hamish W.; Patient, Roger K.; Odom, Duncan T.; Klose, Robert J.
2016-01-01
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945
Greenwood, I A; Yeung, S Y; Tribe, R M; Ohya, S
2009-01-01
There is a growing appreciation that ion channels encoded by the ether-à-go-go-related gene family have a functional impact in smooth muscle in addition to their accepted role in cardiac myocytes and neurones. This study aimed to assess the expression of ERG1–3 (KCNH1–3) genes in the murine myometrium (smooth muscle layer of the uterus) and determine the functional impact of the ion channels encoded by these genes in pregnant and non-pregnant animals. Quantitative RT-PCR did not detect message for ERG2 and 3 in whole myometrial tissue extracts. In contrast, message for two isoforms of mERG1 were readily detected with mERG1a more abundant than mERG1b. In isometric tension studies of non-pregnant myometrium, the ERG channel blockers dofetilide (1 μm), E4031 (1 μm) and Be-KM1 (100 nm) increased spontaneous contractility and ERG activators (PD118057 and NS1643) inhibited spontaneous contractility. In contrast, neither ERG blockade nor activation had any effect on the inherent contractility in myometrium from late pregnant (19 days gestation) animals. Moreover, dofetilide-sensitive K+ currents with distinctive ‘hooked’ kinetics were considerably smaller in uterine myocytes from late pregnant compared to non-pregnant animals. Expression of mERG1 isoforms did not alter throughout gestation or upon delivery, but the expression of genes encoding auxillary subunits (KCNE) were up-regulated considerably. This study provides the first evidence for a regulation of ERG-encoded K+ channels as a precursor to late pregnancy physiological activity. PMID:19332483
Meléndez-Hernández, Mayra Gisela; Barrios, María Luisa Labra; Orozco, Esther; Luna-Arias, Juan Pedro
2008-12-23
Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the conserved nature of V-ATPase in this parasite.
ZHAI, YONGZHEN; ZHOU, YAN; LI, XIMEI; FENG, GUOHE
2015-01-01
Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM-CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan-pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF. PMID:25738258
Zhai, Yongzhen; Zhou, Yan; Li, Ximei; Feng, Guohe
2015-07-01
Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM‑CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan‑pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF.
Genome editing reveals a role for OCT4 in human embryogenesis.
Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K
2017-10-05
Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.
Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex
Rizzo, Valerio; Touzani, Khalid; Raveendra, Bindu L.; Swarnkar, Supriya; Lora, Joan; Kadakkuzha, Beena M.; Liu, Xin-An; Zhang, Chao; Betel, Doron; Stackman, Robert W.; Puthanveettil, Sathyanarayanan V.
2016-01-01
Background Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory. Methods Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse. Differential gene expression in mPFC was identified by polyribosome profiling (n = 18). The role of new protein synthesis in mPFC was determined by focal inhibition of protein synthesis (n = 131) and by intra-prelimbic cortex manipulation (n = 56) of Homer 3, a candidate identified from polyribosome profiling. Results We identified several mRNAs that are differentially and temporally recruited to polyribosomes in the mPFC following CFC. Inhibition of protein synthesis in the prelimbic (PL), but not in the anterior cingulate cortex (ACC) region of the mPFC immediately after CFC disrupted encoding of contextual fear memory. Intriguingly, inhibition of new protein synthesis in the PL 6 hours after CFC did not impair encoding. Furthermore, expression of Homer 3, an mRNA enriched in polyribosomes following CFC, in the PL constrained encoding of contextual fear memory. Conclusions Our studies identify several molecular substrates of new protein synthesis in the mPFC and establish that encoding of contextual fear memories require new protein synthesis in PL subregion of mPFC. PMID:28503670
Huang, Lin; Lange, Miles D.; Zhang, Zhixin
2014-01-01
VH replacement occurs through RAG-mediated secondary recombination between a rearranged VH gene and an upstream unrearranged VH gene. Due to the location of the cryptic recombination signal sequence (cRSS, TACTGTG) at the 3′ end of VH gene coding region, a short stretch of nucleotides from the previous rearranged VH gene can be retained in the newly formed VH–DH junction as a “footprint” of VH replacement. Such footprints can be used as markers to identify Ig heavy chain (IgH) genes potentially generated through VH replacement. To explore the contribution of VH replacement products to the antibody repertoire, we developed a Java-based computer program, VH replacement footprint analyzer-I (VHRFA-I), to analyze published or newly obtained IgH genes from human or mouse. The VHRFA-1 program has multiple functional modules: it first uses service provided by the IMGT/V-QUEST program to assign potential VH, DH, and JH germline genes; then, it searches for VH replacement footprint motifs within the VH–DH junction (N1) regions of IgH gene sequences to identify potential VH replacement products; it can also analyze the frequencies of VH replacement products in correlation with publications, keywords, or VH, DH, and JH gene usages, and mutation status; it can further analyze the amino acid usages encoded by the identified VH replacement footprints. In summary, this program provides a useful computation tool for exploring the biological significance of VH replacement products in human and mouse. PMID:24575092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornstein, P.; Shingu, T.; LaMarca, M.E.
1994-09-01
We have identified a new murine gene, termed gene X, that spans the 6 kb interval separating GC from TSP3. Mutations in GC result in Gaucher disease, the most common lysosomal storage disorder. Gene X and GC are transcribed convergently; their major polyadenylation sites are separated by only 431 bp. On the other hand, gene X and TSP3 are transcribed divergently and share a bidirectional promoter. The cDNA for gene X encodes a 317 amino acid protein, without either a signal sequence or N-linked glycosylation. Gene X is expressed ubiquitously in tissues of the young adult mouse, but no closemore » homologues have been found in the DNA or protein data bases. A targeted point mutation was introduced into the GC gene (Asn to Ser in exon 9) by homologous recombination in embryonic stem cells to establish a mouse model for a mild form of Gaucher disease. In the process, a PGK-neomycin gene cassette was inserted in the 3{prime} flanking region of GC as a selectable marker, in a sequence that was subsequently identified as exon 8 of gene X. Mice homozygous for the combined mutation die early in gestation. Since the amino acid mutation in humans is associated with milder type 1 Gaucher disease, we conclude that gene X is essential for embryonic development in mice. The locations of human and murine GC, gene X and TSP3 are similar, but the human genome includes a duplication that has produced GC and gene X pseudogenes. We are currently studying the possible functional interactions of GC, gene X and TSP3 in both mice and humans.« less
A role for tachykinins in female mouse and rat reproductive function.
Pintado, C Oscar; Pinto, Francisco M; Pennefather, Jocelyn N; Hidalgo, Agustin; Baamonde, Ana; Sanchez, Teresa; Candenas, M Luz
2003-09-01
Tachykinins may be involved in reproduction. A reverse transcription-polymerase chain reaction assay was used to analyze the expression of tachykinins and tachykinin receptors in different types of reproductive cells from mice. The preprotachykinin (PPT) genes, PPT-A, PPT-B and PPT-C, that encode substance P/neurokinin A, neurokinin B, and hemokinin-1, respectively, and the genes that encode the tachykinin NK1, NK2, and NK3 receptors were all expressed, at different levels, in the uterus of superovulated, unfertilized mice. The mRNA of neprilysin (NEP), the main enzyme involved in tachykinin metabolism, was also expressed in the uterus. Isolated cumulus granulosa cells expressed PPT-A, PPT-B, PPT-C, and NEP and low levels of the tachykinin NK1 and NK2 receptors. Mouse oocytes expressed PPT-A and -B mRNA transcripts. A low expression of the three tachykinin receptors was observed but PPT-C and NEP were undetectable. Two- and 8- to 16-cell mouse embryos expressed only a low-abundance transcript corresponding to the NK1 receptor. However, the mRNAs of PPT-B, PPT-C and NEP appeared in blastocyst-stage embryos. A low-abundance transcript corresponding to the NK2 receptor was the only target gene detected in mice sperm. Female mice or rats treated neonatally with capsaicin showed a reduced fertility. A reduction in litter size was observed in female rats treated in vivo with the tachykinin NK3 receptor antagonist SR 142801. These data show that tachykinins of both neuronal and nonneuronal origin are differentially expressed in various types of reproductive cells and may play a role in female reproductive function.
Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.
2012-01-01
Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411
de Hoon, B; Splinter, Erik; Eussen, B; Douben, J C W; Rentmeester, E; van de Heijning, M; Laven, J S E; de Klein, J E M M; Liebelt, J; Gribnau, J
2017-11-05
X chromosome inactivation (XCI) is a mechanism specifically initiated in female cells to silence one X chromosome, thereby equalizing the dose of X-linked gene products between male and female cells. XCI is regulated by a locus on the X chromosome termed the X-inactivation centre (XIC). Located within the XIC is XIST , which acts as a master regulator of XCI. During XCI, XIST is upregulated on the inactive X chromosome and chromosome-wide cis spreading of XIST leads to inactivation. In mouse, the Xic comprises Xist and all cis -regulatory elements and genes involved in Xist regulation. The activity of the XIC is regulated by trans -acting factors located elsewhere in the genome: X-encoded XCI activators positively regulating XCI, and autosomally encoded XCI inhibitors providing the threshold for XCI initiation. Whether human XCI is regulated through a similar mechanism, involving trans -regulatory factors acting on the XIC has remained elusive so far. Here, we describe a female individual with ovarian dysgenesis and a small X chromosomal deletion of the XIC. SNP-array and targeted locus amplification (TLA) analysis defined the deletion to a 1.28 megabase region, including XIST and all elements and genes that perform cis -regulatory functions in mouse XCI. Cells carrying this deletion still initiate XCI on the unaffected X chromosome, indicating that XCI can be initiated in the presence of only one XIC. Our results indicate that the trans -acting factors required for XCI initiation are located outside the deletion, providing evidence that the regulatory mechanisms of XCI are conserved between mouse and human.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Authors.
Ito, A; Kataoka, T R; Kim, D K; Koma , Y; Lee, Y M; Kitamura, Y
2001-04-01
The mouse mi locus encodes a basic-helix-loop-helix-leucine zipper-type transcription factor, microphthalmia transcription factor (MITF). Mice of mi/mi genotype express a mutant form of MITF (mi-MITF), whereas mice of tg/tg genotype have a transgene in the 5' flanking region of the mi gene and do not express MITF. Although the mi/mi mouse is deficient in natural killer (NK) activity, it was found that the tg/tg mouse was normal in this respect. To know the cause, spleen cells of both genotypes were compared. Although the proportion of spleen cells expressing an NK cell marker, NK1.1, was comparable in both mice, the proportion of large granular lymphocytes decreased only in mi/mi mice. The difference between mi/mi and tg/tg mice was reproducible in the culture supplemented with interleukin-2. Moreover, the perforin gene expression was reduced in mi/mi-cultured spleen cells. Wild-type (+) MITF transactivated, but mi-MITF suppressed, the perforin gene promoter through the NF-P motif, a strong cis-acting element. However, neither +-MITF nor mi-MITF bound the NF-P motif. Instead, 2 nuclear factors that bound the NF-P motif were retained in the cytoplasm of mi/mi-cultured spleen cells. In addition, overexpression of mi-MITF resulted in cytoplasmic retention of the 2 NF-P motif-binding factors in cytotoxic T lymphocytes. The presence of mi-MITF rather than the absence of +-MITF appeared to lead to poor transactivation of the NF-P motif by intercepting NF-P motif-binding factors. This inhibitory effect of mi-MITF may cause the deficient cytotoxicity of NK cells in mi/mi mice. (Blood. 2001;97:2075-2083)
Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma
2016-01-01
Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies.
van de Vrugt, H J; Cheng, N C; de Vries, Y; Rooimans, M A; de Groot, J; Scheper, R J; Zhi, Y; Hoatlin, M E; Joenje, H; Arwert, F
2000-04-01
Fanconi anemia (FA) is an autosomal recessive disorder in humans characterized by bone marrow failure, cancer predisposition, and cellular hypersensitivity to cross-linking agents such as mitomycin C and diepoxybutane. FA genes display a caretaker function essential for maintenance of genomic integrity. We have cloned the murine homolog of FANCA, the gene mutated in the major FA complementation group (FA-A). The full-length mouse Fanca cDNA consists of 4503 bp and encodes a protein with a predicted molecular weight of 161 kDa. The deduced Fanca mouse protein shares 81% amino acid sequence similarity and 66% identity with the human protein. The nuclear localization signal and partial leucine zipper consensus motifs found in the human FANCA protein were also present in the murine homolog. In spite of the species difference, the murine Fanca cDNA was capable of correcting the cross-linker sensitive phenotype of human FA-A cells, suggesting functional conservation. Based on Northern as well as Western blots, Fanca was mainly expressed in lymphoid tissues, testis, and ovary. This expression pattern correlates with some of the clinical symptoms observed in FA patients. The availability of the murine Fanca cDNA now allows the gene to be studied in experimental mouse models.
Peromyscus leucopus mouse brain transcriptome response to Powassan virus infection.
Mlera, Luwanika; Meade-White, Kimberly; Dahlstrom, Eric; Baur, Rachel; Kanakabandi, Kishore; Virtaneva, Kimmo; Porcella, Stephen F; Bloom, Marshall E
2018-02-01
Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.
Molecular cloning and expression of the CRISP family of proteins in the boar.
Vadnais, Melissa L; Foster, Douglas N; Roberts, Kenneth P
2008-12-01
The family of mammalian cysteine-rich secretory proteins (CRISP) have been well characterized in the rat, mouse, and human. Here we report the molecular cloning and expression analysis of CRISP1, CRISP2, and CRISP3 in the boar. A partial sequence published in the National Center for Biotechnology Information (NCBI) database was used to derive the full-length sequences for CRISP1 and CRISP2 using rapid amplification of cDNA ends. RT-PCR confirmed the expression of these mRNAs in the boar reproductive tract, and real time RT-PCR showed CRISP1 to be highly expressed throughout the epididymis, with CRISP2 highly expressed in the testis. A search of the porcine genomic sequence in the NCBI database identified a BAC (CH242-199E6) encoding the CRISP1 gene. This BAC is derived from porcine Chromosome 7 and is syntenic with the regions of the mouse, rat, and human genomes encoding the CRISP gene family. This BAC was found to encode a third CRISP protein with a predicted amino acid sequence of high similarity to human CRISP3. Using RT-PCR we show that CRISP3 expression in the boar reproductive tract is confined to the prostate. Recombinant porcine (rp) CRISP2 protein was produced and purified. When incubated with capacitated boar sperm, rpCRISP2 induced an acrosome reaction, consistent with its demonstrated ability to alter the activity of calcium channels.
The pathophysiology of mitochondrial disease as modeled in the mouse.
Wallace, Douglas C; Fan, Weiwei
2009-08-01
It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.
Expression of Olfactory Signaling Genes in the Eye
Velmeshev, Dmitry; Faghihi, Mohammad; Shestopalov, Valery I.; Slepak, Vladlen Z.
2014-01-01
Purpose To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. Methods Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. Results We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. Conclusions Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment. PMID:24789354
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginns, E.I.; Winfield, S.; Sidransky, E.
1994-09-01
The human GC locus on chromosome 1q21 encompasses a 7 kb functional gene encoding the enzyme deficient in Gaucher disease, and a highly homologous sequence 16 Kb downstream that has the properties of a pseudogene. A novel gene, gene X, spanning the 6 kb region between the pseudogene and TSP3 has been identified and characterized in the mouse, and appears to be critical for normal embryonic development. As in the mouse, the human gene X is located 5{prime} to the TSP3 gene and two genes are transcribed divergently from a bidirectional promoter; the direction of transcription of gene X andmore » GC is convergent. However, in the human, gene X and GC are separated by gene X and GC pseudogenes that are the consequence of a gene duplication. The gene X pseudogene lacks the first exon and part of the second exon of the functional gene and may not be transcribed. Northern blot analyses indicate that gene X is transcribed in both normal individuals and in patients with Gaucher disease, but the function of this gene is still unknown. The possibility that mutations in gene X could account for some of the diversity of symptoms encountered in individuals with the more atypical presentations of Gaucher disease is under investigation.« less
Distinct cerebellar foliation anomalies in a CHD7 haploinsufficient mouse model of CHARGE syndrome
Whittaker, Danielle E.; Kasah, Sahrunizam; Donovan, Alex P. A.; Ellegood, Jacob; Riegman, Kimberley L. H.; Volk, Holger A.; McGonnell, Imelda; Lerch, Jason P.
2017-01-01
Mutations in the gene encoding the ATP dependent chromatin‐remodeling factor, CHD7 are the major cause of CHARGE (Coloboma, Heart defects, Atresia of the choanae, Retarded growth and development, Genital‐urinary anomalies, and Ear defects) syndrome. Neurodevelopmental defects and a range of neurological signs have been identified in individuals with CHARGE syndrome, including developmental delay, lack of coordination, intellectual disability, and autistic traits. We previously identified cerebellar vermis hypoplasia and abnormal cerebellar foliation in individuals with CHARGE syndrome. Here, we report mild cerebellar hypoplasia and distinct cerebellar foliation anomalies in a Chd7 haploinsufficient mouse model. We describe specific alterations in the precise spatio‐temporal sequence of fissure formation during perinatal cerebellar development responsible for these foliation anomalies. The altered cerebellar foliation pattern in Chd7 haploinsufficient mice show some similarities to those reported in mice with altered Engrailed, Fgf8 or Zic1 gene expression and we propose that mutations or polymorphisms in these genes may modify the cerebellar phenotype in CHARGE syndrome. Our findings in a mouse model of CHARGE syndrome indicate that a careful analysis of cerebellar foliation may be warranted in patients with CHARGE syndrome, particularly in patients with cerebellar hypoplasia and developmental delay. PMID:29168327
Vernet, Nadège; Mahadevaiah, Shantha K; Yamauchi, Yasuhiro; Decarpentrie, Fanny; Mitchell, Michael J; Ward, Monika A; Burgoyne, Paul S
2014-06-01
Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis.
Vernet, Nadège; Mahadevaiah, Shantha K.; Yamauchi, Yasuhiro; Decarpentrie, Fanny; Mitchell, Michael J.; Ward, Monika A.; Burgoyne, Paul S.
2014-01-01
Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis. PMID:24967676
Schnittger, S; Rao, V V; Deutsch, U; Gruss, P; Balling, R; Hansmann, I
1992-11-01
Pax-1, a member of a murine multigene family, belongs to the paired box-containing class of developmental control genes first identified in Drosophila. The Pax-1 gene encodes a sequence-specific DNA-binding protein with transcriptional activating properties and has been found to be mutated in the autosomal recessive mutation undulated (un) on mouse chromosome 2 with vertebral anomalies along the entire rostrocaudal axis. By radioactive in situ hybridization (ISH) using a fragment from the murine Pax-1 paired box that is almost identical to the respective sequences from the cognate human gene HuP48 and fluorescence in situ hybridization (FISH) using a complete mouse Pax-1 cDNA, we have assigned the human homologue of murine Pax-1, the PAX1 locus, to chromosome 20p. The map position of PAX1 after FISH (FL-pter value of 0.34 +/- 0.04) corresponds to band p11.2. These results confirm the exceptional homology between human chromosome 20 and the distal segment of mouse chromosome 2, extending from bands F to G, and add PAX1 to the group of genes on 20p like PTPA, PRNP, SCG1, BMP2A, which are located in proximity on both chromosomes.
Sakaguchi, M; Urakawa, T; Hirayama, Y; Miki, N; Yamamoto, M; Zhu, G S; Hirai, K
1993-07-01
The open reading frame (ORF) of 1206 bp within the short unique region (Us) of Marek's disease virus type 1 (MDV1) shows significant homology with the herpes simplex virus type 1 US3 gene encoding protein kinase (PK). The lacZ gene of Escherichia coli was inserted within the ORF, designated MDV1-US3, of MDV1 K544 strain DNA by homologous recombination. The plaque-purified recombinant MDV1 stably expressed the beta-galactosidase encoded by the inserted lacZ gene in infected cells and replicated well as the parental K544 strain. Antibodies against both MDV1 antigen and beta-galactosidase were detected in the sera of chickens immunized with recombinant MDV1. Chickens vaccinated with the recombinant MDV1 were protected from challenge with virulent MDV1. The MDV1 US3 gene expressed by a baculovirus vector encoded a 44-kDa protein. Mouse antisera against the 44-kDa protein reacted with two proteins of 44 and 45 kDa in extracts of cells infected with MDV1 but not with MDV types 2 or 3. The PK activity was detected in immune complexes of the anti-44-kDa sera with extracts of cells infected with MDV1 but not with the recombinant MDV1. Thus, PK encoded from the MDV1-US3 is not essential for virus replication in cell culture and vaccine-induced immunity.
Wells, Julie; Rivera, Miguel N.; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A.
2010-01-01
WT1 encodes a tumor suppressor, first identified by its inactivation in Wilms Tumor. While one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three amino acid (KTS) insertion. Using cells which conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning (ChIP-cloning) analysis to identify candidate WT1(+KTS) regulated promoters. We identified the planar cell polarity (PCP) gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33 nucleotide region within the Scribble promoter in both mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway. PMID:20571064
The mouse homeobox gene, S8, is expressed during embryogenesis predominantly in mesenchyme.
Opstelten, D J; Vogels, R; Robert, B; Kalkhoven, E; Zwartkruis, F; de Laaf, L; Destrée, O H; Deschamps, J; Lawson, K A; Meijlink, F
1991-03-01
The murine S8 gene, originally identified by Kongsuwan et al. [EMBO J. 7(1988)2131-2138] encodes a homeodomain which resembles those of the paired family. We studied the expression pattern during mid-gestation embryogenesis of S8 by in situ hybridization. Expression was detected locally in craniofacial mesenchyme, in the limb, the heart and the somites and sclerotomes all along the axis, and was absent from the central and peripheral nervous system, splanchnopleure, and endodermal derivatives. This pattern differs considerably from that of most previously described homeobox containing genes. By genetic analysis, the gene was located on chromosome 2, about 20 cM from the HOX-4 cluster.
Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K
2013-12-01
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.
Mouse Dux is myotoxic and shares partial functional homology with its human paralog DUX4
Eidahl, Jocelyn O.; Giesige, Carlee R.; Domire, Jacqueline S.; Wallace, Lindsay M.; Fowler, Allison M.; Guckes, Susan M.; Garwick-Coppens, Sara E.; Labhart, Paul
2016-01-01
Abstract D4Z4 repeats are present in at least 11 different mammalian species, including humans and mice. Each repeat contains an open reading frame encoding a double homeodomain (DUX) family transcription factor. Aberrant expression of the D4Z4 ORF called DUX4 is associated with the pathogenesis of Facioscapulohumeral muscular dystrophy (FSHD). DUX4 is toxic to numerous cell types of different species, and over-expression caused dysmorphism and developmental arrest in frogs and zebrafish, embryonic lethality in transgenic mice, and lesions in mouse muscle. Because DUX4 is a primate-specific gene, questions have been raised about the biological relevance of over-expressing it in non-primate models, as DUX4 toxicity could be related to non-specific cellular stress induced by over-expressing a DUX family transcription factor in organisms that did not co-evolve its regulated transcriptional networks. We assessed toxic phenotypes of DUX family genes, including DUX4, DUX1, DUX5, DUXA, DUX4-s, Dux-bl and mouse Dux. We found that DUX proteins were not universally toxic, and only the mouse Dux gene caused similar toxic phenotypes as human DUX4. Using RNA-seq, we found that 80% of genes upregulated by Dux were similarly increased in DUX4-expressing cells. Moreover, 43% of Dux-responsive genes contained ChIP-seq binding sites for both Dux and DUX4, and both proteins had similar consensus binding site sequences. These results suggested DUX4 and Dux may regulate some common pathways, and despite diverging from a common progenitor under different selective pressures for millions of years, the two genes maintain partial functional homology. PMID:28173143
Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo
2015-01-01
Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394
Matsukuma, S; Nakatsuru, Y; Nakagawa, K; Utakoji, T; Sugano, H; Kataoka, H; Sekiguchi, M; Ishikawa, T
1989-11-01
The E. coli ada gene encodes O6-methylguanine DNA methyltransferase (O6MTase) which repairs the methylation of guanine at the O6 position in DNA. After recombination with a Chinese hamster metallothionein I gene promoter, the ada gene was microinjected into C3H/HeN mouse zygotes. Eventually, transgenic mice containing the ada fusion DNA were generated. The integrated ada DNA complex was transmitted to the progeny in a mode conforming to tandem integration at a single chromosome site, and homozygotes were also obtained from an inter-transgenic mouse cross. RNA transcripts of the chimeric ada gene were identified in the livers of these transgenic mice using dot and Northern blot analyses. O6MTase activity was increased in the liver of transgenic mice of line No. 708, and was more than 3 times the activity found in non-transgenic mice, especially in the transgenic homozygotes. The ada gene product was detected in the liver of a transgenic homozygote by immunoblot analysis. These transgenic mice have great potential for analysis of the role played by O6MTase in chemical carcinogenesis.
Update of the human and mouse Fanconi anemia genes.
Dong, Hongbin; Nebert, Daniel W; Bruford, Elspeth A; Thompson, David C; Joenje, Hans; Vasiliou, Vasilis
2015-11-24
Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol "FANC." Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called "the FA pathway," which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes--known to exist in vertebrates, invertebrates, plants, and yeast--that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).
Bernier, G; Mathieu, M; De Repentigny, Y; Vidal, S M; Kothary, R
1996-11-15
We have recently cloned the gene responsible for the mouse neurological disorder dystonia musculorum. The predicted product of this gene, dystonin (Dst), is a neural isoform of bullous pemphigoid antigen 1 (Bpag1) with an N-terminal actin binding domain. Here we report on the cloning and characterization of mouse ACF7. Sequence analysis revealed extended homology of mACF7 with both the actin binding domain (ABD) and the Bpag1 portions of dystonin. Moreover, mACF7 and Dst display similar isoform diversity and encode similar sized transcripts in the nervous system. Phylogenetic analysis of mACF7 and dystonin ABD sequences suggests a recent evolutionary origin and that these proteins form a separate novel subfamily within the beta-spectrin superfamily of actin binding proteins. Given the implication of several actin binding proteins in genetic disorders, it is important to know the pattern of mACF7 expression. mACF7 transcripts are detected principally in lung, brain, spinal cord, skeletal and cardiac muscle, and skin. Intriguingly, mACF7 expression in lung is strongly induced just before birth and is restricted to type II alveolar cells. To determine whether spontaneous mutants that may be defective in mACF7 exist, we have mapped the mACF7 gene to mouse chromosome 4.
Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian
2013-04-01
Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.
Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian
2013-01-01
Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, Takehito; Kondo, Eri; Yasoda, Akihiro
2008-11-07
Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to inducemore » cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification.« less
Modulation of TCRβ surface expression during TCR revision.
Simmons, Kalynn B; Wubeshet, Maramawit; Ames, Kristina T; McMahan, Catherine J; Hale, J Scott; Fink, Pamela J
2012-01-01
TCR revision is a tolerance mechanism by which self-reactive TCRs expressed by mature CD4(+) peripheral T cells are replaced by receptors encoded by genes generated by post-thymic DNA rearrangement. The downmodulation of surface TCR expression initiates TCR revision, and serves as a likely trigger for the induction of the recombinase machinery. We show here in a Vβ5 transgenic mouse model system that downregulation of the self-reactive transgene-encoded TCR is not maintained by transgene loss or diminished transcription or translation. The downregulation of surface TCR expression likely occurs in two stages, only one of which requires tolerogen expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Storm, Michael P; Kumpfmueller, Benjamin; Bone, Heather K; Buchholz, Michael; Sanchez Ripoll, Yolanda; Chaudhuri, Julian B; Niwa, Hitoshi; Tosh, David; Welham, Melanie J
2014-01-01
The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2.
Bone, Heather K.; Buchholz, Michael; Sanchez Ripoll, Yolanda; Chaudhuri, Julian B.; Niwa, Hitoshi; Tosh, David; Welham, Melanie J.
2014-01-01
The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2. PMID:24594919
Development and function of human innate immune cells in a humanized mouse model.
Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A
2014-04-01
Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.
Development and function of human innate immune cells in a humanized mouse model
Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.
2014-01-01
Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240
Commensal bacteria produce GPCR ligands that mimic human signaling molecules
Cohen, Louis J.; Esterhazy, Daria; Kim, Seong-Hwan; Lemetre, Christophe; Aguilar, Rhiannon R.; Gordon, Emma A.; Pickard, Amanda J.; Cross, Justin R.; Emiliano, Ana B.; Han, Sun M.; Chu, John; Vila-Farres, Xavier; Kaplitt, Jeremy; Rogoz, Aneta; Calle, Paula Y.; Hunter, Craig; Bitok, J. Kipchirchir; Brady, Sean F.
2017-01-01
Summary Statement Commensal bacteria are believed to play important roles in human health. The mechanisms by which they affect mammalian physiology are poorly understood; however, bacterial metabolites are likely to be key components of host interactions. Here, we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands although future studies are needed to define their potential physiologic role in humans. This work suggests that chemical mimicry of eukaryotic signaling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a new small molecule therapeutic modality (microbiome-biosynthetic-gene-therapy). PMID:28854168
An evolutionarily conserved gene family encodes proton-selective ion channels.
Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R
2018-03-02
Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy
Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang
2017-01-01
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091
Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei
2017-07-14
Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.
The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6
Fukuda, Yu; Cheong, Pak Leng; Lynch, John; Brighton, Cheryl; Frase, Sharon; Kargas, Vasileios; Rampersaud, Evadnie; Wang, Yao; Sankaran, Vijay G.; Yu, Bing; Ney, Paul A.; Weiss, Mitchell J.; Vogel, Peter; Bond, Peter J.; Ford, Robert C.; Trent, Ronald J.; Schuetz, John D.
2016-01-01
Hereditary porphyrias are caused by mutations in genes that encode haem biosynthetic enzymes with resultant buildup of cytotoxic metabolic porphyrin intermediates. A long-standing open question is why the same causal porphyria mutations exhibit widely variable penetrance and expressivity in different individuals. Here we show that severely affected porphyria patients harbour variant alleles in the ABCB6 gene, also known as Lan, which encodes an ATP-binding cassette (ABC) transporter. Plasma membrane ABCB6 exports a variety of disease-related porphyrins. Functional studies show that most of these ABCB6 variants are expressed poorly and/or have impaired function. Accordingly, homozygous disruption of the Abcb6 gene in mice exacerbates porphyria phenotypes in the Fechm1Pas mouse model, as evidenced by increased porphyrin accumulation, and marked liver injury. Collectively, these studies support ABCB6 role as a genetic modifier of porphyria and suggest that porphyrin-inducing drugs may produce excessive toxicities in individuals with the rare Lan(−) blood type. PMID:27507172
Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1).
Bachvarov, D R; Hess, J F; Menke, J G; Larrivée, J F; Marceau, F
1996-05-01
Two subtypes of mammalian bradykinin receptors, B1 and B2 (BDKRB1 and BDKRB2), have been defined based on their pharmacological properties. The B1 type kinin receptors have weak affinity for intact BK or Lys-BK but strong affinity for kinin metabolites without the C-terminal arginine (e.g., des-Arg9-BK and Lys-des-Arg9-BK, also called des-Arg10-kallidin), which are generated by kininase I. The B1 receptor expression is up-regulated following tissue injury and inflammation (hyperemia, exudation, hyperalgesia, etc.). In the present study, we have cloned and sequenced the gene encoding human B1 receptor from a human genomic library. The human B1 receptor gene contains three exons separated by two introns. The first and the second exon are noncoding, while the coding region and the 3'-flanking region are located entirely on the third exon. The exon-intron arrangement of the human B1 receptor gene shows significant similarity with the genes encoding the B2 receptor subtype in human, mouse, and rat. Sequence analysis of the 5'-flanking region revealed the presence of a consensus TATA box and of numerous candidate transcription factor binding sequences. Primer extension experiments have shown the existence of multiple transcription initiation sites situated downstream and upstream from the consensus TATA box. Genomic Southern blot analysis indicated that the human B1 receptor is encoded by a single-copy gene.
Differential expression of growth factors at the cellular level in virus-infected brain
Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S.; Roy, Anirban; Phares, Timothy W.; Koprowski, Hilary; Hooper, D. Craig
2003-01-01
The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376
A Morpholino-based screen to identify novel genes involved in craniofacial morphogenesis
Melvin, Vida Senkus; Feng, Weiguo; Hernandez-Lagunas, Laura; Artinger, Kristin Bruk; Williams, Trevor
2014-01-01
BACKGROUND The regulatory mechanisms underpinning facial development are conserved between diverse species. Therefore, results from model systems provide insight into the genetic causes of human craniofacial defects. Previously, we generated a comprehensive dataset examining gene expression during development and fusion of the mouse facial prominences. Here, we used this resource to identify genes that have dynamic expression patterns in the facial prominences, but for which only limited information exists concerning developmental function. RESULTS This set of ~80 genes was used for a high throughput functional analysis in the zebrafish system using Morpholino gene knockdown technology. This screen revealed three classes of cranial cartilage phenotypes depending upon whether knockdown of the gene affected the neurocranium, viscerocranium, or both. The targeted genes that produced consistent phenotypes encoded proteins linked to transcription (meis1, meis2a, tshz2, vgll4l), signaling (pkdcc, vlk, macc1, wu:fb16h09), and extracellular matrix function (smoc2). The majority of these phenotypes were not altered by reduction of p53 levels, demonstrating that both p53 dependent and independent mechanisms were involved in the craniofacial abnormalities. CONCLUSIONS This Morpholino-based screen highlights new genes involved in development of the zebrafish craniofacial skeleton with wider relevance to formation of the face in other species, particularly mouse and human. PMID:23559552
Shelburne, Samuel A; Keith, David; Horstmann, Nicola; Sumby, Paul; Davenport, Michael T; Graviss, Edward A; Brennan, Richard G; Musser, James M
2008-02-05
Although central to pathogenesis, the molecular mechanisms used by microbes to regulate virulence factor production in specific environments during host-pathogen interaction are poorly defined. Several recent ex vivo and in vivo studies have found that the level of group A Streptococcus (GAS) virulence factor gene transcripts is temporally related to altered expression of genes encoding carbohydrate utilization proteins. These findings stimulated us to analyze the role in pathogenesis of catabolite control protein A (CcpA), a GAS ortholog of a key global regulator of carbohydrate metabolism in Bacillus subtilis. Inasmuch as the genomewide effects of CcpA in a human pathogen are unknown, we analyzed the transcriptome of a DeltaccpA isogenic mutant strain grown in nutrient-rich medium. CcpA influences the transcript levels of many carbohydrate utilization genes and several well characterized GAS virulence factors, including the potent cytolysin streptolysin S. Compared with the wild-type parental strain, the DeltaccpA isogenic mutant strain was significantly less virulent in a mouse model of invasive infection. Moreover, the isogenic mutant strain was significantly impaired in ability to colonize the mouse oropharynx. When grown in human saliva, a nutrient-limited environment, CcpA influenced production of several key virulence factors not influenced during growth in nutrient-rich medium. Purified recombinant CcpA bound to the promoter region of the gene encoding streptolysin S. Our discovery that GAS virulence and complex carbohydrate utilization are directly linked through CcpA provides enhanced understanding of a mechanism used by a Gram-positive pathogen to modulate virulence factor production in specific environments.
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.
Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J
2016-08-19
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culiat, C.T.; Stubbs, L.; Nicholls, R.D.
1993-06-01
Genetic and molecular analyses of a number of radiation-induced deletion mutations of the pink-eyed dilution (p) locus in mouse chromosome 7 have identified a specific interval on the genetic map associated with a neonatally lethal mutation that results in cleft palate. This interval, closely linked and distal to p, and bracketed by the genes encoding the [alpha][sub 5] and [beta][sub 3] subunits of the type A [gamma]-aminobutyric acid receptor (Gabra5 and Gabrb3, respectively), contains a gene(s) (cp1; cleft palate 1) necessary for normal palate development. The cp1 interval extends from the distal breakpoint of the prenatally lethal p[sup 83FBFo] deletionmore » to the Gabrb3 locus. Among 20 p deletions tested, there was complete concordance between alterations at the Gabrb3 transcription unit and inability to complement the cleft-palate defect. These mapping data, along with previously described in vivo and in vitro teratological effects of [gamma]-aminobutyric acid or its agonists on palate development, suggest the possibility that a particular type A [gamma]-aminobutyric acid receptor that includes the [beta][sub 3] subunit may be necessary for normal palate development. The placement of the cp1 gene within a defined segment of the larger D15S12h (p)-D15S9h-1 interval in the mouse suggests that the highly homologous region of the human genome, 15q11-q13, be evaluated for a role(s) in human fetal facial development. 29 refs., 4 figs., 1 tab.« less
Olsen, Randall J.; Cantu, Concepcion; Pallister, Kyler B.; Guerra, Fermin E.; Voyich, Jovanka M.; Musser, James M.
2017-01-01
ABSTRACT Studies of the human pathogen group A Streptococcus (GAS) define the carrier phenotype to be an increased ability to adhere to and persist on epithelial surfaces and a decreased ability to cause disease. We tested the hypothesis that a single amino acid change (Arg135Gly) in a highly conserved sensor kinase (LiaS) of a poorly defined GAS regulatory system contributes to a carrier phenotype through increased pilus production. When introduced into an emm serotype-matched invasive strain, the carrier allele (the gene encoding the LiaS protein with an arginine-to-glycine change at position 135 [liaSR135G]) recapitulated a carrier phenotype defined by an increased ability to adhere to mucosal surfaces and a decreased ability to cause disease. Gene transcript analyses revealed that the liaS mutation significantly altered transcription of the genes encoding pilus in the presence of bacitracin. Elimination of pilus production in the isogenic carrier mutant decreased its ability to colonize the mouse nasopharynx and to adhere to and be internalized by cultured human epithelial cells and restored the virulence phenotype in a mouse model of necrotizing fasciitis. We also observed significantly reduced survival of the isogenic carrier mutant compared to that of the parental invasive strain after exposure to human neutrophils. Elimination of pilus in the isogenic carrier mutant increased the level of survival after exposure to human neutrophils to that for the parental invasive strain. Together, our data demonstrate that the carrier mutation (liaSR135G) affects pilus expression. Our data suggest new mechanisms of pilus gene regulation in GAS and that the invasiveness associated with pilus gene regulation in GAS differs from the enhanced invasiveness associated with increased pilus production in other bacterial pathogens. PMID:28264907
Virus-encoded miRNAs in Ebola virus disease.
Duy, Janice; Honko, Anna N; Altamura, Louis A; Bixler, Sandra L; Wollen-Roberts, Suzanne; Wauquier, Nadia; O'Hearn, Aileen; Mucker, Eric M; Johnson, Joshua C; Shamblin, Joshua D; Zelko, Justine; Botto, Miriam A; Bangura, James; Coomber, Moinya; Pitt, M Louise; Gonzalez, Jean-Paul; Schoepp, Randal J; Goff, Arthur J; Minogue, Timothy D
2018-04-24
Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs aligned to EBOV variants and were detectable in the four species during disease with several viral miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable diagnostic markers and key effectors of EBOV pathogenesis.
Walther, Diego J.; Dopatka, Monika; Dutrannoy, Véronique; Busche, Andreas; Meyer, Franziska; Nowak, Stefanie; Nowak, Jean; Zabel, Claus; Klose, Joachim; Esquitino, Veronica; Garshasbi, Masoud; Kuss, Andreas W.; Ropers, Hans-Hilger; Mueller, Susanne; Poehlmann, Charlotte; Gavvovidis, Ioannis; Schindler, Detlev; Sperling, Karl; Neitzel, Heidemarie
2010-01-01
Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1gt/gt mice, the overall survival rates of the Mcph1gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function. PMID:20169082
Trimborn, Marc; Ghani, Mahdi; Walther, Diego J; Dopatka, Monika; Dutrannoy, Véronique; Busche, Andreas; Meyer, Franziska; Nowak, Stefanie; Nowak, Jean; Zabel, Claus; Klose, Joachim; Esquitino, Veronica; Garshasbi, Masoud; Kuss, Andreas W; Ropers, Hans-Hilger; Mueller, Susanne; Poehlmann, Charlotte; Gavvovidis, Ioannis; Schindler, Detlev; Sperling, Karl; Neitzel, Heidemarie
2010-02-16
Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1(gt/gt) mice, the overall survival rates of the Mcph1(gt/gt) animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.
Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.
Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko
2015-02-09
The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Bjornsson, Hans T.; Benjamin, Joel S.; Zhang, Li; Weissman, Jacqueline; Gerber, Elizabeth E.; Chen, Yi-Chun; Vaurio, Rebecca G.; Potter, Michelle C.; Hansen, Kasper D.; Dietz, Harry C.
2015-01-01
Kabuki syndrome is caused by haploinsufficiency for either of two genes that promote the opening of chromatin. If an imbalance between open and closed chromatin is central to the pathogenesis of Kabuki syndrome, agents that promote chromatin opening might have therapeutic potential. We have characterized a mouse model of Kabuki syndrome with a heterozygous deletion in the gene encoding the lysine-specific methyltransferase 2D (Kmt2d), leading to impairment of methyltransferase function. In vitro reporter alleles demonstrated a reduction in histone 4 acetylation and histone 3 lysine 4 trimethylation (H3K4me3) activity in mouse embryonic fibroblasts from Kmt2d+/βGeo mice. These activities were normalized in response to AR-42, a histone deacetylase inhibitor. In vivo, deficiency of H3K4me3 in the dentate gyrus granule cell layer of Kmt2d+/βGeo mice correlated with reduced neurogenesis and hippocampal memory defects. These abnormalities improved upon postnatal treatment with AR-42. Our work suggests that a reversible deficiency in postnatal neurogenesis underlies intellectual disability in Kabuki syndrome. PMID:25273096
The future: genetics advances in MEN1 therapeutic approaches and management strategies.
Agarwal, Sunita K
2017-10-01
The identification of the multiple endocrine neoplasia type 1 ( MEN1 ) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come. © 2017 Society for Endocrinology.
Richert, Lysiane; Lamboley, Christelle; Viollon-Abadie, Catherine; Grass, Peter; Hartmann, Nicole; Laurent, Stephane; Heyd, Bruno; Mantion, Georges; Chibout, Salah-Dine; Staedtler, Frank
2003-09-01
The mRNA expression profile in control and clofibric acid (CLO)-treated mouse, rat, and human hepatocytes was analyzed using species-specific oligonucleotide DNA microarrays (Affymetrix). A statistical empirical Bayes procedure was applied in order to select the significantly differentially expressed genes. Treatment with the peroxisome proliferator CLO induced up-regulation of genes involved in peroxisome proliferation and in cell proliferation as well as down-regulation of genes involved in apoptosis in hepatocytes of rodent but not of human origin. CLO treatment induced up-regulation of microsomal cytochrome P450 4a genes in rodent hepatocytes and in two of six human hepatocyte cultures. In addition, genes encoding phenobarbital-inducible cytochrome P450s were also up-regulated by CLO in rodent and human hepatocyte cultures. Up-regulation of phenobarbital-inducible UDP-glucuronosyl-transferase genes by CLO was observed in both rat and human but not in mouse hepatocytes. CLO treatment induced up-regulation of L-fatty acid binding protein (L-FABP) gene in hepatocytes of both rodent and human origin. However, while genes of the cytosolic, microsomal, and mitochondrial pathways involved in fatty acid transport and metabolism were up-regulated by CLO in both rodent and human hepatocyte cultures, genes of the peroxisomal pathway of lipid metabolism were up-regulated in rodents only. An up-regulation of hepatocyte nuclear factor 1alpha (HNF1alpha) by CLO was observed only in human hepatocyte cultures, suggesting that this trans-activating factor may play a key role in the regulation of fatty acid metabolism in human liver as well as in the nonresponsiveness of human liver to CLO-induced regulation of cell proliferation and apoptosis.
Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo
2012-01-01
E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis. PMID:22294149
Lim, Jung Hwa; Shin, Hyo Jung; Park, Kyeong-Su; Lee, Chan Hee; Jung, Cho-Rok; Im, Dong-Soo
2012-04-01
E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-inducible factor-1α (HIF-1α) inducing ischemic vascular responses. Here, we investigated the effect of UCP gene transfer on therapeutic angiogenesis. Adenovirus-encoded UCP (Ad-F-UCP) increased the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in cells and mice. Conditioned media from UCP-overexpressing cells promoted proliferation, tubule formation, and invasion of human umbilical-vascular-endothelial cells (HUVECs), and vascularization in chorioallantoic membrane (CAM) assay. Ad-F-UCP increased the vessel density in the Martigel plug assay, and generated copious vessel-like structures in the explanted muscle. The UCP effect on angiogenesis was dependent on VEGF and FGF-2. In mouse hindlimb ischemia model (N = 30/group), autoamputation (limb loss) occurred in 87% and 68% of the mice with saline and Ad encoding β-galactosidase (Ad-LacZ), respectively, whereas only 23% of the mice injected with Ad-F-UCP showed autoamputation after 21 days of treatment. Ad-F-UCP increased protein levels of HIF-1α, platelet-endothelial cell adhesion molecule-1 (PECAM-1), smooth muscle cell actin (SMA) in the ischemic muscle, and augmented blood vessels doubly positive for PECAM-1 and SMA. Consequently, UCP gene transfer prevented muscle degeneration and autoamputation of ischemic limb. The results suggest that E2-EPF UCP may be a target for therapeutic angiogenesis.
Fenina, Myriam; Simon-Chazottes, Dominique; Vandormael-Pournin, Sandrine; Soueid, Jihane; Langa, Francina; Cohen-Tannoudji, Michel; Bernard, Bruno A; Panthier, Jean-Jacques
2012-01-01
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.
Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo
Li, Wenyan; Shen, Jun
2016-01-01
Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172
Blatti, Charles; Sinha, Saurabh
2014-07-01
The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Inoue, Yukiko U; Morimoto, Yuki; Hoshino, Mikio; Inoue, Takayoshi
2018-07-01
Pax6 encodes a transcription factor that plays pivotal roles in eye development, early brain patterning, neocortical arealization, and so forth. Visualization of Pax6 expression dynamics in these events could offer numerous advantages to neurodevelopmental studies. While CRISPR/Cas9 system has dramatically accelerated one-step generation of knock-out mouse, establishment of gene-cassette knock-in mouse via zygote injection has been considered insufficient due to its low efficiency. Recently, an improved CRISPR/Cas9 system for effective gene-cassette knock-in has been reported, where the native form of guide RNAs (crRNA and tracrRNA) assembled with recombinant Cas9 protein are directly delivered into mouse fertilized eggs. Here we apply this strategy to insert IRES-EGFP-pA cassette into Pax6 locus and achieve efficient targeted insertions of the 1.8 kb reporter gene. In Pax6-IRES-EGFP mouse we have generated, EGFP-positive cells reside in the eyes and cerebellum as endogenous Pax6 expressing cells at postnatal day 2. At the early embryonic stages when the embryos are transparent, EGFP-positive regions can be easily identified without PCR-based genotyping, precisely recapitulating the endogenous Pax6 expression patterns. Remarkably, at E12.5, the graded expression patterns of Pax6 in the developing neocortex now become recognizable in our knock-in mice, serving a sufficiently sensitive and useful tool to precisely visualize neurodevelopmental processes. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.
Lescat, Mathilde; Hoede, Claire; Clermont, Olivier; Garry, Louis; Darlu, Pierre; Tuffery, Pierre; Denamur, Erick; Picard, Bertrand
2009-12-29
Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. We identified the gene encoding esterase B as the acetyl-esterase gene (aes) using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR) strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.
[Research of Human-mouse Chimeric Antibodies Against Ebola Virus Nucleoprotein].
Zhou, Rongping; Sun, Lina; Liu, Yang; Wu, Wei; Li, Chuan; Liang, Mifang; Qiu, Peihong
2016-01-01
The Ebola virus is highly infectious and can result in death in ≤ 90% of infected subjects. Detection of the Ebola virus and diagnosis of infection are extremely important for epidemic control. Presently, Chinese laboratories detect the nucleic acids of the Ebola virus by real-time reverse transcription-polymerase chain reaction (RT-PCR). However, such detection takes a relatively long time and necessitates skilled personnel and expensive equipment. Enzyme-linked immunosorbent assay (ELISA) of serum is simple, easy to operate, and can be used to ascertain if a patient is infected with the Ebola virus as well as the degree of infection. Hence, ELISA can be used in epidemiological investigations and is a strong complement to detection of nucleic acids. Cases of Ebola hemorrhagic fever have not been documented in China, so quality-control material for positive serology is needed. Construction and expression of human-mouse chimeric antibodies against the nucleoprotein of the Ebola virus was carried out. Genes encoding variable heavy (VH) and variable light (VL) chains were extracted and amplified from murine hybridoma cells. Genes encoding the VH and VL chains of monoclonal antibodies were amplified by RT-PCR. According to sequence analyses, a primer was designed to amplify functional sequences relative to VH and VL chain. The eukaryotic expression vector HL51-14 carrying some human antibody heavy chain- and light chain-constant regions was used. IgG antibodies were obtained by transient transfection of 293T cells. Subsequently, immunological detection and immunological identification were identified by ELISA, immunofluorescence assay, and western blotting. These results showed that we constructed and purified two human- mouse chimeric antibodies.
Hanin, Aurelie; Sava, Irina; Bao, YinYin; Huebner, Johannes; Hartke, Axel; Auffray, Yanick; Sauvageot, Nicolas
2010-01-01
Enterococcus faecalis is part of the commensal microbiota of humans and its main habitat is the gastrointestinal tract. Although harmless in healthy individuals, E. faecalis has emerged as a major cause of nosocomial infections. In order to better understand the transformation of a harmless commensal into a life-threatening pathogen, we developed a Recombination-based In Vivo Expression Technology for E. faecalis. Two R-IVET systems with different levels of sensitivity have been constructed in a E. faecalis V583 derivative strain and tested in the insect model Galleria mellonella, during growth in urine, in a mouse bacteremia and in a mouse peritonitis model. Our combined results led to the identification of 81 in vivo activated genes. Among them, the ef_3196/7 operon was shown to be strongly induced in the insect host model. Deletion of this operonic structure demonstrated that this two-component system was essential to the E. faecalis pathogenic potential in Galleria. Gene ef_0377, induced in insect and mammalian models, has also been further analyzed and it has been demonstrated that this ankyrin-encoding gene was also involved in E. faecalis virulence. Thus these R-IVET screenings led to the identification of new E. faecalis factors implied in in vivo persistence and pathogenic potential of this opportunistic pathogen. PMID:20686694
Enkhmandakh, Badam; Makeyev, Alexandr V.; Bayarsaihan, Dashzeveg
2006-01-01
Lim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1. Embryos derived from the gene-trapped line that encodes a truncated Ssdp1 lacking the proline-rich sequence exhibit a lethal abnormal head-development phenotype, resembling mouse embryos deficient for Lim1, Ssdp1, or Otx2 genes. Embryos derived from the second gene-trapped line, in which most of the proline-rich domain of Ssdp1 is retained, did not show abnormalities in head development. Our data demonstrate that components of the Ldb1-dependent module can be subdivided further into discrete functional domains and that the proline-rich stretch of Ssdp1 is critical for embryonic head development. Furthermore, phylogenetic comparisons revealed that in Caenorhabditis elegans, a similar proline-rich sequence is absent in Ssdp but present in Ldb1. We conclude that although the overall architecture of the Ldb1-dependent module has been preserved, the genetic specification of its individual components has diversified during evolution, without compromising the function of the module. PMID:16864769
Enkhmandakh, Badam; Makeyev, Alexandr V; Bayarsaihan, Dashzeveg
2006-08-01
Lim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1. Embryos derived from the gene-trapped line that encodes a truncated Ssdp1 lacking the proline-rich sequence exhibit a lethal abnormal head-development phenotype, resembling mouse embryos deficient for Lim1, Ssdp1, or Otx2 genes. Embryos derived from the second gene-trapped line, in which most of the proline-rich domain of Ssdp1 is retained, did not show abnormalities in head development. Our data demonstrate that components of the Ldb1-dependent module can be subdivided further into discrete functional domains and that the proline-rich stretch of Ssdp1 is critical for embryonic head development. Furthermore, phylogenetic comparisons revealed that in Caenorhabditis elegans, a similar proline-rich sequence is absent in Ssdp but present in Ldb1. We conclude that although the overall architecture of the Ldb1-dependent module has been preserved, the genetic specification of its individual components has diversified during evolution, without compromising the function of the module.
Cell-type specific features of circular RNA expression.
Salzman, Julia; Chen, Raymond E; Olsen, Mari N; Wang, Peter L; Brown, Patrick O
2013-01-01
Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program.
Jiang, Jieyun; Creasy, Kate Townsend; Purnell, Justin; Peterson, Martha L.; Spear, Brett T.
2017-01-01
The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as a regulator of numerous liver-enriched genes. Zhx2 is located on chromosome 15, and a natural hypomorphic mutation in the BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression. Based on these data, we hypothesized that reduced Zhx2 levels are responsible for lower Mup expression in BALB/cJ mice. Using both transgenic and knock-out mice along with in vitro assays, our data show that Zhx2 binds Mup promoters and is required for high levels of Mup expression in the adult liver. In contrast to previously identified Zhx2 targets that appear to be repressed by Zhx2, Mup genes are positively regulated by Zhx2. These data identify Zhx2 as a novel regulator of Mup expression and indicate that Zhx2 activates as well as represses expression of target genes. PMID:28258223
Young, Douglas; Mayer, Franziska; Vidotto, Nella; Schweizer, Tatjana; Berth, Ramon; Abramowski, Dorothee; Shimshek, Derya R.; van der Putten, P. Herman; Schmid, Peter
2013-01-01
Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model. PMID:24086450
Xu, Fengqin; Wang, Weiping; Lei, Chen; Liu, Qingmei; Qiu, Hao; Muraleedharan, Vinaydhar; Zhou, Bin; Cheng, Hongxia; Huang, Zhongkai; Xu, Weian; Li, Bichun; Wang, Minghua
2012-04-01
Zinc finger proteins (ZFPs) that contain multiple cysteine and/or histidine residues perform important roles in various cellular functions, including transcriptional regulation, cell proliferation, differentiation, and apoptosis. The Cys-Cys-His-His (C(2)H(2)) type of ZFPs are the well-defined members of this super family and are the largest and most complex proteins in eukaryotic genomes. In this study, we identified a novel C(2)H(2) type of zinc finger gene ZNFD from mice which has a 1,002 bp open reading frame and encodes a protein with 333 amino acid residues. The predicted 37.4 kDa protein contains a C(2)H(2) zinc finger domain. ZNFD gene is located on chromosome 18qD1. RT-PCR analysis revealed that the ZNFD gene was specifically expressed in mouse testis but not in other tissues. Subcellular localization analysis demonstrated that ZNFD was localized in the nucleus. Reporter gene assays showed that overexpression of ZNFD in the COS7 cells activates the transcriptional activities of heat shock element (HSE). Overall, these results suggest that ZNFD is a member of the zinc finger transcription factor family and it participates in the transcriptional regulation of HSE. Many heat shock proteins regulated by HSE are involved in testicular development. Therefore, our results suggest that ZNFD may probably participate in the development of mouse testis and function as a transcription activator in HSE-mediated gene expression and signaling pathways.
Metabolic characterization of a mouse deficient in all known leptin receptor isoforms.
Osborn, Olivia; Sanchez-Alavez, Manuel; Brownell, Sara E; Ross, Brendon; Klaus, Joe; Dubins, Jeffrey; Beutler, Bruce; Conti, Bruno; Bartfai, Tamas
2010-01-01
We have characterized a newly generated mouse model of obesity, a mouse strain deficient in all five previously described leptin receptor isoforms. These transgenic mice, named the db (333)/db (333) mice, were identified from an ENU mutagenesis screen and carry a point mutation in the seventh exon of the db gene encoding the leptin receptor, resulting in a premature stop codon (Y(333)Stop) and gene product that lacks STAT signaling domains. db (333)/db (333) mice have a morbidly obese phenotype, with body weights diverging from wild type as early as 4 weeks of age (P < 0.05). To determine the contribution of the short isoforms of the leptin receptor in this metabolic phenotype, we performed an extensive metabolic characterization of the db (333)/db (333) mouse in relation to the well-characterized db/db mouse lacking only the long form of the leptin receptor. db (333)/db (333) mice have similar endocrine and metabolic parameters as previously described in other leptin receptor transgenic mice including db/db mice that lack only the long isoform of the leptin receptor. However, db (333)/db (333) mice show a subtle trend toward higher body weight and insulin levels, lower oxygen, carbon dioxide production, respiratory exchange ratio (RER), and temperature than db/db mice suggesting the short isoforms may play an additional role in energy homeostasis.
Gene Transfer and Molecular Cloning of the Human NGF Receptor
NASA Astrophysics Data System (ADS)
Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita
1986-04-01
Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.
Retinoic Acid Metabolic Genes, Meiosis, and Gonadal Sex Differentiation in Zebrafish
Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Catchen, Julian M.; Yan, Yi-Lin; Postlethwait, John H.
2013-01-01
To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female pathway in zebrafish. PMID:24040125
Distinct cerebellar foliation anomalies in a CHD7 haploinsufficient mouse model of CHARGE syndrome.
Whittaker, Danielle E; Kasah, Sahrunizam; Donovan, Alex P A; Ellegood, Jacob; Riegman, Kimberley L H; Volk, Holger A; McGonnell, Imelda; Lerch, Jason P; Basson, M Albert
2017-12-01
Mutations in the gene encoding the ATP dependent chromatin-remodeling factor, CHD7 are the major cause of CHARGE (Coloboma, Heart defects, Atresia of the choanae, Retarded growth and development, Genital-urinary anomalies, and Ear defects) syndrome. Neurodevelopmental defects and a range of neurological signs have been identified in individuals with CHARGE syndrome, including developmental delay, lack of coordination, intellectual disability, and autistic traits. We previously identified cerebellar vermis hypoplasia and abnormal cerebellar foliation in individuals with CHARGE syndrome. Here, we report mild cerebellar hypoplasia and distinct cerebellar foliation anomalies in a Chd7 haploinsufficient mouse model. We describe specific alterations in the precise spatio-temporal sequence of fissure formation during perinatal cerebellar development responsible for these foliation anomalies. The altered cerebellar foliation pattern in Chd7 haploinsufficient mice show some similarities to those reported in mice with altered Engrailed, Fgf8 or Zic1 gene expression and we propose that mutations or polymorphisms in these genes may modify the cerebellar phenotype in CHARGE syndrome. Our findings in a mouse model of CHARGE syndrome indicate that a careful analysis of cerebellar foliation may be warranted in patients with CHARGE syndrome, particularly in patients with cerebellar hypoplasia and developmental delay. © 2017 The Authors. American Journal of Medical Genetics Part C Published by Wiley Periodicals, Inc.
Gupta, Divya; Harvey, Stephen A. K.; Kaminski, Naftali
2011-01-01
Purpose. To identify the changes in postnatal mouse conjunctival forniceal gene expression and their regulation by Klf4 during the eye-opening stage when the goblet cells first appear. Methods. Laser microdissection (LMD) was used to collect conjunctival forniceal cells from postnatal (PN) day 9, PN14 and PN20 wild-type (WT), and PN14 Klf4-conditional null (Klf4CN) mice, in which goblet cells are absent, developing, present, and missing, respectively. Microarrays were used to compare gene expression among these groups. Expression of selected genes was validated by quantitative RT-PCR, and spatiotemporal expression was assessed by in situ hybridization. Results. This study identified 668, 251, 1160, and 139 transcripts that were increased and 492, 377, 1419, and 57 transcripts that were decreased between PN9 and PN14, PN14 and PN20, PN9 and PN20, and PN14 WT and Klf4CN conjunctiva, respectively. Transcripts encoding transcription factors Spdef, FoxA1, and FoxA3 that regulate goblet cell development in other mucosal epithelia, and epithelium-specific Ets (ESE) transcription factor family members were increased during conjunctival development. Components of pathways related to the mesenchymal–epithelial transition, glycoprotein biosynthesis, mucosal immunity, signaling, and endocytic and neural regulation were increased during conjunctival development. Conjunctival Klf4 target genes differed significantly from the previously identified corneal Klf4 target genes, implying tissue-dependent regulatory targets for Klf4. Conclusions. The changes in gene expression accompanying mouse conjunctival development were identified, and the role of Klf4 in this process was determined. This study provides new probes for examining conjunctival development and function and reveals that the gene regulatory network necessary for goblet cell development is conserved across different mucosal epithelia. PMID:21398290
A Protocol for Multiple Gene Knockout in Mouse Small Intestinal Organoids Using a CRISPR-concatemer.
Merenda, Alessandra; Andersson-Rolf, Amanda; Mustata, Roxana C; Li, Taibo; Kim, Hyunki; Koo, Bon-Kyoung
2017-07-12
CRISPR/Cas9 technology has greatly improved the feasibility and speed of loss-of-function studies that are essential in understanding gene function. In higher eukaryotes, paralogous genes can mask a potential phenotype by compensating the loss of a gene, thus limiting the information that can be obtained from genetic studies relying on single gene knockouts. We have developed a novel, rapid cloning method for guide RNA (gRNA) concatemers in order to create multi-gene knockouts following a single round of transfection in mouse small intestinal organoids. Our strategy allows for the concatemerization of up to four individual gRNAs into a single vector by performing a single Golden Gate shuffling reaction with annealed gRNA oligos and a pre-designed retroviral vector. This allows either the simultaneous knockout of up to four different genes, or increased knockout efficiency following the targeting of one gene by multiple gRNAs. In this protocol, we show in detail how to efficiently clone multiple gRNAs into the retroviral CRISPR-concatemer vector and how to achieve highly efficient electroporation in intestinal organoids. As an example, we show that simultaneous knockout of two pairs of genes encoding negative regulators of the Wnt signaling pathway (Axin1/2 and Rnf43/Znrf3) renders intestinal organoids resistant to the withdrawal of key growth factors.
Oduru, Sreedhar; Campbell, Janee L; Karri, SriTulasi; Hendry, William J; Khan, Shafiq A; Williams, Simon C
2003-01-01
Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish) genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells. PMID:12783626
Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors
Zaghloul, Nahla; Addorisio, Meghan E.; Silverman, Harold A.; Patel, Hardik L.; Valdés-Ferrer, Sergio I.; Ayasolla, Kamesh R.; Lehner, Kurt R.; Olofsson, Peder S.; Nasim, Mansoor; Metz, Christine N.; Wang, Ping; Ahmed, Mohamed; Chavan, Sangeeta S.; Diamond, Betty; Tracey, Kevin J.; Pavlov, Valentin A.
2017-01-01
Sepsis, a complex disorder characterized by immune, metabolic, and neurological dysregulation, is the number one killer in the intensive care unit. Mortality remains alarmingly high even in among sepsis survivors discharged from the hospital. There is no clear strategy for managing this lethal chronic sepsis illness, which is associated with severe functional disabilities and cognitive deterioration. Providing insight into the underlying pathophysiology is desperately needed to direct new therapeutic approaches. Previous studies have shown that brain cholinergic signaling importantly regulates cognition and inflammation. Here, we studied the relationship between peripheral immunometabolic alterations and brain cholinergic and inflammatory states in mouse survivors of cecal ligation and puncture (CLP)-induced sepsis. Within 6 days, CLP resulted in 50% mortality vs. 100% survival in sham-operated controls. As compared to sham controls, sepsis survivors had significantly lower body weight, higher serum TNF, interleukin (IL)-1β, IL-6, CXCL1, IL-10, and HMGB1 levels, a lower TNF response to LPS challenge, and lower serum insulin, leptin, and plasminogen activator inhibitor-1 levels on day 14. In the basal forebrain of mouse sepsis survivors, the number of cholinergic [choline acetyltransferase (ChAT)-positive] neurons was significantly reduced. In the hippocampus and the cortex of mouse sepsis survivors, the activity of acetylcholinesterase (AChE), the enzyme that degrades acetylcholine, as well as the expression of its encoding gene were significantly increased. In addition, the expression of the gene encoding the M1 muscarinic acetylcholine receptor was decreased in the hippocampus. In parallel with these forebrain cholinergic alterations, microglial activation (in the cortex) and increased Il1b and Il6 gene expression (in the cortex), and Il1b gene expression (in the hippocampus) were observed in mouse sepsis survivors. Furthermore, microglial activation was linked to decreased cortical ChAT protein expression and increased AChE activity. These results reinforce the notion of persistent inflammation-immunosuppression and catabolic syndrome in sepsis survivors and characterize a previously unrecognized relationship between forebrain cholinergic dysfunction and neuroinflammation in sepsis survivors. This insight is of interest for new therapeutic approaches that focus on brain cholinergic signaling for patients with chronic sepsis illness, a problem with no specific treatment. PMID:29326685
Chatterjee, Som S; Chen, Liang; Joo, Hwang-Soo; Cheung, Gordon Y C; Kreiswirth, Barry N; Otto, Michael
2011-01-01
The phenol-soluble modulin PSM-mec is the only known staphylococcal toxin that is encoded on a mobile antibiotic resistance determinant, namely the staphylococcal cassette chromosome (SCC) element mec encoding resistance to methicillin. Here we show that the psm-mec gene is found frequently among methicillin-resistant Staphylococcus aureus (MRSA) strains of SCCmec types II, III, and VIII, and is a conserved part of the class A mec gene complex. Controlled expression of AgrA versus RNAIII in agr mutants of all 3 psm-mec-positive SCCmec types demonstrated that expression of psm-mec, which is highly variable, is controlled by AgrA in an RNAIII-independent manner. Furthermore, psm-mec isogenic deletion mutants showed only minor changes in PSMα peptide production and unchanged (or, as previously described, diminished) virulence compared to the corresponding wild-type strains in a mouse model of skin infection. This indicates that the recently reported regulatory impact of the psm-mec locus on MRSA virulence, which is opposite to that of the PSM-mec peptide and likely mediated by a regulatory RNA, is minor when analyzed in the original strain background. Our study gives new insight in the distribution, regulation, and role in virulence of the PSM-mec peptide and the psm-mec gene locus.
The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations
Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K. H.; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A.; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L.; Sandholzer, Michael; Lisse, Thomas S.; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M.; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M.; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin
2016-01-01
The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. PMID:27815347
Gwynn, B; Ciciotte, S L; Hunter, S J; Washburn, L L; Smith, R S; Andersen, S G; Swank, R T; Dell'Angelica, E C; Bonifacino, J S; Eicher, E M; Peters, L L
2000-12-15
Defects in a triad of organelles (melanosomes, platelet granules, and lysosomes) result in albinism, prolonged bleeding, and lysosome abnormalities in Hermansky-Pudlak syndrome (HPS). Defects in HPS1, a protein of unknown function, and in components of the AP-3 complex cause some, but not all, cases of HPS in humans. There have been 15 inherited models of HPS described in the mouse, underscoring its marked genetic heterogeneity. Here we characterize a new spontaneous mutation in the mouse, cappuccino (cno), that maps to mouse chromosome 5 in a region conserved with human 4p15-p16. Melanosomes of cno/cno mice are immature and dramatically decreased in number in the eye and skin, resulting in severe oculocutaneous albinism. Platelet dense body contents (adenosine triphosphate, serotonin) are markedly deficient, leading to defective aggregation and prolonged bleeding. Lysosomal enzyme concentrations are significantly elevated in the kidney and liver. Genetic, immunofluorescence microscopy, and lysosomal protein trafficking studies indicate that the AP-3 complex is intact in cno/cno mice. It was concluded that the cappuccino gene encodes a product involved in an AP-3-independent mechanism critical to the biogenesis of lysosome-related organelles. (Blood. 2000;96:4227-4235)
The Slc35d3 gene, encoding an orphan nucleotide sugar transporter, regulates platelet-dense granules
Chintala, Sreenivasulu; Tan, Jian; Gautam, Rashi; Rusiniak, Michael E.; Guo, Xiaoli; Li, Wei; Gahl, William A.; Huizing, Marjan; Spritz, Richard A.; Hutton, Saunie; Novak, Edward K.; Swank, Richard T.
2007-01-01
Platelet dense granules are lysosome-related organelles which contain high concentrations of several biologically important low-molecular-weight molecules. These include calcium, serotonin, adenine nucleotides, pyrophosphate, and polyphosphate, which are necessary for normal blood hemostasis. The synthesis of dense granules and other lysosome-related organelles is defective in inherited diseases such as Hermansky-Pudlak syndrome (HPS) and Chediak-Higashi syndrome (CHS). HPS and CHS mutations in 8 human and at least 16 murine genes have been identified. Previous studies produced contradictory findings for the function of the murine ashen (Rab27a) gene in platelet-dense granules. We have used a positional cloning approach with one line of ashen mutants to establish that a new mutation in a second gene, Slc35d3, on mouse chromosome 10 is the basis of this discrepancy. The platelet-dense granule defect is rescued in BAC transgenic mice containing the normal Slc35d3 gene. Thus, Slc35d3, an orphan member of a nucleotide sugar transporter family, specifically regulates the contents of platelet-dense granules. Unlike HPS or CHS genes, it has no apparent effect on other lysosome-related organelles such as melanosomes or lysosomes. The ash-Roswell mouse mutant is an appropriate model for human congenital-isolated delta-storage pool deficiency. PMID:17062724
Hughes, Michael P; Smith, Dave A; Morris, Lauren; Fletcher, Claire; Colaco, Alexandria; Huebecker, Mylene; Tordo, Julie; Palomar, Nuria; Massaro, Giulia; Henckaerts, Els; Waddington, Simon N; Platt, Frances M; Rahim, Ahad A
2018-06-05
Niemann-Pick type C disease (NP-C) is a fatal neurodegenerative lysosomal storage disorder. It is caused in 95% of cases by a mutation in the NPC1 gene that encodes NPC1, an integral transmembrane protein localised to the limiting membrane of the lysosome. There is no cure for NP-C but there is a disease-modifying drug (miglustat) that slows disease progression but with associated side effects. Here, we demonstrate in a well-characterised mouse model of NP-C that a single administration of AAV-mediated gene therapy to the brain can significantly extend lifespan, improve quality of life, prevent or ameliorate neurodegeneration, reduce biochemical pathology and normalize or improve various indices of motor function. Over-expression of human NPC1 does not cause adverse effects in the brain and correctly localises to late endosomal/lysosomal compartments. Furthermore, we directly compare gene therapy to licensed miglustat. Even at a low dose, gene therapy has all the benefits of miglustat but without adverse effects. On the basis of these findings and on-going ascendency of the field, we propose intracerebroventricular gene therapy as a potential therapeutic option for clinical use in NP-C.
Lundqvist, M L; Middleton, D L; Hazard, S; Warr, G W
2001-12-14
The region of the duck IgH locus extending from upstream of the proximal diversity (D) segment to downstream of the constant gene cluster has been cloned and mapped. A sequence contig of 48,796 base pairs established that the organization of the genes is D-J(H)-mu-alpha-upsilon. No evidence for a functional homologue (or remnant) of a delta gene was found. The alpha gene is in inverted transcriptional orientation; class switch to IgA expression thus requires inversion of the approximately 27-kilobase pair region that includes both mu and alpha genes. The secreted forms of duck alpha and mu are each encoded by 4 constant region exons, and the hydrophobic C-terminal regions of the membrane receptor forms of alpha and mu are encoded by one and two transmembrane exons, respectively. Putative switch (S) regions were identified for duck mu and upsilon by comparison with chicken Smu and Supsilon sequences and for duck alpha by comparison with mouse Salpha. The duck IgH locus is rich in complex variable number tandem repeats, which occupy approximately 60% of the sequenced region, and occur at a much higher frequency in the IgH locus than in other sequenced regions of the duck genome.
Cheng, S V; Nadeau, J H; Tanzi, R E; Watkins, P C; Jagadesh, J; Taylor, B A; Haines, J L; Sacchi, N; Gusella, J F
1988-08-01
Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid beta precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, we have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.
1988-08-01
Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors havemore » established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.« less
Dolan, Jackie; Walshe, Karen; Alsbury, Samantha; Hokamp, Karsten; O'Keeffe, Sean; Okafuji, Tatsuya; Miller, Suzanne FC; Tear, Guy; Mitchell, Kevin J
2007-01-01
Background Leucine-rich repeats (LRRs) are highly versatile and evolvable protein-ligand interaction motifs found in a large number of proteins with diverse functions, including innate immunity and nervous system development. Here we catalogue all of the extracellular LRR (eLRR) proteins in worms, flies, mice and humans. We use convergent evidence from several transmembrane-prediction and motif-detection programs, including a customised algorithm, LRRscan, to identify eLRR proteins, and a hierarchical clustering method based on TribeMCL to establish their evolutionary relationships. Results This yields a total of 369 proteins (29 in worm, 66 in fly, 135 in mouse and 139 in human), many of them of unknown function. We group eLRR proteins into several classes: those with only LRRs, those that cluster with Toll-like receptors (Tlrs), those with immunoglobulin or fibronectin-type 3 (FN3) domains and those with some other domain. These groups show differential patterns of expansion and diversification across species. Our analyses reveal several clusters of novel genes, including two Elfn genes, encoding transmembrane proteins with eLRRs and an FN3 domain, and six genes encoding transmembrane proteins with eLRRs only (the Elron cluster). Many of these are expressed in discrete patterns in the developing mouse brain, notably in the thalamus and cortex. We have also identified a number of novel fly eLRR proteins with discrete expression in the embryonic nervous system. Conclusion This study provides the necessary foundation for a systematic analysis of the functions of this class of genes, which are likely to include prominently innate immunity, inflammation and neural development, especially the specification of neuronal connectivity. PMID:17868438
Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D
2007-04-01
Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.
Deletion of alpha-synuclein decreases impulsivity in mice.
Peña-Oliver, Y; Buchman, V L; Dalley, J W; Robbins, T W; Schumann, G; Ripley, T L; King, S L; Stephens, D N
2012-03-01
The presynaptic protein alpha-synuclein, associated with Parkinson's Disease (PD), plays a role in dopaminergic neurotransmission and is implicated in impulse control disorders (ICDs) such as drug addiction. In this study we investigated a potential causal relationship between alpha-synuclein and impulsivity, by evaluating differences in motor impulsivity in the 5-choice serial reaction time task (5-CSRTT) in strains of mice that differ in the expression of the alpha-synuclein gene. C57BL/6JOlaHsd mice differ from their C57BL/6J ancestors in possessing a chromosomal deletion resulting in the loss of two genes, snca, encoding alpha-synuclein, and mmrn1, encoding multimerin-1. C57BL/6J mice displayed higher impulsivity (more premature responding) than C57BL/6JOlaHsd mice when the pre-stimulus waiting interval was increased in the 5-CSRTT. In order to ensure that the reduced impulsivity was indeed related to snca, and not adjacent gene deletion, wild type (WT) and mice with targeted deletion of alpha-synuclein (KO) were tested in the 5-CSRTT. Similarly, WT mice were more impulsive than mice with targeted deletion of alpha-synuclein. Interrogation of our ongoing analysis of impulsivity in BXD recombinant inbred mouse lines revealed an association of impulsive responding with levels of alpha-synuclein expression in hippocampus. Expression of beta- and gamma-synuclein, members of the synuclein family that may substitute for alpha-synuclein following its deletion, revealed no differential compensations among the mouse strains. These findings suggest that alpha-synuclein may contribute to impulsivity and potentially, to ICDs which arise in some PD patients treated with dopaminergic medication. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Genomic organization of the rat alpha 2u-globulin gene cluster.
McFadyen, D A; Addison, W; Locke, J
1999-05-01
The alpha 2u-globulin are a group of similar proteins, belonging to the lipocalin superfamily of proteins, that are synthesized in a subset of secretory tissues in rats. The many alpha 2u-globulin isoforms are encoded by a multigene family that exhibits extensive homology. Despite a high degree of sequence identity, individual family members show diverse expression patterns involving complex hormonal, tissue-specific, and developmental regulation. Analysis suggests that there are approximately 20 alpha 2u-globulin genes in the rat genome. We have used fluorescence in situ hybridization (FISH) to show that the alpha 2u-globulin genes are clustered at a single site on rat Chromosome (Chr) 5 (5q22-24). Southern blots of rat genomic DNA separated by pulsed field gel electrophoresis indicated that the alpha 2u-globulin genes are contained on two NruI fragments with a total size of 880 kbp. Analysis of three P1 clones containing alpha 2u-globulin genes indicated that the alpha 2u-globulin genes are tandemly arranged in a head-to-tail fashion. The organization of the alpha 2u-globulin genes in the rat as a tandem array of single genes differs from the homologous major urinary protein genes in the mouse, which are organized as tandem arrays of divergently oriented gene pairs. The structure of these gene clusters may have consequences for the proposed function, as a pheromone transporter, for the protein products encoded by these genes.
Wakeman, Brian S.; Izumiya, Yoshihiro
2016-01-01
ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50. RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. IMPORTANCE Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. PMID:27795414
Compositional Gene Landscapes in Vertebrates
Cruveiller, Stéphane; Jabbari, Kamel; Clay, Oliver; Bernardi, Giorgio
2004-01-01
The existence of a well conserved linear relationship between GC levels of genes' second and third codon positions (GC2, GC3) prompted us to focus on the landscape, or joint distribution, spanned by these two variables. In human, well curated coding sequences now cover at least 15%–30% of the estimated total gene set. Our analysis of the landscape defined by this gene set revealed not only the well documented linear crest, but also the presence of several peaks and valleys along that crest, a property that was also indicated in two other warm-blooded vertebrates represented by large gene databases, that is, mouse and chicken. GC2 is the sum of eight amino acid frequencies, whereas GC3 is linearly related to the GC level of the chromosomal region containing the gene. The landscapes therefore portray relations between proteins and the DNA environments of the genes that encode them. PMID:15123586
Compositional gene landscapes in vertebrates.
Cruveiller, Stéphane; Jabbari, Kamel; Clay, Oliver; Bernardi, Giorgio
2004-05-01
The existence of a well conserved linear relationship between GC levels of genes' second and third codon positions (GC2, GC3) prompted us to focus on the landscape, or joint distribution, spanned by these two variables. In human, well curated coding sequences now cover at least 15%-30% of the estimated total gene set. Our analysis of the landscape defined by this gene set revealed not only the well documented linear crest, but also the presence of several peaks and valleys along that crest, a property that was also indicated in two other warm-blooded vertebrates represented by large gene databases, that is, mouse and chicken. GC2 is the sum of eight amino acid frequencies, whereas GC3 is linearly related to the GC level of the chromosomal region containing the gene. The landscapes therefore portray relations between proteins and the DNA environments of the genes that encode them.
Cavaillé, Jérôme; Buiting, Karin; Kiefmann, Martin; Lalande, Marc; Brannan, Camilynn I.; Horsthemke, Bernhard; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander
2000-01-01
We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11–q13, within a region implicated in the Prader–Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2′-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA. PMID:11106375
Karn, Robert C.; Chung, Amanda G.; Laukaitis, Christina M.
2014-01-01
The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution. PMID:25531410
Karn, Robert C; Chung, Amanda G; Laukaitis, Christina M
2014-01-01
The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.
Hypoxia-inducible Factor-2α-dependent Hypoxic Induction of Wnt10b Expression in Adipogenic Cells*
Park, Young-Kwon; Park, Bongju; Lee, Seongyeol; Choi, Kang; Moon, Yunwon; Park, Hyunsung
2013-01-01
Adipocyte hyperplasia and hypertrophy in obesity can lead to many changes in adipose tissue, such as hypoxia, metabolic dysregulation, and enhanced secretion of cytokines. In this study, hypoxia increased the expression of Wnt10b in both human and mouse adipogenic cells, but not in hypoxia-inducible factor (HIF)-2α-deficient adipogenic cells. Chromatin immunoprecipitation analysis revealed that HIF-2α, but not HIF-1α, bound to the Wnt10b enhancer region as well as upstream of the Wnt1 gene, which is encoded by an antisense strand of the Wnt10b gene. Hypoxia-conditioned medium (H-CM) induced phosphorylation of lipoprotein-receptor-related protein 6 as well as β-catenin-dependent gene expression in normoxic cells, which suggests that H-CM contains canonical Wnt signals. Furthermore, adipogenesis of both human mesenchymal stem cells and mouse preadipocytes was inhibited by H-CM even under normoxic conditions. These results suggest that O2 concentration gradients influence the formation of Wnt ligand gradients, which are involved in the regulation of pluripotency, cell proliferation, and cell differentiation. PMID:23900840
Papillion, Amber M.; Tatum, Arthur H.; Princiotta, Michael F.; Hayes, Sandra M.
2014-01-01
BLK, which encodes B lymphoid kinase, was recently identified in genome wide association studies as a susceptibility gene for systemic lupus erythematosus (SLE), and risk alleles mapping to the BLK locus result in reduced gene expression. To determine whether BLK is indeed a bona fide susceptibility gene, we developed an experimental mouse model, namely the Blk+/−.lpr/lpr (Blk+/−.lpr) mouse, in which Blk expression levels are reduced to levels comparable to those in individuals carrying a risk allele. Here, we report that Blk is expressed not only in B cells, but also in IL-17-producing γδ and DN αβ T cells and in plasmacytoid dendritic cells (pDCs). Moreover, we found that solely reducing Blk expression in C57BL/6-lpr/lpr mice enhanced proinflammatory cytokine production and accelerated the onset of lymphoproliferation, proteinuria, and kidney disease. Together, these findings suggest that BLK risk alleles confer susceptibility to SLE through the dysregulation of a proinflammatory cytokine network. PMID:24637841
Chen, Hsu-Hsin; Luche, Ralf; Wei, Bo; Tonks, Nicholas K
2004-10-01
Dual specificity phosphatases (DSPs) are members of the protein-tyrosine phosphatase superfamily that dephosphorylate both phosphotyrosine and phosphoserine/threonine residues in vitro. Many DSPs have been found to play important roles in various aspects of cellular function and to be involved in human disease. We have identified a gene located on human chromosome 10q22.2, which utilizes alternative open reading frames (ORFs) to encode the following two distinct DSPs: the previously described testis and skeletal muscle-specific dual specificity phosphatase (TMDP) and a novel DSP, muscle-restricted dual specificity phosphatase (MDSP). Use of alternative ORFs encoding distinct proteins from a single gene is extremely rare in eukaryotes, and in all previously reported cases the two proteins produced from one gene are unrelated. To our knowledge this is the first example of a gene from which two distinct proteins of the same family are expressed using alternative ORFs. Here we provide evidence that both MDSP and TMDP proteins are expressed in vivo and are restricted to specific tissues, skeletal muscle and testis, respectively. Most interestingly, the protein expression profiles of both MDSP and TMDP during mouse postnatal development are strikingly similar. MDSP is expressed at very low levels in myotubes and early postnatal muscle. TMDP is not detectable in testis lysate in the first 3 weeks of life. The expression of both MDSP and TMDP proteins was markedly increased at approximately the 3rd week after birth and continued to increase gradually into adulthood, implying that the physiological functions of both DSPs are specific to the mature/late-developing organs. The conserved gene structure and the similarity in postnatal expression profile of these two proteins suggest biological significance of the unusual gene arrangement.
The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family.
Galarneau, L; Paré, J F; Allard, D; Hamel, D; Levesque, L; Tugwood, J D; Green, S; Bélanger, L
1996-07-01
The alpha1-fetoprotein (AFP) gene is located between the albumin and alpha-albumin genes and is activated by transcription factor FTF (fetoprotein transcription factor), presumed to transduce early developmental signals to the albumin gene cluster. We have identified FTF as an orphan nuclear receptor of the Drosophila FTZ-F1 family. FTF recognizes the DNA sequence 5'-TCAAGGTCA-3', the canonical recognition motif for FTZ-F1 receptors. cDNA sequence homologies indicate that rat FTF is the ortholog of mouse LRH-1 and Xenopus xFF1rA. Rodent FTF is encoded by a single-copy gene, related to the gene encoding steroidogenic factor 1 (SF-1). The 5.2-kb FTF transcript is translated from several in-frame initiator codons into FTF isoforms (54 to 64 kDa) which appear to bind DNA as monomers, with no need for a specific ligand, similar KdS (approximately equal 3 x 10(-10) M), and similar transcriptional effects. FTF activates the AFP promoter without the use of an amino-terminal activation domain; carboxy-terminus-truncated FTF exerts strong dominant negative effects. In the AFP promoter, FTF recruits an accessory trans-activator which imparts glucocorticoid reactivity upon the AFP gene. FTF binding sites are found in the promoters of other liver-expressed genes, some encoding liver transcription factors; FTF, liver alpha1-antitrypsin promoter factor LFB2, and HNF-3beta promoter factor UF2-H3beta are probably the same factor. FTF is also abundantly expressed in the pancreas and may exert differentiation functions in endodermal sublineages, similar to SF-1 in steroidogenic tissues. HepG2 hepatoma cells seem to express a mutated form of FTF.
Cell-Type Specific Features of Circular RNA Expression
Salzman, Julia; Chen, Raymond E.; Olsen, Mari N.; Wang, Peter L.; Brown, Patrick O.
2013-01-01
Thousands of loci in the human and mouse genomes give rise to circular RNA transcripts; at many of these loci, the predominant RNA isoform is a circle. Using an improved computational approach for circular RNA identification, we found widespread circular RNA expression in Drosophila melanogaster and estimate that in humans, circular RNA may account for 1% as many molecules as poly(A) RNA. Analysis of data from the ENCODE consortium revealed that the repertoire of genes expressing circular RNA, the ratio of circular to linear transcripts for each gene, and even the pattern of splice isoforms of circular RNAs from each gene were cell-type specific. These results suggest that biogenesis of circular RNA is an integral, conserved, and regulated feature of the gene expression program. PMID:24039610
Molecular identity and gene expression of aldosterone synthase cytochrome P450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Mitsuhiro; Nonaka, Yasuki; Takemori, Hiroshi
11{beta}-Hydroxylase (CYP11B1) of bovine adrenal cortex produced corticosterone as well as aldosterone from 11-deoxycorticosterone in the presence of the mitochondrial P450 electron transport system. CYP11B1s of pig, sheep, and bullfrog, when expressed in COS-7 cells, also performed corticosterone and aldosterone production. Since these CYP11B1s are present in the zonae fasciculata and reticularis as well as in the zona glomerulosa, the zonal differentiation of steroid production may occur by the action of still-unidentified factor(s) on the enzyme-catalyzed successive oxygenations at C11- and C18-positions of steroid. In contrast, two cDNAs, one encoding 11{beta}-hydroxylase and the other encoding aldosterone synthase (CYP11B2), were isolatedmore » from rat, mouse, hamster, guinea pig, and human adrenals. The expression of CYP11B1 gene was regulated by cyclic AMP (cAMP)-dependent signaling, whereas that of CYP11B2 gene by calcium ion-signaling as well as cAMP-signaling. Salt-inducible protein kinase, a cAMP-induced novel protein kinase, was one of the regulators of CYP11B2 gene expression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, E.C.C.; Mullersman, J.E.; Thomas, M.L.
1993-07-01
The leukocyte common antigen-related protein tyrosine phosphatase (LRP) is a widely expressed transmembrane glycoprotein thought to be involved in cell growth and differentiation. Similar to most other transmembrane protein tyrosine phosphatases, LRP contains two tandem cytoplasmic phosphatase domains. To understand further the regulation and evolution of LRP, the authors have isolated and characterized mouse [lambda] genomic clones. Thirteen genomic clones could be divided into two non-overlapping clusters. The first cluster contained the transcription initiation site and the exon encoding most of the 5[prime] untranslated region. The second cluster contained the remaining exons encoding the protein and the 3[prime] untranslated region.more » The gene consists of 22 exons spanning over 75 kb. The distance between exon 1 and exon 2 is at least 25 kb. Characterization of the 5[prime] ends of LRP mRNA by S1 nuclease protection identifies putative initiation start sites within a G/C-rich region. The upstream region does not contain a TATA box. Comparison of the LRP gene structure to the mammalian protein tyrosine phosphatase gene, CD45, shows striking similarities in size and genomic organization. 29 refs., 5 figs., 1 tab.« less
Schuhmacher, Laura-Nadine; Smith, Ewan St John
2016-12-13
Acid-sensing ion channels (ASICs) are a family of ion channels comprised of six subunits encoded by four genes and they are expressed throughout the peripheral and central nervous systems. ASICs have been implicated in a wide range of physiological and pathophysiological processes: pain, breathing, synaptic plasticity and excitotoxicity. Unlike mice and humans, naked mole-rats do not perceive acid as a noxious stimulus, even though their sensory neurons express functional ASICs, likely an adaptation to living in a hypercapnic subterranean environment. Previous studies of ASIC expression in the mammalian nervous system have often not examined all subunits, or have failed to adequately quantify expression between tissues; to date there has been no attempt to determine ASIC expression in the central nervous system of the naked mole-rat. Here we perform a geNorm study to identify reliable housekeeping genes in both mouse and naked mole-rat and then use quantitative real-time PCR to estimate the relative amounts of ASIC transcripts in different tissues of both species. We identify RPL13A (ribosomal protein L13A) and CANX (calnexin), and β-ACTIN and EIF4A (eukaryotic initiation factor 4a) as being the most stably expressed housekeeping genes in mouse and naked mole-rat, respectively. In both species, ASIC3 was most highly expressed in dorsal root ganglia (DRG), and ASIC1a, ASIC2b and ASIC3 were more highly expressed across all brain regions compared to the other subunits. We also show that ASIC4, a proton-insensitive subunit of relatively unknown function, was highly expressed in all mouse tissues apart from DRG and hippocampus, but was by contrast the lowliest expressed ASIC in all naked mole-rat tissues.
Jalkanen, Jenni; Huhtaniemi, Ilpo; Poutanen, Matti
2005-05-01
The final maturation of spermatozoa produced in the testis takes place during their passage through the epididymis. In this process, the proteins secreted into the epididymal lumen along with changes in the pH and salt composition of the epididymal fluid cause several biochemical changes and remodeling of the sperm plasma membrane. The Crisp family is a group of cysteine-rich secretory proteins that previously consisted of three members, one of which-CRISP1-is an epididymal protein shown to attach to the sperm surface in the epididymal lumen and to inhibit gamete membrane fusion. In the present paper, we introduce a new member of the Crisp protein family, CRISP4. The new gene was discovered through in silico analysis of the epididymal expressed sequence tag library deposited in the UniGene database. The peptide sequence of CRISP4 has a signal sequence suggesting that it is secreted into the epididymal lumen and might thus interact with sperm. Unlike the other members of the family, Crisp4 is located on chromosome 1 in a cluster of genes encoding for cysteine-rich proteins. Crisp4 is expressed in the mouse exclusively in epithelial cells of the epididymis in an androgen-dependent manner, and the expression of the gene starts at puberty along with the onset of sperm maturation. The identified murine CRISP4 peptide has high homology with human CRISP1, and the homology is higher than that between murine and human CRISP1, suggesting that CRISP4 represents the mouse counterpart of human CRISP1 and could have similar effects on sperm membrane as mouse and human CRISP1.
el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C
1996-08-01
Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.
Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T
1993-12-22
The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.
Germline TRAV5D-4 T-Cell Receptor Sequence Targets a Primary Insulin Peptide of NOD Mice
Nakayama, Maki; Castoe, Todd; Sosinowski, Tomasz; He, XiangLing; Johnson, Kelly; Haskins, Kathryn; Vignali, Dario A.A.; Gapin, Laurent; Pollock, David; Eisenbarth, George S.
2012-01-01
There is accumulating evidence that autoimmunity to insulin B chain peptide, amino acids 9–23 (insulin B:9–23), is central to development of autoimmune diabetes of the NOD mouse model. We hypothesized that enhanced susceptibility to autoimmune diabetes is the result of targeting of insulin by a T-cell receptor (TCR) sequence commonly encoded in the germline. In this study, we aimed to demonstrate that a particular Vα gene TRAV5D-4 with multiple junction sequences is sufficient to induce anti-islet autoimmunity by studying retrogenic mouse lines expressing α-chains with different Vα TRAV genes. Retrogenic NOD strains expressing Vα TRAV5D-4 α-chains with many different complementarity determining region (CDR) 3 sequences, even those derived from TCRs recognizing islet-irrelevant molecules, developed anti-insulin autoimmunity. Induction of insulin autoantibodies by TRAV5D-4 α-chains was abrogated by the mutation of insulin peptide B:9–23 or that of two amino acid residues in CDR1 and 2 of the TRAV5D-4. TRAV13–1, the human ortholog of murine TRAV5D-4, was also capable of inducing in vivo anti-insulin autoimmunity when combined with different murine CDR3 sequences. Targeting primary autoantigenic peptides by simple germline-encoded TCR motifs may underlie enhanced susceptibility to the development of autoimmune diabetes. PMID:22315318
Gao, Rong-Bao; Li, Yan-Qiu; Wang, Ming-Li
2006-06-01
To construct eucaryotic expression recombinant vector containing vivo truncated region of UL83 gene of human cytomegalovirus, realize its steady expression in Hep-2 cell, and study sheltered effect of the eucaryotic expression recombinant vector as DNA vaccine. A vivo truncated UL83 gene fragment encoding for truncated HCMV pp65 was obtained by PCR from human cytomegalovirus AD169 stock genome. By gene recombinant ways, the truncated UL83 gene fragment was cloned into eucaryotic expression vector pEGFP-C1 with reported gene coding GFP to construct recombinant vector pEGFP-C1-UL83. The recombinant vector pEGFP-C1-UL83 was tested by different methods including PCR, restriction digestion and gene sequencing. Test results showed the recombinant vector was constructed successfully. After pEGFP-C1-UL83 was transfected into Hep-2 cell by lipofectin mediation, expression of GFP and truncated pp65 fusion protein in Hep-2 cell was observed at different time points by fluorescence microscope. Results showed that quantity of fusion protein expression was the highest at 36h point. Then, Hep-2 cell was cultured selectively by RPMI-1640 containing G418 (200 microg/mL) to obtain a new cell stock of expressing truncated UL83 Gene fragment steadily. RT-PCR and Western blot results showed the truncated fragment of UL83 gene could be expressed steadily in Hep-2 cell. The result showed a new cell stock of expressing Tpp65 was established. This cell stock could be useful in some HCMV research fields, for example, it could be a tool in study of pp65 and HCMV infection, and it could provide a platform for the research into the therapy of HCMV infection. Immune sheltered effect of pEGFP-C1-UL83 as DNA vaccine was studied in vivo of HCMV congenital infection mouse model. The mouse model was immunized solely by pEGFP-C1-UL83, and was immunized jointly by pEGFP-C1-UL83 and its expression product. When the mouse was pregnant and brought to bed, differential antibody of anti-HCMV pp65 was tested by indirect ELISA in mother mouse, the infectious virus was separated with the method of virus separation, and pp65 antigen was checked up by indirect immunofluorescence staining in fetal mouse. Results showed differential antibody of anti-HCMV pp65 was produced in mouse model. Tilter of the antibody was from 1:2.51 to 1:50.79. Results of virus separation and pp65 checkup of fetal mouse brain tissue were negative. So the conclusion can be reached that pEGFP-C1-UL83 as DNA vaccine in vivo has sheltered effect which can prevent HCMV vertical transmission from mother mouse to her fetus.
Positive selection on human gamete-recognition genes
Stover, Daryn A.; Guerra, Vanessa; Mozaffari, Sahar V.; Ober, Carole; Mugal, Carina F.; Kaj, Ingemar
2018-01-01
Coevolution of genes that encode interacting proteins expressed on the surfaces of sperm and eggs can lead to variation in reproductive compatibility between mates and reproductive isolation between members of different species. Previous studies in mice and other mammals have focused in particular on evidence for positive or diversifying selection that shapes the evolution of genes that encode sperm-binding proteins expressed in the egg coat or zona pellucida (ZP). By fitting phylogenetic models of codon evolution to data from the 1000 Genomes Project, we identified candidate sites evolving under diversifying selection in the human genes ZP3 and ZP2. We also identified one candidate site under positive selection in C4BPA, which encodes a repetitive protein similar to the mouse protein ZP3R that is expressed in the sperm head and binds to the ZP at fertilization. Results from several additional analyses that applied population genetic models to the same data were consistent with the hypothesis of selection on those candidate sites leading to coevolution of sperm- and egg-expressed genes. By contrast, we found no candidate sites under selection in a fourth gene (ZP1) that encodes an egg coat structural protein not directly involved in sperm binding. Finally, we found that two of the candidate sites (in C4BPA and ZP2) were correlated with variation in family size and birth rate among Hutterite couples, and those two candidate sites were also in linkage disequilibrium in the same Hutterite study population. All of these lines of evidence are consistent with predictions from a previously proposed hypothesis of balancing selection on epistatic interactions between C4BPA and ZP3 at fertilization that lead to the evolution of co-adapted allele pairs. Such patterns also suggest specific molecular traits that may be associated with both natural reproductive variation and clinical infertility. PMID:29340252
Puhl, Henry L.; Ikeda, Stephen R.
2008-01-01
Voltage-gated sodium channels (VGSC) are critical membrane components that participate in the electrical activity of excitable cells. The type one VGSC family includes the tetrodotoxin insensitive sodium channel, Nav1.8, encoded by the Scn10a gene. Nav1.8 expression is restricted to small and medium diameter nociceptive sensory neurons of the dorsal root (DRG) and cranial sensory ganglia. In order to understand the stringent transcriptional regulation of the Scn10a gene, the sensory neuron specific promoter was functionally identified. While identifying the mRNA 5’ end, alternative splicing within the 5’ UTR was observed to create heterogeneity in the RNA transcript. Four kilobases of upstream genomic DNA was cloned and the presence of tissue specific promoter activity was tested by microinjection and adenoviral infection of fluorescent protein reporter constructs into primary mouse and rat neurons, and cell lines. The region contained many putative transcription factor binding sites and strong homology with the predicted rat ortholog. Homology to the predicted human ortholog was limited to the proximal end and several conserved cis elements were noted. Two regulatory modules were identified by microinjection of reporter constructs into DRG and superior cervical ganglia neurons: a neuron specific proximal promoter region between −1.6 and −0.2kb of the transcription start site cluster, and a distal sensory neuron switch region beyond −1.6kb that restricted fluorescent protein expression to a subset of primary sensory neurons. PMID:18466327
Qu, Baoxi; Rosenberg, Roger N; Li, Liping; Boyer, Philip J; Johnston, Stephen A
2004-12-01
The amyloid-beta (Abeta) peptide has a central role in the neurodegeneration of Alzheimer disease (AD). Immunization of AD transgenic mice with Abeta(1-42) (Abeta(42)) peptide reduces both the spatial memory impairments and AD-like neuropathologic changes in these mice. Therapeutic immunization with Abeta in patients with AD was shown to be effective in reducing Abeta deposition, but studies were discontinued owing to the development of an autoimmune, cell-mediated meningoencephalitis. We hypothesized that gene vaccination could be used to generate an immune response to Abeta(42) that produced antibody response but avoided an adverse cell-mediated immune effect. To develop an effective genetic immunization approach for treatment and prevention of AD without causing an autoimmune, cell-mediated meningoencephalitis. Mice were vaccinated with a plasmid that encodes Abeta(42), administered by gene gun. The immune response of the mice to Abeta(42) was monitored by measurement of (1) antibody levels by enzyme-linked immunosorbent assay (ELISA) and Western blot and (2) Abeta(42)-specific T-cell response as measured by interferon-gamma enzyme-linked immunospot (ELISPOT) assay. Gene-gun delivery of the mouse Abeta(42) dimer gene induced significant humoral immune responses in BALB/c wild-type mice after 3 vaccinations in 10-day intervals. All 3 mice in the treated group showed significant humoral immune responses. The ELISPOT assay for interferon-gamma release with mouse Abeta(42) peptide and Abeta(9-18) showed no evident cytotoxic T-lymphocyte response. We further tested the responses of wild-type BALB/c mice to the monomer Abeta(42) gene vaccine. Western blot evaluation showed both human and mouse Abeta monomer gene vaccine elicited detectable humoral immune responses. We also introduced the human Abeta(42) monomer gene vaccine into AD double transgenic mice APPswe/PSEN1(A246E). Mice were vaccinated with plasmids that encode Abeta(1-42) and Abeta(1-16), or with plasmid without the Abeta gene. Treated mice showed significant humoral immune responses as demonstrated by ELISA and by Western blot. These mice also showed no significant cellular immune response as tested by ELISPOT. One of the treated mice was killed at 7 months of age for histological observations, and scattered amyloid plaques were noted in all layers of the cerebral cortex and in the hippocampus in both Abeta(42)- and control-vaccinated mice. No definite difference was discerned between the experimental and control animals. Gene-gun-administered genetic immunization with the Abeta(42) gene in wild-type BALB/c and AD transgenic mice can effectively elicit humoral immune responses without a significant T-cell-mediated immune response to the Abeta peptide. This immunotherapeutic approach could provide an alternative active immunization method for therapy and prevention of AD.
Kozak, Natalia A; Buss, Meghan; Lucas, Claressa E; Frace, Michael; Govil, Dhwani; Travis, Tatiana; Olsen-Rasmussen, Melissa; Benson, Robert F; Fields, Barry S
2010-02-01
Legionella longbeachae causes most cases of legionellosis in Australia and may be underreported worldwide due to the lack of L. longbeachae-specific diagnostic tests. L. longbeachae displays distinctive differences in intracellular trafficking, caspase 1 activation, and infection in mouse models compared to Legionella pneumophila, yet these two species have indistinguishable clinical presentations in humans. Unlike other legionellae, which inhabit freshwater systems, L. longbeachae is found predominantly in moist soil. In this study, we sequenced and annotated the genome of an L. longbeachae clinical isolate from Oregon, isolate D-4968, and compared it to the previously published genomes of L. pneumophila. The results revealed that the D-4968 genome is larger than the L. pneumophila genome and has a gene order that is different from that of the L. pneumophila genome. Genes encoding structural components of type II, type IV Lvh, and type IV Icm/Dot secretion systems are conserved. In contrast, only 42/140 homologs of genes encoding L. pneumophila Icm/Dot substrates have been found in the D-4968 genome. L. longbeachae encodes numerous proteins with eukaryotic motifs and eukaryote-like proteins unique to this species, including 16 ankyrin repeat-containing proteins and a novel U-box protein. We predict that these proteins are secreted by the L. longbeachae Icm/Dot secretion system. In contrast to the L. pneumophila genome, the L. longbeachae D-4968 genome does not contain flagellar biosynthesis genes, yet it contains a chemotaxis operon. The lack of a flagellum explains the failure of L. longbeachae to activate caspase 1 and trigger pyroptosis in murine macrophages. These unique features of L. longbeachae may reflect adaptation of this species to life in soil.
Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene.
Mollereau, C; Simons, M J; Soularue, P; Liners, F; Vassart, G; Meunier, J C; Parmentier, M
1996-08-06
Nociceptin (orphanin FQ), the newly discovered natural agonist of opioid receptor-like (ORL1) receptor, is a neuropeptide that is endowed with pronociceptive activity in vivo. Nociceptin is derived from a larger precursor, prepronociceptin (PPNOC), whose human, mouse, and rat genes we have now isolated. The PPNOC gene is highly conserved in the three species and displays organizational features that are strikingly similar to those of the genes of preproenkephalin, preprodynorphin, and preproopiomelanocortin, the precursors to endogenous opioid peptides, suggesting the four genes belong to the same family-i.e., have a common evolutionary origin. The PPNOC gene encodes a single copy of nociceptin as well as of other peptides whose sequence is strictly conserved across murine and human species; hence it is likely to be neurophysiologically significant. Northern blot analysis shows that the PPNOC gene is predominantly transcribed in the central nervous system (brain and spinal cord) and, albeit weakly, in the ovary, the sole peripheral organ expressing the gene. By using a radiation hybrid cell line panel, the PPNOC gene was mapped to the short arm of human chromosome 8 (8p21), between sequence-tagged site markers WI-5833 and WI-1172, in close proximity of the locus encoding the neurofilament light chain NEFL. Analysis of yeast artificial chromosome clones belonging to the WC8.4 contig covering the 8p21 region did not allow to detect the presence of the gene on these yeast artificial chromosomes, suggesting a gap in the coverage within this contig.
Pan, Ling; Pasternak, David A; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W; Pan, Ying-Xian
2017-01-01
The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3' or 5' splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function.
Immunogenicity and efficacy of an anthrax/plague DNA fusion vaccine in a mouse model.
Albrecht, Mark T; Eyles, Jim E; Baillie, Les W; Keane-Myers, Andrea M
2012-08-01
The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y . pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B. anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y. pestis. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Allcock, Richard J N; Barrow, Alexander D; Forbes, Simon; Beck, Stephan; Trowsdale, John
2003-02-01
We have characterized a cluster of single immunoglobulin variable (IgV) domain receptors centromeric of the major histocompatibility complex (MHC) on human chromosome 6. In addition to triggering receptor expressed on myeloid cells (TREM)-1 and TREM2, the cluster contains NKp44, a triggering receptor whose expression is limited to NK cells. We identified three new related genes and two gene fragments within a cluster of approximately 200 kb. Two of the three new genes lack charged residues in their transmembrane domain tails. Further, one of the genes contains two potential immunotyrosine Inhibitory motifs in its cytoplasmic tail, suggesting that it delivers inhibitory signals. The human and mouse TREM clusters appear to have diverged such that there are unique sequences in each species. Finally, each gene in the TREM cluster was expressed in a different range of cell types.
Lantinga-van Leeuwen, I S; Kooistra, H S; Mol, J A; Renier, C; Breen, M; van Oost, B A
2000-01-01
Abnormalities in the genes encoding Pit-1 and Prop-1 have been reported to cause combined pituitary hormone deficiency (CPHD) in mice and humans. In dogs, a similar phenotype has been described in the German shepherd breed. We have previously reported that the Pit-1 gene (POU1F1) is not mutated in affected German shepherd dogs. In this study, we report the isolation and mapping of the canine Prop-1 gene (PROP1), and we assessed the involvement of PROP1 in German shepherd dog dwarfism. The canine PROP1 gene was found to contain three exons, encoding a 226 amino acid protein. The deduced amino acid sequence was 79% and 84% homologous with the mouse and human Prop-1 protein, respectively. Using fluorescence in situ hybridization, PROP1 was mapped to canine chromosome 11. Further mapping with a canine radiation hybrid panel showed co-localization with the polymorphic DNA marker AHT137. Sequence analysis of genomic DNA from dwarf German shepherd dogs revealed no alterations in the PROP1 gene. Moreover, linkage analysis of AHT137 revealed no co-segregation between the PROP1 locus and the CPHD phenotype, excluding this gene as candidate for canine CPHD and providing a new spontaneous model of hypopituitarism. Copyright 2000 S. Karger AG, Basel
Cloning, sequencing and expression in MEL cells of a cDNA encoding the mouse ribosomal protein S5.
Vanegas, N; Castañeda, V; Santamaría, D; Hernández, P; Schvartzman, J B; Krimer, D B
1997-06-05
We describe the isolation and characterization of a cDNA encoding the mouse S5 ribosomal protein. It was isolated from a MEL (murine erythroleukemia) cell cDNA library by differential hybridization as a down regulated sequence during HMBA-induced differentiation. Northern series analysis showed that S5 mRNA expression is reduced 5-fold throughout the differentiation process. The mouse S5 mRNA is 760 bp long and encodes for a 204 amino acid protein with 94% homology with the human and rat S5.
Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin
2010-02-01
This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.
Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury.
Tao, Ge; Kahr, Peter C; Morikawa, Yuka; Zhang, Min; Rahmani, Mahdis; Heallen, Todd R; Li, Lele; Sun, Zhao; Olson, Eric N; Amendt, Brad A; Martin, James F
2016-06-02
Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.
Swanzey, Emily; Stadtfeld, Matthias
2016-11-15
Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knock-in reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this 'imprinting reporter mouse' can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals the role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease. © 2016. Published by The Company of Biologists Ltd.
Cheung, Connie; Gonzalez, Frank J
2008-01-01
Cytochrome P450s (P450s) are important enzymes involved in the metabolism of xenobiotics, particularly clinically used drugs, and are also responsible for metabolic activation of chemical carcinogens and toxins. Many xenobiotics can activate nuclear receptors that in turn induce the expression of genes encoding xenobiotic metabolizing enzymes and drug transporters. Marked species differences in the expression and regulation of cytochromes P450 and xenobiotic nuclear receptors exist. Thus obtaining reliable rodent models to accurately reflect human drug and carcinogen metabolism is severely limited. Humanized transgenic mice were developed in an effort to create more reliable in vivo systems to study and predict human responses to xenobiotics. Human P450s or human xenobiotic-activated nuclear receptors were introduced directly or replaced the corresponding mouse gene, thus creating “humanized” transgenic mice. Mice expressing human CYP1A1/CYP1A2, CYP2E1, CYP2D6, CYP3A4, CY3A7, PXR, PPARα were generated and characterized. These humanized mouse models offers a broad utility in the evaluation and prediction of toxicological risk that may aid in the development of safer drugs. PMID:18682571
Quantum changes in Helicobacter pylori gene expression accompany host-adaptation
Wise, Michael J.; Khosravi, Yalda; Seow, Shih-Wee; Amoyo, Arlaine A.; Pettersson, Sven; Peters, Fanny; Tay, Chin-Yen; Perkins, Timothy T.; Loke, Mun-Fai; Marshall, Barry J.; Vadivelu, Jamuna
2017-01-01
Abstract Helicobacter pylori is a highly successful gastric pathogen. High genomic plasticity allows its adaptation to changing host environments. Complete genomes of H. pylori clinical isolate UM032 and its mice-adapted serial derivatives 298 and 299, generated using both PacBio RS and Illumina MiSeq sequencing technologies, were compared to identify novel elements responsible for host-adaptation. The acquisition of a jhp0562-like allele, which encodes for a galactosyltransferase, was identified in the mice-adapted strains. Our analysis implies a new β-1,4-galactosyltransferase role for this enzyme, essential for Ley antigen expression. Intragenomic recombination between babA and babB genes was also observed. Further, we expanded on the list of candidate genes whose expression patterns have been mediated by upstream homopolymer-length alterations to facilitate host adaption. Importantly, greater than four-fold reduction of mRNA levels was demonstrated in five genes. Among the down-regulated genes, three encode for outer membrane proteins, including BabA, BabB and HopD. As expected, a substantial reduction in BabA protein abundance was detected in mice-adapted strains 298 and 299 via Western analysis. Our results suggest that the expression of Ley antigen and reduced outer membrane protein expressions may facilitate H. pylori colonisation of mouse gastric epithelium. PMID:27803027
Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function
Kin, Nicholas W.; Chen, Yao; Stefanov, Emily K.; Gallo, Richard L.; Kearney, John F.
2011-01-01
Mammalian antimicrobial peptides (AMPs) play an important role in host defense via direct antimicrobial activity as well as immune regulation. The mouse cathelin-related antimicrobial peptide (mCRAMP), produced from the mouse gene Camp, is the only mouse cathelicidin identified and the ortholog of the human gene encoding the peptide LL-37. This study tested the hypothesis that mouse B and T cells produce and respond to mCRAMP. We show that all mature mouse B-cell subsets, including follicular (FO), marginal zone (MZ), B1a, and B1b cells, as well as CD4+ and CD8+ T cells produce Camp mRNA and mCRAMP protein. Camp−/− B cells produced equivalent levels of IgM, IgG3, and IgG2c but less IgG1 and IgE, while Camp−/− CD4+ T cells cultured in Th2-inducing conditions produced more IL-4-expressing cells when compared with WT cells, effects that were reversed upon addition of mCRAMP. In vivo, Camp−/− mice immunized with TNP-OVA absorbed in alum produced an enhanced TNP-specific IgG1 response when compared with WT mice. ELISpot analysis revealed increased numbers of TNP-specific IgG1-secreting splenic B cells and FACS analysis revealed increased CD4+ T-cell IL-4 expression. Our results suggest that mCRAMP differentially regulates B- and T-cell function and implicate mCRAMP in the regulation of adaptive immune responses. PMID:21773974
Wang, Dan; Shukla, Charu; Liu, Xiaoli; Schoeb, Trenton R.; Clarke, Lorne A.; Bedwell, David M.; Keeling, Kim M.
2009-01-01
Here we report the characterization of a knock-in mouse model for the autosomal recessive disorder mucopolysaccharidosis type I-Hurler (MPS I-H), also known as Hurler syndrome. MPS I-H is the most severe form of α-L-iduronidase deficiency. α-L-iduronidase (encoded by the IDUA gene) is a lysosomal enzyme that participates in the degradation of dermatan sulfate and heparan sulfate. Using gene replacement methodology, a nucleotide change was introduced into the mouse Idua locus that resulted in a nonsense mutation at codon W392. The Idua-W392X mutation is analogous to the human IDUA-W402X mutation commonly found in MPS I-H patients. We found that the phenotype in homozygous Idua-W392X mice closely correlated with the human MPS I-H disease. Homozygous W392X mice showed no detectable α-L-iduronidase activity. We observed a defect in GAG degradation as evidenced by an increase in sulfated GAGs excreted in the urine and stored in multiple tissues. Histology and electron microscopy also revealed evidence of GAG storage in all tissues examined. Additional assessment revealed bone abnormalities and altered metabolism within the Idua-W392X mouse. This new mouse will provide an important tool to investigate therapeutic approaches for MPS I-H that cannot be addressed using current MPS I-H animal models. PMID:19751987
Gattelli, Albana; Zimberlin, María N; Meiss, Roberto P; Castilla, Lucio H; Kordon, Edith C
2006-11-01
Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.
2014-09-10
Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells.more » Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.« less
Chaillou, Thomas; Jackson, Janna R; England, Jonathan H; Kirby, Tyler J; Richards-White, Jena; Esser, Karyn A; Dupont-Versteegden, Esther E; McCarthy, John J
2015-01-01
The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. Copyright © 2015 the American Physiological Society.
Chaillou, Thomas; Jackson, Janna R.; England, Jonathan H.; Kirby, Tyler J.; Richards-White, Jena; Esser, Karyn A.; Dupont-Versteegden, Esther E.
2014-01-01
The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. PMID:25554798
Miki, Tsuyoshi; Iguchi, Mirei; Akiba, Kinari; Hosono, Masato; Sobue, Tomoyoshi; Danbara, Hirofumi; Okada, Nobuhiko
2010-08-01
Chromobacterium violaceum is a Gram-negative bacterium that causes fatal septicaemia in humans and animals. C. violaceum ATCC 12472 possesses genes associated with two distinct type III secretion systems (T3SSs). One of these systems is encoded by Chromobacterium pathogenicity islands 1 and 1a (Cpi-1/-1a), another is encoded by Chromobacterium pathogenicity island 2 (Cpi-2). Here we show that C. violaceum causes fulminant hepatitis in a mouse infection model, and Cpi-1/-1a-encoded T3SS is required for its virulence. In addition, using C. violaceum strains with defined mutations in the genes that encode the Cpi-1/-1a or Cpi-2 locus in combination with cultured mammalian cell lines, we found that C. violaceum is able to induce cytotoxicity in a Cpi-1/-1a-dependent manner. Characterization of Chromobacterium-induced cytotoxicity revealed that cell lysis by C. violaceum infection involves the formation of pore structures on the host cell membrane, as demonstrated by protection by cytotoxicity in the presence of osmoprotectants. Finally, we demonstrated that CipB, a Cpi-1/-1a effector, is implicated in translocator-mediated pore formation and the ability of CipB to form a pore is essential for Chromobacterium-induced cytotoxicity. These results strongly suggest that Cpi-1/-1a-encoded T3SS is a virulence determinant that causes fatal infection by the induction of cell death in hepatocytes. © 2010 Blackwell Publishing Ltd.
Elrobh, Mohamed S.; Alanazi, Mohammad S.; Khan, Wajahatullah; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Bazzi, Mohammad D.
2011-01-01
Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species. PMID:21845074
Manolson, M F; Proteau, D; Preston, R A; Stenbit, A; Roberts, B T; Hoyt, M A; Preuss, D; Mulholland, J; Botstein, D; Jones, E W
1992-07-15
Yeast vacuolar acidification-defective (vph) mutants were identified using the pH-sensitive fluorescence of 6-carboxyfluorescein diacetate (Preston, R. A., Murphy, R. F., and Jones, E. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7027-7031). Vacuoles purified from yeast bearing the vph1-1 mutation had no detectable bafilomycin-sensitive ATPase activity or ATP-dependent proton pumping. The peripherally bound nucleotide-binding subunits of the vacuolar H(+)-ATPase (60 and 69 kDa) were no longer associated with vacuolar membranes yet were present in wild type levels in yeast whole cell extracts. The VPH1 gene was cloned by complementation of the vph1-1 mutation and independently cloned by screening a lambda gt11 expression library with antibodies directed against a 95-kDa vacuolar integral membrane protein. Deletion disruption of the VPH1 gene revealed that the VPH1 gene is not essential for viability but is required for vacuolar H(+)-ATPase assembly and vacuolar acidification. VPH1 encodes a predicted polypeptide of 840 amino acid residues (molecular mass 95.6 kDa) and contains six putative membrane-spanning regions. Cell fractionation and immunodetection demonstrate that Vph1p is a vacuolar integral membrane protein that co-purifies with vacuolar H(+)-ATPase activity. Multiple sequence alignments show extensive homology over the entire lengths of the following four polypeptides: Vph1p, the 116-kDa polypeptide of the rat clathrin-coated vesicles/synaptic vesicle proton pump, the predicted polypeptide encoded by the yeast gene STV1 (Similar To VPH1, identified as an open reading frame next to the BUB2 gene), and the TJ6 mouse immune suppressor factor.
Requirement of Sur2 for Efficient Replication of Mouse Adenovirus Type 1
Fang, Lei; Stevens, Jennitte L.; Berk, Arnold J.; Spindler, Katherine R.
2004-01-01
Mouse adenovirus type 1 (MAV-1) early region 1A (E1A) encodes a virulence gene in viral infection of mice. To broaden our understanding of the functions of E1A in MAV-1 pathogenesis, an unbiased experimental approach, glutathione S-transferase (GST) pulldown, was used to screen for cellular proteins that interact with E1A protein. We identified mouse Sur2, a subunit of Mediator complex, as a protein that binds to MAV-1 E1A. The interaction between Sur2 and MAV-1 E1A was confirmed in virus-infected cells. Conserved region 3 (CR3) of MAV-1 E1A was mapped as the region required for Sur2-E1A interaction, as is the case for human adenovirus E1A. Although it has been proposed that human adenovirus E1A recruits the Mediator complex to transactivate transcription of viral early genes, Sur2 function in adenovirus replication has not been directly tested previously. Studies on the functions of Sur2 with mouse embryonic fibroblasts (MEFs) showed that there was a multiplicity-dependent growth defect of MAV-1 in Sur2−/− MEFs compared to Sur2+/+ MEFs. Comparison of the viral DNA and viral mRNA levels in Sur2+/+ and Sur2−/− MEFs confirmed that Sur2 was important for efficient viral replication. The viral replication defects in Sur2−/− MEFs appeared to be due at least in part to a defect in viral early gene transcription. PMID:15542641
Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.
Denas, Olgert; Sandstrom, Richard; Cheng, Yong; Beal, Kathryn; Herrero, Javier; Hardison, Ross C; Taylor, James
2015-02-14
Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the extent of the shared regulatory sequence across TFs and cell types under study. Importantly, a large part of the shared regulatory sequence is repurposed on the other species. This sequence, fueled by turnover events, provides a strong case for exaptation in regulatory elements.
Disruption of DNA methylation-dependent long gene repression in Rett syndrome
Gabel, Harrison W.; Kinde, Benyam Z.; Stroud, Hume; Gilbert, Caitlin S.; Harmin, David A.; Kastan, Nathaniel R.; Hemberg, Martin; Ebert, Daniel H.; Greenberg, Michael E.
2015-01-01
Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136
Pound, Lynley D.; Sarkar, Suparna A.; Ustione, Alessandro; Dadi, Prasanna K.; Shadoan, Melanie K.; Lee, Catherine E.; Walters, Jay A.; Shiota, Masakazu; McGuinness, Owen P.; Jacobson, David A.; Piston, David W.; Hutton, John C.; Powell, David R.; O’Brien, Richard M.
2012-01-01
Objective The SLC30A8 gene encodes the islet-specific transporter ZnT-8, which is hypothesized to provide zinc for insulin-crystal formation. A polymorphic variant in SLC30A8 is associated with altered susceptibility to type 2 diabetes. Several groups have examined the effect of global Slc30a8 gene deletion but the results have been highly variable, perhaps due to the mixed 129SvEv/C57BL/6J genetic background of the mice studied. We therefore sought to remove the conflicting effect of 129SvEv-specific modifier genes. Methods The impact of Slc30a8 deletion was examined in the context of the pure C57BL/6J genetic background. Results Male C57BL/6J Slc30a8 knockout (KO) mice had normal fasting insulin levels and no change in glucose-stimulated insulin secretion (GSIS) from isolated islets in marked contrast to the ∼50% and ∼35% decrease, respectively, in both parameters observed in male mixed genetic background Slc30a8 KO mice. This observation suggests that 129SvEv-specific modifier genes modulate the impact of Slc30a8 deletion. In contrast, female C57BL/6J Slc30a8 KO mice had reduced (∼20%) fasting insulin levels, though this was not associated with a change in fasting blood glucose (FBG), or GSIS from isolated islets. This observation indicates that gender also modulates the impact of Slc30a8 deletion, though the physiological explanation as to why impaired insulin secretion is not accompanied by elevated FBG is unclear. Neither male nor female C57BL/6J Slc30a8 KO mice showed impaired glucose tolerance. Conclusions Our data suggest that, despite a marked reduction in islet zinc content, the absence of ZnT-8 does not have a substantial impact on mouse physiology. PMID:22829903
Zhang, Haokun; Kiuchi, Takashi; Wang, Lingyan; Kawamoto, Munetaka; Suzuki, Yutaka; Sugano, Sumio; Banno, Yutaka; Katsuma, Susumu; Shimada, Toru
2017-09-20
"Tanaka's mottled translucent" (otm) is a mutation of the silkworm Bombyx mori that exhibits translucent skin during larval stages. We performed positional cloning of the gene responsible for otm and mapped it to a 364-kb region on chromosome 5 that contains 22 hypothetical protein-coding genes. We performed RNA-seq analysis of the epidermis and fat body of otm larvae and determined that the gene BGIBMGA002619 may be responsible for the otm mutation. BGIBMGA002619 encodes the biosynthesis of lysosome-related organelles complex 1 (BLOC-1) subunit 5, whose ortholog is responsible for the Muted mutant in mouse. Accordingly, we named this gene Bm-muted. We discovered that the expression of Bm-muted in the epidermis and fat body of otm mutants was dramatically suppressed compared with the wild type. We determined the nucleotide sequences of the full-length cDNA and genomic region corresponding to Bm-muted and found that a 538-bp long DNA sequence similar to B. mori transposon Organdy was inserted into the 3' end of the first intron of Bm-muted in two otm strains. The Bm-muted cDNA of otm mutants lacked exon 2, and accordingly generated a premature stop codon in exon 3. In addition, short interfering RNA (siRNA)-mediated knockdown of this gene caused localized partial translucency of larval skin. These data indicate that the mutation in Bm-muted caused the otm-mutant phenotype. We propose that the insertion of Organdy caused a splicing disorder in Bm-muted in the otm mutant, resulting in a null mutation of Bm-muted. This mutation is likely to cause deficiencies in urate granule formation in epidermal cells that result in translucent larval skin. Copyright © 2017 Elsevier B.V. All rights reserved.
Chakraborty, Subhra; Monfett, Michael; Maier, Tamara M.; Benach, Jorge L.; Frank, Dara W.; Thanassi, David G.
2008-01-01
Francisella tularensis, a highly virulent facultative intracellular bacterium, is the causative agent of tularemia. Genome sequencing of all F. tularensis subspecies revealed the presence of genes that could encode type IV pili (Tfp). The live vaccine strain (LVS) expresses surface fibers resembling Tfp, but it was not established whether these fibers were indeed Tfp encoded by the pil genes. We show here that deletion of the pilF putative Tfp assembly ATPase in the LVS resulted in a complete loss of surface fibers. Disruption of the pilT putative disassembly ATPase also caused a complete loss of pili, indicating that pilT functions differently in F. tularensis than in model Tfp systems such as those found in Pseudomonas aeruginosa and Neisseria spp. The LVS pilF and pilT mutants were attenuated for virulence in a mouse model of tularemia by the intradermal route. Furthermore, although absence of pili had no effect on the ability of the LVS to replicate intracellularly, the pilF and pilT mutants were defective for adherence to macrophages, pneumocytes, and hepatocytes. This work confirms that the surface fibers expressed by the LVS are encoded by the pil genes and provides evidence that the Francisella pili contribute to host cell adhesion and virulence. PMID:18426883
Chen, Yan-Mei; Du, Zhong-Wei; Yao, Zhen
2005-12-01
Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends. ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG) (SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic caoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression, forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.
Towards Optogenetic Sensory Replacement
Doroudchi, M. Mehdi; Greenberg, Kenneth P.; Zorzos, Anthony N.; Hauswirth, William W.; Fonstad, Clifton G.; Horsager, Alan; Boyden, Edward S.
2013-01-01
Over the last several years we have developed a rapidly-expanding suite of genetically-encoded reagents (e.g., ChR2, Halo, Arch, Mac, and others) that, when expressed in specific neuron types in the nervous system, enable their activities to be powerfully and precisely activated and silenced in response to light. If the genes that encode for these reagents can be delivered to cells in the body using gene therapy methods, and if the resultant protein payloads operate safely and effectively over therapeutically important periods of time, these molecules could subserve a set of precise prosthetics that use light as the trigger of information entry into the nervous system, e.g. for sensory replacement. Here we discuss the use of ChR2 to make the photoreceptor-deprived retina, as found in diseases such as retinitis pigmentosa, sensitive to light, enabling restoration of functional vision in a mouse model of blindness. We also discuss arrays of light sources that could be useful for delivering patterned sensory information into the nervous system. PMID:22255005
Kramer, Martha F.; Jurak, Igor; Pesola, Jean M.; Boissel, Sandrine; Knipe, David M.; Coen, Donald M.
2013-01-01
Several herpes simplex virus 1 microRNAs are encoded within or near the latency associated transcript (LAT) locus, and are expressed abundantly during latency. Some of these microRNAs can repress the expression of important viral proteins and are hypothesized to play important roles in establishing and/or maintaining latent infections. We found that in lytically infected cells and in acutely infected mouse ganglia, expression of LAT-encoded microRNAs was weak and unaffected by a deletion that includes the LAT promoter. In mouse ganglia latently infected with wild type virus, the microRNAs accumulated to high levels, but deletions of the LAT promoter markedly reduced expression of LAT-encoded microRNAs and also miR-H6, which is encoded upstream of LAT and can repress expression of ICP4. Because these LAT deletion mutants establish and maintain latent infections, these microRNAs are not essential for latency, at least in mouse trigeminal ganglia, but may help promote it. PMID:21782205
The Role of the DNA Damage Response in Breast Cancer
2010-02-01
p53, ATM, Chk2, BRCA1, 53BP1, and MDC1 are mutated or inactivated in many human malignancies including breast cancer [6, 9-15]. ATM nullizygosity...receptor family of receptor tyrosine kinases, is amplified in 20-30% of human breast cancers [32, 33]. The genes encoding ErbB1, ErbB3, and insulin-like...engender a robust DDR that has been previously observed in human breast clinical samples but not in established mouse models of mammary cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidai, H.; Quertermous, E.E.; Quertermous, T.
1995-12-10
bHLH-EC2 is a recently characterized member of a growing family of basic helix-loop-helix transcription factors. This family includes bHLH factors such as twist, which appear to be primarily involved in early mesodermal differentiation, and bHLH factors such as TAL-1, which have been characterized through their association with chromosomal breakpoints associated with T-cell leukemias. To provide for studies aimed at understanding the genetic regulation of bHLH-EC2, we have characterized the organization of this gene and conducted preliminary studies of the transcriptional activity of the upstream promoter region. The mouse bHLH-EC2 gene was found to consist of two exons separated by amore » 5-kb intron, an organization pattern similar to the mouse twist gene. The transcription initiation site was identified by RNase protection assay and primer extension analysis. Linked promoter-reporter gene transfection experiments in cultured cells indicated that while the identified upstream sequence can function to promote transcription, it does not function in a cell-specific fashion. To investigate the possible association of bHLH-EC2 with hematological malignancy, the chromosomal location of this gene in the human was mapped by fluorescence in situ hybridization and assigned to chromosome band 20p13. 16 refs., 3 figs.« less
Dashtsoodol, Nyambayar; Shigeura, Tomokuni; Ozawa, Ritsuko; Harada, Michishige; Kojo, Satoshi; Watanabe, Takashi; Koseki, Haruhiko; Nakayama, Manabu; Ohara, Osamu; Taniguchi, Masaru
2016-01-01
Invariant Vα14 natural killer T (NKT) cells, characterized by the expression of a single invariant T cell receptor (TCR) α chain encoded by rearranged Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice, and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.
Mercier, Francois E; Sykes, David B; Scadden, David T
2016-06-14
Defining the molecular regulators of hematopoietic stem and progenitor cells (HSPCs) requires in vivo functional analyses. Competitive bone marrow transplants (BMTs) compare control and test HSPCs to demonstrate the functional role of a genetic change or chemical perturbation. Competitive BMT is enabled by antibodies that specifically recognize hematopoietic cells from congenic mouse strains due to variants of the cell surface protein CD45, designated CD45.1 and CD45.2. The current congenic competitor strain, B6.SJL-Ptprc(a) Pepc(b)/BoyJ (CD45.1), has a substantial inherent disadvantage in competition against the C57BL/6 (CD45.2) strain, confounding experimental interpretation. Despite backcrossing, the congenic interval over which the B6.SJL-Ptprc(a) Pepc(b)/BoyJ strain differs is almost 40 Mb encoding ∼300 genes. Here, we demonstrate that a single amino acid change determines the CD45.1 epitope. Further, we report on the single targeted exon mutant (STEM) mouse strain, CD45.1(STEM), which is functionally equivalent to CD45.2 cells in competitive BMT. This strain will permit the precise definition of functional roles for candidate genes using in vivo HSPC assays. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Siu, Sarah Y.; Dyment, Nathaniel A.; Rowe, David W.; Sundberg, John P.; Uitto, Jouni; Li, Qiaoli
2016-01-01
Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder characterized by early onset of extensive mineralization of the cardiovascular system. The classical forms of GACI are caused by mutations in the ENPP1 gene, encoding a membrane-bound pyrophosphatase/phosphodiesterase that hydrolyzes ATP to AMP and inorganic pyrophosphate. The asj-2J mouse harboring a spontaneous mutation in the Enpp1 gene has been characterized as a model for GACI. These mutant mice develop ectopic mineralization in skin and vascular connective tissues as well as in cartilage and collagen-rich tendons and ligaments. This study examined in detail the temporal ectopic mineralization phenotype of connective tissues in this mouse model, utilizing a novel cryo-histological method that does not require decalcification of bones. The wild type, heterozygous, and homozygous mice were administered fluorescent mineralization labels at 4 weeks (calcein), 10 weeks (alizarin complexone), and 11 weeks of age (demeclocycline). Twenty-four hours later, outer ears, muzzle skin, trachea, aorta, shoulders, and vertebrae were collected from these mice and examined for progression of mineralization. The results revealed differential timeline for disease initiation and progression in various tissues of this mouse model. It also highlights the advantages of cryo-histological fluorescent imaging technique to study mineral deposition in mouse models of ectopic mineralization disorders. PMID:27863377
The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families.
Röper, Katja; Gregory, Stephen L; Brown, Nicholas H
2002-11-15
Recent studies have characterised a family of giant cytoskeletal crosslinkers encoded by the short stop gene in Drosophila and the dystonin/BPAG1 and MACF1 genes in mammals. We refer to the products of these genes as spectraplakins to highlight the fact that they share features with both the spectrin and plakin superfamilies. These genes produce a variety of large proteins, up to almost 9000 residues long, which can potentially extend 0.4 micro m across a cell. Spectraplakins can interact with all three elements of the cytoskeleton: actin, microtubules and intermediate filaments. The analysis of mutant phenotypes in BPAG1 in mouse and short stop in Drosophila demonstrates that spectraplakins have diverse roles. These include linking the plasma membrane and the cytoskeleton, linking together different elements of the cytoskeleton and organising membrane domains.
Molecular and functional definition of the developing human striatum.
Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena
2014-12-01
The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.
Szpirer, C; Szpirer, J; Tissir, F; Stephanova, E; Vanvooren, P; Kurtz, T W; Iwai, N; Inagami, T; Pravenec, M; Kren, V; Klinga-Levan, K; Levan, G
1997-09-01
Seven genes were regionally localized on rat Chromosome (Chr) 1, from 1p11 to 1q42, and two of these genes were also included in a linkage map. This mapping work integrates the genetic linkage map and the cytogenetic map, and allows us to orient the linkage map with respect to the centromere, and to deduce the approximate position of the centromere in the linkage map. These mapping data also indicate that the Slc9a3 gene, encoding the Na+/H+ exchanger 3, is an unlikely candidate for the blood pressure loci assigned to rat Chr 1. These new localizations expand comparative mapping between rat Chr 1 and mouse or human chromosomes.
Shen, Jin-Song; Meng, Xing-Li; Yokoo, Takashi; Sakurai, Ken; Watabe, Kazuhiko; Ohashi, Toya; Eto, Yoshikatsu
2005-05-01
Brain-directed prenatal gene therapy may benefit some lysosomal storage diseases that affect the central nervous system (CNS) before birth. Our previous study showed that intrauterine introduction of recombinant adenoviruses into cerebral ventricles results in efficient gene transfer to the CNS in the mouse. However, transgene expression decreased with time due to the non-integrative property of adenoviral vectors. In this study, in order to obtain permanent gene transduction, we investigated the feasibility of retrovirus-mediated in utero gene transduction. Concentrated retrovirus encoding the LacZ gene was injected into the cerebral ventricles of the embryos of normal and twitcher mice (a murine model of Krabbe disease) at embryonic day 12. The distribution and maintenance of the transgene expression in the recipient brain were analyzed histochemically, biochemically and by the quantitative polymerase chain reaction method pre- and postnatally. Efficient and highly persistent gene transduction to the brain was achieved both in normal and the twitcher mouse. Transduced neurons, astrocytes and oligodendrocytes were distributed throughout the brain. The transduced LacZ gene, its transcript and protein expression in the brain were maintained for 14 months without decrement. In addition, gene transduction to multiple tissues other than the brain was also detected at low levels. This study suggests that brain-directed in utero gene transfer using retrovirus vector may be beneficial to the treatment of lysosomal storage diseases with severe brain damage early in life, such as Krabbe disease. Copyright (c) 2005 John Wiley & Sons, Ltd.
Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L
1992-01-01
cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046
Rubio, N; Almanza, A; Mercado, F; Arévalo, M-Á; Garcia-Segura, L M; Vega, R; Soto, E
2013-09-05
Theiler's murine encephalomyelitis virus (TMEV) induces demyelination in susceptible strains of mice through a CD4(+) Th1 T cell-mediated immunopathological process. TMEV infection produces a syndrome in mice that resembles multiple sclerosis. In this work, we focused on the increased expression of the genes encoding voltage-gated Ca(2+) channel subunits in SJL/J mouse astrocytes infected in culture with a BeAn strain of TMEV. Affymetrix DNA murine genome U74v2 DNA microarray hybridized with cRNA from mock- and TMEV-infected astrocytes revealed the upregulation of four sequences encoding Ca(2+)-binding and Ca(2+) channel subunit proteins. The DNA hybridization results were further validated using conventional RT-PCR and quantitative RT-PCR, demonstrating the increased expression of mRNA encoding channel subunit proteins. Western blotting also showed the increased synthesis of L- and N-type channel subunit specific proteins after infection. The reduced expression and the functional upregulation of functional voltage-gated Ca(2+) channels in mock- and TMEV-infected cells, respectively, was demonstrated using voltage clamp experiments. TMEV infection in mouse astrocytes induced a Ca(2+) current with a density proportional to the amount of viral particles used for infection. The use of Ca(2+) channel blockers, nimodipine and ω-conotoxin-GVIA, showed that both functional L- and N-type Ca(2+) channels were upregulated in infected astrocytes. The upregulation of Ca(2+) channels in astrocytes after TMEV infection provides insight into the molecular processes and potential role of astrocyte Ca(2+) dysregulation in the pathophysiology of encephalomyelitis and is important for the development of novel therapeutic strategies leading to prevention of neurodegeneration. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation
Lynch, Thomas L.; Sivaguru, Mayandi; Velayutham, Murugesan; Cardounel, Arturo J.; Michels, Michelle; Barefield, David; Govindan, Suresh; dos Remedios, Cristobal; van der Velden, Jolanda; Sadayappan, Sakthivel
2015-01-01
Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM) expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t)) was used, compared to wild-type (WT) mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG) ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure. PMID:26508994
Uribe, Mary Luz; Haro, Carmen; Campello, Laura; Cruces, Jesús; Martín-Nieto, José
2016-01-01
Purpose The POMGNT1 gene, encoding protein O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, is associated with muscle-eye-brain disease (MEB) and other dystroglycanopathies. This gene’s lack of function or expression causes hypoglycosylation of α-dystroglycan (α-DG) in the muscle and the central nervous system, including the brain and the retina. The ocular symptoms of patients with MEB include retinal degeneration and detachment, glaucoma, and abnormal electroretinogram. Nevertheless, the POMGnT1 expression pattern in the healthy mammalian retina has not yet been investigated. In this work, we address the expression of the POMGNT1 gene in the healthy retina of a variety of mammals and characterize the distribution pattern of this gene in the adult mouse retina and the 661W photoreceptor cell line. Methods Using reverse transcription (RT)–PCR and immunoblotting, we studied POMGNT1 expression at the mRNA and protein levels in various mammalian species, from rodents to humans. Immunofluorescence confocal microscopy analyses were performed to characterize the distribution profile of its protein product in mouse retinal sections and in 661W cultured cells. The intranuclear distribution of POMT1 and POMT2, the two enzymes preceding POMGnT1 in the α-DG O-mannosyl glycosylation pathway, was also analyzed. Results POMGNT1 mRNA and its encoded protein were expressed in the neural retina of all mammals studied. POMGnT1 was located in the cytoplasmic fraction in the mouse retina and concentrated in the myoid portion of the photoreceptor inner segments, where the protein colocalized with GM130, a Golgi complex marker. The presence of POMGnT1 in the Golgi complex was also evident in 661W cells. However, and in contrast to retinal tissue, POMGnT1 additionally accumulated in the nucleus of the 661W photoreceptors. Colocalization was found within this organelle between POMGnT1 and POMT1/2, the latter associated with euchromatic regions of the nucleus. Conclusions Our results indicate that POMGnT1 participates not only in the synthesis of O-mannosyl glycans added to α-DG in the Golgi complex but also in the glycosylation of other yet-to-be-identified proteins in the nucleus of mouse photoreceptors. PMID:27375352
Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells
Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles
2015-01-01
It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817
Eising, Else; Shyti, Reinald; 't Hoen, Peter A C; Vijfhuizen, Lisanne S; Huisman, Sjoerd M H; Broos, Ludo A M; Mahfouz, Ahmed; Reinders, Marcel J T; Ferrari, Michel D; Tolner, Else A; de Vries, Boukje; van den Maagdenberg, Arn M J M
2017-05-01
Familial hemiplegic migraine type 1 (FHM1) is a rare monogenic subtype of migraine with aura caused by mutations in CACNA1A that encodes the α 1A subunit of voltage-gated Ca V 2.1 calcium channels. Transgenic knock-in mice that carry the human FHM1 R192Q missense mutation ('FHM1 R192Q mice') exhibit an increased susceptibility to cortical spreading depression (CSD), the mechanism underlying migraine aura. Here, we analysed gene expression profiles from isolated cortical tissue of FHM1 R192Q mice 24 h after experimentally induced CSD in order to identify molecular pathways affected by CSD. Gene expression profiles were generated using deep serial analysis of gene expression sequencing. Our data reveal a signature of inflammatory signalling upon CSD in the cortex of both mutant and wild-type mice. However, only in the brains of FHM1 R192Q mice specific genes are up-regulated in response to CSD that are implicated in interferon-related inflammatory signalling. Our findings show that CSD modulates inflammatory processes in both wild-type and mutant brains, but that an additional unique inflammatory signature becomes expressed after CSD in a relevant mouse model of migraine.
Wong, Pauline; Colucci-Guyon, Emma; Takahashi, Kenzo; Gu, Changhong; Babinet, Charles; Coulombe, Pierre A.
2000-01-01
Mammalian genomes feature multiple genes encoding highly related keratin 6 (K6) isoforms. These type II keratins show a complex regulation with constitutive and inducible components in several stratified epithelia, including the oral mucosa and skin. Two functional genes, K6α and K6β, exist in a head-to-tail tandem array in mouse genomes. We inactivated these two genes simultaneously via targeting and homologous recombination. K6 null mice are viable and initially indistinguishable from their littermates. Starting at two to three days after birth, they show a growth delay associated with reduced milk intake and the presence of white plaques in the posterior region of dorsal tongue and upper palate. These regions are subjected to greater mechanical stress during suckling. Morphological analyses implicate the filiform papillae as being particularly sensitive to trauma in K6α/K6β null mice, and establish the complete absence of keratin filaments in their anterior compartment. All null mice die about a week after birth. These studies demonstrate an essential structural role for K6 isoforms in the oral mucosa, and implicate filiform papillae as being the major stress bearing structures in dorsal tongue epithelium. PMID:10953016
Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B
2013-12-06
Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.
Almenar-Queralt, Angels; Kim, Sonia N.; Benner, Christopher; Herrera, Cheryl M.; Kang, David E.; Garcia-Bassets, Ivan; Goldstein, Lawrence S. B.
2013-01-01
Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment. PMID:24145027
Pan, Ling; Pasternak, David A.; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W.
2017-01-01
The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3’ or 5’ splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function. PMID:28350844
HnRNP A3 genes and pseudogenes in the vertebrate genomes.
Makeyev, Aleksandr V; Kim, Chang Bae; Ruddle, Frank H; Enkhmandakh, Badam; Erdenechimeg, Lkhamsuren; Bayarsaihan, Dashzeveg
2005-04-01
The hnRNP A/B type proteins are abundant nuclear factors that bind to Pol II transcripts and are involved in numerous RNA-related activities. To date most data on the hnRNP A/B family have been obtained with recombinant proteins and cell cultures. Further characterization can result from an examination of the impact of various modifications in intact functional loci; however, such characterization is hampered by the presence of numerous and widely dispersed hnRNP A/B-related sequences in the mammalian genome. We have found hnRNP A3, a poorly recognized member of the hnRNP A/B family, among candidate transcription factors that interact with the regulatory region of the Hoxc8 gene and screened the human and mouse genomes for genes that encode hnRNP A3. We demonstrate that the sequence reported previously as the human hnRNP A3 gene (Accession number S63912) and located on 10p11.1 belongs to a processed pseudogene of the functional intron-containing locus HNRPA3, which we have identified on 2q31.2. We have also identified its murine orthologs on mouse chromosome 2D and rat chromosome 3q23. Alternative splices were revealed at the N-terminus and in the middle of hnRNP A3. 14 and 28 additional loci in the human and mouse genome, respectively, were mapped and identified as hnRNP A3 processed pseudogenes. In addition, we have found and compared hnRNP A3 orthologous genes in Gallus gallus, Xenopus tropicalis, and Danio rerio. The present in silico analysis serves as a necessary step toward a further functional characterization of hnRNP A3. (c) 2005 Wiley-Liss, Inc.
Patel, Ami V.; Eaves, David; Jessen, Walter J.; Rizvi, Tilat A.; Ecsedy, Jeffrey A.; Qian, Mark G.; Aronow, Bruce J.; Perentesis, John P.; Serra, Eduard; Cripe, Timothy P.; Miller, Shyra J.; Ratner, Nancy
2013-01-01
Purpose Patients with Neurofibromatosis Type 1 (NF1) develop malignant peripheral nerve sheath tumors (MPNST) which are often inoperable and do not respond well to current chemotherapies or radiation. The goal of this study was to utilize comprehensive gene expression analysis to identify novel therapeutic targets. Experimental Design Nerve Schwann cells and/or their precursors are the tumorigenic cell types in MPNST due to the loss of the NF1 gene, which encodes the RasGAP protein neurofibromin. Therefore, we created a transgenic mouse model, CNP-HRas12V, expressing constitutively-active HRas in Schwann cells and defined a Ras-induced gene expression signature to drive a Bayesian factor regression model analysis of differentially expressed genes in mouse and human neurofibromas and MPNSTs. We tested functional significance of Aurora kinase over-expression in MPNST in vitro and in vivo using Aurora kinase shRNAs and compounds that inhibit Aurora kinase. Results We identified 2000 genes with probability of linkage to nerve Ras signaling of which 339 were significantly differentially expressed in mouse and human NF1-related tumor samples relative to normal nerves, including Aurora kinase A (AURKA). AURKA was dramatically over-expressed and genomically amplified in MPNSTs but not neurofibromas. Aurora kinase shRNAs and Aurora kinase inhibitors blocked MPNST cell growth in vitro. Furthermore, an AURKA selective inhibitor, MLN8237, stabilized tumor volume and significantly increased survival of mice with MPNST xenografts. Conclusion Integrative cross-species transcriptome analyses combined with preclinical testing has provided an effective method for identifying candidates for molecular-targeted therapeutics. Blocking Aurora kinases may be a viable treatment platform for MPNST. PMID:22811580
Twigg, Stephen R F; Forecki, Jennifer; Goos, Jacqueline A C; Richardson, Ivy C A; Hoogeboom, A Jeannette M; van den Ouweland, Ans M W; Swagemakers, Sigrid M A; Lequin, Maarten H; Van Antwerp, Daniel; McGowan, Simon J; Westbury, Isabelle; Miller, Kerry A; Wall, Steven A; van der Spek, Peter J; Mathijssen, Irene M J; Pauws, Erwin; Merzdorf, Christa S; Wilkie, Andrew O M
2015-09-03
Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Mishra, Vikas; Karumuri, Bharat K; Gautier, Nicole M; Liu, Rui; Hutson, Timothy N; Vanhoof-Villalba, Stephanie L; Vlachos, Ioannis; Iasemidis, Leonidas; Glasscock, Edward
2017-06-01
People with epilepsy have greatly increased probability of premature mortality due to sudden unexpected death in epilepsy (SUDEP). Identifying which patients are most at risk of SUDEP is hindered by a complex genetic etiology, incomplete understanding of the underlying pathophysiology and lack of prognostic biomarkers. Here we evaluated heterozygous Scn2a gene deletion (Scn2a+/-) as a protective genetic modifier in the Kcna1 knockout mouse (Kcna1-/-) model of SUDEP, while searching for biomarkers of SUDEP risk embedded in electroencephalography (EEG) and electrocardiography (ECG) recordings. The human epilepsy gene Kcna1 encodes voltage-gated Kv1.1 potassium channels that act to dampen neuronal excitability whereas Scn2a encodes voltage-gated Nav1.2 sodium channels important for action potential initiation and conduction. SUDEP-prone Kcna1-/- mice with partial genetic ablation of Nav1.2 channels (i.e. Scn2a+/-; Kcna1-/-) exhibited a two-fold increase in survival. Classical analysis of EEG and ECG recordings separately showed significantly decreased seizure durations in Scn2a+/-; Kcna1-/- mice compared with Kcna1-/- mice, without substantial modification of cardiac abnormalities. Novel analysis of the EEG and ECG together revealed a significant reduction in EEG-ECG association in Kcna1-/- mice compared with wild types, which was partially restored in Scn2a+/-; Kcna1-/- mice. The degree of EEG-ECG association was also proportional to the survival rate of mice across genotypes. These results show that Scn2a gene deletion acts as protective genetic modifier of SUDEP and suggest measures of brain-heart association as potential indices of SUDEP susceptibility. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Twigg, Stephen R.F.; Forecki, Jennifer; Goos, Jacqueline A.C.; Richardson, Ivy C.A.; Hoogeboom, A. Jeannette M.; van den Ouweland, Ans M.W.; Swagemakers, Sigrid M.A.; Lequin, Maarten H.; Van Antwerp, Daniel; McGowan, Simon J.; Westbury, Isabelle; Miller, Kerry A.; Wall, Steven A.; van der Spek, Peter J.; Mathijssen, Irene M.J.; Pauws, Erwin; Merzdorf, Christa S.; Wilkie, Andrew O.M.
2015-01-01
Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5–12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. PMID:26340333
Cho, Jin-Hyung; Huang, Ben S.; Gray, Jesse M.
2016-01-01
The stable formation of remote fear memories is thought to require neuronal gene induction in cortical ensembles that are activated during learning. However, the set of genes expressed specifically in these activated ensembles is not known; knowledge of such transcriptional profiles may offer insights into the molecular program underlying stable memory formation. Here we use RNA-Seq to identify genes whose expression is enriched in activated cortical ensembles labeled during associative fear learning. We first establish that mouse temporal association cortex (TeA) is required for remote recall of auditory fear memories. We then perform RNA-Seq in TeA neurons that are labeled by the activity reporter Arc-dVenus during learning. We identify 944 genes with enriched expression in Arc-dVenus+ neurons. These genes include markers of L2/3, L5b, and L6 excitatory neurons but not glial or inhibitory markers, confirming Arc-dVenus to be an excitatory neuron-specific but non-layer-specific activity reporter. Cross comparisons to other transcriptional profiles show that 125 of the enriched genes are also activity-regulated in vitro or induced by visual stimulus in the visual cortex, suggesting that they may be induced generally in the cortex in an experience-dependent fashion. Prominent among the enriched genes are those encoding potassium channels that down-regulate neuronal activity, suggesting the possibility that part of the molecular program induced by fear conditioning may initiate homeostatic plasticity. PMID:27557751
Golby, Paul; Nunez, Javier; Cockle, Paul J.; Ewer, Katie; Logan, Karen; Hogarth, Philip; Vordermeier, H. Martin; Hinds, Jason; Hewinson, R. Glyn; Gordon, Stephen V.
2011-01-01
Genome sequencing of Mycobacterium tuberculosis complex members has accelerated the search for new disease-control tools. Antigen mining is one area that has benefited enormously from access to genome data. As part of an ongoing antigen mining programme, we screened genes that were previously identified by transcriptome analysis as upregulated in response to an in vitro acid shock for their in vivo expression profile and antigenicity. We show that the genes encoding two methyltransferases, Mb1438c/Rv1403c and Mb1440c/Rv1404c, were highly upregulated in a mouse model of infection, and were antigenic in M. bovis-infected cattle. As the genes encoding these antigens were highly upregulated in vivo, we sought to define their genetic regulation. A mutant was constructed that was deleted for their putative regulator, Mb1439/Rv1404; loss of the regulator led to increased expression of the flanking methyltransferases and a defined set of distal genes. This work has therefore generated both applied and fundamental outputs, with the description of novel mycobacterial antigens that can now be moved into field trials, but also with the description of a regulatory network that is responsive to both in vivo and in vitro stimuli. PMID:18375799
Nikopoulos, Konstantinos; Venselaar, Hanka; Collin, Rob W J; Riveiro-Alvarez, Rosa; Boonstra, F Nienke; Hooymans, Johanna M M; Mukhopadhyay, Arijit; Shears, Deborah; van Bers, Marleen; de Wijs, Ilse J; van Essen, Anthonie J; Sijmons, Rolf H; Tilanus, Mauk A D; van Nouhuys, C Erik; Ayuso, Carmen; Hoefsloot, Lies H; Cremers, Frans P M
2010-06-01
Wnt signaling is a crucial component of the cell machinery orchestrating a series of physiological processes such as cell survival, proliferation, and migration. Among the plethora of roles that Wnt signaling plays, its canonical branch regulates eye organogenesis and angiogenesis. Mutations in the genes encoding the low density lipoprotein receptor protein 5 (LRP5) and frizzled 4 (FZD4), acting as coreceptors for Wnt ligands, cause familial exudative vitreoretinopathy (FEVR). Moreover, mutations in the gene encoding NDP, a ligand for these Wnt receptors, cause Norrie disease and FEVR. Both FEVR and Norrie disease share similar phenotypic characteristics, including abnormal vascularization of the peripheral retina and formation of fibrovascular masses in the eye that can lead to blindness. In this mutation update, we report 21 novel variants for FZD4, LRP5, and NDP, and discuss the putative functional consequences of missense mutations. In addition, we provide a comprehensive overview of all previously published variants in the aforementioned genes and summarize the phenotypic characteristics in mouse models carrying mutations in the orthologous genes. The increasing molecular understanding of Wnt signaling, related to ocular development and blood supply, offers more tools for accurate disease diagnosis that may be important in the development of therapeutic interventions.
The complete sequence and promoter activity of the human A-raf-1 gene (ARAF1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.E.; Beck, T.W.; Brennscheidt, U.
1994-03-01
The raf proto-oncogenes encode cytoplasmic protein serine/threonine kinases, which play a critical role in cell growth and development. One of these, A-raf-1 (human gene symbol, ARAF1), which is predominantly expressed in mouse urogenital tissues, has been mapped to an evolutionarily conserved linkage group composed of ARAF1, SYN1, TIMP, and properdin located at human chromosome Xp11.2. The authors have isolated human genomic DNA clones containing the expressed gene (ARAF1) on the X chromosome and a pseudogene (ARAF2) on chromosome 7p12-q11.21. Analysis of the nucleotide sequence from the ARAF1 genomic clones demonstrated that it consists of 16 exons encoded by minimally 10,776more » nucleotides. The major transcriptional start site (+1) was determined by RNase protection and primer extension assays. Promoter activity was confirmed by functional assays using DNA fragments fused to a CAT reporter gene. The ARAF1 minimal promoter, located between nucleotides -59 and +93, has a low G + C content and lacks consensus TATA and Inr sequences but shows sequence similarity at position -1 to the E box that is known to interact with USF and TFII-I transcription factors. 65 refs., 7 figs., 1 tab.« less
Expression of a Mutant kcnj2 Gene Transcript in Zebrafish
Leong, Ivone U. S.; Skinner, Jonathan R.; Shelling, Andrew N.; Love, Donald R.
2013-01-01
Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 syndrome mouse models have been created that vary in the physiological similarity to the human disease. To complement the LQT7 mouse models, we investigated the usefulness of the zebrafish as an alternative model via a transient approach. Initial bioinformatic analysis identified the zebrafish orthologue of the human KCNJ2 gene, together with a spatial expression profile that was similar to that of human. The expression of a kcnj2-12 transcript carrying an in-frame deletion of critical amino acids identified in human studies resulted in embryos that exhibited defects in muscle development, thereby affecting movement, a decrease in jaw size, pupil-pupil distance, and signs of scoliosis. These defects correspond to some phenotypes expressed by human LQT7 patients. PMID:27335675
Koo, Taeyoung; Park, Sung Wook; Jo, Dong Hyun; Kim, Daesik; Kim, Jin Hyoung; Cho, Hee-Yeon; Kim, Jeungeun; Kim, Jeong Hun; Kim, Jin-Soo
2018-05-10
LbCpf1, derived from Lachnospiraceae bacterium ND2006, is a CRISPR RNA-guided endonuclease and holds promise for therapeutic applications. Here we show that LbCpf1 can be used for therapeutic gene editing in a mouse model of age-related macular degeneration (AMD). The intravitreal delivery of LbCpf1, targeted to two angiogenesis-associated genes encoding vascular endothelial growth factor A (Vegfa) and hypoxia inducing factor 1a (Hif1a), using adeno-associated virus, led to efficient gene disruption with no apparent off-target effects in the retina and retinal pigment epithelium (RPE) cells. Importantly, LbCpf1 targeted to Vegfa or Hif1a in RPE cells reduced the area of laser-induced choroidal neovascularization as efficiently as aflibercept, an anti-VEGF drug currently used in the clinic, without inducing cone dysfunction. Unlike aflibercept, LbCpf1 targeted to Vegfa or Hif1a achieved a long-term therapeutic effect on CNV, potentially avoiding repetitive injections. Taken together, these results indicate that LbCpf1-mediated in vivo genome editing to ablate pathologic angiogenesis provides an effective strategy for the treatment of AMD and other neovascularization-associated diseases.
Chen, Ding; Xu, Tao; Tu, Mengjun; Xu, Jinlin; Zhou, Chenchen; Cheng, Lulu; Yang, Ruqing; Yang, Tanchu; Zheng, Weiwei; He, Xiubin; Deng, Ruzhi; Ge, Xianglian; Li, Jin; Song, Zongming; Zhao, Junzhao; Gu, Feng
2017-01-01
X-linked juvenile retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding retinoschisin (RS1), which leads to a significant proportion of visual impairment and blindness. To develop personalized genome editing based gene therapy, knock-in animal disease models that have the exact mutation identified in the patients is extremely crucial, and that the way which genome editing in knock-in animals could be easily transferred to the patients. Here we recruited a family diagnosed with XLRS and identified the causative mutation ( RS1 , p.Y65X), then a knock-in mouse model harboring this disease-causative mutation was generated via TALEN (transcription activator-like effector nucleases). We found that the b-wave amplitude of the ERG of the RS1 -KI mice was significantly decreased. Moreover, we observed that the structure of retina in RS1 -KI mice has become disordered, including the disarray of inner nuclear layer and outer nuclear layer, chaos of outer plexiform layer, decreased inner segments of photoreceptor and the loss of outer segments. The novel knock-in mice ( RS1 -KI) harboring patient-specific mutation will be valuable for development of treatment via genome editing mediated gene correction.
Gattelli, Albana; Zimberlin, María N.; Meiss, Roberto P.; Castilla, Lucio H.; Kordon, Edith C.
2006-01-01
Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions. PMID:16971449
Wakeman, Brian S; Izumiya, Yoshihiro; Speck, Samuel H
2017-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. Copyright © 2016 American Society for Microbiology.
Jablonska, Jadwiga; Leschner, Sara; Westphal, Kathrin; Lienenklaus, Stefan; Weiss, Siegfried
2010-04-01
Angiogenesis is a hallmark of malignant neoplasias, as the formation of new blood vessels is required for tumors to acquire oxygen and nutrients essential for their continued growth and metastasis. However, the signaling pathways leading to tumor vascularization are not fully understood. Here, using a transplantable mouse tumor model, we have demonstrated that endogenous IFN-beta inhibits tumor angiogenesis through repression of genes encoding proangiogenic and homing factors in tumor-infiltrating neutrophils. We determined that IFN-beta-deficient mice injected with B16F10 melanoma or MCA205 fibrosarcoma cells developed faster-growing tumors with better-developed blood vessels than did syngeneic control mice. These tumors displayed enhanced infiltration by CD11b+Gr1+ neutrophils expressing elevated levels of the genes encoding the proangiogenic factors VEGF and MMP9 and the homing receptor CXCR4. They also expressed higher levels of the transcription factors c-myc and STAT3, known regulators of VEGF, MMP9, and CXCR4. In vitro, treatment of these tumor-infiltrating neutrophils with low levels of IFN-beta restored expression of proangiogenic factors to control levels. Moreover, depletion of these neutrophils inhibited tumor growth in both control and IFN-beta-deficient mice. We therefore suggest that constitutively produced endogenous IFN-beta is an important mediator of innate tumor surveillance. Further, we believe our data help to explain the therapeutic effect of IFN treatment during the early stages of cancer development.
Pei, Zhiheng; Burucoa, Christophe; Grignon, Bernadette; Baqar, Shahida; Huang, Xiao-Zhe; Kopecko, Dennis J.; Bourgeois, A. L.; Fauchere, Jean-Louis; Blaser, Martin J.
1998-01-01
Campylobacter jejuni is one of the leading causes of bacterial diarrhea throughout the world. We previously found that PEB1 is a homolog of cluster 3 binding proteins of bacterial ABC transporters and that a C. jejuni adhesin, cell-binding factor 1 (CBF1), if not identical to, contains PEB1. A single protein migrating at approximately 27 to 28 kDa was recognized by anti-CBF1 and anti-PEB1. To determine the role that the operon encoding PEB1 plays in C. jejuni adherence, peb1A, the gene encoding PEB1, was disrupted in strain 81-176 by insertion of a kanamycin resistance gene through homologous recombination. Inactivation of this operon completely abolished expression of CBF1, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. In comparison to the wild-type strain, the mutant strain showed 50- to 100-fold less adherence to and 15-fold less invasion of epithelial cells in culture. Mouse challenge studies showed that the rate and duration of intestinal colonization by the mutant were significantly lower and shorter than with the wild-type strain. In summary, PEB1 is identical to a previously identified cell-binding factor, CBF1, in C. jejuni, and the peb1A locus plays an important role in epithelial cell interactions and in intestinal colonization in a mouse model. PMID:9488379
The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues
Kim, Bong-Hyun; Gotte, Deanna; Chen, Xiongfong; Cam, Maggie; Lambert, Paul F.
2017-01-01
Mouse papillomavirus type 1 (MmuPV1) provides, for the first time, the opportunity to study infection and pathogenesis of papillomaviruses in the context of laboratory mice. In this report, we define the transcriptome of MmuPV1 genome present in papillomas arising in experimentally infected mice using a combination of RNA-seq, PacBio Iso-seq, 5’ RACE, 3’ RACE, primer-walking RT-PCR, RNase protection, Northern blot and in situ hybridization analyses. We demonstrate that the MmuPV1 genome is transcribed unidirectionally from five major promoters (P) or transcription start sites (TSS) and polyadenylates its transcripts at two major polyadenylation (pA) sites. We designate the P7503, P360 and P859 as “early” promoters because they give rise to transcripts mostly utilizing the polyadenylation signal at nt 3844 and therefore can only encode early genes, and P7107 and P533 as “late” promoters because they give rise to transcripts utilizing polyadenylation signals at either nt 3844 or nt 7047, the latter being able to encode late, capsid proteins. MmuPV1 genome contains five splice donor sites and three acceptor sites that produce thirty-six RNA isoforms deduced to express seven predicted early gene products (E6, E7, E1, E1^M1, E1^M2, E2 and E8^E2) and three predicted late gene products (E1^E4, L2 and L1). The majority of the viral early transcripts are spliced once from nt 757 to 3139, while viral late transcripts, which are predicted to encode L1, are spliced twice, first from nt 7243 to either nt 3139 (P7107) or nt 757 to 3139 (P533) and second from nt 3431 to nt 5372. Thirteen of these viral transcripts were detectable by Northern blot analysis, with the P533-derived late E1^E4 transcripts being the most abundant. The late transcripts could be detected in highly differentiated keratinocytes of MmuPV1-infected tissues as early as ten days after MmuPV1 inoculation and correlated with detection of L1 protein and viral DNA amplification. In mature warts, detection of L1 was also found in more poorly differentiated cells, as previously reported. Subclinical infections were also observed. The comprehensive transcription map of MmuPV1 generated in this study provides further evidence that MmuPV1 is similar to high-risk cutaneous beta human papillomaviruses. The knowledge revealed will facilitate the use of MmuPV1 as an animal virus model for understanding of human papillomavirus gene expression, pathogenesis and immunology. PMID:29176795
Merchant, Soroush; Huang, Naiyan; Korbelik, Mladen
2010-12-01
Treatment of solid tumors by photodynamic therapy (PDT) was recently shown to trigger a strong acute phase response. Using the mouse Lewis lung carcinoma (LLC) model, the present study examined complement and pentraxin proteins as PDT-induced acute phase reactants. The results show a distinct pattern of changes in the expression of genes encoding these proteins in the tumor, as well as host liver and spleen, following PDT mediated by photosensitizer Photofrin™. These changes were influenced by glucocorticoid hormones, as evidenced by transcriptional activation of glucocorticoid receptor and the upregulation of gene encoding this receptor. The expression of gene for glucocorticoid-induced zipper (GILZ) protein, whose activity is particularly susceptible to glucocorticoid regulation, was also changed in PDT-treated tumors. A direct demonstration that tumor PDT induces glucocorticoid hormone upregulation is provided by documenting elevated levels of serum corticosterone in mice bearing PDT-treated LLC tumors. Tumor response to PDT was negatively affected by blocking glucocorticoid receptor activity, which suggests that glucocorticoid hormones have a positive impact on the therapeutic outcome with this therapy. Copyright © 2010 Elsevier B.V. All rights reserved.
Casonato, Stefano; Cervantes Sánchez, Axel; Haruki, Hirohito; Rengifo González, Monica; Provvedi, Roberta; Dainese, Elisa; Jaouen, Thomas; Gola, Susanne; Bini, Estela; Vicente, Miguel; Johnsson, Kai; Ghisotti, Daniela; Palù, Giorgio; Hernández-Pando, Rogelio
2012-01-01
The proteins belonging to the WhiB superfamily are small global transcriptional regulators typical of actinomycetes. In this paper, we characterize the role of WhiB5, a Mycobacterium tuberculosis protein belonging to this superfamily. A null mutant was constructed in M. tuberculosis H37Rv and was shown to be attenuated during both progressive and chronic mouse infections. Mice infected with the mutant had smaller bacillary burdens in the lungs but a larger inflammatory response, suggesting a role of WhiB5 in immunomodulation. Most interestingly, the whiB5 mutant was not able to resume growth after reactivation from chronic infection, suggesting that WhiB5 controls the expression of genes involved in this process. The mutant was also more sensitive than the wild-type parental strain to S-nitrosoglutathione (GSNO) and was less metabolically active following prolonged starvation, underscoring the importance of GSNO and starvation in development and maintenance of chronic infection. DNA microarray analysis identified 58 genes whose expression is influenced by WhiB5, including sigM, encoding an alternative sigma factor, and genes encoding the constituents of two type VII secretion systems, namely, ESX-2 and ESX-4. PMID:22733573
Matrix Metalloproteinase Dysregulation in the Stria Vascularis of Mice with Alport Syndrome
Gratton, Michael Anne; Rao, Velidi H.; Meehan, Daniel T.; Askew, Charles; Cosgrove, Dominic
2005-01-01
Alport syndrome results from mutations in genes encoding collagen α3(IV), α4(IV), or α5(IV) and is characterized by progressive glomerular disease associated with a high-frequency sensorineural hearing loss. Earlier studies of a gene knockout mouse model for Alport syndrome noted thickening of strial capillary basement membranes in the cochlea, suggesting that the stria vascularis is the primary site of cochlear pathogenesis. Here we combine a novel cochlear microdissection technique with molecular analyses to illustrate significant quantitative alterations in strial expression of mRNAs encoding matrix metalloproteinases-2, -9, -12, and -14. Gelatin zymography of extracts from the stria vascularis confirmed these findings. Treatment of Alport mice with a small molecule inhibitor of these matrix metalloproteinases exacerbated strial capillary basement membrane thickening, demonstrating that alterations in basement membrane metabolism result in matrix accumulation in the strial capillary basement membranes. This is the first demonstration of true quantitative analysis of specific mRNAs for matrix metalloproteinases in a cochlear microcompartment. Further, these data suggest that the altered basement membrane composition in Alport stria influences the expression of genes involved in basement membrane metabolism. PMID:15855646
Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B
1995-01-01
Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359
Romano, Jacob; Nimrod, Guy; Ben-Tal, Nir; Shadkchan, Yona; Baruch, Koti; Sharon, Haim; Osherov, Nir
2006-07-01
The ECM33/SPS2 family of glycosylphosphatidylinositol-anchored proteins plays an important role in maintaining fungal cell wall integrity and virulence. However, the precise molecular role of these proteins is unknown. In this work, AfuEcm33, the gene encoding the ECM33 homologue in the important pathogenic fungus Aspergillus fumigatus, has been cloned and its function analysed. It is shown that disruption of AfuEcm33 results in rapid conidial germination, increased cell-cell adhesion, resistance to the antifungal agent caspofungin and increased virulence in an immunocompromised mouse model for disseminated aspergillosis. These results suggest that the protein encoded by AfuEcm33 is involved in key aspects of cell wall morphogenesis and plays an important role in A. fumigatus virulence.
Qiu, Haifang; Zhao, Shuhong; Xu, Xuewen; Yerle, Martine; Liu, Bang
2008-05-01
It has been reported that the muscle-specific isoform (type M, PGAM2) of phosphoglycerate mutase (PGAM) is a housekeeping enzyme; it catalyzes the conversion of 3-phosphoglycerate into 2-phosphoglycerate in the glycolysis process to release energy. It is encoded by the Pgam2 gene. In this study, the cDNA of the porcine Pgam2 was cloned. This gene contains an open reading frame of 765 bp encoding a protein of 253 residues, and the predicted protein sequences share high similarity with other mammalians, 96% identity with humans, and 94% identity with mouse and rats. Pgam2 was mapped to SSC18q13-q21 by the RH panel. In this region, there are several QTLs, such as fat ratio, lean percentage, and diameter of muscle fiber, which affect meat production and quality. The reverse transcriptase-polymerase chain reaction revealed that the porcine Pgam2 gene was mainly expressed in the muscle tissue (skeletal muscle and cardiac muscle), and was expressed highly at skeletal muscle development stages (embryonic periods: 33, 65, and 90 days post-conception (dpc); postnatal pigs: 4 days and adult). This indicates that the Pgam2 gene plays an important role in muscle growth and development. In addition, it was demonstrated that PGAM2 locates both in cytoplasm and nuclei, and takes part in the glycometabolism process of cytoplasm and nuclei.
Kauzlaric, Annamaria; Ecco, Gabriela; Cassano, Marco; Duc, Julien; Imbeault, Michael; Trono, Didier
2017-01-01
KRAB-containing poly-zinc finger proteins (KZFPs) constitute the largest family of transcription factors encoded by mammalian genomes, and growing evidence indicates that they fulfill functions critical to both embryonic development and maintenance of adult homeostasis. KZFP genes underwent broad and independent waves of expansion in many higher vertebrates lineages, yet comprehensive studies of members harbored by a given species are scarce. Here we present a thorough analysis of KZFP genes and related units in the murine genome. We first identified about twice as many elements than previously annotated as either KZFP genes or pseudogenes, notably by assigning to this family an entity formerly considered as a large group of Satellite repeats. We then could delineate an organization in clusters distributed throughout the genome, with signs of recombination, translocation, duplication and seeding of new sites by retrotransposition of KZFP genes and related genetic units (KZFP/rGUs). Moreover, we harvested evidence indicating that closely related paralogs had evolved through both drifting and shifting of sequences encoding for zinc finger arrays. Finally, we could demonstrate that the KAP1-SETDB1 repressor complex tames the expression of KZFP/rGUs within clusters, yet that the primary targets of this regulation are not the KZFP/rGUs themselves but enhancers contained in neighboring endogenous retroelements and that, underneath, KZFPs conserve highly individualized patterns of expression. PMID:28334004
Kauzlaric, Annamaria; Ecco, Gabriela; Cassano, Marco; Duc, Julien; Imbeault, Michael; Trono, Didier
2017-01-01
KRAB-containing poly-zinc finger proteins (KZFPs) constitute the largest family of transcription factors encoded by mammalian genomes, and growing evidence indicates that they fulfill functions critical to both embryonic development and maintenance of adult homeostasis. KZFP genes underwent broad and independent waves of expansion in many higher vertebrates lineages, yet comprehensive studies of members harbored by a given species are scarce. Here we present a thorough analysis of KZFP genes and related units in the murine genome. We first identified about twice as many elements than previously annotated as either KZFP genes or pseudogenes, notably by assigning to this family an entity formerly considered as a large group of Satellite repeats. We then could delineate an organization in clusters distributed throughout the genome, with signs of recombination, translocation, duplication and seeding of new sites by retrotransposition of KZFP genes and related genetic units (KZFP/rGUs). Moreover, we harvested evidence indicating that closely related paralogs had evolved through both drifting and shifting of sequences encoding for zinc finger arrays. Finally, we could demonstrate that the KAP1-SETDB1 repressor complex tames the expression of KZFP/rGUs within clusters, yet that the primary targets of this regulation are not the KZFP/rGUs themselves but enhancers contained in neighboring endogenous retroelements and that, underneath, KZFPs conserve highly individualized patterns of expression.
Guimond, A; Moss, T
1992-07-11
XUBF is a Xenopus ribosomal transcription factor of the HMG-box family which contains five tandemly disposed homologies to the HMG1 & 2 DNA binding domains. XUBF has been isolated as a protein doublet and two cDNAs encoding the two molecular weight variants have been characterised. The major two forms of xUBF identified differ by the presence or absence of a 22 amino acid segment lying between HMG-boxes 3 and 4. Here we show that the mRNAs for these two forms of xUBF are regulated during development and differentiation over a range of nearly 20 fold. By isolating two of the xUBF genes, it was possible to show that both encoded the variable 22 amino acid segment in exon 12. Oocyte splicing assays and the sequencing of PCR-generated cDNA fragments, demonstrated that the transcripts from one of these genes were differentially spliced in a developmentally regulated manner. Transcripts from the second gene were found to be predominantly or exclusively spliced to produce the lower molecular weight form of xUBF. Expression of a high molecular weight form from yet a third gene was also detected. Although the intron-exon structures of the Xenopus and mouse UBF genes were found to be essentially identical, the differential splicing of exon 8 found in mammals, was not detected in Xenopus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham-Dinh, D.; Dautigny, A.; Mattei, M.G.
1993-09-01
Myelin/oligodendrocyte glycoprotein (MOG) is found on the surface of myelinating oligodendrocytes and external lamellae of myelin sheaths in the central nervous system, and it is target antigen in experimental autoimmune encephalomyelitis and multiple sclerosis. The authors have isolated bovine, mouse, and rat MOG cDNA clones and shown that the developmental pattern of MOG expression in the rat central nervous system coincides with the late stages of myelination. The amino-terminal, extracellular domain of MOG has characteristics of an immunoglobulin variable domain and is 46% and 41% identical with the amino terminus of bovine butyrophilin (expressed in the lactating mammary gland) andmore » B-G antigens of the chicken major histocompatibility complex (MHC), respectively; these proteins thus form a subset of the immunoglobulin superfamily. The homology between MOG and B-G extends beyond their structure and genetic mapping to their ability to induce strong antibody responses and has implications for the role of MOG in pathological, autoimmune conditions. The authors colocalized the MOG and BT genes to the human MHC on chromosome 6p21.3-p22. The mouse MOG gene was mapped to the homologous band C of chromosome 17, within the M region of the mouse MHC. 38 refs., 6 figs.« less
Generation and characterization of Atoh1-Cre knock-in mouse line
Yang, Hua; Xie, Xiaoling; Deng, Min; Chen, Xiaowei; Gan, Lin
2010-01-01
Summary Atoh1 encodes a basic helix-loop-helix (bHLH) transcription factor required for the development of the inner ear sensory epithelia, the dorsal spinal cord, brainstem, cerebellum, and intestinal secretory cells. In this study to create a genetic tool for the research on gene function in the ear sensory organs, we generated an Atoh1-Cre knock-in mouse line by replacing the entire Atoh1 coding sequences with the Cre coding sequences. Atoh1Cre/+mice were viable, fertile, and displayed no visible defects whereas the Atoh1Cre/Cremice died perinatally. The spatiotemporal activities of Cre recombinase were examined by crossing Atoh1-Cre mice with the R26R-lacZ conditional reporter mice. Atoh1-Cre activities were detected in the developing inner ear, the hindbrain, the spinal cord, and the intestine. In the inner ear, Atoh1-Cre activities were confined to the sensory organs in which lacZ expression is detected in nearly all of the hair cells and in many supporting cells. Thus, Atoh1-Cre mouse line serves as a useful tool for the functional study of genes in the inner ear. In addition, our results demonstrate that Atoh1 is expressed in the common progenitors destined for both hair and supporting cells. PMID:20533400
Meseda, Clement A.; Campbell, Joseph; Kumar, Arunima; Garcia, Alonzo D.; Merchlinsky, Michael; Weir, Jerry P.
2013-01-01
Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model. PMID:23785523
Development of a novel mouse glioma model using lentiviral vectors
Marumoto, Tomotoshi; Tashiro, Ayumu; Friedmann-Morvinski, Dinorah; Scadeng, Miriam; Soda, Yasushi; Gage, Fred H; Verma, Inder M
2009-01-01
We report the development of a new method to induce glioblastoma multiforme in adult immunocompetent mice by injecting Cre-loxP–controlled lentiviral vectors expressing oncogenes. Cell type- or region-specific expression of activated forms of the oncoproteins Harvey-Ras and AKT in fewer than 60 glial fibrillary acidic protein–positive cells in the hippocampus, subventricular zone or cortex of mice heterozygous for the gene encoding the tumor suppressor Tp53 were tested. Mice developed glioblastoma multiforme when transduced either in the subventricular zone or the hippocampus. However, tumors were rarely detected when the mice were transduced in the cortex. Transplantation of brain tumor cells into naive recipient mouse brain resulted in the formation of glioblastoma multiforme–like tumors, which contained CD133+ cells, formed tumorspheres and could differentiate into neurons and astrocytes. We suggest that the use of Cre-loxP–controlled lentiviral vectors is a novel way to generate a mouse glioblastoma multiforme model in a region- and cell type-specific manner in adult mice. PMID:19122659
Shimojo, Yosuke; Kosaka, Kunio; Noda, Yoshihiro; Shimizu, Takahiko; Shirasawa, Takuji
2010-03-01
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disease affecting motor neurons. About 2% of patients with the disease are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). The purpose of this study is to assess the effect of rosemary extract and its major constituents, rosmarinic acid (RA) and carnosic acid (CA), in human SOD1 G93A transgenic mice, which are well-established mouse models for ALS. The present study demonstrates that intraperitoneal administration of rosemary extract or RA from the presymptomatic stage significantly delayed motor dysfunction in paw grip endurance tests, attenuated the degeneration of motor neurons, and extended the life span of ALS model mice. In addition, RA administration significantly improved the clinical score and suppressed body weight loss compared with a vehicle-treated group. In conclusion, this study provides the first report that rosemary extract and, especially, RA have preventive effects in the mouse model of ALS.
Minimal Phenotype of Mice Homozygous for a Null Mutation in the Forkhead/Winged Helix Gene, Mf2
Kume, Tsutomu; Deng, Keyu; Hogan, Brigid L. M.
2000-01-01
Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2lacZ) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes. PMID:10648626
Minimal phenotype of mice homozygous for a null mutation in the forkhead/winged helix gene, Mf2.
Kume, T; Deng, K; Hogan, B L
2000-02-01
Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2(lacZ)) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes.
Karray, Saoussen; Kress, Chantal; Cuvellier, Sylvain; Hue-Beauvais, Catherine; Damotte, Diane; Babinet, Charles; Lévi-Strauss, Matthieu
2004-02-15
To investigate the in vivo function of Fas ligand (FasL), we produced a mouse strain with a FasL gene flanked by loxP sequences. Mice with homozygous floxed FasL gene showed no obvious abnormalities. However, germline deletion of the FasL gene, obtained after mating with mice expressing ubiquitous Cre recombinase, resulted in an unexpectedly severe phenotype. FasL(-/-) mice exhibited an extreme splenomegaly and lymphadenopathy associated with lymphocytic infiltration into multiple organs and autoimmune disease. This severe phenotype led to the premature death at 4 mo of age of >50% of the homozygous mice. It stands in sharp contrast with the milder disease observed in gld (generalized lymphoproliferative disease) mice, indicating that the FasL allele of these mice encodes a protein still able to bind, albeit at a very low level, the Fas receptor.
Yokoi, Norihiko; Fukata, Yuko; Kase, Daisuke; Miyazaki, Taisuke; Jaegle, Martine; Ohkawa, Toshika; Takahashi, Naoki; Iwanari, Hiroko; Mochizuki, Yasuhiro; Hamakubo, Takao; Imoto, Keiji; Meijer, Dies; Watanabe, Masahiko; Fukata, Masaki
2015-01-01
Epilepsy is one of the most common and intractable brain disorders. Mutations in the human gene LGI1, encoding a neuronal secreted protein, cause autosomal dominant lateral temporal lobe epilepsy (ADLTE). However, the pathogenic mechanisms of LGI1 mutations remain unclear. We classified 22 reported LGI1 missense mutations as either secretion defective or secretion competent, and we generated and analyzed two mouse models of ADLTE encoding mutant proteins representative of the two groups. The secretion-defective LGI1(E383A) protein was recognized by the ER quality-control machinery and prematurely degraded, whereas the secretable LGI1(S473L) protein abnormally dimerized and was selectively defective in binding to one of its receptors, ADAM22. Both mutations caused a loss of function, compromising intracellular trafficking or ligand activity of LGI1 and converging on reduced synaptic LGI1-ADAM22 interaction. A chemical corrector, 4-phenylbutyrate (4PBA), restored LGI1(E383A) folding and binding to ADAM22 and ameliorated the increased seizure susceptibility of the LGI1(E383A) model mice. This study establishes LGI1-related epilepsy as a conformational disease and suggests new therapeutic options for human epilepsy.
Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes.
Trapani, J A; Klein, J L; White, P C; Dupont, B
1988-01-01
A cDNA clone encoding a human serine esterase gene was isolated from a library constructed from poly(A)+ RNA of allogeneically stimulated, interleukin 2-expanded peripheral blood mononuclear cells. The clone, designated HSE26.1, represents a full-length copy of a 0.9-kilobase mRNA present in human cytotoxic cells but absent from a wide variety of noncytotoxic cell lines. Clone HSE26.1 contains an 892-base-pair sequence, including a single 741-base-pair open reading frame encoding a putative 247-residue polypeptide. The first 20 amino acids of the polypeptide form a leader sequence. The mature protein is predicted to have an unglycosylated Mr of approximately equal to 26,000 and contains a single potential site for N-linked glycosylation. The nucleotide and predicted amino acid sequences of clone HSE26.1 are homologous with all murine and human serine esterases cloned thus far but are most similar to mouse granzyme B (70% nucleotide and 68% amino acid identity). HSE26.1 protein is expressed weakly in unstimulated peripheral blood mononuclear cells but is strongly induced within 6-hr incubation in medium containing phytohemagglutinin. The data suggest that the protein encoded by HSE26.1 plays a role in cell-mediated cytotoxicity. Images PMID:3261871
Multiplex cDNA quantification method that facilitates the standardization of gene expression data
Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira
2011-01-01
Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008
Diao, Yong; Zhao, Xiao-Feng; Lin, Jun-Sheng; Wang, Qi-Zhao; Xu, Rui-An
2011-01-07
To investigate the effect of transgenic expression of kallistatin (Kal) on carbon tetrachloride (CCl(4))-induced liver injury by intramuscular (im) electrotransfer of a Kal-encoding plasmid formulated with poly-L-glutamate (PLG). The pKal plasmid encoding Kal gene was formulated with PLG and electrotransferred into mice skeletal muscle before the administration of CCl4. The expression level of Kal was measured. The serum biomarker levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malonyldialdehyde (MDA), and tumor necrosis factor (TNF)-α were monitored. The extent of CCl4-induced liver injury was analyzed histopathologically. The transgene of Kal was sufficiently expressed after an im injection of plasmid formulated with PLG followed by electroporation. In the Kal gene-transferred mice, protection against CCl4-induced liver injury was reflected by significantly decreased serum ALT, AST, MDA and TNF-α levels compared to those in control mice (P<0.01 to 0.05 in a dose-dependent manner). Histological observations also revealed that hepatocyte necrosis, hemorrhage, vacuolar change and hydropic degeneration were apparent in mice after CCl4 administration. In contrast, the damage was markedly attenuated in the Kal gene-transferred mice. The expression of hepatic fibrogenesis marker transforming growth factor-β1 was also reduced in the pKal transferred mice. Intramuscular electrotransfer of plasmid pKal which was formulated with PLG significantly alleviated the CCl4-induced oxidative stress and inflammatory response, and reduced the liver damage in a mouse model.
Thomas, Carissa M; Saulnier, Delphine M A; Spinler, Jennifer K; Hemarajata, Peera; Gao, Chunxu; Jones, Sara E; Grimm, Ashley; Balderas, Miriam A; Burstein, Matthew D; Morra, Christina; Roeth, Daniel; Kalkum, Markus; Versalovic, James
2016-10-01
Bacterial-derived compounds from the intestinal microbiome modulate host mucosal immunity. Identification and mechanistic studies of these compounds provide insights into host-microbial mutualism. Specific Lactobacillus reuteri strains suppress production of the proinflammatory cytokine, tumor necrosis factor (TNF), and are protective in a mouse model of colitis. Human-derived L. reuteri strain ATCC PTA 6475 suppresses intestinal inflammation and produces 5,10-methenyltetrahydrofolic acid polyglutamates. Insertional mutagenesis identified the bifunctional dihydrofolate synthase/folylpolyglutamate synthase type 2 (folC2) gene as essential for 5,10-methenyltetrahydrofolic acid polyglutamate biosynthesis, as well as for suppression of TNF production by activated human monocytes, and for the anti-inflammatory effect of L. reuteri 6475 in a trinitrobenzene sulfonic acid-induced mouse model of acute colitis. In contrast, folC encodes the enzyme responsible for folate polyglutamylation but does not impact TNF suppression by L. reuteri. Comparative transcriptomics between wild-type and mutant L. reuteri strains revealed additional genes involved in immunomodulation, including previously identified hdc genes involved in histidine to histamine conversion. The folC2 mutant yielded diminished hdc gene cluster expression and diminished histamine production, suggesting a link between folate and histadine/histamine metabolism. The identification of genes and gene networks regulating production of bacterial-derived immunoregulatory molecules may lead to improved anti-inflammatory strategies for digestive diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Szostak, Justyna; Boué, Stéphanie; Talikka, Marja; Guedj, Emmanuel; Martin, Florian; Phillips, Blaine; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia
2017-03-01
Experimental studies clearly demonstrate a causal effect of cigarette smoking on cardiovascular disease. To reduce the individual risk and population harm caused by smoking, alternative products to cigarettes are being developed. We recently reported on an apolipoprotein E-deficient (Apoe -/- ) mouse inhalation study that compared the effects of exposure to aerosol from a candidate modified risk tobacco product, Tobacco Heating System 2.2 (THS2.2), and smoke from the reference cigarette (3R4F) on pulmonary and vascular biology. Here, we applied a transcriptomics approach to evaluate the impact of the exposure to 3R4F smoke and THS2.2 aerosol on heart tissues from the same cohort of mice. The systems response profiles demonstrated that 3R4F smoke exposure led to time-dependent transcriptomics changes (False Discovery Rate (FDR) < 0.05; 44 differentially expressed genes at 3-months; 491 at 8-months). Analysis of differentially expressed genes in the heart tissue indicated that 3R4F exposure induced the downregulation of genes involved in cytoskeleton organization and the contractile function of the heart, notably genes that encode beta actin (Actb), actinin alpha 4 (Actn4), and filamin C (Flnc). This was accompanied by the downregulation of genes related to the inflammatory response. None of these effects were observed in the group exposed to THS2.2 aerosol. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cheng, Shaoji; Clancy, Cornelius J.; Xu, Wenjie; Schneider, Frank; Hao, Binghua; Mitchell, Aaron P.; Nguyen, M. Hong
2013-01-01
Background. The pathogenesis of intra-abdominal candidiasis is poorly understood. Methods. Mice were intraperitoneally infected with Candida albicans (1 × 106 colony-forming units) and sterile stool. nanoString assays were used to quantitate messenger RNA for 145 C. albicans genes within the peritoneal cavity at 48 hours. Results. Within 6 hours after infection, mice developed peritonitis, characterized by high yeast burdens, neutrophil influx, and a pH of 7.9 within peritoneal fluid. Organ invasion by hyphae and early abscess formation were evident 6 and 24 hours after infection, respectively; abscesses resolved by day 14. nanoString assays revealed adhesion and responses to alkaline pH, osmolarity, and stress as biologic processes activated in the peritoneal cavity. Disruption of the highly-expressed gene RIM101, which encodes an alkaline-regulated transcription factor, did not impact cellular morphology but reduced both C. albicans burden during early peritonitis and C. albicans persistence within abscesses. RIM101 influenced expression of 49 genes during intra-abdominal candidiasis, including previously unidentified Rim101 targets. Overexpression of the RIM101-dependent gene SAP5, which encodes a secreted protease, restored the ability of a rim101 mutant to persist within abscesses. Conclusions. A mouse model of intra-abdominal candidiasis is valuable for studying pathogenesis and C. albicans gene expression. RIM101 contributes to persistence within intra-abdominal abscesses, at least in part through activation of SAP5. PMID:24006479
A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.
Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G
2004-04-29
Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.
Takahashi, Nagahide; Nielsen, Karin Sandager; Aleksic, Branko; Petersen, Steffen; Ikeda, Masashi; Kushima, Itaru; Vacaresse, Nathalie; Ujike, Hiroshi; Iwata, Nakao; Dubreuil, Véronique; Mirza, Naheed; Sakurai, Takeshi; Ozaki, Norio; Buxbaum, Joseph D.; Sap, Jan
2011-01-01
Background Solid evidence links schizophrenia (SZ) susceptibility to neurodevelopmental processes involving tyrosine phosphorylation-mediated signaling. Mouse studies implicate the Ptpra gene, encoding protein tyrosine phosphatase RPTPα, in the control of radial neuronal migration, cortical cytoarchitecture, and oligodendrocyte differentiation. The human gene encoding RPTPα, PTPRA, maps to a chromosomal region (20p13) associated with susceptibility to psychotic illness. Methods We characterized neurobehavioral parameters, as well as gene expression in the central nervous system, of mice with a null mutation in the Ptpra gene. We searched for genetic association between polymorphisms in PTPRA and schizophrenia risk (2 independent cohorts; total of 1420 cases and 1377 controls), and we monitored PTPRA expression in prefrontal dorsolateral cortex of SZ patients (35 cases, 2 control groups of 35 cases) Results We find that Ptpra−/− mice reproduce neurobehavioral endophenotypes of human SZ: sensitization to metamphetamine-induced hyperactivity, defective sensorimotor gating, and defective habituation to a startle response. Ptpra loss of function also leads to reduced expression of multiple myelination genes, mimicking the hypomyelination-associated changes in gene expression observed in post mortem patient brains. We further report that a polymorphism at the PTPRA locus is genetically associated with SZ, and that PTPRA mRNA levels are reduced in post mortem dorsolateral prefrontal cortex of subjects with SZ. Conclusion The implication of this well-studied signaling protein in SZ risk and endophenotype manifestation provides novel entry points into the etiopathology of this disease. PMID:21831360
Tsujimura, T.; Hashimoto, K.; Morii, E.; Tunio, G. M.; Tsujino, K.; Kondo, T.; Kanakura, Y.; Kitamura, Y.
1997-01-01
Mast cells develop when spleen cells of mice are cultured in the medium containing interleukin (IL)-3. Cultured mast cells (CMCs) show apoptosis when they are incubated in the medium without IL-3. We obtained CMCs from tg/tg mice that did not express the transcription factor encoded by the mi gene (MITF) due to the integration of a transgene at its 5' flanking region. MITF is a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors. We investigated the effect of MITF on the apoptosis of CMCs after removal of IL-3. When cDNA encoding normal MITF ((+)-MITF) was introduced into tg/tg CMCs with the retroviral vector, the apoptosis of tg/tg CMCs was significantly accelerated. The mutant mi allele represents a deletion of an arginine at the basic domain of MITF. The apoptosis of tg/tg CMCs was not accelerated by the introduction of cDNA encoding mi-MITF. The overexpression of (+)-MITF was not prerequisite to the acceleration of the apoptosis, as the apoptotic process proceeded faster in +/+ CMCs than in mi/mi CMCs. The Ba/F3 lymphoid cell line is also dependent on IL-3, and Ba/F3 cells show apoptosis after removal of IL-3. The c-myc gene encodes another transcription factor of the bHLH-Zip family, and the overexpression of the c-myc gene accelerated the apoptosis of Ba/F3 cells. However, the overexpression of (+)-MITF did not accelerate the apoptosis of Ba/F3 cells. The (+)-MITF appeared to play some roles for the acceleration of the apoptosis specifically in the mast cell lineage. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9327738
New consensus nomenclature for mammalian keratins
Schweizer, Jürgen; Bowden, Paul E.; Coulombe, Pierre A.; Langbein, Lutz; Lane, E. Birgitte; Magin, Thomas M.; Maltais, Lois; Omary, M. Bishr; Parry, David A.D.; Rogers, Michael A.; Wright, Mathew W.
2006-01-01
Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species. PMID:16831889
Fields, Randall R.; Zhou, Guimei; Huang, Dali; Davis, Jack R.; Möller, Claes; Jacobson, Samuel G.; Kimberling, William J.; Sumegi, Janos
2002-01-01
Usher syndrome type III is an autosomal recessive disorder characterized by progressive sensorineural hearing loss, vestibular dysfunction, and retinitis pigmentosa. The disease gene was localized to 3q25 and recently was identified by positional cloning. In the present study, we have revised the structure of the USH3 gene, including a new translation start site, 5′ untranslated region, and a transcript encoding a 232–amino acid protein. The mature form of the protein is predicted to contain three transmembrane domains and 204 residues. We have found four new disease-causing mutations, including one that appears to be relatively common in the Ashkenazi Jewish population. We have also identified mouse (chromosome 3) and rat (chromosome 2) orthologues, as well as two human paralogues on chromosomes 4 and 10. PMID:12145752
Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.
2008-01-01
The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410
Kawai, Jun; Hayashizaki, Yoshihide
2003-06-01
We propose herein a new method of DNA distribution, whereby DNA clones or PCR products are printed directly onto the pages of books and delivered to users along with relevant scientific information. DNA sheets, comprising water-soluble paper onto which DNA is spotted, can be bound into books. Readers can easily extract the DNA fragments from DNA sheets and amplify them using PCR. We show that DNA sheets can withstand various conditions that may be experienced during bookbinding and delivery, such as high temperatures and humidity. Almost all genes (95%-100% of randomly selected RIKEN mouse cDNA clones) were recovered successfully by use of PCR. Readers can start their experiments after a 2-h PCR amplification without waiting for the delivery of DNA clones. The DNA Book thus provides a novel method for delivering DNA in a timely and cost-effective manner. A sample DNA sheet (carrying RIKEN mouse cDNA clones encoding genes of enzymes for the TCA cycle) is included in this issue for field-testing. We would greatly appreciate it if readers could attempt to extract DNA and report the results and whether the DNA sheet was shipped to readers in good condition.
Shamseldin, Hanan E; Khalifa, Ola; Binamer, Yousef M; Almutawa, Abdulmonem; Arold, Stefan T; Zaidan, Hamad; Alkuraya, Fowzan S
2017-01-01
Ectodermal dysplasia is a highly heterogeneous group of disorders that variably affect the derivatives of the ectoderm, primarily skin, hair, nails and teeth. TP63, itself mutated in ectodermal dysplasia, links many other ectodermal dysplasia disease genes through a regulatory network that maintains the balance between proliferation and differentiation of the epidermis and other ectodermal derivatives. The ectodermal knockout phenotype of five mouse genes that regulate and/or are regulated by TP63 (Irf6, Ikkα, Ripk4, Stratifin, and Kdf1) is strikingly similar and involves abnormal balance towards proliferation at the expense of differentiation, but only the first three have corresponding ectodermal phenotypes in humans. We describe a multigenerational Saudi family with an autosomal dominant form of hypohidrotic ectodermal dysplasia in which positional mapping and exome sequencing identified a novel variant in KDF1 that fully segregates with the phenotype. The recapitulation of the phenotype we observe in this family by the Kdf1-/- mouse suggests a causal role played by the KDF1 variant.
Expression of Pkd2l2 in testis is implicated in spermatogenesis.
Chen, Ye; Zhang, Zheng; Lv, Xiao-Yan; Wang, Yi-Dong; Hu, Zhong-Guo; Sun, Huan; Tan, Rui-Zhi; Liu, Yu-Hang; Bian, Guo-Hui; Xiao, Yan; Li, Qin-Wei; Yang, Qiu-Tan; Ai, Jian-Zhong; Feng, Lu; Yang, Yang; Wei, Yu-Quan; Zhou, Qin
2008-08-01
Pkd2l2 is a novel member of the polycystic kidney disease (PKD) gene family in mammals. Prominently expressed in testis, this gene is still poorly understood. In this study, reverse transcription polymerase chain reaction (RT-PCR) results showed a time-dependent expression pattern of Pkd2l2 in postnatal mouse testis. Immunohistochemical analysis revealed that Pkd2l2 encoded a protein, polycystin-L2, which was predominantly detectable in the plasma membrane of spermatocytes and round spermatids, as well as in the head and tail of elongating spermatids within seminiferous tubules in mouse testis tissue sections of postnatal day 14 and adult mice. A green fluorescent fusion protein of Pkd2l2 resided in the plasma membrane of HEK 293 and MDCK cells, suggesting that it functions as a plasma membrane protein. Overexpression of Pkd2l2 increased the intracellular calcium concentration of MDCK cells, as detected by flow cytometry. Collectively, these data indicated that Pkd2l2 may be involved in the mid-late stage of spermatogenesis through modulation of the intracellular calcium concentration.
Garg, Saurabh K.; Lioy, Daniel T.; Cheval, Hélène; McGann, James C.; Bissonnette, John M.; Murtha, Matthew J.; Foust, Kevin D.; Kaspar, Brian K.; Bird, Adrian
2013-01-01
De novo mutations in the X-linked gene encoding the transcription factor methyl-CpG binding protein 2 (MECP2) are the most frequent cause of the neurological disorder Rett syndrome (RTT). Hemizygous males usually die of neonatal encephalopathy. Heterozygous females survive into adulthood but exhibit severe symptoms including microcephaly, loss of purposeful hand motions and speech, and motor abnormalities, which appear after a period of apparently normal development. Most studies have focused on male mouse models because of the shorter latency to and severity in symptoms, yet how well these mice mimic the disease in affected females is not clear. Very few therapeutic treatments have been proposed for females, the more gender-appropriate model. Here, we show that self-complementary AAV9, bearing MeCP2 cDNA under control of a fragment of its own promoter (scAAV9/MeCP2), is capable of significantly stabilizing or reversing symptoms when administered systemically into female RTT mice. To our knowledge, this is the first potential gene therapy for females afflicted with RTT. PMID:23966684
Miwa, Hiroyuki; Era, Takumi
2018-01-29
Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α ( Pdgfra ) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1 ) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions. © 2018. Published by The Company of Biologists Ltd.
Characterization of the human analogue of a Scrapie-responsive gene.
Dron, M; Dandoy-Dron, F; Guillo, F; Benboudjema, L; Hauw, J J; Lebon, P; Dormont, D; Tovey, M G
1998-07-17
We have recently described a novel mRNA denominated ScRG-1, the level of which is increased in the brains of Scrapie-infected mice (Dandoy-Dron, F., Guillo, F., Benboudjema, L., Deslys, J.-P., Lasmézas, C., Dormont, D., Tovey, M. G., and Dron, M. (1998) J. Biol. Chem. 273, 7691-7697). The increase in ScRG-1 mRNA in the brain follows the accumulation of PrPSc, the proteinase K-resistant form of the prion protein (PrP), and precedes the widespread neuronal death that occurs in late stage disease. In the present study, we have isolated a cDNA encoding the human counterpart of ScRG-1. Comparison of the human and mouse transcripts firmly established that both sequences encode a highly conserved protein of 98 amino acids that contains a signal peptide, suggesting that the protein may be secreted. Examination of the distribution of human ScRG-1 mRNA in adult and fetal tissues revealed that the gene was expressed primarily in the central nervous system as a 0.7-kilobase message and was under strict developmental control.
Dietary L-leucine improves the anemia in a mouse model for Diamond-Blackfan anemia.
Jaako, Pekka; Debnath, Shubhranshu; Olsson, Karin; Bryder, David; Flygare, Johan; Karlsson, Stefan
2012-09-13
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Recently, a case study reported a patient who became transfusion-independent in response to treatment with the amino acid L-leucine. Therefore, we have validated the therapeutic effect of L-leucine using our recently generated mouse model for RPS19-deficient DBA. Administration of L-leucine significantly improved the anemia in Rps19-deficient mice (19% improvement in hemoglobin concentration; 18% increase in the number of erythrocytes), increased the bone marrow cellularity, and alleviated stress hematopoiesis. Furthermore, the therapeutic response to L-leucine appeared specific for Rps19-deficient hematopoiesis and was associated with down-regulation of p53 activity. Our study supports the rationale for clinical trials of L-leucine as a therapeutic agent for DBA.
Telezhkin, Vsevolod; Straccia, Marco; Yarova, Polina; Pardo, Monica; Yung, Sun; Vinh, Ngoc-Nga; Hancock, Jane M; Barriga, Gerardo Garcia-Diaz; Brown, David A; Rosser, Anne E; Brown, Jonathan T; Canals, Josep M; Randall, Andrew D; Allen, Nicholas D; Kemp, Paul J
2018-05-24
Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.
AIP1-mediated stress signaling in atherosclerosis and arteriosclerosis
Zhang, Jiqin; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang
2016-01-01
AIP1 (encoded by the DAB2IP gene), a signaling scaffolding protein, is abundantly expressed in vascular endothelial cells (EC). While it was initially discovered as an ASK1-interacting protein, AIP1 broadly suppresses inflammatory responses triggered by cytokines and stresses such as TNF, LPS, VEGF and ER stress in EC (therefore AIP1 is an Anti-Inflammatory Protein). Human genome-wide association study (GWAS) has identified DAB2IP gene variants conferring susceptibility to cardiovascular diseases. Consistently, a global or vascular EC-specific deletion of DAB2IP in mice strongly enhances inflammatory responses and exacerbates atherosclerosis and graft arteriosclerosis progression in mouse models. Mechanisms for AIP1 function and regulation associated with human cardiovascular diseases need further investigations. PMID:25732743
Flexible CRISPR library construction using parallel oligonucleotide retrieval
Read, Abigail; Gao, Shaojian; Batchelor, Eric
2017-01-01
Abstract CRISPR/Cas9-based gene knockout libraries have emerged as a powerful tool for functional screens. We present here a set of pre-designed human and mouse sgRNA sequences that are optimized for both high on-target potency and low off-target effect. To maximize the chance of target gene inactivation, sgRNAs were curated to target both 5΄ constitutive exons and exons that encode conserved protein domains. We describe here a robust and cost-effective method to construct multiple small sized CRISPR library from a single oligo pool generated by array synthesis using parallel oligonucleotide retrieval. Together, these resources provide a convenient means for individual labs to generate customized CRISPR libraries of variable size and coverage depth for functional genomics application. PMID:28334828
Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K
1989-11-01
Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.
Rohde, Kristian; Bering, Tenna; Furukawa, Takahisa; Rath, Martin Fredensborg
2017-10-01
The retinal and anterior neural fold homeobox gene (Rax) controls development of the eye and the forebrain. Postnatal expression of Rax in the brain is restricted to the pineal gland, a forebrain structure devoted to melatonin synthesis. The role of Rax in pineal function is unknown. In order to investigate the role of Rax in pineal function while circumventing forebrain abnormalities of the global Rax knockout, we generated an eye and pineal-specific Rax conditional knockout mouse. Deletion of Rax in the pineal gland did not affect morphology of the gland, suggesting that Rax is not essential for pineal gland development. In contrast, deletion of Rax in the eye generated an anophthalmic phenotype. In addition to the loss of central visual pathways, the suprachiasmatic nucleus of the hypothalamus housing the circadian clock was absent, indicating that the retinohypothalamic tract is required for the nucleus to develop. Telemetric analyses confirmed the lack of a functional circadian clock. Arylalkylamine N-acetyltransferase (Aanat) transcripts, encoding the melatonin rhythm-generating enzyme, were undetectable in the pineal gland of the Rax conditional knockout under normal conditions, whereas the paired box 6 homeobox gene, known to regulate pineal development, was up-regulated. By injecting isoproterenol, which mimics a nocturnal situation in the pineal gland, we were able to induce pineal expression of Aanat in the Rax conditional knockout mouse, but Aanat transcript levels were significantly lower than those of Rax-proficient mice. Our data suggest that Rax controls pineal gene expression and via Aanat may modulate melatonin synthesis. © 2017 International Society for Neurochemistry.
Chung, Amanda G.; Belone, Phillip M.; Bímová, Barbora Vošlajerová; Karn, Robert C.; Laukaitis, Christina M.
2017-01-01
The house mouse Androgen-binding protein (Abp) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg, encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27, by replacing them with the neomycin resistance gene. The knockout genotype (−/−) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the −/− genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the −/− animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the −/− genotype, compared with their +/+ and +/− siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP. PMID:28159752
Chung, Amanda G; Belone, Phillip M; Bímová, Barbora Vošlajerová; Karn, Robert C; Laukaitis, Christina M
2017-04-01
The house mouse Androgen-binding protein ( Abp ) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg , encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27 , by replacing them with the neomycin resistance gene. The knockout genotype (-/-) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the -/- genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the -/- animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the -/- genotype, compared with their +/+ and +/- siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP. Copyright © 2017 by the Genetics Society of America.
A human DAZ transgene confers partial rescue of the mouse Dazl null phenotype
Slee, R.; Grimes, B.; Speed, R. M.; Taggart, M.; Maguire, S. M.; Ross, A.; McGill, N. I.; Saunders, P. T. K.; Cooke, H. J.
1999-01-01
In a subset of infertile men, a spectrum of spermatogenic defects ranging from a complete absence of germ cells (sertoli cell only) to oligozoospermia is associated with microdeletions of the DAZ (deleted in azoospermia) gene cluster on human distal Yq. DAZ encodes a testis-specific protein with RNA-binding potential recently derived from a single-copy gene DAZL1 (DAZ-like) on chromosome 3. Y chromosomal DAZ homologues are confined to humans and higher primates. It remains unclear which function unique to higher primate spermatogenesis DAZ may serve, and the functional status of the gene recently has been questioned. To assess the extent of functional conservation we have tested the capacity of a human DAZ gene contained in a 225-kb yeast artificial chromosome to complement the sterile phenotype of the Dazl null mouse (Dazl−/−), which is characterized by severe germ-cell depletion and meiotic failure. Although Dazl−/− mice remained infertile when the DAZ transgene was introduced, histological examination revealed a partial and variable rescue of the mutant phenotype, manifest as a pronounced increase in the germ cell population of the seminiferous tubules and survival to the pachytene stage of meiosis. As well as constituting definitive proof of the spermatogenic role of the DAZ gene product, these findings confirm the high degree of functional conservation between the DAZ and DAZL1 genes, suggesting they may constitute a single target for contraceptive intervention and raising the possibility of therapeutic up-regulation of the DAZL1 gene in infertile men. PMID:10393944
Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy
Robinson-Hamm, Jacqueline N.; Gersbach, Charles A.
2016-01-01
Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development. PMID:27542949
Amelogenesis Imperfecta; Genes, Proteins, and Pathways
Smith, Claire E. L.; Poulter, James A.; Antanaviciute, Agne; Kirkham, Jennifer; Brookes, Steven J.; Inglehearn, Chris F.; Mighell, Alan J.
2017-01-01
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI. PMID:28694781
Amelogenesis Imperfecta; Genes, Proteins, and Pathways.
Smith, Claire E L; Poulter, James A; Antanaviciute, Agne; Kirkham, Jennifer; Brookes, Steven J; Inglehearn, Chris F; Mighell, Alan J
2017-01-01
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX , encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI.
Makeyev, Aleksandr V.; Erdenechimeg, Lkhamsuren; Mungunsukh, Ognoon; Roth, Jutta J.; Enkhmandakh, Badam; Ruddle, Frank H.; Bayarsaihan, Dashzeveg
2004-01-01
Williams–Beuren syndrome (also known as Williams syndrome) is caused by a deletion of a 1.55- to 1.84-megabase region from chromosome band 7q11.23. GTF2IRD1 and GTF2I, located within this critical region, encode proteins of the TFII-I family with multiple helix–loop–helix domains known as I repeats. In the present work, we characterize a third member, GTF2IRD2, which has sequence and structural similarity to the GTF2I and GTF2IRD1 paralogs. The ORF encodes a protein with several features characteristic of regulatory factors, including two I repeats, two leucine zippers, and a single Cys-2/His-2 zinc finger. The genomic organization of human, baboon, rat, and mouse genes is well conserved. Our exon-by-exon comparison has revealed that GTF2IRD2 is more closely related to GTF2I than to GTF2IRD1 and apparently is derived from the GTF2I sequence. The comparison of GTF2I and GTF2IRD2 genes revealed two distinct regions of homology, indicating that the helix–loop–helix domain structure of the GTF2IRD2 gene has been generated by two independent genomic duplications. We speculate that GTF2I is derived from GTF2IRD1 as a result of local duplication and the further evolution of its structure was associated with its functional specialization. Comparison of genomic sequences surrounding GTF2IRD2 genes in mice and humans allows refinement of the centromeric breakpoint position of the primate-specific inversion within the Williams–Beuren syndrome critical region. PMID:15243160
Makeyev, Aleksandr V; Erdenechimeg, Lkhamsuren; Mungunsukh, Ognoon; Roth, Jutta J; Enkhmandakh, Badam; Ruddle, Frank H; Bayarsaihan, Dashzeveg
2004-07-27
Williams-Beuren syndrome (also known as Williams syndrome) is caused by a deletion of a 1.55- to 1.84-megabase region from chromosome band 7q11.23. GTF2IRD1 and GTF2I, located within this critical region, encode proteins of the TFII-I family with multiple helix-loop-helix domains known as I repeats. In the present work, we characterize a third member, GTF2IRD2, which has sequence and structural similarity to the GTF2I and GTF2IRD1 paralogs. The ORF encodes a protein with several features characteristic of regulatory factors, including two I repeats, two leucine zippers, and a single Cys-2/His-2 zinc finger. The genomic organization of human, baboon, rat, and mouse genes is well conserved. Our exon-by-exon comparison has revealed that GTF2IRD2 is more closely related to GTF2I than to GTF2IRD1 and apparently is derived from the GTF2I sequence. The comparison of GTF2I and GTF2IRD2 genes revealed two distinct regions of homology, indicating that the helix-loop-helix domain structure of the GTF2IRD2 gene has been generated by two independent genomic duplications. We speculate that GTF2I is derived from GTF2IRD1 as a result of local duplication and the further evolution of its structure was associated with its functional specialization. Comparison of genomic sequences surrounding GTF2IRD2 genes in mice and humans allows refinement of the centromeric breakpoint position of the primate-specific inversion within the Williams-Beuren syndrome critical region.
Chen, Tsai-Yu; Lee, Sung-Hun; Dhar, Shilpa S; Lee, Min Gyu
2018-03-16
The stemness maintenance of embryonic stem cells (ESCs) requires pluripotency transcription factors, including Oct4, Nanog, and Sox2. We have previously reported that protein arginine methyltransferase 7 (PRMT7), an epigenetic modifier, is an essential pluripotency factor that maintains the stemness of mouse ESCs, at least in part, by down-regulating the expression of the anti-stemness microRNA (miRNA) miR-24-2. To gain greater insight into the molecular basis underlying PRMT7-mediated maintenance of mouse ESC stemness, we searched for new PRMT7-down-regulated anti-stemness miRNAs. Here, we show that miR-221 gene-encoded miR-221-3p and miR-221-5p are anti-stemness miRNAs whose expression levels in mouse ESCs are directly repressed by PRMT7. Notably, both miR-221-3p and miR-221-5p targeted the 3' untranslated regions of mRNA transcripts of the major pluripotency factors Oct4, Nanog, and Sox2 to antagonize mouse ESC stemness. Moreover, miR-221-5p silenced also the expression of its own transcriptional repressor PRMT7. Transfection of miR-221-3p and miR-221-5p mimics induced spontaneous differentiation of mouse ESCs. CRISPR-mediated deletion of the miR-221 gene, as well as specific antisense inhibitors of miR-221-3p and miR-221-5p, inhibited the spontaneous differentiation of PRMT7-depleted mouse ESCs. Taken together, these findings reveal that the PRMT7-mediated repression of miR-221-3p and miR-221-5p expression plays a critical role in maintaining mouse ESC stemness. Our results also establish miR-221-3p and miR-221-5p as anti-stemness miRNAs that target Oct4 , Nanog , and Sox2 mRNAs in mouse ESCs. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Hahn, Anne; Salomon, Johanna J; Leitz, Dominik; Feigenbutz, Dennis; Korsch, Lisa; Lisewski, Ina; Schrimpf, Katrin; Millar-Büchner, Pamela; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank
2018-06-02
Physiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca 2+ -dependent Cl - secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl - secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca 2+ -gated Cl - channels are known to contribute to calcium-dependent Cl - secretion in tracheal and bronchial epithelia. In the present study, two mouse models of CF were examined to assess a potential protective function of Ca 2+ -dependent Cl - secretion, a CFTR deletion model (cftr -/- ), and a CF pathology model that overexpresses the epithelial Na + channel β-subunit (βENaC), which is encoded by the Scnn1b gene, specifically in airway epithelia (Scnn1b-Tg). The expression levels of ANO1 were examined by mRNA and protein content, and the channel protein distribution between ciliated and non-ciliated epithelial cells was analyzed. Moreover, Ussing chamber experiments were conducted to compare Ca 2+ -dependent Cl - secretion between wild-type animals and the two mouse models. Our results demonstrate that CFTR and ANO1 channels were co-expressed with ENaC in non-ciliated cells of mouse tracheal and bronchial epithelia. Ciliated cells did not express these proteins. Despite co-localization of CFTR and ANO1 in the same cell type, cells in cftr -/- mice displayed no altered expression of ANO1. Similarly, ANO1 expression was unaffected by βENaC overexpression in the Scnn1b-Tg line. These results suggest that the CF-related environment in the two mouse models did not induce ANO1 overexpression as a compensatory system.
C2cd3 is required for cilia formation and Hedgehog signaling in mouse
Hoover, Amber N.; Wynkoop, Aaron; Zeng, Huiqing; Jia, Jinping; Niswander, Lee A.; Liu, Aimin
2011-01-01
Cilia are essential for mammalian embryonic development as well as for the physiological activity of various adult organ systems. Despite the multiple crucial roles that cilia play, the mechanisms underlying ciliogenesis in mammals remain poorly understood. Taking a forward genetic approach, we have identified Hearty (Hty), a recessive lethal mouse mutant with multiple defects, including neural tube defects, abnormal dorsal-ventral patterning of the spinal cord, a defect in left-right axis determination and severe polydactyly (extra digits). By genetic mapping, sequence analysis of candidate genes and characterization of a second mutant allele, we identify Hty as C2cd3, a novel gene encoding a vertebrate-specific C2 domain-containing protein. Target gene expression and double-mutant analyses suggest that C2cd3 is an essential regulator of intracellular transduction of the Hedgehog signal. Furthering a link between Hedgehog signaling and cilia function, we find that cilia formation and proteolytic processing of Gli3 are disrupted in C2cd3 mutants. Finally, we observe C2cd3 protein at the basal body, consistent with its essential function in ciliogenesis. Interestingly, the human ortholog for this gene lies in proximity to the critical regions of Meckel-Gruber syndrome 2 (MKS2) and Joubert syndrome 2 (JBTS2), making it a potential candidate for these two human genetic disorders. PMID:19004860
Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells
Min, Irene M.; Waterfall, Joshua J.; Core, Leighton J.; Munroe, Robert J.; Schimenti, John; Lis, John T.
2011-01-01
Transitions between pluripotent stem cells and differentiated cells are executed by key transcription regulators. Comparative measurements of RNA polymerase distribution over the genome's primary transcription units in different cell states can identify the genes and steps in the transcription cycle that are regulated during such transitions. To identify the complete transcriptional profiles of RNA polymerases with high sensitivity and resolution, as well as the critical regulated steps upon which regulatory factors act, we used genome-wide nuclear run-on (GRO-seq) to map the density and orientation of transcriptionally engaged RNA polymerases in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). In both cell types, progression of a promoter-proximal, paused RNA polymerase II (Pol II) into productive elongation is a rate-limiting step in transcription of ∼40% of mRNA-encoding genes. Importantly, quantitative comparisons between cell types reveal that transcription is controlled frequently at paused Pol II's entry into elongation. Furthermore, “bivalent” ESC genes (exhibiting both active and repressive histone modifications) bound by Polycomb group complexes PRC1 (Polycomb-repressive complex 1) and PRC2 show dramatically reduced levels of paused Pol II at promoters relative to an average gene. In contrast, bivalent promoters bound by only PRC2 allow Pol II pausing, but it is confined to extremely 5′ proximal regions. Altogether, these findings identify rate-limiting targets for transcription regulation during cell differentiation. PMID:21460038
VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema
Yoon, Young-sup; Murayama, Toshinori; Gravereaux, Edwin; Tkebuchava, Tengiz; Silver, Marcy; Curry, Cynthia; Wecker, Andrea; Kirchmair, Rudolf; Hu, Chun Song; Kearney, Marianne; Ashare, Alan; Jackson, David G.; Kubo, Hajime; Isner, Jeffrey M.; Losordo, Douglas W.
2003-01-01
Although lymphedema is a common clinical condition, treatment for this disabling condition remains limited and largely ineffective. Recently, it has been reported that overexpression of VEGF-C correlates with increased lymphatic vessel growth (lymphangiogenesis). However, the effect of VEGF-C–induced lymphangiogenesis on lymphedema has yet to be demonstrated. Here we investigated the impact of local transfer of naked plasmid DNA encoding human VEGF-C (phVEGF-C) on two animal models of lymphedema: one in the rabbit ear and the other in the mouse tail. In a rabbit model, following local phVEGF-C gene transfer, VEGFR-3 expression was significantly increased. This gene transfer led to a decrease in thickness and volume of lymphedema, improvement of lymphatic function demonstrated by serial lymphoscintigraphy, and finally, attenuation of the fibrofatty changes of the skin, the final consequences of lymphedema. The favorable effect of phVEGF-C on lymphedema was reconfirmed in a mouse tail model. Immunohistochemical analysis using lymphatic-specific markers: VEGFR-3, lymphatic endothelial hyaluronan receptor-1, together with the proliferation marker Ki-67 Ab revealed that phVEGF-C transfection potently induced new lymphatic vessel growth. This study, we believe for the first time, documents that gene transfer of phVEGF-C resolves lymphedema through direct augmentation of lymphangiogenesis. This novel therapeutic strategy may merit clinical investigation in patients with lymphedema. PMID:12618526
Xu, Yan; Liu, Cong; Clark, Jean C; Whitsett, Jeffrey A
2006-04-21
Cystic fibrosis (CF), a common lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) that disturbs fluid homeostasis and host defense in target organs. The effects of CFTR and delta508-CFTR were assessed in transgenic mice that 1) lack CFTR expression (Cftr-/-); 2) express the human delta508 CFTR (CFTR(delta508)); 3) overexpress the normal human CFTR (CFTR(tg)) in respiratory epithelial cells. Genes were selected from Affymetrix Murine Gene-Chips analysis and subjected to functional classification, k-means clustering, promoter cis-elements/modules searching, literature mining, and pathway exploring. Genomic responses to Cftr-/- were not corrected by expression of CFTR(delta508). Genes regulating host defense, inflammation, fluid and electrolyte transport were similarly altered in Cftr-/- and CFTR(delta508) mice. CFTR(delta508) induced a primary disturbance in expression of genes regulating redox and antioxidant systems. Genomic responses to CFTR(tg) were modest and were not associated with lung pathology. CFTR(tg) and CFTR(delta508) induced genes encoding heat shock proteins and other chaperones but did not activate the endoplasmic reticulum-associated degradation pathway. RNAs encoding proteins that directly interact with CFTR were identified in each of the CFTR mouse models, supporting the hypothesis that CFTR functions within a multiprotein complex whose members interact at the level of protein-protein interactions and gene expression. Promoters of genes influenced by CFTR shared common regulatory elements, suggesting that their co-expression may be mediated by shared regulatory mechanisms. Genes and pathways involved in the response to CFTR may be of interest as modifiers of CF.
Martinez-Espinosa, Pedro L.; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming
2014-01-01
Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing. PMID:25267913
Shaping skeletal growth by modular regulatory elements in the Bmp5 gene.
Guenther, Catherine; Pantalena-Filho, Luiz; Kingsley, David M
2008-12-01
Cartilage and bone are formed into a remarkable range of shapes and sizes that underlie many anatomical adaptations to different lifestyles in vertebrates. Although the morphological blueprints for individual cartilage and bony structures must somehow be encoded in the genome, we currently know little about the detailed genomic mechanisms that direct precise growth patterns for particular bones. We have carried out large-scale enhancer surveys to identify the regulatory architecture controlling developmental expression of the mouse Bmp5 gene, which encodes a secreted signaling molecule required for normal morphology of specific skeletal features. Although Bmp5 is expressed in many skeletal precursors, different enhancers control expression in individual bones. Remarkably, we show here that different enhancers also exist for highly restricted spatial subdomains along the surface of individual skeletal structures, including ribs and nasal cartilages. Transgenic, null, and regulatory mutations confirm that these anatomy-specific sequences are sufficient to trigger local changes in skeletal morphology and are required for establishing normal growth rates on separate bone surfaces. Our findings suggest that individual bones are composite structures whose detailed growth patterns are built from many smaller lineage and gene expression domains. Individual enhancers in BMP genes provide a genomic mechanism for controlling precise growth domains in particular cartilages and bones, making it possible to separately regulate skeletal anatomy at highly specific locations in the body.
Zhao, Huifen; Pestina, Tamara I; Nasimuzzaman, Md; Mehta, Perdeep; Hargrove, Phillip W; Persons, Derek A
2009-06-04
Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However, transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT), driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs, which can be administered to kill residual untransduced, diseased HSCs, whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells, transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin, leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.
[Virulence determinant of Chromobacterium violaceum].
Miki, Tsuyoshi
2014-01-01
Chromobacterium violaceum is a Gram-negative bacterium that infects humans and animals with fatal sepsis. The infection with C. violaceum is rare in case of those who are healthy, but once established, C. violaceum causes sever disease accompanied by abscess formation in the lungs, liver and spleen. Furthermore, C. violaceum is resistant to a broad range of antibiotics, which in some cases renders the antimicrobial therapy for this infection difficult. Thus, the infection with C. violaceum displays high mortality rates unless initial proper antimicrobial therapy. In contrast, the infection mechanism had completely remained unknown. To this end, we have tried to identify virulence factors-associated with C. violaceum infection. Two distinct type III secretion systems (TTSSs) were thought to be one of the most important virulence factors, which are encoded by Chromobacterium pathogenicity island 1/1a and 2 (Cpi-1/-1a and -2) respectively. Our results have shown that Cpi-1/-1a-encoded TTSS, but not Cpi-2, is indispensable for the virulence in a mouse infection model. C. violaceum caused fulminant hepatitis in a Cpi-1/-1a-encoded TTSS-dependent manner. We next have identified 16 novel effectors secreted from Cpi-1/-1a-encoded TTS machinery. From these effectors, we found that CopE (Chromobacterium outer protein E) has similarities to a guanine nucleotide exchange factor (GEF) for Rho GTPases. CopE acts as GEF for Rac1 and Cdc42, leading to induction of actin cytoskeletal rearrangement. Interestingly, C. violaceum invades cultured human epithelial cells in a CopE-dependent manner. Finally, an inactivation of CopE by disruption of copE gene or amino acid point mutation leading to loss of GEF activity attenuates significantly the mouse virulence of C. violaceum. These results suggest that Cpi-1/-1a-encoded TTSS is a major virulence determinant for C. violaceum infection, and that CopE contributes to the virulence in part of this pathogen.
The Popeye domain containing genes: essential elements in heart rate control
Schindler, Roland F.; Poon, Kar Lai; Simrick, Subreena
2012-01-01
The Popeye domain containing (Popdc) gene family displays preferential expression in skeletal muscle and heart. Only recently a significant gain in the understanding of the function of Popdc genes in the heart has been obtained. The Popdc genes encode membrane proteins harboring an evolutionary conserved Popeye domain, which functions as a binding domain for cyclic adenosine monophosphate (cAMP). Popdc proteins interact with the two-pore channel TREK-1 and enhance its current. This protein interaction is modulated by cAMP. Null mutations of members of the Popdc gene family in zebrafish and mouse are associated with severe cardiac arrhythmia phenotypes. While in zebrafish an atrioventricular block was prevalent, in mouse a stress-induced sinus bradycardia was observed, which was due to the presence of sinus pauses. Moreover, the phenotype develops in an age-dependent manner, being absent in the young animal and becoming increasingly severe, as the animals grow older. This phenotype is reminiscent of the sick sinus syndrome (SSS), which affects mostly the elderly and is characterized by the poor ability of the cardiac pacemaker to adapt the heart rate to the physiological demand. While being a prevalent disease, which is responsible for a large fraction of pacemaker implantations in Western countries, SSS is poorly understood at the molecular level. It is therefore expected that the study of the molecular basis of the stress-induced bradycardia in Popdc mice will shed new light on the etiology of pacemaker disease. PMID:24282731
The Popeye domain containing genes: essential elements in heart rate control.
Schindler, Roland F; Poon, Kar Lai; Simrick, Subreena; Brand, Thomas
2012-12-01
The Popeye domain containing (Popdc) gene family displays preferential expression in skeletal muscle and heart. Only recently a significant gain in the understanding of the function of Popdc genes in the heart has been obtained. The Popdc genes encode membrane proteins harboring an evolutionary conserved Popeye domain, which functions as a binding domain for cyclic adenosine monophosphate (cAMP). Popdc proteins interact with the two-pore channel TREK-1 and enhance its current. This protein interaction is modulated by cAMP. Null mutations of members of the Popdc gene family in zebrafish and mouse are associated with severe cardiac arrhythmia phenotypes. While in zebrafish an atrioventricular block was prevalent, in mouse a stress-induced sinus bradycardia was observed, which was due to the presence of sinus pauses. Moreover, the phenotype develops in an age-dependent manner, being absent in the young animal and becoming increasingly severe, as the animals grow older. This phenotype is reminiscent of the sick sinus syndrome (SSS), which affects mostly the elderly and is characterized by the poor ability of the cardiac pacemaker to adapt the heart rate to the physiological demand. While being a prevalent disease, which is responsible for a large fraction of pacemaker implantations in Western countries, SSS is poorly understood at the molecular level. It is therefore expected that the study of the molecular basis of the stress-induced bradycardia in Popdc mice will shed new light on the etiology of pacemaker disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, J.K.; Shaw, M.A.; Barton, C.H.
1994-11-15
Recent interest has focused on the region of conserved synteny between mouse chromosome 1 and human 2q33-q37, particularly over the region encoding the murine macrophage resistance gene Ity/Lsh/Bcg (candidate Nramp) and members of the Il8r interleukin-8 (IL8) receptor gene cluster. In this paper, identification of a restriction fragment length polymorphism in the Il8RB gene in 35 pedigrees previously typed for markers in the 2q33-37 interval provided evidence (lod scores > 3) for linkage between Il8RB and the 2q34-135 markers FN1, TNP1, VIL1, and DES. Physical mapping, using yeast artificial chromosomes isolated with VIL1, confirmed that IL8RA, IL8RB and the IL8RBmore » pseudogene map within the NRAMP-VIL1 interval, with the physical distance (155 kb) from 5{prime} LSH to 3{prime} VIL1 representing {approx}3-fold that observed in the mouse. Partial sequencing of NRAMP confirmed the presence of the N-terminal proline/serine-rich putative SH3 binding domain in exon 2 of the human gene. Further analysis of Brazilian leprosy and visceral leishmaniasis pedigrees identified a rare second allele varying in a 9-nucleotide repeat motif of the exon 2 sequence but segregating independently of the disease phenotype. 38 refs., 4 figs., 3 tabs.« less
Jiao, S-S; Shen, L-L; Zhu, C; Bu, X-L; Liu, Y-H; Liu, C-H; Yao, X-Q; Zhang, L-L; Zhou, H-D; Walker, D G; Tan, J; Götz, J; Zhou, X-F; Wang, Y-J
2016-01-01
Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimer's disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy. PMID:27701410
Göttlicher, M; Widmark, E; Li, Q; Gustafsson, J A
1992-01-01
Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. Testing of compounds related to lipid metabolism or peroxisomal proliferation revealed that 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activate the receptor chimera. In addition, saturated fatty acids induce the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. In conclusion, the present results indicate that fatty acids can regulate gene expression mediated by a member of the steroid nuclear receptor superfamily. Images PMID:1316614
Wiersma, Anje C; Leegwater, Peter AJ; van Oost, Bernard A; Ollier, William E; Dukes-McEwan, Joanna
2007-01-01
Background Dilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. These genes mainly encode structural proteins of the cardiac myocyte. Results We present the annotation of, and marker development for, 14 of these genes of the dog genome, i.e. α-cardiac actin, caveolin 1, cysteine-rich protein 3, desmin, lamin A/C, LIM-domain binding factor 3, myosin heavy polypeptide 7, phospholamban, sarcoglycan δ, titin cap, α-tropomyosin, troponin I, troponin T and vinculin. A total of 33 Single Nucleotide Polymorphisms were identified for these canine genes and 11 polymorphic microsatellite repeats were developed. Conclusion The presented polymorphisms provide a tool to investigate the role of the corresponding genes in canine Dilated Cardiomyopathy by linkage analysis or association studies. PMID:17949487
Wiersma, Anje C; Leegwater, Peter Aj; van Oost, Bernard A; Ollier, William E; Dukes-McEwan, Joanna
2007-10-19
Dilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. These genes mainly encode structural proteins of the cardiac myocyte. We present the annotation of, and marker development for, 14 of these genes of the dog genome, i.e. alpha-cardiac actin, caveolin 1, cysteine-rich protein 3, desmin, lamin A/C, LIM-domain binding factor 3, myosin heavy polypeptide 7, phospholamban, sarcoglycan delta, titin cap, alpha-tropomyosin, troponin I, troponin T and vinculin. A total of 33 Single Nucleotide Polymorphisms were identified for these canine genes and 11 polymorphic microsatellite repeats were developed. The presented polymorphisms provide a tool to investigate the role of the corresponding genes in canine Dilated Cardiomyopathy by linkage analysis or association studies.
The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression
Whittaker, Danielle E.; Riegman, Kimberley L.H.; Kasah, Sahrunizam; Mohan, Conor; Yu, Tian; Sala, Blanca Pijuan; Hebaishi, Husam; Caruso, Angela; Marques, Ana Claudia; Michetti, Caterina; Smachetti, María Eugenia Sanz; Shah, Apar; Sabbioni, Mara; Kulhanci, Omer; Tee, Wee-Wei; Reinberg, Danny; Scattoni, Maria Luisa; McGonnell, Imelda; Wardle, Fiona C.; Fernandes, Cathy
2017-01-01
The mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we have shown that deletion of Chd7 from cerebellar granule cell progenitors (GCps) results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay, and motor deficits in mice. Genome-wide expression profiling revealed downregulated expression of the gene encoding the glycoprotein reelin (Reln) in Chd7-deficient GCps. Recessive RELN mutations have been associated with severe cerebellar hypoplasia in humans. We found molecular and genetic evidence that reductions in Reln expression contribute to GCp proliferative defects and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we showed that CHD7 is necessary for maintaining an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln, and provides direct in vivo evidence that a mammalian CHD protein can control brain development by modulating chromatin accessibility in neuronal progenitors. PMID:28165338
Cousins, Fiona L; Murray, Alison A; Scanlon, Jessica P; Saunders, Philippa T K
2016-01-19
Menstruation is the culmination of a cascade of events, triggered by the withdrawal of progesterone at the end of the menstrual cycle. Initiation of tissue destruction and endometrial shedding causes spiral arteriole constriction in the functional layer of the endometrium. Upregulation of genes involved in angiogenesis and immune cell recruitment, two processes that are essential to successful repair and remodelling of the endometrium, both thought to be induced by reduced oxygen has been reported. Evidence for stabilisation/increased expression of the transcriptional regulator hypoxia inducible factor in the human endometrium at menses has been published. The current literature debates whether hypoxia plays an essential role during menstrual repair, therefore this study aims to delineate a role for hypoxia using a sensitive detection method (the Hypoxyprobe™) in combination with an established mouse model of endometrial breakdown and repair. Using our mouse model of menses, during which documented breakdown and synchronous repair occurs in a 24 h timeframe, in combination with the Hypoxyprobe™ detection system, oxygen tensions within the uterus were measured. Immunostaining revealed striking spatial and temporal fluctuations in hypoxia during breakdown and showed that the epithelium is also exposed to hypoxic conditions during the repair phase. Furthermore, time-dependent changes in tissue hypoxia correlated with the regulation of mRNAs encoding for the angiogenic genes vascular endothelial growth factor and stromal derived factor (Cxcl12). Our findings are consistent with a role for focal hypoxia during endometrial breakdown in regulating gene expression during menses. These data have implications for treatment of endometrial pathologies such as heavy menstrual bleeding.
Stribl, Carola; Samara, Aladin; Trümbach, Dietrich; Peis, Regina; Neumann, Manuela; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Beckers, Johannes; Horsch, Marion; Neff, Frauke; Kremmer, Elisabeth; Koob, Sebastian; Reichert, Andreas S.; Hans, Wolfgang; Rozman, Jan; Klingenspor, Martin; Aichler, Michaela; Walch, Axel Karl; Becker, Lore; Klopstock, Thomas; Glasl, Lisa; Hölter, Sabine M.; Wurst, Wolfgang; Floss, Thomas
2014-01-01
The majority of amyotrophic lateral sclerosis (ALS) cases as well as many patients suffering from frontotemporal lobar dementia (FTLD) with ubiquitinated inclusion bodies show TDP-43 pathology, the protein encoded by the TAR DNA-binding protein (Tardbp) gene. We used recombinase-mediated cassette exchange to introduce an ALS patient cDNA into the mouse Tdp-43 locus. Expression levels of human A315T TDP-43 protein were 300% elevated in heterozygotes, whereas the endogenous mouse Tdp-43 was decreased to 20% of wild type levels as a result of disturbed feedback regulation. Heterozygous TDP-43A315TKi mutants lost 10% of their body weight and developed insoluble TDP-43 protein starting as early as 3 months after birth, a pathology that was exacerbated with age. We analyzed the splicing patterns of known Tdp-43 target genes as well as genome-wide gene expression levels in different tissues that indicated mitochondrial dysfunction. In heterozygous mutant animals, we observed a relative decrease in expression of Parkin (Park2) and the fatty acid transporter CD36 along with an increase in fatty acids, HDL cholesterol, and glucose in the blood. As seen in transmission electron microscopy, neuronal cells in motor cortices of TDP-43A315TKi animals had abnormal neuronal mitochondrial cristae formation. Motor neurons were reduced to 90%, but only slight motoric impairment was detected. The observed phenotype was interpreted as a predisease model, which might be valuable for the identification of further environmental or genetic triggers of neurodegeneration. PMID:24515116
BCL11B Regulates Epithelial Proliferation and Asymmetric Development of the Mouse Mandibular Incisor
Kyrylkova, Kateryna; Kyryachenko, Sergiy; Biehs, Brian; Klein, Ophir; Kioussi, Chrissa; Leid, Mark
2012-01-01
Mouse incisors grow continuously throughout life with enamel deposition uniquely on the outer, or labial, side of the tooth. Asymmetric enamel deposition is due to the presence of enamel-secreting ameloblasts exclusively within the labial epithelium of the incisor. We have previously shown that mice lacking the transcription factor BCL11B/CTIP2 (BCL11B hereafter) exhibit severely disrupted ameloblast formation in the developing incisor. We now report that BCL11B is a key factor controlling epithelial proliferation and overall developmental asymmetry of the mouse incisor: BCL11B is necessary for proliferation of the labial epithelium and development of the epithelial stem cell niche, which gives rise to ameloblasts; conversely, BCL11B suppresses epithelial proliferation, and development of stem cells and ameloblasts on the inner, or lingual, side of the incisor. This bidirectional action of BCL11B in the incisor epithelia appears responsible for the asymmetry of ameloblast localization in developing incisor. Underlying these spatio-specific functions of BCL11B in incisor development is the regulation of a large gene network comprised of genes encoding several members of the FGF and TGFβ superfamilies, Sprouty proteins, and Sonic hedgehog. Our data integrate BCL11B into these pathways during incisor development and reveal the molecular mechanisms that underlie phenotypes of both Bcl11b−/− and Sprouty mutant mice. PMID:22629441
Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis
Liu, Donglin; Brockman, J. Michael; Dass, Brinda; Hutchins, Lucie N.; Singh, Priyam; McCarrey, John R.; MacDonald, Clinton C.; Graber, Joel H.
2007-01-01
Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3′-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3′-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3′-processing characteristics in the testicular samples, compared to control sets of widely used 3′-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3′-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3′-untranslated regions (3′-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3′-UTR truncation and no significant difference in 3′-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3′-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis. PMID:17158511
Yanoshita, Makoto; Hirose, Naoto; Okamoto, Yuki; Sumi, Chikako; Takano, Mami; Nishiyama, Sayuri; Asakawa-Tanne, Yuki; Horie, Kayo; Onishi, Azusa; Yamauchi, Yuka; Mitsuyoshi, Tomomi; Kunimatsu, Ryo; Tanimoto, Kotaro
2018-05-08
Excessive mechanical stimulation is considered an important factor in the destruction of chondrocytes. Focal adhesion kinase (FAK) is non-receptor tyrosine kinase related to a number of different signaling proteins. Little is known about the function of FAK in chondrocytes under mechanical stimulation. In the present study, we investigated the function of FAK in mechanical signal transduction and the mechanism through which cyclic tensile strain (CTS) induces expression of inflammation-related factors. Mouse ATDC5 chondrogenic cells were subjected to CTS of 0.5 Hz to 10% cell elongation with an FAK inhibitor. The expression of genes encoding COX-2, IL-1β, and TNF-α was examined using real-time RT-PCR after CTS application with FAK inhibitor. Phosphorylation of p-38, ERK, and JNK was analyzed by Western blotting. Differences in COX-2 expression following pretreatment with FAK, p-38, ERK, and JNK inhibitors were compared by Western blotting. We found that CTS increased the expression of genes encoding COX-2, IL-1β, and TNF-α and activated the phosphorylation of FAK, p-38, ERK, and JNK. Pretreatment with an FAK inhibitor for 2 h reduced the expression of genes encoding COX-2, IL-1β, and TNF-α induced by CTS-associated inflammation and decreased phosphorylation of FAK, p-38, ERK, and JNK. Pretreatment with FAK, p-38, ERK, and JNK inhibitors markedly suppressed COX-2 and IL-1β protein expression. In conclusion, FAK appears to regulate inflammation in chondrocytes under CTS via MAPK pathways.
Cloning of cardiac, kidney, and brain promoters of the feline ncx1 gene.
Barnes, K V; Cheng, G; Dawson, M M; Menick, D R
1997-04-25
The Na+-Ca2+ exchanger (NCX1) plays a major role in calcium efflux and therefore in the control and regulation of intracellular calcium in the heart. The exchanger has been shown to be regulated at several levels including transcription. NCX1 mRNA levels are up-regulated in both cardiac hypertrophy and failure. In this work, the 5'-end of the ncx1 gene has been cloned to study the mechanisms that mediate hypertrophic stimulation and cardiac expression. The feline ncx1 gene has three exons that encode 5'-untranslated sequences that are under the control of three tissue-specific promoters. The cardiac promoter drives expression in cardiocytes, but not in mouse L cells. Although it contains at least one enhancer (-2000 to -1250 base pairs (bp)) and one or more negative elements (-1250 to -250 bp), a minimum promoter (-250 to +200 bp) is sufficient for cardiac expression and alpha-adrenergic stimulation.
X‐linked retinoschisis: an update
Sikkink, Stephen K; Biswas, Susmito; Parry, Neil R A; Stanga, Paulo E; Trump, Dorothy
2007-01-01
X‐linked retinoschisis is the leading cause of macular degeneration in males and leads to splitting within the inner retinal layers leading to visual deterioration. Many missense and protein truncating mutations have now been identified in the causative retinoschisis gene (RS1) which encodes a 224 amino acid secreting retinal protein, retinoschisin. Retinoschisin octamerises is implicated in cell–cell interactions and cell adhesion perhaps by interacting with β2 laminin. Mutations cause loss of retinoschisin function by one of the three mechanisms: by interfering with protein secretion, by preventing its octamerisation or by reducing function in the secreted octamerised protein. The development of retinoschisis mouse models have provided a model system that closely resembles the human disease. Recent reports of RS1 gene transfer to these models and the sustained restoration of some retinal function and morphology suggest gene replacement may be a possible future therapy for patients. PMID:17172462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klebig, M.L.; Woychik, R.P.; Wilkinson, J.E.
1994-09-01
The lethal yellow (A{sup y/-}) and viable yellow (A{sup vy/-}) mouse agouti mutants have a predominantly yellow pelage and display a complex syndrome that includes obesity, hyperinsulinemia, and insulin resistance, hallmark features of obesity-associated noninsulin-dependent diabetes mellitus (NIDDM) in humans. A new dominant agouti allele, A{sup iapy}, has recently been identified; like the A{sup vy} allele, it is homozygous viable and confers obesity and yellow fur in heterozygotes. The agouti gene was cloned and characterized at the molecular level. The gene is expressed in the skin during hair growth and is predicted to encode a 131 amino acid protein, thatmore » is likely to be a secreted factor. In both Ay/- and A{sup iapy}/- mice, the obesity and other dominant pleiotropic effects are associated with an ectopic expression of agouti in many tissues where the gene product is normally not produced. In Ay, a 170-kb deletion has occurred that causes an upstream promoter to drive the ectopic expression of the wild-type agouti coding exons. In A{sup iapy}, the coding region of the gene is expressed from a cryptic promoter within the LTR of an intracisternal A-particle (IAP), which has integrated within the region just upstream of the first agouti coding exon. Transgenic mice ubiquitously expressing the cloned agouti gene under the influence of the beta-actin and phosphoglycerate kinase promoters display obesity, hyperinsulinemia, and yellow coat color. This demonstrates unequivocally that ectopic expression of agouti is responsible for the yellow obese syndrome.« less
Nagle, D L; Martin-DeLeon, P; Hough, R B; Bućan, M
1994-01-01
We are studying the chromosomal structure of three developmental mutations, dominant spotting (W), patch (Ph), and rump white (Rw) on mouse chromosome 5. These mutations are clustered in a region containing three genes encoding tyrosine kinase receptors (Kit, Pdgfra, and Flk1). Using probes for these genes and for a closely linked locus, D5Mn125, we established a high-resolution physical map covering approximately 2.8 Mb. The entire chromosomal segment mapped in this study is deleted in the W19H mutation. The map indicates the position of the Ph deletion, which encompasses not more than 400 kb around and including the Pdgfra gene. The map also places the distal breakpoint of the Rw inversion to a limited chromosomal segment between Kit and Pdgfra. In light of the structure of the Ph-W-Rw region, we interpret the previously published complementation analyses as indicating that the pigmentation defect in Rw/+ heterozygotes could be due to the disruption of Kit and/or Pdgfra regulatory sequences, whereas the gene(s) responsible for the recessive lethality of Rw/Rw embryos is not closely linked to the Ph and W loci and maps proximally to the W19H deletion. The structural analysis of chromosomal rearrangements associated with W19H, Ph, and Rw combined with the high-resolution physical mapping points the way toward the definition of these mutations in molecular terms and isolation of homologous genes on human chromosome 4. Images PMID:8041773
Functional Analysis of the p40 and p75 Proteins from Lactobacillus casei BL23
Bäuerl, Christine; Pérez-Martínez, Gaspar; Yan, Fang; Polk, D. Brent; Monedero, Vicente
2011-01-01
The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria PMID:21178363
Riquelme-Neira, Roberto; Rivera, Alejandra; Sáez, Darwin; Fernández, Pablo; Osorio, Gonzalo; del Canto, Felipe; Salazar, Juan C; Vidal, Roberto M; Oñate, Angel
2015-01-01
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1') in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1' gene (pVAXefa-1') into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1', EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1' have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle.
The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy
Sleigh, James N.; Gillingwater, Thomas H.; Talbot, Kevin
2011-01-01
Spinal muscular atrophy (SMA), which is caused by inactivating mutations in the survival motor neuron 1 (SMN1) gene, is characterized by loss of lower motor neurons in the spinal cord. The gene encoding SMN is very highly conserved in evolution, allowing the disease to be modeled in a range of species. The similarities in anatomy and physiology to the human neuromuscular system, coupled with the ease of genetic manipulation, make the mouse the most suitable model for exploring the basic pathogenesis of motor neuron loss and for testing potential treatments. Therapies that increase SMN levels, either through direct viral delivery or by enhancing full-length SMN protein expression from the SMN1 paralog, SMN2, are approaching the translational stage of development. It is therefore timely to consider the role of mouse models in addressing aspects of disease pathogenesis that are most relevant to SMA therapy. Here, we review evidence suggesting that the apparent selective vulnerability of motor neurons to SMN deficiency is relative rather than absolute, signifying that therapies will need to be delivered systemically. We also consider evidence from mouse models suggesting that SMN has its predominant action on the neuromuscular system in early postnatal life, during a discrete phase of development. Data from these experiments suggest that the timing of therapy to increase SMN levels might be crucial. The extent to which SMN is required for the maintenance of motor neurons in later life and whether augmenting its levels could treat degenerative motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), requires further exploration. PMID:21708901
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, M.
1986-06-01
By using a DNA fragment primarily encoding the reverse transcriptase (pol) region of the Syrian hamster intracisternal A particle (IAP; type A retrovirus) gene as a probe, human endogenous retrovirus genes, tentatively termed HERV-K genes, were cloned from a fetal human liver gene library. Typical HERV-K genes were 9.1 or 9.4 kilobases in length, having long terminal repeats (LTRs) of ca. 970 base pairs. Many structural features commonly observed on the retrovirus LTRs, such as the TATAA box, polyadenylation signal, and terminal inverted repeats, were present on each LTR, and a lysine (K) tRNA having a CUU anticodon was identifiedmore » as a presumed primer tRNA. The HERV-K LTR, however, had little sequence homology to either the IAP LTR or other typical oncovirus LTRs. By filter hybridization, the number of HERV-K genes was estimated to be ca. 50 copies per haploid human genome. The cloned mouse mammary tumor virus (type B) gene was found to hybridize with both the HERV-K and IAP genes to essentially the same extent.« less
Retinoic Acid Signaling Affects Cortical Synchrony During Sleep
NASA Astrophysics Data System (ADS)
Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi
2005-10-01
Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.
Soluble guanylate cyclase generation of cGMP regulates migration of MGE neurons.
Mandal, Shyamali; Stanco, Amelia; Buys, Emmanuel S; Enikolopov, Grigori; Rubenstein, John L R
2013-10-23
Here we have provided evidence that nitric oxide-cyclic GMP (NO-cGMP) signaling regulates neurite length and migration of immature neurons derived from the medial ganglionic eminence (MGE). Dlx1/2(-/-) and Lhx6(-/-) mouse mutants, which exhibit MGE interneuron migration defects, have reduced expression of the gene encoding the α subunit of a soluble guanylate cyclase (Gucy1A3). Furthermore, Dlx1/2(-/-) mouse mutants have reduced expression of NO synthase 1 (NOS1). Gucy1A3(-/-) mice have a transient reduction in cortical interneuron number. Pharmacological inhibition of soluble guanylate cyclase and NOS activity rapidly induces neurite retraction of MGE cells in vitro and in slice culture and robustly inhibits cell migration from the MGE and caudal ganglionic eminence. We provide evidence that these cellular phenotypes are mediated by activation of the Rho signaling pathway and inhibition of myosin light chain phosphatase activity.
Erkens, Mirthe; Bakker, Brenda; van Duijn, Lucette M; Hendriks, Wiljan J A J; Van der Zee, Catharina E E M
2014-05-15
Mouse gene Ptprr encodes multiple protein tyrosine phosphatase receptor type R (PTPRR) isoforms that negatively regulate mitogen-activated protein kinase (MAPK) signaling pathways. In the mouse brain, PTPRR proteins are expressed in cerebellum, olfactory bulb, hippocampus, amygdala and perirhinal cortex but their precise role in these regions remains to be determined. Here, we evaluated phenotypic consequences of loss of PTPRR activity and found that basal smell was normal for Ptprr(-/-) mice. Also, spatial learning and fear-associated contextual learning were unaffected. PTPRR deficiency, however, resulted in impaired novel object recognition and a striking increase in exploratory activity in a new environment. The data corroborate the importance of proper control of MAPK signaling in cerebral functions and put forward PTPRR as a novel target to modulate synaptic processes. Copyright © 2014 Elsevier B.V. All rights reserved.
The prenyl-binding protein PrBP/δ: a chaperone participating in intracellular trafficking
Zhang, Houbin; Constantine, Ryan; Frederick, Jeanne M.; Baehr, Wolfgang
2012-01-01
Expressed ubiquitously, PrBP/δ functions as chaperone/co-factor in the transport of a subset of prenylated proteins. PrBP/δ features an immunoglobulin-like β-sandwich fold for lipid binding, and interacts with diverse partners. PrBP/δ binds both C-terminal C15 and C20 prenyl side chains of phototransduction polypeptides and small GTP-binding (G) proteins of the Ras superfamily. PrBP/δ also interacts with the small GTPases, ARL2 and ARL3, which act as release factors (GDFs) for prenylated cargo. Targeted deletion of the mouse Pde6d gene encoding PrBP/δ resulted in impeded trafficking to the outer segments of GRK1 and cone PDE6 which are predicted to be farnesylated and geranylgeranylated, respectively. Rod and cone transducin trafficking was largely unaffected. These trafficking defects produce progressive cone-rod dystrophy in the Pde6d−/− mouse. PMID:22960045
Moriyama, Kenji; Hanai, Atsuko; Mekada, Kazuyuki; Yoshiki, Atsushi; Ogiwara, Katsueki; Kimura, Atsushi; Takahashi, Takayuki
2011-08-20
The endopeptidase encoded by Phex (phosphate-regulating gene with homologies to endopeptidases linked to the X chromosome) is critical for regulation of bone matrix mineralization and phosphate homeostasis. PHEX has been identified from analyses of human X-linked hypophosphatemic rickets and Hyp mutant mouse models. We here demonstrated a newly established dwarfism-like Kbus/Idr mouse line to be a novel Hyp model. Histopathological and X-ray examination with cross experiments were performed to characterize Kbus/Idr. RT-PCR-based and exon-directed PCR screening performed to identify the presence of genetic alteration. Biochemical assays were also performed to evaluate activity of alkaline phosphatase. Kbus/Idr, characterized by bone mineralization defects, was found to be inherited in an X chromosome-linked dominant manner. RT-PCR experiments showed that a novel mutation spanning exon 16 and 18 causing hypophosphatemic rickets. Alkaline phosphatase activity, as an osteoblast marker, demonstrated raised levels in the bone marrow of Kbus/Idr independent of the age. Kbus mice should serve as a useful research tool exploring molecular mechanisms underlying aberrant Phex-associated pathophysiological phenomena.
Mouse mutants from chemically mutagenized embryonic stem cells
Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.
2010-01-01
The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192
Cloning and expression of sheep DNA methyltransferase 1 and its development-specific isoform.
Taylor, Jane; Moore, Hannah; Beaujean, Nathalie; Gardner, John; Wilmut, Ian; Meehan, Richard; Young, Lorraine
2009-05-01
Unlike the mouse embryo, where loss of DNA methylation in the embryonic nucleus leaves cleavage stage embryos globally hypomethylated, sheep preimplantation embryos retain high levels of methylation until the blastocyst stage. We have cloned and sequenced sheep Dnmt1 and found it to be highly conserved with both the human and mouse homologues. Furthermore, we observed that the transcript normally expressed in adult somatic tissues is highly abundant in sheep oocytes. Throughout sheep preimplantation development the protein is retained in the cytoplasm whereas Dnmt1 transcript production declines after the embryonic genome activation at the 8-16 cell stage. Attempts to clone oocyte-specific 5' regions of Dnmt1, known to be present in the mouse and human gene, were unsuccessful. However, a novel ovine Dnmt1 exon, theoretically encoding 13 amino acids, was found to be expressed in sheep oocytes, preimplantation embryos and early fetal lineages, but not in the adult tissue. RNAi-mediated knockdown of this novel transcript resulted in embryonic developmental arrest at the late morula stage, suggesting an essential role for this isoform in sheep blastocyst formation. (c) 2008 Wiley-Liss, Inc.
The cre-inducer doxycycline lowers cytokine and chemokine transcript levels in the gut of mice.
Hansen, Axel Kornerup; Malm, Sara Astrup; Metzdorff, Stine B
2017-11-01
The antibiotic doxycycline is used as an inducer of recombinase (cre)-based conditional gene knockout in mice, which is a common tool to show the effect of disrupted gene functions only in one period of a research animal's life. However, other types of such antibiotics have been shown to have a strong impact on the immune system. Here we show that in C57BL/6 mice, the most commonly applied strain for genetic modification, doxycycline treatment lowered transcription of the genes Il1b, Il10, Il18, Tnf, Cxcl1, and Cxcl2 in the ileum, and of the gene Il18 in colon. Cytokines and chemokines encoded by these genes are important in the disease expression in a range of mouse models. Although protein abundances only rarely correlate 100% to transcript levels, and the net result, therefore, may be less dramatic, it seems reasonable to be aware that a broad spectrum antibiotic, such as doxycycline, may impact the transgenic animal in ways unrelated to the activation of the gene deletion.
Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.
Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M
2008-03-19
In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.
Perturbed desmosomal cadherin expression in grainy head-like 1-null mice
Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M
2008-01-01
In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution. PMID:18288204
Cloning and genomic characterization of sytdep, a new synaptotagmin XIV-related gene.
Herrero-Turrión, M Javier; Fukuda, Mitsunori; Mollinedo, Faustino
2006-02-10
We have identified a new human gene coined sytdep (synaptotagmin XIV-derived protein) in human neutrophils. Sytdep encodes a 188-amino acid sequence with a 21.435kDa deduced molecular mass, showing 75% identity to human synaptotagmin (syt) XIV. Human neutrophils express sytdep, but not syt XIV. Sytdep was upregulated during HL-60 neutrophil differentiation. Sytdep gene is located in human chromosome 4 and contains a unique exon, whereas syt XIV gene, located in chromosome 1, comprises 10 exons with 9 introns. Mouse genome did not contain sytdep. The N-terminal region of sytdep shows no homology with any known protein and, unlike synaptotagmin XIV isoforms, sytdep shows a unique C-terminal C2B domain. Polyclonal antibodies against the C2B domain of syt XIV recognized sytdep as a 27-kDa protein in human neutrophils. Genomic analyses suggest that human sytdep could derive from a retrotranslocation of a syt XIV transcript into chromosome 4.
Damron, F. Heath; Oglesby-Sherrouse, Amanda G.; Wilks, Angela; Barbier, Mariette
2016-01-01
Determining bacterial gene expression during infection is fundamental to understand pathogenesis. In this study, we used dual RNA-seq to simultaneously measure P. aeruginosa and the murine host’s gene expression and response to respiratory infection. Bacterial genes encoding products involved in metabolism and virulence were differentially expressed during infection and the type III and VI secretion systems were highly expressed in vivo. Strikingly, heme acquisition, ferric-enterobactin transport, and pyoverdine biosynthesis genes were found to be significantly up-regulated during infection. In the mouse, we profiled the acute immune response to P. aeruginosa and identified the pro-inflammatory cytokines involved in acute response to the bacterium in the lung. Additionally, we also identified numerous host iron sequestration systems upregulated during infection. Overall, this work sheds light on how P. aeruginosa triggers a pro-inflammatory response and competes for iron with the host during infection, as iron is one of the central elements for which both pathogen and host fight during acute pneumonia. PMID:27982111
Johnson, Michael R.; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O’Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico
2015-01-01
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo. PMID:25615886
Evidence of IgY subclass diversification in snakes: evolutionary implications.
Wang, Tao; Sun, Yi; Shao, Wenwei; Cheng, Gang; Li, Lingxiao; Cao, Zubing; Yang, Zhi; Zou, Huiying; Zhang, Wei; Han, Binyue; Hu, Yang; Ren, Liming; Hu, Xiaoxiang; Guo, Ying; Fei, Jing; Hammarström, Lennart; Li, Ning; Zhao, Yaofeng
2012-10-01
Mammalian IgG and IgE are thought to have evolved from IgY of nonmammalian tetrapods; however, no diversification of IgY subclasses has been reported in reptiles or birds, which are phylogenetically close to mammals. To our knowledge, we report the first evidence of the presence of multiple IgY-encoding (υ) genes in snakes. Two υ genes were identified in the snake Elaphe taeniura, and three υ genes were identified in the Burmese python (Python molurus bivittatus). Although four of the υ genes displayed a conventional four-H chain C region exon structure, one of the υ genes in the Burmese python lacked the H chain C region 2 exon, thus exhibiting a structure similar to that of the mammalian γ genes. We developed mouse mAbs specific for the IgY1 and IgY2 of E. taeniura and showed that both were expressed in serum; each had two isoforms: one full-length and one truncated at the C terminus. The truncation was not caused by alternative splicing or transcriptional termination. We also identified the μ and δ genes, but no α gene, in both snakes. This study provides valuable clues for our understanding of Ig gene evolution in tetrapods.
Panus, Joanne Fanelli; Smith, Craig A.; Ray, Caroline A.; Smith, Terri Davis; Patel, Dhavalkumar D.; Pickup, David J.
2002-01-01
Cowpox virus (Brighton Red strain) possesses one of the largest genomes in the Orthopoxvirus genus. Sequence analysis of a region of the genome that is type-specific for cowpox virus identified a gene, vCD30, encoding a soluble, secreted protein that is the fifth member of the tumor necrosis factor receptor family known to be encoded by cowpox virus. The vCD30 protein contains 110 aa, including a 21-residue signal peptide, a potential O-linked glycosylation site, and a 58-aa sequence sharing 51–59% identity with highly conserved extracellular segments of both mouse and human CD30. A vCD30Fc fusion protein binds CD153 (CD30 ligand) specifically, and it completely inhibits CD153/CD30 interactions. Although the functions of CD30 are not well understood, the existence of vCD30 suggests that the cellular receptor plays a significant role in normal immune responses. Viral inhibition of CD30 also lends support to the potential therapeutic value of targeting CD30 in human inflammatory and autoimmune diseases. PMID:12034885
Direct interplay between two candidate genes in FSHD muscular dystrophy
Ferri, Giulia; Huichalaf, Claudia H.; Caccia, Roberta; Gabellini, Davide
2015-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease onset and progression, multiple factors could contribute to the pathogenesis of FSHD. Among the FSHD candidate genes are double homeobox 4 (DUX4), encoded by the most telomeric D4Z4 unit, and FSHD region gene 1 (FRG1). DUX4 is a sequence-specific transcription factor. Here, we located putative DUX4 binding sites in the human FRG1 genomic area and we show specific DUX4 association to these regions. We found also that ectopically expressed DUX4 up-regulates the endogenous human FRG1 gene in healthy muscle cells, while DUX4 knockdown leads to a decrease in FRG1 expression in FSHD muscle cells. Moreover, DUX4 binds directly and specifically to its binding site located in the human FRG1 gene and transactivates constructs containing FRG1 genomic regions. Intriguingly, the mouse Frg1 genomic area lacks DUX4 binding sites and DUX4 is unable to activate the endogenous mouse Frg1 gene providing a possible explanation for the lack of muscle phenotype in DUX4 transgenic mice. Altogether, our results demonstrate that FRG1 is a direct DUX4 transcriptional target uncovering a novel regulatory circuit contributing to FSHD. PMID:25326393
Evolutionary rate of a gene affected by chromosomal position.
Perry, J; Ashworth, A
1999-09-09
Genes evolve at different rates depending on the strength of selective pressure to maintain their function. Chromosomal position can also have an influence [1] [2]. The pseudoautosomal region (PAR) of mammalian sex chromosomes is a small region of sequence identity that is the site of an obligatory pairing and recombination event between the X and Y chromosomes during male meiosis [3] [4] [5] [6]. During female meiosis, X chromosomes can pair and recombine along their entire length. Recombination in the PAR is therefore approximately 10 times greater in male meiosis compared with female meiosis [4] [5] [6]. The gene Fxy (also known as MID1 [7]) spans the pseudoautosomal boundary (PAB) in the laboratory mouse (Mus musculus domesticus, C57BL/6) such that the 5' three exons of the gene are located on the X chromosome but the seven exons encoding the carboxy-terminal two-thirds of the protein are located within the PAR and are therefore present on both the X and Y chromosomes [8]. In humans [7] [9], the rat, and the wild mouse species Mus spretus, the gene is entirely X-unique. Here, we report that the rate of sequence divergence of the 3' end of the Fxy gene is much higher (estimated at 170-fold higher for synonymous sites) when pseudoautosomal (present on both the X and Y chromosomes) than when X-unique. Thus, chromosomal position can directly affect the rate of evolution of a gene. This finding also provides support for the suggestion that regions of the genome with a high recombination frequency, such as the PAR, may have an intrinsically elevated rate of sequence divergence.
2010-01-01
Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756
Oates, A C; Wollberg, P; Achen, M G; Wilks, A F
1998-08-28
The polymerase chain reaction (PCR), with cDNA as template, has been widely used to identify members of protein families from many species. A major limitation of using cDNA in PCR is that detection of a family member is dependent on temporal and spatial patterns of gene expression. To circumvent this restriction, and in order to develop a technique that is broadly applicable we have tested the use of genomic DNA as PCR template to identify members of protein families in an expression-independent manner. This test involved amplification of DNA encoding protein tyrosine kinase (PTK) genes from the genomes of three animal species that are well known development models; namely, the mouse Mus musculus, the fruit fly Drosophila melanogaster, and the nematode worm Caenorhabditis elegans. Ten PTK genes were identified from the mouse, 13 from the fruit fly, and 13 from the nematode worm. Among these kinases were 13 members of the PTK family that had not been reported previously. Selected PTKs from this screen were shown to be expressed during development, demonstrating that the amplified fragments did not arise from pseudogenes. This approach will be useful for the identification of many novel members of gene families in organisms of agricultural, medical, developmental and evolutionary significance and for analysis of gene families from any species, or biological sample whose habitat precludes the isolation of mRNA. Furthermore, as a tool to hasten the discovery of members of gene families that are of particular interest, this method offers an opportunity to sample the genome for new members irrespective of their expression pattern.
McGuinness, M C; Zhang, H P; Smith, K D
2001-01-01
X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder associated with elevated levels of saturated unbranched very-long-chain fatty acids (VLCFA; C > 22:0) in plasma and tissues, and reduced VLCFA beta-oxidation in fibroblasts, white blood cells, and amniocytes from X-ALD patients. The X-ALD gene (ABCD1) at Xq28 encodes the adrenoleukodystrophy protein (ALDP) that is related to the peroxisomal ATP-binding cassette (ABCD) transmembrane half-transporter proteins. The function of ALDP is unknown and its role in VLCFA accumulation unresolved. Previously, our laboratory has shown that sodium 4-phenylbutyrate (4PBA) treatment of X-ALD fibroblasts results in increased peroxisomal VLCFA beta-oxidation activity and increased expression of the X-ALD-related protein, ALDRP, encoded by the ABCD2 gene. In this study, the effect of various pharmacological agents on VLCFA beta-oxidation in ALD mouse fibroblasts is tested. 4PBA, styrylacetate and benzyloxyacetate (structurally related to 4PBA), and trichostatin A (functionally related to 4PBA) increase both VLCFA (peroxisomal) and long-chain fatty acid [LCFA (peroxisomal and mitochondrial)] beta-oxidation. Isobutyrate, zaprinast, hydroxyurea, and 5-azacytidine had no effect on VLCFA or LCFA beta-oxidation. Lovastatin had no effect on fatty acid beta-oxidation under normal tissue culture conditions but did result in an increase in both VLCFA and LCFA beta-oxidation when ALD mouse fibroblasts were cultured in the absence of cholesterol. The effect of trichostatin A on peroxisomal VLCFA beta-oxidation is shown to be independent of an increase in ALDRP expression, suggesting that correction of the biochemical abnormality in X-ALD is not dependent on pharmacological induction of a redundant gene (ABCD2). These studies contribute to a better understanding of the role of ALDP in VLCFA accumulation and may lead to the development of more effective pharmacological therapies. Copyright 2001 Academic Press.
Hematopoietic progenitors express neural genes
Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David
2003-01-01
Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211
Edelmann, Lisa; Stankiewicz, Pavel; Spiteri, Elizabeth; Pandita, Raj K.; Shaffer, Lisa; Lupski, James; Morrow, Bernice E.
2001-01-01
The DGCR6 (DiGeorge critical region) gene encodes a putative protein with sequence similarity to gonadal (gdl), a Drosophila melanogaster gene of unknown function. We mapped the DGCR6 gene to chromosome 22q11 within a low copy repeat, termed sc11.1a, and identified a second copy of the gene, DGCR6L, within the duplicate locus, termed sc11.1b. Both sc11.1 repeats are deleted in most persons with velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), and they map immediately adjacent and internal to the low copy repeats, termed LCR22, that mediate the deletions associated with VCFS/DGS. We sequenced genomic clones from both loci and determined that the putative initiator methionine is located further upstream than originally described, but in a position similar to the mouse and chicken orthologs. DGCR6L encodes a highly homologous, functional copy of DGCR6, with some base changes rendering amino acid differences. Expression studies of the two genes indicate that both genes are widely expressed in fetal and adult tissues. Evolutionary studies using FISH mapping in several different species of ape combined with sequence analysis of DGCR6 in a number of different primate species indicate that the duplication is at least 12 million years old and may date back to before the divergence of Catarrhines from Platyrrhines, 35 mya. These data suggest that there has been selective evolutionary pressure toward the functional maintenance of both paralogs. Interestingly, a full-length HERV-K provirus integrated into the sc11.1a locus after the divergence of chimpanzees and humans. PMID:11157784
Bury-Moné, Stéphanie; Thiberge, Jean-Michel; Contreras, Monica; Maitournam, Aboubakar; Labigne, Agnès; De Reuse, Hilde
2004-07-01
The virulence of pathogenic bacteria is dependent on their adaptation to and survival in the stressful conditions encountered in their hosts. Helicobacter pylori exclusively colonizes the acid stomach of primates, making it an ideal study model. Little is known about how H. pylori responds to the moderately acidic conditions encountered at its colonization site, the gastric mucus layer. Thus, we compared gene expression profiles of H. pylori 26695 grown at neutral and acidic pH, and validated the data for a selection of genes by real-time polymerase chain reaction, dot-blots or enzymatic assays. During growth in acidic conditions, 56 genes were upregulated and 45 genes downregulated. We found that acidity is a signal modulating the expression of several virulence factors. Regulation of genes related to metal ion homeostasis suggests protective mechanisms involving diminished transport and enhanced storage. Genes encoding subunits of the F0F1 ATPase and of a newly identified Na+/H+ antiporter (NhaC-HP0946) were downregulated, revealing that this bacterium uses original mechanisms to control proton entry. Five of the upregulated genes encoded proteins controlling intracellular ammonia synthesis, including urease, amidase and formamidase, underlining the major role of this buffering compound in the protection against acidity in H. pylori. Regulatory networks and transcriptome analysis as well as enzymatic assays implicated two metal-responsive transcriptional regulators (NikR and Fur) and an essential two-component response regulator (HP0166, OmpR-like) as effectors of the H. pylori acid response. Finally, a nikR-fur mutant is attenuated in the mouse model, emphasizing the link between response to acidity, metal metabolism and virulence in this gastric pathogen.
Spiegel, S; Chiu, A; James, A S; Jentsch, J D; Karlsgodt, K H
2015-11-01
Numerous studies have implicated DTNBP1, the gene encoding dystrobrevin-binding protein or dysbindin, as a candidate risk gene for schizophrenia, though this relationship remains somewhat controversial. Variation in dysbindin, and its location on chromosome 6p, has been associated with cognitive processes, including those relying on a complex system of glutamatergic and dopaminergic interactions. Dysbindin is one of the seven protein subunits that comprise the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Dysbindin protein levels are lower in mice with null mutations in pallidin, another gene in the BLOC-1, and pallidin levels are lower in mice with null mutations in the dysbindin gene, suggesting that multiple subunit proteins must be present to form a functional oligomeric complex. Furthermore, pallidin and dysbindin have similar distribution patterns in a mouse and human brain. Here, we investigated whether the apparent correspondence of pallid and dysbindin at the level of gene expression is also found at the level of behavior. Hypothesizing a mutation leading to underexpression of either of these proteins should show similar phenotypic effects, we studied recognition memory in both strains using the novel object recognition task (NORT) and social novelty recognition task (SNRT). We found that mice with a null mutation in either gene are impaired on SNRT and NORT when compared with wild-type controls. These results support the conclusion that deficits consistent with recognition memory impairment, a cognitive function that is impaired in schizophrenia, result from either pallidin or dysbindin mutations, possibly through degradation of BLOC-1 expression and/or function. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Wei, Hengling; Li, Wei; Sun, Xiwei; Zhu, Shuijin; Zhu, Jun
2013-01-01
Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes. PMID:23936305
Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi
2014-01-03
Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.
Geng, Ruishuang; Melki, Sami; Chen, Daniel H.-C.; Tian, Guilian; Furness, David; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey; Imanishi, Yoshikazu; Alagramam, Kumar N.
2012-01-01
Mutation in the clarin-1 gene results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 (Clrn1−/−) gene show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca2+ currents and membrane capacitance from IHCs that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 loading and transduction currents pointed to diminished cochlear hair bundle function in Clrn1−/− mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip-links and staircase arrangement of stereocilia were not primarily affected by Clrn1−/− mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant, p.N48K, failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p. N48K in clarin-1 (Clrn1N48K) supports our in vitro and Clrn1−/− mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Further, the ear phenotype in the Clrn1N48K mouse suggests that it is a valuable model for ear disease in CLRN1N48K, the most prevalent Usher III mutation in North America. PMID:22787034
Geng, Ruishuang; Melki, Sami; Chen, Daniel H-C; Tian, Guilian; Furness, David N; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey R; Imanishi, Yoshikazu; Alagramam, Kumar N
2012-07-11
Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.
Josephson, Anna; Trifunovski, Alexandra; Widmer, Hans Ruedi; Widenfalk, Johan; Olson, Lars; Spenger, Christian
2002-11-18
Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain. Copyright 2002 Wiley-Liss, Inc.
Kawai, Jun; Hayashizaki, Yoshihide
2003-01-01
We propose herein a new method of DNA distribution, whereby DNA clones or PCR products are printed directly onto the pages of books and delivered to users along with relevant scientific information. DNA sheets, comprising water-soluble paper onto which DNA is spotted, can be bound into books. Readers can easily extract the DNA fragments from DNA sheets and amplify them using PCR. We show that DNA sheets can withstand various conditions that may be experienced during bookbinding and delivery, such as high temperatures and humidity. Almost all genes (95%–100% of randomly selected RIKEN mouse cDNA clones) were recovered successfully by use of PCR. Readers can start their experiments after a 2-h PCR amplification without waiting for the delivery of DNA clones. The DNA Book thus provides a novel method for delivering DNA in a timely and cost-effective manner. A sample DNA sheet (carrying RIKEN mouse cDNA clones encoding genes of enzymes for the TCA cycle) is included in this issue for field-testing. We would greatly appreciate it if readers could attempt to extract DNA and report the results and whether the DNA sheet was shipped to readers in good condition. PMID:12819147
Cockayne syndrome pathogenesis: lessons from mouse models.
Jaarsma, Dick; van der Pluijm, Ingrid; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J
2013-01-01
Cockayne syndrome (CS) is a rare multisystem disorder characterized by cachectic dwarfism, nervous system abnormalities and features of premature aging. CS symptoms are associated with mutations in 5 genes, CSA, CSB, XPB, XPD and XPG encoding for proteins involved in the transcription-coupled subpathway of nucleotide excision DNA repair (NER). Mutant mice have been generated for all CS-associated genes and provide tools to examine how the cellular defects translate into CS symptoms. Mice deficient for Csa or Csb genetically mimic CS in man, and develop mild CS symptoms including reduced fat tissue, photoreceptor cell loss, and mild, but characteristic, nervous system pathology. These mild CS models are converted into severe CS models with short life span, progressive nervous system degeneration and cachectic dwarfism after simultaneous complete inactivation of global genome NER. A spectrum of mild-to-severe CS-like symptoms occurs in Xpb, Xpd, and Xpg mice that genetically mimic patients with a disorder that combines CS symptoms with another NER syndrome, xeroderma pigmentosum. In conclusion, CS mouse models mice develop a range of CS phenotypes and open promising perspectives for testing interventional approaches. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Identification and functional analysis of endothelial tip cell-enriched genes.
del Toro, Raquel; Prahst, Claudia; Mathivet, Thomas; Siegfried, Geraldine; Kaminker, Joshua S; Larrivee, Bruno; Breant, Christiane; Duarte, Antonio; Takakura, Nobuyuki; Fukamizu, Akiyoshi; Penninger, Josef; Eichmann, Anne
2010-11-11
Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.
Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy
Amoasii, Leonela; Long, Chengzu; Li, Hui; Mireault, Alex A.; Shelton, John M.; Sanchez-Ortiz, Efrain; McAnally, John R.; Bhattacharyya, Samadrita; Schmidt, Florian; Grimm, Dirk; Hauschka, Stephen D.; Bassel-Duby, Rhonda; Olson, Eric N.
2017-01-01
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders. PMID:29187645
Clinical Consequences of Mutations in Thyroid Hormone Receptor-α1
van Mullem, Alies A.; Visser, Theo J.; Peeters, Robin P.
2014-01-01
Thyroid hormone (TH) exerts its biological activity via the TH receptors TRα1 and TRβ1/2, which are encoded by the THRA and THRB genes. The first patients with mutations in THRB were identified decades ago. These patients had a clinical syndrome of resistance to TH associated with high serum TH and nonsuppressed thyroid-stimulating hormone levels. Until recently, no patients with mutations in THRA had been identified. In an attempt to predict the clinical phenotype of such patients, different TRα1 mutant mouse models have been generated. These mice have a variable phenotype depending on the location and severity of the mutation. Recently, the first humans with mutations in THRA were identified. Their phenotype consists of relatively low serum T4 and high serum T3 levels (and thus an elevated T3/T4 ratio), growth retardation, delayed mental and bone development, and constipation. While, in retrospect, certain features present in humans can also be found in mouse models, the first humans carrying a defect in TRα1 were not suspected of having a THRA gene mutation initially. The current review focuses on the clinical consequences of TRα1 mutations. PMID:24847461
Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells
Kurabayashi, Nobuhiro; Sanada, Kamon
2013-01-01
Down's syndrome (DS), a major genetic cause of mental retardation, arises from triplication of genes on human chromosome 21. Here we show that DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) and DSCR1 (DS critical region 1), two genes lying within human chromosome 21 and encoding for a serine/threonine kinase and calcineurin regulator, respectively, are expressed in neural progenitors in the mouse developing neocortex. Increasing the dosage of both proteins in neural progenitors leads to a delay in neuronal differentiation, resulting ultimately in alteration of their laminar fate. This defect is mediated by the cooperative actions of DYRK1A and DSCR1 in suppressing the activity of the transcription factor NFATc. In Ts1Cje mice, a DS mouse model, dysregulation of NFATc in conjunction with increased levels of DYRK1A and DSCR1 was observed. Furthermore, counteracting the dysregulated pathway ameliorates the delayed neuronal differentiation observed in Ts1Cje mice. In sum, our findings suggest that dosage of DYRK1A and DSCR1 is critical for proper neurogenesis through NFATc and provide a potential mechanism to explain the neurodevelopmental defects in DS. PMID:24352425
Dhar, Jayeeta; Barik, Sailen
2016-12-01
Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.
Dnd1-mediated epigenetic control of teratoma formation in mouse
Gu, Wei; Mochizuki, Kentaro; Otsuka, Kei; Hamada, Ryohei; Takehara, Asuka
2018-01-01
ABSTRACT Spontaneous testicular teratoma develops from primordial germ cells (PGCs) in embryos; however, the molecular mechanisms underlying teratoma formation are not fully understood. Mutation of the dead-end 1 (Dnd1) gene, which encodes an RNA-binding protein, drastically enhances teratoma formation in the 129/Sv mouse strain. To elucidate the mechanism of Dnd1 mutation-induced teratoma formation, we focused on histone H3 lysine 27 (H3K27) trimethylation (me3), and found that the levels of H3K27me3 and its responsible methyltransferase, enhancer of zeste homolog 2 (Ezh2), were decreased in the teratoma-forming cells of Dnd1 mutant embryos. We also showed that Dnd1 suppressed miR-26a-mediated inhibition of Ezh2 expression, and that Dnd1 deficiency resulted in decreased H3K27me3 of a cell-cycle regulator gene, Ccnd1. In addition, Ezh2 expression or Ccnd1 deficiency repressed the reprogramming of PGCs into pluripotent stem cells, which mimicked the conversion of embryonic germ cells into teratoma-forming cells. These results revealed an epigenetic molecular linkage between Dnd1 and the suppression of testicular teratoma formation. PMID:29378702
Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression
Parks, Matthew M.; Kurylo, Chad M.; Dass, Randall A.; Bojmar, Linda; Lyden, David; Vincent, C. Theresa; Blanchard, Scott C.
2018-01-01
The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome’s molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease. PMID:29503865
Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis
Xiao, Changchun; Shim, Jae-hyuck; Klüppel, Michael; Zhang, Samuel Shao-Min; Dong, Chen; Flavell, Richard A.; Fu, Xin-Yuan; Wrana, Jeffrey L.; Hogan, Brigid L.M.; Ghosh, Sankar
2003-01-01
Bone morphogenetic proteins (Bmps) are members of the transforming growth factor β (TGFβ) superfamily that play critical roles during mouse embryogenesis. Signaling by Bmp receptors is mediated mainly by Smad proteins. In this study, we show that a targeted null mutation of Ecsit, encoding a signaling intermediate of the Toll pathway, leads to reduced cell proliferation, altered epiblast patterning, impairment of mesoderm formation, and embryonic lethality at embryonic day 7.5 (E7.5), phenotypes that mimic the Bmp receptor type1a (Bmpr1a) null mutant. In addition, specific Bmp target gene expression is abolished in the absence of Ecsit. Biochemical analysis demonstrates that Ecsit associates constitutively with Smad4 and associates with Smad1 in a Bmp-inducible manner. Together with Smad1 and Smad4, Ecsit binds to the promoter of specific Bmp target genes. Finally, knock-down of Ecsit with Ecsit-specific short hairpin RNA inhibits both Bmp and Toll signaling. Therefore, these results show that Ecsit functions as an essential component in two important signal transduction pathways and establishes a novel role for Ecsit as a cofactor for Smad proteins in the Bmp signaling pathway. PMID:14633973
Pokatayev, Vladislav; Hasin, Naushaba; Chon, Hyongi; Cerritelli, Susana M.; Sakhuja, Kiran; Ward, Jerrold M.; Morris, H. Douglas; Yan, Nan
2016-01-01
The neuroinflammatory autoimmune disease Aicardi-Goutières syndrome (AGS) develops from mutations in genes encoding several nucleotide-processing proteins, including RNase H2. Defective RNase H2 may induce accumulation of self-nucleic acid species that trigger chronic type I interferon and inflammatory responses, leading to AGS pathology. We created a knock-in mouse model with an RNase H2 AGS mutation in a highly conserved residue of the catalytic subunit, Rnaseh2aG37S/G37S (G37S), to understand disease pathology. G37S homozygotes are perinatal lethal, in contrast to the early embryonic lethality previously reported for Rnaseh2b- or Rnaseh2c-null mice. Importantly, we found that the G37S mutation led to increased expression of interferon-stimulated genes dependent on the cGAS–STING signaling pathway. Ablation of STING in the G37S mice results in partial rescue of the perinatal lethality, with viable mice exhibiting white spotting on their ventral surface. We believe that the G37S knock-in mouse provides an excellent animal model for studying RNASEH2-associated autoimmune diseases. PMID:26880576
Kochneva, G V; Kolosova, I V; Lupan, T A; Sivolobova, G F; Iudin, P V; Grazhdantseva, A A; Riabchikova, E I; Kandrina, N Iu; Shchelkunov, S N
2009-01-01
Mousepox (ectromelia) virus genome contains four genes encoding for kelch-like proteins EVM018, EVM027, EVM150 and EVM167. A complete set of insertion plasmids was constructed to allow the production of recombinant ectromelia viruses with targeted deletions of one to four genes of kelch family both individually (single mutants) and in different combinations (double, triple and quadruple mutants). It was shown that deletion of any of the three genes EVMO18, EVM027 or EVM167 resulted in reduction of 50% lethal dose (LD50) by five and more orders in outbred white mice infected intraperitoneally. Deletion of mousepox kelch-gene EVM150 did not influence the virus virulence. Two or more kelch-genes deletion also resulted in high level of attenuation, which could evidently be due to the lack of three genes EVM167, EVM018 and/or EVM027 identified as virulence factors. The local inflammatory process on the model of intradermal injection of mouse ear pinnae (vasodilatation level, hyperemia, cutaneous edema, arterial thrombosis) was significantly more intensive for wild type virus and virulent mutant deltaEVM150 in comparison with avirulent mutant AEVM167.
Derrick-Roberts, Ainslie L K; Pyragius, Carmen E; Kaidonis, Xenia M; Jackson, Matilda R; Anson, Donald S; Byers, Sharon
2014-09-01
A number of mucopolysaccharidosis type VII (MPS VII) mouse models with different levels of residual enzyme activity have been created replicating the range of clinical phenotypes observed in human MPS VII patients. In this study, a lentivirus encoding murine β-glucuronidase was administered intravenously at birth to both the severe (Gus(mps/mps) strain) and attenuated (Gus(tm(L175F)Sly) strain) mouse models of MPS VII. Circulating enzyme levels were normalized in the Gus(mps/mps) mice and were 3.5-fold higher than normal in the Gus(tm(L175F)Sly) mouse 12 and 18 months after administration. Tissue β-glucuronidase activity increased over untreated levels in all tissues evaluated in both strains at 12 months, and the elevated level was maintained in Gus(tm(L175F)Sly) tissues at 18 months. These elevated enzyme levels reduced glycosaminoglycan storage in the liver, spleen, kidney, and heart in both models. Bone mineral volume decreased toward normal in both models after 12 months of therapy and after 18 months in the Gus(tm(L175F)Sly) mouse. Open-field exploration was improved in 18-month-old treated Gus(tm(L175F)Sly) mice, while spatial learning improved in both 12- and 18-month-old treated Gus(tm(L175F)Sly) mice. Overall, neonatal administration of lentiviral gene therapy resulted in sustained enzyme expression for up to 18 months in murine models of MPS VII. Significant improvements in biochemistry and enzymology as well as functional improvement of bone and behavior deficits in the Gus(tm(L175F)Sly) model were observed. Therapy significantly increased the lifespan of Gus(mps/mps) mice, with 12 months being the longest reported lentiviral treatment for this strain. It is important to assess the long-term outcome on enzyme levels and effect on pathology for lentiviral gene therapy to be a potential therapy for MPS patients.
Oocyte-specific gene Oog1 suppresses the expression of spermatogenesis-specific genes in oocytes.
Honda, Shinnosuke; Miki, Yuka; Miyamoto, Yuya; Kawahara, Yu; Tsukamoto, Satoshi; Imai, Hiroshi; Minami, Naojiro
2018-05-03
Oog1, an oocyte-specific gene that encodes a protein of 425 amino acids, is present in five copies on mouse chromosomes 4 and 12. In mouse oocytes, Oog1 mRNA expression begins at embryonic day 15.5 and almost disappears by the late two-cell stage. Meanwhile, OOG1 protein is detectable in oocytes in ovarian cysts and disappears by the four-cell stage; the protein is transported to the nucleus in late one-cell to early two-cell stage embryos. In this study, we examined the role of Oog1 during oogenesis in mice. Oog1 RNAi-transgenic mice were generated by expressing double-stranded hairpin Oog1 RNA, which is processed into siRNAs targeting Oog1 mRNA. Quantitative RT-PCR revealed that the amount of Oog1 mRNA was dramatically reduced in oocytes obtained from Oog1-knockdown mice, whereas the abundance of spermatogenesis-associated transcripts (Klhl10, Tekt2, Tdrd6, and Tnp2) was increased in Oog1 knockdown ovaries. Tdrd6 is involved in the formation of the chromatoid body, Tnp2 contributes to the formation of sperm heads, Tekt2 is required for the formation of ciliary and flagellar microtubules, and Klhl10 plays a key role in the elongated sperm differentiation. These results indicate that Oog1 down-regulates the expression of spermatogenesis-associated genes in female germ cells, allowing them to develop normally into oocytes.
Stafford, Phillip; Abdelwahab, Mohammed G; Kim, Do Young; Preul, Mark C; Rho, Jong M; Scheck, Adrienne C
2010-09-10
Malignant brain tumors affect people of all ages and are the second leading cause of cancer deaths in children. While current treatments are effective and improve survival, there remains a substantial need for more efficacious therapeutic modalities. The ketogenic diet (KD) - a high-fat, low-carbohydrate treatment for medically refractory epilepsy - has been suggested as an alternative strategy to inhibit tumor growth by altering intrinsic metabolism, especially by inducing glycopenia. Here, we examined the effects of an experimental KD on a mouse model of glioma, and compared patterns of gene expression in tumors vs. normal brain from animals fed either a KD or a standard diet. Animals received intracranial injections of bioluminescent GL261-luc cells and tumor growth was followed in vivo. KD treatment significantly reduced the rate of tumor growth and prolonged survival. Further, the KD reduced reactive oxygen species (ROS) production in tumor cells. Gene expression profiling demonstrated that the KD induces an overall reversion to expression patterns seen in non-tumor specimens. Notably, genes involved in modulating ROS levels and oxidative stress were altered, including those encoding cyclooxygenase 2, glutathione peroxidases 3 and 7, and periredoxin 4. Our data demonstrate that the KD improves survivability in our mouse model of glioma, and suggests that the mechanisms accounting for this protective effect likely involve complex alterations in cellular metabolism beyond simply a reduction in glucose.
Mutations in PROP1 cause familial combined pituitary hormone deficiency.
Wu, W; Cogan, J D; Pfäffle, R W; Dasen, J S; Frisch, H; O'Connell, S M; Flynn, S E; Brown, M R; Mullis, P E; Parks, J S; Phillips, J A; Rosenfeld, M G
1998-02-01
Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.
Hasan, S. Naimul; Mark, Brian; Harlalka, Gaurav V.; Patton, Michael A.; Ishida, Miho; Sharma, Sanjay; Faqeih, Eissa; Blakley, Brian; Jackson, Mike; Lees, Melissa; Dolinsky, Vernon; Cross, Leroy; Stanier, Philip; Salter, Claire; Baple, Emma L.; Crosby, Andrew H.
2017-01-01
Orofacial clefting is amongst the most common of birth defects, with both genetic and environmental components. Although numerous studies have been undertaken to investigate the complexities of the genetic etiology of this heterogeneous condition, this factor remains incompletely understood. Here, we describe mutations in the HYAL2 gene as a cause of syndromic orofacial clefting. HYAL2, encoding hyaluronidase 2, degrades extracellular hyaluronan, a critical component of the developing heart and palatal shelf matrix. Transfection assays demonstrated that the gene mutations destabilize the molecule, dramatically reducing HYAL2 protein levels. Consistent with the clinical presentation in affected individuals, investigations of Hyal2-/- mice revealed craniofacial abnormalities, including submucosal cleft palate. In addition, cor triatriatum sinister and hearing loss, identified in a proportion of Hyal2-/- mice, were also found as incompletely penetrant features in affected humans. Taken together our findings identify a new genetic cause of orofacial clefting in humans and mice, and define the first molecular cause of human cor triatriatum sinister, illustrating the fundamental importance of HYAL2 and hyaluronan turnover for normal human and mouse development. PMID:28081210
Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing
2009-03-11
Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.
Yassin, Atteyet F; Langenberg, Stefan; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Mukherjee, Supratim; Reddy, T B K; Daum, Chris; Shapiro, Nicole; Ivanova, Natalia; Woyke, Tanja; Kyrpides, Nikos C
2017-01-01
The permanent draft genome sequence of Actinotignum schaalii DSM 15541T is presented. The annotated genome includes 2,130,987 bp, with 1777 protein-coding and 58 rRNA-coding genes. Genome sequence analysis revealed absence of genes encoding for: components of the PTS systems, enzymes of the TCA cycle, glyoxylate shunt and gluconeogensis. Genomic data revealed that A. schaalii is able to oxidize carbohydrates via glycolysis, the nonoxidative pentose phosphate and the Entner-Doudoroff pathways. Besides, the genome harbors genes encoding for enzymes involved in the conversion of pyruvate to lactate, acetate and ethanol, which are found to be the end products of carbohydrate fermentation. The genome contained the gene encoding Type I fatty acid synthase required for de novo FAS biosynthesis. The plsY and plsX genes encoding the acyltransferases necessary for phosphatidic acid biosynthesis were absent from the genome. The genome harbors genes encoding enzymes responsible for isoprene biosynthesis via the mevalonate (MVA) pathway. Genes encoding enzymes that confer resistance to reactive oxygen species (ROS) were identified. In addition, A. schaalii harbors genes that protect the genome against viral infections. These include restriction-modification (RM) systems, type II toxin-antitoxin (TA), CRISPR-Cas and abortive infection system. A. schaalii genome also encodes several virulence factors that contribute to adhesion and internalization of this pathogen such as the tad genes encoding proteins required for pili assembly, the nanI gene encoding exo-alpha-sialidase, genes encoding heat shock proteins and genes encoding type VII secretion system. These features are consistent with anaerobic and pathogenic lifestyles. Finally, resistance to ciprofloxacin occurs by mutation in chromosomal genes that encode the subunits of DNA-gyrase (GyrA) and topisomerase IV (ParC) enzymes, while resistant to metronidazole was due to the frxA gene, which encodes NADPH-flavin oxidoreductase.
Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina; ...
2015-05-01
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. Here, to understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50- pheV has a mosaic structure and contains genes encoding a numbermore » of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50- pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50 afa and VR50 afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50 afa and VR50 afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50- pheV mutant. In conlusion, our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. Here, to understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50- pheV has a mosaic structure and contains genes encoding a numbermore » of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50- pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50 afa and VR50 afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50 afa and VR50 afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50- pheV mutant. In conlusion, our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.« less
Beatson, Scott A; Ben Zakour, Nouri L; Totsika, Makrina; Forde, Brian M; Watts, Rebecca E; Mabbett, Amanda N; Szubert, Jan M; Sarkar, Sohinee; Phan, Minh-Duy; Peters, Kate M; Petty, Nicola K; Alikhan, Nabil-Fareed; Sullivan, Mitchell J; Gawthorne, Jayde A; Stanton-Cook, Mitchell; Nhu, Nguyen Thi Khanh; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Hancock, Viktoria; Ussery, David W; Ulett, Glen C; Schembri, Mark A
2015-05-01
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Gassen, Nils C; Fries, Gabriel R; Zannas, Anthony S; Hartmann, Jakob; Zschocke, Jürgen; Hafner, Kathrin; Carrillo-Roa, Tania; Steinbacher, Jessica; Preißinger, S Nicole; Hoeijmakers, Lianne; Knop, Matthias; Weber, Frank; Kloiber, Stefan; Lucae, Susanne; Chrousos, George P; Carell, Thomas; Ising, Marcus; Binder, Elisabeth B; Schmidt, Mathias V; Rüegg, Joëlle; Rein, Theo
2015-11-24
Epigenetic processes, such as DNA methylation, and molecular chaperones, including FK506-binding protein 51 (FKBP51), are independently implicated in stress-related mental disorders and antidepressant drug action. FKBP51 associates with cyclin-dependent kinase 5 (CDK5), which is one of several kinases that phosphorylates and activates DNA methyltransferase 1 (DNMT1). We searched for a functional link between FKBP51 (encoded by FKBP5) and DNMT1 in cells from mice and humans, including those from depressed patients, and found that FKBP51 competed with its close homolog FKBP52 for association with CDK5. In human embryonic kidney (HEK) 293 cells, expression of FKBP51 displaced FKBP52 from CDK5, decreased the interaction of CDK5 with DNMT1, reduced the phosphorylation and enzymatic activity of DNMT1, and diminished global DNA methylation. In mouse embryonic fibroblasts and primary mouse astrocytes, FKBP51 mediated several effects of paroxetine, namely, decreased the protein-protein interactions of DNMT1 with CDK5 and FKBP52, reduced phosphorylation of DNMT1, and decreased the methylation and increased the expression of the gene encoding brain-derived neurotrophic factor (Bdnf). In human peripheral blood cells, FKBP5 expression inversely correlated with both global and BDNF methylation. Peripheral blood cells isolated from depressed patients that were then treated ex vivo with paroxetine revealed that the abundance of BDNF positively correlated and phosphorylated DNMT1 inversely correlated with that of FKBP51 in cells and with clinical treatment success in patients, supporting the relevance of this FKBP51-directed pathway that prevents epigenetic suppression of gene expression. Copyright © 2015, American Association for the Advancement of Science.
Djelti, Fathia; Braudeau, Jerome; Hudry, Eloise; Dhenain, Marc; Varin, Jennifer; Bièche, Ivan; Marquer, Catherine; Chali, Farah; Ayciriex, Sophie; Auzeil, Nicolas; Alves, Sandro; Langui, Dominique; Potier, Marie-Claude; Laprevote, Olivier; Vidaud, Michel; Duyckaerts, Charles; Miles, Richard; Aubourg, Patrick; Cartier, Nathalie
2015-08-01
Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of β-C-terminal fragment and amyloid-β peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-β peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ben Zakour, Nouri L.; Totsika, Makrina; Forde, Brian M.; Watts, Rebecca E.; Mabbett, Amanda N.; Szubert, Jan M.; Sarkar, Sohinee; Phan, Minh-Duy; Peters, Kate M.; Petty, Nicola K.; Alikhan, Nabil-Fareed; Sullivan, Mitchell J.; Gawthorne, Jayde A.; Stanton-Cook, Mitchell; Nhu, Nguyen Thi Khanh; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Hancock, Viktoria; Ussery, David W.; Ulett, Glen C.
2015-01-01
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. PMID:25667270
Medici, Valentina; Shibata, Noreene M; Kharbanda, Kusum K; Islam, Mohammad S; Keen, Carl L; Kim, Kyoungmi; Tillman, Brittany; French, Samuel W; Halsted, Charles H; LaSalle, Janine M
2014-02-01
Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P<0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline.
Medici, Valentina; Shibata, Noreene M; Kharbanda, Kusum K; Islam, Mohammad S; Keen, Carl L; Kim, Kyoungmi; Tillman, Brittany; French, Samuel W; Halsted, Charles H; LaSalle, Janine M
2014-01-01
Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P < 0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline. PMID:24220304
Furugaki, Kouichi; Cui, Lin; Kunisawa, Yumi; Osada, Kensuke; Shinkai, Kentaro; Tanaka, Masao; Kataoka, Kazunori; Nakano, Kenji
2014-01-01
Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype. PMID:25013909
Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism.
Maekawa, Motoko; Iwayama, Yoshimi; Ohnishi, Tetsuo; Toyoshima, Manabu; Shimamoto, Chie; Hisano, Yasuko; Toyota, Tomoko; Balan, Shabeesh; Matsuzaki, Hideo; Iwata, Yasuhide; Takagai, Shu; Yamada, Kohei; Ota, Motonori; Fukuchi, Satoshi; Okada, Yohei; Akamatsu, Wado; Tsujii, Masatsugu; Kojima, Nobuhiko; Owada, Yuji; Okano, Hideyuki; Mori, Norio; Yoshikawa, Takeo
2015-11-09
The solute carrier 27A (SLC27A) gene family encodes fatty acid transport proteins (FATPs) and includes 6 members. During fetal and postnatal periods of development, the growing brain requires a reliable supply of fatty acids. Because autism spectrum disorders (ASD) are now recognized as disorders caused by impaired early brain development, it is possible that functional abnormalities of SLC27A genes may contribute to the pathogenesis of ASD. Here, we confirmed the expression of SLC27A3 and SLC27A4 in human neural stem cells derived from human induced pluripotent stem cells, which suggested their involvement in the developmental stage of the central nervous system. Additionally, we resequenced the SLC27A3 and SLC27A4 genes using 267 ASD patient and 1140 control samples and detected 47 (44 novel and 29 nonsynonymous) and 30 (17 novel and 14 nonsynonymous) variants for the SLC27A3 and SLC27A4, respectively, revealing that they are highly polymorphic with multiple rare variants. The SLC27A4 Ser209 allele was more frequently represented in ASD samples. Furthermore, we showed that a SLC27A4 Ser209 mutant resulted in significantly higher fluorescently-labeled fatty acid uptake into bEnd3 cells, a mouse brain capillary-derived endothelial cell line, compared with SLC27A4 Gly209, suggesting that the functional change may contribute to ASD pathophysiology.
Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism
Maekawa, Motoko; Iwayama, Yoshimi; Ohnishi, Tetsuo; Toyoshima, Manabu; Shimamoto, Chie; Hisano, Yasuko; Toyota, Tomoko; Balan, Shabeesh; Matsuzaki, Hideo; Iwata, Yasuhide; Takagai, Shu; Yamada, Kohei; Ota, Motonori; Fukuchi, Satoshi; Okada, Yohei; Akamatsu, Wado; Tsujii, Masatsugu; Kojima, Nobuhiko; Owada, Yuji; Okano, Hideyuki; Mori, Norio; Yoshikawa, Takeo
2015-01-01
The solute carrier 27A (SLC27A) gene family encodes fatty acid transport proteins (FATPs) and includes 6 members. During fetal and postnatal periods of development, the growing brain requires a reliable supply of fatty acids. Because autism spectrum disorders (ASD) are now recognized as disorders caused by impaired early brain development, it is possible that functional abnormalities of SLC27A genes may contribute to the pathogenesis of ASD. Here, we confirmed the expression of SLC27A3 and SLC27A4 in human neural stem cells derived from human induced pluripotent stem cells, which suggested their involvement in the developmental stage of the central nervous system. Additionally, we resequenced the SLC27A3 and SLC27A4 genes using 267 ASD patient and 1140 control samples and detected 47 (44 novel and 29 nonsynonymous) and 30 (17 novel and 14 nonsynonymous) variants for the SLC27A3 and SLC27A4, respectively, revealing that they are highly polymorphic with multiple rare variants. The SLC27A4 Ser209 allele was more frequently represented in ASD samples. Furthermore, we showed that a SLC27A4 Ser209 mutant resulted in significantly higher fluorescently-labeled fatty acid uptake into bEnd3 cells, a mouse brain capillary-derived endothelial cell line, compared with SLC27A4 Gly209, suggesting that the functional change may contribute to ASD pathophysiology. PMID:26548558
Premraj, A; Aleyas, A G; Nautiyal, B; Rasool, T J
2013-10-01
The mechanism by which type I interferon-mediated antiviral response is mounted by hosts against invading pathogen is an intriguing one. Of late, an endoplasmic reticulum transmembrane protein encoded by a gene called stimulator of interferon genes (STING) is implicated in the innate signalling pathways and has been identified and cloned in few mammalian species including human, mouse and pig. In this article, we report the identification of STING from three different species of a highly conserved family of mammals - the camelids. cDNAs encoding the STING of Old World camels - dromedary camel (Camelus dromedarius) and bactrian camel (Camelus bactrianus) and a New World camel - llama (Llama glama) were amplified using conserved primers and RACE. The complete STING cDNA of dromedary camel is 2171 bp long with a 706-bp 5' untranslated regions (UTR), an 1137-bp open reading frame (ORF) and a 328-bp 3' UTR. Sequence and phylogenetic analysis of the ORF of STING from these three camelids indicate high level of similarity among camelids and conservation of critical amino acid residues across different species. Quantitative real-time PCR analysis revealed high levels of STING mRNA expression in blood, spleen, lymph node and lung. The identification of camelid STING will help in better understanding of the role of this molecule in the innate immunity of the camelids and other mammals. © 2013 John Wiley & Sons Ltd.
Ly49 Receptors: Innate and Adaptive Immune Paradigms
Rahim, Mir Munir A.; Tu, Megan M.; Mahmoud, Ahmad Bakur; Wight, Andrew; Abou-Samra, Elias; Lima, Patricia D. A.; Makrigiannis, Andrew P.
2014-01-01
The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity. PMID:24765094
Pera, Edgar M; Kim, James I; Martinez, Sarah L; Brechner, Mariel; Li, Su Yu; Wessely, Oliver; De Robertis, E M
2002-08-01
Patterning of the central nervous system is regulated by a signaling center located at the midbrain-hindbrain boundary (MHB), or isthmus organizer. Fibroblast growth factors secreted from the MHB are required and sufficient to direct the ordered growth and regionalization of the midbrain and anterior hindbrain. In an unbiased secretion cloning screen of Xenopus gastrula embryos we identified a novel gene, which we designated as Isthmin (xIsm) due to its prominent expression at the MHB. xIsm encodes a secreted protein of 449 amino acids containing one copy of the thrombospondin type 1 repeat (TSR). We also found orthologous Isthmin genes in human (hIsm) and mouse (mIsm), as well as a gene encoding an Isthmin-like human unknown protein (hIsm-l). The conservation of a unique carboxy-terminal region between hIsm and hIsm-l suggests that Isthmin is the founding member of a new family of secreted proteins. xIsm was strongly expressed maternally in the Xenopus egg and showed zygotic expression in the ventral blastopore lip, notochord, and MHB. Additional expression domains were detected in neural crest, ear vesicle, and developing blood islands. Interestingly, xIsm was co-expressed with Fibroblast growth factor-8 (xFgf-8) at multiple sites including the MHB, indicating that these two genes are part of a synexpression group which also includes sprouty and sef homologs.
Osman, Kamelia M; Hassan, Hany M; Orabi, Ahmed; Abdelhafez, Ahmed S T
2014-06-01
Studies on the prevalence and virulence genes of Klebsiella mastitis pathogens in a buffalo population are undocumented. Also, the association of rmpA kfu, uge, magA, Aerobactin, K1 and K2 virulent factors with K. pneumoniae buffalo, and cow mastitis is unreported. The virulence of K. pneumoniae was evaluated through both phenotypic and molecular assays. In vivo virulence was assessed by the Vero cell cytotoxicity, suckling mouse assay and mice lethality test. Antimicrobial susceptibility was tested by disk diffusion method. The 45 K. pneumoniae isolates from buffalo (n = 10/232) and cow (n = 35/293) milk were isolated (45/525; 8.6%) and screened via PCR for seven virulence genes encoding uridine diphosphate galactose 4 epimerase encoding gene responsible for capsule and smooth lipopolysaccharide synthesis (uge), siderophores (kfu and aerobactin), protectines or invasins (rmpA and magA), and the capsule and hypermucoviscosity (K1 and K2). The most common virulence genes were rmpA, kfu, uge, and magA (77.8% each). Aerobactin and K1 genes were found at medium rates of 66.7% each and K2 (55.6%). The Vero cell cytotoxicity and LD (50) in mice were found in 100% of isolates. A multidrug resistance pattern was observed for 40% of the antimicrobials. The distribution of virulence profiles indicate a role of rmpA, kfu, uge, magA, Aerobactin, and K1 and K2 in pathogenicity of K. pneumoniae in udder infections and invasiveness, and constitutes a threat for vulnerable animals, even more if they are in combination with antibiotic resistance.
Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome.
Marland, Jamie R K; Smillie, Karen J; Cousin, Michael A
2016-01-01
Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy.
Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome
Marland, Jamie R. K.; Smillie, Karen J.; Cousin, Michael A.
2016-01-01
Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy. PMID:26808141
The Regulatory Small RNA MarS Supports Virulence of Streptococcus pyogenes.
Pappesch, Roberto; Warnke, Philipp; Mikkat, Stefan; Normann, Jana; Wisniewska-Kucper, Aleksandra; Huschka, Franziska; Wittmann, Maja; Khani, Afsaneh; Schwengers, Oliver; Oehmcke-Hecht, Sonja; Hain, Torsten; Kreikemeyer, Bernd; Patenge, Nadja
2017-09-25
Small regulatory RNAs (sRNAs) play a role in the control of bacterial virulence gene expression. In this study, we investigated an sRNA that was identified in Streptococcus pyogenes (group A Streptococcus, GAS) but is conserved throughout various streptococci. In a deletion strain, expression of mga, the gene encoding the multiple virulence gene regulator, was reduced. Accordingly, transcript and proteome analyses revealed decreased expression of several Mga-activated genes. Therefore, and because the sRNA was shown to interact with the 5' UTR of the mga transcript in a gel-shift assay, we designated it MarS for m ga-activating regulatory sRNA. Down-regulation of important virulence factors, including the antiphagocytic M-protein, led to increased susceptibility of the deletion strain to phagocytosis and reduced adherence to human keratinocytes. In a mouse infection model, the marS deletion mutant showed reduced dissemination to the liver, kidney, and spleen. Additionally, deletion of marS led to increased tolerance towards oxidative stress. Our in vitro and in vivo results indicate a modulating effect of MarS on virulence gene expression and on the pathogenic potential of GAS.
Wiebe, Victor; Przeworski, Molly; Lancet, Doron; Pääbo, Svante
2004-01-01
Olfactory receptor (OR) genes constitute the molecular basis for the sense of smell and are encoded by the largest gene family in mammalian genomes. Previous studies suggested that the proportion of pseudogenes in the OR gene family is significantly larger in humans than in other apes and significantly larger in apes than in the mouse. To investigate the process of degeneration of the olfactory repertoire in primates, we estimated the proportion of OR pseudogenes in 19 primate species by surveying randomly chosen subsets of 100 OR genes from each species. We find that apes, Old World monkeys and one New World monkey, the howler monkey, have a significantly higher proportion of OR pseudogenes than do other New World monkeys or the lemur (a prosimian). Strikingly, the howler monkey is also the only New World monkey to possess full trichromatic vision, along with Old World monkeys and apes. Our findings suggest that the deterioration of the olfactory repertoire occurred concomitant with the acquisition of full trichromatic color vision in primates. PMID:14737185
Bottje, Walter G.; Khatri, Bhuwan; Shouse, Stephanie A.; Seo, Dongwon; Mallmann, Barbara; Orlowski, Sara K.; Pan, Jeonghoon; Kong, Seongbae; Owens, Casey M.; Anthony, Nicholas B.; Kim, Jae K.; Kong, Byungwhi C.
2017-01-01
Background: Although small non-coding RNAs are mostly encoded by the nuclear genome, thousands of small non-coding RNAs encoded by the mitochondrial genome, termed as mitosRNAs were recently reported in human, mouse and trout. In this study, we first identified chicken mitosRNAs in breast muscle using small RNA sequencing method and the differential abundance was analyzed between modern pedigree male (PeM) broilers (characterized by rapid growth and large muscle mass) and the foundational Barred Plymouth Rock (BPR) chickens (characterized by slow growth and small muscle mass). Methods: Small RNA sequencing was performed with total RNAs extracted from breast muscles of PeM and BPR (n = 6 per group) using the 1 × 50 bp single end read method of Illumina sequencing. Raw reads were processed by quality assessment, adapter trimming, and alignment to the chicken mitochondrial genome (GenBank Accession: X52392.1) using the NGen program. Further statistical analyses were performed using the JMP Genomics 8. Differentially expressed (DE) mitosRNAs between PeM and BPR were confirmed by quantitative PCR. Results: Totals of 183,416 unique small RNA sequences were identified as potential chicken mitosRNAs. After stringent filtering processes, 117 mitosRNAs showing >100 raw read counts were abundantly produced from all 37 mitochondrial genes (except D-loop region) and the length of mitosRNAs ranged from 22 to 46 nucleotides. Of those, abundance of 44 mitosRNAs were significantly altered in breast muscles of PeM compared to those of BPR: all mitosRNAs were higher in PeM breast except those produced from 16S-rRNA gene. Possibly, the higher mitosRNAs abundance in PeM breast may be due to a higher mitochondrial content compared to BPR. Our data demonstrate that in addition to 37 known mitochondrial genes, the mitochondrial genome also encodes abundant mitosRNAs, that may play an important regulatory role in muscle growth via mitochondrial gene expression control. PMID:29104541
A Mutation of the Prdm9 Mouse Hybrid Sterility Gene Carried by a Transgene.
Mihola, O; Trachtulec, Z
2017-01-01
PRDM9 is a protein with histone-3-methyltransferase activity, which specifies the sites of meiotic recombination in mammals. Deficiency of the Prdm9 gene in the laboratory mouse results in complete arrest of the meiotic prophase of both sexes. Moreover, the combination of certain PRDM9 alleles from different mouse subspecies causes hybrid sterility, e.g., the male-specific meiotic arrest found in the (PWD/Ph × C57BL/6J)F1 animals. The fertility of all these mice can be rescued using a Prdm9-containing transgene. Here we characterized a transgene made from the clone RP24-346I22 that was expected to encompass the entire Prdm9 gene. Both (PWD/Ph × C57BL/6J)F1 intersubspecific hybrid males and Prdm9-deficient laboratory mice of both sexes carrying this transgene remained sterile, suggesting that Prdm9 inactivation occurred in the Tg(RP24-346I22) transgenics. Indeed, comparative qRT-PCR analysis of testicular RNAs from transgene-positive versus negative animals revealed similar expression levels of Prdm9 mRNAs from the exons encoding the C-terminal part of the protein but elevated expression from the regions coding for the N-terminus of PRDM9, indicating that the transgenic carries a new null Prdm9 allele. Two naturally occurring alternative Prdm9 mRNA isoforms were overexpressed in Tg(RP24-346I22), one formed via splicing to a 3'-terminal exon consisting of short interspersed element B2 and one isoform including an alternative internal exon of 28 base pairs. However, the overexpression of these alternative transcripts was apparently insufficient for Prdm9 function or for increasing the fertility of the hybrid males.
Zeng, Ling-Hui; Rensing, Nicholas R; Zhang, Bo; Gutmann, David H; Gambello, Michael J; Wong, Michael
2011-02-01
Tuberous Sclerosis Complex (TSC) is an autosomal dominant, multi-system disorder, typically involving severe neurological symptoms, such as epilepsy, cognitive deficits and autism. Two genes, TSC1 and TSC2, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Although there is a substantial overlap in the clinical phenotype produced by TSC1 and TSC2 mutations, accumulating evidence indicates that TSC2 mutations cause more severe neurological manifestations than TSC1 mutations. In this study, the neurological phenotype of a novel mouse model involving conditional inactivation of the Tsc2 gene in glial-fibrillary acidic protein (GFAP)-positive cells (Tsc2(GFAP1)CKO mice) was characterized and compared with previously generated Tsc1(GFAP1)CKO mice. Similar to Tsc1(GFAP1)CKO mice, Tsc2(GFAP1)CKO mice exhibited epilepsy, premature death, progressive megencephaly, diffuse glial proliferation, dispersion of hippocampal pyramidal cells and decreased astrocyte glutamate transporter expression. However, Tsc2(GFAP1)CKO mice had an earlier onset and higher frequency of seizures, as well as significantly more severe histological abnormalities, compared with Tsc1(GFAP1)CKO mice. The differences between Tsc1(GFAP1)CKO and Tsc2(GFAP1)CKO mice were correlated with higher levels of mammalian target of rapamycin (mTOR) activation in Tsc2(GFAP1)CKO mice and were reversed by the mTOR inhibitor, rapamycin. These findings provide novel evidence in mouse models that Tsc2 mutations intrinsically cause a more severe neurological phenotype than Tsc1 mutations and suggest that the difference in phenotype may be related to the degree to which Tsc1 and Tsc2 inactivation causes abnormal mTOR activation.
Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian
2013-03-01
To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.
Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.
Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M
1991-02-15
The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.
Structure and function of neonatal social communication in a genetic mouse model of autism.
Takahashi, T; Okabe, S; Broin, P Ó; Nishi, A; Ye, K; Beckert, M V; Izumi, T; Machida, A; Kang, G; Abe, S; Pena, J L; Golden, A; Kikusui, T; Hiroi, N
2016-09-01
A critical step toward understanding autism spectrum disorder (ASD) is to identify both genetic and environmental risk factors. A number of rare copy number variants (CNVs) have emerged as robust genetic risk factors for ASD, but not all CNV carriers exhibit ASD and the severity of ASD symptoms varies among CNV carriers. Although evidence exists that various environmental factors modulate symptomatic severity, the precise mechanisms by which these factors determine the ultimate severity of ASD are still poorly understood. Here, using a mouse heterozygous for Tbx1 (a gene encoded in 22q11.2 CNV), we demonstrate that a genetically triggered neonatal phenotype in vocalization generates a negative environmental loop in pup-mother social communication. Wild-type pups used individually diverse sequences of simple and complicated call types, but heterozygous pups used individually invariable call sequences with less complicated call types. When played back, representative wild-type call sequences elicited maternal approach, but heterozygous call sequences were ineffective. When the representative wild-type call sequences were randomized, they were ineffective in eliciting vigorous maternal approach behavior. These data demonstrate that an ASD risk gene alters the neonatal call sequence of its carriers and this pup phenotype in turn diminishes maternal care through atypical social communication. Thus, an ASD risk gene induces, through atypical neonatal call sequences, less than optimal maternal care as a negative neonatal environmental factor.
Structure and function of neonatal social communication in a genetic mouse model of autism
Takahashi, Tomohisa; Okabe, Shota; Ó Broin, Pilib; Nishi, Akira; Ye, Kenny; Beckert, Michael V.; Izumi, Takeshi; Machida, Akihiro; Kang, Gina; Abe, Seiji; Pena, Jose L.; Golden, Aaron; Kikusui, Takefumi; Hiroi, Noboru
2015-01-01
A critical step toward understanding autism spectrum disorder (ASD) is to identify both genetic and environmental risk factors. A number of rare copy number variants (CNVs) have emerged as robust genetic risk factors for ASD, but not all CNV carriers exhibit ASD and the severity of ASD symptoms varies among CNV carriers. Although evidence exists that various environmental factors modulate symptomatic severity, the precise mechanisms by which these factors determine the ultimate severity of ASD are still poorly understood. Here, using a mouse heterozygous for Tbx1 (a gene encoded in 22q11.2 CNV), we demonstrate that a genetically-triggered neonatal phenotype in vocalization generates a negative environmental loop in pup-mother social communication. Wild-type pups used individually diverse sequences of simple and complicated call types, but heterozygous pups used individually invariable call sequences with less complicated call types. When played back, representative wild-type call sequences elicited maternal approach, but heterozygous call sequences were ineffective. When the representative wild-type call sequences were randomized, they were ineffective in eliciting vigorous maternal approach behavior. These data demonstrate that an ASD risk gene alters the neonatal call sequence of its carriers and this pup phenotype in turn diminishes maternal care through atypical social communication. Thus, an ASD risk gene induces, through atypical neonatal call sequences, less than optimal maternal care as a negative neonatal environmental factor. PMID:26666205
Orlandi, Alessia; Pagani, Francesca; Avitabile, Daniele; Bonanno, Giuseppina; Scambia, Giovanni; Vigna, Elisa; Grassi, Francesca; Eusebi, Fabrizio; Fucile, Sergio; Pesce, Maurizio; Capogrossi, Maurizio C
2008-04-01
Prior in vitro studies suggested that different types of hematopoietic stem cells may differentiate into cardiomyocytes. The present work examined whether human CD34(+) cells from the human umbilical cord blood (hUCB), cocultured with neonatal mouse cardiomyocytes, acquire the functional properties of myocardial cells and express human cardiac genes. hUCB CD34(+) cells were cocultured onto cardiomyocytes following an infection with a lentivirus-encoding enhanced green fluorescent protein (EGFP). After 7 days, mononucleated EGFP(+) cells were tested for their electrophysiological features by patch clamp and for cytosolic [Ca(2+)] ([Ca(2+)](i)) homeostasis by [Ca(2+)](i) imaging of X-rhod1-loaded cells. Human Nkx2.5 and GATA-4 expression was examined in cocultured cell populations by real-time RT-PCR. EGFP(+) cells were connected to surrounding cells by gap junctions, acquired electrophysiological properties similar to those of cardiomyocytes, and showed action potential-associated [Ca(2+)](i) transients. These cells also exhibited spontaneous sarcoplasmic reticulum [Ca(2+)](i) oscillations and the associated membrane potential depolarization. However, RT-PCR of both cell populations showed no upregulation of human-specific cardiac genes. In conclusion, under our experimental conditions, hUCB CD34(+) cells cocultured with murine cardiomyocytes formed cells that exhibited excitation-contraction coupling features similar to those of cardiomyocytes. However, the expression of human-specific cardiac genes was undetectable by RT-PCR.
Spampanato, Carmine; De Leonibus, Elvira; Dama, Paola; Gargiulo, Annagiusi; Fraldi, Alessandro; Sorrentino, Nicolina Cristina; Russo, Fabio; Nusco, Edoardo; Auricchio, Alberto; Surace, Enrico M; Ballabio, Andrea
2011-01-01
Multiple sulfatase deficiency (MSD), a severe autosomal recessive disease is caused by mutations in the sulfatase modifying factor 1 gene (Sumf1). We have previously shown that in the Sumf1 knockout mouse model (Sumf1−/−) sulfatase activities are completely absent and, similarly to MSD patients, this mouse model displays growth retardation and early mortality. The severity of the phenotype makes MSD unsuitable to be treated by enzyme replacement or bone marrow transplantation, hence the importance of testing the efficacy of novel treatment strategies. Here we show that recombinant adeno-associated virus serotype 9 (rAAV9) vector injected into the cerebral ventricles of neonatal mice resulted in efficient and widespread transduction of the brain parenchyma. In addition, we compared a combined, intracerebral ventricles and systemic, administration of an rAAV9 vector encoding SUMF1 gene to the single administrations—either directly in brain, or systemic alone —in MSD mice. The combined treatment resulted in the global activation of sulfatases, near-complete clearance of glycosaminoglycans (GAGs) and decrease of inflammation in both the central nervous system (CNS) and visceral organs. Furthermore, behavioral abilities were improved by the combined treatment. These results underscore that the “combined” mode of rAAV9 vector administration is an efficient option for the treatment of severe whole-body disorders. PMID:21326216
Targeted Ablation of the Abcc6 Gene Results in Ectopic Mineralization of Connective Tissues
Klement, John F.; Matsuzaki, Yasushi; Jiang, Qiu-Jie; Terlizzi, Joseph; Choi, Hae Young; Fujimoto, Norihiro; Li, Kehua; Pulkkinen, Leena; Birk, David E.; Sundberg, John P.; Uitto, Jouni
2005-01-01
Pseudoxanthoma elasticum (PXE), characterized by connective tissue mineralization of the skin, eyes, and cardiovascular system, is caused by mutations in the ABCC6 gene. ABCC6 encodes multidrug resistance-associated protein 6 (MRP6), which is expressed primarily in the liver and kidneys. Mechanisms producing ectopic mineralization as a result of these mutations remain unclear. To elucidate this complex disease, a transgenic mouse was generated by targeted ablation of the mouse Abcc6 gene. Abcc6 null mice were negative for Mrp6 expression in the liver, and complete necropsies revealed profound mineralization of several tissues, including skin, arterial blood vessels, and retina, while heterozygous animals were indistinguishable from the wild-type mice. Particularly striking was the mineralization of vibrissae, as confirmed by von Kossa and alizarin red stains. Electron microscopy revealed mineralization affecting both elastic structures and collagen fibers. Mineralization of vibrissae was noted as early as 5 weeks of age and was progressive with age in Abcc6−/− mice but was not observed in Abcc6+/− or Abcc6+/+ mice up to 2 years of age. A total body computerized tomography scan of Abcc6−/− mice revealed mineralization in skin and subcutaneous tissue as well as in the kidneys. These data demonstrate aberrant mineralization of soft tissues in PXE-affected organs, and, consequently, these mice recapitulate features of this complex disease. PMID:16135817
Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X
2004-01-01
Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613
The use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways
Griesenbach, Uta; Meng, Cuixiang; Farley, Raymond; Wasowicz, Marguerite; Munkonge, Felix M; Chan, Mario; Stoneham, Charlotte; Sumner-Jones, Stephanie; Pringle, Ian A.; Gill, Deborah R.; Hyde, Stephen C.; Stevenson, Barbara; Holder, Emma; Ban, Hiroshi; Hasegawa, Mamoru; Cheng, Seng H; Scheule, Ronald K; Sinn, Patrick L; McCray, Paul B; Alton, Eric WFW
2014-01-01
We have assessed whether viscoelastic gels known to inhibit mucociliary clearance can increase lipid-mediated gene transfer. Methylcellulose or carboxymethylcellulose (0.25 to 1.5%) were mixed with complexes of the cationic lipid GL67A and plasmids encoding luciferase and perfused onto the nasal epithelium of mice. Survival after perfusion with 1% CMC or1% MC was 90 and 100%, respectively. In contrast 1.5% CMC was uniformly lethal likely due to the viscous solution blocking the airways. Perfusion with 0.5% CMC containing lipid/DNA complexes reproducibly increased gene expression by approximately 3-fold (n= 16, p<0.05). Given this benefit, likely related to increased duration of contact, we also assessed the effect of prolonging contact time of the liposome/DNA complexes by delivering our standard 80 μg DNA dose over either approximately 22 or 60 min of perfusion. This independently increased gene transfer by 6-fold (n=8, p<0.05) and could be further enhanced by the addition of 0.5% CMC, leading to an overall 25-fold enhancement (n=8, p<0.001) in gene expression. As a result of these interventions CFTR transgene mRNA transgene levels were increased several logs above background. Interestingly, this did not lead to correction of the ion transport defects in the nasal epithelium of cystic fibrosis mice nor for immunohistochemical quantification of CFTR expression. To assess if 0.5% CMC also increased gene transfer in the mouse lung, we used whole body nebulisation chambers. CMC was nebulised for 1 hr immediately before, or simultaneously with GL67A/pCIKLux. The former did not increase gene transfer, whereas co-administration significantly increased gene transfer by 4-fold (p<0.0001, n=18). This study suggests that contact time of non-viral gene transfer agents is a key factor for gene delivery, and suggests two methods which may be translatable for use in man. PMID:20022367